
Marko Hölbl
Kai Rannenberg

Tatjana Welzer (Eds.)

35th IFIP TC 11 International Conference, SEC 2020
Maribor, Slovenia, September 21–23, 2020
Proceedings

ICT Systems Security
and Privacy Protection

IFIP AICT 580

IFIP Advances in Information
and Communication Technology 580

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Luís Soares Barbosa , University of Minho, Braga, Portugal

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall , Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Burkhard Stiller, University of Zurich, Zürich, Switzerland

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps , University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology
Ricardo Reis , Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell , Plymouth University, UK

TC 12 – Artificial Intelligence
Eunika Mercier-Laurent , University of Reims Champagne-Ardenne, Reims, France

TC 13 – Human-Computer Interaction
Marco Winckler , University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

http://orcid.org/0000-�0002-�5037-�2588
http://orcid.org/0000-�0003-�4317-�971X
http://orcid.org/0000-�0002-�5776-�2888
http://orcid.org/0000-�0001-�5781-�5858
http://orcid.org/0000-�0003-�0984-�7542
http://orcid.org/0000-0003-2303-7263
http://orcid.org/0000-�0002-�0756-�6934

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Marko Hölbl • Kai Rannenberg •

Tatjana Welzer (Eds.)

ICT Systems Security
and Privacy Protection
35th IFIP TC 11 International Conference, SEC 2020
Maribor, Slovenia, September 21–23, 2020
Proceedings

123

Editors
Marko Hölbl
University of Maribor
Maribor, Slovenia

Kai Rannenberg
Goethe University Frankfurt
Frankfurt, Germany

Tatjana Welzer
University of Maribor
Maribor, Slovenia

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-58200-5 ISBN 978-3-030-58201-2 (eBook)
https://doi.org/10.1007/978-3-030-58201-2

© IFIP International Federation for Information Processing 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9414-3189
https://doi.org/10.1007/978-3-030-58201-2

Preface

In these challenging times caused by the COVID-19 situation, we are honored to bring
you this collection of the best papers submitted to the 35th IFIP International Con-
ference on ICT Systems Security and Privacy Protection, which was held in Maribor,
Slovenia, September 21–23, 2020. IFIP SEC conferences are the flagship events of the
International Federation for Information Processing (IFIP) Technical Committee 11 on
Information Security and Privacy Protection in Information Processing Systems
(TC-11).

The 2020 edition of the IFIP SEC proceedings includes 29 high-quality papers
covering a wide range of research areas in the information security field. They were
authored by researchers from 19 different countries. The selection of papers was a
highly challenging task: 149 received submissions were evaluated based on their sig-
nificance, novelty, and technical quality. Each paper received at least three, but most
of them four reviews by members of the Program Committee. The Program Committee
meetings were held electronically, with intensive discussions over a period of three
weeks. Of the papers submitted, 29 were selected for presentation at the conference,
leading to an acceptance rate of 19.5%.

We want to express our appreciation to all the contributors who helped to make
IFIP SEC 2020 a success. There is a long list of people who volunteered their time and
energy to put together the conference and who deserve acknowledgement. We want to
thank the members of the Program Committee and the external reviewers, who devoted
significant amounts of their time to evaluate all the submissions. Special thanks go to
the keynote speakers Elisa Bertino from Purdue University West Lafayette, USA, and
Stanka Šalamun and Mitja Kolšek from 0patch by ACROS Security, Slovenia, who
accepted our invitation to present their insights at the conference.

Further individuals who deserve special thanks and without whom the current
program and success of the conference would not have been possible include: the
organizing chair Lili Nemec Zlatolas and the members of the Organizing Committee
Borut Zlatolas, Luka Hrgarek, and Marko Kompara, all from the University of Maribor,
Faculty of Electrical Engineering and Computer Science. They kept all things smooth
and flowing, even after the delays caused by the pandemic. The IFIP SEC and WISE
had to be postponed without clear information on when public events like it could be
safely held again. The IFIP Summer School, which was being organized separately,
also got postponed and found a new home at IFIP SEC 2020. Due to the constant
changes in local regulation, the questionable safety of international travel and uncer-
tainty regarding the future spread of the disease, the decision was made to hold the
conference virtually, despite the best efforts to have it in Maribor, Slovenia. Special
recognition goes to Hotel City Maribor and the Maribor Convention Bureau, who were
very accommodating and understanding regardless of the economic impact of the
unfortunate situation, and we express our regret to the participants, for missing the
opportunity to see the beauty Slovenia has to offer.

We also acknowledge the institutional support for IFIP SEC 2020, which came from
the University of Maribor, Faculty of Electrical Engineering and Computer Science,
Institute of Informatics. Without this support, it would not have been possible to
organize the conference.

Last but certainly not least, we thank all the authors who submitted papers and all
the conference’s attendees who coped with the changing circumstances in a kind and
flexible manner.

We hope you find the proceedings of IFIP SEC 2020 interesting, stimulating, and
inspiring for your future research regardless of the challenging times in which the
conference took place.

July 2020 Marko Hölbl
Kai Rannenberg
Tatjana Welzer

vi Preface

Organization

General Chair

Tatjana Welzer University of Maribor, Slovenia

Program Committee Chairs

Marko Hölbl University of Maribor, Slovenia
Kai Rannenberg Goethe University Frankfurt, Germany

Organizing Chair

Lili Nemec Zlatolas University of Maribor, Slovenia

Program Committee

Rose-Mharie Åhlfeldt University of Skövde, Sweden
Raja Naeem Akram Royal Holloway, University of London, UK
Vijay Atluri Rutgers University, USA
Man Ho Au The University of Hong Kong, China
Gergei Bana University of Missouri, USA
Joao Paulo Barraca University of Aveiro, Portugal
Pedro Brandão University of Porto, Portugal
Dagmar Brechlerova EuroMISE Prague, Czech Republic
Ricardo Chaves IST, INESC-ID, Portugal
Michal Choras ITTI Ltd., Poland
K. P. Chow The University of Hong Kong, China
Nathan Clarke University of Plymouth, UK
Miguel Correia Universidade de Lisboa, Portugal
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Paolo D’Arco Università di Salerno, Italy
Ed Dawson QUT, Australia
Sabrina De Capitani di

Vimercati
Università degli Studi di Milano, Italy

Bart De Decker Katholieke Universiteit Leuven, Belgium
Nicola Dragoni Technical University of Denmark, Denmark
Nicolás Emilio Daz Ferreyra University of Duisburg-Essen, Germany
Isao Echizen National Institute of Informatics, Japan
Simone Fischer-Hübner Karlstad University, Sweden
Sara Foresti Università degli Studi di Milano, Italy
Steven Furnell University of Plymouth, UK
Chaya Ganesh Aarhus University, Denmark

Hélder Gomes Universidade de Aveiro, Portugal
Jonas Hallberg Swedish Defence Research Agency (FOI), Sweden
Lucjan Hanzlik Stanford University, USA
Paul Haskell-Dowland Edith Cowan University, Australia
Karin Hedström Örebro University, Sweden
Dominik Herrmann University of Bamberg, Germany
Xinyi Huang Fujian Normal University, China
Dieter Hutter DFKI GmbH, Germany
Pedro Inácio Universidade da Beira Interior, Portugal
Martin Gilje Jaatun SINTEF Digital, Norway
Wojciech Jamroga University of Luxembourg, Luxembourg
Lech Janczewski The University of Auckland, New Zealand
Christian Damsgaard Jensen Technical University of Denmark, Denmark
Allen Johnston University of Alabama, USA
Audun Josang University of Oslo, Norway
Jan Jürjens Fraunhofer Institute and University

of Koblenz-Landau, Germany
Georgios Kambourakis University of the Aegean, Greece
Fredrik Karlsson Örebro University, Sweden
Dogan Kesdogan Universität Regensburg, Germany
Dongseong Kim The University of Queensland, Australia
Kamil Kluczniak Helmholtz Center for Information Security - CISPA,

Germany
Andrea Kolberger University of Applied Sciences Upper Austria, Austria
Marko Kompara University of Maribor, Slovenia
Zbigniew Kotulski Warsaw University of Technology, Poland
Lukasz Krzywiecki Wrocław University of Science and Technology,

Poland
Miroslaw Kutylowski Wrocław University of Science and Technology,

Poland
Kwangjo Kim Korea Advanced Institute of Science and Technology,

South Korea
Heejo Lee Korea University, South Korea
Yingjiu Li University of Oregon, USA
Maciej Liskiewicz University of Luebeck, Germany
Luigi Logrippo Université du Québec en Outaouais, Canada
Javier Lopez University of Malaga, Spain
Suryadipta Majumdar University at Albany, SUNY, USA
Marian Margraf FU Berlin, Germany
Fabio Martinelli IIT-CNR, Italy
Vashek Matyas Masaryk University, Czech Republic
Zlatogor Minchev Bulgarian Academy of Sciences, Bulgaria
Yuko Murayama Tsuda College, Japan
Maurizio Naldi LUMSA Università Maria SS. Assunta di Roma, Italy
Lili Nemec Zlatolas University of Maribor, Slovenia

viii Organization

Sergio Nunes ISEG - School of Economics and Management,
Portugal

Balaji Palanisamy University of Pittsburgh, USA
Brajendra Panda University of Arkansas, USA
Sebastian Pape Goethe University Frankfurt, Germany
Stefano Paraboschi Università di Bergamo, Italy
Miguel Pardal Universidade de Lisboa, Portugal
Gilbert Peterson US Air Force Institute of Technology, USA
António Pinto ESTG, P.Porto, Portugal
Rami Puzis Ben-Gurion University of the Negev, Israel
Arun Raghuramu Forescout Technologies Inc., USA
Carlos Rieder Isec AG, Switzerland
Juha Röning University of Oulu, Finland
Elham Rostami Örebro University, Sweden
Reyhaneh Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Damien Sauveron Université de Limoges, France
Ingrid Schaumüller-Bichl Upper Austrian University of Applied Sciences

Campus Hagenberg, Austria
Jetzabel Maritza Serna

Olvera
Universitat Politècnica de Catalunya, Spain

Paria Shirani Concordia University, Canada
Nicolas Sklavos University of Patras, Greece
Daniel Slamanig AIT Austrian Institute of Technology, Austria
Kane Smith University of North Carolina at Greensboro, USA
Agusti Solanas Rovira i Virgili University, Spain
Teodor Sommestad Swedish Defence Research Agency (FOI), Sweden
Chunhua Su Osaka University, Japan
Shamik Sural Indian Institute of Technology, India
Kerry-Lynn Thomson Nelson Mandela University, South Africa
Muhamed Turkanović University of Maribor, Slovenia
Rossouw Vonsolms Nelson Mandela University, South Africa
Jozef Vyskoc VaF, Slovakia
Ding Wang Peking University, China
Lingyu Wang Concordia University, Canada
Edgar Weippl University of Vienna, SBA Research, Austria
Vladimir Zadorozhny University of Pittsburgh, USA
Filip Zagorski Wroclaw University of Technology, Poland
Yuexin Zhang Swinburne University of Technology, Australia
André Zúquete University of Aveiro, Portugal

Organization ix

Additional Reviewers

Mohiuddin Ahmed
Marios Anagnostopoulos
Arash Atashpendar
Sebastian Berndt
Olivier Blazy
Rohit Chadha
Aveek Kumar Das
Tiago Dias
Rong Huang
Vincenzo Iovino
Andreas Jakoby
Manfred Jeusfeld
Jan Kalbantner
Kallol Krishna Karmakar
Joakim Kävrestad
Mathieu Klingler
Vasileios Kouliaridis
Chengjun Lin
Chao Lin
Chang Liu
Francesco Mercaldo
Louis Moreau
Hong-Huy Nguyen
Wojciech Niewolski
Fahad Nife
Jianting Ning
Marcus Nohlberg

Tomasz Nowak
Tomás Oliveira E Silva
Oleksii Osliak
Ali Padyab
Bernardo Portela
Nektaria Potha
Andreas Put
Sebastian Ramacher
Musa Samaila
Benjamin Semal
Mariusz Sepczuk
Bernardo Sequeiros
Mina Sheikhalishahi
João Marco Silva
Tiago Simões
Marjan Skrobot
Eva Söderström
Patryk Szewczyk
Florian Thaeter
Ngoc Dung Tieu
Ganbayar Uuganbayar
Benito van der Zander
Weizheng Wang
S. J. Yang
Wenjie Yang
Xu Yang
Kai Zhu

x Organization

Contents

Channel Attacks

Leaky Controller: Cross-VM Memory Controller Covert Channel
on Multi-core Systems . 3

Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram,
and Jan Kalbantner

Evaluation of Statistical Tests for Detecting Storage-Based
Covert Channels . 17

Thomas A. V. Sattolo and Jason Jaskolka

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks
Through Indirect Eviction . 32

Muhammad Asim Mukhtar, Muhammad Khurram Bhatti,
and Guy Gogniat

Connection Security

Refined Detection of SSH Brute-Force Attackers Using Machine Learning. . . 49
Karel Hynek, Tomáš Beneš, Tomáš Čejka, and Hana Kubátová

MULTITLS: Secure Communication Channels with Cipher Suite Diversity . . . 64
Ricardo Moura, David R. Matos, Miguel L. Pardal, and Miguel Correia

Improving Big Data Clustering for Jamming Detection in Smart Mobility . . . 78
Hind Bangui, Mouzhi Ge, and Barbora Buhnova

Human Aspects of Security and Privacy

Assisting Users to Create Stronger Passwords Using
ContextBased MicroTraining . 95

Joakim Kävrestad and Marcus Nohlberg

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design . . . 109
Agnieszka Kitkowska, Yefim Shulman, Leonardo A. Martucci,
and Erik Wästlund

Privacy CURE: Consent Comprehension Made Easy 124
Olha Drozd and Sabrina Kirrane

Detecting Malware and Software Weaknesses

JavaScript Malware Detection Using Locality Sensitive Hashing 143
Stefan Carl Peiser, Ludwig Friborg, and Riccardo Scandariato

RouAlign: Cross-Version Function Alignment and Routine Recovery
with Graphlet Edge Embedding . 155

Can Yang, Jian Liu, Mengxia Luo, Xiaorui Gong, and Baoxu Liu

Code Between the Lines: Semantic Analysis of Android Applications 171
Johannes Feichtner and Stefan Gruber

System Security

IMShell-Dec: Pay More Attention to External Links in PowerShell 189
RuiDong Han, Chao Yang, JianFeng Ma, Siqi Ma, YunBo Wang,
and Feng Li

Secure Attestation of Virtualized Environments. 203
Michael Eckel, Andreas Fuchs, Jürgen Repp, and Markus Springer

Network Security and Privacy

Security and Performance Implications of BGP Rerouting-Resistant Guard
Selection Algorithms for Tor . 219

Asya Mitseva, Marharyta Aleksandrova, Thomas Engel,
and Andriy Panchenko

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 234
Wilfried Mayer, Georg Merzdovnik, and Edgar Weippl

Zeek-Osquery: Host-Network Correlation for Advanced Monitoring
and Intrusion Detection . 248

Steffen Haas, Robin Sommer, and Mathias Fischer

Access Control and Authentication

Revisiting Security Vulnerabilities in Commercial Password Managers 265
Michael Carr and Siamak F. Shahandashti

Evaluation of Risk-Based Re-Authentication Methods 280
Stephan Wiefling, Tanvi Patil, Markus Dürmuth, and Luigi Lo Iacono

Fuzzy Vault for Behavioral Authentication System 295
Md Morshedul Islam and Reihaneh Safavi-Naini

xii Contents

Crypto Currencies

Improvements of the Balance Discovery Attack on Lightning Network
Payment Channels. 313

Gijs van Dam, Rabiah Abdul Kadir, Puteri N. E. Nohuddin,
and Halimah Badioze Zaman

CCBRSN: A System with High Embedding Capacity for Covert
Communication in Bitcoin . 324

Weizheng Wang and Chunhua Su

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet. 338
Dusan Klinec and Vashek Matyas

Privacy and Security Management

A Matter of Life and Death: Analyzing the Security
of Healthcare Networks . 355

Guillaume Dupont, Daniel Ricardo dos Santos, Elisa Costante,
Jerry den Hartog, and Sandro Etalle

Establishing a Strong Baseline for Privacy Policy Classification 370
Najmeh Mousavi Nejad, Pablo Jabat, Rostislav Nedelchev,
Simon Scerri, and Damien Graux

Cross-Platform File System Activity Monitoring and Forensics –
A Semantic Approach . 384

Kabul Kurniawan, Andreas Ekelhart, Fajar Ekaputra,
and Elmar Kiesling

Machine Learning and Security

A Correlation-Preserving Fingerprinting Technique for Categorical
Data in Relational Databases . 401

Tanja Sarcevic and Rudolf Mayer

FDFtNet: Facing Off Fake Images Using Fake Detection
Fine-Tuning Network . 416

Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo

Escaping Backdoor Attack Detection of Deep Learning 431
Yayuan Xiong, Fengyuan Xu, Sheng Zhong, and Qun Li

Author Index . 447

Contents xiii

Channel Attacks

Leaky Controller: Cross-VM Memory
Controller Covert Channel on Multi-core

Systems

Benjamin Semal(B), Konstantinos Markantonakis, Raja Naeem Akram,
and Jan Kalbantner

Royal Holloway University of London, Egham, UK
benjamin.semal.2018@live.rhul.ac.uk

Abstract. Data confidentiality is put at risk on cloud platforms where
multiple tenants share the underlying hardware. As multiple workloads
are executed concurrently, conflicts in memory resource occur, result-
ing in observable timing variations during execution. Malicious tenants
can intentionally manipulate the hardware platform to devise a covert
channel, enabling them to steal the data of co-residing tenants. This
paper presents two new microarchitectural covert channel attacks using
the memory controller. The first attack allows a privileged adversary
(i.e. process) to leak information in a native environment. The second
attack is an extension to cross-VM scenarios for unprivileged adversaries.
This work is the first instance of leakage channel based on the memory
controller. As opposed to previous denial-of-service attacks, we man-
age to modulate the load on the channel scheduler with accuracy. Both
attacks are implemented on cross-core configurations. Furthermore, the
cross-VM covert channel is successfully tested across three different Intel
microarchitectures. Finally, a comparison against state-of-the-art covert
channel attacks is provided, along with a discussion on potential mitiga-
tion techniques.

Keywords: Covert channel · Memory controller · DRAM ·
Microarchitectural attack · Cross-VM

1 Introduction

The cloud computing model allows on-demand access to what seems an unlim-
ited pool of storage and computing resource. In order to cope with the elastic
demands of its customers, cloud providers rely on multi-tenancy. Infrastructure-
as-a-service provides the service users with a virtual environment which maps
dynamically to physical resource. These virtual machines (VMs) are co-located
on a shared hardware platform, and separated virtually by the hypervisor. Thus,
data confidentiality and integrity is enforced at the software level. Yet, because
the underlying hardware is common to multiple VMs, attackers are left with
means to exploit functional and timing vulnerabilities at the hardware level.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-58201-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_1

4 B. Semal et al.

The functional behaviour of a system is usually well understood by design-
ers. For example, the seL4 micro-kernel has been proposed as a general purpose
solution, providing strong assurance of confidentiality, availability, and integrity
enforcement from a functional perspective [11]. The identification of hidden leak-
age channels works by analyzing the system’s resources or source-code. Yet, these
identification methods rarely account for the system’s temporal behaviour. Mur-
ray et al. [18] highlighted that seL4 micro-kernel formal proofs completely omit
timing channels. Microarchitectural timing attacks aim at recovering data that
is dependent on the timing behaviour of an application. More specifically, two
processes can exploit timing variations to encode and leak sensitive data across
isolation boundaries. Covert channel attacks employ this mechanism to violate
information flow policies such as in cloud computing.

Cloud providers commonly disable support for simultaneous multi-threading
[14] as well as memory deduplication [4], thus hindering a large range of microar-
chitectural timing attacks. Multiple academic proposals address the mitigation
of timing channels in the cache memory [5,8,10,12,20,21,25,29]. Other inter-
nal (memory controller, on-chip memory bus) and external (DRAM) resource
remain shared among cores, and processors. The sharing of these components
has been exploited to design denial-of-service [17,33], covert and side-channel
attacks [22,27]. Wang et al. [26] previously proposed a simulated version of
memory controller-based leakage channels. In this paper, we present for the first
time a practical implementation in both native and virtualized environments.
Both attacks work in cross-core configuration, i.e. sender and receiver execute on
different physical cores. We test our cross-VM covert channel attack on three dif-
ferent Intel microarchitectures, namely Ivy Bridge, Broadwell, and Skylake. The
channel capacity is systematically evaluated and results are discussed against
state-of-the-art covert channel attacks.

Contributions. This paper makes the following contributions:

1. We present two microarchitectural covert channel attacks using the memory
controller channel scheduler. The first one is privileged and is tested in a
native environment. The second one is unprivileged and can work under both
native and virtualized configurations.

2. We evaluate the proposed covert channels under the binary symmetric model.
Results of our experiments are reported in Table 3. A discussion of our mem-
ory controller-based covert channel against state-of-the-art covert is provided.
We also discuss potential mitigation strategies.

Outline. The remainder of the paper is organized as follows. Section 2 provides
background on the memory controller and the DRAM organization. In Sect. 3,
we present a new memory controller native, privileged covert channel attack. In
Sect. 4, we describe a memory controller cross-VM, unprivileged covert channel.
In Sect. 5, we evaluate the capacity of both covert channels under the binary
symmetric model. Section 6 reviews related works. Section 7 examines potential
mitigation strategies. Finally, we conclude in Sect. 8.

Leaky Controller 5

2 Background

The (integrated) memory controller handles memory accesses to DRAM. Such
access occurs when the data requested by a CPU is not contained in the cache(s).
Before serving a memory access, the memory controller must translate the
requested data’s physical address into a DRAM map. A map is a selection of
channel, rank, bank, row, and column. The physical-to-DRAM address transla-
tion is performed according to DRAM addressing functions. Once the DRAM
map is recovered, the request is then buffered according to the bank and channel
that it targets.

The memory controller contains storage and scheduling resources to arbitrate
memory accesses (see Fig. 1). First, a request is stored in the buffer matching
the DRAM bank that it targets. Then, the bank scheduler will prioritize one
request or another, according to pre-determined scheduling algorithm. Once a
request wins bank arbitration, it is rescheduled by a channel scheduler. Again, the
scheduling algorithm determines priorities. Usually, requests that target open-
pages are served first, so as to mitigate the latency incurred by updating a
row-buffer.

The memory controller’s page policy dictates the aliveness of data in the
row-buffer. If a close-page policy is enforced, the row-buffer will systematically
be cleared after serving a request. Thus, each memory access results in a row-
miss, preventing timing variations, but globally slowing down the execution of
programs. If an open-page policy is enforced, the row-buffer will retain data
until it must be updated with a new row. Thus, it allows the occurrence of row-
hits, reducing the global execution time of programs, but introducing exploitable
timing variations.

Fig. 1. Organization of a memory controller.

6 B. Semal et al.

Several sources of contention exist in the memory controller. First, delays
can be caused via the bank scheduler, as requests from different processes are
mixed in the same bank buffer. If process A is the only one requesting data
in a bank, its memory accesses will be served immediately. However, if another
process B starts requesting data in the same bank as process A, requests of
A and B will compete for scheduling. Because the load on the bank scheduler
increases, requests of process A can be delayed.

Second, delays can be caused via the channel scheduler, since it arbitrates
requests for several banks. If there are no other requests then for bank i, these
will systematically win arbitration and be served immediately. However, if other
requests for bank j, with j �= i, compete for access to the channel, the load on
the channel scheduler will increase, resulting in requests for bank i to be delayed.

Finally, contention can be caused via the DRAM row-buffer, as long as the
memory controller has an open-page policy. Within the same bank, if there are
no other requests then for row m, these will systematically result in row-hits.
However, if other requests in row n interfere, with m �= n, the row-buffer will
alternatively be updated with rows m and n, resulting in frequent row-misses.

3 A Privileged Native Covert Channel

This section presents the basic concept to generating contention via the channel
scheduler through a privileged covert channel in a native environment1.

3.1 Threat Model

The threat model assumes two processes, a receiver and a sender, who want to
share information illegitimately. The security policy forbids these two entities
from communicating directly. The sender possesses sensitive information and
intends to transmit this information to the receiver. Entities each have their
own address space, which is dissociated in physical memory. They are running
on different cores. Both entities require root privileges, and have knowledge of
the DRAM addressing functions.

3.2 Principle

The proposed covert channel exploits timing variations upon uncached memory
accesses. The receiver and sender both occupy space in N , the set of DRAM
banks served by a single channel. The receiver “listens” to the channel by con-
tinuously performing uncached memory accesses at a pre-determined address,
i.e. bank i with i ∈ N . The sender writes on the channel by creating conflicts
on the resource involved in the memory accesses of the receiver. The sender
generates bit values as follows,

1 The source code of our native covert channel is available at https://github.com/
bsepage/mc2c.git.

https://github.com/bsepage/mc2c.git
https://github.com/bsepage/mc2c.git

Leaky Controller 7

– A zero is written by performing uncached memory accesses in bank j, with
j �= i and j ∈ N . Because the channel scheduler only serves banks i and
j, contention is negligible. Thus, the receiver’s memory access in bank i will
result in a “normal” latency, which is interpreted as a zero.

– A one is written by performing uncached memory accesses in all the banks
comprised in N , except for bank i. This operation causes the channel scheduler
to serve requests for every bank within N , which generates an observable
contention. Thus, the receiver’s memory access in bank i will increase in
latency, which is interpreted as a one.

Table 1 summarizes how bit values are encoded and decoded across the covert
channel. A Read (a) operation consists in performing an uncached memory
access in bank a. A Probe (a) operation is equivalent, at the exception that
the elapsed time of the operation is returned to its caller. In order to write a
zero, the sender needs to perform memory accesses in a different bank than the
receiver. Doing so prevents interference from the DRAM row-buffer. Indeed, if
both entities were to read from the same bank, they would most likely read from
different rows (a bank contains thousands of rows). As a result, reading alterna-
tively from the sender’s row and the receiver’s row would cause the row-buffer
to be systematically updated. Thus, memory accesses would result in a majority
of row-misses, and dramatically increase in latency. Because our attack exploits
exclusively the memory controller, such interference is undesirable. Furthermore,
it is preferable to keep the sender active upon sending a zero, in order to compen-
sate the effect of other microarchitectural components (e.g. memory bus). Our
objective is to demonstrate the vulnerability in the memory controller, therefore
we need to isolate its effect from other sources of contention.

Table 1. Modulating the load on the memory controller channel scheduler. Banks i,
j, and k belong to N , the set of banks served by a single channel.

Receiver Sender Bit value

Probe (i) Read (j | j �= i) 0

Probe (i) Read (k = 0, . . . , k = N − 1 | k �= i) 1

3.3 Design Considerations

The native, privileged covert channel works in two phases. First, each entity must
identify a virtual address which maps to the desired DRAM bank(s). Then, both
processes synchronize to exchange information covertly.

In the first phase, processes read the restricted /proc/self/pagemap page
translation table to compute the pointer’s physical address. Physical-to-DRAM
address translation (channel, rank, bank, row, column) requires knowledge of
the DRAM addressing functions. These vary from one processor to another, and

8 B. Semal et al.

must be reverse-engineered if not disclosed by the manufacturer2. The DRAM
address mapping was computed with the reverse engineering tool first presented
in [22]. Prior to launching the covert channel, entities can decide on which DRAM
banks to use specifically.

In the second phase, entities use the operating system wall-clock to syn-
chronize. The clflush instruction is used to flush the cache upon each memory
access, so as to force the request to be served from DRAM. Because an uncached
memory access is higher in latency than a cached one, the cpuid instruction is
used to prevent out-of-order execution of the time-stamp reads. Finally, time-
stamps are read with the rdtsc and rdtscp instructions.

4 An Unprivileged Cross-VM Covert Channel

In this section, we present a cross-VM covert channel using the memory con-
troller. We present a strategy to discard root privileges, as well as the necessity
to learn the DRAM addressing functions.

4.1 Threat Model

Consider two application processes, a trojan and a spy, running in concurrent
VMs. The hardware platform features a multi-core processor, such that the
hypervisor schedules each VM on a different core. The security policy enforced
ensures memory isolation, access control, and does not present any software vul-
nerability. The trojan transmits a bitstream across the covert channel, and the
spy captures the data by probing memory accesses in its own address space (see
Fig. 2).

Such a scenario is plausible if the adversary can infect a software with a
malicious code. The (accidental) compromising of open-source software has been
demonstrated, for instance, with the infection of the OpenSSL cryptographic
library in 2014 (Heartbleed) [6]. Compromising of corporate software has also
occurred, for example, with the multiple WhatsApp bugs [1,3]. Furthermore,
whether it is open-source or proprietary, the software supply chain involves a
growing number of developers and corporations. It is hard (if not impossible) for
users to control that the different parties involved in the development process
apply suitable security practices (e.g. a code is reviewed by a different person
than its developer). Therefore, it is reasonable to assume that commercial and
open-source software are not immune to malicious insiders.

With regards to the co-location problem, previous studies have shown that it
is possible to create a topology of the data centre’s network [24,32], even when
network isolation countermeasures are employed (e.g. virtual private clouds). As
a result, an attacker is capable of co-locating itself with the victim instance on
a shared hardware platform.

2 DRAM addressing functions on the Ivy Bridge test platform (see Table 2): BA0 =
b13 ⊕ b17; BA1 = b14 ⊕ b18; BA2 = b16 ⊕ b20; and Rank= b15 ⊕ b19.

Leaky Controller 9

Fig. 2. Cross-VM covert channel.

4.2 Loosing Privileges and Principle

In Sect. 3, the channel scheduler covert channel is limited to a privileged adver-
sary model. Indeed, an unprivileged attacker is unable to read the /proc/self/-
pagemap file, which is necessary for virtual-to-physical address resolution. Yet,
the attacker needs to find addresses in its virtual address space which map to
different DRAM banks.

Rather than searching for specific banks in a process’ address space, we
mapped several virtual pages, and observed how these were spread across physi-
cal memory. We iterated through the pages, and translated each virtual pointer
into a physical address. These addresses were then converted into bank addresses,
according to the platform’s DRAM addressing functions. The following observa-
tions were made,

1. A single (page-aligned) virtual page is mapped to a single bank.
2. Different virtual pages tend to be mapped to different DRAM banks.

These observations suggest that the sending-end only requires to declare
several virtual pages, and that each page will map to a different bank. However,
there is a probability that one page will be mapped to the same bank as the one
accessed by the receiving-end. Such scenario would cause row-buffer conflicts to
occur. Accessing different rows triggers row-buffer updates, which would add a
significant delay into the receiver’s accesses.

By using a smaller amount of memory pages, the probability of having pages
mapped in the same bank is reduced. The proposed methodology is detailed
in Algorithm 1. The sending-end is designed such that it uses only 3 pages.
Upon writing a one, the sender performs accesses in 3 different banks. Thus, the
channel scheduler serves accesses in 4 different banks at once (3 for the sender
and 1 for the receiver). Upon writing a zero, the sender performs accesses in 1
single page. Thus, the channel scheduler serves accesses in 2 different banks at

10 B. Semal et al.

once. If a row-buffer interference was to occur, the noise would tamper with the
bitstream and the transmission would be discarded. Each bit value is repeated
several times in order to improve the visibility of the contention. The value of
rep determines the bit rate.

Algorithm 1: Transmitting bit values
input: message to transmit msg, number of repetitions rep
init : map and lock 3 memory pages P1, P2, P3
for i ← 0 to msg len do

bit ← msg[i];
if bit then

for j ← 0 to rep do
access(P1, P2, P3);

end

else
for j ← 0 to rep do

access(P1, P1, P1);
end

end

end

Figure 3 shows the latency of the receiver’s memory accesses, with the sender
alternatively being active and inactive. The latency graph shows that when
the sender is active, the receiver presents an overhead of 6.5 CPU cycles on
its accesses. The timing variation indicates that the proposed strategy is valid
for creating a covert channel. This new approach has the benefit that it com-
pletely discards the virtual-to-bank address translation procedure. Therefore,
the attacker neither requires privileges, nor knowledge of the platform’s DRAM
addressing functions. In this configuration, the attack can be applied to virtual
environments, where physical addresses are virtualized by the hypervisor.

Fig. 3. Effect of active sender upon latency of receiver’s memory accesses (Ivy Bridge
setup).

4.3 Design Considerations

The cross-VM, unprivileged covert channel also works in two phases. In the first
phase, the trojan maps and locks memory pages without reverse-engineering

Leaky Controller 11

their physical location. We note that spy and trojan no longer require agreeing on
specific DRAM banks. In the second phase, entities read or probe their memory
accesses to encode and decode bit values. Probing and accessing is performed
using the clflush, cpuid, rdtsc, and rdtscp instructions.

5 Characterizing the Channel Capacity

This section details our testing environment and provides an evaluation of both
covert channel attacks.

5.1 Experimental Setup

The experimental setups used for characterizing the channel capacity and noise
ratio are presented in Table 2. The Kernel Virtual Machine [2] hypervisor is used
to manage virtual machines, and each VM is operated by a Debian distribution
(Linux kernel version 4.19.0). All setups feature a dual-core processor, allowing us
to lock the trojan and spy VMs onto different cores. The virsh edit command
is used to assign a specific cpuset to the vcpu attribute. All our setups feature 16
DRAM banks. Note that a commercial infrastructure- or platform-as-a-service
server system will likely feature greater amounts of DRAM, i.e. the occurrence
of row-buffer interference will drop accordingly. Therefore, the proposed setup
represents a worst-case scenario for the attacker.

Table 2. Experimental setups.

Setup Processor CPU frequency Memory #DRAM banks

Ivy Bridge Intel i5-3210M 2.5 GHz 1 × 4GB DDR3 16

Broadwell Intel i7-5500U 2.4 GHz 1 × 8GB DDR3 16

Skylake Intel i5-6300U 2.4 GHz 1 × 8GB DDR4 16

5.2 Evaluation

In order to evaluate the effective capacity, we model our covert channel as a
binary symmetric channel. Under the binary symmetric model, and given a bit
error probability p, the probability of correctly transmitting a bit is 1−p. There-
fore, if p = 0.5, it is assumed that the channel has reached maximum entropy,
i.e. the probabilities of a bit being erroneous (p) and correct (1 − p) are equal.
The binary entropy H2(p) is defined as follows,

H2(p) = −p log2p − (1 − p) log2(1 − p) (1)

12 B. Semal et al.

Fig. 4. Effective capacity and error probability measured against raw bit rate.

The channel capacity C(p, r), defined as the quantity of information that can be
transmitted reliably, is a function of the entropy H2(p) and the raw bit rate r,

C(p, r) = r(1 − H2(p)) (2)

Figure 4 compares the effective capacity and error probability against a raw
bit rate ranging from 100 to 1300 bps for the native scenario (Fig. 4.a), and from
50 to 350 bps for the virtualized scenarios (Fig. 4.b, 4.c, and 4.d). Measures were
taken by sending a fixed-size message and counting the number of bit flips on
the receiving-end. The error probability p was then calculated as the number of
bit flips divided by the number of bits sent. The capacity C(p, r) was computed
with Eqs. (1) and (2).

In the native scenario (Fig. 4.a), the error probability stays below 0.1 for bit
rates of up to 1250 bps. The channel capacity reaches up to 729 bps, with an
error probability of 6.25%. In the virtualized scenarios, the Ivy Bridge (Fig. 4.b),
Broadwell (Fig. 4.c), and Skylake (Fig. 4.d) setups respectively achieve a maxi-
mum capacity of 90, 95, and 69 bps. The error probability remains below 0.1 for
a raw bit rate of up to 175 bps across the three setups. Results are reported in
Table 3.

Virtualization has a significant impact on the effective channel capacity, as
it brings additional sources of noise. First, sender and receiver compete with
each other to be scheduled by the hypervisor. Second, the sender and receiver

Leaky Controller 13

Table 3. Experimental results.

Setup Environment Bit rate Error rate Capacity

Ivy Bridge Native 1100 bps 6.25% 729 bps

Ivy Bridge Virtualized 150 bps 7.8% 90 bps

Broadwell Virtualized 150 bps 7% 95 bps

Skylake Virtualized 100 bps 5.6% 69 bps

are not able to use the operating system wall-clock to synchronise, as they run
in separate VMs. The receiver might sample at a different rate than the sender
can transmit, with the bias increasing over time. Third, programs executing
concurrently (e.g. hypervisor) can alter the state of the channel scheduler, bank
scheduler, or row-buffer. We note that our implementation is free from any fault
recovery technique.

6 Discussion and Related Work

At the highest level, simultaneous multi-threading (SMT) allows concurrent
threads to share execution units and CPU caches. Percival [21] demonstrated
a covert channel between two threads, based on contention within the L1-D
and L2 caches. Shortly after, Wang and Lee [28] designed a covert channel that
leverages contention on multipliers. More recently, Sullivan et al. [23] demon-
strated a high-speed covert channel between two hyperthreads in Amazon EC2
and Google Compute Engine instances. In a virtualized environment, core-level
co-residency is hard to achieve as VMs tend to be isolated onto different cores.
Furthermore, this class of covert channels is only relevant to cloud platforms
where hyperthreads are enabled.

Other works proposed exploiting the LLC cache as it is fast and shared
among cores. Xu et al. [31] proposed exploiting conflict in the LLC. They used a
covert channel to achieve co-location in an Amazon EC2 setting. Further works
followed based upon the Prime+Probe [13,15,19] or Flush+Flush technique [9].
Maurice et al. [16] implemented a robust covert channel capable of establishing
a rogue SSH connection across Amazon EC2 instances. A number of academic
works have been proposed in order to tackle timing vulnerabilities emanating
from the cache, including hardware cache partitioning [12,20,21,29], software
cache partitioning [5,8,10], and noise injection [25,29]. It is difficult to assess
whether these covert channels could bypass such countermeasures, and calls for
further analysis.

Wu et al. [30] exploited the memory bus as a high-bandwidth covert channel
medium. Their Amazon EC2 experiment achieves an effective capacity of 340
bps, with the use of a robust communication protocol. In order to prevent timing
channels over the on-chip memory bus (or network), Wang and Suh [27] proposed
two approaches. The first one consists in prioritizing traffic from high-security
domains over lower ones, thus isolating sensitive software from a potential spy.

14 B. Semal et al.

The second one consists in assigning separate hardware resources to different
security domains, thus inhibiting timing channels on the memory bus.

Pessl et al. [22] built a high-speed covert channel based on the DRAM row-
buffer. Their channel reaches up to 596 kbps in virtualized environment. Mit-
igating row-buffer covert channels could be achieved by enforcing a close-page
policy on the memory controller. As a result, every memory access would result
in a row-miss, thus inhibiting the timing channel. Furthermore, authors relied
on a privileged adversary model, and both entities need to undergo an initializa-
tion phase in order to agree on a specific DRAM bank. This agreement cannot
be performed online without incurring additional memory usage side-effects. We
propose an alternative to the row-buffer exploitation, with a weaker adversary
model and less operational constraints.

The vulnerability of the memory controller was previously demonstrated by
Moscibroda et al. [17]. Their work shows that by combining all timing channels
detailed in Sect. 2, a malicious process can slowdown the execution of a concur-
rent process by a factor of 190%. It is worth noting that their denial-of-service
attack exploits both the memory controller, and the DRAM row-buffer. Further-
more, they do not address the problem of encoding and decoding information
across virtual machines via the channel scheduler.

7 Mitigation

Memory controller-based (and DRAM row-buffer covert channels) rely on
uncached memory accesses. Therefore, one countermeasure consists in disabling
or restricting access to the clflush instruction. This mitigation technique would
require architectural changes, thus adding in complexity. However, it would go
a long way to making shared platforms resilient against this class of microarchi-
tectural covert channels.

Auditing-based techniques have been proposed in the past [7,9]. The sys-
tematic flushing of the cache causes a very high number of cache misses, which
can be monitored in order to detect abnormal behaviours. However, auditing
usually results in high numbers of false positives. Further work is required to
assess whether this is a suitable approach.

Wang et al. [26] proposed an alternative hardware design of a memory con-
troller. They achieve temporal isolation between different security domains, at
the cost of a memory latency ranging from 60% to 150%. So far, there haven’t
been any countermeasures relying on spatial isolation, or noise injection.

8 Conclusion and Further Work

In this paper, we presented two instances of microarchitectural covert channel
attacks using the memory controller channel scheduler. The first attack is privi-
leged and was tested in a native environment. It achieved a capacity of up to 729
bps (raw bit rate of 1100 bps). The second attack is unprivileged and was tested
in a virtualized environment. It achieved a capacity of up to 95 bps (raw bit

Leaky Controller 15

rate of 150 bps). In further work, we aim to develop countermeasures to prevent
exploitation of the memory controller and the DRAM row-buffer resource. We
also intend to expand the study to multi-processor x86-64 server platforms, as
well as investigating mechanism for bi-directional communication.

References

1. Hackers used WhatsApp 0-day flaw to secretly install spyware on phones. https://
thehackernews.com/2019/05/hack-whatsapp-vulnerability.html. Accessed 18 Feb
2020

2. Kernel virtual machine. https://www.linux-kvm.org. Accessed 18 Feb 2020
3. New WhatsApp bug could have let hackers secretly install spyware on your

devices. https://thehackernews.com/2019/11/whatsapp-hacking-vulnerability.
html. Accessed 18 Feb 2020

4. Base, V.K.: Security considerations and disallowing inter-virtual machine trans-
parent page sharing. VMware Knowl. Base 2080735 (2014)

5. Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: an empirical study of
timing channels on sel4. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 570–581. ACM (2014)

6. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement, pp. 475–488. ACM (2014)

7. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2018)

8. Godfrey, M.M., Zulkernine, M.: Preventing cache-based side-channel attacks in a
cloud environment. IEEE Trans. Cloud Comput. 2(4), 395–408 (2014)

9. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

10. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: The 21st USENIX Secu-
rity Symposium, pp. 189–204 (2012)

11. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. (TOCS) 32(1), 2 (2014)

12. Liu, F., et al.: Catalyst: defeating last-level cache side channel attacks in cloud com-
puting. In: 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 406–418. IEEE (2016)

13. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622. IEEE (2015)

14. Marshall, A., et al.: Security best practices for developing windows azure applica-
tions, p. 42. Microsoft Corp (2010)

15. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS,
vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20550-2 3

16. Maurice, C., et al.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS, vol. 17, pp. 8–11 (2017)

https://thehackernews.com/2019/05/hack-whatsapp-vulnerability.html
https://thehackernews.com/2019/05/hack-whatsapp-vulnerability.html
https://www.linux-kvm.org
https://thehackernews.com/2019/11/whatsapp-hacking-vulnerability.html
https://thehackernews.com/2019/11/whatsapp-hacking-vulnerability.html
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3

16 B. Semal et al.

17. Moscibroda, O., Mutlu, T.: Memory performance attacks: denial of memory service
in multi-core systems. In: 16th USENIX Security Symposium (2007)

18. Murray, T., et al.: seL4: from general purpose to a proof of information flow enforce-
ment. In: 2013 IEEE Symposium on Security and Privacy, pp. 415–429. IEEE
(2013)

19. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in Javascript and their implications. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1406–1418. ACM (2015)

20. Page, D.: Partitioned cache architecture as a side-channel defence mechanism
(2005)

21. Percival, C.: Cache missing for fun and profit (2005)
22. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting

DRAM addressing for cross-CPU attacks. In: 25th USENIX Security Symposium,
pp. 565–581 (2016)

23. Sullivan, D., Arias, O., Meade, T., Jin, Y.: Microarchitectural minefields: 4K-
aliasing covert channel and multi-tenant detection in IaaS clouds. In: NDSS (2018)

24. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: 24th USENIX Security Symposium, pp.
913–928 (2015)

25. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen. In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop,
pp. 41–46. ACM (2011)

26. Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 225–236. IEEE (2014)

27. Wang, Y., Suh, G.E.: Efficient timing channel protection for on-chip networks.
In: 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, pp.
142–151. IEEE (2012)

28. Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture. In:
22nd Annual Computer Security Applications Conference (ACSAC 2006), pp. 473–
482. IEEE (2006)

29. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Comput. Archit. News 35(2), 494–505 (2007)

30. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and reli-
able covert channel attacks inside the cloud. IEEE/ACM Trans. Network. 23(2),
603–615 (2014)

31. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An explo-
ration of L2 cache covert channels in virtualized environments. In: Proceedings of
the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 29–40. ACM
(2011)

32. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security Symposium, pp. 929–944 (2015)

33. Zhang, T., Zhang, Y., Lee, R.B.: Memory dos attacks in multi-tenant clouds: sever-
ity and mitigation. arXiv preprint arXiv:1603.03404 (2016)

http://arxiv.org/abs/1603.03404

Evaluation of Statistical Tests for
Detecting Storage-Based Covert Channels

Thomas A. V. Sattolo and Jason Jaskolka(B)

Systems and Computer Engineering, Carleton University,
Ottawa, ON K1S 5B6, Canada

{thomas.sattolo,jason.jaskolka}@carleton.ca

Abstract. Individuals and organizations are more aware than ever of
the importance and value of preserving the confidentiality and privacy of
sensitive information. However, detecting the leakage of sensitive infor-
mation in networked systems is still a challenging problem, especially
when adversaries use covert channels to exfiltrate sensitive information
to unauthorized parties. Presently, approaches for detecting timing-based
covert channels have been studied more extensively than those for detect-
ing storage-based covert channels. In this paper, we evaluate the effective-
ness of a selection of statistical tests for detecting storage-based covert
channels. We present the results of several experiments which show that
complexity-based tests are effective at detecting storage-based covert
channels when information is embedded into network packet header fields
that are not expected to follow a particular pattern, such as the IP Iden-
tification and Time-to-Live. These results can help to guide the construc-
tion of practical detection platforms capable of effectively detecting the
leakage of sensitive information via storage-based covert channels.

Keywords: Covert channel · Detection · Statistical tests · Storage

1 Introduction and Motivation

Data breaches are an ever-growing problem and detecting them is both chal-
lenging and valuable as the average total cost of a data breach is now $3.68
million [21]. One of the ways an adversary may seek to avoid detection is by
using a covert channel to exfiltrate data from the network.

A covert channel is a means of communication that purports to be difficult
for a third-party observer to detect [15]. In the field of information technol-
ogy, a variety of covert channels have been devised to enable communication
between computers without alerting the network owner. Covert channels can
be divided into two major categories: timing-based channels and storage-based
channels. Timing-based covert channels operate by altering the timing of other-
wise legitimate network traffic so that the arrival times of packets encode secret

This research was supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) grant RGPIN-2019-06306.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 17–31, 2020.
https://doi.org/10.1007/978-3-030-58201-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_2&domain=pdf
http://orcid.org/0000-0002-8799-0507
http://orcid.org/0000-0001-6316-3040
https://doi.org/10.1007/978-3-030-58201-2_2

18 T. A. V. Sattolo and J. Jaskolka

information. For example, sending two packets in quick succession could rep-
resent bit ‘0’ and a long gap between subsequent packets could represent bit
‘1’. Storage-based covert channels, on the other hand, operate by hiding data in
unused fields of RFC-defined network protocols like IP and TCP.

At present, the literature on detecting timing-based covert channels is much
more extensive than that on detecting storage-based covert channels. This paper
aims to narrow this gap by taking several techniques that have been used suc-
cessfully to detect timing-based channels, and evaluating their effectiveness for
detecting storage-based channels. This is part of an overarching goal to develop
methods to detect storage-based covert channels in real-time by observing net-
work traffic. This will necessarily involve computationally efficient statistical
tests to distinguish covert channels from ordinary network traffic.

The remainder of this paper is organized as follows. Section 2 provides a short
overview of related work. This is followed by a categorization of the tests to be
studied in Sect. 3. Next, the experimental methodology is detailed in Sect. 4 and
the results are reported in Sect. 5. These results are discussed in Sect. 6 and,
lastly, Sect. 7 concludes and highlights future work.

2 Related Work

When identifying the existence of covert channels in computer systems, partic-
ularly those which use network protocols as covert message carriers, anomaly
detection has been among the most popular detection mechanisms. Anomaly
detection refers to the detection of patterns in a given data set that do not con-
form to what is considered normal behaviour. Anomaly detection techniques are
usually used in conjunction with machine learning and statistical approaches.

As previously indicated, much of the existing work on detecting covert chan-
nels has focused on timing-based covert channels. Cabuk et al. [3,4] and Gian-
vecchio and Wang [8] proposed a variety of statistical tests focussed on detecting
timing-based covert channels. Naik et al. [20] proposed an entropy-based app-
roach for detecting timing-based channels. Similarly, Li et al. [19] proposed yet
more tests for detecting timing-based channels and combined them into a ran-
dom forest classifier. Crespi et al. [6] studied different statistical anomaly detec-
tion methods, commonly used in network traffic analysis, to detect timing-based
covert channels.

While there has been a focus on timing-based channels, approaches for
storage-based covert channels have also been proposed. Sohn et al. [23] proposed
an offline covert channel detection technique using a support vector machine
to search for anomalies in the header fields of network packets. A similar tech-
nique was proposed by Tumoian and Anikeev [24] involving the interception of
all TCP traffic and a model of the initial sequence number generation. The idea
uses a neural network to create a model using only the intercepted TCP traffic
without any knowledge of the data generation algorithm in an attempt to iden-
tify anomalies in the initial sequence numbers of the intercepted TCP segments.
Berk et al. [1,2] investigated a methodology for detecting such channels based

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 19

on a statistical measure of how well the capacity of a given channel is achieved.
Jadhav and Kattimani [13] proposed a statistical detection method involving the
capture of TCP segments from active network streams and analyzing the covert
channel vulnerable fields of TCP headers. Zhai et al. [25] proposed a method
based on a TCP Markov model and the Kullback-Leibler divergence [17] to ver-
ify the existence of anomalies in the TCP Flags field. Zhao and Shi [26] aimed
to detect the existence of covert information embedded in TCP Initial Sequence
Numbers using phase-space reconstruction to represent the dynamic nature of
initial sequence numbers by building a four-dimensional space of the one dimen-
sional initial sequence numbers.

Besides these, Gunadi and Zander [9–12] built an entire covert channel detec-
tion system covering aspects of both timing-based and storage-based channels.
That said, their system considers far fewer tests than what we describe in this
paper and it does not focus on analyzing which tests are most effective for
detecting storage-based covert channels.

3 Test Classification

Statistical tests previously used to detect timing-based covert channels can be
classified into two general categories: Complexity Tests and Distributional Tests.

3.1 Complexity Tests

Complexity tests attempt to measure the extent to which a stream of data is
random or predictable and they work if the information transmitted via a covert
channel is systematically different from normal network traffic in this way. This
works with timing-based covert channels [4,8,12], and the concept should extend
to storage-based covert channels, with some caveats. Firstly, it is not necessarily
the case that traffic becomes less random when used as a covert channel1. This
ought to be the case with some fields of network packet headers such as TCP
Sequence numbers and IP Identification numbers that can be expected to be
random under normal circumstances, but not with others such as IP Flags that
would usually just be the same for most packets. The latter, of course, become
more random once they have covert information stored in them. It should be
possible to determine thresholds—ones that are different for each field—that
will separate normal traffic from that when a covert channel is being used.

There are many ways to measure the complexity of a stream of data and thus
there are many potential complexity tests to consider. Nonetheless, they can be
divided into two types: compressibility-based tests and entropy-based tests.

The compressibility of a stream of data can be used as measure of its
randomness—more compressible data is less random. This randomness, in turn,

1 This is the case with timing-based covert channels because normal inter-packet delays
are essentially random and those of covert channels cluster at either of the values
used as symbols in the communication.

20 T. A. V. Sattolo and J. Jaskolka

is informative as to the likelihood that the stream is being used as a covert chan-
nel. This technique was used by Cabuk et al. [4] to detect timing-based covert
channels. They examined a covert channel created using the arrival times of IP
packets; messages were sent by alternating long and short delays between pack-
ets to represent binary digits. They found that the arrival time pattern of this
traffic could be separated from normal traffic because it was more compressible
than normal, unaltered traffic.

Entropy is a measure of the information contained in data. As such, it is the
most direct tool to search for covert information. Both unused network protocol
fields and the covert messages that people may send contain some information,
but there is no particular reason for them to contain the same amount of infor-
mation per byte sent. If these happen to differ, measuring the entropy of unused
network protocol fields has the potential to reveal covert channels if they exist.

All of the complexity tests evaluated in our experiments are ultimately based
on either compressibility or entropy.

3.2 Distributional Tests

Much of the work of statistical science is to quantify the extent to which two
or more entities are different in a world of limited observations. Fundamentally,
this is the same as the task of identifying a covert channel so it stands to reason
that the huge body of work that exists in statistics would be useful for detecting
covert channels. In the literature, several different statistical features—ones that
have nothing to do with entropy or compressibility—of inter-packet delay data
have been used successfully to detect timing-based covert channels [3,12,19].

However, there is reason to believe that the usefulness of these tests will not
transfer to storage-based covert channels. Underlying the logic of these distri-
butional tests is the assumption that the data provided to them is measuring
something; they involve ordinal comparisons between the elements in putative
covert channels. This makes sense for timing-based covert channels where each
element is an inter-packet delay, measured in seconds, and ordering inter-packet
delays is obviously meaningful. The same cannot be said of storage-based covert
channels, where each element is just the data observed in a network protocol
header field. These are not measuring anything, are dimensionless, and ordering
them in any way is spurious.

In spite of this, the applicability of distributional tests to storage-based covert
channels cannot be so easily dismissed. Distributional tests seem less likely than
complexity tests to transfer to storage-based covert channels, but abstract rea-
soning is no match for experiment, so a range of distributional tests will be
considered and evaluated in our study.

4 Experimental Setup and Approach

4.1 Tests Included in the Experiments

Below is a brief overview and rationale for including the statistical tests that are
considered in our experiments.

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 21

Complexity Tests

LZMA Compression (LZMA): The Lempel-Ziv Markov Chain compression algo-
rithm is a widely used algorithm that offers a high compression ratio at the
price of relatively low compression speed [5]. The compression ratio is what
is reported as the output of the test. As with all the compression algorithms
among the tests considered in our experiments, the rationale for studying LZMA
to detect storage-based covert channels comes from [4].

LZ77 Compression (LZ77): Since the overall performance (compression ratio) of
the compression is not directly relevant to the purpose of our experiments—all
that matters is the difference between how it compresses covert channel traffic
versus innocent traffic—it is worthwhile to test a simpler compression algorithm
such as Lempel-Ziv 77 [27].

LZ78 Compression (LZ78): Lempel and Ziv also proposed another simple com-
pression algorithm known as Lempel-Ziv 78 [28]. For the same reasons to con-
sider LZ77 in our study, we also consider LZ78.

Lempel-Ziv Complexity (LZC): As precursor to their publications on practi-
cal compression algorithms, Lempel and Ziv studied a complexity measure for
strings related to the number of distinct substrings and their abundance within
the original string [18]. Seeing as the compression ratio given by LZ77 or LZ78
is expected to be a useful test, is only natural to also include a related idea
that is meant specifically to be a complexity measure.

First-Order Entropy (FOE): Entropy is generally calculated based on a prob-
ability mass function. From any given sequence of values one can compute a
histogram (i.e., count the occurrences of every unique value); this histogram
can then be taken as an approximation of the probability mass function for the
process generating the sequence and one can compute the resulting entropy.
The result of approximating entropy in this way is termed first-order entropy
and was used to detect timing-based covert channels in [9,19].

Corrected Conditional Entropy (CCE): The entropy rate of a sequence is only
truly defined for sequences of infinite length. Of course, this means that the
entropy rate of any empirically obtained sequence cannot be computed so it
must be estimated. Corrected Conditional Entropy is one method to produce
such an estimate [22]. It was first imported into the field of covert channels by
Gianvecchio and Wang [8].

Repetition (REP): This test simply counts the fraction of elements in a trace that
are unique. This test is considered not so much a practical test, but rather as a
“sanity check” that the other tests considered in our study are not performing
worse than such a simple and easily computable measure.

22 T. A. V. Sattolo and J. Jaskolka

Distributional Tests

Autocovariance: This is a measure of how similar a sequence is to itself at other
points in the series. It was used to detect timing-based covert channels by
Gunadi and Zander [9], as well as Li et al. [19].

Kolmogorov-Smirnov Test: This is a statistical test used determine whether two
empirical cumulative distribution functions were sampled from the same source.
It has also been used in [9,19] to detect timing-based covert channels.

Wilcoxon Signed Rank: This is a statistical test that compares the rank of two
sequences to assess their similarity. It was used by Li et al. [19] for timing-based
covert channel detection.

Spearman Correlation: The correlation between the rank of two sequences can
be used a measure of the similarity of these two sequences. This is known as
Spearman Correlation. It has been used to detect timing-based channels in [19].

Regularity: This is a metric proposed by Cabuk et al. [3] specifically to detect
timing-based covert channels. It effectively measures how much the standard
deviation of a sequence changes over time.

4.2 Building the Dataset

To build the dataset for our experiments, we needed samples of network traffic
with and without information covertly embedded into them. Samples of real
normal network traffic were acquired from the Malware Capture Facility Project
at the Czech Technical University in Prague [7].

To generate network traffic with covert information, we chose to build a
storage-based covert channel embedding bits into the Identification (ID) field of
the IP header. The purpose of this field is to identify packets that have been
fragmented when the fragments are to be reconstructed. But today, networks
tend to have large enough maximum transmissible units that IP packets do not
need to be fragmented and these packets are usually sent with IP Flags set to
“Don’t fragment.” Because of this, the ID field is rarely payed any attention,
making it a good place to inject covert information. Furthermore, the field is
included in every IP packet and is not expected to follow any particular pattern
(unlike TCP Sequence numbers), so new covert information can be included in
every packet sent. The field is 16 bits long, so a covert channel could transmit
up to two bytes per packet.

For our experiments, a covert message had to be selected. The covert mes-
sage ought to be something that any test would view as similar to real human
communication. Text from a novel is appropriate for this purpose, and we chose
to use the first few paragraphs of Pride and Prejudice by Jane Austen.

To create test data, the IP ID fields were extracted from each of the IP
headers. Bits from the message were embedded into the these IP ID fields by
replacing the least significant bits of the field with bits from the message2. The
2 A similar process can be adopted for other header fields of network packets.

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 23

number of bits replaced was varied between 1 and 16, i.e., between changing just
one bit of the field, and replacing them completely. Henceforth, the sequence of
IP ID values extracted from the network before the message is embedded will be
referred to as the carrier ; once these carriers have message bits embedded into
them they will be known as traces. Each 16-bit IP ID value (with or without
message bits embedded) that form the traces/carrier will be known as an ele-
ment. Note that to create the traces, the least significant bits of the carriers were
replaced completely (i.e., AND-ed with zeroes and then OR-ed with the message
bits). Using an exclusive-or operation to embed information does not work in
this case because the message recipient does not know the value of the field in
the carrier and so cannot recover the message if it is embedded via exclusive-or.
For example, to embed the first two bits of the word “The” into the IP ID value
0x154A8FE0E, we set the two least significant bits to zero to get 0x154A8FE0C
and OR that with ‘01’—the first two bits of 0x54, the value of ‘T’ in ASCII—to
get 0x154A8FE0D. The result of this process is a set of 16 different traces, one
for each number of bits. To ensure that comparisons between them are valid,
all 16 traces are of the same length and they all contain the entire message.
This requires that all traces except the 1-bit trace contain IP ID fields with no
message content.

4.3 Conducting the Experiments

The code for generating the datasets and conducting our experiments is available
at: gitlab.com/CyberSEA-Public/CCStatTests. The experiments are done in
iterations. On each iteration the IP ID field is extracted from a certain number
of different packets creating a carrier. The message is then embedded, creating
16 traces and the tests are applied to each trace. The result is one value per test
per trace. The test is also applied to the carrier independently of the tests on
the traces.

In the next iteration each of these tests is repeated. In total, 1000 itera-
tions are performed and we calculate the mean and standard deviation for each
trace/carrier. This whole process is repeated 3 times so as to vary the size of the
message. Tests with 256, 16 and 1 byte messages are performed.

In addition to the repeated iterations and different message sizes, the process
was repeated with the message encrypted. The Rijndael cipher of the Advanced
Encryption Standard (AES) is the current state-of-the-art, so this is what we
used. However, AES uses a block cipher with 16-byte blocks such that the small-
est message that can be encrypted is 16 bytes long3. Consequently a stream
cipher that can encrypt a single byte was used for the 1-byte messages, namely
the Salsa20 cipher. This limitation is the reason for using 16 bytes as the second
smallest message size in our experiments.

3 Padding the message would complicate interpretation of the results.

24 T. A. V. Sattolo and J. Jaskolka

5 Experimental Results

5.1 Results for Tests Used in Isolation

The results of each experiment are presented here as a series of tables. First
Tables 1, 2 and 3 present the effect size for every trace for each message size for
each test in our experiments. More specifically, they show the difference between
the mean of the test’s output on the traces and the mean output on the carrier.
This difference is presented in units of the joint standard deviation of the carrier
and trace outputs (i.e., the square root of the mean of the two variances). This
is known as the effect size and it measures how clearly the test can distinguish
each trace from the carrier.

The first thing to note is that complexity tests perform much better than
distributional tests. No distributional test ever produced an effect size greater
than 0.00189 (see Table 1) and, excluding the 1-byte messages (Table 3), all the
complexity tests results are at least 0.445 (Table 1)—a difference of more than 2
orders of magnitude. If we go further and exclude Corrected Conditional Entropy
on 256-byte messages the weakest results for a complexity test is much larger still
at 2.58 (Table 2). As for the 1-byte messages, several test results were undefined
(denoted by ⊥). This means that the difference in the mean and joint standard
deviations were both zero, i.e., the test result was the same for every iteration
for both the carrier and at least one trace. In context, this means the test fails
to differentiate the traces from the carrier, so ⊥ is roughly equivalent to 0. That
this is the result for many of the complexity tests means that a 1-byte message
is not sufficient for them to usefully detect covert channels; even the tests that
avoid this issue do not produce large effects.

Next, it is interesting to note that 1-bit traces are generally the least different
from the carrier. The only exceptions to this, besides the distributional tests and
the 1-byte message table where the tests are not effective, are some of the LZ77
results. Moreover, encryption made little difference and, counterintuitively, the
tests mostly did better when the message was encrypted. This improvement is
nonetheless quite small; LZ77 was affected the most and even it has a large effect
everywhere (except on 1-byte messages) regardless of encryption.

One of the most interesting things about the result is that Repetition out-
performed both First-Order Entropy and Corrected Conditional Entropy. This
is odd because these both rely heavily on counting unique elements. The main
difference is that entropy does so in a way that properly reflects the informa-
tion contained in the traces and takes into account elements that are repeated
more than once, whereas Repetition is ad hoc and should not be expected to be
very meaningful. Nevertheless, Repetition performs better and is certainly more
efficient than either of the entropy-based tests: the computations required for
Repetition are a strict subset of those required for First-Order Entropy which
are themselves a strict subset of those for Corrected Conditional Entropy.

As for the compression-based tests and Lempel-Ziv Complexity, all of them
perform similarly and on par with Repetition on 256-byte messages. On 16-
byte messages, LZ77 is notably worse and LZ78 is notably better, but all are

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 25

Table 1. Effect sizes for 256-byte messages in an IP ID covert channel

1-bit trace Minimum Min. index

Encrypted? Y N Y N Y N

LZMA Compression 2.95 3 2.95 3 1 1

LZ77 Compression 6.3 4.62 3.59 3.55 3 2

LZ78 Compression 3.56 3.25 3.56 3.25 1 1

Lempel-Ziv Complexity 5.04 4.28 5.04 4.28 1 1

First-Order Entropy 3.37 3.13 3.37 3.13 1 1

Corr. Cond. Entropy 0.445 0.449 0.445 0.449 1 1

Repetition 4.58 3.94 4.58 3.94 1 1

Autocovariance 3.08e−08 9.12e−07 3.08e−08 4.23e−07 1 3

Kolm.-Smirnov Test 0.00189 0.00184 0.00189 0.00184 1 1

Wilcoxon Signed Rank 1.26e−05 2.53e−05 1.26e−05 2.53e−05 1 1

Spearman Correlation 3.46e−06 1.31e−05 3.46e−06 1.31e−05 1 1

Regularity 8.77e−07 3.82e−06 8.77e−07 3.82e−06 1 1

Table 2. Effect sizes for 16-byte messages in an IP ID covert channel

1-bit trace Minimum Min. index

Encrypted? Y N Y N Y N

LZMA Compression 4.87 4.76 4.87 4.76 1 1

LZ77 Compression 3.24 3.15 2.58 3.15 2 1

LZ78 Compression 6.9 5.98 6.9 5.98 1 1

Lempel-Ziv Complexity 4.25 4.05 4.25 4.05 1 1

First-Order Entropy 6.24 5.55 6.24 5.55 1 1

Corr. Cond. Entropy 2.64 2.63 2.64 2.63 1 1

Repetition 8.25 6.7 8.25 6.7 1 1

Autocovariance 6.88e−07 1.19e−06 6.88e−07 1.19e−06 1 1

Kolm.-Smirnov Test 0.000624 0.00125 0.000624 0.00125 1 1

Wilcoxon Signed Rank 3.95e−06 8.82e−05 3.95e−06 8.82e−05 1 1

Spearman Correlation 0.00109 0.000826 0.00109 0.000826 1 1

Regularity ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

outperformed by Repetition. This analysis tentatively pinpoints Repetition as
the best test overall with LZ78 close behind, but there is no clear winner.

5.2 Results for Tests Used in Combination

Tests need not be used in isolation of each other and it is of interest to determine
how they perform together. To do this, we show the correlation between the

26 T. A. V. Sattolo and J. Jaskolka

Table 3. Effect sizes for 1-byte messages in an IP ID covert channel

1-bit trace Minimum Min. index

Encrypted? Y N Y N Y N

LZMA Compression ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
LZ77 Compression ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
LZ78 Compression 0.135 0.165 0.135 0.165 1 1

Lempel-Ziv Complexity 0.0164 0.0106 0.0164 0.0106 1 1

First-Order Entropy 0.139 0.169 0.139 0.169 1 1

Corr. Cond. Entropy 0.139 0.171 0.139 0.171 1 1

Repetition 0.139 0.169 0.139 0.169 1 1

Autocovariance 3.32e−06 3.45e−07 6.66e−07 3.45e−07 2 1

Kolm.-Smirnov Test 0.00157 0 0 0 2 1

Wilcoxon Signed Rank 0 0 0 0 1 1

Spearman Correlation 0.000775 0.000996 9.73e−05 9.73e−05 7 7

Regularity ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 4. Correlation for 1-bit traces of 256-byte messages in an IP ID covert channel

LZMA LZ77 LZ78 LZC FOE CCE REP

LZMA 1 0.25 0.23 0.19 0.18 0.18 0.16

LZ77 0.25 1 0.66 0.76 0.68 0.13 0.65

LZ78 0.23 0.66 1 0.87 0.94 0.15 0.94

LZC 0.19 0.76 0.87 1 0.92 0.17 0.94

FOE 0.18 0.68 0.94 0.92 1 0.14 0.99

CCE 0.18 0.13 0.15 0.17 0.14 1 0.14

REP 0.16 0.65 0.94 0.94 0.99 0.14 1

results of the tests across iterations in Tables 4 and 5. Because, in the previous
section, the 1-bit traces were the hardest to detect, we restrict our analysis here
to those and because encryption had no significant impact, we no longer keep it
in our consideration. We also do not continue to analyze distributional tests and
1-byte messages, having concluded that a storage-based covert channel detector
based on these ideas is not effective. To be clear, what is being compared is the
correlation across all iterations in the difference between the output of the tests
for 1-bit traces and the carrier.

Surprisingly, the compression-based tests are not clearly more correlated with
each other than with the entropy-based ones. The general trend is that tests
are moderately correlated with each other. There are, however, some definite
outliers. First of all, First-Order Entropy and Repetition are very strongly cor-
related; this diminishes First-Order Entropy as a contender because Repetition

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 27

Table 5. Correlation for 1-bit traces of 16-byte messages in an IP ID covert channel

LZMA LZ77 LZ78 LZC FOE CCE REP

LZMA 1 0.65 0.59 0.71 0.59 0.19 0.58

LZ77 0.65 1 0.50 0.71 0.51 0.064 0.51

LZ78 0.59 0.50 1 0.69 0.97 0.20 0.97

LZC 0.71 0.71 0.69 1 0.70 0.11 0.70

FOE 0.59 0.51 0.97 0.70 1 0.18 1

CCE 0.19 0.064 0.20 0.11 0.18 1 0.18

REP 0.58 0.51 0.97 0.70 1 0.18 1

outperforms it and gives very similar results from one iteration to the next. Sec-
ondly, Corrected Conditional Entropy and LZMA Compression have relatively
weak correlation with the other tests. The weakness of these correlations sug-
gest that two tests could be combined to make a more effective detector. In fact,
except for First-Order Entropy and Repetition, any number of the tests could
be combined because their correlations are not close to perfect.

5.3 Logistic Regression Detector

In this section, we evaluate the performance of covert channel detectors that
use the tests evaluated herein. The algorithm used to create the detector is a
simple logistic regression classifier. This technique takes in negative and positive
examples and returns a model that estimates the probability that a certain
sample is positive based on its Euclidean distance from a line—the number of
tests determines the dimensionality of the space in which the linear classifier
exists. In this instance, the positive examples are the test results for the 1-bit
traces and the negative examples are the test results for the carrier. The examples
are split into a training set and a test set so that the model can be evaluated
on examples it has not yet seen. 70% of examples are in the training set leaving
30% for the test set. There are 2000 examples in total; two—a negative and
a positive—for each of the 1000 iterations. This yields a training set of 1400
examples and a test set of 600 examples; both are balanced (i.e., they contain
roughly the same number of positive and negative examples). All this is repeated
for four message sizes: 256, 64, 16, and 4 bytes. The creation of the classifier was
repeated 1000 times, randomizing the examples that were included in the test
set in order to average out any effect of how the dataset is split; both the mean
and the standard deviation are reported.

The accuracy of the classifier for an IP ID covert channel is presented in
Table 6. Each column represents the accuracy for a different message size while
each row except for the last represents the accuracy of a detector that uses
only one of the complexity tests. The bottom row (All) shows the accuracy of a
detector using all the tests together. The first thing to note about the results is
that a detector using just one of these tests works very well: most of the detectors

28 T. A. V. Sattolo and J. Jaskolka

Table 6. Detector accuracy for IP ID covert channel for various message sizes

Message size 256 bytes 64 bytes 16 bytes 4 bytes

LZMA 0.950 ± 0.0086 0.966 ± 0.0066 0.985 ± 0.0040 0.526 ± 0.038

LZ77 0.998 ± 0.0013 0.995 ± 0.0023 0.973 ± 0.0054 0.908 ± 0.0099

LZ78 0.976 ± 0.0056 0.992 ± 0.003 0.997 ± 0.0021 0.945 ± 0.0093

LZC 0.966 ± 0.11 0.995 ± 0.0024 0.969 ± 0.0061 0.74 ± 0.015

FOE 0.982 ± 0.0046 0.995 ± 0.0027 0.997 ± 0.0017 0.984 ± 0.012

CCE 0.996 ± 0.002 0.998 ± 0.0015 0.930 ± 0.0086 0.982 ± 0.0046

REP 0.984 ± 0.0043 0.995 ± 0.0024 0.999 ± 0.0013 0.953 ± 0.021

All 0.992 ± 0.0038 0.995 ± 0.0025 0.991 ± 0.0038 0.982 ± 0.0045

are greater than 90% accurate even for messages as small as 4 bytes and some
are greater than 95% accurate. For messages of 16 bytes or more, the accuracy
climbs to over 99% in most cases. The second thing to note is that the detector
using all the tests does not outperform those that use just one test. Given this,
it seems that combining more than one of the tests to create a more effective
detector just leads to unnecessary complexity in the detector design.

6 Discussion

Having performed this experiment on storage-based covert channels using the IP
ID field it seemed natural to investigate covert channels using other fields such as
TCP Initial Sequence Numbers (ISN). This was done to underwhelming results
as shown in Table 7. Effect sizes for complexity tests were generally less than
0.01 and the resulting logistic regression detector was no better than chance.
The likely reason for this is that TCP ISNs can be truly random—no vestigial
need to be unique in order to reconstruct fragmented IP packets unlike IP ID.
The small fragments of messages that we embed are also very close to random,

Table 7. Detector accuracy for TCP ISN covert channel for various message sizes

Message bytes 256 bytes 64 bytes 16 bytes 4 bytes

LZMA 0.415 ± 0.061 0.412 ± 0.062 0.408 ± 0.064 0.407 ± 0.069

LZ77 0.415 ± 0.06 0.412 ± 0.063 0.410 ± 0.063 0.403 ± 0.064

LZ78 0.412 ± 0.063 0.408 ± 0.064 0.409 ± 0.064 0.412 ± 0.063

LZC 0.412 ± 0.063 0.411 ± 0.065 0.404 ± 0.075 0.392 ± 0.087

FOE 0.414 ± 0.061 0.411 ± 0.062 0.410 ± 0.065 0.413 ± 0.066

CCE 0.410 ± 0.065 0.400 ± 0.078 0.430 ± 0.098 0.417 ± 0.075

REP 0.414 ± 0.061 0.408 ± 0.068 0.412 ± 0.063 0.409 ± 0.064

All 0.415 ± 0.059 0.384 ± 0.071 0.403 ± 0.097 0.378 ± 0.089

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 29

so tests relying on information content cannot distinguish the two. This obser-
vation reveals something of a trade-off in how systems should choose their TCP
ISNs. The conventional wisdom is that they should be truly random so as to
make it difficult for an attacker to spoof a connection, but doing this creates an
opportunity for a nearly undetectable covert channel (at least by the statistical
tests considered in this paper). That said, this is not much of a trade-off because
almost any system will have much greater exposure from spoofed connections
than from covert channels.

Despite this, there is still a reason why an attacker might use an IP ID covert
channel and thus why one might want to detect them. Most obviously there is
bandwidth: machines send out one IP ID per IP packet but only one TCP
ISN per TCP connection and, since one TCP connection generally comprises
many packets, many more IP IDs are transmitted than TCP ISNs. For instance,
the dataset used in this paper contains 76 times more IP IDs than TCP ISNs.
Furthermore, using TCP ISN requires more access to the machine than IP IDs.
With IP IDs an attacker can just change what IP IDs the machine sends and if
the packet is never fragmented (the usual case) no one is likely to notice; with
TCP ISN the attacker would not only have to change what is sent, but also what
sequence number the machine expects to receive for subsequent segments.

This limited transferability does not mean that the statistical tests evaluated
in this paper are specific to IP ID covert channels. IP Time-to-Live (TTL) is
another network protocol field that can be used to build a covert channel, and was
one of many studied by Gunadi and Zander [10]. Using the same methodology as
above, we trained a classifier to detect IP TTL covert channels. The results are
presented in Table 8 and are similar to those for IP ID covert channels. Note that
for IP TTL it was the 8-bit traces that were hardest to classify (i.e., produced the
smallest effect sizes), and therefore it is the accuracy on those that are presented
in Table 8.

Table 8. Detector accuracy for IP TTL covert channel for various message sizes

Message size 256 bytes 64 bytes 16 bytes 4 bytes

LZMA 0.975 ± 0.0072 0.921 ± 0.015 0.897 ± 0.028 0.787 ± 0.014

LZ77 0.924 ± 0.0098 0.906 ± 0.01 0.921 ± 0.0092 0.919 ± 0.0096

LZ78 0.669 ± 0.18 0.636 ± 0.18 0.895 ± 0.014 0.854 ± 0.012

LZC 1 ± 0 1 ± 0.00097 0.986 ± 0.0065 0.936 ± 0.0082

FOE 0.562 ± 0.22 0.497 ± 0.14 0.776 ± 0.019 0.836 ± 0.014

CCE 0.998 ± 0.0017 0.976 ± 0.0062 0.897 ± 0.013 0.810 ± 0.019

REP 0.746 ± 0.24 1 ± 0.00067 0.997 ± 0.0019 0.955 ± 0.007

All 1 ± 0 1 ± 0.00087 0.988 ± 0.0039 0.942 ± 0.0088

30 T. A. V. Sattolo and J. Jaskolka

7 Concluding Remarks

This paper evaluated the effectiveness and applicability of several statistical tests
to detect storage-based covert channels. The tests were selected based on their
past success in being effective to detect timing-based covert channels. In partic-
ular, we conducted several experiments on sequences of IP IDs with and with-
out information embedded into them. The results of the experiments show that
complexity tests are much more effective that distributional tests for detecting
storage-based covert channels. Many of the tests were determined to be able to
detect covert channels on their own and combining multiple tests into a multi-
dimensional classifier did not bring any significant improvement which means
that simple covert channel detectors can be built using a single test.

In our ongoing and future work, we seek to build off of the results presented
in this paper by exploring the practicality and effectiveness of more techniques
for detecting storage-based covert channels such as those in [14,16]. The goal is
to adapt a collection of these tests into a high-performance platform to create a
practical real-time storage-based covert channel detector.

References

1. Berk, V., Giani, A., Cybenko, G.: Covert channel detection using process query
systems. In: 2nd Annual Conference for Network Flow Analysis, September 2005

2. Berk, V., Giani, A., Cybenko, G.: Detection of covert channel encoding in network
packet delays. Technical report TR2005-536, Dartmouth College, Hanover, NH,
USA, August 2005

3. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: design and detec-
tion. In: 11th ACM Conference on Computer and Communications Security, pp.
178–187. ACM (2004)

4. Cabuk, S., Brodley, C.E., Shields, C.: IP covert channel detection. ACM Trans.
Inf. Syst. Secur. 12(4), 22 (2009)

5. Collin, L.: A quick benchmark: Gzip vs. Bzip2 vs. LZMA (2005). https://tukaani.
org/lzma/benchmarks.html. Accessed 22 Oct 2019

6. Crespi, V., Cybenko, G., Giani, A.: Engineering statistical behaviors for attacking
and defending covert channels. IEEE J. Sel. Top. Signal Process. 7(1), 124–136
(2013)

7. Garcia, S.: Normal captures (2017). https://stratosphereips.org. Malware Capture
Facility Project

8. Gianvecchio, S., Wang, H.: An entropy-based approach to detecting covert timing
channels. IEEE Trans. Dependable Secure Comput. 8(6), 785–797 (2010)

9. Gunadi, H., Zander, S.: Bro covert channel detection (BroCCaDe) framework:
design and implementation. Technical report 20171117B, Murdoch University
(2017)

10. Gunadi, H., Zander, S.: Bro covert channel detection (BroCCaDe) framework:
scope and background. Technical report 20171117A, Murdoch University (2017)

11. Gunadi, H., Zander, S.: Extending bro covert channel detection (BroCCaDe) with
new plugins. Technical report 20171207A, Murdoch University (2017)

12. Gunadi, H., Zander, S.: Performance evaluation of the bro covert channel detection
(BroCCaDe) framework. Technical report 20180427A, Murdoch University (2018)

https://tukaani.org/lzma/benchmarks.html
https://tukaani.org/lzma/benchmarks.html
https://stratosphereips.org

Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels 31

13. Jadhav, M., Kattimani, S.: Effective detection mechanism for TCP based hybrid
covert channels in secure communication. In: 2011 International Conference on
Emerging Trends in Electrical and Computer Technology, pp. 1123–1128 (2011)

14. Jaskolka, J.: Modeling, analysis, and detection of information leakage via protocol-
based covert channels. Master’s thesis, McMaster University, Hamilton, ON,
Canada, September 2010

15. Jaskolka, J., Khedri, R.: Exploring covert channels. In: 44th Hawaii International
Conference on System Sciences, pp. 1–10, January 2011

16. Jaskolka, J., Khedri, R., Sabri, K.: A formal test for detecting information leakage
via covert channels. In: 7th Annual Cyber Security and Information Intelligence
Research Workshop, pp. 1–4, October 2011

17. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

18. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

19. Li, Q., Zhang, P., Chen, Z., Fu, G.: Covert timing channel detection method based
on random forest algorithm. In: 17th IEEE International Conference on Commu-
nication Technology, pp. 165–171 (2017)

20. Naik, B., Boddukolu, S., Sujatha, P., Dhavachelvan, P.: Connecting entropy-based
detection methods and entropy to detect covert timing channels. In: Meghanathan,
N., Nagamalai, D., Chaki, N. (eds.) Advances in Computing and Information Tech-
nology. AISC, vol. 176, pp. 279–288. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31513-8 29

21. Ponemon Institute: 2018 cost of a data breach study: global overview. Technical
report, IBM Security (2018)

22. Porta, A., et al.: Measuring regularity by means of a corrected conditional entropy
in sympathetic outflow. Biol. Cybern. 78(1), 71–78 (1998)

23. Sohn, T., Seo, J.T., Moon, J.: A study on the covert channel detection of TCP/IP
header using support vector machine. In: Qing, S., Gollmann, D., Zhou, J. (eds.)
ICICS 2003. LNCS, vol. 2836, pp. 313–324. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39927-8 29

24. Tumoian, E., Anikeev, M.: Network based detection of passive covert channels in
TCP/IP. In: 30th IEEE Conference on Local Computer Networks, pp. 802–807
(2005)

25. Zhai, J., Liu, G., Dai, Y.: A covert channel detection algorithm based on TCP
Markov model. In: 2nd International Conference on Multimedia Information Net-
working and Security, pp. 893–897 (2010)

26. Zhao, H., Shi, Y.: A phase-space reconstruction approach to detect covert chan-
nels in TCP/IP protocols. In: 2010 IEEE International Workshop on Information
Forensics and Security, pp. 1–6 (2010)

27. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

28. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

https://doi.org/10.1007/978-3-642-31513-8_29
https://doi.org/10.1007/978-3-642-31513-8_29
https://doi.org/10.1007/978-3-540-39927-8_29
https://doi.org/10.1007/978-3-540-39927-8_29

IE-Cache: Counteracting Eviction-Based
Cache Side-Channel Attacks Through

Indirect Eviction

Muhammad Asim Mukhtar1(B), Muhammad Khurram Bhatti1,
and Guy Gogniat2

1 Information Technology University, Lahore, Pakistan
{asim.mukhtar,khurram.bhatti}@itu.edu.pk

2 Université Bretagne Sud, Lorient, France
guy.gogniat@univ-ubs.fr

Abstract. Protecting critical information against eviction-based cache
side-channel attacks has always been challenging. In these attacks,
attacker reveals secrets by observing cache lines evicted by the co-running
applications. A precondition for such attacks is that the attacker needs
a set of cache lines mapped to memory addresses belonging to victim,
called eviction set. Attacker learns eviction set by loading the cache lines
at random and then it observes their evictions as a result of victim access.
We have found that the relation between the incoming memory location
and the resulting evicted cache line eases the learning of an eviction
set. In this paper, we propose Indirect Eviction Cache (IE-Cache) that
is based on the principle of indirect eviction to harden the building of
eviction set. In an eviction process of IE-Cache, incoming memory trig-
gers series of replacements based on the cached memory addresses and a
secure-indexing function, and the last replaced cache line is evicted. This
increases the set size and introduces non-evicting cache lines in the evic-
tion set. Through experimental results, we have shown that a 4-way set
associative IE-Cache having 1MB and up to 3 replacements per eviction
would require an attacker to generate ≈259 memory accesses to learn an
eviction set with 99% confidence. Moreover, it achieves 1–3% speedup
compared to set-associative cache with a random-replacement policy on
PARSEC benchmarks.

Keywords: Cache-based side-channel attack · Randomization ·
Encrypted cache space · Prime+Probe attack

1 Introduction

Caches are main component of modern computer systems that bridge the per-
formance gap between processor and main memory. Caches are usually shared
among applications for efficient utilization of cache space. However, this sharing
turns out to be a high-security threat. In particular, the eviction behavior of
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 32–45, 2020.
https://doi.org/10.1007/978-3-030-58201-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_3

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 33

shared cache lines can reflect the secrets of secure applications to other appli-
cations. Eviction behavior can be extracted from the cache using eviction based
cache side-channel attacks, which initialize cache lines in such state that victim
access of interest (or secure dependent memory access) has to evict attacker’s
cache line. In the past few decades, the research on eviction-based cache-side
channel attacks mainly focused on extracting secret keys of cryptographic algo-
rithms [1–4]. Recent advancements in such attacks (Spectre [5] and Meltdown [6])
extend the security threat that these attacks can read all unauthorized memory
space.

To mitigate these attacks, state-of-the-art hardware-based countermeasures
have been proposed in past few decades [7–12], which can broadly fall into two
categories partition-based and randomization-based solutions. Partition-based
solutions divide the cache among applications to make eviction behavior indepen-
dent among applications. However, efficient partitioning of cache among appli-
cations is NP-Hard problem [13]. Moreover, increasing-trend of a number of
cores on-chip is pushing computer architecture toward cache scalability, there-
fore, partitioning the already low capacity cache for security exaggerates the
cache scalability requirement. On the other side, randomization-based solutions
can mitigate without limiting the cache space among applications. These solu-
tions randomize the memory-to-cache mapping to increase the attacker’s diffi-
culty in finding all memory addresses that would contend with victim memory
addresses, also called an eviction set. Unfortunately, existing randomized based
solutions are limited in the scope of security. Such as a recently proposed solu-
tion called as ScatterCache [14] claimed that building eviction set requires 38 h
but research work by [15] has proved that advanced profiling techniques can be
used to reduce 38 h to less than 5 min. Currently, there is no countermeasure
that achieves security against eviction-based cache attacks with preserving the
sharing feature of the cache. The goal of this paper is to propose a counter-
measure while preserving the sharing feature because shared caching naturally
adjusts the allocation for each application dynamically and does not need exten-
sive profiling of all applications before allocating cache locations as it is required
in case of cache partitioning.

To mitigate the eviction-based cache side-channel attacks in a shared cache,
the key challenge is to make attacker unable to build an eviction set. In con-
ventional caches, on the insertion of a new memory block, the incoming block
replaces one cache line preferred by replacement policy (or colliding cache line)
and then the replaced cache line is evicted from the cache (or evicting cache line).
We provide key insight that the building of an eviction set becomes impracti-
cal if the colliding and evicting caches lines are different. To propose a solution
based on this insight, we present a novel cache architecture, called IE-Cache. In
an eviction process, incoming memory address replaces one of the cache lines
at random, and then the replaced cache line replaces another cache line. This
repeats until replacement limit is achieved and the last replaced cache line is
evicted. This introduces multiple cache lines in between the incoming address
and evicting cache line, yielding benefits in two ways regarding the eviction set.

34 M. A. Mukhtar et al.

First, it increases the size of the eviction set. Secondly, the eviction set includes
cache lines that do not evict as a result of accommodating the incoming address,
we call as non-evicting cache lines of eviction set, finding these cache lines with-
out the side information (eviction behavior) enormously increased the complexity
of building eviction set by the attacker. We are saying non-evicting with respect
to one address but it may evict by another address. We have shown experimen-
tally that it is impractical for the attacker to find all memory addresses that
directly and indirectly collide with the victim’s access. The contributions of this
paper are as follows:

– We propose a countermeasure that mitigates eviction based cache side-
channel attacks in a novel way by making the indirect relation between incom-
ing address and evicting cache lines.

– We have experimentally analyzed the security of IE-Cache by demonstrating
that it is impractical to build the eviction set by the attacker. This inhibits
the attacker to launch eviction-based cache attacks.

– We evaluate the performance impact of IE-Cache in comparison with the
set-associative cache architecture having random replacement policy while
running PARSEC benchmark using zsim simulator [16].

The rest of the paper is organized as follows. Section 2 gives the necessary
background. Section 3 presents the IE-Cache. Sections 4 and 5 present the secu-
rity and performance evaluation of the IE-Cache respectively. Section 6 concludes
the paper.

2 Background

In this section, we provide the background on eviction-based cache attacks and
Prime+Probe attack.

2.1 Eviction-Based Cache Attacks

Various eviction-based cache side-channel attacks have been proposed in the lit-
erature [1–4]. In these attacks, an adversary finds cache lines that are mapped
to victim application and initializes them in an interesting state. Then observes
whether the initialized state is changed or not after the victim execution, which
results in the extraction of victim secrets in the form of victim accesses. In
Prime+Probe attack [3], an adversary loads the cache lines and observes evic-
tions of loaded cache lines by the victim’s memory accesses. Evict+Reload
attack [2] is similar to Prime+Probe attack except it can only be launched
if adversary and victim share memory lines. Flush+Reload attack [4] is simi-
lar to Evict+Reload attack except an adversary makes a cache state by flush-
ing instead of loading cache lines. The Flush+Flush [1] attack is a variant of
Flush+Reload attack in which an adversary observes the state of cache lines
by measuring the time to flush the cache lines instead of reading the memory

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 35

lines. Evict+Reload, Flush+Reload and Flush+Flush attacks can be successfully
launched if the memory deduplication feature is enabled in the system. However,
the memory deduplication feature is usually disabled in shared computing envi-
ronments such as cloud computing [17]. Prime+Probe attack is not dependent
on memory deduplication and requires commonly used instructions such as mov
and rdtsc instructions. Mitigation of Prime+Probe attack is difficult because it
can be launched through any instruction that can load the cache such as mov,
add, jmp, etc. It is impossible to disable all these instructions, therefore, major
modifications are required in the computing stack to mitigate the Prime+Probe
attack.

2.2 Prime+Probe Attack

Memory accesses can be backtracked to secure information of application.
Prime+ Probe attack enables an application to extract secret dependent memory
accesses of co-running applications by observing the eviction of cache lines. In
this attack, the attacker reserves all cache lines where victim memory location of
interest can reside in the cache. If victim accesses that memory location, it will
evict one of the attacker cache lines, revealing its memory access to the attacker
by the action of eviction. However, for a successful attack, the attacker requires
memory addresses (or colliding addresses) that share the cache lines with the
targeted victim address. In conventional caches like set-associative cache, the
mapping of memory-to-cache is static and well-studied in research. Finding col-
liding addresses in such caches only depends on the indexing bits (specified by
the designer) of the memory address that all memory addresses having the same
indexing bits will collide in the cache. However, the adversarial effort to learn
the colliding addresses has greatly increased in caches that define the mapping of
memory-to-cache at run-time and change it over time. The attacker has to find
colliding addresses on each change of memory-to-cache mapping through exten-
sive experiments. For finding colliding addresses in such caches, the attacker goes
through the following steps.

– The attacker randomly chooses N memory addresses and loads them into
the cache by accessing them. As attacker has randomly chosen the memory
addresses, there is a possibility that these memory addresses collide with
each other and cause eviction of group members. To eliminate self-collisions
in group G, attacker reads the accessed memory addresses again and observes
there access latency. If attacker observes a longer time it means that memory
address is evicted because of self-collision and needs removal from the group.
Attacker iterates the action of accessing and removing memory addresses
until all memory access results shorter time. Let nrmv indicates the number
of iterations required to eliminate self-collisions. The attacker now has a set
of G’ ≤ G addresses, which are guaranteed to reside at a different location in
the cache.

– The attacker calls the victim to access memory, expecting an eviction by
victim access if correctly sampled G’ memory addresses.

36 M. A. Mukhtar et al.

– After that attacker accesses G’ addresses again and measures their memory
access latency to observe the eviction. Attacker will find the colliding address
in case of longer access time is observed.

Then attacker repeats the above steps until enough addresses are obtained for
the attack, which also depends on the parameter of cache architecture. Note
that after the first iteration, the victim access of interest is in the cache and
need to be evicted before next iteration. Therefore, an attacker has to access
many different memory addresses to ensure the eviction of victim cache line.

3 IE-Cache - Proposed Cache

The objective of IE-Cache is to eliminate the direct eviction of cache line as a
result of inserting new memory location to counter eviction-based cache side-
channel attacks. We consider that an adversary has access to all user-level
instructions except those which are related to cache management such as clflush
and prefetchtx. Flush+Flush and Flush+Reload attacks cannot be launched
because of non access to clflush instruction. Moreover, physical attacks are not
considered in the threat model of IE-Cache. In addition to achieving security,
we also focus to retain the fundamental design features of cache such as trans-
parent to the user and less reliance on OS. In the following section, we discuss
the design and working of IE-Cache.

3.1 IE-Cache: High Level Design

IE-Cache is inspired form Zcache architecture [18], which is proposed to improve
the performance by increasing the associativity without increasing the physical
ways. However, Zcache is also vulnerable to cache-based side-channel attacks.
We have replaced the static hash function with the cipher function to make it
resilient to cache-based side-channel attacks.

Figure 1a illustrates the high-level design of IE-Cache with 8 cache lines and
3 ways. IE-Cache employs key-based indexing function for each way. These func-
tions use multiple keys - one for secure and other for a non-secure domain. One
bit is added in each cache line to distinguish the secure and non-secure cached
data. IE-cache performs eviction of cache line in multiple steps. First, it searches
cache lines for eviction in multiple levels. Then it selects the candidate using
random replacement policy and evicts it. lastly, it relocates the cache lines to
accommodate the incoming block. Figure 1c illustrates the eviction process for
the accommodation of non-secure memory block (Y) in IE-Cache having 2 levels
of search. In first level, Incoming memory block belonging to a non-secure domain
(Y) selects the replacement cache lines (or candidates) using the non-secure key,
let say, it selects E (non-secure), A (secure) and C (non-secure). Then in second
level, the selected candidates further selects the cache lines using their domain
specific key shown in the second level of Fig. 1c. Random replacement policy
chooses a candidate for eviction from last level of search and evicts it. Lastly,

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 37

Fig. 1. High level design of IE-Cache (a) Cache architecture (b) Indexing function (c)
Replacement candidates tree

series of relocation happens to maintain the cache organization. Let us consider
that random replacement policy selects T for eviction then A will be relocated
to T and Y will be added to A location. There are two important points here.
First, A is moved to other location of its own interest and can become a member
of other cache set, which also means even if Y is evicted and requested again
for accommodation in the cache, it is not necessary that A is again a member
of Y. Second, as the key is managed by hardware and kept secret, an adversary
does not know the relation among cache lines and results in unknown evictions.
If adversary tries to find a set of memory addresses that can cause eviction of
desired cache line using random evictions, then he finds the evicting cache lines
belongs to last level only. To find the intermediate level cache lines, attacker
requires to generate large number of memory accesses to find one non-evicting
cache line, which we have analyzed in the Sect. 4.

3.2 Suitable Indexing Function

The main objective of the indexing functions in IE-Cache is to achieve sufficient
pseudo-random permutation with low latency. We observe that different indexing
functions (i.e. QARMA and DES) used in previous randomization-based coun-
termeasures [14,19] can fulfill our objectives, and the scope of security of these
countermeasures are limited because of the direct eviction but not because of
indexing functions used in them. Therefore, these indexing functions can also be
used in IE-Cache. We find block cipher used in CEASER [19] most suitable for

38 M. A. Mukhtar et al.

IE-Cache because it gives flexibility in the input size and incurs low latency of
about one or two cycles. For demonstration purpose, 8MB cache with 4 ways, we
have implemented cipher having 3 stages with 16-bit input and output. Figure 1b
shows one stage of DES. For the detailed implementation of cipher, we recom-
mend the reader to see [19].

3.3 Security Domain and Key Management

The concept of hardware managed key and creation of security domain are not
new as these are already in Intel SGX [20] and ARM TrustZone [21] architec-
tures. These processors are also vulnerable to cache-based side-channel attack.
Therefore, IE-Cache suits for such architectures that already have a secure bit in
cache lines and hardware managed key mechanism because these architectures
require localized modification if IE-Cache is integrated into such platforms.

The key in our IE-Cache plays a crucial role in the security, therefore, its
confidentiality is important. We ensure this confidentiality in our design by man-
dating that the key is fully managed by hardware. There must not be any way
to configure or retrieve this key in software. Each time the system is powered
up, a new random key is generated.

3.4 Increased Complexity of Prime+Probe

IE-Cache makes both profiling and exploitation steps of Prime+Probe harder
by increasing the eviction set size and introducing the non-evicting members in
the eviction set.

In the eviction process of IE-Cache, cache lines are selected in multiple levels
such that the number of cache lines increases exponentially from one level to
the next. For example, for 4 ways and 2 levels, cache lines selected in first and
second levels are 4 and 12 respectively. For a successful Prime+Probe attack, the
attacker needs to fill all 16 cache lines to observe the eviction. However, because
of the random replacement policy, the attacker cannot guarantee the memory
access will be placed in the targeted cache line. In case of memory accessed by
attacker is placed at the cache line other than the targeted one, attacker has two
options to fill the cache line 1) attacker flushes the cache and accesses the same
memory address again or 2) attacker accesses another memory address that can
be placed in the cache line. Because of no access to flush instruction, the attacker
has to indirectly flush using random memory accesses, which is costly. Therefore,
the attacker has to adopt the second option and needs to access multiple memory
addresses to ensure the filling of the targeted cache line. We analyze the expected
number of memory addresses required by the attacker using bins and balls anal-
ysis that how many throws are required to fill the interested bin with at least one
ball with 99% confidence. Considering IE-Cache having 4-ways and 2 levels, this
analysis results that the attacker requires 16 memory addresses to ensure filling
of one cache line and 64 memory addresses for four cache lines. Accessing these
memory addresses by the attacker will ensure filling of cache lines belonging to
the first level of the tree but which four memory addresses have successfully

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 39

been placed in the targeted cache lines are unknown to the attacker. Therefore,
to observe the victim access, the attacker has to load all those cache lines that
can be selected by 64 memory addresses on the second level of the tree, so that
relocation from the first level to second level causes eviction. As each cache line
related to the first level selects 3 cache lines on the next level in IE-Cache having
4 ways, total possible cache lines selected by 64 cached memory addresses are
192 at the second level. The attacker needs 16 memory addresses (using the same
bin and ball analysis) to ensure filling of each 192 cache lines, which means 3072
memory addresses are required to fill the second level. This concludes that the
eviction set size is 3136 cache lines for IE-Cache having 4 ways and 2 levels in
which the number of evicting (first level) and non-evicting (second level) cache
lines are 64 and 3072. The attacker in profiling steps needs to find 3136 memory
addresses against one victim’s memory access. Also in exploitation step attacker
needs to load 3136 memory addresses, yielding difficulties for the attacker in two
ways. First, attack resolution decreases enormously because of too many mem-
ory loads are needed. Second, given that the cache line is of 64 bytes, 3136 cache
lines cover 196 KB scattered memory space, hence it is difficult to identify the
victim’s memory access in case of concurrent processing of multiple applications.
Figure 2 shows the number evicting and non-evicting addresses in an eviction set
for a varied number of ways and levels of IE-Cache.

Fig. 2. Eviction set size for varied number of ways and levels of IE-Cache

Finding non-evicting members of the eviction set is another difficulty for the
attacker. Victim memory access causes eviction from the last level and relocates
the cache lines belonging to upper levels. As the non-evicting cache line does not
evict as a result of victim access, there is no direct information to an attacker
via timing channel. However, we find that the attacker can use indirect timing
analysis to know the relation between non-evicting and evicting cache lines.
For example in Fig. 1c, eviction of P (evicting cache line) is dependent on the
presence of Q (non-evicting cache line) in the cache, which means that P will

40 M. A. Mukhtar et al.

not evict if Q is not in the cache. In the profiling step, let say that the attacker
has successfully found the P using profiling technique discussed in Sect. 2.2, the
attacker knows that Q is also in group G’ (set of randomly selected non-colliding
memory address). To find Q, the attacker access all memory addresses belonging
to G’ group again except the one randomly selected address (expecting a Q).
Then the attacker calls victim to access memory, aiming that the cache line
P will not evict if randomly taken out address is Q. After this, the attacker
accesses P again while measuring its time to know the eviction. The attacker will
observe the eviction of P on taken out candidate multiple times that the random
replacement policy at-least selects P once for eviction if the taken out candidate
is not Q. If the attacker finds that taken out member has reduced the probability
of eviction of P in multiple runs, the attacker expects taken out member is Q. In
case of more levels, for example for three levels, evicting member depends on two
non-evicting members, hence, the attacker has to observe eviction of interested
last level cache lines by taking out all possible pairs formed in G’ group. This
greatly increases the time to find non-evicting cache lines as attacker needs
≈227 years to finds one eviction set for IE-Cache having 4 ways, 3 levels and
212 cache lines per way. Note that the attacker has to flush and place the group
members again in cache for observing the eviction behavior on the next taken
out member. Placing of non-colliding group members again in cache becomes
difficult because there is a probability that two addresses that do not collide in
one arrangement of placement may collide in other. Accessing the same memory
again does not guarantee the placement in the same cache way as placed in the
previous turn because of random replacement policy. Therefore, ensuring the
placement of all group members in the cache, attacker has to access all group
members multiple times while measuring their access latency. If attacker finds
any access with longer latency, it has to repeat the action of flush and placing
members again, aiming to place in such arrangement that group members do not
cause self evictions. Let npl indicate the number of iteration required to place
the non-colliding member of group in the cache.

4 Security Evaluation

For security evaluation, we have built the python model of IE-Cache and have
considered the following assumptions. First, the cache has a random replacement
policy and fills the invalid location with high priority. Second, the mapping from
memory address to output indices is pseudo-random. Lastly, attacker and victim
processes are executing only. We have taken this assumption in favor of the
attacker.

We have verified the security of IE-Cache by analyzing the number of attacker
and victim memory accesses needed to build an eviction set for Prime+Probe
attack as discussed in Sect. 2.2). As victim memory access results in eviction of
cache lines belonging to last level in IE-Cache, profiling discussed in Sect. 2.2 can
only find the evicting cache lines belonging to an eviction set. For non-evicting
cache lines in an eviction set, we used the method discussed in Sect. 3.4. We

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 41

Fig. 3. Victim accesses required to find evicting and non-evicting cache lines of an
eviction set of IE-Cache having 4 ways, 211 lines and 2 levels.

experimentally obtained the attacker and victim accesses to find evicting and its
non-evicting member averaged over 100,000 simulator runs. Then we multiplied
the accesses obtained for one evicting and non-evicting member with the total
number of respective members (shown in Fig. 2) in an eviction set. Figure 3 shows
the victim accesses and attacker accesses per victim access for IE-Cache having
4 ways, 211 cache lines and 2 levels. As the group size increases, results indicate
that the victim accesses become less to find evicting cache line, making it easy
for the attacker. However, victim accesses become greater to find non-evicting
cache line, making it harder for the attacker. This inverse effect indicates that
advanced profiling fails in the case of IE-Cache.

Fig. 4. Attacker accesses required to find evicting cache lines against (a) nrmv and (b)
Victim calls required to find evicting cache lines.

Figure 4 shows the attacker accesses required to find evicting cache lines
versus different parameters for IE-Cache having 4 ways, 211 cache lines and 2
levels. Figure 4a shows that the group size of 5000 requires less number of attacker
accesses as compared to other sizes. We have observed that the iteration required
to eliminate the self collisions increases if group size becomes larger than 5000
(shown in Fig. 4a), which increases the attacker accesses. Inversely, for group

42 M. A. Mukhtar et al.

size smaller than 5000, attacker finds evicting cache lines in a greater number of
turns (shown in Fig. 4b), which increases the attacker accesses.

Table 1 presents the adversarial effort required to find evicting and non-
evicting cache lines of an eviction set for different parameters of IE-Cache. For
time calculation, we had taken the same assumption as in research work [14],
i.e, 9.5ns cache hit time, 50ns cache miss time, 0.5 ms victim execution time and
3.6 ms cache flush time. Results show that the time to build an eviction set is
increased with the increase in level and cache lines. This is because the non-
evicting cache lines are increased in an eviction set. Moreover, results show that
a bigger group is required to find the evicting line in caches having a greater
number of cache lines, which increases the iterations to check evictions of evicting
members against non-evicting members and yields increase in time.

Table 1. Adversarial effort to find eviction set in 4 way IE-Cache having different levels
and cache lines. CL= number of cache lines, L = number of levels, G = size of randomly
sampled memory addresses, G’ = non-colliding member of group, nrmv = turns required
to find non-colliding addresses, npl = number of turn required to place non-colliding
members in cache, avgv = average victim access and avga = average attacker accesses
per victim access.

CL L G (k) G’ nrmv npl Evicting Non-evicting

avgv avga Time (hr) avgv avga Time (hr)

211 2 7 5720 163 64 2.46E5 5.98E11 22 2.53E12 1.07E16 2.69E06

6 5582 113 28 1.97E5 3.33E11 13 2.30E12 3.33E15 2.43E06

5 4993 11 3 1.36E6 1.77E11 7 5.42E10 1.17E12 5.95E04

4 4000 4 1 9.26E7 5.07E12 213 1.08E10 2.82E11 1.29E04

211 3 8 6945 90 67 1.06E7 9.58E12 191 4.99E16 1.28E16 2.32E12

7 6866 73 21 2.48E7 7.37E12 342 1.12E18 1.66E18 1.21E12

212 2 16 11497 430 71 3.96E5 2.82E12 58 5.13E13 4.06E17 5.84E07

15 11224 367 61 2.15E5 1.64E12 34 3.23E13 2.45E17 3.67E07

14 11035 318 49 1.69E5 1.20E12 25 1.56E13 1.39E17 1.91E07

13 10893 218 38 2.95E5 2.24E12 46 1.26E12 1.22E16 1.43E06

12 10542 205 10 4.64E5 2.99E12 63 7.82E11 5.86E15 8.88E05

212 3 16 13446 154 56 1.12E7 5.71E13 293 5.71E17 1.13E17 6.79E12

15 13554 142 84 1.46E7 6.69E13 1121 9.82E18 2.96E21 1.34E13

14 13292 144 40 3.10E7 1.93E13 1336 2.05E18 2.67E18 2.40E12

13 12974 17 25 5.85E7 8.28E13 1657 1.94E18 3.95E20 2.27E12

5 Performance Evaluation

We have used micro-architecture simulator, zsim [16], for performance evaluation
of IE-Cache. Table 2 shows the configuration used in our experimental setup. A
4-way IE-Cache is introduced at the L3 in the cache hierarchy and it is designed
for a different level-of-search, i.e. 2 and 3 levels. We have evaluated the IE-Cache

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 43

for each level-of-search against baseline architecture by executing 11 workloads
of PARSEC using medium input set. In each run, we have taken one program
at random for each domain (secure and non-secure). We have calculated the
weighted speedup metric, which is a sum of ratios of the program’s IPC executing
in a group to its IPC when it is executing in isolation, and normalized it to
baseline architecture.

Table 2. Baseline configuration

Core 4 cores, 2.2 GHz, OoO model

L1 cache Private, 32 kB, 8-way set associative, split D/I

L2 cache Private, 256 kB, 8-way set associative

L3 cache Shared, 1MB, 16-way set associative or 4-way IE-Cache

Memory 200-cycle latency, 8 GB/s peak memory BW

Fig. 5. Normalized Performance of IE-Cache with 2 and 3 levels

Figure 5 shows the normalized weighted speed up metric of IE-Cache. In
this figure, a bar higher than 100% indicates performance improvement of IE-
Cache as compared to baseline architecture. Results in Fig. 5 show that IE-
Cache with 3 levels-of-search outperforms 1%–3%. This performance is improved
because of the scattered mapping of memory to cache lines and increased cache
associativity. Workload canneal and dedup, which frequently use L3 cache, shows
an improvement of about 3% because of the increased associativity of IE-Cache.
IE-Cache with 2 levels-of-search shows low performance on some of the load
because of low associativity as compared to baseline.

44 M. A. Mukhtar et al.

6 Conclusion

This paper proposes a novel way to mitigate eviction-based cache side-channel
attacks while retaining the shared feature of the cache. We have modified the
relation between the incoming memory address and evicting cache line that
introduces non-evicting members in the eviction set, which are harder to learn
by collisions. The attacker has to generate at least ≈259 memory accesses to find
an eviction set. This takes about ≈227 years to find one eviction set. Moreover,
IE-Cache provides strong security with 1–3% improvement in performance.

References

1. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

2. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: cache
attacks on mobile devices. In: 25th USENIX Security Symposium, Austin, TX, pp.
549–564. USENIX Association (2016)

3. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622, May 2015

4. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 2014),
San Diego, CA, pp. 719–732. USENIX Association (2014)

5. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P 2019) (2019)

6. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium (USENIX Security 2018) (2018)

7. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: Presented as Part of the
21st USENIX Security Symposium (USENIX Security 2012), Bellevue, WA, pp.
189–204. USENIX (2012)

8. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: DAWG:
a defense against cache timing attacks in speculative execution processors. In:
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 974–987, October 2018

9. Kong, J., Aciicmez, O., Seifert, J.-P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: Proceedings of the
2Nd ACM Workshop on Computer Security Architectures, CSAW 2008, pp. 25–
34. ACM (2008)

10. Liu, F., Wu, H., Mai, K., Lee, R.B.: Newcache: secure cache architecture thwarting
cache side-channel attacks. IEEE Micro 36(5), 8–16 (2016)

11. Liu, F., et al.: Catalyst: defeating last-level cache side channel attacks in cloud
computing, March 2016

12. Liu, F., et al.: Catalyst: defeating last-level cache side channel attacks in cloud
computing. In: 2016 HPCA, pp. 406–418, March 2016

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14

IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks 45

13. Fiore, U., Florea, A., Gellert, A., Vintan, L., Zanetti, P.: Optimal partitioning of
LLC in CAT-enabled CPUs to prevent side-channel attacks. In: Castiglione, A.,
Pop, F., Ficco, M., Palmieri, F. (eds.) CSS 2018. LNCS, vol. 11161, pp. 115–123.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01689-0 9

14. Scattercache: thwarting cache attacks via cache set randomization. In: 28th
USENIX Security Symposium, Santa Clara, CA. USENIX Association (2019)

15. Purnal, A., Verbauwhede, I.: Advanced profiling for probabilistic prime+probe
attacks and covert channels in scattercache. arXiv, abs/1908.03383 (2019)

16. Sanchez, D., Kozyrakis, C.: ZSim: fast and accurate microarchitectural simula-
tion of thousand-core systems. ACM SIGARCH Comput. Architect. News 41, 475
(2013)

17. Vañó-Garćıa, F., Marco-Gisbert, H.: Slicedup: a tenant-aware memory deduplica-
tion for cloud computing. In: UBICOMM International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies, UBICOMM 2018, United
States, pp. 15–20. IARIA, November 2018

18. Sanchez, D., Kozyrakis, C.: The ZCache: decoupling ways and associativity. In:
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pp.
187–198, December 2010

19. Qureshi, M.K.: CEASER: mitigating conflict-based cache attacks via encrypted-
address and remapping, pp. 775–787, October 2018

20. McKeen, F., et al.: Intel R© software guard extensions support for dynamic memory
management inside an enclave. In: HASP, pp. 10:1–10:9. ACM, New York (2016)

21. Li, W., Xia, Y., Chen, H.: Research on arm trustzone. GetMobile Mob. Comput.
Commun. 22(3), 17–22 (2019)

https://doi.org/10.1007/978-3-030-01689-0_9

Connection Security

Refined Detection of SSH Brute-Force
Attackers Using Machine Learning

Karel Hynek1,2(B), Tomáš Beneš1,2, Tomáš Čejka2, and Hana Kubátová1

1 FIT CTU, Prague, Czech Republic
{hynekkar,benesto3,kubatova}@fit.cvut.cz

2 CESNET a.l.e., Prague, Czech Republic
{hynekkar,tomas.benes,cejkat}@cesnet.cz

Abstract. This paper presents a novel approach to detect SSH brute-
force (BF) attacks in high-speed networks. Contrary to host-based
approaches, we focus on network traffic analysis to identify attack-
ers. Recent papers describe how to detect BF attacks using pure Net-
Flow data. However, our evaluation shows significant false-positive (FP)
results of the current solution. To overcome the issue of high FP rate, we
propose a machine learning (ML) approach to detection using specially
extended IP Flows. The contributions of this paper are a new dataset
from real environment, experimentally selected ML method, which per-
forms with high accuracy and low FP rate, and an architecture of the
detection system. The dataset for training was created using extensive
evaluation of captured real traffic, manually prepared legitimate SSH
traffic with characteristics similar to BF attacks, and, finally, using a
packet trace with SSH logs from real production servers.

Keywords: SSH · Brute-force · Attack · Security · Network ·
Monitoring · Malicious · Flow · AdaBoost · Decision tree ·
Classification

1 Introduction

A brute-force (BF) is a common type of attack that may lead to intrusion and
taking control by an attacker. A study [20] published by Ponemon Institute in
2014 claims that 51% of interviewed companies experienced SSH related adverse
events. Unfortunately, the situation has not changed dramatically to this day
based on recent annual security reports by Cisco [8] mentioning BF attacks.

Detection of incoming BF attacks against own server can be easily performed
using server logs. However, our scope of interest is rather a detection of sources
of attacks at the network level. Accurately detected attacks against a remote
server originating in the operated network infrastructure are usually an indicator
of compromise, i.e., valuable information about suspicious behavior.

More sophisticated attacks are performed according to “low and slow”
tactic [14] to be hidden from detection systems. It usually includes a large

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 49–63, 2020.
https://doi.org/10.1007/978-3-030-58201-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_4

50 K. Hynek et al.

coordinated botnet attacking multiple various targets, so the number of repeated
attempts from a single IP address against a single server can be very low. The
attacking IPs therefore surpass the host-based solutions because their individual
contribution does not reach thresholds for blocking. Contrary, it is possible to
detect such attacks on the ISP (Internet Service Provider) level, which is our
goal, because the attackers’ traffic targeting multiple victims is observable.

At the ISP level (in high-speed networks), the packet-based monitoring and
traffic analysis is very resource-intensive. Therefore in practice, a flow-based
monitoring is used. That means aggregated information about communicating
parties is represented by IP flow records, usually in the NetFlow or IPFIX format
[9,21]. Even though SSH traffic is encrypted, some published papers show that
it is possible to detect BF attacks that use this encrypted protocol (e.g., [16]).
Based on our experience, the accuracy of the detection system, which uses tradi-
tional IP flows, is limited due to false-positive alerts. For example, our instance of
the NEMEA SSH brute-force detector [6,19] (based on the SSHCure [12] algo-
rithm), reported several hosts from the monitored infrastructure as attackers.
However, these hosts did not show any other signs of infection or misbehavior.

During the analysis of the relevant traffic, we discovered that it comes from
automated tools (e.g., monitoring) and causes false-positive alerts. The tools pro-
duce multiple SSH connections periodically with a few seconds/minutes interval,
each containing a single command. Despite successful authentication (usually by
a public key), the observed IP flows can be easily misinterpreted as BF attacks.

Existing IP Flow-based detection algorithms suffer from the same issues with
misinterpreted legitimate traffic, since the traditional IP flow data indeed do
not contain information that would distinguish such automated traffic from BF
attacks. A typical workaround solution can be a change of threshold values to
filter out these connections or to use some whitelisting. Unfortunately, both solu-
tions have disadvantages: a higher value of thresholds decreases detector’s sensi-
tivity, and the whitelisting is complicated to maintain. Therefore, we designed a
better detector based on machine-learning (ML) and extended IP flow-like data.

Recent papers describe extended IP Flow records (e.g., [5,13,27]) with addi-
tional information extracted from unencrypted protocol headers up to applica-
tion layer (L7). Encryption decreases visibility into the traffic and prevents the
extraction of the L7 information. However, the behavior of applications discloses
information even in the encrypted traffic, as Anderson et al. described in [3].

Compared to the traditional IP Flow data representing one-directional “con-
nections”, modern monitoring systems are able to pair both directions into so
called biflow records. Additionally, Joy exporter [4] adds various additional traf-
fic features at the packet level (such as length and inter-packet gaps of individual
packets). The whole feature vectors can be afterward used as an input for ML
models—Anderson et al. focus on the detection of malware traffic.

Our paper focuses on addressing false-positives issues in prior works. We
have decided to design a detection mechanism using extended IP flows with a
minimal subset of the packet-level features created by Joy exporter. The addi-
tional information in IP flows should make the resulting model resilient against
false-positive detection and more accurate. In contrast to the model, that uses

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 51

traditional IP flows only, our approach can distinguish between automated traf-
fic from BF attacks, because it takes advantage of additional information such
as individual packets length.

To reach our goal, we have worked on the following contributions:

– We have created an annotated training and testing dataset using manu-
ally created traffic and automatically captured real traffic of SSH protocol.
It contains legitimate flows and BF attacks. The dataset consists of over
30,000 extended biflow records of SSH, about half of them are BF attacks,

– We have experimentally evaluated over 70 traffic features and several ML
models to select a suitable subset of (11) features, and a feasible model that
achieves the best results. This demonstrates that a small number of extracted
traffic features can provide very good accuracy of BF attacks detection.

– We have described an architecture of a detection system consisting of data
preprocessing, ML-based detector, and a knowledge base storage for post-
processing and filtering detected raw events. According to our experiments,
the system performs better than the detection based on pure IP flow data.

This paper is divided as follows. Section 2 describes the related work of SSH
BF attacks detection. Section 3 describes the ML method we used. Section 4
describes the obtaining and labeling our dataset. Section 5 contains results of
our experiments. Section 6 concludes this work.

2 Related Work

There are many published approaches to the detection of SSH BF attacks. We
can classify them as host-based and network-level. A host-based detection and
prevention can be performed either by an application natively, or by external
software that does an automatic analysis of the system logs and mitigation of
the suspicious traffic using, e.g., host’s firewall. A well-known example of this
approach is Fail2Ban [11]. This solution usually is not capable of detecting coor-
dinated attacks from many hosts (botnet).

Analysis of SSH brute-force traffic in [1] describes that attacks from botnets
are well-coordinated, and dictionaries are efficiently distributed among bots. This
main disadvantage of the host-based approach can be solved by a special archi-
tecture described in [25]. The proposed architecture shares information between
involved hosts to detect or prevent SSH brute-force attacks. However, the pro-
posed solution has only been simulated with a handful of servers and does not
provide any comparison with the real-world environment. It also does not pro-
vide any consideration for drawbacks associated with communication between
large amounts of hosts.

The network-level approach depends on observation points. However, it is
not affected by any of these disadvantages. On the other hand, it has to deal
with a massive amount of data. Therefore, Jonker et al. published a study where
they described a specific characteristic of an SSH brute-force attack [15]. They
analyzed flat traffic showing that the BF attack has a specific number of packets

52 K. Hynek et al.

and duration. Based on these observations, the BF attacks can be detected on
network-level only from aggregated data.

The paper [12] proposed an IP Flow-based intrusion detection system for
SSH attack called SSHCure. It uses packet per flow (PPF) metric and a minimal
number of flows within a 1 or 5-min window. The authors build the algorithm
on the assumption published in [24] regarding 3 phases of BF attacks:

1. Scan Phase – The attacker scans an IP address block to find out a host with
running SSH server.

2. Brute-force Phase – The attacker is trying to login to a smaller subset of
IP addresses using the brute-force attack.

3. Die-off Phase – After the successful break-in, there is still traffic from the
attacker, but it is much smaller. This residual traffic represents commands
executed on the victim machine.

Nowadays, the first Scan Phase can be skipped by attackers, since targets can
be found using scanner services like Shodan [23] or Censys [7]. This kind of spe-
cialized search engine is designed to scan and gather information about devices
and systems accessible from the Internet. With a simple query, we can obtain
thousands of IP addresses with the open SSH port.

The SSHCure solves the scenario by allowing attackers to enter the Brute-
force Phase without passing through the Scan Phase. The paper [12] presented
98.4% accuracy of the detector without false-positives. It is worth noting that
the algorithm was validated on a dataset with only 130 attacks, where all of the
attackers performed the Scan Phase.

A different solution, proposed in [22], combines extended flow with ML tech-
niques. The authors defined a new structure called sub-flow, which is an ordered
sequence of packet sizes of one IP flow. The sub-flow is than used in the clus-
tering algorithm for the detection of the SSH authentication protocol and spe-
cific authentication packets. This information is then processed along with the
inter-arrival time of authentication packets and compared with the predefined
threshold. They achieved very high precision with 99% of successfully detected
attacks.

The advanced ML detection methods were studied in [17]. The authors
extracted 18 features from an aggregated extended flow. The aggregated flow
is a set of flows with the same source IP, destination IP, and destination port
observed within a 5-min time window. Using the aggregated flows, they avoided
the problem of similarity between failed login produced by legitimate users and
brute-force attacks. They separated those classes by the number of BF suspicious
flows within the time window.

Features extracted from aggregated flows are then used as input for Naive
Bayes, K-NN (exactly 5-NN), and C4.5 decision tree algorithm. All algorithms
classified with similar precision with AUC metric around 0.995 on a dataset with
around 1,000 aggregated flows. This study proved that the ML detector works
sufficiently even with a straightforward algorithm such as a decision tree.

Automated tools that use SSH as a transport protocol (e.g., Zabbix, git,
rsync, ansible) can create many independent connections having very similar

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 53

flow features as BF attacks. Based on our experience, detection presented in [22]
and [17] would very likely suffer from the high amount of false-positive detection
results. The detection models presented in prior works depend on threshold-
ing suspicious connections identified by standard side-channel features (average
inter-packet time, average packet size and so on), and they do not take advan-
tage of the knowledge of SSH protocol auth phase. Therefore, the short and
periodic SSH connections are nearly indistinguishable from unsuccessful logins.
Although, in the case of [17], extension of the feature set with the information
that we present in the following sections will help to separate successful logins
from unsuccessful ones. However, even with this modification, we doubt that the
same ML-based threshold model would be transferable to other networks since
it is data-dependent, and the thresholds are tuned for one particular network
traffic.

3 Our Approach

This paper proposes a network-level detection architecture to decrease the num-
ber of false-positives with the same or higher level of sensitivity, i.e., more accu-
rate. It uses extended IP Flow features provided by the Joy exporter and ML
algorithm to distinguish successful and unsuccessful logins. The extended IP
flows are obtained from backbone network traffic. The main advantage here is
the detection of attackers using the “low and slow” tactic.

The results (identified login failures) are afterward processed by a threshold
filter, like in host-based solutions. This allows tuning for the policies of the tar-
get network. Contrary to [17], our ML-based algorithm uses protocol-dependent
features only, therefore, it is easily transferable to different networks.

The architecture consists of four parts shown in Fig. 1 (inside a dashed bor-
der), which will be explained in more detail in the following sections.

Extended flow

FLOW Exporter

Features

Feature extractor

Failed login detector

Knowledge
base

Threat Decision and
Reaction service

Alert

Fig. 1. Overview of the SSH brute-force attack detector

54 K. Hynek et al.

3.1 Feature Extractor

The Feature extractor processes extended IP Flows and converts them into a
table of features to be usable by ML. The main idea is that the used exporter
(Cisco Joy in our case) provides information about every length of packet, but
does not provide aggregated statistical features like mean values that we need
for the ML method. The Feature extractor takes extended flow as input and
calculates the required features for the Failed login detector.

The feature selection is one of the most important parts because the feature
set affects the accuracy of the ML classifier. During our analysis, we started
with a set of over 70 features. Our deployment target is a high-speed network,
where a high number of extracted characteristics is impractical because every
single feature extraction consumes many resources. We needed to balance the
accuracy and computational complexity of obtaining features.

We successfully reduced the set by removing features with low information
gain ratio. Then we continued with a reduction based on performance, and we
ended up with 11 selected features that achieved excellent results among multiple
ML algorithms while being easily extracted. The final set of features with a
description is shown in Table 1.

The feature set includes the length of four specific packets from 9th to 12th

positions (only SSH protocol packets are counted, TCP control packets or pos-
sible re-transmissions are filtered out by the flow exporter). These packets have
been chosen based on our knowledge of the SSH protocol and experimental eval-
uation of the feature set during its selection. These packets (usually with the
same size) carry a response of an SSH server to unsuccessful login attempts.
The first packets belong to the SSH handshake (which is not relevant for the
detection), and the authentication process starts from the 9th packet (shown in
Fig. 2). Repeated attempts to log into a target server can be observed within one
flow by significant similarity of the sizes of the server response packets included
in the feature set. To best of our knowledge, there is none prior work that uses
these features to distinguish between BF attack and benign traffic.

Our original feature set included also used version of SSH protocol, client
name, supported cipher-suites, and other clients related information. According
to our results, these features do not improve brute-force attack detection. We
found out that the attackers are using clients like OpenSSH, PUTTY, libssh that
are also present in the benign traffic. Therefore, the information gain ratio value
of client-related features is lower than 0.3.

3.2 Failed Login Detector

The detector is an ML-based model that performs binary classification on
extracted features. The goal is to classify each flow as a successful or a failed
login attempt. The classification results of individual flows are then stored in
the Knowledge base.

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 55

Client Server

Client Hello

Key Exchange Init

Server Hello

New Keys

User Auth request

Key Exchange Init

New Keys

User Auth Info request

User Auth Info response

Client prompts user for password

1

3

5

7

9

Fig. 2. Conversation diagram of SSH handshake [10,28].

3.3 Knowledge Base

The knowledge base is the long term memory of the detector. It covers all infor-
mation about authentication attempts observed during at least 24 h in the past.
The source IP, destination IP, timestamp, and type of login are stored and used
for attack detection in Threat decision and reaction service.

3.4 Threat Decision and Reaction Service

The Threat Decision and Reaction service processes stored login reports and
decides whether to send an alert. Unlike the traditional host-based solutions,
the flows obtained from backbone traffic gives us information about multiple
victims of a single IP address. This fact gives us a higher probability of detecting
“low and slow” attacks of botnets. The overall and complex information about
failed login gives us also other possibilities. For example, when one IP address is
constantly failing to log in to multiple servers and suddenly succeeds, it might
be an indicator of a possible break-in.

This part can also mitigate potential imprecision of ML-based Failed login
detector. The probability of misclassification multiple times in a row is very low.
Therefore the false classifications are not going to reach the threshold value. The
possible false negatives will only cause increased latency of the attack detection
by a negligible number of attempts.

4 Dataset Creation

The most important premise to create a good ML model is a proper dataset. The
quality of the model is directly linked with the quality of information contained
in the dataset. Due to the lack of useful public datasets available online, we

56 K. Hynek et al.

Table 1. Description of features used for detection of unsuccessful login.

Num. Name Inf. Gain ratio Description

1 duration 0.836 The duration of TCP connection

2 numPktsIn 0.666 Number of packets transferred
from client to server

3 numPktsOut 0.754 Number of packets transferred
from server to client

4 bytesIn 0.758 Number of bytes transferred from
client to server

5 bytesOut 0.756 Number of bytes transferred from
server to client

6 avgIpt 0.888 Average inter-packet time

7 medIpt 0.942 Median inter-packet time

8 dp9bytes 0.837 The length of 9th packet in flow

9 dp10bytes 0.868 The length of 10th packet in flow

10 dp11bytes 0.837 The length of 11th packet in flow

11 dp12bytes 0.754 The length of 12th packet in flow

have decided to create our own, which should contain malicious and benign SSH
traffic. There are two methods on how to create a dataset of SSH traffic with
correct labeling.

The first method is to generate malicious traffic ourselves, which can be
easily labeled afterward. There are several popular tools to perform a brute-
force attack on an SSH server such as THC HYDRA [26] or NCrack [18]. Every
tool has a wide variety of options on how to change the characteristics of the
attack. Generating malicious traffic from these tools with multiple settings is an
extremely time-consuming process. Additionally, resulted dataset would contain
only specific kind of brute-force traffic that may not correspond to a real network.

The second method is to use existing traffic from a public server, which is very
likely already enduring some form of SSH brute-force attacks. The main down-
side is that we expose our production server to a potential risk of a successful
attack. We did not want to use a custom honeypot or testing server because the
resulting dataset would not have the same variety of incoming traffic. Therefore
we used Fail2Ban. Contrary to the default behavior that blocks the traffic from
an attacker completely, we have prepared an action script to redirect it into an
isolated SSH service acting like a honeypot1.

Our aim was to simulate the same service like the original server (e.g., use of
the same certificates), so the attacker should not be able to recognize a change.
However, the honeypot has disallowed all user accounts, so it is ensured that
every login fails, and we can capture traffic of attacks without interruption. The
architecture of the described data capture is depicted in Fig. 3.

1 https://github.com/CESNET/traffic-datasets/tree/master/ssh/f2b.

https://github.com/CESNET/traffic-datasets/tree/master/ssh/f2b

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 57

Internet

Virtual Machine

SSH Service
SSH Service

Honeypot

IP Tables

Fail2Ban

Fig. 3. Architecture of our data collection machine

The captured traffic in PCAP was converted by Joy exporter into extended
IP flows. We use the ML approach to detect unsuccessful login so that we could
annotate each flow record from the server access log.

Using this method, we created a dataset (dataset1) of 35,000 labeled SSH
flows, from which 22,000 were malicious, and 13,000 were benign. This dataset
represents a realistic traffic that has a slightly higher number of malicious login
attempts, which is a similar characteristic as in the real environment. We could
not use the exact ratio as it is observed in backbone network because the number
of malicious attempts would be very high compared to the number of successful
logins.

The dataset is composed of Brute-Force attacks, SSH interactive sessions
(authentication by password or public key), file transfer, monitoring by Zabbix,
etc. The main advantage of this method is the richness of real attack traffic,
which is not restricted to a set of given tools, and easy setup of the traffic
capture, which can be deployed on many machines.

Our dataset also covers the main variability in the ssh authentication phase
by containing connections encrypted by multiple block and also stream ciphers.
Unexpectedly, according to our experiments, the behavior of the server in the
authentication phase does not differ between various implementations.

5 Validation and Experimental Results

This section describes the results of our measurements of the ML-based Failed
Login detector and the overall accuracy of proposed detection architecture.

5.1 Accuracy of Failed Login Detector

We have considered five ML methods for the flow classification, which are fast
and lightweight. They were Ada-Boosted Random tree, Naive Bayes, 5-NN, C4.5

58 K. Hynek et al.

Decision tree, and Random Forest. We evaluated all the models on the dataset1
(described in Sect. 4) using 5-fold cross-validation. The overall accuracy is very
similar across all evaluated algorithms (except Naive Bayes). The detailed results
are shown in Table 2. For further evaluations, we selected the one with the highest
accuracy, the Ada-Boosted Random tree.

Table 2. Measured accuracy across all considered ML algorithms.

Algorithm Accuracy

Ada-Boosted tree 99.47%

Naive Bayes 92.09%

5-NN 99.39%

C4.5 Decision tree 99.46%

Random forest 99.38%

The Ada-boost used ten iterations of creating decision trees with a maxi-
mal depth of 10, applied pruning, and minimal leaf size of 2. These parameters
provide a good balance between accuracy and possible over-fitting.

The trained model achieved an accuracy of 99.47% with a pessimistic AUC
value of 0.998. Detailed classification results are displayed in form of confusion
matrix in Table 3.

Table 3. Failed login detector confusion matrix.

Ground truth Class precision

Successful login Failed login

Classified as Successful login 13,318 130 99.03%

Failed login 56 21,698 99.74%

Class recall 99.58% 99.40%

5.2 Accuracy of the Whole Architecture

The results of the ML method are further filtered by the Threat Decision and
Reaction service (as it was mentioned in Sect. 3.4). It triggers an alert only when
a several consecutive failed login attempts from a single IP address exceeds
a threshold, which was set to 3 in our experiments because it is the default
threshold value in Fail2Ban [11]. Therefore, occasional false-positive results of the
ML detection usually do not result in an alert. When the detector is evaluated as
a whole, including the thresholding, the overall precision on the primary dataset
is 100% with no false positives.

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 59

For that reason, we decided to make an additional dataset (dataset2) to
evaluate the system on real data further. For this dataset, we captured 86,000
bidirectional SSH flows (from 564 clients) from the backbone traffic (peering
link between CESNET2 and GÉANT). Table 4 shows overall number of flow
classification. We can see that the vast majority of login is marked as unsuccessful
and originate from a relatively small number of IP addresses.

Creating dataset2 is equivalent to deployment on the real network, but the
offline evaluation has the advantage of the possibility of a detailed examination
of detected anomalies and misclassifications.

Table 4. The overall number of login classification in dataset2. The IP address is
counted as unsuccessful, when we detected at least one unsuccessful login.

Marked as unsuccessful login Marked as successful login Total

Flows 85,322 538 85,860

IP addresses 463 101 564

Table 5 shows the number of detected brute-force attackers (IP addresses) in
the dataset2 compared to the NEMEA SSH brute-force detector [6,19], which is
based on the SSHCure algorithm [12]. We can see, that ML detector is much more
sensitive and detected around 40% more attackers than the NEMEA detector.

Table 5. Number of detected brute-force attackers from our evaluation datasets

NEMEA Total

Detected Not detected

ML Detected 315 129 444

Not detected 3 — 3

Total 318 129 447

Table 6 shows several statistics of our evaluation of the results of the detec-
tion. Since the higher sensitivity can increase the number of false-positives, we
checked the traffic from the dataset2 and the results of ML-based and tradi-
tional detection. To evaluate the false-positive rate, we used AbuseIPDB [2],
which provides a list of IP addresses associated with malicious activity. It can
be observed that most of the IP addresses detected by the evaluated detectors
are listed on AbuseIPDB as malicious. We considered these as true-positives.
The remaining ones are possibly false-positives. Since there are only 8 of them,
we can investigate them manually.

All three attackers that were detected by NEMEA and not detected by our
ML-based method are false-positives. In this case, a simple investigation based

60 K. Hynek et al.

Table 6. The number of IP addresses detected as attackers which are also listed on
AbuseIPDB. The last column shows results of our investigation of those not listed.

Listed on AbuseIPDB Not listed Confirmed FPs

Detected by both detectors 314 1 0

Detected by ML only 125 4 2

Detected by NEMEA only 0 3 3

on reverse DNS query revealed that these hosts use SSH legitimately for periodic
remote access to other servers (e.g., because of monitoring).

The classification of four IP addresses that were not reported on AbuseIPDB
but were detected by our method was much more difficult. We marked 2 of
them as attackers because they performed a lot of short connections to multiple
destinations within one second. The classification of the other two IP addresses
was much more difficult. One of them performed short connections with a 5 min
interval from different SSH clients (PUTTY, openSSH1.2 and so on) to multiple
IP addresses. The other IP address irregularly shortly connected to one host.
Even though we found the behavior highly suspicious, we marked those cases as
false-positives.

The last candidate for false-positive IP address detected by both detectors
was, according to the SSH-client field, a Raspberry Pi. It was connecting to
multiple IP addresses every 10 min (default ban time for Fail2Ban). Based on
our experience and similarity to other attacks, we marked it as a brute-force
attack.

Table 7. The number of reported attackers and false positives for both detectors

Total reported attackers False positives

Detected by NEMEA 318 3 (0.94%)

Detected by ML 444 2 (0.45%)

The summary of the results per detector is shown in Table 7. We can observe
that the new ML-based approach allows detecting significantly more attackers,
while also slightly reducing the false positive rate.

Besides dataset1 and dataset2, we evaluated both detection algorithms using
specific traffic samples of a legitimate communication. The samples were gener-
ated as a traffic from a robot accessing a server via SSH every second performing
a single command. The NEMEA detector, i.e., detection based on pure IP flows
misclassified this type of traffic as brute-force attacks, meanwhile, our ML-based
detection results were correct.

Although our detector achieved excellent results, the amount of reduction
of false positives is smaller than we have expected. However, the overall results

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 61

show that the ML-based algorithm performs much better than the traditional
one with almost a third more detected attackers. The active protective systems
that use our detector are going to detect more attackers and lower the risk of a
successful attack.

6 Conclusion

Brute-force (BF) attacks are a prevalent type of malicious traffic that can be
observed by monitoring systems. Successful attacks belong to high severity
adverse events. Additionally, it is a typical activity of malware. Therefore, it
is essential to focus on their accurate detection.

Modern monitoring systems for high-speed networks use IP flows to represent
the observed traffic, and there are published works that describe how to detect
BF attacks based on this aggregated information. Some relevant related works
and their benefits/drawbacks were described in Sect. 2. However, after using a
flow-based detection algorithm on a real network, we have discovered a significant
number of cases where some types of legitimate traffic were misclassified as
attacks, which caused false alerts.

Our motivation was to find an improved approach to BF attacks detection at
the network level. The aim was to preserve or improve accuracy and decrease the
number of false-positive results (without any need for whitelisting or other excep-
tions that must be maintained). Specifically, our presented detection method
focuses on better recognition of legitimate SSH traffic with successful authen-
tication. Contrary to the existing IP flow-based systems, we have designed and
evaluated a detection architecture based on machine learning.

To achieve our goal, we have created a large annotated dataset1 for train-
ing and evaluation that contains legitimate communication over SSH (including
traffic of automated tools that can cause false-positive alerts due to its flow char-
acteristics) and various BF attacks. Additionally, dataset2 was prepared using
a packet capture of real network traffic to compare the results of the existing
non-ML detection and our new ML-based detection. The process of the datasets
creation was also described in detail in this paper.

Using the prepared training dataset, which we made publicly available2, we
were able to select 11 traffic features, and train&evaluate several different ML
models. Most of them achieved over 99% accuracy of classifying individual flows
as successful or failed login attempts. The best model, AdaBoosted tree, which
we selected for further experiments, achieved 99.47% accuracy.

When the classified flows are fed into the threshold based detector, the whole
system achieves perfect accuracy of detection on dataset1, i.e., all BF attackers
are successfully reported while there is no false alert.

The method is also successful in real-life comparison. On dataset2, which rep-
resents real SSH traffic on a large network, it detected about 40% more attackers
than an older method implemented in NEMEA, while it also generated less false
alerts.
2 https://github.com/CESNET/traffic-datasets/tree/master/ssh/.

https://github.com/CESNET/traffic-datasets/tree/master/ssh/

62 K. Hynek et al.

As our future work, we want to continue in our investigation of encrypted
network traffic and its analysis. Using the IP flows extended by feature vectors
that represent packet-level information, we believe it is possible to classify the
encrypted traffic and detect a malicious activity of the network hosts.

Acknowledgment. This work was supported by the Grant Agency of the CTU in
Prague, grant No. SGS20/210/OHK3/3T/18 funded by the MEYS of the Czech Repub-
lic and the project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the
MEYS and ERDF.

References

1. Abdou, A.R., Barrera, D., van Oorschot, P.C.: What lies beneath? Analyzing auto-
mated SSH Bruteforce attacks. In: Stajano, F., Mjølsnes, S.F., Jenkinson, G., Thor-
sheim, P. (eds.) PASSWORDS 2015. LNCS, vol. 9551, pp. 72–91. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29938-9 6

2. AbuseIPDB making the internet safer, one IP at a time, October 2019. https://
www.abuseipdb.com/

3. Anderson, B., McGrew, D.: Identifying encrypted malware traffic with contextual
flow data. In: ACM Workshop on Artificial Intelligence and Security (2016)

4. Anderson, B., McGrew, D., Perricone, P., Hudson, B.: Joy - a package for capturing
and analyzing network flow data and intraflow data, October 2019. https://github.
com/cisco/joy

5. Cejka, T., Bartos, V., Truxa, L., Kubatova, H.: Using application-aware flow mon-
itoring for SIP fraud detection. In: Latré, S., Charalambides, M., François, J.,
Schmitt, C., Stiller, B. (eds.) AIMS 2015. LNCS, vol. 9122, pp. 87–99. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20034-7 10

6. Cejka, T., et al.: NEMEA: a framework for network traffic analysis. In: 12th Inter-
national Conference on Network and Service Management (CNSM) (2016)

7. Censys, October 2019. https://censys.io
8. Cisco 2018 annual cybersecurity report, October 2019. https://rfc-editor.org/rfc/

rfc3954.txt
9. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, October

2004. https://doi.org/10.17487/RFC3954
10. Cusack, F., Forssen, M.: Generic message exchange authentication for the secure

shell protocol (SSH). Technical report, January 2006. https://doi.org/10.17487/
rfc4256

11. Fai12ban, October 2019. http://www.fai12ban.org/wiki/index.php/Main Page
12. Hellemons, L., Hendriks, L., Hofstede, R., Sperotto, A., Sadre, R., Pras, A.:

SSHCure: a flow-based SSH intrusion detection system. In: Sadre, R., Novotný,
J., Čeleda, P., Waldburger, M., Stiller, B. (eds.) AIMS 2012. LNCS, vol. 7279, pp.
86–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30633-4 11

13. Hendriks, L., et al.: Threats and surprises behind IPv6 extension headers. In:
Network Traffic Measurement and Analysis Conference (TMA) (2017)

14. Sadasivam, G.K., Hota, C., Anand, B.: Honeynet data analysis and distributed
SSH Brute-force attacks. In: Chakraverty, S., Goel, A., Misra, S. (eds.) Towards
Extensible and Adaptable Methods in Computing, pp. 107–118. Springer, Singa-
pore (2018). https://doi.org/10.1007/978-981-13-2348-5 9

https://doi.org/10.1007/978-3-319-29938-9_6
https://www.abuseipdb.com/
https://www.abuseipdb.com/
https://github.com/cisco/joy
https://github.com/cisco/joy
https://doi.org/10.1007/978-3-319-20034-7_10
https://censys.io
https://rfc-editor.org/rfc/rfc3954.txt
https://rfc-editor.org/rfc/rfc3954.txt
https://doi.org/10.17487/RFC3954
https://doi.org/10.17487/rfc4256
https://doi.org/10.17487/rfc4256
http://www.fai12ban.org/wiki/index.php/Main_Page
https://doi.org/10.1007/978-3-642-30633-4_11
https://doi.org/10.1007/978-981-13-2348-5_9

Refined Detection of SSH Brute-Force Attackers Using Machine Learning 63

15. Jonker, M., Hofstede, R., Sperotto, A., Pras, A.: Unveiling flat traffic on the inter-
net: an SSH attack case study. In: International Symposium on Integrated Network
Management (IM) (2015)

16. Najafabadi, M.M., Khoshgoftaar, T.M., Kemp, C., Seliya, N., Zuech, R.: Machine
learning for detecting brute force attacks at the network level. In: IEEE Interna-
tional Conference on Bioinformatics and Bioengineering (2014)

17. Najafabadi, M.M., Khoshgoftaar, T.M., Calvert, C., Kemp, C.: Detection of SSH
Brute force attacks using aggregated netflow data. In: 14th International Confer-
ence on Machine Learning and Applications (ICMLA) (2015)

18. Ncrack - Network authentication cracking tool, October 2019. https://nmap.org/
ncrack/

19. NEMEA Bruteforce detector, October 2019. https://github.com/CESNET/
Nemea-Detectors/tree/master/brute force detector

20. Ponemon 2014 SSH security vulnerability report, October 2019. https://
energycollection.us/Energy-Security/Ponemon-2014-SSH.pdf

21. Sadasivan, G., Brownlee, N., Claise, B., Quittek, J.: Architecture for IP flow infor-
mation export. RFC 5470, March 2009. https://doi.org/10.17487/RFC5470

22. Satoh, A., Nakamura, Y., Ikenaga, T.: SSH dictionary attack detection based on
flow analysis. In: 12th International Symposium on Applications and the Internet
IPSJ (2012)

23. Shodan, October 2019. https://www.shodan.io
24. Sperotto, A., Sadre, R., de Boer, P.-T., Pras, A.: Hidden Markov model modeling

of SSH Brute-force attacks. In: Bartolini, C., Gaspary, L.P. (eds.) DSOM 2009.
LNCS, vol. 5841, pp. 164–176. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04989-7 13

25. Thames, J.L., Abler, R., Keeling, D.: A distributed active response architecture for
preventing SSH dictionary attacks. In: IEEE SoutheastCon 2008, pp. 84–89 (2008)

26. THC HYDRA V. Hauser, The Hacker Choice (THC) - Hydra, October 2019.
https://www.thc.org/thc-hydra/

27. Velan, P., Čeleda, P.: Next generation application-aware flow monitoring. In: Sper-
otto, A., Doyen, G., Latré, S., Charalambides, M., Stiller, B. (eds.) AIMS 2014.
LNCS, vol. 8508, pp. 173–178. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43862-6 20

28. Ylonen, T.: The Secure Shell (SSH) Transport Layer Protocol. Technical report,
January 2006. https://doi.org/10.17487/rfc4253

https://nmap.org/ncrack/
https://nmap.org/ncrack/
https://github.com/CESNET/Nemea-Detectors/tree/master/brute_force_detector
https://github.com/CESNET/Nemea-Detectors/tree/master/brute_force_detector
https://energycollection.us/Energy-Security/Ponemon-2014-SSH.pdf
https://energycollection.us/Energy-Security/Ponemon-2014-SSH.pdf
https://doi.org/10.17487/RFC5470
https://www.shodan.io
https://doi.org/10.1007/978-3-642-04989-7_13
https://doi.org/10.1007/978-3-642-04989-7_13
https://www.thc.org/thc-hydra/
https://doi.org/10.1007/978-3-662-43862-6_20
https://doi.org/10.1007/978-3-662-43862-6_20
https://doi.org/10.17487/rfc4253

MULTITLS: Secure Communication
Channels with Cipher Suite Diversity

Ricardo Moura , David R. Matos , Miguel L. Pardal(B) ,
and Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{ricardo.de.moura,david.r.matos,miguel.pardal,

miguel.p.correia}@tecnico.ulisboa.pt

Abstract. TLS ensures confidentiality, integrity, and authenticity of
communications. However, design, implementation, and cryptographic
vulnerabilities can make TLS communication channels insecure. We need
mechanisms that allow the channels to be kept secure even when a new
vulnerability is discovered.

We present MultiTLS, a middleware based on diversity and tun-
neling mechanisms that allows keeping communication channels secure
even when new vulnerabilities are discovered. MultiTLS creates a secure
communication channel through the encapsulation of k TLS channels,
where each one uses a different cipher suite. We evaluated the perfor-
mance of MultiTLS and concluded that it has the advantage of being
easy to use and maintain since it does not modify any of its dependencies.

Keywords: Secure communication channels · SSL/TLS · Security ·
Vulnerability-tolerance · Diversity for security · Tunneling

1 Introduction

We are currently living in an increasingly digital age and there have been many
cyberattacks that cause increased losses and damage to businesses and Internet
users [8]. Secure communication protocols are a fundamental component of dis-
tributed systems and digital business because they allow entities to exchange
messages through a trusted communication channel over the untrusted public
Internet. These channels aim to guarantee confidentiality, integrity and authen-
ticity. Transport Layer Security (TLS) is one of the most commonly used pro-
tocols to provide secure communications. It allows server/client applications to
communicate over a channel that is designed to prevent eavesdropping, tamper-
ing, and message forgery. The most recent version is TLS 1.3 [9].

Protocols that allow secure communications may contain vulnerabilities that
make them insecure. Over the years, many vulnerabilities have been discovered
and corrected in SSL/TLS. The vulnerabilities with which we are concerned
can be divided into three groups: design vulnerabilities, implementation vulner-
abilities and cryptographic mechanisms vulnerabilities. Updating the software is
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 64–77, 2020.
https://doi.org/10.1007/978-3-030-58201-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_5&domain=pdf
http://orcid.org/0000-0003-4306-3477
http://orcid.org/0000-0001-6834-705X
http://orcid.org/0000-0003-2872-7300
http://orcid.org/0000-0001-7873-5531
https://doi.org/10.1007/978-3-030-58201-2_5

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 65

advisable in order to fix these vulnerabilities, but sometimes this is not done,
e.g., because the update process is inconvenient or time-consuming.

This work explores diversity in communication protocols by using multiple
cipher suites. These suites are used for defining a key exchange algorithm, an
authentication mechanism, an encryption mechanism, and a message authenti-
cation algorithm. Taking into account the existing problems and the objectives
defined, the solution found consists in creating several TLS channels, each using
a cipher suite different from the other TLS channels, and using tunneling mech-
anisms to encapsulate each TLS channel within another.

We developed MultiTLS, a middleware that obtains diversity by leveraging
tunneling mechanisms. In our implementation, we used socat, a tunneling soft-
ware, and OpenSSL, a TLS implementation, to create multiple TLS channels
and encapsulate each one in another. MultiTLS can be run as a shell com-
mand and is configured with a parameter k, the diversity factor (k > 1). This
parameter specifies the number of TLS channels to be created and consequently
the number of cipher suites to be used. The cipher suites used by these TLS
channels are different from each other to mitigate the vulnerabilities that can
be found in each cipher suite. Therefore, the communication channel created by
MultiTLS has multiple layers of protection, so that if k − 1 of the used cipher
suites are vulnerable, communications will remain secure, since there is at least
one cipher suite that guarantees the security of communications (confidentiality,
integrity, authentication). MultiTLS aims to make progress over vtTLS [5], a
vulnerability-tolerant communication protocol also based on diversity and redun-
dancy of cryptographic mechanisms to provide a secure communication channel.
However, vtTLS modifies a TLS implementation internally, leading to severe
software maintenance challenges.

2 Background and Related Work

Transport Layer Security (TLS) [9] is a security protocol that provides secure
communication channels between two entities, server and client. The protocol is
structured in two layers: the TLS Record protocol and the TLS Handshake proto-
col. The TLS Record protocol is used by the TLS Handshake and the application
data protocols to provide mechanisms for sending and receiving messages. The
TLS Handshake protocol is used to establish or resume a secure session between
server and client. A session is established in several steps, each corresponding
to a different message and with a specific objective. Following the TLS Hand-
shake protocol, the server and the client can exchange information through the
established secure communication channel.

Although the goal of the TLS protocol is to establish a secure communica-
tion channel, it may still have unknown vulnerabilities making it insecure and
susceptible to attacks.

An example of an attack that exploits a design vulnerability is CRIME (Com-
pression Ratio Info-leak Made Easy) [12]. This vulnerability was found in TLS
compression. Using this method, an attacker can brute-force the cookie value

66 R. Moura et al.

by using the responses sent by the server. The Heartbleed vulnerability [3] is
a buffer over-read vulnerability that happens when the sender sends a message
that specifies a payload size higher than what the real size of the payload. The
receiver, upon receiving the message, returns a block of memory where the sent
payload begins plus the specified size of the received message, that is, it returns
the received payload and dataset with size equal to the size specified in the
received message minus the real size of the message.

There are also vulnerabilities in the underlying cryptographic mechanisms
used by the TLS protocol. In 2011, Bogdanov et al. [2] published a biclique
attack against AES, though only with slight advantage over brute force. The
computational complexity of the attack is 2126.1, 2189.7 and 2254.4 for AES128,
AES192 and AES256, respectively. Although there is this attack and others, AES
is still considered a secure encryption mechanism. MD5 [11] is a hash function,
created by Rivest in 1991, that produces a 128 bit hash. In 2005, MD5 was proved
not to be collision resistant by Wang and Yu [13], through differential attacks.
Differential cryptanalysis, introduced by Biham and Shamir [1], analyzes the
differences in input pairs on the differences of the resultant output pairs.

In this work we achieve security through diversity. The term diversity
describes multi-version software in which redundant versions are purposely made
different from between themselves [7]. With diverse versions, one hopes that any
faults they contain will be different and show different failure behavior.

vtTLS [5] is a previous work that also uses the diversity approach to solve
the limitation of TLS having only one cipher suite negotiated between server
and client. It uses the diversity and redundancy of cryptographic mechanisms,
keys and certificates. vtTLS was successfully implemented as a fork of OpenSSL
version 1.0.2g, but moving to a newer version of OpenSSL requires implementing
the diversity features again. Our solution, MultiTLS, is similar to this approach
but we do not modify implementations of the tools.

3 MultiTLS

MultiTLS provides secure communication channels with multiple layers
through tunneling of TLS channels within each other. The term tunneling
describes a process of encapsulating entire data packets as the payload within
others packets, which are handled properly by the network on both endpoints [6].
MultiTLS provides an increase in security since each of these TLS channels uses
a different cipher suite than the others. The reason MultiTLS contributes to
increased security is that even when k−1 cipher suites become insecure, that is,
even when k − 1 TLS channels become vulnerable, the communication channel
created by MultiTLS, which is the combination of the k TLS channels, remains
secure since there is still one TLS channel with secure cipher suite. The mecha-
nisms used by MultiTLS allow creating k TLS channels without changing the
implementations of the used tools. This approach is an advantage over vtTLS,
since it does not require changes to the implementation of TLS. In the following
sections, we will discuss the design and implementation of MultiTLS.

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 67

3.1 Design

To encapsulate a TLS channel in another TLS channel, we use TUN (network
TUNnel) interfaces. This mechanism is a feature offered by some operating sys-
tems. Unlike common network interfaces, TUN does not have physical hardware
components, that is, it is a virtual network interface implemented and managed
by the kernel itself. TUN is a virtual point-to-point network device. Its driver
was designed with low level kernel support for IP tunneling. It works at the pro-
tocol layer of the network stack. TUN interfaces allow user-space applications to
interact with them as if they were a real device, remaining invisible to the user.
These applications pass packets to a TUN device, in this case, the TUN interface
delivers these packets to the operating system’s network stack. Conversely, the
packets sent by an operating system to a TUN device are delivered to a user-
space application that attaches to the device. Figure 1 shows a practical example
in which an application running on two different hosts communicates through
TUN interfaces.

Kernel space

User space

Application
receive message from

10.1.1.1

TUN
interface
10.1.1.2

Ethernet
interface

User space

Application
send message to

10.1.1.2

Kernel space

TUN
interface
10.1.1.1

Ethernet
interface

Network

Host A Host B

Fig. 1. Example of using TUN interfaces

We create an encapsulation of several tunnels by creating TUN interfaces
through others created previously. For each of these interfaces, we can use dif-
ferent TLS implementations running in user space that allow creating a TLS
channel that is encapsulated by the tunnel used by the hosts.

Figure 2 presents the architecture of MultiTLS for k = 2. This configura-
tion allows an application to communicate over two tunnels, whereas the tunnel
between the TUN1 interfaces encapsulates the tunnel between the TUN2 inter-
faces. In addition, we can see that between the TUN1 interfaces there is a tunnel
that crosses two processes that we designate by TLS implementation and whose
function is to establish and manage the TLS channel that is encapsulated by the
tunnel. To do this, one of these processes will run in server mode and the other
in client mode.

68 R. Moura et al.

User space

Host A

User space

Kernel space

5

Host B

TUN 1

Ethernet
interface 6

TLS implementation

TLS implementation

6

1
2

3

Application

Kernel space

TUN 1

Ethernet
interface

TUN 2

TLS implementation

11 10

9 8 7

Network

Application

4

TLS implementation

TUN 2

Fig. 2. MultiTLS design with k = 2 and the flow of sending messages from one
application to another on different hosts

3.2 Combining Diverse Cipher Suites

In MultiTLS, we are interested in having the maximum possible diversity of
cryptographic mechanisms, because we want to avoid common vulnerabilities.
Evaluating the diversity among cryptographic mechanisms is not trivial. For this
purpose, we based our analysis on work by Carvalho [4] regarding heuristics to
compare diversity among different cryptographic mechanisms. In our work, we
focused on searching for the combination of four cipher suites supported by TLS
1.2 from the OpenSSL 1.1.0g implementation, that guarantees greater diversity.

We began by evaluating the diversity of public key mechanisms. In this
case, we observed the various combinations of key exchange and authentica-
tion algorithms in cipher suites. The insecure cryptographic mechanisms were
discarded as well as the ECDH and DH algorithms since there are the variants of
them, ECDHE and DHE, which guarantee perfect forward secrecy. This analysis
resulted in the following combinations: ECDHE for key exchange and ECDSA for
authentication; RSA for key exchange and authentication; DHE for key exchange
and DSS for authentication; ECDHE for key exchange and RSA for authentica-
tion; and DHE for key exchange and RSA for authentication. In order to avoid
that the key exchange and authentication algorithms are repeated consecutively,
we choose the first four combinations of the above list, keeping the presented
order, i.e., the first tunnel will use ECDHE for key exchange and ECDSA as
authentication algorithm, the second RSA for key exchange and authentication,

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 69

the third DHE for key exchange and DSS for authentication and the fourth DHE
for key exchange and RSA for authentication.

Considering the combination of key exchange and authentication algorithms,
we group the supported cipher suites according to this combination. After this
step, we chose in each group the cipher suite that maximizes the diversity of the
symmetric key algorithms and the hash function between each of the four groups.
To measure the diversity of the cryptographic mechanisms, we have taken into
account some characteristics such as the origin, i.e., the author or institution
that proposed the algorithm, the year in which it was designed, the size of the
key in the case of the symmetric key algorithms and the digest size in the case
of hash functions and other metrics described in Carvalho’s research [4]. We
concluded that the combinations of 4 symmetric key algorithms that maximize
the diversity itself are:

– ChaCha20 + Camellia 256 + AES256-GCM + AES128CBC
– ChaCha20 + Camellia 256 + AES256-CBC + AES128GCM
– ChaCha20 + Camellia 256 + Camellia128 + AES256-GCM

Regarding hash functions, the variety is greatly reduced since there is only
SHA-256 and SHA-384. However, some symmetric key algorithms use operation
modes, such as CBC-MAC (CCM mode) and Galois/Counter Mode (GCM),
that provide authenticated encryption with associated data (AEAD). It is con-
sidered an alternative mechanism which can be used redundantly with HMAC to
achieve even higher diversity. In addition, the cipher suites with the ChaCHA20
algorithm use the Poly1305 which is a one-time authenticator. Poly1305 takes a
32-byte one-time key and a message and produces a 16-byte message authenti-
cation code (MAC).

From these analyses, the cipher suites selected to be used by default in Mul-
tiTLS with k ≤ 4 are: TLS ECDHE ECDSA WITH CHACHA20 POLY1305
SHA256, TLS RSA WITH AES 128 CCM 8, TLS DHE DSS WITH CAMEL-
LIA 256 CBC SHA256 and TLS ECDHE RSA WITH AES 256 GCM SHA
384.

If MultiTLS the user wants to use only 2 tunnels, i.e., k = 2, the first cipher
suite shown in the above list is used in the first tunnel and the second cipher
suite is used in the second tunnel.

3.3 Running MultiTLS

MultiTLS is implemented as a script in Bash language and can be run as a
shell command. Before presenting how MultiTLS creates the secure tunnels, we
will first introduce the commands that allow us to create them. The commands
available through MultiTLS are:

– multitls -s port nTunnels [cert cafile cipher]
– multitls -c port nTunnels IPServer [cert cafile cipher]

70 R. Moura et al.

The flags -s and -c mean that MultiTLS will run as a server or client,
respectively. The port argument specifies the port used to establish the last
tunnel. In the case of the server, MultiTLS will be listening on that port. In
the case of the client, MultiTLS will connect to that port of the machine that
has the IP specified in the IPServer argument. The nTunnels argument specifies
the number of tunnels that MultiTLS will create. In addition, we must specify:
the path to the file with its certificate and private key in the cert argument and
the path to the file that contains the peer certificate in the cafile argument. The
cipher argument lets us specify one or more cipher suites. If cipher suites are not
specified, the default ones will be used. The arguments between brackets must
be specified as many times as the value of the nTunnels argument because each
tunnel will use a set of keys and ciphers.

3.4 Implementing the Tunnels

The execution of commands provided by MultiTLS allows the creation of TUN
interfaces and the creation of the tunnel that encapsulates a TLS channel, as
explained in Sect. 3.1. Figure 2 shows the scheme resulting from the execution of
the two MultiTLS commands presented in Sect. 3.3.

MultiTLS has as dependencies socat version 1.7.3.2 and OpenSSL version
1.1.0g. Socat is a command line utility1 that establishes two bidirectional byte
streams and transfers data between them. A socat command has the following
structure: socat [options] address1 address2, where [options] means that there
may be zero or more options that modify the behavior of the program. The
specification of the address1 and address2 consists of an address type keyword,
for example, TCP4, TCP4-LISTEN, OPENSSL, OPENSSL-LISTEN, TUN; zero
or more required address parameters separated by ‘:’ from the keyword and each
other; and zero or more address options separated by ‘,’.

The MultiTLS script starts by analyzing the arguments provided by the
user. Afterwards, these arguments are used to execute socat commands. Multi-
TLS creates k tunnels running k socat command on the server and k commands
on the client. For the establishment of a tunnel using the socat commands, Mul-
tiTLS executes the following two commands, the first on the server side and
the second on the client side:

– socat openssl-listen:$port,cert=$cert,cafile=$cafile, \
cipher=$cipher TUN:$ipTun/24,tun-name=$nameTun,up

– socat openssl-connect:$ipServer:$port,cert=$cert, \
cafile=$cafile,cipher=$cipher \
TUN:$ipTun/24,tun-name=$nameTun

In the first command, we have the $port argument that represents the port
where the socat will be listening, we have the $cert, $cafile and $cipher argu-
ments that have the same meaning as the MultiTLS command arguments. The

1 http://www.dest-unreach.org/socat.

http://www.dest-unreach.org/socat

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 71

arguments $ipTun and $nameTun are, respectively, the IP of the server in the
TUN interface and the name of that, which is created through this command.

In the second command, we have the argument $ipServer that represents
the IP of the server, the argument $port that represents the port of the server
where the socat connects to establish the communication. We have the $cert,
$cafile, and $cipher arguments that have the same meaning as the cert, cafile,
and cipher arguments in the MultiTLS commands. The arguments $ipTun and
$nameTUN are, respectively, the IP of the client in the TUN interface and its
name, which is created through this command.

MultiTLS by default assumes that the IP and names for the TUN interfaces
are 10.$k.1.$i and TUN$k, where $k is the tunnel number, 1 ≤ k ≤ nTunnels
and $i has the value 1 if it is the server and 2 if it is the client.

After the establishment of the first tunnel, MultiTLS can create the second
tunnel which is encapsulated by the first tunnel, using the previous socat com-
mands in which the value of $ipServer instead of being the real IP of the server
is the IP of the TUN interface created on the server to establish the first tunnel,
which as previously mentioned is 10.1.1.1, by default. To create more tunnels,
the IP of the last TUN interface created on the server side must be specified in
the $ipServer argument.

4 Evaluation

The experimental evaluation aims to answer questions about the performance
and cost of MultiTLS. We have three experiment sets: performance; compari-
son with other approaches; and MultiTLS applied to a use case.

4.1 Performance

In this section we want to answer the questions: What is the cost of adding more
tunnels? What is the cost of encrypting messages? To answer these questions
we used two virtual machines running on two different hosts, one playing the
role of a server and the other of a client. Both virtual machines used 2 VCPUs,
8 GB of RAM and ran Ubuntu 16 (Xenial).

In the first evaluation, we used the iperf3 tool, version 3.0.11. Iperf3 is a
tool used to measure network performance. It has server and client functionality
and can create data streams to measure the throughput between the two ends.
It supports the adjustment of several parameters related to timing and proto-
cols. The iperf3 output presents the bandwidth, transmission time, and other
parameters.

To answer the first question, the first experiment consisted of using the iperf3
tool to measure 100 times the transmission time of 1 MB, 100 MB and 1 GB for
each k, considering k ≤ 4. The cipher suites used in this evaluation are the same
ones that are defined by default in MultiTLS. The average and the standard
deviation of transmission time of 1 MB, 100 MB and 1 GB for each value of k
can be seen in Fig. 3.

72 R. Moura et al.

0.17 5.06

48.10

0.25
8.27

87.90

0.41
14.53

146.22

1.05

24.66

210.74

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
on

ds
)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 3. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages
in relation to the number of tunnels created.

Figure 4 shows for each message size the overhead of the transmission time
for k = 2, k = 3 and k = 4 in relation to k = 1. Therefore, we can see that for
k = 2 and k = 3 the cost of having added more tunnels increases as the size of
the message to be transmitted also increases. For k = 4 the cost of having added
more channels decreased as the size of the message to be transmitted increased.
We can also observe that the transmission time for k tunnels is less than k times
the value of k = 1 for each message size, except for k = 4, where the overhead
exceeds 4 times the value of k = 1 and for k = 3 in the 1 GB transmission where
the time is 3.04 times greater than for k = 1.

We can answer the first question that for k = 2 the performance of Multi-
TLS is acceptable, since the time of sending messages with k = 2 is less than the
double of the time of sending messages with k = 1. With 3 tunnels, i.e., k = 3,
for the transfer of 1 GB, the performance of the MultiTLS is poor because the
sending time is more than three times the time of k = 1, in contrast, to transfer
1 MB and 100 MB the performance is good since the sending time is less than
three times the time of k = 1.

The second experiment aims to evaluate the cost of encrypting the com-
munication messages. To do this, using the same virtual machines, we per-
formed the same tests we did in the first experiment, however changing the
cipher suites by default from MultiTLS to TLS ECDHE ECDSA WITH NULL SHA,
TLS RSA WITH NULL SHA256, TLS RSA WITH NULL SHA and TLS ECDHE RSA WITH

NULL SHA. Therefore, the messages exchanged by the client and the server were
not encrypted. This experiment helps us realize the influence of encrypting the
data in the total transmission time of messages with different sizes. Figure 5

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 73

47% 63%
83%

141%

187% 204%

518%

387%

338%

0%

100%

200%

300%

400%

500%

600%

1 MB 100 MB 1 GB

O
ve

rh
ea

d

Message Size

2 Tunnels 3 Tunnels 4 Tunnels

Fig. 4. The overhead of adding more tunnels in relation to k = 1.

shows the average and standard deviation of transmission time of 1 MB, 100
MB, and 1 GB for each value of k.

As with the first experiment, for each message size, the transmission time
increases as the number of tunnels increases. However, we verified that the trans-
mission time of 1 MB for all values of k is greater than k times the time of k = 1.
In the transfer of 100 MB and 1 GB with k tunnels, the transmission time does
not exceed k times the value of k = 1.

Figure 6 shows the difference between the first and second experiment, for
each message size and k. We can see that, for certain message sizes and k,
messages sent on the first experiment took less time than messages sent without
encryption. However, we can observe that in these cases the average overhead
is about −10%, whereas in cases where encrypted communications take longer
than unencrypted communications, the average overhead is 35%. Overall, the
overhead of encrypting the messages is 13%.

For all this, we can answer the second question: the time to encrypt the
messages has a considerable low impact given that it takes 13% more time.

4.2 Comparison with MultiTLS

The purpose of this section is to compare the performance of MultiTLS with
other tools and to know which of these approaches performs better.

For this purpose, using the same virtual machines that we used in previous
experiments, we use vtTLS to transfer three files each with the size of 1 MB, 100
MB and 1 GB. We ran 100 times the vtTLS for each of these files. In addition to
this experience, we also run a file transfer application using a Datagram Trans-
port Layer Security (DTLS) [10] channel implemented through the GnuTLS

74 R. Moura et al.

0.10 5.40

54.14

0.21
8.93

91.84

0.45
11.76

118.87

1.34
17.40

162.25

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
on

ds
)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 5. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages
in relation to the number of unencrypted tunnels.

0.70

-0.06
-0.11

0.22

-0.07 -0.04
-0.10

0.24 0.23

-0.22

0.42

0.30

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1 MB 100 MB 1 GB

O
ve

rh
ea

d

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 6. Difference between first and second evaluation results.

library. This channel used the cipher suite TLS RSA AES 128 GCM SHA256.
This application ran over one tunnel created by MultiTLS. DTLS is a commu-
nication protocol that provides security, such as TLS, but for datagram-based
applications. The purpose of using DTLS is to measure the performance of a
channel that uses UDP over TCP, since with MultiTLS communication we
have tunnels of several tunnels, that is, TCP over TCP. We run this application

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 75

0.04 3.13 32.140.25 8.27
87.90

1.35

117.44

1154.44

0

200

400

600

800

1000

1200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
on

ds
)

Message Size

vtTLS 2 Tunnels 1 Tunnel + DTLS

Fig. 7. Time for sending messages with 1 MB, 100 MB and 1GB in size via vtTLS, 2
MultiTLS tunnels and 1 DTLS communication over 1 MultiTLS tunnel.

100 times for each of the files used in the previous experiment. Besides the diver-
sity of cipher suites used, this experience also shows that it is possible to have
a diversity of TLS implementations if the application using MultiTLS uses a
library other than OpenSSL.

Figure 7 allows us to compare the average of the results obtained from the
two previous experiences with the averages of the results obtained in the first
experiment with k = 2 once the two previous experiments use approaches in
which the messages are encrypted twice such as MultiTLS with two tunnels. In
addition, we can also observe the standard deviation in each column. Figure 7 also
shows that, of the three approaches, vtTLS is the fastest and the DTLS channel
approach is the slowest. The values of the MultiTLS results are closer to the
results of the vtTLS than to the DTLS channel approach. However, the transfer
time overhead of 1 MB, 100 MB and 1 GB between vtTLS and MultiTLS are,
respectively, 525%, 164% and 173%. The DTLS channel approach does not have
an expected performance because the server only sends the next fragment after
receiving the size of the last fragment sent by it.

4.3 Use Case

Although the use of MultiTLS presents a transfer time overhead in relation to
vtTLS, we wanted to know what is the performance of MultiTLS applied in
a use case. We use MultiTLS to establish communication between a browser
and a proxy, based on the scheme shown in Fig. 2. To do this evaluation, we use
two virtual machines, one ran the Squid proxy, version 3.5.12, on a computer

76 R. Moura et al.

0.73

3.72

5.40

7.61

9.78

0.74

3.77

5.66

7.67

9.97

0.75

3.83

6.21

7.78

10.14

0.78

4.01

6.31

7.97

11.65

0

2

4

6

8

10

12

14

Google Técnico Youtube Safecloud Amazon

Ti
m

e
(s

ec
on

ds
)

Websites
without proxy with proxy proxy + 1 tunnel proxy + 2 tunnels

Fig. 8. Time to load sites with: no proxy, with proxy, with proxy using MultiTLS
with 1 tunnel and with 2 tunnels.

with Intel Core i5 and 4 GB RAM and the other ran Google Chrome browser,
version 66.0.3359.117, on a computer with Intel Core i7 and 8 GB RAM.

In this evaluation we tested four approaches: no proxy, use only the proxy,
use the proxy using one and two MultiTLS tunnels. These four approaches
allow us to evaluate the cost of using MultiTLS. The evaluation consisted of
using the browser to request 30 times certain URLs from Amazon2, Google3,
SafeCloud4, Técnico5 and Youtube6 websites, for each approach, and recording
the load event time that appears on the network tab in the developer tools of
the browser. The load event is fired when a resource and its dependent resources
have finished loading. The cache was disabled during the experiment.

Figure 8 presents the average of the results obtained with the different
approaches for each requested URL. We can observe that the use of MultiTLS
in the communication between the browser and the proxy was insignificant. We
can conclude that MultiTLS is a tool with good performance in tasks common
to the day-to-day of Internet users.

5 Conclusion

We presented MultiTLS, a middleware that allows the creation of a channel
of communication through the encapsulation of several secure tunnels in others.
It aims to increase security by using the diversity of cipher suites used by the

2 https://www.amazon.com/.
3 https://www.google.com/.
4 http://www.safecloud-project.eu/.
5 https://tecnico.ulisboa.pt/pt/.
6 https://www.youtube.com/watch?v=oToaJE4s4z0.

https://www.amazon.com/
https://www.google.com/
http://www.safecloud-project.eu/
https://tecnico.ulisboa.pt/pt/
https://www.youtube.com/watch?v=oToaJE4s4z0

MultiTLS: Secure Communication Channels with Cipher Suite Diversity 77

tunnels so that if k−1 cipher suites become insecure, there is a secure tunnel that
makes all communication secure. MultiTLS has the advantage of not modifying
any TLS implementation or any of its dependencies.

Acknowledgements. This work was supported by the European Commission
through project H2020-653884 (SafeCloud) and by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-ID).

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard
(1993). https://doi.org/10.1007/978-1-4613-9314-6 4

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

3. Carvalho, M., Demott, J., Ford, R., Wheeler, D.A.: Heartbleed 101. IEEE Secur.
Priv. 12(4), 63–67 (2014)

4. Carvalho, R.J.: Authentication security through diversity and redundancy for cloud
computing. Ph.D. thesis, Instituto Superior Técnico, Universidade de Lisboa (2014)

5. Joaquim, A., Pardal, M.L., Correia, M.: Vulnerability-tolerant transport layer
security. In: 21st International Conference on Principles of Distributed Systems
(OPODIS) (2017)

6. Larson, R., Cockcroft, L.: CCSP : Cisco Certified Security Professional Certifica-
tion. McGraw-Hill/Osborne, New York (2003)

7. Littlewood, B., Strigini, L.: Redundancy and diversity in security. In: Samarati,
P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp.
423–438. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30108-
0 26

8. Nadeau, M.: State of cybercrime 2017: security events decline, but not the
impact, July 2017. https://www.csoonline.com/article/3211491/security/state-of-
cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso fsb

9. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
RFC Editor, August 2018

10. Rescorla, E., Modadugu, N.: Datagram transport layer security version 1.2. RFC
6347, RFC Editor, January 2012

11. Rivest, R.: The MD5 Message-Digest Algorithm (RFC 1321) (1992)
12. Rizzo, J., Duong, T.: Crime: compression ratio info-leak made easy. In: ekoparty

Security Conference (2012)
13. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.

(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

https://doi.org/10.1007/978-1-4613-9314-6_4
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-540-30108-0_26
https://doi.org/10.1007/978-3-540-30108-0_26
https://www.csoonline.com/article/3211491/security/state-of-cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso_fsb
https://www.csoonline.com/article/3211491/security/state-of-cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso_fsb
https://doi.org/10.1007/11426639_2

Improving Big Data Clustering
for Jamming Detection in Smart Mobility

Hind Bangui(B), Mouzhi Ge, and Barbora Buhnova

Faculty of Informatics, Masaryk University, Brno, Czech Republic
hind.bangui@mail.muni.cz, mouzhi.ge@muni.cz, buhnova@fi.muni.cz

Abstract. Smart mobility, with its urban transportation services rang-
ing from real-time traffic control to cooperative vehicle infrastructure
systems, is becoming increasingly critical in smart cities. These smart
mobility services thus need to be very well protected against a variety of
security threats, such as intrusion, jamming, and Sybil attacks. One of
the frequently cited attacks in smart mobility is the jamming attack. In
order to detect the jamming attacks, different anti-jamming applications
have been developed to reduce the impact of malicious jamming attacks.
One important step in anti-jamming detection is to cluster the vehicular
data. However, it is usually very time-consuming to detect the jamming
attacks that may affect the safety of roads and vehicle communication in
real-time. Therefore, this paper proposes an efficient big data clustering
model, coresets-based clustering, to support the real-time detection of
jamming attacks. We validate the model efficiency and applicability in
the context of a typical smart mobility system: Vehicular Ad-hoc Net-
work, known as VANET.

Keywords: Smart mobility · Jamming attack · Anti-jamming · Big
data clustering · VANET · Smart city

1 Introduction

Nowadays, smart mobility has become a critical transportation infrastruc-
ture [9,38] in smart cities as it provides a variety of mobility services, such
as relieving the traffic congestion in cities and providing better access to public
transport. In [1], smart mobility is described as: “The use of ICT in modern
transport technologies to improve urban traffic”. Likewise, in [42], it is defined
as: “local and supra-local accessibility, availability of ICTs, modern, sustain-
able and safe transport systems”. Thus, smart mobility can be considered as a
management strategy that produces decisions based on the collected data [9,31]
from vehicle-to-anything communications, such as vehicle-to-vehicle, vehicle-to-
infrastructure, vehicle-to-pedestrian, and infrastructure-to-pedestrian [43]. For
instance, a road infrastructure monitoring system uses e-bikes proposed in [25]
to support municipal transportation activities. Further, an image processing
application based on deep learning has been integrated into e-bikes to facili-
tate the detection of road anomalies such as litter and damage of roads. It can

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 78–91, 2020.
https://doi.org/10.1007/978-3-030-58201-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_6

Improving Big Data Clustering for Jamming Detection in Smart Mobility 79

be seen that smart mobility is a fruitful domain that integrates different up-to-
date techniques such as the autonomous driving Internet of Things (IoT) and
machine learning. In [21], a vehicular interface notation has been developed to
help older customers of smart vehicles to control their driving experience better
and improve their cognitive ability. Similarly, in [40], a machine learning system
has been proposed to exploit data from autonomous vehicles and external IoT
data sources to predict pedestrian’s next movement steps using real-time trajec-
tory. The suggested solution ensures safety in urban environments by enhanc-
ing autonomous driving efficiently in local public transport services. The recent
works indicate that smart mobility is driven by data-intensive processes focused
on managing people’s mobility and personalizing transport solutions according
to the specific needs of cities [8]. On the other hand, smart mobility advances
the transport services and quality of citizens’ life in smart cities [16,17,29].

Enabling smart mobility in urban environments is, however, challenging
because attackers are attempting to access or tamper with valuable mobility
data (e.g., personal user information) or disrupt network communication. Since
smart mobility generates a massive amount of data, such as sensor data on the
road or vehicle communication data, various security applications make use of
big data analytics to secure smart mobility applications. There are different
prevalent attacks in the smart mobility domain. One of the frequently cited ones
is the jamming attack. Jamming attacks can severely influence road safety and
vehicle communications.

In order to detect the jamming attacks in smart mobility, different anti-
jamming applications have been proposed, which, however, suffer from the inef-
ficiency of the data clustering during the jamming attack detection. In this paper,
we, therefore, propose a solution to support the real-time detection of jamming
attacks via efficient big data clustering of vehicular data. The solution is mainly
based on the coresets technique and Vehicular Ad-hoc Network (VANET) is
used as a practical scenario of smart mobility [5,10], where we consider particu-
larly the application of clustering algorithms in anti-jamming detection solutions
designed for securing VANET communications.

The remainder of the paper is organized as follows. Section 2 is dedicated
to understanding the vulnerability of smart mobility systems by using VANET
as an example of smart mobility applications. Then in Sect. 3, we provide an
overview of related work concerning anti-jamming applications based on cluster-
ing techniques. In Sect. 4, we present a solution that aims at increasing efficiency
the clustering process while keeping the quality of analytics. In Sect. 5, we con-
duct an experiment to show the benefits of the proposed solution. Finally, Sect. 6
concludes the paper and outlines future research.

2 Security in Smart Mobility

Smart mobility intends to control the behavior of smart devices in urban environ-
ments by collecting, sharing, and utilizing trace data. Vehicular Ad-hoc Network
(VANET) is a typical smart mobility system that can be used to share data

80 H. Bangui et al.

within vehicle-to-anything communication. For example, VANET applications
such as smart cars are used to support the safety of traffic flows [20,35,39]. The
vehicles exchange messages with neighboring vehicles (members of a VANET)
and with RSUs (roadside units) to inform them about e.g. their location and
speed, and get traffic conditions of the road. However, a malicious attacker may
remotely access a target vehicle, possibly tampering with the behavior of the
vehicle, such as misinforming the driver.

Constant jamming is one type of jamming attacks that is considered as a
severe threat to VANET security [22,39]. In this attack, a jammer regularly
sends repeated signals to interfere with the communication between vehicles in
the affected network area, where the target vehicles think that the state of the
channel is still busy. Consequently, they cannot send or receive packets that
can be carrying important information, such as weather and accidents. In other
words, when jamming occurs, the sender may send packets. However, the receiver
might not be able to receive all the packets sent by the sender. Thus, the failure
of receiving or disseminating these packets can lead to the insufficiency of the
VANET. Smart mobility systems require the optimized use of detection attack
applications to cope with the security and privacy threats.

Several detection attack systems are proposed in the previous literature [19,
39]. Table 1 presents a list of typical attacks in smart mobility. However, devel-
oping security and privacy solutions is more challenging in smart mobility infras-
tructure as data are subject to several malicious attacks causing wrong outcomes
(i.e., wrong traffic). Especially, the big data clustering technique is used to facil-
itate the attack detection. Thus, we focus on examining how big data cluster-
ing algorithms in smart mobility [5,10] are investigated to deal with vulnerable
attacks. Particularly, it is valuable to study the clustering for detection applica-
tions that deal with jamming attacks caused several damages, such as disruption
of car-to-car communications.

3 Clustering for Anti-jamming Detection

The concept of big data clustering is very important in smart mobility since it
contributes to improving the sustainability, scalability, and reliability of smart
mobility systems [5], such as associating mobile nodes into groups, ensuring
the stability of channel access management, traffic safety, and QoS Assurance.
Many jamming detection approaches in VANET have exploited the advantages
of clustering algorithms by collecting jamming measurements and then accu-
rately grouping them into the cluster [6,32]. For example, in [15], a novel jam-
ming detection framework was proposed to detect the presence of a jammer in
hierarchical cluster-based wireless sensor networks. The proposed anti-jamming
detection method also exploits the benefits of the unsupervised hierarchical algo-
rithm for achieving energy efficiency by re-clustering, overcoming network issues
(i.e., reducing the communication overhead), decreasing collision, and improv-
ing throughput. Similarly, in [23], a jamming detection solution was developed
by leveraging the K-means algorithm, which is one of the most commonly used

Improving Big Data Clustering for Jamming Detection in Smart Mobility 81

Table 1. Cyber attacks in smart mobility

Cyber attacks Description

Intrusion Aim at analyzing vehicular data to inspect the abnormal
behavior in VANET under different scenarios, and then
generate an alarm filtering technique for any detected
security anomaly

Misbehavior Aim at analyzing the behavior of vehicles to detect
malicious node that may send incorrect information to
other vehicles, and then cause malfunctioning VANET
applications

DDoS Eliminate the DDoS attacks that make the network
services unavailable from different locations

Jamming Eliminate jamming attacks that make physical resources
unavailable by interfering with the radio frequencies used
by VANET vehicles

Sybil Aim at detecting the Sybil vehicle attack that can forge
different false identities, where each pseudonym acts as a
virtual vehicle

partitioned clustering algorithms in Big Data Analytics. This work reflects the
benefits of using clustering algorithms in VANETs, where the advantages of k-
means are used to differentiate intentional cases from unintentional jamming
(Table 2).

The collected jamming measurements are grouped into the interference clus-
ter accurately, and then the specific characteristics of each attack are extracted.
Thus, the unsupervised method is aimed at determining whether jamming occurs
due to a malicious jammer or whether it is caused unintentionally. Consequently,
if jamming is correctly identified as interference, vehicles can preserve their com-
munications either by changing their channel or by temporarily altering their
route. Likewise, in [4], a multi-cluster localization (M-cluster) algorithm and an
x-rayed jammed-area localization (X-ray) algorithm were successively developed
based on fuzzy c-means and K-means to deal with the multi-jammer localiza-
tion problem in WSNs, which could launch collaborative attacks. In [34], the
advantages of K-means were used to predict the number of multiple jamming
attackers and ensure the preset functions of VANET. In [33], an anti-jamming
method based on fuzzy c-means was proposed to determine the localization and
number of jamming attackers. Accordingly, the cluster analysis process simpli-
fies data manipulation by finding similar structures in the data and classifying
each object according to its nature. As a result, vehicles can adequately avoid
malicious jamming attacks, decrease their collisions, and preserve their commu-
nications [27,28,30].

Nevertheless, the existing anti-jamming solutions suffer from efficiency issues
due to the growth of smart mobility data and it is time-consuming to perform a
computational clustering process.

82 H. Bangui et al.

Table 2. Overview of anti-jamming applications based on Clustering algorithms

Papers Description Clustering algorithms
used

[23] Study jamming attack detection in a
pair of RF (radio frequency)
communicating vehicles

K-means

[26] Ensure secure communication and
defend RF jamming attacks

K-Nearest Neighbors
and Random Forests

[15] Detect jamming attacks Hierarchical
clustering

[6] Predict jamming attacks Clusters

[32] Detect jamming attacks Clusters

[4] Detect multi-jammer localization
attacks

Fuzzy c-Means,
k-means

[34] Estimate the number of multiple
jamming attackers

K-means

[33] Detect the localization of multiple
jamming attackers in VANET

Fuzzy c-Means

Furthermore, vehicles in the smart mobility context are producing big data
at a rapid rate in the dynamic urban environment. Thus, the time and cost of
the clustering process will increase since they depend on the volume of datasets,
which is definitely difficult to be handled in real-time. Yet, the study of data
prioritization is required since it aims at serving the real-time Big Data Analytics
by selecting the most valuable data from the initial input data [7]. As a result,
the anti-jamming applications can detect in real-time viral attacks that cause
smart mobility system failures.

4 Coresets-Based Anti-jamming Detection

In this section, we propose a model that aims at minimizing the response time of
anti-jamming detection by accelerating the clustering process. Figure 1 presents
a general process of attack detection based on the application of data clustering,
where a predefined list of features is extracted from vehicular data to detect the
characteristics of jamming attacks. The selection of features is according to the
context of the proposed anti-jamming solutions, for example, GPS information
is used to recognize cases of intentional jamming [33]. After that, the clustering
method can be used to analyze vehicular data and classify timely the malicious
nodes from benign ones. The coresets can be used to accelerate clustering the big
mobility data. In the context of jamming detection, the anti-jamming application
is able to deal with the specific characteristics of each jamming attack timely
and effectively.

Improving Big Data Clustering for Jamming Detection in Smart Mobility 83

Fig. 1. Coresets-based predictive analytics for attacks in smart mobility

4.1 Coresets

The idea of using approximated data has been investigated in sensor net-
works [12,14], where coresets are used to extract small data samples that rep-
resent the original data approximately, and then solve compression issues of
trajectory data in road networks [12–14], such as improving the run-time perfor-
mance of location-based applications. Moreover, coresets not only can reduce the
data scale while keeping the original data distribution [11,24], but also can be
used for improving the quality of clustering [18,37]. For Example, ProTraS [37]
is a coreset construction algorithm that aims at generating a data sample to deal
with big data clustering problems [2,3]. The main idea of ProTraS is to select a
representative point based on a probability of cost reduction. Given an ε > 0, for
each iteration of the algorithm, it adds a new representative into a group of the
sample with the highest probability of the cost reduction. When the cost drops
below a threshold, which depends on ε, the algorithm stops. The algorithm finds
the nearest group for points that are not yet assigned to any group of the cur-
rent sample. The point among them is determined to be the new representative
if it is farthest in its group and has the highest probability. That means, the
representative selected by ProTraS is the farthest-first traversal item of a given
group. As a result, this coreset construction algorithm leads to enhancing the
quality of clusters that are required for ensuring the accuracy of the Big Data
Analytics outcomes [2,3].

In this work, we aim to investigate the advantages of coresets to optimize
the quality of clustering used in anti-jamming detection. Particularly, we use
coresets method to deal with the clustering formulation and complexity. We
have referred to the coresets technique discussed in [41]. This is an improvement
version of the ProTraS algorithm [37] by using a post-processing task. Given a

84 H. Bangui et al.

dataset P = {xi}, for i = 1, 2, . . . , n and a given ε > 0, the method firstly calls
ProTraS to obtain S = {yj} and P (yj) for j = 1, 2, . . . , s. The method next tries
to find some sample points that have low representativeness and remove them
from the sample. A point in remaining points is then replicated by the center
of the set of patterns which the point represents. The details of the method are
given in Algorithm 1.

Algorithm 1. Coresets-based algorithm for sampling [41]
Require: P = {xi}, for i = 1, 2, . . . , n, a tolerance ε > 0.
Ensure: A sample S = {yj} and P (yj), for j = 1, 2, . . . , s.

1: Call ProTraS for P and ε to obtain S = {yj} and P (yj).
2: S′ = ∅.
3: for all yj ∈ S do
4: if |P (yj)| is greater than a threshold then
5: y∗

k = arg minyk∈P (yj)

∑
yl∈P (yj)

d(yk, yl).

6: S′ = S′ ∪ {y∗
k}.

7: end if
8: end for
9: S = S′.

10: return S and P (y∗
j), for j = 1, 2, . . . , s′, where s′ ≤ s.

Line 4 determines which sample points will be select into our sample S′.
This is performed using a threshold. |P (yj)| denotes the number of patterns in
P with yj ∈ S being their representative. A small value of |P (yj)| means that the
representativeness of yj is low. Accordingly, it is removed from the sample. The
value of the threshold should be chosen due to the distribution characteristics
of datasets. For yj ∈ S that is not removed, line 5 computes the center of the
group represented by yj , to consider replacing it. The center here, denoted by
y∗
k, is defined to be the point in P (yj) such that the total distance to all others

in the group is minimized. The set S′ including such y∗
k is the output sample of

the algorithm.

5 Experiment Evaluation

In the experiment, we focus on examining how the integration of the coreset
method [41] can facilitate the analysis process of anti-jamming applications. To
do that, we study vehicular data clustering. Then, we present the details of
clustering quality evaluation.

5.1 Experimental Setting

The goal of this experiment is to detect the presence of a constant jamming
attack. This latter is detected by monitoring the signal power that is reported

Improving Big Data Clustering for Jamming Detection in Smart Mobility 85

via the Received Signal Strength Indicator (RSSI), which is an expression of the
SNIR (Signal-to-Noise-and-Interference Ratio). In the presence of the malicious
attack, the probability of successful message reception is decreased as well as
SNIR is decreased too. For achieving this experiment, we have initially referred
to a study in [36] that has explored the impact of different jamming attacks,
including a constant jamming case, in VANETs. Then, we have selected its
dataset1 that contains traces of 802.11p packets with and without the presence
of constant jamming signals.

Table 3 presents the network configuration used for creating a series of con-
stant jamming scenarios. The number of generated packets is 25,000. The vehic-
ular network features used in this experiment are as follows: Node-Id-number,
type, vehicle position, GPS-time, speed, time sender, time receiver, RSSI, SNIR,
and vehicle heading. For storage and clusters, we used the permanent cloud
environment offered by MetaCentrum2.

Table 3. Experimental parameters

Linkbird Data Rate 6 Mbps

Transmit power 17.48 dBm

Payload length 100 Byte

Packet generation rate 100 packets/s

Constant jamming Transmit power 16.75 dBm

Signal duration 64µ s

Signal preparation time 10µ s

General Center frequency 5.875 GHz

5.2 Clustering Quality Measurement

Our goal in this experiment is to evaluate the representation of clustering sam-
pling yielded from K-means and its improved versions, which are: K-means++
and Fuzzy c-means. We selected k-means as our clustering algorithm, as k-means
is a widely used and efficient unsupervised algorithm that uses an iterative
method to divide a given dataset into several clusters noted as k. Next, the
produced clusters are positioned as points, and all samples are linked with the
nearest cluster and adjusted; then, the process overuses the new adjustments
until the desired result is achieved. Thus, this algorithm is easy to implement,
efficient in terms of its computational costs, and offers easily interpretable clus-
tering results.

On the other hand, since K-means is sensitive to initialization, it is sensitive
to the presence of outliers because the “mean” is not a robust statistic value.
1 https://crawdad.org/keyword-vehicular-network.html.
2 https://www.cerit-sc.cz.

https://crawdad.org/keyword-vehicular-network.html
https://www.cerit-sc.cz

86 H. Bangui et al.

Therefore, k-means may yield poor outcomes and take more processing time. For
that reason, we have evaluated the quality of the obtained clusters both with and
without the application of the coresets method. We used the improved versions
of K-means (i.e., fuzzy c-means) to evaluate how coresets could influence the
quality of the clusters by using a list of metrics. For instance, the Dunn index
(DI) is used as an internal evaluation metric to determine how well each sample
lies within its cluster. A higher DI indicates better clustering. Likewise, we used a
second internal metric, named the Davies–Bouldin index (DBI), to evaluate how
well the clustering has been done by using the quantities and features inherent
to the selected database. A lower DBI indicates better clustering.

Fig. 2. Before and after using coresets, Sample size = 25,000 and Sample size = 479

5.3 Experimental Results

Figure 2 represented the mapping of the SNIR time evolution. One can see that
the sample size is reduced from 25,000 to 479 due to the application of the coreset.

Improving Big Data Clustering for Jamming Detection in Smart Mobility 87

Consequently, the time analysis process is also reduced. Thus, the combination of
the coresets with clustering algorithms could help the anti-jamming applications
to learn quickly from the approximated data that represent the original data
source. As a result, they can detect the presence of constant jamming attacks
rapidly.

Fig. 3. Clustering evaluation results based on DBI and DI metrics

Meanwhile, the results of internal and external cluster validity indices in
Fig. 3 showed that the application of k-means, k-means++, and Fuzzy c-means
based on coresets provides promising results compared to their regular appli-
cation. DBI (Fig. 3a) and DI (Fig. 3b) achieved better values with the coresets
compared to the original application of clustering algorithms. Further, DBI and
DI reflect how well each sample lies within its cluster. Accordingly, the integra-
tion of the coresets with k-means and its improved versions increases the quality
of clusters. Besides, K-means shows better efficiency than k-means++ and Fuzzy
c-means in term of time. However, we noticed that the application of the coresets
supports Fuzzy c-means to proceed quickly compared to its regular time process.
Thus, the proposed solution keeps and even significantly improves the quality of
the clusters in terms of DBI and DI measurements.

From Fig. 4, one can see that the time of the clustering process is improved on
average 132 times across k-means, k-means++, and Fuzzy c-means. Furthermore,
all the clustering time is within 1 s, which indicates that the solution can facili-
tate real-time jamming detection in VANET. In other words, the anti-jamming
applications can detect the presence of the viral constant jamming attack and
cope with it in real-time, which is a good starting point not only for enhanc-
ing the security mechanisms adopted by anti-jamming applications but also for
supporting the other detection attack systems based-clustering that have to deal
with viral attacks in real-time.

On the other side, the experiment results could be a big motivation for fur-
ther use of approximated data in smart mobility systems not only for avoiding
(or minimizing) the negative impact of malicious attacks, such as damage of per-
sonal properties (i.e., cars) and sharing wrong traffic information, but also for
supporting the progress of smart mobility applications in urban environments.

88 H. Bangui et al.

Fig. 4. Comparison of clustering processing time (in seconds)

6 Conclusions

In this paper, we have proposed a model based on the coresets techniques to
address the real-time jamming attack detection in smart mobility. Our model
demonstrates how to process the big mobility data and use clustering techniques
in anti-jamming applications. In order to validate the proposed model, we have
conducted an experiment in the VANET setting and our results have shown
that the proposed solution can significantly increase the detection efficiency of
anti-jamming applications while keeping the clustering quality. With the signifi-
cant decrease in clustering time, the proposed solution enables the anti-jamming
applications to perform real-time jamming detection in smart mobility. Fur-
thermore, our model can also be easily integrated into different smart mobility
systems and used to advance the efficiency of other big data applications in the
Internet of Vehicles.

As future work, we plan to conduct more experiments with other clustering
algorithms, and extend the coresets to detect and discoverer other attacks in
smart mobility. Furthermore, we plan to deploy our solution in different real-
world scenarios such as the Internet of Vehicles and benchmark the performance
of the proposed solution.

Acknowledgements. The work was supported from ERDF/ESF “CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16 019/0000822).

References

1. Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions,
performance, and initiatives. J. Urban Technol. 22(1), 3–21 (2015)

2. Bangui, H., Ge, M., Buhnova, B.: Exploring big data clustering algorithms for
Internet of Things applications. In: IoTBDS, pp. 269–276 (2018)

Improving Big Data Clustering for Jamming Detection in Smart Mobility 89

3. Bangui, H., Ge, M., Buhnova, B.: A research roadmap of big data clustering algo-
rithms for future internet of things. Int. J. Organ. Collective Intell. 9(2), 16–30
(2019)

4. Cheng, T., Li, P., Zhu, S., Torrieri, D.: M-cluster and x-ray: two methods for multi-
jammer localization in wireless sensor networks. Integr. Comput.-Aided Eng. 21(1),
19–34 (2014)

5. Cooper, C., Franklin, D., Ros, M., Safaei, F., Abolhasan, M.: A comparative survey
of VANET clustering techniques. IEEE Commun. Surv. Tutor. 19(1), 657–681
(2016)

6. Cordero, C.V., Lisser, A.: Jamming attacks reliable prevention in a clustered wire-
less sensor network. Wirel. Pers. Commun. 85(3), 925–936 (2015)

7. Darwish, T.S., Bakar, K.A.: Fog based intelligent transportation big data analytics
in the internet of vehicles environment: motivations, architecture, challenges, and
critical issues. IEEE Access 6, 15679–15701 (2018)

8. Del Vecchio, P., Secundo, G., Maruccia, Y., Passiante, G.: A system dynamic app-
roach for the smart mobility of people: implications in the age of big data. Technol.
Forecast. Soc. Change 149, 119771 (2019)

9. El-Din, D.M., Hassanien, A.E., Hassanien, E.E.: Information integrity for multi-
sensors data fusion in smart mobility. In: Hassanien, A.E., Bhatnagar, R., Khalifa,
N.E.M., Taha, M.H.N. (eds.) Toward Social Internet of Things (SIoT): Enabling
Technologies, Architectures and Applications. SCI, vol. 846, pp. 99–121. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-24513-9 6

10. Elhoseny, M., Shankar, K.: Energy efficient optimal routing for communication in
VANETs via clustering model. In: Elhoseny, M., Hassanien, A.E. (eds.) Emerging
Technologies for Connected Internet of Vehicles and Intelligent Transportation
System Networks. SSDC, vol. 242, pp. 1–14. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-22773-9 1

11. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-
size coresets for k-means, PCA and projective clustering. In: Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–
1453. Society for Industrial and Applied Mathematics (2013)

12. Feldman, D., Sugaya, A., Rus, D.: An effective coreset compression algorithm for
large scale sensor networks. In: 2012 ACM/IEEE 11th International Conference on
Information Processing in Sensor Networks (IPSN), pp. 257–268. IEEE (2012)

13. Feldman, D., Sung, C., Rus, D.: The single pixel GPS: learning big data sig-
nals from tiny coresets. In: Proceedings of the 20th International Conference on
Advances in Geographic Information Systems, pp. 23–32. ACM (2012)

14. Feldman, D., Xiang, C., Zhu, R., Rus, D.: Coresets for differentially private k-
means clustering and applications to privacy in mobile sensor networks. In: 2017
16th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pp. 3–16. IEEE (2017)

15. Ganeshkumar, P., Vijayakumar, K.P., Anandaraj, M.: A novel jammer detection
framework for cluster-based wireless sensor networks. EURASIP J. Wirel. Com-
mun. Netw. 2016(1), 1–25 (2016). https://doi.org/10.1186/s13638-016-0528-1

16. Ge, M., Bangui, H., Buhnova, B.: Big data for Internet of Things: a survey. Future
Gener. Comput. Syst. 87, 601–614 (2018)

17. Han, J.H., Shin, Y.S., Lee, S.H.: Smart mobility creating smart space: 3D smart
aquarium bus. In: 2019 IEEE Transportation Electrification Conference and Expo,
pp. 1–5. IEEE (2019)

https://doi.org/10.1007/978-3-030-24513-9_6
https://doi.org/10.1007/978-3-030-22773-9_1
https://doi.org/10.1007/978-3-030-22773-9_1
https://doi.org/10.1186/s13638-016-0528-1

90 H. Bangui et al.

18. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 291–300. STOC 2004. ACM, New York (2004). https://doi.org/10.1145/
1007352.1007400. http://doi.acm.org/10.1145/1007352.1007400

19. Hasrouny, H., Samhat, A.E., Bassil, C., Laouiti, A.: VANet security challenges and
solutions: a survey. Veh. Commun. 7, 7–20 (2017)

20. Hernafi, Y., Ahmed, M.B., Bouhorma, M.: Smart mobility and driver behavior
correlated with vehicular networks under a social perception in smart cities. Int.
J. Inf. Sci. Technol. 2(2), 35–47 (2019)

21. Ikem, C.: Users as programmers: developing a vehicular interface notation for older
users of smart vehicles. In: Proceedings of the 1st ACM Workshop on Emerging
Smart Technologies and Infrastructures for Smart Mobility and Sustainability, pp.
15–19. ACM (2019)

22. Kalkundri, R.U., Khanai, R., Praveen, K.: Survey on security for WSN based
VANET using ECC. Int. Ann. Sci. 8(1), 30–37 (2020)

23. Karagiannis, D., Argyriou, A.: Jamming attack detection in a pair of RF commu-
nicating vehicles using unsupervised machine learning. Veh. Commun. 13, 56–63
(2018)

24. Karmakar, B., Das, S., Bhattacharya, S., Sarkar, R., Mukhopadhyay, I.: Tight
clustering for large datasets with an application to gene expression data. Sci. Rep.
9(1), 3053 (2019)

25. Katto, J., Takeuchi, M., Kanai, K., Sun, H.: Road infrastructure monitoring system
using e-bikes and its extensions for smart community. In: Proceedings of the 1st
ACM Workshop on Emerging Smart Technologies and Infrastructures for Smart
Mobility and Sustainability, pp. 43–44. ACM (2019)

26. Kosmanos, D., Karagiannis, D., Argyriou, A., Lalis, S., Maglaras, L.: RF jamming
classification using relative speed estimation in vehicular wireless networks. arXiv
preprint (2018). arXiv:1812.11886

27. Liang, J., Chen, J., Zhu, Y., Yu, R.: A novel intrusion detection system for vehicular
ad hoc networks (VANETs) based on differences of traffic flow and position. Appl.
Soft Comput. 75, 712–727 (2019)

28. Liu, X., Xu, Y., Jia, L., Wu, Q., Anpalagan, A.: Anti-jamming communications
using spectrum waterfall: a deep reinforcement learning approach. IEEE Commun.
Lett. 22(5), 998–1001 (2018)

29. Matos, A., Pinto, B., Barros, F., Martins, S., Martins, J., Au-Yong-Oliveira, M.:
Smart cities and smart tourism: what future do they bring? In: Rocha, Á., Adeli,
H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 358–370.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3 35

30. Mokdad, L., Ben-Othman, J., Nguyen, A.T.: DJAVAN: detecting jamming attacks
in vehicle ad hoc networks. Perform. Eval. 87, 47–59 (2015)

31. Ning, Z., Xia, F., Ullah, N., Kong, X., Hu, X.: Vehicular social networks: enabling
smart mobility. IEEE Commun. Mag. 55(5), 16–55 (2017)

32. Osanaiye, O., Alfa, A., Hancke, G.: A statistical approach to detect jamming
attacks in wireless sensor networks. Sensors 18(6), 1691 (2018)

33. Pang, L., Chen, X., Shi, Y., Xue, Z., Khatoun, R.: Localization of multiple jamming
attackers in vehicular ad hoc network. Int. J. Distrib. Sens. Netw. 13(8) (2017)

34. Pang, L., Guo, P., Chen, X., Li, J., Xue, Z.: Estimating the number of multiple
jamming attackers in vehicular ad hoc network. In: 2017 6th International Con-
ference on Computer Science and Network Technology (ICCSNT), pp. 366–370.
IEEE (2017)

https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007400
http://doi.acm.org/10.1145/1007352.1007400
http://arxiv.org/abs/1812.11886
https://doi.org/10.1007/978-3-030-16187-3_35

Improving Big Data Clustering for Jamming Detection in Smart Mobility 91

35. Pereira, J., Ricardo, L., Lúıs, M., Senna, C., Sargento, S.: Assessing the reliability of
fog computing for smart mobility applications in VANETs. Future Gener. Comput.
Syst. 94, 317–332 (2019)

36. Punal, O., Pereira, C., Aguiar, A., Gross, J.: Experimental characterization and
modeling of RF jamming attacks on VANETs. IEEE Trans. Veh. Technol. 64(2),
524–540 (2014)

37. Ros, F., Guillaume, S.: ProTras: a probabilistic traversing sampling algorithm.
Exp. Syst. Appl. 105, 65–76 (2018). https://doi.org/10.1016/j.eswa.2018.03.052

38. Šemanjski, I., Mandžuka, S., Gautama, S.: Smart mobility. In: 2018 International
Symposium ELMAR, pp. 63–66. IEEE (2018)

39. Seuwou, P., Banissi, E., Ubakanma, G.: The future of mobility with connected and
autonomous vehicles in smart cities. In: Farsi, M., Daneshkhah, A., Hosseinian-
Far, A., Jahankhani, H. (eds.) Digital Twin Technologies and Smart Cities. IT,
pp. 37–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18732-3 3

40. Solmaz, G., et al.: Learn from IoT: pedestrian detection and intention prediction
for autonomous driving. In: Proceedings of the 1st ACM Workshop on Emerging
Smart Technologies and Infrastructures for Smart Mobility and Sustainability, pp.
27–32. ACM (2019)

41. Trang, L.H., Bangui, H., Ge, M., Buhnova, B.: Scaling big data applications in
smart city with coresets. In: Proceedings of the 8th International Conference on
Data Science, Technology and Applications. Prague, Czech Republic (2019)

42. Vanolo, A.: Smartmentality: the smart city as disciplinary strategy. Urban Stud.
51(5), 883–898 (2014)

43. Zaffiro, G., Marone, G.: Smart mobility: new roles for telcos in the emergence
of electric and autonomous vehicles. In: 2019 AEIT International Conference of
Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE),
pp. 1–5. IEEE (2019)

https://doi.org/10.1016/j.eswa.2018.03.052
https://doi.org/10.1007/978-3-030-18732-3_3

Human Aspects of Security and Privacy

Assisting Users to Create Stronger Passwords
Using ContextBased MicroTraining

Joakim Kävrestad(B) and Marcus Nohlberg

University of Skövde, Skövde, Sweden
{joakim.kavrestad,marcus.nohlberg}@his.se

Abstract. In this paper, we describe and evaluate how the learning framework
ContextBased MicroTraining (CBMT) can be used to assist users to create strong
passwords. Rather than a technical enforcing measure, CBMT is a framework
that provides information security training to users when they are in a situation
where the training is directly relevant. The study is carried out in two steps. First,
a survey is used to measure how well users understand password guidelines that
are presented in different ways. The second part measures how using CBMT to
present password guidelines affect the strength of the passwords created. This
experiment was carried out by implementing CBMT at the account registration
page of a local internet service provider and observing the results on user-created
passwords. The results of the study show that users presented with passwords
creation guidelines using a CBMT learning module do understand the password
creation guidelines to a higher degree than other users. Further, the experiment
shows that users presented with password guidelines in the form of a CBMT
learning module do create passwords that are longer and more secure than other
users. The assessment of password security was performed using the zxcvbn tool,
developed by Dropbox, that measures password entropy.

Keywords: Security training · Passwords · ContextBased MicroTraining ·
CBMT

1 Introduction

As the digital era continues, almost everyone around the world is becoming ever more
present online.As our dependence on digital services increases so does our need for infor-
mation security, and a key aspect of information security is security behavior including
the ability to select good passwords to protect our social media accounts, work accounts,
encrypted data and more. However, there is a wealth of papers demonstrating that users
tend to select passwords that are easy to guess for an attacker [1–3]. Practitioners, as well
as researchers, continuously try to find ways to make users select good passwords, by
enforcing complexity rules or using different support systems [4, 5]. Another commonly
proposed solution is to use other means of authentication instead of, or in combina-
tion with, passwords. Those other means of authentication include one-time passwords,
hardware tokens, and password managers, and while the security benefits are undeniable

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 95–108, 2020.
https://doi.org/10.1007/978-3-030-58201-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_7

96 J. Kävrestad and M. Nohlberg

they fail to be widely adopted [6]. A common denominator for why users select not to
adopt a more secure behavior is usability, users seem to prefer ease of use over security
[7, 8]. As such, a fundamental demand of any security function, especially one designed
for the general population, should be usability.

In this paper, we consider a password to be a socio-technical property and argue that
a secure password mechanism, for instance, an account registration web site, must not
only consider computational security, but also the user. As argued by [9], a password
mechanism’s effectiveness relies on its ability to make a user select a good password
willingly. Yet another important factor in information security is awareness [10]. It is
widely believed that users will act more securely if they are aware of the risks of insecure
behavior. A common suggestion for how to make users more aware is to train them. In
this paper, we propose and analyze how the use of a novel training approach can make
users select good passwords during password creation.

The aim of this study is to implement and test how the learning method called
ContextBased MicroTraining (CBMT) can assist users in creating stronger passwords.
The aim is studied using a two-step method beginning with a survey where participants
are asked to create an account. During account creation, the participants are faced with
password creation guidelines in different ways and the survey measures how well they
learned the password guidelines that were proposed for the survey. The second step
involved an experiment were users set to register an account for a local Internet Service
Provider were presented with password creating guidelines presented according to the
principles of CBMT. The passwords were evaluated and measured against passwords
created by a control group that was not faced with any password creation guidelines.
The results of this paper will be a demonstration of how CBMT can be implemented.
The contexts of passwords were chosen since is easy to measure the effect on passwords
strength and passwords are unarguably crucial to security today.

The rest of this paper is structured as follows. Section 2 describes ContextBased
MicroTraining (CBMT) and the password creation guidelines that were handed to par-
ticipants in the study. Section 3 describes the methodology used. Section 4 presented
the results of the study before it is concluded in Sect. 5.

2 Background

This research demonstrates how CBMT can be used to train users to select good pass-
words and measures the effects of using CBMT in a real-world context. Therefore, this
chapter is devoted to an explanation of what CBMT is and the theoretical foundation of
CBMT. Further, the password guidelines proposed in the CBMT learning modules are
explained and motivated.

2.1 CBMT

CBMT is a theoretical framework that outlines how information security training of
users can be executed. In essence, CBMT can be summarized as follows [11]:

“CBMT stipulates that training should be delivered in short sequences, in an
accessible format, when needed”.

Assisting Users to Create Stronger Passwords Using CBMT 97

On amore practical note, thismeans that training designed according to the principles
of CBMT should be implemented so that it is presented to a computer user when he or she
is in a situation where the training is of direct relevance. Further, it should be presented
in a way that is easy to understand and short to minimize disruption [12].

The CBMT framework is based on the principle that people needmotivation to learn.
The idea is that the likelihood that any adult will learn is increased if the knowledge
seems meaningful for the learner [13]. This notion is based on the concept of andragogy
as presented by Knowles [14]. Knowles [14] argues that adults need the motivation
to learn. The foundation in this way of thinking is that the learner will learn better if
the knowledge presented seems meaningful. One way to accomplish this is to present
knowledge in a context where it is applicable. As discussed by Herrington and Oliver
[15], presenting knowledge to learners in a situation where the knowledge is applicable
will cause a more meaningful learning experience. This is the first requirement that
CBMT tries to facilitate. Also, by providing knowledge to a user when the user needs
it brings a reminding effect. In this particular case, a user creating a password will be
reminded to select a strong password. As discussed by [16], reminding users to behave
in a secure way is likely to be effective in the information security domain.

Further, an obstacle in the sense of providing the computer user with knowledge
about information security has been to make the users participate in education. One
technique that has gained an increasing interest in recent years ismicrolearning or similar
strategies including nanolearning and micro-training. As described byWang, Xiao [17],
nanolearning is a teaching method where information is presented in short sequences.
The idea is to facilitate just-in-time learning meaning that information is provided in
small chunks, thus making the time needed to absorb the information short and in an on-
demand fashion [18]. As described by Bruck, Motiwalla [19], there has been research
showing positive results of microlearning both in terms of learner participation and
satisfaction. Microtraining is the second fundamental building block of ContextBased
MicroTraining.

CBMT can be described as a framework that describes learning objects from two
directions. The first direction concerns the delivery of the learning objects and states that
the learning objects should be short sequences delivered in an on-demand fashion. The
second direction concerns the content of the learning objects. In this respect, CBMT
demands that the information presented in a learning module is of immediate use to
the learner and therefore assumes that the information is relevant to the user in the
users´ current context. In this respect, CBMT tries to facilitate the concept of “learn by
doing” theories that can be summarized as describing that learners learn better when
they perform tasks instead of just reading [20]. CBMT is also a learning method that
includes aspects of problem-based learning (PBL) in that it is designed to guide the
learner through real-world tasks [21]. In summary, the meaningfulness is achieved by
the learner doing some task related to his or her situation.

CBMT was first introduced by [22] and [23] who argued that CBMT could be used
as an efficient way to counter online fraud. CBMT has been further evaluated in [11]
where study participants reported that they perceived CBMT as a good way to learn
about security [11]. CBMT has also been used to develop teaching material for technical
courses in higher education with success [12].

98 J. Kävrestad and M. Nohlberg

In this study, CBMT is implemented as a means of teaching users how to create
strong passwords at the point of account registration. In essence, a learning module is
presented when a user that is creating an account hits the “create password” field. The
module contains guidelines for how to create a strong password, as outlined in the next
section. The approach, in this case, is inspired by security nudges as described by [24] but
attempts to combine passive support with active intervention. At the end of the module,
the user is asked to create her password. The steps of the learning module is presented
in Fig. 1, below.

Fig. 1. Implementation of CBMT used in this study

The first part of the learning module presents the user with some fundamental pass-
word guidelines. The user may then continue to learn even more. After the second
window, the user can test herself by answering three questions about the presented
guidelines. An incorrect answer will generate feedback, and a correct answer will allow
the user to continue. In the final windows, the user can create her password. A strength
meter is also present on the last page. The user may choose to go directly to the last page
from the first or second page.

2.2 Password Guidelines

This paper is concerned with teaching users to select good passwords.What a good pass-
word actually is, is a question that is debated among scientists as well as practitioners.
For instance, as of October 4th 2019,Microsoft suggest long and easy to remember pass-
words while Apple and Yahoo suggest that a password should include as many different
character groups as possible [25–27]. Looking to influential standardizing organiza-
tions, NIST now suggest that password guidelines should suggest long passwords that
are easy to remember, such as passphrases [28]. On the other hand, ENISA suggest
mixing character types [29]. ISO/IEC 27002:2017, as another example, does state that
a good password should be easy to remember but does also discourage the use of words
in passwords [30].

The password guidelines used in this paper are based on ongoing research into strong
and memorable passwords and are based on [31]. They are designed to generate long
passwords and read as follows:

Assisting Users to Create Stronger Passwords Using CBMT 99

• A good password is hard to crack and easy to remember.
• It should consist of at least four words.
• The password should not contain information relating to the password holder.
• Passwords should never be written down.
• A password can be made unique by adding the name of the site or service where it is
used to itself.

3 Methodology

This paper seeks to evaluate whether the presented CBMT learning module can assist
users in creating stronger passwords. As described by [32], scientific validity is enhanced
if a problem is researched from several angles. This study was carried out in two steps
beginning with a survey were the participants were asked to create an account and then
answer some questions about the password guidelines that was presented to them upon
account creation. Then the learning module was implemented on the account creation
site of a local ISP. The survey measured how well the users took notice of the presented
guidelines and the experiment measured the actual effect the learning module had on
password strength. To ensure compliance with ethical guidelines [33], care was taken
to ensure that no passwords was disclosed to the researchers or any external party. An
overview of the research process is shown in Fig. 2, below.

Fig. 2. Research process overview

Throughout the study, two different metrics was used to measure password strength.
The first metric was password length in characters. The second metric is called score
and is derived from zxcvbn, a password strength estimator developed by Dropbox [34].
According to a large study by [35], zxcvbn was found to be the most accurate password
strength estimator. While zxcvbn calculates a number of metrics, the only one used
in this paper is called score. The score is a value between 0 and 4 and the scored are
described as follows [36]:

• 0# too guessable: risky password. (guesses < 103)
• 1# very guessable: protection from throttled online attacks. (guesses < 106)
• 2# somewhat guessable: protection from unthrottled online attacks. (guesses < 108)
• 3# safely unguessable: moderate protection from offline slow-hash scenario. (guesses
< 1010)

100 J. Kävrestad and M. Nohlberg

• 4# very unguessable: strong protection from offline slow-hash scenario. (guesses ≥
1010)

The score is based on how many attempts an attacker would have to make to guess a
password (entropy). To calculate the entropy, zxcvbn takes several factors into account
including:

• Password length, longer passwords mean higher entropy.
• Password complexity, use of different character types mean higher entropy.
• Occurrence of common passwords, use of passwords common in leaked databases
mean lower entropy, and use of individual words such as “potato”.

• Repeated patterns, repeating patterns such as abcabcbabc mean lower entropy.

The full and exact algorithmused is presented in [36].Both the score and thepassword
length are considered to be numerical values in all statistical analyses used in this paper.
The reminder of this section will detail the survey and the experiment.

3.1 Survey Test

The first part of the study was a survey designed to measure if the participants paid
attention to the password creation guidelines presented to them during account creation.
The survey itself was not anonymized. Instead, the participants were asked to register
an account with their e-mail address and a password of their choosing. They were also
told that they would receive personal feedback containing their answers and a summary
of the answers from the rest of the population.

The participants were invited to the survey via an e-mail containing a survey link.
The survey was distributed to municipalities as well as university staff and students.
The link led to a web-based informed consent form where the participants were asked
to accept the conditions of the study. Upon accepting the conditions, the participants
were randomly assigned to one of three groups; CBMT, TEXT, and LINK. They were
then forwarded to the first part of the survey, account creation. During account creation,
the participants were asked to register their e-mail and create a password. Password
guidelines were shown the participants in the following different ways:

• The CBMT group was shown the CBMT module after clicking on the “select
password” box.

• TheTEXT-groupwas given the same guidelines in plain text just above the registration
form.

• The LINK-group was shown a link to text-based password guidelines labeled “Click
here to learn more about good passwords”.

Following registration, the password was analyzed as previously described and
the participants were handed questions about demographic aspects including their IT-
competence. Following the demographic questions, the participants were given the fol-
lowing questions about the password guidelines that was shown to them during account
creation:

Assisting Users to Create Stronger Passwords Using CBMT 101

• Concerning the password guidelines presented on the previous page, how long
passwords were suggested?

• What was suggested as a way to create strong passwords?
• What was described as most important for a password to be secure?
• What was described as most important of the following?
• What tip was given on how to create unique passwords for each of your accounts?

The first question was designed to see if the user’s noticed the main point of the
guidelines, the password length suggestion of four words. Questions two and three
were used to see if the users understood the secondary suggestions, creating long and
memorable passwords. The final two questions measured if users noticed tips that were
presented at later stages in the guidelines, on how to make passwords even better and
unique. In data analysis, two indexes were created. One that reflected how many correct
answers each respondent gave to the first three questions and one index of correct answers
to all questions. The results for the first question were also analyzed on its own.

For data analysis, the survey data were grouped based on the three test-groups.
The participants were further grouped based on their reported IT-competence since
previous research suggests that IT-competence is a key factor in security behavior [37].
The Shapiro-Wilks test was used to test whether the generated data were normally
distributed [38], and the means and median are reported for the three variables (the first
question and the indexes) in all groups. Based on central tendencies observed using
descriptive statistics, hypothesis testing was used to evaluate if the tendencies were
significant. Because of space limitations, the results are presented in condensed form.
The hypotheses were expressed as follows:

H1: Group X scores higher than group Y regarding variable Z
H0: There is no difference between groups X and Z regarding variable Y

Further, Mann-Whitney U-test was used for hypothesis testing. Mann-Whitney U-
test was selected in favor of T-test since no samples were normally distributed and are
therefore more suitable than T-test [39]. The significance level used in this study is the
conventional 95% meaning that results are significant if p < 0.05. SPSS was used for
statistical analysis.

3.2 Experiment

In the second part of the study, the learning module presented in Sect. 2.1 was imple-
mented on the account registration page of a local ISP. It was implemented so that 50%
of the visitors used the learning module when they registered their account and the other
50%was presented with an unmodified version of the registration page. The unmodified
registration page does not propose any password guidelines and is displayed in Fig. 3,
below.

The password entered during the testing period was analyzed and password length
and score were captured. Whether or not the password was created using the learning
module was also recorded to allow for analysis of the effects of the learning module.
For data analysis, the test data were grouped based on whether the passwords were

102 J. Kävrestad and M. Nohlberg

Fig. 3. Unmodified registration page

created using the CBMT module or not. The Shapiro-Wilks test was used to test if the
generated data was normally distributed [38], then means and median was reported for
the two variables in both groups. Further, Mann-Whitney U-test was used to differences
in values between the two groups.Mann-WhitneyU-test was used since no samples were
normally distributed and are therefore more suitable than T-test [39]. The significance
level used in this study is the conventional 95% meaning that results are significant if p
< 0.05.

4 Results

This section details the results gathered from the two parts of the study.

4.1 Survey

The survey was completed by 179 participants distributed among the answer groups as
follows:

• CBMT: 54
• TEXT: 68
• LINK: 57

61of the respondents rated the IT-competence as being “IT-professionals”, 50 respon-
dents were students, 121 were working and 8 respondents reported having some other
occupation. A majority of the respondents were between 20 and 30 years old (120), 31
were between 31 and 40 years and the rest were older. Following the calculations of the
indexes, the mean and median values for the different metrics are displayed in Table 1,
below. The measures were not normally distributed in any group, mean and median
values are displayed once for all respondents and then once for all respondents that did
not report being IT-professionals.

Assisting Users to Create Stronger Passwords Using CBMT 103

Table 1. Mean and median values or metrics from survey

Variable Group Mean Mean_noIT Median Median_noIT

Q1 CBMT 0,59 0,69 1 1

Q1 TEXT 0,40 0,38 0 0

Q1 LINK 0,19 0,16 0 0

Index1_3 CBMT 1,61 1,75 1 2

Index1_3 TEXT 1,27 1,20 1 1

Index1_3 LINK 0,77 0,67 1 0

Index1_5 CBMT 2,20 2,44 2 2

Index1_5 TEXT 1,86 1,84 2 2

Index1_5 LINK 1,31 1,18 1 1

As seen in Table 1, the CBMTgroup has the highest score for all metrics, followed by
the group TEXT. The group LINK that only saw a link to password creation guidelines
is last in all cases. Furthermore, the values for all metrics in the CBMT group increases
when the responses from IT-professionals are disregarded. The same action fields the
opposite result in the group TEXT.

Looking at the descriptive statistics in Table 1, the users that were presented with
password guidelines using CBMT appears to understand the contents of the guidelines
to a higher degree than in the other groups. Mann-Whitney U-test was used to test if
the observed tendency is significant. The test was applied pairwise and for the complete
answer groups as well as for all respondents except the IT-professionals. The test and
results are presented in Table 2, below.

Table 2. Results of Mann-Whitney U-test, results are significant if p < 0.05.

Variable Case P P_noit

Q1 CBMT-TEXT 0,033 0,013

Q1 CBMT-LINK 0,000 0,000

Q1 TEXT-LINK 0,014 0,031

Index1_3 CBMT-TEXT 0,087 0,03

Index1_3 CBMT-LINK 0,000 0,000

Index1_3 TEXT-LINK 0,004 0,019

Index1_5 CBMT-TEXT 0,203 0,091

Index1_5 CBMT-LINK 0,000 0,000

Index1_5 TEXT-LINK 0,009 0,019

104 J. Kävrestad and M. Nohlberg

As seen in Table 2, all test values involving the group LINK are significant, showing
that the participants shown a link to password guidelines understands the passwords
guidelines to a lower degree than users shown the guidelines in text or using CBMT.
Further, the test values for CBMT-TEXT are significant for Q1, showing that the users
of CBMT does understand the key part of the guidelines better than the other groups.
Further, the value for CBMT-TEXT for Index1_3 is significant if users that consider
themselves IT-professionals are disregarded.

In conclusion, the results of the survey show that using CBMT or just plain text
to present password guidelines is significantly better than presenting users with a link
to the guidelines. Further, the results suggest that CBMT will make the users notice
the password guidelines better than presenting the guidelines as text. It is also worth
mentioning that the observed results are more significant amongst users that do not
consider themselves IT-professionals.

4.2 Experiment

In the experiment, a CBMT module showing the password guidelines was implemented
at the account registration page of a local ISP. The passwords created by the users during
the experiment were analyzed. A password score and the password lengthwas registered.
The passwords were never made available to the researchers but keep confidential by the
ISP. During the test period, data was gathered from 124 users that created new accounts.
64 was presented with the CBMT learning module (This group is referred to as CBMT)
and 60was presentedwith the unmodified registration page (This group is called control).
The mean values for password length and score are presented in Table 3, below.

Table 3. Descriptive statistics from experiment data

Variable Group Mean Median Normality test

Length CBMT 11.14 11 Not normally distributed

Length Control 10.52 9.5 Not normally distributed

Score CBMT 3.06 3 Not normally distributed

Score Control 2.40 2 Not normally distributed

As seen in Table 1, the values from the CBMT group is higher for password length
as well as score. Further, no datasets were normally distributed and thus, the median
is the most accurate measure. Reading the median values, the CBMT group scored 1.5
characters higher in password length and 1 higher in password score. The descriptive
statistics bring the following hypotheses for testing:

H1: Users presented password guidelines in the form of a CBMT learning module create
longer passwords than users not presented with any guidelines.
H2: Users presented password guidelines in the form of a CBMT learning module create
passwords with a higher score than users not presented with any guidelines.

Assisting Users to Create Stronger Passwords Using CBMT 105

The corresponding null hypotheses are that no such difference can be observed.
Mann-Whitney U-test was used to test if the observed tendency is significant. The results
are presented in Table 4, below.

Table 4. Results of Mann-Whitney U-test, results are significant if p < 0.05

Variable Group Mean rank Sum of
ranks

P

Length CBMT 70.15 4489.50 0.013

Length Control 54.34 3260.50

Score CBMT 71.96 4605.50 0.002

Score Control 52.41 3144.50

As seen in Table 4, Mean rank and Sum of rank columns indicates that the passwords
in the CBMT group are longer and have a higher score. The p-values are below 0.05
in both cases showing that the results are significant. In conclusion, the null hypotheses
can be rejected in favor of H1 and H2. Thus, the experiment shows that the users who
used CBMT to create passwords created stronger passwords than the users that used the
unmodified registration page.

5 Conclusions

This paper presents the learning framework CBMT and analyzes if it can be used to help
users create good passwords. The study explores the aim from two different directions;
first by using a survey to measure to what degree users understand password creation
guidelines presented in different ways and second, by implementing CBMT on the
registration page of a local ISP and analyze the actual impact on password strength and
length. Length and strength are used as independent measures since it is possible to
create a longer password that is computationally weaker than a shorter. The results of
the survey suggest that users that are presented with password creation guidelines with
CBMT modules do indeed understand the guidelines to a higher degree than if users
are presented with the guidelines as text, or with a link to password creation guidelines
elsewhere. From the survey data, it is also worth mentioning that presenting password
creation guidelines as text is better than a link. Furthermore, the results of the experiment
show that using CBMT helps users create passwords that are longer and stronger than
if the users are not presented with any password creation guidelines at all. As such, this
paper concludes that using CBMT to present password creation guidelines will lead to
users creating better passwords and understand the password creation guidelines to a
higher degree than if the guidelines are presented in other ways.

This paper shows that CBMT can assist users in the creation of good passwords.
However, it is interesting to notice that not even the participants that used CBMT noticed
the presented guidelines to a very high degree. Looking at themost emphasized tip, using
4 words as the password only 59% of the respondents in the CBMT group remembered

106 J. Kävrestad and M. Nohlberg

the tip. Looking at the scores for the index of all five questions the mean value in the
CBMT group was 2.2 of 5. These numbers suggest that it is hard to make users notice
password creation guidelines at all. An explanation could be that users are simply not
too concerned with security, or that they do not care about what a certain application
proposes.

It is, however, also interesting to see that CBMT has a high impact on password
quality. In this particular example, the mean password strength was increased by 1
on a 0–4 scale and the mean password length was increased by 1.5. The increase in
password strength has an undeniable and direct effect on security since the passwords
are much harder to crack. One explanation as to why the users using CBMT select
stronger passwords might be that they understand the password creation guidelines to
a greater extent. However, the relatively low scores from the survey suggests that that
may not be a complete explanation. Another explanation can be that the CBMT forces
the users to integrate with it and thus, reminds them of security.

The implications of this paper are twofold. The paper demonstrates and validates a
concrete method for the presentation of password guidelines. The method described in
this paper can be implemented by practitioners seeking to increase password security in
their organization. The paper also presents a framework for how information security
training can be used to improve user’s security behavior. As such, the paper contributes to
the scientific and practitioner community with new insights into the information security
training domain.

Following this study, future projects could further examine the results presented in
this paper with more studies using other and larger samples. Another direction for future
research could be to analyze how CBMT can be used in other information security
contexts to, for instance, assist users in dealing with online fraud, fake news or phishing.
It would also be interesting to examine the long term effects of using CBMT. Knowledge
retention and organizational security awareness are good starting points. A future study
could examine the password culture before, during and after usingCBMTfor information
security training.

References

1. Kävrestad, J., Eriksson, F., Nohlberg, M.: Understanding passwords–a taxonomy of password
creation strategies. Inf. Comput. Secur. 27(3), 453–467 (2019)

2. Wang, C., Jan, S.T., Hu, H., Bossart, D.,Wang, G.: The next domino to fall: empirical analysis
of user passwords across online services. In: Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy. ACM (2018)

3. Woods, N., Siponen, M.: Too many passwords? How understanding our memory can increase
password memorability. Int. J. Hum. Comput. Stud. 111, 36–48 (2018)

4. Brumen, B.: Security analysis of game changer password system. Int. J. Hum. Comput. Stud.
126, 44–52 (2019)

5. Shay, R., et al.: Designing password policies for strength and usability. ACM Trans. Inf. Syst.
Secur. 18(4), 1–34 (2016)

6. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor authentication:
is the world ready?: Quantifying 2FA adoption. In: Proceedings of the Eighth European
Workshop on System Security. ACM (2015)

Assisting Users to Create Stronger Passwords Using CBMT 107

7. Das, S., Dingman, A., Camp, L.J.: Why Johnny doesn’t use two factor a two-phase usability
study of the FIDO U2F security key. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 160–179. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-
58387-6_9

8. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of PGP 5.0. In:
USENIX Security Symposium (1999)

9. Weirich, D., Sasse, M.A.: Pretty good persuasion: a first step towards effective password
security in the real world. In: Proceedings of the 2001Workshop on New Security Paradigms.
ACM (2001)

10. Safa, N.S., Sookhak, M., Von Solms, R., Furnell, S., Ghani, N.A., Herawan, T.: Information
security conscious care behaviour formation in organizations. Comput. Secur. 53, 65–78
(2015)

11. Kävrestad, J., Skärgård, M., Nohlberg, M.: Users perception of using CBMT for information
security training. In: Human Aspects of Information Security & Assurance (HAISA 2019)
Nicosia (2019)

12. Kävrestad, J., Nohlberg, M.: Using context based micro training to develop OER for the
benefit of all. In: Proceedings of the 15th International Symposium on Open Collaboration.
ACM (2019)

13. Hedin, A.: Lärande på hög nivå. Uppsala Universitet (2006)
14. Knowles, M.S.: Andragogy in Action: Applying Principles of Adult Learning. Jossey-Bass,

San Farancisco (1984)
15. Herrington, J., Oliver, R.: Critical characteristics of situated learning: implications for the

instructional design of multimedia (1995)
16. Parsons, K., Butavicius, M., Lillie, M., Calic, D., McCormac, A., Pattinson, M.: Which

individual, cultural, organisational and inerventional factors explain phishing resilience? In:
Twelfth International Symposium on Human Aspects of Information Security & Assurance,
Dundee, Scotland, UK. University of Plymouth (2018)

17. Wang, M., Xiao, J., Chen, Y., Min, W.: Mobile learning design: the LTCS model. In: 2014
International Conference on Intelligent Environments (IE). IEEE (2014)

18. McLoughlin, C., Lee, M.: Mapping the digital terrain: new media and social software as
catalysts for pedagogical change. Ascilite Melbourne (2008)

19. Bruck, P.A., Motiwalla, L., Foerster, F.: Mobile learning with micro-content: a framework
and evaluation. In: Bled eConference, vol. 25 (2012)

20. Koedinger, K.R., Kim, J., Jia, J.Z., McLaughlin, E.A., Bier, N.L.: Learning is not a spectator
sport: doing is better than watching for learning from a MOOC. In: 2015 Proceedings of the
Second ACM Conference on Learning@ Scale. ACM (2015)

21. Boud, D., Feletti, G.: The Challenge of Problem-Based Learning. Psychology Press,
Routledge (2013)

22. Kävrestad, J., Nohlberg,M.: Online fraud defence by context basedmicro training. In: HAISA
(2015)

23. Werme, J.: Security awareness throughmicro-training: an initial evaluation of a context based
micro-training framework (2014)

24. Furnell, S., Esmael, R., Yang, W., Li, N.: Enhancing security behaviour by supporting the
user. Comput. Secur. 75, 1–9 (2018)

25. Microsoft. Security Identifier (2019). https://docs.microsoft.com/en-us/windows/sec
urity/identity-protection/access-control/security-identifiers#security-identifier-architecture.
Accessed 2019

26. Yahoo: Password tips (n.d.). https://safety.yahoo.com/Security/STRONG-PASSWORD.html
27. Apple. Security and your Apple ID. (n.d.) https://support.apple.com/en-us/HT201303.

Accessed 12 Sept 2019

https://doi.org/10.1007/978-3-662-58387-6_9
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-identifiers#security-identifier-architecture
https://safety.yahoo.com/Security/STRONG-PASSWORD.html
https://support.apple.com/en-us/HT201303

108 J. Kävrestad and M. Nohlberg

28. Grassi, P., et al.: NIST special publication 800–63b: digital identity guidelines. National
Institute of Standards and Technology (NIST) (2017)

29. ENISA. Authentication Methods (n.d.). https://www.enisa.europa.eu/topics/csirts-in-europe/
glossary/authentication-methods. Accessed 04 Oct 2019

30. ISO/IEC, Information technology - Security techniques - Code of practice for information
security controls. ISO/IEC (2017)

31. Kävrestad, J., Lennartsson,M., Birath,M., Nohlberg,M.: Constructing secure andmemorable
passwords. Inf. Comput. Secur. https://doi.org/10.1108/ICS-07-2019-0077

32. Lincoln, Y.S., Guba, E.G.: Naturalistic Inquiry, vol. 75. Sage (1985)
33. Schrittwieser, S., Mulazzani, M., Weippl, E.: Ethics in security research which lines should

not be crossed? In: Security and Privacy Workshops (SPW), IEEE (2013)
34. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: USENIX Security

Symposium (2016)
35. XDCD Carnavalet, Mannan, M.: A large-scale evaluation of high-impact password strength

meters. ACM Trans. Inf. Syst. Secur. (TISSEC) 18(1), 1 (2015)
36. Dropbox: Low-Budget Password Strength Estimation (2019). https://github.com/dropbox/

zxcvbn. Accessed 07 Oct 2019
37. Siponen, M.T.: Five dimensions of information security awareness. SIGCAS Comput. Soc.

31(2), 24–29 (2001)
38. Mendes,M., Pala, A.: Type I error rate and power of three normality tests. Pak. J. Inf. Technol.

2(2), 135–139 (2003)
39. McKnight, P.E., Najab, J.: Mann-Whitney U test. Corsini Encycl. Psychol. 1 (2010)

https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/authentication-methods
https://doi.org/10.1108/ICS-07-2019-0077
https://github.com/dropbox/zxcvbn

Facilitating Privacy Attitudes
and Behaviors with Affective Visual

Design

Agnieszka Kitkowska1(B), Yefim Shulman2, Leonardo A. Martucci1,
and Erik Wästlund1

1 Karlstad University, Universitetsgatan 2, Karlstad, Sweden
agnieszka.kitkowska@kau.se

2 Tel Aviv University, Tel Aviv, Israel

Abstract. We all too often must consent to information collection at
an early stage of digital interactions, during application sign-up. Paying
low attention to privacy policies, we are rarely aware of processing prac-
tices. Drawing on multidisciplinary research, we postulate that privacy
policies presenting information in a way that triggers affective responses,
together with individual characteristics, may influence privacy attitudes.
Through an online quasi-experiment (N = 88), we investigate how affect,
illustration type, personality, and privacy concerns may influence end-
users’ willingness to disclose information and privacy awareness. Our
results partially confirm these assumptions. We found that the affect may
have an impact on privacy awareness, and stable psychological factors
may influence disclosures. We discuss the applicability of our findings in
interface design and in future research.

Keywords: Privacy · Usability · Attitude · Behavior · Affect ·
Emotion

1 Introduction

Privacy and security breaches are regularly reported in media, but despite their
awareness, people may over-disclose their personal information during online
interactions [1]. Legal protections have been established, such as the General
Data Protection Regulation (GDPR), aiming to improve the current privacy
landscape and enhance informed consent as the primary disclosure enabler [11].
Yet, not all of the online services provide appropriate privacy-protective solu-
tions.

The decisions shaping information disclosure usually begin during the sign-
up process. At that point, the user must consent to the service providers’ data
handling practices. However, at that stage, privacy management is not a pri-
mary task, and the users may disregard privacy information presented in pri-
vacy notices. Current methods of policy display may promote such negligence

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 109–123, 2020.
https://doi.org/10.1007/978-3-030-58201-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_8

110 A. Kitkowska et al.

with inadequate user interface (UI) design—non-transparent and challenging to
comprehend [27]. For instance, it is a common practice to collect the consent
with affirmative action: a tick of a checkbox approving “understanding” of the
hyper linked text of privacy policy.

In search of new ways to overcome issues around consent, and to understand
how to make consent more meaningful, we focus on affective states induced with
visual design. In this paper, we assess their influence on information disclosure
and privacy awareness in the context of the online sign-up process. Moreover, we
look into the relationship between individual characteristics, affect, and privacy
concerns. Our research objective is to identify how to improve end-users’ privacy
awareness at an early stage of interaction, and to advance the existing body
of knowledge about privacy attitudes and behaviors. Our findings show that
affective framing and arousal alter privacy-related attitudes and behaviors. The
results also indicate how people may feel hopeless during early-stage interactions,
lacking control over their data.

2 Background

The GDPR aims to protect users’ privacy and has a direct impact on online
companies, providing them with a set of rules regarding data collection and pro-
cessing practices [11]. Predominantly, online services must deliver to users under-
standable and transparent information about data provision practices. Further,
the GDPR enforces precise requirements regarding informed consent.

We follow the GDPR guidelines and test different designs of the privacy policy
providing users with more transparent information. We draw on the definition of
transparency and consent being informed by designing structured privacy policy,
which emphasizes information collection and processing practices.

2.1 Visual Display, Learning and Attention

Past research has shown that visual stimuli may have an influence on atten-
tion and can improve learning [30]. Affective images may impact decisions by
effects on the impression formation and decision-making [34]. Further, pictures
may have an impact on a performance level; when external representations are
available, the effects of the previously viewed visualization decrease, because
individuals are less dependent on the existing mental images [30]. The visual
design may also affect memory, when it includes animations, anthropomorphic
designs, clear layouts such as division into columns and similar [36,38].

In the context of privacy, anthropomorphic designs may increase personal
information disclosure [3,25]. Past work demonstrated that text was insuffi-
ciently communicating privacy information, and a different approach should be
applied to enhance usability [2]. However, alternative design cannot be over-
symbolic or cluttered (e.g., unnecessary icons). Moreover, comic strips were
found to increase users’ attention [37]. Comics convey a message in a way that
relates to emotions, enabling a greater understanding of the outlined issues [26].

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 111

Past research revealed that the end-user agreements divided into short sections,
elicited positive attitudes, increasing comprehension and time of exposure [39].
In our first research question, we aim to investigate privacy design issues:
RQ1: Does different illustration type applied in privacy policies influence privacy
awareness and willingness to disclose information?

2.2 Factors Related to Decision-Making

Many factors influence decisions. At times, choices might be rational, e.g., when
based on costs and benefits calculus carried out when people possess all the
necessary information to compute the optimal outcome(s). Other times, peoples’
decisions might be based on simple heuristics enabling effortless decisions, which
can be made with limited information and within a short time [18,35].

In this work, we focus on some factors that may influence how people decide
upon their privacy, whether their decisions are more or less informed. Particu-
larly, we investigate privacy awareness (defined as participants’ ability to recall
information presented in the privacy policy); and willingness to disclose (defined
as the extent to which users are willing to disclose their personal information to
the well-being application service provider).

Affect and Information Processing. One of simple heuristics is the affect
heuristic, when people make judgments based on subjective evaluations by
adding either positive or negative value to the decision outcome [12]. The affect-
as-information hypothesis postulates that affective states have cognitive con-
sequences mediated by the subjective experience of affect [6]. Thus, emotions
occur, and this feeling has a significant impact on cognitive processing, provid-
ing conscious information from unconscious appraisals. Such feelings can guide
immediate actions and may create experiences (e.g., liking or disliking), resulting
in a higher or lower evaluation of an object. Similarly, the feelings-as-information
theory proposes that positive affect indicates that a given situation is safe [31].
Positive affect may serve as an incentive to rely on internal thoughts, whereas
negative affect should direct attention to new external information, as it indi-
cates whether a situation is safe. In sum, affect relates to recall, thought genera-
tion, and processing of new external information. Affective reactions may result
from an external stimulus, such as the way information is presented or semantic
context, in which the situation takes place.

In the context of privacy, affect may shape risk perceptions [19]. It may have
a lasting impact on privacy beliefs (e.g., in an e-commerce environment [22]).
Further, negative valence may increase privacy attitude and decrease sharing,
while positive valence may increase sharing attitude and decrease privacy atti-
tude [7]. To further examine affect in the context of privacy, we ask the following
questions:
RQ2: Do the different designs of privacy policy elicit affective responses?
RQ3: Does affective framing applied in the design of privacy policies influence
privacy awareness and willingness to disclose?

112 A. Kitkowska et al.

Antecedents of Privacy-Related Decision-Making. This research builds
on the APCO (Antecedents→ Privacy Concerns→Outcomes) framework [8],
because it has been created based on a thorough review of privacy studies from
multidisciplinary fields. The APCO framework contains factors active during
decision-making processes, enabling a deeper understanding of human aspects
of privacy attitudes and behaviors. Following this model, we investigate privacy
awareness and willingness to disclose as outcomes, and personality characteristics
and privacy concerns as outcomes’ antecedents.

Personality traits can influence privacy concerns [24]. The agreeableness, con-
scientiousness, and imagination can contribute to the formulation of “Concerns
for Privacy” [17]. Additionally, personality may influence information disclo-
sure [14]. Past research shows the effects of privacy concerns on disclosure,
moderated by psychological biases and mental shortcuts [21,28]. Information
disclosure may result from personal concerns, perceived threats, or only from
user experience [20]. Considering the APCO model and past research, we raise
the following question:
RQ4: Do individual characteristics and privacy concerns influence awareness
and willingness to disclose information?

3 Methods

To address our research questions, we developed an online quasi-experiment (the
random assignment was present, but the experiment lacked a control group) [32].
The dependent variables were willingness to disclose information, privacy aware-
ness, and affective states (valence & arousal). The two independent variables
were the design proprieties: affective framing (positive & negative) and illustra-
tion type (anthropomorphic & human). We controlled for the influence of privacy
concerns and personality traits.

3.1 Participants

The participants were gathered on Reddit (r/samplesize). The respondents
had to be at least 18 years old and fluent in English. Participation in the
study was voluntary; no financial compensation was offered. We collected 99
responses. After data screening, the sample size reduced to 88. Almost half of
the respondents was females (N = 40, 45%), and the majority was between
18–34 years old (N = 37, 42%). Most of the participants completed higher edu-
cation (N = 50, 56.%). Over half of the participant were from English speaking
countries (UK, USA and Canada—N = 49, 55.6%).

3.2 Study Design

Before the study, the respondents had to acknowledge an informed consent form.
Majority of questions was mandatory to answer, apart from the demographic

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 113

questions. To reduce ordering effects, when possible, we implemented question-
naires’ item randomization. The study consisted of five phases.
Phase 1: Questionnaires. First, we measured The Big Five personality traits
with the instrument acquired from Donallann et al. [9]. This method is a con-
cise instrument validated in past research. The scale contains 20 items (four
per each trait: extraversion, agreeableness, conscientiousness, neuroticism, and
imagination). Next, the participants were presented with questions measuring
their affective states through the “Affective Self Report” (ASR) acquired from
Jenkins et al. [15]. The scale consists of ten items measuring the two-dimensional
structure of affect: valence & arousal.
Phase 2: Vignette and Interactive Task. We asked the participants to imag-
ine that they were signing up for a well-being application, aiming to help with
the improvement of their physical and mental well-being. The participants were
advised that the app offers social functionality, e.g., sharing, connecting with
other users. They were instructed that over the next few pages, they would be
exposed to the fictional sign-up form, asking for personal information, such as
email address and password, but none of this data would be collected. Next, the
participants were prompted to acknowledge the privacy policy. There were four
different policy designs (Fig. 1): (1) a positively framed text with anthropomor-
phic representation, (2) a positively framed text with human representation, (3)
a negatively framed text with anthropomorphic representation, (4) a negatively
framed text with human representation. We shortened the policy and struc-
tured the text into thematically arranged paragraphs, with a header describing
a particular section, e.g., “How we use your data”. The Gunning’s Fogg text
readability score was 12.7, meaning that the text should be understandable by
high school seniors [40]. Each privacy policy provided a binary choice: to “Agree”
or to “Disagree”.

Fig. 1. Examples of the privacy policy sections accompanied by different types of fram-
ing. Top row: human like illustration: A. Positive, B. Negative. Bottom row: anthro-
pomorphic illustration: C. Positive, D. Negative.

114 A. Kitkowska et al.

Phase 3: Interactive Task’s Exit Questionnaires. We measured the will-
ingness to disclose information with a Likert-type instrument, based on the infor-
mation disclosure scale proposed by Joinson et al. [16]. The participants were
asked to think back about the sign-up process and state which pieces of infor-
mation they would have disclosed. The scale consisted of 14 items of personal
information, e.g., number of sexual partners. The responses scored 1 (“I would
disclose”) or 0 (“I would not disclose”). We took the 2nd measurement of the
affect with the same instrument as in Phase 1, presenting participants with their
scores and asking whether they wished to adjust them.

Phase 4: Questionnaires. We measured privacy awareness with a quiz-like
questionnaire, assessing how much of the privacy information the participants
remembered. We used ten questions related to the text from privacy policies,
focusing on the text highlighted by framing images. The participants had a
binary choice to select either “True” or “False”. To measure privacy concerns,
we used an instrument acquired from Malhotra et al. [23], containing six items
presenting privacy statements. Participants were asked to declare to what extent
they agreed or disagreed with the statements (1 – strongly disagree to 7 –
strongly agree). We asked the participants for basic demographic information:
gender, age group, nationality, and level of education.

Phase 5: Open-Ended Question. We asked the participants to explain why
during the interactive task, they “Agreed”, or “Disagreed” with policy. The
participants were required to provide an answer.

Ethical Review. The study received ethical approval from the Karlstad Uni-
versity Ethical Review Board. There were no harms or risks associated with the
study. We ensured that the data collection and processing was compliant with
the GDPR. When possible, we applied data anonymization measures.

Variables in the Model. The between-subject variables were affective fram-
ing (AFRM: positive, negative), and illustration type (ILLT: anthropomorphic,
human). The four dependent variables were: post-stimulus valence (VALP), post-
stimulus arousal (AROP), willingness to disclose (WILD) and privacy aware-
ness (PRAW). The covariates were: pre-stimulus arousal (PRAR) and valence
(PREV); conscientiousness (CONS) and neuroticism (NEUR) (extraversion and
agreeableness were removed, as they had no effect); privacy concerns (PRIC).

4 Results

The assessment of latent variables collected through self-reported instruments
requires checks of validity and reliability. We used qualitative methods to check
the face validity. To assess reliability, we applied the Cronbach α estimate,
accepting scores higher than 0.7 [13].

Personality Traits. We ran Principal Component Analysis (PCA). Kaiser-
Meyer-Olkin (KMO) measure was 0.70, and Bartlett’s test for sphericity was

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 115

significant, p < 0.001 [29]. Personality types did not load as expected into five
factors [9], but into six factors, with imagination loading incorrectly. We removed
this trait from further analysis. For each of the remaining constructs, we ran
reliability tests, which all scored well, α > 0.7.

Affect. We measured valence and arousal with the scale consisting of ten seman-
tic differential items, five per each dimension. For both pre-, and post-stimulus
measures, we ran the PCA to check factorability. The KMO scores were satisfy-
ing (pre: 0.84, and post: 0.86), and Bartlett’s test for sphericity was significant
(p < 0.001). The scores did not load properly. Hence we removed two items:
“Tired-Energetic” and “Indifferent-Curious”. We used five items to compute
valence, and three to compute arousal.

Table 1. MANCOVA: effects of affective framing and illustration types on the depen-
dent variables: post-stimuli arousal (AROP), post-stimuli valence (VALP), willingness
to disclose (WILD), and privacy awareness (PRAW).

Multivariate Univariate

Wilks’s λ F (4, 76) F (1, 79)

AROP VALP WILD PRAW

Covariates

PRAR 0.19 77.21** 79.96** 4.03* 4.70* 1.61

PREV 0.21 70.64** 1.31 85.32** 0.19 3.41

CONS 0.91 1.72 0.54 0.62 2.32 4.2*

NEUR 0.90 2.03 2.24 1.66 5.45* 0.76

PRIC 0.78 5.13* 7.31* 10.02* 11.59* 2.08

Fixed factors

AFRM 0.87 2.66* 4.74* 3.21 0.90 6.33*

ILLT 0.97 0.54 0.22 0.02 0.06 1.28

AFRM*ILLT 0.91 1.74 4.97* 1.01 0.24 <0.01

Note: Significance values are based on *p < 0.05 and **p < 0.001.

Willingness to Disclose. The recommended estimate of scale reliability for
dichotomous data is KR20 [5]. However, since Cronbach’s α is a generalization
of KR20, we interpreted its scores. The Cronbach’s α was acceptable, 0.90 (M =
6.68, σ2 = 18.05, SD = 4.25).

Privacy Awareness. The privacy awareness scores were measured as dichoto-
mous data (Correct = 1, or Incorrect = 0). Privacy awareness scale assessed
knowledge, not a latent construct; hence, we did not perform reliability checks.
We applied an average of scores in further statistical analysis (M = 0.58, SD =
0.13).

Privacy Concerns. The results of the PCA were satisfying, but Cronbach’s
α scores for six items scale were below the commonly accepted threshold. We

116 A. Kitkowska et al.

re-ran the analysis and used only four of the scale items (Cronbach’s α was
satisfactory) to compute the variable.

4.1 Statistical Analysis

We performed a multivariate analysis of covariance (MANCOVA). Before the
test, we checked the assumptions (outliers with Mahalanobis distance; linear-
ity; multicollinearity; univariate and multivariate normality; homogeneity and
homoscedasticity). Next, we ran the final model and reevaluated homogeneity
with a Box’s test of equality of covariance matrices (p = 0.15) and Levene’s tests
of equality of variances (p > 0.05). The results of MANCOVA, using the Wilk’s
Lambda as a criterion, are presented in Table 1.

Effects of Covariates. PRAR (η2
p = 0.80), PREV (η2

p = 0.78), and PRIC
(η2

p = 0.21) were the significant adjustors of the combined dependent variables.

Illustration type

HumanAnthropomorphic

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

4,20

4,00

3,80

3,60

PositiveNegative
Affective framing

Fig. 2. Estimated marginal means for post-stimulus arousal (AROP). Covari-
ates appearing in the model are evaluated at the following values: PRAR= 3.58,
PREV= 4.50, PRIC= 4.57, CONS= 12.52, NEUR = 11.32.

Table 2. Significant correlations between covariates and outcome variables (p < 0.01).

VALP AROP WILD

Pre-stimuli valence 0.77

Pre-stimuli arousal −0.33 0.84

Privacy concerns — 0.27 −0.38

We used individual ANCOVAs to examine their effect. PRAR was a signifi-
cant adjustor of AROP (η2

p = 0.50), VALP (η2
p = 0.05), and WILD (η2

p = 0.05).

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 117

PREV had a significant influence on VALP (η2
p = 0.52). Some of these vari-

ables correlated significantly (Table 2). PRIC significantly influenced AROP
(η2

p = 0.08), VALP (η2
p = 0.11), and WILD (η2

p = 0.13), with some correlat-
ing significantly (Table 2). Finally, there were significant effects of NEUR on
WILD, and of CONS on PRAW; however, no significant correlations between
these variables suggest that they might be weak influences of privacy decisions.

Effects of Independent Variables. After estimating out the covariates,
AFRM had a significant effect on combined dependent variables (η2

p = 0.12)
particularly on AROP (η2

p = 0.06). There was a difference in means of the two
levels of AFRM on arousal (p < 0.05). The scores for post-stimuli arousal were
higher among the participants assigned to negative (M = 4.01, SD = 0.11),
than to positive (M = 3.67, SD = 0.10) stimulus. Although the effect of AFRM
on VALP was not significant, valence scores were higher after exposure to posi-
tive (M = 4.30, SD = 0.11), than to negative (M = 4.00, SD = 0.12) stimulus.

AFRM had a significant influence on PRAW (η2
p = 0.07). The participants

exposed to the negative stimulus scored higher (M = 0.62, SD = 0.01), than
those exposed to the positive stimulus (M = 0.55, SD = 0.01).

There was a significant interaction effect between AFRM and ILLT on post-
stimulus arousal—η2

p = 0.60 (Fig. 2). The arousal’s mean was higher for the
anthropomorphic negative affective state (M = 4.16, SD = 0.16), than for
human negative affective state (M = 3.87, SD = 0.16). This effect was reversed
for arousal means of the positive anthropomorphic design being lower (M =
3.45, SD = 0.16) than of the positive human design (M = 3.89, SD = 0.15).

Table 3. The main reasons for selecting “Disagree” and “Agree” with privacy policy
[Reason(frequency of appearance)].

Disagree Lack of control(13), Social media(7),
Unacceptable(7), Trust(6), Necessity of
collection(5), Personal information(4),
Fairness(4), Emotional response(4),
Protection(3), Usability(3), Health
information(3), Pictures help(2), Unauthorized
sharing(2), Tracking(1), Legal requirement(1),
Manipulation(1)

Agree Lack of choice(28), Want to use app(18),
Habit(14), Trust(10), Don’t care(8), Not worse
than others(6), Control(5), Somewhat clear(4), I
can handle privacy(4), Protection(3), Legal
requirement(2), Sunk cost(2), Consent if
changes(2), Social media(2), Health(1),
Underwhelming(1), Pictures help(1)

118 A. Kitkowska et al.

4.2 Exploratory Findings

In the open-ended question, we asked participants why they “Agreed” (AGR)
or “Disagreed” (DIS) with the privacy policy. Only 23 participants selected to
disagree, and we did not find any significant associations between agreement
with policies and the policy design.

All cases where participants stated that they had selected an option only to
pursue the study were removed from the analysis, resulting in N = 77 answers
(DIS N = 22, AGR N = 55). Two researchers read through the answers and, in
a systematic manner, identified justification of the participants’ choices, tagging
them with a theme word. The tags were discussed and combined (Table 3).
Disagreeing. Sixteen reasons surfaced during the analysis of answers from the
respondents who disagreed. The most frequent reason related to the lack of
control ; sharing personal data with social media platforms was the second most
frequent. For instance, “The lack of control over personal data shared with third
parties as well as the catch-22 of only using the Social platforms/forums if data
was shared”. Participants stated that the policy was unacceptable, or they did
not trust the provider, e.g., because the data would be stored abroad: “The US
govt could access this data, and it is not trustworthy”.

Some respondents stated that there was not enough information about why
data was collected (necessity, fairness, personal information collection). A few
answers were emotionally loaded, e.g., “The main reason is that the pictures
spelled it out in clear form what would happen to my information. As a result it
made me sceptical to share my information”. Only a few responses hinted that
pictures help or mentioned usability, e.g., “Also, the drawings definitely gave the
impression the policy was unfair”.
Agreeing. Seventeen reasons were identified among those who agreed. The main
was the lack of choice: “If signing up for a service there is a little choice. It
can’t be changed. The only option is to not do so”. Another reason was that
the participants wanted to use the application: “if I wanted to use the website,
I would have to consent to the privacy Policy. So I did not really considered
disagreeing as an option”.

Many respondents admitted that agreement is something they always do, a
habit, e.g., “Honestly, it’s automatic. I’m not sure I even saw a disagree button.
It’s like a next button”. On the other hand, a few admitted that they did not care
about privacy, e.g., “I did not provide much of personal information. My name
and email are already accessible, why worry?”, or stated that the policy was
not worse than others. Some participants thought that the policy provided them
with control, it was somewhat clear and trustworthy (e.g., “the transparency of
the company made me believe they were slightly more trustworthy”).

5 Discussion

Design Implications. We studied the relationship between the illustration
type, affective framing and their impact on privacy awareness and willingness

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 119

to disclose (RQ1–3). Our results show that the policy display alters affective
states. Moreover, the combined illustration type and affective framing interact
and influence arousal. Particularly, the negative anthropomorphic representation
accompanying structured text increases arousal. Yet, the same illustration type
has a lower influence on arousal, when framed positively.

We have not found a direct relationship between the anthropomorphic designs
and information disclosure, as suggested by Monteleone et al. [25]. Although we
did not find a significant effect of the illustration type on privacy awareness
(RQ1), we identified that framing of the designs has a significant impact on
awareness (RQ3). Our findings are similar to the results from past research—the
implementation of a cartoon-like design may increase attention [36,37]. However,
we determined that in the context of privacy, such an effect is possible only when
brought by affective framing. Perhaps emotions mediate the relationship between
design and privacy awareness. Our qualitative results add to such a premise, as
some of the participants mentioned in emotionally loaded statements, that they
comprehended privacy information because of the illustrations. These results
indicate that comic designs can convey emotional meaning and improve under-
standing, as it has been demonstrated by Noll Webb et al. [26]. Nevertheless,
such assumption requires confirmation from future studies.

Considering our results about policy display, we infer that the structured text
display combined with affective framing may improve transparency and clarity
of the privacy information. Such findings may be implemented in the design of
privacy policies to encourage more informed end-users’ decisions, and service
providers’ legal compliance. For instance, negatively framed visual cues might
be displayed next to a particular section of the privacy notice. The cues could
emphasize specific data processing practices, which may result in potential risks
to privacy (e.g., overexposure of sensitive personal information such as health-
related data to undesirable third parties).

Users’ Needs. Our qualitative analysis showed that the sign-up process requires
improvements. Our participants expressed the need for more control and choice
at an early-stage of interaction. Such findings align with past research, e.g., a
lack of control as one of the privacy concerns, and call for “fine-grained” control
mechanisms as shown in Sheth et al. [33]. Our participants were dissatisfied with
the current designs, exhibiting desperation and indicating usability issues. Con-
currently with the GDPR, this calls for granular and dynamic privacy policies.
Policy designers should focus on identifying new ways, in which privacy pol-
icy could provide end-users with opt-in/opt-out functionality at the early stage
of interaction. For instance, one of such solutions could allow users to entirely
disconnect the newly installed application from their social network tracking,
through a simple interaction method (e.g., enable/disable toggles). Yet, such
functionality would have to be non-intrusive as privacy management is not a
primary task during the sign-up process. Additionally, some of the past research
shows that too much perceived control over disclosure might lead to increased
risks to privacy [4]. Hence, the design of control mechanisms requires balanced

120 A. Kitkowska et al.

solutions that provide controls in a simplified form, with only necessary options,
perhaps only for the riskiest data processing practices.

Implications for the Research Community. We found arousal to be the
most significant adjuster of the willingness to disclose, with lower arousal car-
rying the potential to reduce disclosure. According to our results, privacy con-
cerns negatively correlated with willingness to disclose (RQ4), which may indi-
cate that people with greater concerns manage their information more carefully.
On the other hand, similar to the past research [10], we found no relationship
between personality traits and privacy awareness or willingness to disclose.

Our work contributes to the research field by examination of factors acquired
from the APCO framework. We demonstrated that concerns might impact will-
ingness to disclose. These findings add to the existing knowledge on the rela-
tionship between concerns and disclosure, showing that in the context of early-
stage interactions, these two constructs correlate, contradictory to the widely
discussed phenomenon of the privacy paradox. We interpret this relationship as
the demand for personalized systems recognizing and estimating the level of
individuals’ privacy concerns. Before mentioned systems could trigger affect and
seemingly decrease information disclosure (e.g., presenting less concerned users
with negatively framed policy to bring their attention to privacy issues). How-
ever, such a personalized approach might be challenging itself as it requires the
collection of personal information.

Further, our results confirm the applicability of cognitive hypotheses, such as
affect-as-feeling, for the models of privacy interactions [6]. According to our find-
ings, negative affect appears to direct participants’ attention towards new infor-
mation, and through activation of cognitive feelings, possibly influences informa-
tion recall. This finding could be used not only by the researchers interested in
studying privacy-related decision-making but also by designers. Perhaps privacy
policies could elicit—through visual and interaction design—negative emotions
and shift people’s attention towards information included in the policy.

Limitations and Future Work. The primary constraint of this study is the
measurement of affect with self-reported measures. The research validity would
increase, was it run in the lab, enabling additional measurements, e.g., eye-
tracking or electroencephalogram. Such information could improve the measure-
ment’s accuracy. As future work, we consider replicating the research in the lab
environment.

We ran the exploratory study, and the sampling method might have intro-
duced bias as we gathered data only from participants interested in the research,
reducing potential generalization of the results. Yet, participants gathered
through a paid-for platform might be less engaged in the study, and provide
answers solely to receive financial compensation.

Future work should expand beyond the scenario of well-being application.
This could help to identify contextual dependencies of the role of visual design
and affective states in the early-stage interactions.

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 121

6 Conclusion

Frequently, privacy policies leave us in a blind spot, unaware of what we agreed
to. In this work, we have examined the role of visual displays in the acquisition of
privacy information. We have investigated how the activation of affective states
influences privacy awareness and willingness to disclose. To identify possible
improvements in visual representations of privacy policies, we have examined
why people decide to agree or disagree with the policies.

Our results show that affective framing and arousal carry the potential to
alter privacy-related attitudes and behaviors. Further, our qualitative findings
show that people feel hopeless during early-stage interactions, neither having
control nor choice around their data. The results can be used to design granular
and dynamic consents that enable better management of personal information.
Such solutions could enhance an individual’s privacy, as well as help companies to
comply with new regulations, such as the GDPR. The knowledge gained in this
study can be applied as a backbone for future research on predictive modelling,
as well as to build personalized privacy solutions.

Acknowledgement. This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sk�lodowska-Curie grant
agreement No 675730.

References

1. Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in
the age of information. Science 347(6221), 509–514 (2015)

2. Angulo, J., Fischer-Hübner, S., Wästlund, E., Pulls, T.: Towards usable privacy
policy display and management. Inf. Manag. Comput. Secur. 20(1), 4–17 (2012)

3. Bente, G., Dratsch, T., Rehbach, S., Reyl, M., Lushaj, B.: Do you trust my avatar?
Effects of photo-realistic seller avatars and reputation scores on trust in online
transactions. In: Nah, F.F.H. (ed.) HCIB 2014. LNCS, vol. 8527, pp. 461–470.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07293-7 45

4. Brandimarte, L., Acquisti, A., Loewenstein, G.: Misplaced confidences: privacy and
the control paradox. Soc. Psychol. Pers. Sci. 4(3), 340–347 (2013)

5. Carmines, E., Zeller, R.: Reliability and Validity Assessment, vol. 17. Sage Publi-
cations (1979)

6. Clore, G., Gasper, K., Garvin, E.: Affect as information. In: Handbook of Affect
and Social Cognition, pp. 121–144 (2001)

7. Coopamootoo, K.P., Groß, T.: Why privacy is all but forgotten: an empirical study
of privacy & sharing attitude. Proc. Priv. Enhancing Technol. 2017(4), 97–118
(2017)

8. Dinev, T., Mcconnell, A., Smith, H.: Informing privacy research through informa-
tion systems, psychology, and behavioral economics: thinking outside the “APCO”
box. Inf. Syst. Res. 26(4), 639–655 (2015)

9. Donnellan, M., Oswald, F., Baird, B., Lucas, R.: The mini-IPIP scales: tiny-yet-
effective measures of the big five factors of personality. Psychol. Assess. 18(2),
192–203 (2006)

https://doi.org/10.1007/978-3-319-07293-7_45

122 A. Kitkowska et al.

10. Egelman, S., Peer, E.: Predicting privacy and security attitudes. ACM SIGCAS
Comput. Soc. Newsl. 45(1), 22–28 (2015)

11. European Commission: Regulation (EU) 2016/679 Of The European Parliament
and Of The Council of 27 April 2016. Official Journal of the European Union (2016)

12. Finucane, M., Alhakami, A., Slovic, P., Johnson, S.: The affect heuristic in judg-
ments of risks and benefits. J. Behav. Decis. Mak. 13(1), 1–17 (2000)

13. Gliem, J.A., Gliem, R.R.: Calculating, interpreting, and reporting Cronbach’s
alpha reliability coefficient for likert-type scales. In: Midwest Research-to-Practice
Conference in Adult, Continuing, and Community Education (2003)

14. Hollenbaugh, E., Ferris, A.: Facebook self-disclosure: examining the role of traits,
social cohesion, and motives. Comput. Hum. Behav. 30, 50–58 (2014)

15. Jenkins, S., Brown, R., Rutterford, N.: Comparing thermographic, EEG, and sub-
jective measures of affective experience during simulated product interactions. Int.
J. Des. 3(2), 53–65 (2009)

16. Joinson, A., Paine, C., Buchanan, T., Reips, U.: Measuring self-disclosure online:
blurring and non-response to sensitive items in web-based surveys. Comput. Hum.
Behav. 24(5), 2158–2171 (2008)

17. Junglas, I., Spitzmüller, C.: Personality traits and privacy perceptions: an empirical
study in the context of location-based services. In: International Conference on
Mobile Business, ICMB 2006, pp. 387–402 (2006)

18. Kahneman, D.: A perspective on judgment and choice. Am. Psychol. 3(4), 7–18
(2003)

19. Kehr, F., Kowatsch, T., Wentzel, D., Fleisch, E.: Blissfully ignorant: the effects
of general privacy concerns, general institutional trust, and affect in the privacy
calculus. Inf. Syst. J. 25(6), 607–635 (2015)

20. Knijnenburg, B., Kobsa, A.: Making decisions about privacy: information disclo-
sure in context-aware recommender systems. ACM Trans. Interact. Intell. Syst.
3(3), 1–23 (2013)

21. Krasnova, H., Kolesnikova, E., Guenther, O.: “It won’t happen to me!”: self-
disclosure in online social networks. In: AMCIS 2009 Proceedings, p. 343 (2009)

22. Li, H., Sarathy, R., Xu, H.: The role of affect and cognition on online consumers’
decision to disclose personal information to unfamiliar online vendors. Decis. Sup-
port Syst. 51(3), 434–445 (2011)

23. Malhotra, N., Kim, S., Agarwal, J.: Internet users’ information privacy concerns
(IUIPC): the construct, the scale, and a causal model. Inf. Syst. Res. 15(4), 336–
355 (2004)

24. Miltgen, C., Peyrat-Guillard, D.: Cultural and generational influences on privacy
concerns: a qualitative study in seven European countries. Eur. J. Inf. Syst. 23(2),
103–125 (2014)

25. Monteleone, S., van Bavel, R., Rodŕıguez-Priego, N., Esposito, G.: Nudges to pri-
vacy behaviour: exploring an alternative approach to privacy notices. Technical
report, European Commission (2015)

26. Noll Webb, E., Balasubramanian, G., Ó’Broin, U., Webb, J.: Wham! pow! comics
as user assistance. J. Usability Stud. 7(3), 105–117 (2012)

27. Obar, J.A., Oeldorf-Hirsch, A.: The biggest lie on the Internet: ignoring the privacy
policies and terms of service policies of social networking services. Inf. Commun.
Soc. 23(1), 128–147 (2018)

28. Preibusch, S., Krol, K., Beresford, A.R.: The privacy eonomics of voluntary over-
disclosure in web forms. In: Böhme, R. (ed.) The Economics of Information Security
and Privacy, pp. 183–209. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39498-0 9

https://doi.org/10.1007/978-3-642-39498-0_9
https://doi.org/10.1007/978-3-642-39498-0_9

Facilitating Privacy Attitudes and Behaviors with Affective Visual Design 123

29. Reio, J., Thomas, G., Shuck, B.: Exploratory factor analysis: implications for the-
ory, research, and practice. Adv. Dev. Hum. Resour. 17(1), 12–25 (2015)

30. Schnotz, W., Kü, C.: External and internal representations in the acquisition and
use of knowledge: visualization effects on mental model construction. Instr. Sci.
36, 176–190 (2007)

31. Schwarz, N.: Feelings-as-information theory. Handb. Theor. Soc. Psychol.
1(January), 289–308 (2012)

32. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and quasi-experimental
designs for generalized causal inference (2002)

33. Sheth, S., Kaiser, G., Maalej, W.: Us and them: a study of privacy requirements
across North America, Asia, and Europe. In: Proceedings of the 36th ICSE, pp.
859–870 (2014)

34. Slovic, P.: The affect heuristic. In: Heuristics and Biases; The Psychology of Intu-
itive Judgement, pp. 397–420. Cambridge University Press (2002)

35. Stanovich, K.E., West, R.F.: Individual differences in reasoning: implications for
the rationality debate? Behav. Brain Sci. 23(5), 645–665 (2000)

36. Sutcliffe, A., Namoune, A.: Getting the message across: visual attention, aesthetic
design and what users remember. In: Proceedings of the 7th ACM Conference on
Designing Interactive Systems, pp. 11–20. ACM (2008)

37. Tabassum, M., Alqhatani, A., Aldossari, M., Richter Lipford, H.: Increasing user
attention with a comic-based policy. In: CHI 2018. ACM (2018)

38. Tasse, D., Ankolekar, A., Hailpern, J.: Getting users’ attention in web apps in
likable, minimally annoying ways. In: Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, pp. 3324–3334 (2016)

39. Waddell, T., Auriemma, J., Sundar, S.: Make it simple, or force users to read?
paraphrased design improves comprehension of end user license agreements. In:
CHI 2016, p. 4 (2016)

40. Zamanian, M., Heydari, P.: Readability of texts: state of the art. Theory Pract.
Lang. Stud. 2(1), 43–53 (2012)

Privacy CURE: Consent Comprehension
Made Easy

Olha Drozd(B) and Sabrina Kirrane

Vienna University of Economics and Business, Vienna, Austria
{olha.drozd,sabrina.kirrane}@wu.ac.at

Abstract. Although the General Data Protection Regulation (GDPR)
defines several potential legal bases for personal data processing, in many
cases data controllers, even when they are located outside the European
Union (EU), will need to obtain consent from EU citizens for the process-
ing of their personal data. Unfortunately, existing approaches for obtain-
ing consent, such as pages of text followed by an agreement/disagreement
mechanism, are neither specific nor informed. In order to address this
challenge, we introduce our Consent reqUest useR intErface (CURE)
prototype, which is based on the GDPR requirements and the interpre-
tation of those requirements by the Article 29 Working Party (i.e., the
predecessor of the European Data Protection Board). The CURE pro-
totype provides transparency regarding personal data processing, more
control via a customization, and, based on the results of our usability
evaluation, improves user comprehension with respect to what data sub-
jects actually consent to. Although the CURE prototype is based on the
GDPR requirements, it could potentially be used in other jurisdictions
also.

Keywords: Consent request · Informed consent · GDPR · Usable
privacy

1 Introduction

In the European Union (EU) the General Data Protection Regulation (GDPR)
came into force on May 25, 2018, modernizing the Data Protection Directive
95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and
on the free movement of such data. Both of these documents, however, suggest
obtaining consent for data processing from data subjects. Although the GDPR
defines several potential legal bases1 for the lawful personal data processing2,
for instance for the provision of a contract, in order to fulfill a legal obligation,
in the case of vital interest, in the case of public interest, or for reasons of
1 GDPR Art. 6(1)(b–f).
2 For the lawful personal data processing data subject’s consent is not required.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 124–139, 2020.
https://doi.org/10.1007/978-3-030-58201-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_9&domain=pdf
http://orcid.org/0000-0001-6551-6567
http://orcid.org/0000-0002-6955-7718
https://doi.org/10.1007/978-3-030-58201-2_9

Privacy CURE: Consent Comprehension Made Easy 125

legitimate interest, in many cases data controllers and processors, will need to
obtain consent from data subjects for the processing of their personal data3, for
example in order to deliver personalized recommendations or to improve their
services. According to Art. 4(11)4 of the GDPR, consent needs to be “freely
given, specific, informed and unambiguous indication of the data subject’s wishes
by which he or she, by a statement or by a clear affirmative action, signifies
agreement to the processing of personal data relating to him or her”.

The de facto standard for consent requests is still ready-made, set in stone,
static descriptions of current and future data processing in the form of pri-
vacy policies or terms and conditions. However, studies show that such policies
and terms and conditions are rarely read and when they are, they are hard to
digest [20]. Although there have been some attempts to give users more control
and transparency regarding personal data processing [10,15], the cognitive lim-
itation of data subjects in terms of understanding what exactly they consented
to remains an open research challenge [1,6]. Considering that the GDPR in gen-
eral, and GDPR Art. 4(11) in particular, is quite prescription when it comes
to consent, we argue that consent request user interface (UI) designers should
pay particular attention to consent requirements specified in the GDPR and the
interpretation of said requirements, in the form of guidelines5, by various expert
groups, such as the European Data Protection Board, and its predecessor the
Article 29 Working Party6.

In this paper, we introduce our Consent reqUest useR intErface (CURE) pro-
totype, based on said requirements and guidelines, which elicits greater involve-
ment of data subjects when it comes to granting consent, affords them more con-
trol via customization, and provides high transparency with respect to personal
data processing. Our evaluation results look very promising, not only in terms of
usability, but also in terms of understandability. Our UI could be applied in dif-
ferent contexts, however, in this paper it is developed based on an exemplifying
use case scenario, whereby an individual purchasing a new wearable appliance
for fitness tracking needs to complete the consent request in order to activate the
various features of the device. Also, although the requirements underpinning the
design of the CURE prototype are based on the GDPR, the CURE prototype
could potentially be used in other jurisdictions.

The remainder of the paper is structured as follows: we start by providing an
overview of the state of the art; following on from this we highlight our exempli-
fying use case scenario, the general requirements and methodology that are used
to guide our work; next we describe our CURE prototype and the corresponding
usability evaluation; finally, we present our conclusions and describe future work.
3 GDPR Art. 6(1)(a).
4 Art. 4(11) is complemented by Art. 7 that provides information on conditions for

consent.
5 Article 29 Working Party Guidelines on consent under Regulation 2016/6791 are

available at https://bit.ly/2BdQs08.
6 Article 29 Working Party was an independent European working party that dealt

with data protection issues. On 25.05.2018 it was replaced by the European Data
Protection Board under the GDPR.

https://bit.ly/2BdQs08

126 O. Drozd and S. Kirrane

2 Related Work

Over the years there have been several papers tackling the problem of consent
request design [21,27,28,30] and understandability of consent content [10,12,15,
17,20].

As for types and formats of consent requests, Steinsbekk et al. [30] distinguish
the following consent models: (i) no consent (i.e., all data usage is prohibited),
(ii) specific consent (i.e., consent is tightly coupled with the purpose), (iii) broad
consent (i.e., a framework whereby data are categorized according to type), and
(iv) blanket consent (i.e.,virtually unlimited (including future) use of the data).
Schaub et al. [28] survey the literature on privacy notices and identify four design
dimensions of privacy notices, namely timing (i.e., when the notice is shown);
channel (i.e., medium that delivers the notice); modality (i.e., how the notice
is communicated); and control (i.e., what control options are available). Utz et
al. [32] describe common UI properties of consent requests and their influence
on people’s consent behavior. They found that privacy notices located in the
bottom left part of the screen have higher interaction rates. Additionally, the
researchers show that user choices can be strongly influenced by the nudging
and highlight the need for clear consent requirements to ensure that consent is
informed and freely given.

In terms of comprehension of the consent request content, much of the focus
to date has been on privacy policy visualization. McDonald et al. [21] assessed
three formats of privacy policies: layered policies, conventional human-readable
policies, and Privacy Finder privacy report7. In contrast to Utz et al. [32], the
authors do not recommend regulating privacy policies. The evaluation showed
that users disliked all three formats of privacy policies similarly, however, the
authors do not provide an explanation with respect to what could have caused
such a result. Kumar [17], in turn, analyzed 23 privacy policies putting a par-
ticular focus on the lack of clarity. Automatic assessment of the privacy policy
completeness is proposed by Costante et al. [10]. Though they group privacy pol-
icy content into categories, the text of the privacy policy still remains the same
as in a typical privacy policy and, as a result, is incomprehensible for users. The
same issue concerns the cookie-watch tool for cookie management, developed by
Friedman et al. [12]. Although it was designed to improve users’ understanding
of cookies, it still uses verbose cookie descriptions similar to the text of classi-
cal privacy policies. The consent requests in such a format would not provide
for an informed consent. Kelley et al. [15] describe a process for constructing
privacy policies based on labels and argue that their approach improves users’
performance, however, they fail to visualize the full data processing flow. There-
fore, such policies would lack full transparency regarding data processing. Reeder
et al. [27] test an expandable grid in the context of setting permissions in the

7 A Privacy Finder is a search engine service that informs users whether the privacy
policies of the displayed search results coincide with users’ privacy preferences. It
also generates a privacy report for each search result, providing users with the core
information from the privacy policy.

Privacy CURE: Consent Comprehension Made Easy 127

Windows operating system. However, the amount of information presented to a
user in such a context is much smaller than in the general context of obtaining
consent, hence cannot be applied to consent requests. Other literature, related
to obtaining consent from the data subjects, analyzes privacy control UIs, such
as mobile application (app) permissions [18,35]. When compared to a consent
request, app permissions only provide users with an overview of the type of
access the app requires, whereas no details are provided about the data process-
ing, which makes permission settings not sufficient for a valid informed consent.

In terms of specific or dynamic consent, Mont et al. [22] propose a dynamic
consent, policy enforcement and accountable information sharing platform. How-
ever, the focus is primarily on the architecture as opposed to the design of
a usable and understandable user interface. Consent, compliance, and trans-
parency systems [16,24,34], tools8 and dashboards [2,5,26] are a related topic in
the privacy literature as well as in industry, however, in this paper we focus pri-
marily on the UI aspects of a consent request. Although consent request design
features offered by Railean et al. [25] have some promising results, the authors
received inconsistent outcomes concerning the comprehension of their “privacy
facts” labels which indicates a need for a reevaluation.

New approaches for obtaining consent, such as Usercentrics’ consent request9

(or any other cookie consent request), try to categorize data and give users cus-
tomization options, as opposed to all or nothing approach in classical privacy
policies. However, they still provide a lot of textual information that causes infor-
mation overload according to our evaluation results, which are presented later in
this paper. According to a Norwegian Consumer Council report10, Google and
Facebook trick users into providing consent for the processing of more informa-
tion and intentionally make it harder to customize users’ consent by employing
dark patterns. The report states, that both companies: (i) preselect settings to
the least privacy friendly options; (ii) hide/obscure preselected settings; (iii) use
confusing wording; and (iv) design complicated paths to make it difficult to
manage users’ data processing.

Unlike most of the current consent requests, that employ an all or nothing
approach or provide pages of incomprehensible information about the data pro-
cessing, in our CURE prototype we provide users with: (i) transparency with
respect to personal data processing, (ii) understandable information about the
actual data processing, and (iii) control over the data processing with the help
of customization feature.

3 Background and Methodology

Before describing the CURE prototype and its usability evaluation, we provide
the necessary background information with respect to the use case, the consent
requirements and the methodology used to guide our work.
8 Compliance tools are offered by various companies, e.g., ShareThis Inc., eccenca

GmbH, etc.
9 Usercentrics’ consent request can be viewed at https://usercentrics.com.

10 Norwegian Consumer Council Report is available at https://bit.ly/2N1TRRC.

https://usercentrics.com
https://bit.ly/2N1TRRC

128 O. Drozd and S. Kirrane

3.1 Exemplifying Use Case Scenario

The following exemplifying use case scenario guided the development of the
CURE prototype. Sue buys a wearable appliance for fitness tracking from BeFit
Inc. In order to use the device’s features, she first needs to grant consent for the
processing of her personal data. She browses to BeFit’s website and is presented
with a consent request that describes which data need to be gathered, how
they will be processed and shared in order to provide her with fitness-related
information. For example, the consent request says that the device records heart
rate parameters such as resting heart rate and activity heart rate; these data
are stored on the device without sharing them with anyone; and processed to
provide Sue with information about her all day heart rate. For the purpose of our
research the content for the consent request was derived from our analysis of four
smart devices (Fitbit, Apple Watch, Garmin Vivomove, and Garmin ForRunner)
and two cloud-based analytics services (Runkeeping and Strava).

3.2 Consent Request UI Requirements

The CURE prototype requirements were derived both from the text of the GDPR
and its interpretation by the Article 29 Working Party, that examined how the
GDPR might influence data controllers in terms of consent request modifica-
tions. According to the Article 29 Working Party Guidelines on consent under
Regulation 2016/6791, consent should be: (i) freely given, (i.e., it provides real
choice and control for data subjects); (ii) specific, (i.e., it is separate from infor-
mation about other matters, is tied to a purpose, and provides separate opt-in
for each purpose); (iii) informed, (i.e., it includes elements that are crucial to
understand processing of personally identifiable information and make a choice);
and (iv) unambiguous indication of the data subject’s wishes by which they, by
a statement or by a clear affirmative action, signify agreement to the processing
of personal data relating to them.

3.3 Methodology

The Design Science Research (DSR) [23] methodology was the overarching
methodology that guided the design of CURE prototype. DSR starts with the
identification of the research problem and the justification of the solution neces-
sity. Then the objectives are specified and the design and development of a
research artefact begins. The evaluation of an artefact follows its development
and the results of the evaluation are communicated to researchers and other
stakeholders. DSR was complemented by Action Research (AR), as defined in [9],
to allow for the iterative refinement of the prototype. AR is an iterative app-
roach, that starts with a problem identification and a subsequent solution to it.
In the end, the outcomes of the action taken to solve the problem are evaluated.
The solution is improved if the evaluation outcomes are not satisfactory.

Given that we wanted to focus more on the why and how aspects of the user
interaction, rather than on what, where, or when, an observational method was

Privacy CURE: Consent Comprehension Made Easy 129

Table 1. CURE prototype usability evaluation assignments.

Task # Text of the task

T1 Give your consent to process your information to have health
data on your device.

T2 Give your consent to process your information for your
activities to be shown on a map.

T3 Give your consent to enable the fitness adviser.

T4 Give your consent to turn on the back-up of your data.

T5 Withdraw your consent to derive your cardio fitness score.

T6 Withdraw your consent to derive your race time predictions.

T7 Withdraw your consent to back up your data.

T8 Withdraw your consent to all the functionalities.

T9 Have a look at the detailed overview of the required data
processing for the functionality “display route on map”.

the methodology of choice for our usability testing [19]. The evaluation itself was
done in an asynchronous remote way [3] using a think aloud method [8,29,33],
where users recorded the video of their screen and the audio of their spoken
thoughts. We combined the think aloud method with performance measurement
(e.g., completion success rates, time spent on the tasks, errors, etc.) [14] and
post-evaluation remote questionnaire11 [13] containing single choice, multiple
choice, rating scale and open-ended questions that provided us with participants’
demographic data as well as their impression of the CURE prototype. In order to
make our evaluation as realistic as possible (in contrast to usability evaluations
performed in lab settings), we developed an online prototype, as it enabled the
participants to give their consent from a place of their choosing. Additionally, we
ensured ecological validity [7] by: (i) deriving the content for the consent from
the popular wearable appliances for fitness tracking; (ii) developing a cross-
platform prototype that allowed users to test it on any operating system and
browser of their choice; and (iii) testing our prototype with broad segment of
the population.

On commencement of the UI evaluation participants were asked to imag-
ine themselves buying BeFit’s wearable appliance for fitness tracking, and were
presented with BeFit’s information pertaining to activation and personal data
processing practices. After the participants read this information, they were
asked to activate the device, using the BeFit specific CURE prototype. During
the usability evaluation, the participants first completed a set of predefined tasks
(see Table 1) requiring them to grant and withdraw consent for specific features.
After these predefined exercises, they were asked to simply give their own con-
sent, as they would have done if they had bought the BeFit device. The former
was used to enable us to assess the effectiveness of the UI, while, the latter was

11 Our questionnaire is available at https://bit.ly/2DNOGC3.

https://bit.ly/2DNOGC3

130 O. Drozd and S. Kirrane

used to assess the users’ comprehension in terms of what they had consented to.
Additionally, the participants were also asked to visit Usercentrics’ website and
provide their consent for the personal data processing there, so that they could
compare and contrast our prototype and Usercentrics’ consent request approach.
We selected Usercentrics’ consent request for a comparative evaluation in our
usability testing because Usercentrics describes itself as the market leader in the
area of enterprise consent management platforms and is often referred to by data
protection experts.

Usercentrics’ consent request is an on-demand pop-up located in the bot-
tom left corner of the screen that provides users with a list of data processors,
several clickable icons (history, id, help) and a checkbox near each processor,
so users can provide their consent per data processor. When users click on a
“help” icon, they are presented with a more detailed consent request. In its
detailed consent request, Usercentrics again groups information regarding data
processing by data controller and offers users a possibility to give and with-
draw their consent for each data controller. The data processing information
of each controller is presented in a textual format and is divided into the fol-
lowing categories: processing company, data purposes, technologies used, data
collected, legal basis, location of processing, retention period, data recipients,
further information/opt-out, and history. The tasks where the participants gave
their own consent to BeFit and Usercentrics were assigned in a random order
to rule out the influence of the order on participants’ evaluations. In the post-
evaluation questionnaire the respondents were also asked to compare the CURE
prototype with a classical verbose consent request followed by an “agree” button.

4 The CURE Prototype

As the CURE prototype was developed in an iterative manner, in this paper
we describe its third version that achieved the best evaluation results and is
based on the usability evaluation outcomes of the first two versions. The first
two prototypes and their evaluation results are presented in [11]. In contrast
to the all-or-nothing approach, adopted by current consent requests, in the first
version of the prototype we gave users maximum control over their data process-
ing by providing them with an option to fully adjust their consent specifically to
their needs. The results of the usability evaluation showed that the participants
were overwhelmed with too much control over their data processing and there
was a clear need to simplify the UI and to reduce the consent options. Based on
the insights gained from the first usability evaluation, we developed a simplified
UI prototype. This second version of the prototype reduced the customization
options from full customization to just giving consent to data processing per
device’s functionality (i.e., purpose) with the possibility to customize third-party
data sharing for each functionality. The evaluation of the second prototype indi-
cated some improvement in terms of performance and comprehension. However,
the users still complained about the amount of the information they had to
digest and the lack of accelerators for giving and withdrawing consent.

Privacy CURE: Consent Comprehension Made Easy 131

Fig. 1. The CURE prototype: (1) Slider. (2) Consent per purpose.

Figure 1, which is split into two components: (1) slider, (2) consent per
purpose, depicts final BeFit’s CURE prototype. The fully functional prototype12,
which was developed for more realistic usability testing, as well as its source
code13 are both available online. From a technology perspective, Angular and
D3.js were used for the front-end development and Java and PostgreSQL for the
server side.

4.1 The CURE Prototype Description

The CURE prototype offers the following features to the user. Categorization.
The functionalities offered by the device equate to the purposes for personal data
processing. We group these purposes into more general categories that can be
browsed by just sliding the pointer up and down (see Fig. 1(1)). In the CURE
prototype we order the categories in a way that when the pointer is at the top
the users have maximum privacy with minimum device utility, and minimum pri-
vacy with maximum utility when the pointer is at the bottom. The ordering was
done according to our own preferences. However, we envisage that companies will
order those categories based on their device usage statistics. Additionally, the
CURE prototype provides a detailed overview of the data processing separately
for each purpose. This information is presented in a graphical form (see Fig. 2)
and is classified according to five categories, namely (i) purpose (i.e., function-
alities offered by a service), (ii) data (i.e., what data are collected from the data
12 The prototype is available in two languages: English (http://cr-slider.soft.cafe/en/)

and German (http://cr-slider.soft.cafe/de/).
13 The source code is available at https://bit.ly/2GErFC7.

http://cr-slider.soft.cafe/en/
http://cr-slider.soft.cafe/de/
https://bit.ly/2GErFC7

132 O. Drozd and S. Kirrane

Fig. 2. Example of a detailed overview of the required data processing for the purpose
“derive calories burned”.

subject), (iii) storage (i.e., where the data are stored), (iv) processing (i.e., how
the personal data are processed) and (v) sharing (i.e., with whom the data are
shared). These categories were derived from questions that were routinely asked
by our legal colleagues in the context of the SPECIAL14 project, which aims
to assess the lawfulness of personal data processing according to the GDPR.
Since the amount of information regarding the data processing is usually large,
categorization ensures that the interface is both clean and not overwhelming [31].

Customization. One of the most important aspects of the CURE prototype
is the possibility to customize the consent. The CURE prototype allows users
to consent to general categories using a slider. By selecting a category, users
automatically preselect all purposes that belong to that category. For exam-
ple, if users want to receive information about their health, they can just slide
the pointer to the “Health” category. Four purposes for data processing, that
fall under this category (i.e., display resting/all day heart rate; derive calories
burned; derive cardio fitness score), are automatically selected. Additionally, the
CURE prototype allows more granular customization (see Fig. 1(2)), where the
preselected consent can be further adjusted by selecting or deselecting check-
boxes corresponding to specific purposes. From a design perspective checkboxes
were selected for their simplicity and immediate choice visibility [31].

Understandability. In our CURE prototype we use plain language and short
phrases to improve the understandability of the consent request content. Addi-
14 Scalable Policy-awarE linked data arChitecture for prIvacy, trAnsparency and com-

pLiance (SPECIAL) project is described in detail on https://www.specialprivacy.eu/.

https://www.specialprivacy.eu/

Privacy CURE: Consent Comprehension Made Easy 133

tionally, the CURE prototype provides feedback for every user action. For
those users, who would prefer a detailed overview of the data processing, the
CURE prototype contains the already mentioned comprehensive overview of the
required data processing for each purpose. To reduce the amount of information
that is shown immediately to the user, this comprehensive overview becomes
available, on demand, upon clicking on a “?” symbol, placed after the descrip-
tion of each purpose. The understandability of this overview is enhanced with a
graphical visualization of the data processing. Figure 2 shows an example of such
an overview graph that provides details of the data processing required for the
“derive calories burned” purpose. Additionally, we incorporated color-coding and
icons into the graph. Different organizational models (e.g., treemap, sunburst,
chord, circle packing, etc.) were applied to represent the detailed overview of
the data processing. The graph, however, proved to be the most suitable for our
content.

Revocation. According to GDPR Art. 7(3), the data subjects should be able
to withdraw their consent at any time as easily as they gave it. In the CURE
prototype, the consent revocation can be done in two ways, either by sliding
up the pointer to withdraw the consent for multiple purposes at once or by
deselecting a corresponding checkbox to withdraw the consent for each purpose
separately. Although in our use case scenario the user is tasked with granting
consent for the first time, the CURE prototype can be used as a control interface
for the management of consent, which has already been given.

4.2 Results of the User Evaluations

In order to gain feedback regarding the effectiveness of our interface we con-
ducted a usability evaluation of the CURE prototype. Thirty-five participants
(69% - male, 31% - female) took part in our usability evaluation. The users
belong to different age groups (51% - 16 to 25 years old, 23% - 26 to 35 years
old, 17% - 36 to 45 years old, 6% - 46 to 55 years old, and 3% - 55 years old and
over). Almost one third of the participants (31%) graduated from high school.
The other 31% have bachelor’s degrees. The rest have master’s (14%) degrees,
no degree with some college (12%), trade, technical or vocational training (6%),
doctoral degrees (3%), and some high school education (3%). 63% of the partic-
ipants come from Austria. Others come from Bosnia, Croatia, the United King-
dom, Italy, the Netherlands, Romania, and Serbia. The participants rated their
Internet surfing skills as competent (43%), proficient (26%) and expert (28%).
Most of them reported that they usually spend 3–6 h (43%) or 1–3 h (34%) on
the Internet per day and preferably use a laptop (57%) or a desktop computer
(23%) for the surfing. During the evaluation the participants, first, completed a
set of predefined tasks that were outlined in the Methodology section. Then, they
were instructed to imagine that they purchased BeFit’s wearable appliance for
fitness tracking and asked to give their own consent. The participants were also
instructed to visit Usercentrics’ website and provide their consent there. After

134 O. Drozd and S. Kirrane

finishing their assignments, the participants were asked to fill in a questionnaire
about their experience with the CURE prototype.

Video Recordings. The analysis of the 35 video recordings provided by our partic-
ipants showed that the UI was very easy to use and the participants were able to
complete the tasks with ease and with almost no errors. We did not observe any
major confusion or misunderstanding of the UI. The users immediately noticed
the slider and understood the usage of checkboxes for the adjustment of con-
sent. The participants required, on average, 1 s to complete each of the tasks.
The average time needed to give their own consent was 20 s.

Comprehension Testing. We assessed the comprehension of the consent given to
BeFit by presenting different possible consent variations in the questionnaire and
asking the participants if they consented to that data processing. The answers
of each user were compared with the actual consent given. More than a half of
the participants answered all the questions correctly, and on average users got
86% of the questions correct.

Overall Satisfaction. When we asked users if they were satisfied overall with
the consent request, 71% of the participants reported satisfaction (51% - some-
what satisfied, 20% - very satisfied) with the consent request. 20% of the users
remained neutral towards the consent request (see Fig. 3(a)). There were no very
dissatisfied users and only 9% were somewhat dissatisfied with our UI. The high
overall satisfaction can also be reflected in the answers to the question about
the recommendation of the websites with the CURE prototype to a friend. 40%
said that it was very likely that they would recommend a website with such a
consent request to a friend and 29% replied that it was moderately likely. 11%
of the respondents would be slightly likely and 3% would be extremely likely to
advise a friend to use a website with our consent request. 17% of the participants
would not recommend it to a friend. Since only 9% of the users were somewhat
dissatisfied with our UI, this was somewhat surprising. Unfortunately, it was not
possible to determine why this was the case.

Ease of Use. It was very easy for the participants to use the CURE prototype
(e.g., the respondents stated that “...it was very clear”, “I did not face any major
difficulties”). A lot of the users said that the slider on the left side was the easiest
part about using the UI (e.g., “the easiest part of this consent form was definitely
the slider...”, “the slider is extremely easy to navigate”). The respondents also
spoke positively about the way the UI is organized (e.g., “the easiest thing was
to understand the logic behind how the different settings are divided”, “I liked
the structure very much”).

Adjective Description. The users were asked to select adjectives that they would
use to describe the UI they were testing. We used the list of adjectives from
Microsoft Desirability Toolkit [4], which we adapted to our case. The adjectives
that were selected support the results described above. The positive adjectives

Privacy CURE: Consent Comprehension Made Easy 135

Fig. 3. (a) Overall satisfaction with the consent request. (b) Assessment of the time it
took to give/withdraw the consent. (c) Perception of control over the data processing.
(d) Usefulness of the detailed overview graph of the data processing. (e) Usefulness of
the icons in the detailed overview graph of the data processing. (f) Usefulness of the
color-coding in the detailed overview graph of the data processing.

received most of the participants’ votes. The users found this UI easy to use
(50%), useful (34%), clear (32%), helpful (32%), usable (32%), effective (29%),
organized (29%), satisfying (23%), appealing (20%), efficient (20%), flexible
(20%), and innovative (17%). Some of the participants described the prototype
with the following negative adjectives: complex (17%), time-consuming (17%),
and confusing (17%). Figure 4 provides a detailed overview of the adjectives
chosen by the respondents.

Time Perception. When asked to provide their impression of the time it took to
give or withdraw consent, 40% of the participants answered that it took them
about the right amount of time (see Fig. 3(b)). 29% selected it took less time
than they thought it would. 14% reported that it took too long, but it was
worthwhile. For the rest of the users (17%), it took too long to give or withdraw
the consent.

Being in Control. We asked the participants, if they felt that they were in control
of the processing of their data when they used our consent request. Figure 3(c)
depicts users’ answers. More than a half of the participants agreed (40% - agree,

136 O. Drozd and S. Kirrane

Fig. 4. Adjectives selected by the participants to describe the CURE prototype.

17% - strongly agree) that such a consent request gave them control over the
data processing. 23% neither agreed nor disagreed that they were in control.
20% of the participants did not feel that they controlled the processing of their
data. There were no users who strongly disagreed.

Overview Graph. The graph that provided an overview of the data processing
related to each purpose was found to be useful to a greater or lesser extent by
92% of the users (see Fig. 3(d)). 20% found it extremely useful, 23% - very
useful, 40% - moderately useful, 9% - slightly useful. Only 8% of the users did
not find the graph useful. The participants were asked two questions regarding
the design features of the overview graph to find out if they liked the color-coding
and the icons used in the graph. 26% of the participants found the color-coding
to work extremely well in the graph (see Fig. 3(f)). Another 26% reported the
color-coding to be very useful. This feature was rated as moderately useful by
26% of the participants. 14% found it to be slightly useful. The rest (8%) did not
find color-coding useful. The icons helped 89% of users (37% - moderately, 34% -
very, 9% extremely, 9% slightly) to understand the graph better (see Fig. 3(e)).
However, for 11% of participants the icons were not useful.

Prototype vs Existing Consent Requests. The CURE prototype was compared
by the participants with two existing consent requests: (i) the classic consent
request in the form of privacy policy and an “agree” button at the bottom of the
web page, (ii) the consent request developed by Usercentrics. The respondents
named four main reasons why they liked the CURE prototype better than tra-
ditional consent requests. Unlike classic consent requests, the CURE prototype
provides: (i) choice (e.g., “...I have more opportunity to decide what happens
with the data”), (ii) an understandable detailed overview of the data processing
for each purpose (e.g., “...allows me to get a better image, especially with help
of the diagrams for detailed overview, about who and how collects my personal
data”), (iii) control over the data processing (e.g., “...helps control the way the
data are used”), and (iv) usability (e.g., “it is very easy to use”). Although the
consent request from Usercentrics is newly developed, the participants evaluated
it similarly to the classic consent. Apart from appreciating customization, the

Privacy CURE: Consent Comprehension Made Easy 137

users reported Usercentrics’ consent request to be time consuming, overwhelm-
ing, not memorable and not user friendly. Only one out of thirty-five participants
would choose this UI over the CURE prototype.

Prototype Improvement Suggestions. As users did not have any major problems
while using the CURE prototype, they did not offer any improvements (e.g.,
“since I, literally, had no difficulties in navigating the UI, I do not have anything
to say regarding the improvements”, “I like the UI as it is”). One participant
suggested to enhance the overview graph with links to third-party websites,
wherever their names are mentioned.

5 Conclusion and Future Work

In this paper, we introduced our consent request user interface, which affords
users more control over the processing of their personal data, by providing them
with more transparency regarding personal data processing and giving them
the opportunity to customize their consent. The UI was well received by the
participants of our usability evaluation, who performed all tasks quickly, easily
and almost without errors. Additionally, most of the adjectives used to describe
the UI were very positive and the overall comprehension level of what the par-
ticipants had consented to was very high. Our UI also performed better in a
comparison task, where users compared it to a classical consent request in the
form of privacy policy or terms and conditions, and one of the new solutions on
the market offered by Usercentrics. All the materials used in the evaluations are
available online, so that other consent UIs can be benchmarked against ours.

So far we have concentrated on the prototype development for laptops and
desktop computers, because most of the users still use these devices to surf the
Internet [11]. In the future we plan to adapt the CURE prototype for mobile
devices and conduct the evaluation of the adapted prototype.

Acknowledgments. This paper is supported by the European Union’s Horizon 2020
research and innovation programme under grant 731601. We would like to thank our
colleagues from SPECIAL and WU for their legal support and help with the user
studies.

References

1. Acquisti, A., Adjerid, I., Brandimarte, L.: Gone in 15 seconds: the limits of privacy
transparency and control. IEEE Secur. Priv. 11(4), 72–74 (2013)

2. Angulo, J., Fischer-Hübner, S., Pulls, T., Wästlund, E.: Usable transparency with
the data track: a tool for visualizing data disclosures. In: Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors in Computing
Systems, pp. 1803–1808. ACM (2015)

3. Bastien, J.C.: Usability testing: a review of some methodological and technical
aspects of the method. Int. J. Med. Inform. 79, e18–e23 (2010)

138 O. Drozd and S. Kirrane

4. Benedek, J., Miner, T.: Measuring desirability: new methods for evaluating desir-
ability in a usability lab setting. Proc. Usability Prof. Assoc. 2003(8–12), 57 (2002)

5. Bier, C., Kühne, K., Beyerer, J.: PrivacyInsight: the next generation privacy dash-
board. In: Schiffner, S., Serna, J., Ikonomou, D., Rannenberg, K. (eds.) APF 2016.
LNCS, vol. 9857, pp. 135–152. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44760-5 9

6. Borgesius, F.Z.: Informed consent: we can do better to defend privacy. IEEE Secur.
Priv. 13(2), 103–107 (2015)

7. Brewer, M.B., Crano, W.D.: Research design and issues of validity. In: Reis, H.T.,
Judd, C.M. (eds.) Handbook of Research Methods in Social and Personality Psy-
chology, pp. 3–16. Cambridge University Press, Cambridge (2000)

8. Charters, E.: The use of think-aloud methods in qualitative research: an introduc-
tion to think-aloud methods. Brock Educ. J. 12(2), 68–82 (2003)

9. Checkland, P., Holwell, S.: Action research. In: Kock, N. (ed.) Information Sys-
tems Action Research. Integrated Series in Information Systems, vol. 13, pp. 3–17.
Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36060-7 1

10. Costante, E., Sun, Y., Petković, M., den Hartog, J.: A machine learning solution
to assess privacy policy completeness: (short paper). In: Proceedings of the 2012
ACM Workshop on Privacy in the Electronic Society, pp. 91–96. ACM (2012)

11. Drozd, O., Kirrane, S.: I agree: customize your personal data processing with the
core user interface. In: Gritzalis, S., Weippl, E.R., Katsikas, S.K., Anderst-Kotsis,
G., Tjoa, A.M., Khalil, I. (eds.) TrustBus 2019. LNCS, vol. 11711, pp. 17–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27813-7 2

12. Friedman, B., Howe, D.C., Felten, E.: Informed consent in the mozilla browser:
implementing value-sensitive design. In: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences, p. 10. IEEE (2002)

13. Hartson, H.R., Castillo, J.C., Kelso, J., Neale, W.C.: Remote evaluation: the net-
work as an extension of the usability laboratory. In: Proceedings of the SIGCHI.
ACM (1996)

14. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation
of user interfaces. ACM Comput. Surv. (CSUR) 33(4), 470–516 (2001)

15. Kelley, P.G., Bresee, J., Cranor, L.F., Reeder, R.W.: A nutrition label for privacy.
In: Proceedings of the 5th Symposium on Usable Privacy and Security, p. 4. ACM
(2009)

16. Kirrane, S., et al.: A scalable consent, transparency and compliance architecture.
In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 131–136. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98192-5 25

17. Kumar, P.: Privacy policies and their lack of clear disclosure regarding the life
cycle of user information. In: 2016 AAAI Fall Symposium Series (2016)

18. Liccardi, I., Pato, J., Weitzner, D.J.: Improving mobile app selection through trans-
parency and better permission analysis. J. Priv. Confid. 5(2), 1–55 (2014)

19. MacKenzie, I.S.: User studies and usability evaluations: from research to products.
In: Proceedings of the 41st Graphics Interface Conference, pp. 1–8. CIPS (2015)

20. McDonald, A.M., Cranor, L.F.: The cost of reading privacy policies. ISJLP 4, 543
(2008)

21. McDonald, A.M., Reeder, R.W., Kelley, P.G., Cranor, L.F.: A comparative study
of online privacy policies and formats. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 37–55. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03168-7 3

https://doi.org/10.1007/978-3-319-44760-5_9
https://doi.org/10.1007/978-3-319-44760-5_9
https://doi.org/10.1007/978-0-387-36060-7_1
https://doi.org/10.1007/978-3-030-27813-7_2
https://doi.org/10.1007/978-3-319-98192-5_25
https://doi.org/10.1007/978-3-642-03168-7_3
https://doi.org/10.1007/978-3-642-03168-7_3

Privacy CURE: Consent Comprehension Made Easy 139

22. Mont, M.C., Sharma, V., Pearson, S.: Encore: dynamic consent, policy enforcement
and accountable information sharing within and across organisations. Technical
report, HP Laboratories HPL-2012-36 (2012)

23. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. JMIS 24(3), 45–77 (2007)

24. Piras, L., et al.: Defend architecture: a privacy by design platform for GDPR
compliance. In: Gritzalis, S., et al. (eds.) TrustBus 2019. LNCS, vol. 11711, pp.
78–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27813-7 6

25. Railean, A., Reinhardt, D.: Let there be lite: design and evaluation of a label for IoT
transparency enhancement. In: Proceedings of the 20th International Conference
on Human-Computer Interaction with Mobile Devices and Services Adjunct, pp.
103–110. ACM (2018)

26. Raschke, P., Küpper, A., Drozd, O., Kirrane, S.: Designing a GDPR-compliant
and usable privacy dashboard. In: Hansen, M., Kosta, E., Nai-Fovino, I., Fischer-
Hübner, S. (eds.) Privacy and Identity 2017. IAICT, vol. 526, pp. 221–236.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92925-5 14

27. Reeder, R.W., et al.: Expandable grids for visualizing and authoring computer
security policies. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1473–1482. ACM (2008)

28. Schaub, F., Balebako, R., Durity, A.L., Cranor, L.F.: A design space for effective
privacy notices. In: Eleventh Symposium on Usable Privacy and Security, pp. 1–17
(2015)

29. Seidman, I.: Interviewing as Qualitative Research: A Guide for Researchers in
Education and the Social Sciences. Teachers College Press, New York (2013)

30. Steinsbekk, K.S., Myskja, B.K., Solberg, B.: Broad consent versus dynamic consent
in biobank research: is passive participation an ethical problem? EJHG 21(9), 897
(2013)

31. Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly
Media, Inc., Sebastopol (2010)

32. Utz, C., Degeling, M., Fahl, S., Schaub, F., Holz, T.: (Un)informed consent: study-
ing GDPR consent notices in the field. arXiv preprint arXiv:1909.02638 (2019)

33. Van Someren, M., Barnard, Y., Sandberg, J.: The Think Aloud Method: A Prac-
tical Approach to Modelling Cognitive Processes. Academic Press, London (1994)

34. Weitzner, D.J., et al.: Transparent accountable data mining: new strategies for
privacy protection (2006)

35. Wijesekera, P., et al.: The feasibility of dynamically granted permissions: aligning
mobile privacy with user preferences. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 1077–1093. IEEE (2017)

https://doi.org/10.1007/978-3-030-27813-7_6
https://doi.org/10.1007/978-3-319-92925-5_14
http://arxiv.org/abs/1909.02638

Detecting Malware and Software
Weaknesses

JavaScript Malware Detection Using
Locality Sensitive Hashing

Stefan Carl Peiser1(B), Ludwig Friborg1, and Riccardo Scandariato2

1 Chalmers University of Technology, Gothenburg, Sweden
stefancarlpeiser@gmail.com, ludwig.friborg@gmail.com

2 Chalmers and University of Gothenburg, Gothenburg, Sweden
riccardo.scandariato@cse.gu.se

Abstract. In this paper, we explore the idea of using locality sensitive
hashes as input features to a feed-forward neural network with the goal
of detecting JavaScript malware through static analysis. An experiment
is conducted using a dataset containing 1.5M evenly distributed benign
and malicious samples provided by the anti-malware company Cyren.
Four different locality sensitive hashing algorithms are tested and eval-
uated: Nilsimsa, ssdeep, TLSH, and SDHASH. The results show a high
prediction accuracy, as well as low false positive and negative rates. These
results show that LSH based neural networks are a competitive option
against other state-of-the-art JavaScript malware classification solutions.

Keywords: Malware · LSH · Neural network · JavaScript

1 Introduction

JavaScript is one of the most popular scripting languages in the world as it is
the ‘de facto’ scripting language used by internet browsers. This means that
JavaScript has become a popular attack vector to infect computers of internet
users as these scripts are executed automatically by browsers. In this paper
we focus on static techniques to detect malicious JavaScript code, as static
approaches are simpler to apply and have a performance advantage. However,
detecting malicious code statically has become difficult due to code obfuscation.
On top of that, in the world of JavaScript, code obfuscation is not an indicator
of maliciousness as most JavaScript code on benign websites is obfuscated as a
side-effect of minimizing the size of production code and preserving intellectual
property.

In this paper we present an approach that works on both clear-text and
obfuscated scripts. In particular, we explore the use of locality sensitive hashing
(LSH) as a means to extract features from the scripts. The features are fed to

S. C. Peiser and L. Friborg—These authors contributed equally to this work.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 143–154, 2020.
https://doi.org/10.1007/978-3-030-58201-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_10

144 S. C. Peiser et al.

a neural network for the effective identification of malicious scripts. LSH is a
family of dimensionality reducing algorithms, which previously has been used
for document and code comparison and is used here in a novel way for malware
detection.

In Sect. 2 we introduce background material and survey the related work.
We present our approach in Sect. 3. In Sect. 4, we evaluate the approach on a
large corpora of malware samples and compare the results to several alternative
approaches from the state of the art (including Cujo and Zozzle). In Sect. 5 we
discuss and investigate possible causes for false positives and false negatives dur-
ing our experimentation. Finally, we present the concluding remarks in Sect. 6.

2 Background and Related Work

2.1 JavaScript Malware

Almost all web pages today utilize JavaScript in some form, whether to dis-
play fancy animations or to send data to web servers. Browsers have started
to run JavaScript files automatically when loading websites, which has enabled
many new attack vectors. JavaScript malware have various purposes. Many try
to download other malware onto the victim’s computer, e.g. remote access tro-
jans (RATs), ransomware and more, these are commonly known as drive-by-
downloads malware. Other common types of malware are bitcoin miners where
the malware uses the infected computer’s hardware to mine cryptocurrency.
Facelikers are also common, as they try to “like” various posts and pages on
Facebook using infected Facebook accounts.

Often, hackers obfuscate the code of malware in an attempt to make it harder
to analyse and detect. However, obfuscation is not necessarily an indicator of
maliciousness as it has become the norm in JavaScript development the last few
years as a way of minimizing code, hide client-side code and more.

2.2 Identification of JavaScript Malware

There are several malware detection techniques that have been proposed in the
state of the art. In this section we focus on the most prominent approaches,
which are also used as comparison in Sect. 4.1. For a more complete coverage of
malware identification, we refer the interested reader to the survey of Ye et al.
[20].

Dynamic Analysis. Ratanaworabhan et al. [13] propose a runtime heap-
spraying attack detector named Nozzle. The system has been used to analyse
JavaScript-based malware. Nozzle uses emulation techniques to detect executable
malicious code in objects allocated within the browser heap.

A drawback with using dynamic methods is that they are often resource
intensive and thus expensive to use at runtime. Thus, it is prevalent among
security vendors to use dynamic analysis methods to assess the scripts off-line
and, at runtime, just compare script files with a collection of already classified
samples.

JavaScript Malware Detection Using Locality Sensitive Hashing 145

Static Analysis. Ndichu et al. [11] proposes using Doc2Vec to extract features
from malicious JavaScript files and then feed them into a support vector machine
model. The performance of the classifier is promising but the validation dataset
consists of only 80 files.

Curtsinger et al. [3] propose a method named Zozzle. They evaluate both a
handpicked and a automated feature extraction method to then infer the mali-
ciousness of a JavaScript file through a naive Bayesian classifier. It is important
to note that their system is only able to function on unobfuscated code.

Xu et al. [19] propose a method named JStill, which operates on obfuscated
code. This method works by analysing code and looking for blacklisted func-
tion calls. It is important to note that the approach relies on white/black lists.
Therefore, the method is limited to cover only a subset of all JavaScript malware.

Likarish et al. [9] evaluate multiple different statistical learning methods
together with a tokenized feature extraction method based on different key-
words. Among the methods evaluated, the models with the lowest false positive
rate are ADTree [5] and RBF SVM [2]. Wang et al. [18] later provide a more
refined presentation of the results presented by Likarish. They also present a deep
learning approach, called SdA-LR, based on the previously mentioned feature
extraction method and a deep neural network for statistical inference.

Rieck et al. [14] propose a system called Cujo, which leverages three different
methods of JavaScript malware analysis. One is static, one is dynamic and one is
the combination of the previous two. The static method utilizes support vector
machines to learn the patterns of malicious scripts. The dynamic method uses
sandboxing. The work focuses on detecting one specific type of malware, namely
the drive-by-download family.

Although not related to JavaScript, the work of Raff et al. [12] is worth
mentioning. They train a deep learning model that consumes entire malware
executable binaries. Thus, the model learns how the malware are structured
internally. However, performance is a major drawback in this approach, as it
takes a month to train the model on a dataset of 2M executable binaries.

2.3 Locality Sensitive Hashing

Raff et al. [12] show that using deep learning to learn structural properties of
malware seems to be a powerful way of classifying them. However, the bottleneck
is represented by the time and resources it takes to learn on entire malware files.
Instead of processing whole files, our idea is to find a dense representation of
the file contents and to infer characteristics from said representation. Hence this
paper focuses on the use of locality sensitive hashing methods to provide concise
input features for a neural network.

Locality Sensitive Hashing (LSH) is a relatively new family of dimensionality-
reducing algorithms, including Nilsimsa [4], TLSH [10], ssdeep [8], and SDHASH
[15], which are evaluated in this work. These algorithms produce condensed
representations (hashes) of the given input data. By construction, the hashes of

146 S. C. Peiser et al.

Table 1. List of the most prevalent types of malicious scripts.

Malware type Count %

Redirector 166857 20.4

Trojan downloader 43505 5.3

CoinHive 6285 0.8

SEOHide 4394 0.5

IFrame 3629 0.4

FaceLiker 2285 0.3

Ramnit 1615 0.2

FakejQuery 1073 0.1

Crypted 938 0.1

Unknown type 588153 71.8

Total 818734

similar files are also similar1, hence the hashes can be used as proxies in order
to compare the similarity of the original files. The benefit is that the hashes
are much more concise and lend themselves to be used as features in learning
algorithms.

3 Experimental Setup

3.1 Dataset

The dataset contains about 1.5M scripts, of which 54% are malicious. Table 1
describes the different malware types that are present in the dataset. The data is
provided by Cyren (https://www.cyren.com), which is a large vendor in the field
of cybersecurity and supplies, among other, the scanner for email attachments
used by Google and Microsoft [1]. All JavaScript files in the dataset have been
collected and labeled during the first half of 2019. The files originate from various
sources, e.g. from web scrapers, customers sending in files for analysis, e-mail
attachments, incoming files from VirusTotal [17] and more. Each of these files
goes through Cyren’s malware scanners (based on dynamic analysis) and the
system assigns a label to the sample indicating whether it is clean or malicious.
These labels represent our ground truth.

3.2 Feature Extraction

As shown in Fig. 1, the locality sensitive hashes are pre-processed before being
used as input to the neural network. Thus we have to take into account the
1 This contrasts to cryptographic hashing techniques, like SHA256, where the hashing

algorithm minimizes the probability of collisions, i.e., two almost identical files yield
two drastically different hashes.

https://www.cyren.com

JavaScript Malware Detection Using Locality Sensitive Hashing 147

Neural Network

Split into 3-grams
04E, 4E2, E2F, 2FD, FD0, D00...

Integer Encoding
25, 22, 4, 10, 85, 45...

Nilsimsa
04E2FD002E84ED2E0...

CODE

TLSH
1a304c41a07781f915530...

SSDEEP
4I+v1G2+0MGi+vZGIikH...

SDHASH
297a7fadb6dc7abded32c8...

Neural Network

Split into 3-grams
41+, 1+v, +v1, v1G, 1G2...

Integer Encoding
43, 26, 12, 43, 62, 2..

Neural Network

Split into 2-grams
29 97 7a a7 7f fa ad db b6...

Count Vectorization
74, 8, 23, 43, 10, 114, 1...

Zero Padding

Fig. 1. Feature extraction and prediction pipeline.

different characteristics of the hashes. Both TLSH and Nilsimsa produce a fixed-
length, hex-encoded strings of 70 and 64 characters respectively. SSDEEP pro-
duces a hash that is base64 encoded and its length is variable, but has a max
size of 148 characters. Finally, SDHASH produces hex encoded hashes of variable
length, but with no maximum limit.

To let the neural network find patterns in the substrings of the hashes we
decided to split the hashes into n-grams by using a sliding window (of size n and
sliding of 1 position at a time). As detailed later, the learning algorithm (namely,
the embedding layer) uses a dictionary whose size is 16n for TLSH and Nilsimsa
(hex encoding), and 64n for ssdeep (base64 encoding). A larger dictionary has
an impact on the training time and the memory consumption. Therefore, after
experimentation, the trade-off decision has been made to use tri-grams. During
the experimentation, we also found that using n ≥ 4 did not yield any noticeable
classification improvements but a high increase in training time.

After splitting the hash into n-grams, each hash is then encoded as a sequence
of integers, i.e., each n-gram is converted to its positional value. After the encod-
ing, we are left with input vectors of different size for each LSH type. In the case
of TLSH and Nilsimsa, the vectors are of fixed size and they are used as-is to train
a neural network. In the case of SSDEEP, the vectors have variable length but,
due to the nature of the output from this algorithm, there is an upper bound.
In this case, we take the length of the longest vector and add zero-padding to
the vectors so that they have the same length.

SDHASH produces output hashes with no definitive maximum length and no
upper bound. Hence, for this hashing algorithm, the construction of the features
is different. Starting from the hash, we split it into a vector of bi-grams (in place
of tri-grams) and filter the vector through a count vectorizer, which returns a
vector of frequencies for each unique bi-gram. We use the vector of frequencies

148 S. C. Peiser et al.

Table 2. Network model composition (where L is length of input vector).

Layer name Output dimensions

Embeddings 32 × L

Flatten 1 × L

BatchNormalization 1 × L

Dense 1 × 256 Activation: relu

Dropout 1 × 256 Probability: 0.125

Dense 1 × 64 Activation: relu

Dense 1 × 1 Activation: sigmoid

as input vector for the neural network. Note that the ordering of bi-grams gets
lost in the process, which might negatively affect the performance of the neural
network performance. The choice of using bi-gram is justified by the fact that, in
this way, the input vector is of similar size with respect to the other algorithms.

3.3 Neural Network Design and Implementation

A supervised learning approach with a normal deep feed-forward neural network
is used to classify each locality sensitive hash. The input layer of the neural
network takes the integers generated from each hash, and the output layer will
return one single value, presented on a scale between 0 and 1, determining the
likelihood of the input of being malicious. Table 2 provides an overview of the
network structure. The embedding layer transforms positive integers into dense
non-zero vectors. This was chosen to mitigate the problem of it having a high
presence of sparse input-vectors in addition to some hashing methods producing
hashes of an inconsistent length leading to a lot of 0-padding. Not embedding
the input data resulted in worse performance and slower convergence rate for
the learning model. We use both Batch Normalization [6] and Dropout [16] for
regularization.

In terms of fitting the network to gain an accurate understanding of the
given data adam optimization [7] was used together with binary cross-entropy
as loss-function.

3.4 Experiments and Performance Indicators

By means of random sampling, we split the complete dataset into seven subsets
of incrementally bigger sizes, namely 5k, 10k, 50k, 100k, 500k, 1M, 1.5M (i.e., the
whole set). We use subsets of varying sizes in order to investigate the trade-off
between prediction performance and training cost. Ultimately, we would like to
understand how much data is necessary in order to generalize. Note that, as we
use random sampling, the positive rate in the subsets is expected to be similar
to the complete dataset.

JavaScript Malware Detection Using Locality Sensitive Hashing 149

Table 3. Results from the 5-fold cross-validation experiment.

LSH ACC (%) FPR (%) FNR (%)

TLSH 97.79 1.01 3.25

Nilsimsa 98.05 1.09 2.69

ssdeep 97.97 0.94 2.98

SDHASH 95.06 1.83 7.63

Fig. 2. Accuracy, false positive rate and false negative rate across the different exper-
iments with increasingly larger dataset sizes.

For each subset and each LSH method, we run a 5-fold cross-validation exper-
iment and measure the average performance of the prediction approach. As we
use 5-fold cross-validation, the results we report are averaged over the perfor-
mance obtained in the individual folds.

To assess the different prediction models, we rely on three performance indica-
tors: accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).
The key performance indicators are FPR and FNR. However, we also include
accuracy for comparison reasons, as this indicator is often reported by the other
approaches we compare to (cf. Sect. 4.1). The performance indicators are calcu-
lated as follows:

– ACC = TP+TN
TP+TN+FP+FN

– FPR = FP
FP+TN

– FNR = FN
FN+TP

where TP, TN,FP and FN corresponds to the number True/False
Positives/Negatives.

4 Results

Table 3 shows the results from the cross-validation experiment on 1.5M samples.
Figure 2 shows the results for all the experiments with different dataset sizes.
It is possible to observe that Nilsimsa has a slight advantage compared to the

150 S. C. Peiser et al.

Table 4. Comparison of the performance indicators between our models and the state
of the art, where M:C corresponds to Malware:Clean, which is the amount of samples
used.

Classifier ACC (%) FPR (%) FNR (%) M:C

Zozzle manual 98.2 1.50 1.20 900:8000

Zozzle auto 99.2 0.30 9.20 900:8000

JStill 97.3 17.5 0.53 30k:50k

RBF SVM 86.8 4.92 8.33 14k:12k

ADTree 82.7 2.42 14.92 14k:12k

SdA-LR 94.8 4.13 6.04 2959:2464

CUJO static 90.1 0.10 9.80 609:200k

Ours - TLSH 97.79 1.01 3.25 818k:709k

Ours - Nilsimsa 98.05 1.09 2.69 818k:709k

Ours - ssdeep 97.97 0.94 2.98 818k:709k

other methods. Interestingly, and contrary to expectations, the SDHASH model,
which used a count-vectorized style of network input, also seems to produce
good results, though falling short against the other LSH methods. The results
also show that the models are more prone to making false negative predictions
rather than false positives, which is a beneficial trait in the world of malware
detection.

Observing the graphs in Fig. 2, it is possible to see that even in the smallest
dataset of 5k samples, the best models (Nilsimsa, ssdeep, and TLSH) are already
capable of yielding an accuracy of more than 90%. SDHASH, instead, requires
a bigger dataset (50k samples and above) in order to produce stable results. In
general, there is an expected trend of increased performance as the sample size
grows, although with diminishing returns staring from a size of 500k samples.

4.1 Comparison to Alternative Approaches

In Table 4 we present a comparison between our models and other approaches
that utilize static analysis. The performance values for the competing approaches
are taken from the corresponding research papers.

In comparison to Zozzle, i.e., the best performing compared model we com-
pare to, our model is quite close in performance but does not match it. However,
our approach does support the classification of obfuscated JavaScript, which
is not supported by Zozzle. This implies a wider range of applicability for our
models. When comparing to the other models from the state of the art, our app-
roach performs better when considering the accuracy (about 98%) and is more
balanced when considering the FPR and the FNR jointly (e.g., with a threshold
of about 3% for both).

In addition to this, due to the very large size of our dataset, we can reliably
test the validity of our models and have confidence that a similar performance can

JavaScript Malware Detection Using Locality Sensitive Hashing 151

Table 5. Top 10 most common false negative categories, ordered by percentage of
occurrences.

TLSH Nilsimsa ssdeep SDHASH

1st Unknown Unknown Unknown Unknown

2nd Redirect Redirect Redirect Redirect

3rd Trojan Trojan Trojan Trojan

4th CoinHive CoinHive CoinHive CoinHive

5th SEOHide SEOHide SEOHide SEOHide

6th IFrame IFrame IFrame IFrame

7th Faceliker Faceliker Faceliker Faceliker

8th Crypted FakejQuery FakejQuery Crypted

9th FakejQuery Crypted Ramnit FakejQuery

10th Ramnit Ramnit Crypted Ramnit

be achieved when used in real life circumstances. Making classifiers with small
datasets might lead to less generic models. Since there exists a vast diversity
of possible malware and clean files, a small dataset might give a skewed image
of the performances of the methods, due to not being able to verify whether
it works on new never-seen-before malware. In our case, we have 1.5M samples
with a 54% positive rate. The only competitor that has a similarly sized dataset
is Cujo, with roughly 201k samples, but very few samples of malware (0.3%).
This can be further seen in Table 4, as the best performing classifiers all have
very few samples of malware files compared to our dataset.

5 Discussion

In this section we discuss the possible causes of misclassifications, which might
lead to false negatives and false positives.

5.1 False Negatives

False negatives are misclassified malware scripts, for which we have full access
to the code. This section will focus on the models trained on the entire 1.5M
dataset, as these are the best performing models and also the dataset that con-
tains all malware files, giving a better view of the shortcomings of LSH. Table 5
shows the top 10 most common types of misclassified malware, for each LSH
method. The detection names come from Cyren’s labelling system. The most
occurring category represents the most difficult class of malware for our models
to generalise. The unknown category contains files that got flagged for malicious
behaviour but where there was not enough information to sort the files into
one of the more known malware families. One very likely scenario is that the

152 S. C. Peiser et al.

unknown malware belong to smaller groups of malware types which might be
less prevalent in the dataset.

Observing Table 5, it is possible to see that all LSH methods lead to almost
the same false types of negatives: the top 7 misclassified categories are the same
for all four methods. When inspecting these files, it can be seen that they have
two common elements: either they are very similar to clean looking code, like in
the case of Redirectors and FakejQuery, or the actual malicious part of the code
is very small, making it easy to inject into otherwise clean code, like CoinHive.

In consequence, when these malware types are hashed, malicious information
might get lost, e.g. if there is a single line of malicious code in an otherwise clean
file it might result in that the hash looks more like a clean file rather than a
malicious file, which is often the case with CoinHive or other cryptocurrency
mining malware.

In the case of redirectors, we have malware that is not necessarily doing any-
thing malicious, as redirecting users on websites is a very common thing, but it
is the destination that is malicious. This is a similar problem with malware of
the downloader type (in Table 5 are Trojan, Ramnit, FakejQuery, and Crypted)
since the act of downloading is not malicious, but the file that is downloaded
might be malicious. In that case, the JavaScript file itself does not actually hold
any malicious code. In these cases, the destination/download URLs that are the
malicious indicators might after locality sensitive hashing have a little to no dif-
ference from URLs that are benign. In other words when a locality sensitive hash
is created, it might end up looking like other downloader/redirection programs
that are benign.

5.2 False Positives

False positives are misclassified clean files. The clean files from Cyren were not
directly available to us (only the file’s SHA256 signature and its LSH hashes are
stored in our dataset) as these files are more likely to contain personally identi-
fiable information. Thus we have to rely on analysing the files that come from
VirusTotal, which are publicly available. In comparison to false negatives, false
positives are much harder to analyse because clean files do not carry a category
label that we could use as a basis for generalization. By doing a manual inspec-
tion on 50 of the publicly available false positives, the following observations
have been made:

– Due to malware like FakejQuery, there is a chance that other similar benign
code gets detected, e.g., code that is a fork of jQuery or a jQuery plugin.

– Shorter files give hashes that carry less information, leading to higher false
positives. This is the reason why the LSH methods have a recommended
minimum file/length.

– Some obfuscation techniques are less common than others, for example,
encoding JavaScript statements as a string which the program then interprets
using the eval method is highly suspicious but is not always an indicator of
maliciousness. It is sometimes used to hide sensitive data that should not be
able to get scraped by web crawlers.

JavaScript Malware Detection Using Locality Sensitive Hashing 153

6 Conclusion

In this paper we have shown that utilising deep learning together with local-
ity sensitive hashing as a form of feature extraction it is possible to classify
JavaScript malware with a high accuracy and a low false positive rate. Our
method works with obfuscated code and is completely static. When comparing
our method to other methods of static JavaScript malware detection, our method
provides competitive results without having drawbacks such as not being able
to handle obfuscated code.

References

1. Cyren - Malware Attack Detection (2019). https://www.cyren.com/tl files/down
loads/resources/Cyren Malware-Attack-Detection Datasheet 20160915 ltr EN we
b.pdf

2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 3 (1995).
https://doi.org/10.1007/BF00994018

3. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: low-overhead mostly static
javascript malware detection. Technical report, MSR-TR-2010-156, November 2010

4. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: An open
digest-based technique for spam detection, vol. 2004 (2004)

5. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Pro-
ceedings of the Sixteenth International Conference on Machine Learning (1999)

6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
8. Kornblum, J.: VirusTotal (2018). https://ssdeep-project.github.io/ssdeep/index.

html
9. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using classi-

fication techniques. In: International Conference on Malicious and Unwanted Soft-
ware (MALWARE) (2009)

10. Micro, T.: TLSH (2018). https://github.com/trendmicro/tlsh
11. Ndichu, S., Ozawa, S., Misu, T., Okada, K.: A machine learning approach to mali-

cious javascript detection using fixed length vector representation, pp. 1–8, July
2018. https://doi.org/10.1109/IJCNN.2018.8489414

12. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Mal-
ware detection by eating a whole EXE. arXiv e-prints arXiv:1710.09435 (2017)

13. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: a defense against heap-
spraying code injection attacks. In: Proceedings of the Usenix Security Symposium
(2009). https://www.microsoft.com/en-us/research/publication/nozzle-a-defense-
against-heap-spraying-code-injection-attacks-2/

14. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference (2010). https://doi.org/10.1145/1920261.1920267

15. sdhash@roussev.net: SDHash (2018). http://roussev.net/sdhash/sdhash.html
16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. (2014). http://jmlr.org/papers/v15/srivastava14a.html

https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://doi.org/10.1007/BF00994018
http://arxiv.org/abs/1502.03167
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://github.com/trendmicro/tlsh
https://doi.org/10.1109/IJCNN.2018.8489414
http://arxiv.org/abs/1710.09435
https://www.microsoft.com/en-us/research/publication/nozzle-a-defense-against-heap-spraying-code-injection-attacks-2/
https://www.microsoft.com/en-us/research/publication/nozzle-a-defense-against-heap-spraying-code-injection-attacks-2/
https://doi.org/10.1145/1920261.1920267
http://roussev.net/sdhash/sdhash.html
http://jmlr.org/papers/v15/srivastava14a.html

154 S. C. Peiser et al.

17. VirusTotal: VirusTotal (2018). https://support.virustotal.com/hc/en-us/articles/
115002126889-How-it-works

18. Wang, Y., Cai, W.D., Wei, P.C.: A deep learning approach for detecting malicious
javascript code. Secur. Commun. Netw. (2016). https://doi.org/10.1002/sec.1441

19. Xu, W., Zhang, F., Zhu, S.: JStill: mostly static detection of obfuscated mali-
cious javascript code. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, CODASPY 2013 (2013). https://doi.org/
10.1145/2435349.2435364

20. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data
mining techniques. ACM Comput. Surv. (2017). https://doi.org/10.1145/3073559

https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://doi.org/10.1002/sec.1441
https://doi.org/10.1145/2435349.2435364
https://doi.org/10.1145/2435349.2435364
https://doi.org/10.1145/3073559

RouAlign: Cross-Version Function
Alignment and Routine Recovery
with Graphlet Edge Embedding

Can Yang1,2(B), Jian Liu1,2(B), Mengxia Luo1,2, Xiaorui Gong1,2,
and Baoxu Liu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

{yangcan,liujian6}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Reverse engineering is labor-intensive work to understand
the inner implementation of a program, and is necessary for malware
analysis, vulnerability hunting, etc. Cross-version function identification
and subroutine matching would greatly release manpower by indicat-
ing the known parts coming from different binary programs. Existing
approaches mainly focus on function recognition ignoring the recovery of
the relationships between functions, which makes the researchers hard
to locate the calling routine they are interested in.

In this paper, we propose a method using graphlet edge embedding to
abstract high-level topology features of function call graphs and recover
the relationships between functions. With the recovery of function rela-
tionships, we reconstruct the calling routine of the program and then
infer the specific functions in it. We implement a prototype model called
RouAlign, which can automatically align the trunk routine of assembly
codes. We evaluated RouAlign on 65 groups of real-world programs, with
over two million functions. RouAlign outperforms state-of-the-art binary
comparing solutions by over 35% with a high precision of 92% on average
in pairwise function recognition.

Keywords: Edge embedding · Calling routine recovery

1 Introduction

An essential purpose of reverse engineering is to pick out known calling rou-
tines from a new binary program. This analyzing task is generally used in mal-
ware family classification, reused component detection, patch comparison, and
so on. But it could be a tedious job to find out every mutation of a program,
especially when the main functionality stays the same but some calling routines

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 155–170, 2020.
https://doi.org/10.1007/978-3-030-58201-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_11

156 C. Yang et al.

added or removed. What’s more, it would encounter plenty of difficulties in cross-
architecture, cross-OS, cross-compiler, and cross-optimization programs routine
cognition. This problem has now become more crucial while Internet-of-Things
(IoTs) become massive and fragmentated.

For instance, Fig. 1.A shows a message processing routine of a printer with
CVE-2017-2741. Now, if we have obtained the function call graph (Fig. 1.B) of
another printer (with different architecture here), analyzing is needed to verify
the vulnerability. In this case, traditional tools [9] could hardly help. A common
way in practice is to locate the context functions by cross-references firstly. Then
trace the calling routine to see whether a similar function exists in Fig. 1.B. We
note that only a subset of functions in the routine are concerned by researchers,
and the connectivity between functions is important in the analysis.

Func_A Func_B Func_C

Func_A' Func_B' Func_C'

recv() string "@PJL" fopen() & fwrite()

Mass of Functions
in Routine

Vul_func

Other Functions

A) Knowledge:

B) Target:

model A Arm_v7

model B x86

Easy to Locate by Cross-Refs
Easy to Locate

?
Whether & Where

Vulnerable?

Fig. 1. Motivation: reuse knowledge of (A) to search vulnerabilities in (B)

Actually, the same vulnerability might be shared by dozens of binaries from
different products. But automatically analyzing these cross-version binaries is
complicated for many reasons. Generally speaking, difficulties are: 1) Different
compilers prefer difference memory arrangements and inline hobbits. 2) Different
compiler optimizations and obfuscators would greatly change the control flow [11,
19]. 3) Library and system functions vary a lot within different operating systems.
4) A software might change a lot after years of development, even if its main
features were hardly modified.

Existing state-of-the-art solutions for cross-version binary analysis are not
routine-sensitive. Approaches [7,14,15,21,26] are mainly trying hard to under-
stand the semantics of functions for identification. These methods tend to iden-
tify functions directly, but isolated. Approaches [8,17,20,24] take the Function
Call Graphs (FCG) into consideration. But these methods only utilize intu-
itive features like degrees of nodes, as assistance to the function internal fea-
tures. However, considering in case cross-version analysis, internal features are
not stable and reliable. We design a method to better utilize FCG than ever.
By abstracting higher-order structural features into vectors and then modeling
them via neural networks, we show that the FCG could play an important role
in routine recovery and function alignment.

Our Approach: Alignment. In this paper, we aim at finding a way to recog-
nize a common calling routine between cross-version binaries, and then identify

Function Alignment with Graphlet Edge Embedding 157

functions in it. For the purpose of recognizing the calling routine, we must have
abilities to recover the relationships between functions (mainly caller-callee rela-
tionship). With the recognized relationships, reverse engineers can pick out a
calling routine from the FCG of an unknown program. Once the calling routine
is aligned with a known routine, the functions in the same position can be viewed
as functional equal. This method is what we called Alignment method because
it infers a function by its position in a routine rather than investigate the inner
implementation of the function. This method should be robust enough against
variations such as function inline and addition function calls.

For relationships recovery, we propose a new algorithm based on Graphlet
Edge Embedding (described in Sect. 3.3). This is inspired by the ideas of
Graphlet Degree Signatures [22], which is a famous alignment algorithm in
bioinformatics. Our method starts from a simple assumption that the similar
functions in program have similar graph structures in the function call routine,
and reasonable modifications (function inline, additional calls, etc., which could
be introduced by programmers or compilers) to the graph structure is recogniz-
able. For instance, a distributor function usually follows the input routines and
has many subroutines for special tasks. In short, we used edge embeddings to
abstract high-level features of functions in function call graphs, and then recover
the caller-callee relationships between functions to reconstruct the function call-
ing routine. With this method, we can tell a known routine from a new binary,
thus functions in the routine can be recognized and an overall knowledge of the
program can be achieved.

We have implemented a prototype tool called RouAlign. RouAlign utilized
graphlet edge embeddings to align two calling routines automatically and then
identified functions by the aligned positions in the routines. We evaluated
RouAlign in 65 groups of cross-version binaries with over 200,000 functions.
And we compared the function recognition results of RouAlign with the results
of BinDiff and the results of Gemini. RouAlign performed better than both and
showed a great potential of function call graphs in function recognition.

In summary, our contributions are as follows.

– Routine Recovery. We present a multistage approach to align FCGs where
the calling routines are preserved as much as possible.

– Edge Embedding Algorithm. We propose a method to embedding edges
in FCGs, and an algorithm to recover caller-callee relationships between func-
tions with abilities to distinguish modifications like function inline.

– Scalable Design. Compared to existing algorithms, our algorithm is par-
allelable (the procedure can be speeded up via multi-processing) and incre-
mentable (the results would be expanded when given extra knowledge) besides
high precision.

– Better Performance. Compared to popular commercial binary diffing tools,
our prototype can perform 35% better precision and 25% better recall on
average within cross-version binaries.

158 C. Yang et al.

2 Problems and Challenges

In this section, we address the problem to study, challenges facing, and reason-
able ways to solve them. Some important symbols are defined as well.

2.1 Function Alignment

Existing function matching methods can be roughly classified into two cate-
gories. One is pairwise matching, which searches common functions in a pair
of programs. The other is library matching, which represents functions in brief
forms (i.e., embedding) and searches a new function from a pre-built representa-
tion library. Function alignment is a kind of pairwise matching, but differs from
function matching methods. Function matching methods aim to find two func-
tions exactly the same. In contrast, function alignment tries to find functions of
the same use (namely, functionally equal).

Definition 1. Functional Equal: If function Fa and Fb take the same respon-
sibility in their individual calling routines, they are functional equal. Ideally,
functional equal means Fa and Fb can be substituted with each other in their
calling routines.

Considering an example of algorithmic upgrade, suppose an old program A
has a routine: “Input → Encrypt → MD5 → Output”. And a new program
B has a routine: “Input → Encrypt → SHA1 → Output”. In both program A
and B, the Input, Output and Encrypt are exactly the same. Usually, Function
matching methods [7,15] will mark the SHA1 and MD5 as different and the
relationships with both Input and Output are ignored. But function alignment
should mark that SHA1 and MD5 are of the same use (both are hash functions)
and the calling routine stays successive. This makes alignment methods robust
when figuring out the main routine of a program, especially when some compo-
nents were changed. We regard alignment as a relationships-defined procedure,
and formally define the function alignment as follows.

Definition 2. Function Alignment: given a target program Ptrgt and a template
program Ptmpl, function alignment aims to find a function mapping A(Ftmpl) →
Ftrgt between FCGs from Ptmpl to Ptrgt, where Ftrgt are functional equal to
Ftmpl.

In case the functions in Ptmpl were known, the function alignment proce-
dure could be viewed as knowledge reasoning from Ptmpl to Ptrgt. In Biological
Network Alignments, it has been shown that aligned networks are functional sim-
ilar [18]. Our experiments show that rule also worked for Function Call Graph
Alignments.

Function Alignment with Graphlet Edge Embedding 159

2.2 Challenges

Directed Heterogeneous Network. Network alignment and graph alignment
are also hot but tough topics in literature. In reverse engineering, FCG provides
limited information. Data refers, syscalls and many attributes of function are
not negligible. Taking this into consideration, the FCG becomes a heteroge-
neous network. This means, for reliable and convincing performance, our func-
tion alignment problem might be equivalent to heterogeneous network alignment
problems. Although heterogeneous networks preserve richer information than
homogeneous networks, they face more challenges [4]. In addition, the develop-
ment of algorithms on heterogeneous networks is not mature enough now.

Low Recognizability of Sparse Network. The network alignment algo-
rithms used in other fields, such as bioinformatics and graph theory, are usually
designed for denser networks. However, in function call graphs, most functions
only relate to other few functions. This means if we naively represent a function
as its surrounding topologic, many functions might not be distinguishable. This
is one of main reasons why embedding methods, like structure2vec [1,16], leave
branch of functions as “similar”. Low precision at one will significantly make
the alignment methods not reliable because the mistakes would propagate via
relationships.

Brief Solution. To overcome these challenges, we adapt two novel methods.
Firstly, we separated the heterogeneous network into two layers. One contains
the relationship between functions and other attributes; the other is a directed
homogeneous network where nodes are functions. Secondly, instead of recogniz-
ing the nodes directly, we take a detour to recover edges among nodes, and design
a new method to evaluate the similarity of these edges.

3 Function Alignment Method

In this section, we first show the overall workflow of RouAlign, which recover two
informative structures from binary codes as necessary data. Then we introduce
the core process of graphlet edge embedding method to extract higher-order
graphic features. And finally, we describe the approach to aligning functions and
recovering calling routines.

Target
Binary

Template
Binary

Binary Pair Feature Extraction

Static Data Usage

Call Graph Extraction

Alignment

Data Alignment Anchor Nodes

GEE Alignment Expansion

Anchoring:

Expanding:

Alignment
Results

Known
Aligments

(optional)

Fig. 2. Overview of RouAlign

160 C. Yang et al.

3.1 Overview

The RouAlign is designed to align calling routines from the target binary to the
template binary. Figure 2 shows the whole process of the tool. The first step is
extracting necessary information from binaries, including static data references
and function call graph. Static data includes string constants, numeric constants,
etc. In experiments [12–14], they are proved to be reliable across versions. The
function call graph preserves function nodes as well as caller-callee relationships
between them. Thus, after extraction, our heterogeneous relation network has
two layers with two different node types, one is func-data layer, the other is
func-func layer.

The alignment stage can be separated into two phases—anchoring and
expanding—for different layers of the relation network. The anchoring proce-
dure tries to find some function nodes that are highly similar in the func-data
layer. The expanding procedure trys to align more nodes from the anchored
nodes in the func-func layer. They would be discussed later in Sect. 3.2 and 3.3.
The basic idea of this method is to find some reliable nodes and then propagate
the confidence as much as we can. This refers to the “seed and expand” idea of
BLAST [3], and is also sort of simulation of the human analyzing procedure.

3.2 Anchor Nodes Searching

Many human researchers start to analyze a binary from limited entries, such
as main functions, special library functions, functions with special and unique
constants, etc. So inspired RouAlign. The reason behind is that, these features
are the most likely to stay constant in the mutations [13]. These functions are
naturally aligned and we call them anchor nodes.

We defined two kinds of anchor nodes. One comes from the running mech-
anism of executable binaries. In most situations, library calls and syscalls are
explicit. For instance, Windows PE files use IAT to locate the library functions,
and Linux ELF files use PLT. Many modern disassemble tools like IDA PRO can
automatically indicate these calls in the binary. For this kind of anchor nodes,
we directly take and use them. The other kind comes from human experiences.
There are some unique constants in programs, such as s-Boxes in cryptography,
magic bytes of protocols. Uses of unique constants can determine a function with
high probability. Searching is needed for the second kind of anchor nodes.

Firstly, we match data nodes from different binaries, in order to find the
constant data used by both two binaries. We extract some additional attributes
for the data nodes, listing in the Table 1. We adapted SimHash [27] to resist
slight changes to the constants. And then, we give these features to a linear
classifier to tell whether two data are the same.

Function Alignment with Graphlet Edge Embedding 161

Table 1. Attributes for data nodes

Attribute name Weights

Length of data 0.25

MD5 of data 0.48

SimHash of data 0.25

Offset in the segment 0.02

*Weights referred to [14]

Secondly, after the data nodes from different binaries are matched, we use the
TF-IDF (Term Frequency-Inverse Document Frequency) model to tell whether
the function nodes related to the matched data nodes should be anchored. The
TF-IDF model, which is a well-studied algorithm, can reflect how important
the data is to a function. We pick out the function nodes with high weights
and calculate the cosine similarity between them. The function nodes with high
similarity are the anchor nodes that we want.

3.3 Expanding with Graphlet Edge Embedding

Nodes anchoring can align very limited part of the program, in most case. The
expanding stage starts from the anchor nodes and expands the alignment alone
edges. We introduced a heuristic method to evaluate the similarity between dif-
ferent edges. With the ability to match edges, we could find out the relationships
between functions, and the calling routine could be recovered.

Graphlet Edge Signature. Respectfully, we name our new design “Graphlet
Edge Signature”, a method to characterize edges in directed graphs. Our design
refers to the Graphlet Degree Signature [22] (a.k.a. GSV), which has been proven
to be a successful design to extract topology structure in bioinformatics [18].
However, GSV was designed for node identification in an undirected graph.
The Function Call Graph is a directed graph, which means the GSV should
be redesigned. In practice, a reverse engineer can easily infer the unknown func-
tions near a known one by FCG, especially by caller-callee relationships. Thus,
it’s reasonable to pay attention to edges recovery than directly node identifica-
tion.

Firstly, we use a node pair 〈Nc, Nt〉 to represent a directed edge between
center node (Nc) and target node (Nt). Then, we pick out all 2nd order neighbors
of Nc and Nt. A graphlet is then defined by these nodes. In our design, we only
concern about the motifs that related to 1st order similarity and 2nd order
similarity. Motifs are recurrent and statistically significant subgraphs [23]. Using
motifs makes us can focus on specific commonality once in a time. In our design,
we only concern about the motifs that related to 1st order similarity and 2nd
order similarity. We pick out 45 basic motifs, denoted as m1,m2, . . . ,m45 in
Fig. 3. After that, we can count the motifs the target edge touches and get a

162 C. Yang et al.

vector V . Each dimension in the V stands for the number of times the motif mi

appearing in the graphlet. This vector is what we call the signature of the edge
in the chosen graphlet (Graphlet Edge Signature, GES).

The policy of selecting these motifs in Fig. 3 is not to enumerate all isomor-
phism subgraphs in the extracted graphlet, but to focus on the special relation-
ships between the center edge and its surrounding edges. In addition, the chosen
motifs should be able to compose any other complex graphlets. We view the in-
and-out edges pair between two nodes as a bi-directed edge. These bi-directed
edges stand for some highly recognizable relationships between functions like
iterations and loops. And when counting rings, we do not distinguish the source
point and the destination point to reduce the complexity. We focus on sur-
rounding nodes no more than 2nd order, although the edge signature vector will
be defined more precisely with higher-order neighbors. This is because the com-
plexity and time consumption will increase sharply while going into higher-order
relationships [24].

Distance Measurement. Now we have managed to represent a directed edge
into the numeric format. A measuring system is needed for further usage. For dis-
tance measurement, there is a simplified, intuitive mathematical solution adapt-
ing from GSV. We define the distance D between the target edge Etrgt and
template edge Etmpl as below. The Di is the distance at the ith motifs. The Ei

is the ith member of the signature vector, meaning the number of times edge E
touches motif mi.

D =
45∑

i=0

Di(Etrgt, Etmpl) =
45∑

i=0

|log(Ei
trgt + 1) − log(Ei

tmpl + 1)|
log(max{Ei

trgt, E
i
tmpl} + 2)

(1)

Obviously, the distance D results within range [0, 1). A smaller distance
indicates there is more similarity between two edges. However, in most FCGs,
the induced graphlet is usually not dense enough to contain most motifs above,
leaving a lot of zeroes in the signature vector and leading to the distribution
of distances close to 0. We can remove the part that has no value to revise
the weights and remap the distribution of distances into [0, 1)—to ignore the
similarity comes from common deficiencies. The distance can be now defined as:

D =
∑45

i=0 Di∑45
i=0 Bi

(2)

Bi =

{
1,Ei

trgt �= 0 and Ei
tmpl �= 0

0, others
(3)

Embedding. The method introduced above is experience-based and only suit-
able for distance measurement. Additionally, we introduce an embedding rep-
resentation not only suitable for similarity measurement but also semantic pre-

Function Alignment with Graphlet Edge Embedding 163

1st order
degree

m0 ... m2

2nd order degree

m3 ... m11

1st order ring

m12 ... m14

2nd order ring

m15 ... m18

1st order aside ring

m19 ... m22

2nd order
aside square

m23 ... m33

2nd order aside triangle

m34 ... m45

Fig. 3. Chosen basic motifs, in which central nodes, target nodes, and surrounding
nodes are depicted as “black”, “white” and “gray” vertexes respectively.

served. We use a neural network encoder with the Siamese architecture [2] to
generate the embedding of an edge.

The Siamese architecture uses two identical embedding neural networks. In
our case, a 3-layer neural network was used. Each embedding network takes a
GES vector V as input and outputs what we call Graphlet Edge Embeddings
(GEE). GES vector V is a 45-dimensional vector as mentioned above. The final
output of the Siamese architecture is the Euclidean distance of the two embed-
dings. While training, distances of similar input pairs were set to 0, and distances
of dissimilar input pairs were set to 1. We formulate the Siamese network output
distance D′ for each input pair as:

D′ = ‖Embed(V1) − Embed(V2)‖ (4)

3.4 Inline Recognition

Our method is naturally suitable for inline recognition. Showing in Fig. 4, the
function ingroup was inlined into check suid due to compiled differences.
However, in the origin FCG (at left), if we connect a virtual edge from the
caller of the inlined function directly to the callee of the inlined function
(depicted as two dotted lines from check suid to bb internal get grgid and

164 C. Yang et al.

bb internal getpwnam in the figure), the signature vector V of the virtual edges
would be quite similar to those edges in the inlined FCG. An addition of a func-
tion can be detected in a similar way. With this trick, expanding procedure can
step over slight reasonable changes and perform more robust in calling routine
alignment.

check_suid
(ingroup inlined)

bb_internal
_getgrgid

bb_internal
_getpwnam

check_suid

bb_internal
_getgrgid

bb_internal
_getpwnam

ingroup

other part
 of FCG

other part
 of FCG

other part
 of FCG

other part
 of FCG

busybox
(GCC, O0)

busybox
(Clang, Os)

Fig. 4. Inline recognition

Algorithm 1. Expanding Routine
Require: Aligned pair: 〈Ntrgt, Ntmpl〉

Stgrt ← GES(Edge), for all Edge connected to Ntrgt

Stmpl ← GES(Edge), for all Edge connected to Ntmpl

repeat
for all V1 in Stgrt, V2 in Stmpl do

if D(V1, V2) < Threshold then
mark the another two endpoints of the two edges as Aligned

end if
end for
for all V1 in Stgrt, V2 in Stmpl without alignment do

Perform inline search
end for

until All aligned nodes have been expanded.

The expanding procedure is now easy to explain: 1st choose an aligned node
pair 〈Ntrgt, Ntmpl〉. 2nd enumerate then embed edges of each node to obtain
two sets of embeddings Stgrt and Stmpl. 3rd align edges pairwisely between the
two sets by calculating the distances D (the average of both distances mentioned
above). We leave edges “far from” any other edges alone, and then perform inline
recognition on these isolated edges. The overall algorithm for expanding stage is
summarized in Algorithm 1. Due to the space limit, we omit some details here,
such as judgement of the closest distance and removal of duplications.

Function Alignment with Graphlet Edge Embedding 165

4 Evaluation

4.1 Implementation and Datasets

We had implemented a prototype of RouAlign. We used the IDA PRO as the tool
to extract the necessary information (i.e., constant data, library functions, and
the FCG) to construct the relation networks. We implemented the whole align-
ment stage with python, including isomorphic judgment and GEE algorithm. For
embedding network training, we undersampled about 20 million edge pairs from
the datasets. The embedding size was set to 20 empirically. Our experiments
were conducted on a laptop with 8 GB memories and 4 cores at 2.6 GHz.

Our evaluation was base on two datasets: The first one was called the hor-
izontal dataset where the binaries were compiled from the same source code
but with different compilers and optimizations. This dataset contained 50 groups
of binaries from 5 different programs. The second one was called the longitudi-
nal dataset where the binaries were compiled from different source codes, and
these source codes were referred to different versions during the development of
the same software. This dataset contained 15 groups of binaries from 3 different
generations of OpenSSL.

Each group needs at least 4 binaries: a tripped target, a stripped template, an
unstripped target, and an unstripped template. The two unstripped binaries were
used for ground truth extraction. With the debug symbols, the easiest way to get
the ground truth of similar function pairs is comparing the function name. Some
function name might change due to compiling definitions and developments.
For example, The OPENSSL_strlcpy in OpenSSL 1.1.1 has a different name
BUF_strlcpy in OpenSSL 0.9.8. We manually corrected these functions as a
complement to the ground truth.

We use the Precision and the Recall metric. For every aligned function pair,
if the pair is not in the ground truth, we count the precision as zero. For every
function pair in the ground truth, if the pair is not in alignment results, we count
the recall as zero. Therefore, the precision captures the ratio of function pairs
that are correctly found, and the recall captures the ratio of function pairs that
are supposed to be found.

4.2 Horizontal Comparison: Same Source, Different Compilation

Horizontal experiments were designed to simulate the circumstances where the
same source code was reused in different environments. We implemented the
horizontal experiment on 5 frequent-used real-world program projects. Each pro-
gram was compiled into 5 different versions with different compile options. The
compiler we used is GCC and clang. The options we used is O0 (without opti-
mizations) Os (size-first optimization) and O3 (speed-first optimization). Bina-
ries were aligned with each other by both RouAlign and BinDiff. BinDiff was
used as the benchmark in our experiments. Table 2 shows the results of one-fifth
of our horizontal experiments.

166 C. Yang et al.

Table 2. Horizontal comparing result of BusyBox.

Binary pairs Precision Recall

RouAlign BinDiff RouAlign BinDiff

G@O0 - G@O3 0.928 0.651 0.770 0.229

G@O0 - G@Os 0.946 0.546 0.792 0.456

G@O0 - C@O0 0.990 0.765 0.874 0.623

G@O0 - C@Os 0.913 0.452 0.703 0.344

G@O3 - G@Os 0.991 0.945 0.926 0.336

G@O3 - C@O0 0.918 0.617 0.707 0.217

G@O3 - C@Os 0.953 0.653 0.755 0.245

G@Os - C@O0 0.937 0.506 0.723 0.419

G@Os - C@Os 0.961 0.593 0.775 0.459

C@O0 - C@Os 0.933 0.524 0.756 0.404

G stands for the GCC compiler and C stands for Clang.
@* indicates the compiler optimizations.
For instance, G@O0 means a binary compiled using
GCC with option “-O0”.

A case study on results in Table 2 shows that the precision of RouAlign is
much higher than that of BinDiff, and the performance is very stable. Generally,
the O0-Os and O0-O3 shows the lowest performance, because the compiler would
introduce a lot changes to the original FCG on specific purpose. An interesting
phenomenon is that, the more the version varies from each other, the better
RouAlign performs than BinDiff. This is because traditional matching methods
rely much on internal function features, which change a lot during compiling
procedures.

We made statistics on all results of 5 different binary sets, and cited some
results of other state-of-art solutions, showing in Table 3. In the first part of
the table, we presented some average numbers of some important indicators to
describe the datasets. The number of functions and the number of ground truth
showed the scale of the binary. The number of anchor nodes showed how efficient
the expanding procedure was. It’s easy to summarize from Table 3 that the
RouAlign could perform better on larger and more complex binaries, where the
FCGs are more tremendous and the graphlet features are more representative.
All these horizontal comparing results proved that relationships are useful and
our method could handle the problem correctly.

Function Alignment with Graphlet Edge Embedding 167

Table 3. Horizontal comparing results statistics.

minigzip BusyBox ImageMagick OpenSSL Sqlite3

Average numbers

Ground truth 162.5 4711.6 4571.8 8105.2 2657.4

Total functions 211.8 5200.0 5591.0 9054.6 3151.0

Extracted datas 75.2 7946.2 16407.8 12822.4 3491.8

Symbolic func 26.3 29.0 455.0 135.1 117.6

Anchor nodes 35.7 913.2 1254.7 546.3 346.0

Precision

RouAlign 0.939 0.946 0.900 0.941 0.788

BinDiff 0.733 0.625 0.433 0.336 0.434

Geminia 0.750 0.828 0.397 0.546 0.454

asm2vecb - 0.856 0.837 0.792 0.776

αDiffc 0.546 0.546 0.546 0.546 0.546

Recall

RouAlign 0.448 0.778 0.593 0.624 0.593

BinDiff 0.522 0.373 0.320 0.218 0.320

Geminia 0.017 0.106 0.012 0.156 0.142

a: Gemini1 here is a optimized version for the original program couldn’t
be accomplished in a 16GB memory machine. Gemini* was only tested
on binary pair Clang-Os to GCC-O0)
b: Results of Asm2Vec2 were cited (pairwise comparison on GCC-O0 and
GCC-O3).
c: Results of αDiff is cited and then averaged of all their x86 64 results.

4.3 Longitudinal Comparison: Same Software, Different Versions

The longitudinal comparison was designed to simulate the circumstances where
the same program itself varies a lot from version to version. We chose 3 different
source code versions of OpenSSL, among which time spans nearly 10 years and
3 big generations, and then compiled them with 5 different options.

As shown in Table 4, RouAlign performed much more stable among different
compiler optimizations with high precision. The recall was improved a little over
that of BinDiff, because the calling routine did change quite a lot during long-
term iterations. It should be noted that the results of RouAlign are continuous
with high precision, providing more powerful assistant to human researchers.
All these longitudinal comparing results proved that our methods are usable in
detecting long-term changes to binary and can still recognize calling routines in
a high precision.

168 C. Yang et al.

5 Limitations

Major limitation of alignment methods is the missing of many internal function
features. We designed so in order to show that the FCGs could provide much
information for understanding binaries. A better way we advised in the future is
to combine RouAlign with some function embedding methods that could nicely
represent internal function feature cross-versions.

Table 4. Longitudinal comparing for cross-version OpenSSL.

Versions Ver.100 to Ver.098 Ver.111 to Ver.100 Ver.111 to Ver.098

RouAlign BinDiff RouAlign BinDiff RouAlign BinDiff

Precision

GCC-O0 0.953 0.843 0.789 0.493 0.692 0.436

GCC-O3 0.944 0.794 0.602 0.332 0.501 0.296

GCC-Os 0.950 0.824 0.781 0.439 0.674 0.377

Clang-O0 0.959 0.822 0.775 0.496 0.697 0.423

Clang-Os 0.956 0.796 0.779 0.432 0.669 0.366

Recall

GCC-O0 0.675 0.676 0.401 0.406 0.311 0.352

GCC-O3 0.618 0.544 0.231 0.228 0.185 0.200

GCC-Os 0.650 0.605 0.422 0.326 0.309 0.278

Clang-O0 0.671 0.584 0.385 0.357 0.304 0.305

Clang-Os 0.636 0.497 0.398 0.273 0.301 0.229

(Ver.111 Ver.100 and Ver.098 stand for OpenSSL Version 1.1.1, Version
1.0.0 and Version 0.9.8)

Another limitation is that the detection rate might be low in library-like
binaries (.so files, etc.). This is unavoidable because functions in library binaries
tend to be independent without caller-callee relationships to recover. But we
won’t regard this as a critical problem, because the original intention of RouAlign
is an auxiliary tool to help researchers trace out the calling routine from a
specified function node.

6 Related Works

Function alignment by FCGs is a long proposed topic, but poorly studied. [17]
is about the first to introduce the Hungarian algorithm into binary analysis, e.g.,
malware classification. Further studies [25] use FCG merely on binary similarity
discrimination rather than more detail analysis. Bindiff [9] introduces a MD
index [8] to represent the topologic of function in FCG. But the MD index only
counts the 1st order features like in-out degrees and could perform “medium”
good in practice [10]. Recently, αdiff [20] uses FCG with DNN to detect cross-
version binary code similarity and achieves some better results than Bindiff.

Function Alignment with Graphlet Edge Embedding 169

Cross-version function recognition is a hot topic recently. Dynamic analyz-
ing methods assume that similar functions perform similar runtime behaviors.
For example, Bingo [6], etc., capture behaviors of a function with various con-
texts. However, coverage and contexts generating are still problems for dynamic
methods. Static methods utilize instructions and raw bytes to calculate the simi-
larity between functions. They are not good at cross-version scenarios, and many
researchers are trying to resolve this problem. For cross-platform problems, Gem-
ini etc. [15,21], extract structure features and basic block features to calculate
the similarity. For cross-optimization problems, Asm2vec [7] and InnerEye [26]
map instructions and opcodes into high dimensional vector space, and then value
the similarity by these mathematical representations.

7 Conclusion

In this paper, starting from the requirement of recognizing a calling routine from
cross-version binaries, we proposed a novel method to learn high-level features of
function call graphs to recover the caller-callee relationships between functions.
We design a model to align routine and functions called RouAlign and series
experiments to compare RouAlign with popular tools in real world. The evalua-
tion results show that RouAlign outperforms the widely used commercial tools
by over 35%s on average precision. We successfully reveal the great potential of
function call graphs in function recognition and our Graphlet Edge Embedding
method indicates a possible direction in the future.

Acknowledgments. We thank anonymous reviewers for their invaluable comments
and suggestions. Can Yang and Jian Liu share the co-first authorship.

References

1. Le, S.: Structure2Vec: deep learning for security analytics over graphs (2018)
2. Bromley, J., et al.: Signature verification using a “siamese” time delay neural net-

work. In: Advances in neural information processing systems (1994)
3. Altschul, S.F., et al.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–

410 (1990)
4. Shi, C., et al.: A survey of heterogeneous information network analysis. IEEE

Trans. Knowl. Data Eng. 29(1), 17–37 (2016)
5. Andriesse, D., et al.: An in-depth analysis of disassembly on full-scale x86/x64

binaries. In: 25th USENIX Security Symposium (USENIX Security 2016) (2016)
6. Chandramohan, M., et al.: BinGo: cross-architecture cross-OS binary search. In:

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ACM (2016)

7. Ding, S., et al.: Asm2Vec: boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. IEEE (2019)

8. Dullien, T., et al.: Automated attacker correlation for malicious code. Bochum
University (Germany FR) (2010)

9. Dullien, T., Rolles, R.: Graph-based comparison of executable objects (English
version). SSTIC 5(1), 3 (2005)

170 C. Yang et al.

10. BinDiff manual. https://www.zynamics.com/bindiff/manual/. Accessed 15 Sept
2019

11. Junod, P., et al.: Obfuscator-LLVM-software protection for the masses. In: 2015
IEEE/ACM 1st International Workshop on Software Protection, pp. 3–9. IEEE
(2015)

12. Eschweiler, S, Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS (2016)

13. Feng, M., et al.: Open-source license violations of binary software at large scale. In:
IEEE 26th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER) (2019)

14. Feng, Q., et al.: Scalable graph-based bug search for firmware images. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM (2016)

15. Xu, X., et al.: Neural network-based graph embedding for cross-platform binary
code similarity detection. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2017)

16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM (2016)

17. Hu, X., et al.: Large-scale malware indexing using function-call graphs. In: Pro-
ceedings of the 16th ACM Conference on Computer and Communications Security.
ACM (2009)

18. Kuchaiev, O., et al.: Topological network alignment uncovers biological function
and phylogeny. J. R. Soc. Interface 7(50), 1341–1354 (2010)

19. László, T., Kiss, Á.: Obfuscating C++ programs via control flow flattening.
Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae,
Sectio Computatorica 30(1), 3–19 (2009)

20. Liu, B., et al.: αdiff: cross-version binary code similarity detection with DNN.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM (2018)

21. Luo, M., Yang, C., Gong, X., Yu, L.: FuncNet: a Euclidean embedding approach for
lightweight cross-platform binary recognition. In: Chen, S., Choo, K.-K.R., Fu, X.,
Lou, W., Mohaisen, A. (eds.) SecureComm 2019. LNICST, vol. 304, pp. 319–337.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37228-6 16

22. Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet
degree signatures. Cancer Inform. 6, 257–273 (2008). CIN-S680

23. Milo, R., et al.: Network motifs: simple building blocks of complex networks. Sci-
ence 298(5594), 824–827 (2002)

24. Tang, J., et al.: LINE: large-scale information network embedding. In: Proceedings
of the 24th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee (2015)

25. Tang, Y., Wang, Y., Wei, S.N., Yu, B., Yang, Q.: Matching function-call graph of
binary codes and its applications (Short Paper). In: Liu, J.K., Samarati, P. (eds.)
ISPEC 2017. LNCS, vol. 10701, pp. 770–779. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-72359-4 48

26. Zuo, F., Li, X., et al. Neural machine translation inspired binary code similar-
ity comparison beyond function pairs. In: Proceedings of the 2019 Network and
Distributed Systems Security Symposium (NDSS) (2019, in press)

27. SimHash wiki. https://en.wikipedia.org/wiki/SimHash. Accessed 3 Jan 2020

https://www.zynamics.com/bindiff/manual/
https://doi.org/10.1007/978-3-030-37228-6_16
https://doi.org/10.1007/978-3-319-72359-4_48
https://doi.org/10.1007/978-3-319-72359-4_48
https://en.wikipedia.org/wiki/SimHash

Code Between the Lines: Semantic
Analysis of Android Applications

Johannes Feichtner1,2(B) and Stefan Gruber1

1 Institute of Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

johannes.feichtner@iaik.tugraz.at
2 Secure Information Technology Center – Austria (A-SIT),

Seidlgasse 22, 1030 Vienna, Austria

Abstract. Static and dynamic program analysis are the key concepts
researchers apply to uncover security-critical implementation weaknesses
in Android applications. As it is often not obvious in which context
problematic statements occur, it is challenging to assess their practi-
cal impact. While some flaws may turn out to be bad practice but not
undermine the overall security level, others could have a serious impact.
Distinguishing them requires knowledge of the designated app purpose.

In this paper, we introduce a machine learning-based system that
is capable of generating natural language text describing the purpose
and core functionality of Android apps based on their actual code. We
design a dense neural network that captures the semantic relationships
of resource identifiers, string constants, and API calls contained in apps
to derive a high-level picture of implemented program behavior. For
arbitrary applications, our system can predict precise, human-readable
keywords and short phrases that indicate the main use-cases apps are
designed for.

We evaluate our solution on 67,040 real-world apps and find that with
a precision between 69% and 84% we can identify keywords that also
occur in the developer-provided description in Google Play. To avoid
incomprehensible black box predictions, we apply a model explaining
algorithm and demonstrate that our technique can substantially augment
inspections of Android apps by contributing contextual information.

1 Introduction

As many Android applications perform security-critical tasks, it is crucial to val-
idate their implementation security using static and dynamic program analysis.
In recent years, researchers have elaborated various approaches to disclose pos-
sible leaks of private data, identify malware, or to uncover security deficiencies
in Android apps. Typically, the results of these analyses fall into two categories:
firstly, a classification into malevolent or harmless or, secondly, concrete results
of specific aspects the inspection has been aiming for. While both types may be

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 171–186, 2020.
https://doi.org/10.1007/978-3-030-58201-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_12

172 J. Feichtner and S. Gruber

adequate with regards to the particular objectives, they barely evolve to a supe-
rior level where the implemented behavior and context of program statements is
also taken into account.

In practice, missing context awareness leads to situations where researchers
disclose security flaws in execution traces but are unable to comprehend the
impact or relevance of the finding in terms of the actual purpose of an appli-
cation. E.g., basically, it is problematic if a constant, hard-coded key is used
for encryption. However, if this happens within an advertisement library where
encryption is only used for obfuscation, the impact of the finding needs to be
assessed differently. Similarly, it depends on the use-case of an app whether sup-
plying GPS information via HTTPS to an external entity, such as for assistance
in traffic navigation, is a legitimate action or the undesirable leakage of sensitive
data.

In a broader sense, these examples highlight what analyses are currently
unable to cover: the semantic understanding of applications. Rather than gaining
a high-level picture of the functionality and security of a program, common
approaches for inspection focus on single instructions at the lowest possible level.
While this is undoubtedly a legitimate level to determine the immediate effects
on memory calls and registers, we are still missing a platform that enables us to
reason about the effects of coherent code parts on the overall program state.

Augmenting app analysis by contextual information, such as the intended
purpose and designated functionality, is of utmost importance to obtain a holis-
tic picture of app behavior. However, currently no solutions exist that could
relate the metadata of an app with their actual implementation. This situation
is aggravated by the fact that developer-provided descriptions are often minimal,
inaccurate, and miss key information. Within this context, we formulate the fol-
lowing problems: (1) Which attributes of an application describe its behavior?
(2) How to identify the main purpose of an app? (3) What keywords and phrases
should be included in a description text to represent an app’s functionality?

In this paper, we introduce a solution that infers the main purpose of Android
apps based on their implementation. Leveraging the recent advances in neu-
ral networks, our work attempts to capture and classify semantic relationships
between apps. Our system works unsupervised, involves no labeling of data sets,
and is trained with real-world app samples that are only coarsely pre-filtered,
e.g., regarding the language of descriptions. The output is not only a prediction
of what functionality our systems believes to be realized within an application.
Using a model explanation algorithm, we also obtain an insight into what is
relevant in apps, can explain the reasoning of predictions, and based on this
knowledge, derive meaningful keywords and short phrases in natural language.

In summary, we make the following key contributions:

– To infer the functionality from Android app implementations, we propose a
combination of three dense neural networks that combine knowledge extracted
from resource identifiers, string constants, and API calls. Our system delivers
concise keywords and short phrases that describe the main purpose of apps1.

1 Our implementation is available at: https://github.com/sg10/apk-verbalizer.

https://github.com/sg10/apk-verbalizer

Code Between the Lines: Semantic Analysis of Android Applications 173

– We train, validate, and test our models with 67,040 apps from Google Play.
In a case study, we demonstrate the practical relevance and plausibility of
predictions by contrasting them with the developer-provided app description.

– To assess the quality of our system and to avoid incomprehensible black box
predictions, we apply the model explaining algorithm SHAP [8]. It enables us
to understand the influence of network input features on the derived output.

The outcome of this work represents a notable contribution towards a holistic
analysis of Android applications. It helps researchers and users to foster an
understanding of what functionality is actually implemented in Android apps.

2 Related Work

Aligning the description of Android apps with the alleged functionality and
permission usage has become a growing field of research. In the following, we
present related work on this topic and point out differences to our solution.

Behavior Modeling. Hamedani et al. [4] strive to find the most appropriate cat-
egory for an app based on 14 implementation-related features that are pro-
cessed using different classification algorithms. As shown in a case study by
Kowalczyk et al. [6], using as many app attributes as possible for classifica-
tion, tends to depict apps more accurately and improves the performance of all
kinds of analysis tasks. Takahashi et al. [11] follow this principle and consider
several thousand features. They combine permissions, API methods, categories,
and presumed cluster assignments to identify malware based on Support Vector
Machines. CLANdroid [12], in contrast, aims to identify similar apps by defin-
ing semantic anchors that refer to sensor information, permissions, intents, and
identifiers. Based thereon, they use Latent Semantic Index to derive a matrix
representation for every app. MalDozer [5] leverages a convolutional neural net-
work to find harmful behavior by discretizing sequences of invoked API methods.
FlowCog [9] adopts natural language processing to infer whether apps provide
sufficient semantics for users to understand privacy risks emerging from the
information flow.

App Descriptions. Among all related research, the work of Zhang et al. [15]
comes closest to this paper. By extracting keywords contained in the call graph
of permission-related API calls, the authors intend to derive a description
of security-related app behavior. For instance, if the call graph contains the
method KeyguardManager.isKeyguardLocked(), it is modeled as the words
“the phone”, “be”, “locked”. To assess the quality of app descriptions, Kuznetsov
et al. [7] extract identifiers and strings from an app’s XML definitions and seman-
tically compare them with the developer-provided description text.

Sensitive APIs. In a combination of static code inspection and text analysis,
Watanabe et al. [14] present a keyword-based technique to correlate access
to privacy-relevant resources with app descriptions. AutoCog [10] correlates
permission-related API calls with frequently occurring text fragments. As a

174 J. Feichtner and S. Gruber

result, semantic patterns are derived that can provide an insight into why
Android apps request certain permissions. With a focus on potential abuse of
sensitive APIs, Gorla et al. [3] derive app clusters based on pre-labeled descrip-
tion topics. Related to that, the approach of Gao et al. [2] infers expectable
permissions by applying statistical correlation coefficients after mining topics
from descriptions using NLP techniques and Latent Dirichlet Allocation (LDA).

3 Behavior Modeling of Android Apps

A näıve approach to identify functionality implemented in Android applications
would be to statically define rules for classifying source code. However, the evolv-
ing nature of smartphone apps with constantly changing APIs and the usage of
third-party libraries would make it cumbersome to spot and label specific behav-
ior. As a remedy, our approach leverages modern methods of machine learning
that work unsupervised and involve no prior labeling of data sets.

Before designing a neural network that predicts the main purpose of apps, we
need to tackle a basic question: Which attributes of an app describe its behavior?
Users can answer this question intuitively by installing and testing an applica-
tion. Vendors would refer to the source code to derive similar conclusions. The
approach presented in this paper is inspired by both perspectives and focuses on
information sources that are included within the code and resources of Android
app archives.

We attempt to model Android app behavior from two different angles. On
the one hand, we consider static string resources that indicate what an app does
from a user’s and developer’s perspective. On the other hand, we describe a
program by the Android API calls it includes, e.g., to access sensitive informa-
tion, draw UI effects, or implement event listeners. Based on the presence and
co-occurrence of calls, we expect to see individual patterns that characterize
different functionality.

In the following, we outline the features our neural network will use as an
input to infer a semantic understanding of the purpose of apps:

– App Resource Identifiers: Semantic information provided by developers.
In order to access resources, such as UI elements, graphics, or multilingual
definitions from program code, Android uses IDs that unambiguously identify
individual elements. Although these values can be chosen arbitrarily during
development, they usually correspond semantically to the resource content.

– String Constants: UI text and functional descriptions, shown to the user.
Static UI elements, language variables, and URLs are typically stored within
app resources. When shown to the user, these constants provide valuable
semantic information regarding the purpose of an app and actions users can
perform. E.g., if an app includes UI elements containing the string values
“new transaction”, “account balance”, and “money transfer”, its implemented
functionality most likely targets financial transactions.

Code Between the Lines: Semantic Analysis of Android Applications 175

– API Calls: Define how an app interacts with the Android OS environment.
The widespread use of third-party libraries, code obfuscation techniques, and
the multitude of possible usage scenarios make it challenging to identify the
individual semantics for every code block. We, thus, postulate that the behav-
ior of apps is not (only) determined by the interaction of individual code
fragments, but especially by their interaction with the operating system and
users. Consequently, to infer implementation behavior, we focus on calls to
APIs of the Android framework. By their modus operandi, they, e.g., control
access to sensitive user data, device sensors, visual effects, media processing,
and networks and, thus, clearly define the functionality of apps.

As each of these three feature types is embedded within a different semantic
context, it is not viable to simply collect all occurrences and use them as a
combined input for a neural network. For a more accurate representation, we
propose to train three separate neural networks that take different input features
but share the same underlying architecture and produce the same type of output.

4 Semantic App Analysis

We design a dense neural architecture to infer the implemented functionality
from real-world Android applications. Our goal is to develop a system that can
process an unknown app archive and delivers keywords and short phrases that
describe the main purpose. To remediate the “black box” usually associated with
neural networks, we require that our solution provides an insight into which input
features are decisive for predictions.

In the training phase, we train three separate neural networks with Android
app archives and their developer-provided descriptions from Google Play. For
each app, we first extract all relevant semantic features, weigh their importance
using TF-IDF and use the resulting vector as input for the corresponding neural

Fig. 1. Prediction of implemented app functionality using three dense neural networks.

176 J. Feichtner and S. Gruber

network. In parallel, we build a TF-IDF model with app description texts that
will be used to derive a neural network output in natural language.

In the prediction phase, our system receives an app not seen during training.
After deriving and processing a TF-IDF vector representation of all features
included in a given archive, each neural network will return a list of key words
and short phrases that commonly occur in app descriptions when certain input
features are used. As shown in Fig. 1, the output of the network for predicting
description words based on given string constants may, e.g., consist of the words
sms, messenger, and friends, with the adjacent decimal value expressing the
relevance of the predictions. An algorithm for explaining neural networks called
SHAP (see Sect. 4.4) is then applied to find out which input features contribute
most to the prediction of these output tokens. Summarizing the outputs of all
three models and sorting them regarding the shown relevance provides us with
a ranked list of description fragments that describe the main purpose of an app.

4.1 Feature Preprocessing

Before training a neural network, it is essential to prepare the data for efficient
learning. In the following, we cover the preprocessing steps that are applied to
all developer-provided descriptions used in the training phase and the seman-
tic input features processed by our networks after extracting them from app
archives.

App Resource Identifiers. By parsing the XML files provided as resources in
Android app archives, we obtain a list of identifiers consisting of alphanumeric
characters and underscores. Unlike variable or function names in source code,
identifiers are typically not obfuscated but stored in the way app vendors define
them during development. The name, or identifier, usually reflects its purpose
to some extent and can also give hints about the overall app. In practice, val-
ues are mostly made up of words or word combinations that are linked either
by underscores or formatted via camel-case, e.g., select image dialog, confirm-
Remove, pay btn, or start quiz headline. The challenge is therefore to decom-
pose these values meaningfully in order to capture semantic relations. Without
tokenization, e.g., it would not be possible to determine that the identifiers
select image dialog and select video dialog imply similar actions that differ only
in image and video. For a semantically more accurate representation, we split
the words into smaller alphanumeric entities, i.e., select, video, image, dialog and
link them as n-grams.

String Constants. Android, by design, allows apps to display UI elements
in different languages. Therefore, vendors have to provide translations for all
UI-related string values that are referenced by language-agnostic resource iden-
tifiers. In this work, we aim to infer keywords and short phrases in English
only. To achieve this, we mimic the behavior of the Android operating system

Code Between the Lines: Semantic Analysis of Android Applications 177

and try to match identifiers with constants by primarily searching them in lan-
guage files that are supposed to include values in English, i.e., values-en.xml or
values-en-us.xml. Only in the case of mismatch, we fallback to default defini-
tions in values.xml. This simple resolution strategy ensures that the corpora of
values subsequently trained in TF-IDF models consist mainly of English words.

After extracting all relevant string constants from an app, we iteratively
decompose each value into substrings by splitting at non-alphanumeric char-
acters, e.g., whitespaces, HTML tag brackets, dots, etc. While most resulting
tokens are likely app-specific, others supposedly occur frequently across multi-
ple apps. To estimate the relevance of individual tokens in relation to all apps, we
use the tokens and their occurrence count to build a TF-IDF model. Thereby, we
leverage the property of TF-IDF that rarely occurring and very frequent tokens
are ignored to maintain a reasonable dictionary size. As a result, for each app,
we obtain a TF-IDF vector that can be used as input for a neural network.

API Calls. Inspecting the call graph of Android apps enables us to identify and
count invocations of Android APIs. We process the reverse-engineered source
code of the app archive and build a call graph based on static, explicit code
statements. We enrich the graph with additional edges by resolving inheritance
relations and implicit data flows using EdgeMiner [1] by Cao et al. As Android
apps have no predefined entry points, Activities, Services, and Providers defined
in the AndroidManifest.xml of each app are used as the starting point for
modeling the call graph. This approach ensures that we capture only calls of
API methods that implement an app’s main functionality.

Our goal is to count execution paths, i.e., connections, between app entry
methods Ein,j and API call methods Eout,k. Therefore, we use the Dijkstra
algorithm to check for each node Ein,j whether there is a connection to Eout,k

in the graph. If so, we increment a counter for API call k. We count all methods
as a combination of their (fully qualified) class and their method name.

As with resource identifiers and string constants, we create a TF-IDF model
for API methods. For each app, we now have a list of pairs that consist of
method calls and how often it was found in the app’s source code. By using the
TF-IDF algorithm, we decide which method names end up in the dictionary,
based on their frequency. TF-IDF then transforms this information and returns
a 1-dimensional decimal vector for each app sample that we can use as neural
network input.

App Descriptions. As the output of our machine learning model, we want to
infer feature-related parts of the app description. Intuitively, we use n = (1, 2, 3)
to cover phrases that include one, two, and three words. With stopword removal
and Porter stemming, we reduce the number of frequent word combinations that
are of comparably minor importance beforehand, e.g., take some photos and take
a photo both become take photo. By stemming tokens, removing stopwords, and
windowing with three different window sizes, we aim to capture more meaning.

178 J. Feichtner and S. Gruber

The tokens, regardless of whether the model finds frequent single occurrences
or combinations, are stored in their stemmed form. Stemming removes parts of
the word to subsume multiple word variations and facilitate computation. It
often does not, however, reduce the words to a stem that can be easily read by
humans. Since the stemming transformation is not a bidirectional transforma-
tion due to the loss of information, an accurate un-stemming method cannot
exist. Stemmed tokens contrast our goal to provide human-readable description
fragments.

As a solution, we use a greedy algorithm to recover original words from
their stem. Therefore, we keep track of all the stemming transformations, i.e.,
whenever a token T is altered and results in its stemmed version ̂T = fstem(T).
The suffix removal of stemming leads to ̂T having multiple corresponding original
tokens T , so we collect the number of times of: T → ̂T . After processing all
descriptions, we obtain an association count table that lists how often ̂T was
caused by each original T . E.g., if the stemming result of a token is locat, it will
be replaced with location, regardless of whether the original token was location,
located, locating, or locate. By counting how often an original token results in
a particular stemmed token, we can replace the stemmed token by its most
common origin.

Ultimately, each description is represented by a list of tokens that we want
to transform via a TF-IDF model. The model has features that consist of single
tokens, 2-grams, and 3-grams. Stemmed tokens are re-transformed to their most
likely original, non-stemmed word to be more easily readable afterwards. Hence,
for each app description, we obtain a 1-d vector with normalized decimal numbers
between 0 and 1, which we can subsequently use as machine learning targets.

4.2 Model Architecture

We propose a combination of three models of dense neural networks to predict
keywords and short phrases that characterize a given Android application. Each
model produces n-grams as output and receives TF-IDF vectors with either
resource identifiers, string constants, or method names as input. In this section,

Fig. 2. Dense neural architecture to infer TF-IDF vectors with descriptive keywords
from TF-IDF vectors of resource identifiers, string constants, and API calls.

Code Between the Lines: Semantic Analysis of Android Applications 179

we highlight the advantages of dense neural networks for our problem and present
our network architecture regarding the set of chosen layers and hyperparameters.

Figure 2 illustrates our network architecture. The bag-of-words representa-
tion via TF-IDF vectors enforces positional constraints, i.e., the value for a par-
ticular word is always put into the same vector cell. This input property allows
us to use a standard dense network structure in contrast to other convolutional
or recurrent architectures that factor in positional and sequential information.
Between dense layers, we apply dropout for regularization. As the output of each
neuron consists of floating-point numbers, we have a regression task and use a
linear activation function for the output layer and mean-squared error as a loss
function.

The size of the input and output depend on the dictionary size of the TF-
IDF models. Precisely, the dictionary sizes are limited by the minimum and the
maximum document frequency, i.e., in how many apps a certain method call
or resource identifier token occurs at all. Here, especially the lower boundary is
crucial. If the minimum document frequency is too high, we miss information
the neural network could use to infer the output more precisely. In case the
minimum is too low, the model remembers too many tokens that rarely occur,
and the dictionary becomes very large. The larger the input space, the more
inputs and weight parameters are stored in memory, and the longer the training
process takes. The selection of TF-IDF model parameters, thus, binds the train-
ing process. To find suitable network architectures, we used random search. For
this non-exhaustive search, we trained networks with one to three hidden layers
and 1,000 to 15,000 hidden neurons. Dropout was randomly set between 0% and
40%.

We choose the parameters empirically by trying different setups and observ-
ing the resulting dictionary sizes and model performances. Therefore, we set the
minimum document frequency for each of the three input types to 2% of the
total number of documents (apps), and the corresponding maximum frequency
to 20%. This range means, e.g., if we have an app dataset of size N and a token
occurs n times, it only ends up in the dictionary if it occurs in 0.02N ≤ n ≤ 0.2N
apps. Table 1 lists our final network configurations and the TF-IDF dictionary
sizes.

Table 1. Neural network configurations of the three models.

Input TF-IDF
features

Network hidden layers Description
TF-IDF
features

Resource
Identifiers

3315 2968, 3265, 1393 (3 Layers) 6140

String constants 6391 2898, 3105 (2 Layers) 6140

API methods 11735 5891 (1 Layer) 6140

180 J. Feichtner and S. Gruber

4.3 Model Training

The three models are trained using the mean-squared error measure as a loss
function. As a performance metric, however, it is not fit for the purpose. Unfortu-
nately, it does not give any intuitive expression of how well the model performs.
Thus, we discretize the description TF-IDF vectors by choosing a threshold θ,
above which we set the vector element to 1, or 0 otherwise. We can then use
standard performance metrics like F-score, precision, and recall on these binary
vectors to compare an actual description’s vector with a description prediction.

Our correlation-based learning approach tries to find similarities between
apps and thus neglects app-specific terms in the description. From a performance
point of view, this means that we can expect a lower recall than precision. For
early stopping, we are required to choose a pivotal performance metric that
measures whether training should stop or continue. We, thus, use a weighted
F-score (β = 0.5) that rates precision higher than recall. Consequently, we apply
the F0.5 performance for early stopping to find a good final training state.

4.4 Explaining Predictions

The essence of machine learning is finding patterns via function approximations
in a given set of data. Due to the complex inner working of networks, it is
not always obvious how predictions are derived. To find out which input items
contribute to the prediction of keywords, we apply the model explainer SHAP [8].

SHAP is a method proposed to estimate the importance of sample features.
The algorithm behind it is based on Shapley values, a concept in cooperative
game theory: of n potential players, several combinations of k ≤ n players are
possible, i.e., can play together against the bank. Each combination of players
achieves a different (monetary) result. The Shapley value shows the contribution
of each player by incorporating different combinations. Lundberg et al. used this
concept in combination with additive feature attribution. By masking out several
parts of the input features, different model results per sample are obtained. The
results can be united according to Shapley, but this is computationally expensive.
SHAP provides several approximations, e.g., one for neural networks called Deep
SHAP. By leveraging knowledge about the network’s parameters and structure,
and not treating it as a black box, Deep SHAP creates a simpler, approximated
model. In this work, we apply Deep SHAP on our neural network models.

5 Evaluation

The goal of this evaluation is twofold. First, we investigate the performance of
our neural network with real-world Android apps. Second, applying our solution
on a hand-picked set of applications, we compare predictions about the presumed
functionality of apps with the actual description text from Google Play.

Code Between the Lines: Semantic Analysis of Android Applications 181

5.1 Dataset

We evaluate our approach using real-world applications from the PlayDrone
dataset [13]. We opted for this repository of apps as it does not only feature raw
app archives but also makes the vendor-provided app description available.

After downloading 115,294 Android apps and their corresponding metadata,
we removed cross-platform apps as they implement their core functionality with
web technologies and lack the corresponding resource identifiers, string con-
stants, and API calls. From the remaining set of 85,915 apps, we filtered apps
that had no descriptions in English language and ensured that preprocessing
each description text resulted in at least 20 TF-IDF vectors. This boundary
was set to reduce the potential impact of insignificant samples on the training
process.

Table 2 highlights the final set of apps we used to train, validate, and test
each network input feature. 20% of apps used for training are randomly picked to
be also part of the validation set. This partitioning scheme is required to prevent
overfitting of our machine learning model and to ensure meaningful predictions.
The test set includes 1,000 randomly chosen apps that are not used during
training. We build the set such that it only includes apps with a reasonably good
description. Therefore, we make the simplifying assumption that apps with a
higher download count tend to have higher description quality and, thus, prefer
samples from comparably popular apps. We sort all apps in the dataset by
download count and take every third app until we obtain 1,000 test samples.

5.2 Results

We trained neural networks for resource identifiers, string constants, and API
calls, each with a set of 66,040 apps. To ensure an unbiased evaluation, the three
models were validated using 20% of training data and tested individually with
1.5% of previously unseen data to confirm their final performance.

Table 2. Subsets of Android apps used as neural network input.

Apps

Android apps crawled 115,294

Cross-platform apps 29,379

English descriptions and ≥ 20 TF-IDF tokens 67,040

Training set 66,040

Validation set (20%) 13,208

Test set 1,000

182 J. Feichtner and S. Gruber

Table 3. Performance on the test set of the three neural network input types via
discretized TF-IDF vectors. Discretization threshold: θ = 0.05.

Resource identifiers String constants API calls

Precision 79% 84% 69%

Recall 27% 19% 18%

F0.5-Score 57% 50% 44%

The evaluation results on the test set are summarized in Table 3. The direct
comparison of F-scores shows that resource identifiers yield the best results, while
API calls perform significantly worse, with string constants in between. While
precision values range between 69% and 84%, the recall column presents low
values for all models. We attribute this mainly to two reasons. First, descriptions
contain lots of words specific to the app that are hard to generalize. This makes
reconstructing many of these rarely occurring words difficult. Second, the TF-
IDF model for the description output does not take synonyms into account. E.g.,
if the description contains the word image, but the word photo is predicted, it
counts as a mismatch and lowers the recall despite the semantic correctness.

In practice, these results mean that our trained neural networks can well
predict keywords and short phrases that also occur in the developer-provided
description. High precision and low recall imply that the rate of false negatives
is higher than the rate of false positives. This is desirable in our setting because
a lower false positive rate also produces fewer false attributions of app function-
ality.

5.3 Case Study

For a better understanding on the practical relevance of functionality predictions,
in the following, we take a closer look at each model’s output regarding two
music-related apps that were not used during training. We visualize the top 8
predictions and relevance values via word clouds. The font size of each token is
set with respect to the weight (relevance) the models assign to all outputs.

Figure 3 illustrates the top-ranked predictions of the three models for the
music video streaming app Vevo. Apart from video being top-ranked, the nature
of a video streaming and sharing platform is expressed by the phrases tv show/tv
channels, movies, subscription, music, live and content. The tv-related phrases
show that the models cannot distinguish between traditional television and
online video streaming. As the predictions stem from many other apps, we reason
that the neural networks understand the domain of the input and learn to cluster
video-related applications internally. We also see that the inferred tokens based
on API calls are much more general. The overall domain of the app becomes
clear but, e.g., no n-grams, such as tv channels or tv show were learned. Over-
all, despite their independent reasoning, the three models each yield descriptive
information and can correctly identify the app’s main purpose.

Code Between the Lines: Semantic Analysis of Android Applications 183

Fig. 3. Word clouds with each model’s predictions for the video streaming app Vevo.

Fig. 4. Comparison of the real description of 4shared Music and our models’
predictions.

The app 4shared Music is a music player that accesses audio files stored
on the cloud storage provider 4shared. In Fig. 4, we contrast the developer-
provided description with the summarized predictions of our three models. Our
neural networks correctly found that the app is a music player, dealing with
playlists and albums. They also identified the second domain of the app, the
online storage platform, in terms of cloud, backup, and files. While all these tokens
make sense, the actual app description text does not mention all of them, e.g.,
player, cloud, and backup are absent. In other words, since the description text
does not cover these tokens literally, the measurable performance (see Sect. 5.2)
decreases despite the good generalization. An accurate but abstracted word cloud
that is intelligible to humans is, thus, difficult to measure.

5.4 Prediction Explanation

Each of our three machine learning models predicts a list of keywords and short
phrases based on a given Android app archive. Apart from seeing this result,

184 J. Feichtner and S. Gruber

we also want to know which word predictions are caused by which input items.
Therefore, we apply Deep SHAP (see Sect. 4.4) to all model predictions.

If, e.g., our resource identifier model outputs the word dictionary, we want to
find the influences of these predictions. A reasonable, for humans understandable
relation would be input tokens, such as search, word, or translate. Instead, in case
meaningless tokens are predicted, the model would have learned this correlation
as “noise” from similar apps but not from a particular app feature.

Table 4. SHAP algorithm applied on two predictions for the app Slacker Radio.

(i) Resource Identifiers

Description
Token(s)

Input
Tokens SHAP

music player artist 0.0122
album 0.0107
playlist 0.0071
art 0.0034
lyrics 0.0032

(ii) String Constants

Description
Token(s)

Input
Tokens SHAP

music playlist 0.0321
song 0.0230
stations 0.0125
songs 0.0096
tracks 0.0039

To assess network input-output relations, we take one sample and get the
top prediction for it, i.e., we focus on the network’s output with the highest
numeric value. Then, we calculate the SHAP values for all inputs and list the
corresponding input features and their SHAP values. Table 4 shows this result
for the app Slacker Radio. The predicted keywords with the highest values were
music player for resource identifiers and music for string constants. By looking
at the top input influences, we can see that the two different network models
make their decision based on reasonable inputs. These input tokens affect the
output in a way that is easily comprehensible and verifiable by humans.

From applying SHAP to many samples, we noticed that for resource identi-
fiers and string constants, found correlations are mostly self-evident. Although
we also found many Android apps where the model based on API calls returned
very accurate keywords, the associated SHAP values were not intuitively trace-
able. For instance, the Vevo app (see Fig. 3) has video as its top predicted term.
The associated SHAP values refer to generic methods belonging to the Activity
class from the Android API that, by their design, are unspecific to multimedia
apps. We assume that in such cases, implementations make use of a specific set of
methods that are then considered as a sort of fingerprint to identify video-related
app purposes. In other cases, SHAP explanations for API calls show very obvious
correlations. E.g., for the keyword shake, we found the SensorManager class of
the Android API among the closest-related input features. Overall, our qualita-
tive analysis using the SHAP model explanation algorithm confirmed that all our
models could very well outline the main purpose of most real-world applications.

Code Between the Lines: Semantic Analysis of Android Applications 185

6 Conclusion

In this work, we presented a solution to describe the main purpose of Android
apps in natural language by analyzing resource identifiers, string constants, and
API calls contained in app archives. Based on a combination of three dense neural
networks, our approach accurately captures semantic relationships among apps.
We carefully evaluated our approach on 67,040 real-world Android apps and
showed that with a precision between 69% and 84% our neural networks could
predict keywords and short phrases that also occur in the developer-provided
description in Google Play. Our solution provides an effective method to describe
the behavior of unknown app implementations.

References

1. Cao, Y., et al.: EdgeMiner: automatically detecting implicit control flow transitions
through the android framework. In: Network and Distributed System Security
Symposium - NDSS 2015. The Internet Society (2015)

2. Gao, H., et al.: AutoPer: automatic recommender for runtime-permission in
android applications. In: 43rd IEEE Annual Computer Software and Applications
Conference, COMPSAC 2019, Milwaukee, WI, USA, 15–19 July 2019, vol. 1, pp.
107–116. IEEE (2019)

3. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: International Conference on Software Engineering - ICSE 2014,
pp. 1025–1035. ACM (2014)

4. Hamedani, M.R., Shin, D., Lee, M., Cho, S., Hwang, C.: AndroClass: an effective
method to classify android applications by applying deep neural networks to com-
prehensive features. Wirel. Commun. Mob. Comput. 2018, 1250359:1–1250359:21
(2018)

5. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic frame-
work for android malware detection using deep learning. Digital Invest. 24, S48–
S59 (2018)

6. Kowalczyk, E., Memon, A.M., Cohen, M.B.: Piecing together app behavior from
multiple artifacts: a case study. In: Symposium on Software Reliability Engineering
- ISSRE 2015, pp. 438–449. IEEE Computer Society (2015)

7. Kuznetsov, K., Avdiienko, V., Gorla, A., Zeller, A.: Checking app user interfaces
against app descriptions. In: Workshop on App Market Analytics - WAMA, pp.
1–7. ACM (2016)

8. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
Neural Information Processing Systems - NIPS 2017, pp. 4765–4774 (2017)

9. Pan, X., et al.: FlowCog: context-aware semantics extraction and analysis of infor-
mation flow leaks in android apps. In: USENIX Security 2018, pp. 1669–1685.
USENIX Association (2018)

10. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: measuring
the description-to-permission fidelity in android applications. In: Conference on
Computer and Communications Security - CCS 2014, pp. 1354–1365. ACM (2014)

11. Takahashi, T., Ban, T.: Android application analysis using machine learning tech-
niques. In: Sikos, L.F. (ed.) AI in Cybersecurity. ISRL, vol. 151, pp. 181–205.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98842-9 7

https://doi.org/10.1007/978-3-319-98842-9_7

186 J. Feichtner and S. Gruber

12. Vásquez, M.L., Holtzhauer, A., Poshyvanyk, D.: On automatically detecting similar
Android apps. In: International Conference on Program Comprehension - ICPC
2016, pp. 1–10. IEEE Computer Society (2016)

13. Viennot, N., Garcia, E., Nieh, J.: A measurement study of Google Play. In: Mea-
surement and Modeling of Computer Systems - SIGMETRICS 2014, pp. 221–233.
ACM (2014)

14. Watanabe, T., Akiyama, M., Sakai, T., Mori, T.: Understanding the inconsisten-
cies between text descriptions and the use of privacy-sensitive resources of mobile
apps. In: Symposium On Usable Privacy and Security - SOUPS 2015, pp. 241–255.
USENIX Association (2015)

15. Zhang, M., Duan, Y., Feng, Q., Yin, H.: Towards automatic generation of security-
centric descriptions for Android apps. In: Conference on Computer and Commu-
nications Security - CCS 2015, pp. 518–529. ACM (2015)

System Security

IMShell-Dec: Pay More Attention
to External Links in PowerShell

RuiDong Han1(B), Chao Yang1, JianFeng Ma1, Siqi Ma2, YunBo Wang1,
and Feng Li1

1 Xidian University, Shannxi, China
{hanruidong,robertwang,fli1996}@stu.xidian.edu.cn,

{chaoyang,jfma}@xidian.edu.cn
2 CSIRO, Sydney, Australia

siqi.ma@csiro.au

Abstract. Windows proposes the PowerShell shell command line to
substitute the traditional CMD. However, it is often utilized by the
attacker to invade the victim because of its versatile functionality. In
this paper, we investigate an attack combined PowerShell and image
steganography. Compared with the traditional method, this attack can
deceive the defender by hiding its malicious contents in benign images.
To effectively detect this attack, we propose a framework IMShell-Dec,
whose main target is to check external links before the execution of
PowerShell script. IMShell-Dec trains a machine learning classifier
with image examples, where the features are generated by merging his-
tograms of three image color channels. Then IMShell-Dec examines the
script through tracking and classifying the related images. The detector
achieves more than 95% precision in 9,589 high-definition images.

Keywords: Intrusion detection · Powershell attack · Steganography
detection

1 Introduction

Windows PowerShell is an adaptive and versatile command-line shell environ-
ment. It allows the user to take advantage of the .NET Framework [12,20], but
it also provides additional functions for attackers to generate malicious scripts.
Several open-source frameworks(e.g., empire1, nishang2, PowerSploit3) exploit
it to attack victims. Traditional malicious scripts detection methods [1,5] rely on
regular expression matching and complex rules. The regular expression is time-
consuming to create while analyzing PowerShell script, and complex rules are
1 https://github.com/EmpireProject/Empire.
2 https://github.com/samratashok/nishang.
3 https://github.com/PowerShellMafia/PowerSploit.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 189–202, 2020.
https://doi.org/10.1007/978-3-030-58201-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_13&domain=pdf
https://github.com/EmpireProject/Empire
https://github.com/samratashok/nishang
https://github.com/PowerShellMafia/PowerSploit
https://doi.org/10.1007/978-3-030-58201-2_13

190 R. Han et al.

hard to derive and pose a maintenance burden as the attack method evolves.
Recently, several automated solutions have proposed to address these issues.
Hendler et al. [8] leverages deep neural networks to detect obfuscated malicious
PowerShell script. They encode characters as features to train a classifier.
And Zhenyuan et al. [15] design a novel subtree-based de-obfuscation method to
detect obfuscation, since the attacker always uses obfuscation to conceal their
malicious contents. They implement obfuscation detection and emulation-based
recovery in the abstract syntax tree. PowerDrive [19], a de-obfuscator for Pow-
erShell attacks, recursively de-obfuscates the code by processing multi-stage de-
obfuscation.

Previous works assume the payload exists in the form of script, however, we
discover that attacker can mount their malicious PowerShell payload on a
harmless medium outside of the script. Specifically, attackers may attempt to
hide PowerShell malicious content in an external resource and use another
harmless script to recover it later, which eliminates the distinctive character-
istic caused by excessive obfuscation. In this work, we focus on the Power-
Shell attack combines with image steganography, where the attacker injects
PowerShell script’s information into the image’s color channels, then gen-
erates another PowerShell release script to decode the malicious contents
from the image. Both the release script and image itself are harmless, and, to
improve stealthiness, the release script is usually embedded into a file (e.g.,
Office, JavaScript, C#) before delivered to the victims. When they run the file,
the latent PowerShell release script retrieves the image and releases the mali-
cious script. The malicious script can download Web files with the framework
plugin WebClient , establishes remote control by sending requests to remote ser-
vice, sets a persistence mechanism by creating a scheduled task or uninstalls a
local application forcefully.

To counter this attack, we propose a novel machine-learning-based detection
method, named IMShell-Dec. Unlike previous researches, which only consider
the security of script itself, we also consider the external link, since the attacker
can conceal their real malicious script in the external resource. We locate the
external resource in the script, then apply a machine-learning-based method to
check these external resources. We integrate the color histogram as the feature
and train a classifier to identify malicious script.

The contribution is summarized in two folds. First, we research a new type of
PowerShell attack. It hides the malicious script into an image and generates
a standard release script, which can not be detected by the existing detection
method. To address this emerging threat, we propose IMShell-Dec, which
locates and identify the potentially malicious content hiding in the external
image. IMShell-Dec achieves more than 95% precision in 9,589 high-definition
images.

The rest of this paper is organized as follows. In Sect. 2, threat model of
PowerShell attack including victim setting is introduced. Then, the detailed
process of the threat is reported in Sect. 3. In Sect. 4, the detection mechanism
is illustrated, which combines the image color histogram feature and machine

IMShell-Dec 191

learning. In Sect. 5, we describe the way we generate data samples, and report the
detection performance of our method. Finally, relevant researches and conclusion
are shown respectively in Sect. 6 and Sect. 7.

2 Threat Model and Scope

In this paper, we explore a novel attack combine PowerShell attack with image
steganography. In this attack, the attacker generates two parts of the resource,
including an image and a trap file with a release script. Then, the attacker spread
the trap file through Web document, Webmail or USB device, and attempt to
fool potential victims to give the execution permissions for the release script.
The release script then decodes the malicious script from the image, which is
hosted on a website or send to the victim along with the trap file. The whole
attack flow is shown in Fig. 1.

Fig. 1. System and threat model.

The scope of the attack is limited to the following scenarios. The target’s
system version is not older than Windows 7, since Microsoft developers set the
PowerShell as a default application in the newer Windows version. The victim
must be unaware or unfamiliar about the system security policy and proficiency
of PowerShell. When victims get trap files, they accept to run it and granting
necessary permission for the release script. For example, it is common for staff
to download Office word documents from the Internet and open them with a
local editor. When the document asks to allow update source or modify the file,
the user often clicks sure button without paying attention to the prompts in
the dialog box. Such action grants the file with specific permissions, allows the
releasing script to retrieve a malicious payload and launch an attack.

3 Novel PowerShell Attack Through Image
Steganography

In this section, we demonstrate the attack process through a concrete example
and explain why the two parts of the attack can evade detection.

192 R. Han et al.

3.1 Principle of Attack

The conventional rule-based detection method mainly relies on the character
form of PowerShell script to separate benign and malicious content. However,
image steganography allows the attacker to conceal their malicious payload in an
external image, thus bypassing existed script detection. The attacker can then
use a release script, which has no difference from the common benign scripts, to
recover the payload and execute the intended attack.

In this work, we assume the attacker use Invoke-PSImage4, a commonly
used tool in the PowerShell, to generate the steganography image. Invoke-
PSImage embeds the bytes of a PowerShell script into pixels of a PNG image
by utilizing the least significant 4 bits of 2 color values in each pixel to hold the
payload, then generates a release script that can extract the original payload
later. If treated separately, both the release script and the image are harmless:
the image is a PNG file, and the script’s content is no more than a benign Pow-
erShell command. The diverse format of the release script further strengthened
the stealthiness, as the script itself can be a drop-in Office, VBScript, JavaScript,
BAT Script, or a base64 certificate. Once the attacker lures the user to open-
ing/running the file with certain permission, an image decoding command is
executed in the memory without any GUI activity. The malicious payload is
then extracted from the image existed in local or remote storage, and launch the
intended attack.

As our threat model mentioned, the release script is embedded in another file
to ensure it can sneak into the user system environment. For example, Windows
provides several methods for data transferring between applications. One method
is to use the dynamic data exchange protocol [10]. The DDE protocol carries out
macro-less code execution in Office documents. Although Microsoft has limited it
in ADV170021(2017.12)5, there are still users who are not installing this patch.
We conduct a pilot experiment on a colleague’s computer, which is installed
with Office 2013(15.0.4.4569.1504), and found out that the older version Office
can run PowerShell code execution under the default permissions. Excel4-
DCOM 6 enable raw shellcode execution on a remote Excel(32Bit), which opens
the possibility to combines shellcode attack with lateral movement. JavaScript is
capable of running PowerShell script by utilizing component “child process”,
it can also start a process to execute local PowerShell.exe to run a script.
And .Net Framework also manages applications through SCM(Services Control
Manager), where we can interfere PowerShell scripts in C# with public API.

3.2 Threat Usage

We perform experiments to determine the ability of the attack with three dif-
ferent forms of samples PowerShell scripts. At the same time, we explain

4 https://github.com/peewpw/Invoke-PSImage.
5 https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV170021.
6 https://github.com/outflanknl/Excel4-DCOM.

https://github.com/peewpw/Invoke-PSImage
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV170021
https://github.com/outflanknl/Excel4-DCOM

IMShell-Dec 193

why release scripts can slip away from the victim’s attention and why image
steganography makes the attack payload harder to be detected.

To verify the sensitivity of different defenders to scripts. We collect a cor-
pus of PowerShell scripts (i.e., 4,079 PowerShell scripts in total) from
iocs7, which containing 27 kinds of malicious PowerShell scripts. The most
frequently appeared script is Downloader DFSP, which downloads file with Web-
Client. To test the response of the defenders, we simulate a Downloader DFSP
example as iocs provided, and process the example with different script forms,
including an origin script, a base64 emending obfuscated script, and an image
steganography script. In this simulation, we use this script to download the 7z 8

application (and in the real attack, a malicious file) and execute it. More specif-
ically, the origin script (see Fig. 2a) call WebClient to download the “7z.exe”
into local directory “$HOME\Documents” and execute. The script is able to
coding in Base64 (see Fig. 2b), which can directly be executed through Power-
Shell with the option “-enc”. For the image steganography attack, we encode
the script into an image’s color channels through Invoke-PSImage, then gener-
ates a lossless PNG image and a release script (see Fig. 2c). Figure 4 compared
the original image with its steganography processed copy.

(New-Object System.Net.WebClient).DownloadFile('https://www.7-zip.org/a/7z1900-

x64.exe',"$HOME\Documents\7z.exe");

Start-Process ("$HOME\Documents\7z.exe")

(a) Downloader Script

JTI4TmV3LU9iamVjdCUyMFN5c3RlbS5OZXQuV2ViQ2xpZW50JTI5LkRvd25sb2FkRmlsZSUyOCUyN2h0

dHBzJTNBLy93d3cuNy16aXAub3JnL2EvN3oxOTAwLXg2NC5leGUlMjclMkMlMjIlMjRIT01FJTVDRG9j

dW1lbnQlNUM3ei5leGUlMjIlMjklM0JTdGFydC1Qcm9jZXNzJTIwJTI4JTIyJTI0SE9NRSU1Q0RvY3Vt

ZW50JTVDN3ouZXhlJTIyJTI5JTBBJTBB

(b) Coding Base64

sal a New-Object;Add-Type -A System.Drawing;

$g=a System.Drawing.Bitmap("xxx\evil-kiwi.png");

$o=a Byte[] 1600;(0..0)|%{foreach($x in(0..1599)){$p=$g.GetPixel($x,$_);

$o[$_*1600+$x]=([math]::Floor(($p.B-band15)*16)-bor($p.G-band15))}};

$g.Dispose();

IEX([System.Text.Encoding]::ASCII.GetString($o[0..407]))

(c) Steganography Image Release Script

Fig. 2. Example of scripts.

Defender Name Version Origin Base64 Release

360 12.0.0.2024 ignore warning ignore
Kaspersky 20.0.14.1085 ignore warning ignore
Huorong 5.0.28.1 ignore warning ignore
Tencent 2.0.6.27 ignore warning ignore
Kingsoft 8.29.18953 ignore ignore ignore
MS Defender 4.18.1907.4 ignore ignore ignore
Norton 5.16.1.3 ignore warning ignore
McAfee 4.0.127.1 ignore ignore ignore
AVAST 2.1.1286 ignore ignore ignore

Fig. 3. Reaction of defender.

3.3 Effect of Attack

We evaluate the stealthiness of methods by observing the defender’s response
during the execution of scripts. Before this experiment, we download the lat-
est defenders from their official websites and install them on Windows 10(1903)
with PowerShell’s version 5.1.18362. Nine experience results about security

7 https://github.com/pan-unit42/iocs/tree/master/psencmds.
8 https://www.7-zip.org/.

https://github.com/pan-unit42/iocs/tree/master/psencmds
https://www.7-zip.org/

194 R. Han et al.

defender are enumerated in Fig. 3. We observe that all tested defenders do not
raise a warning to the original script, a natural result since the script itself
doesn’t contain any abnormal behavior. However, defenders can easily intercept
a naked malicious URL download attempt. Even we obfuscate the original (mali-
cious) script with deep embedding, half of the defenders report that the script is
operating suspiciously. This observation conforms with the discovery in research
[8,11]. Image steganography conceals the true payload into a legitimate medium,
extract it later through another independent and benign-looking release script,
thus bypass the conventional script detection method.

As for the image, both defender and firewall only examine the script itself but
pay no attention to its external image. Besides, as Fig. 4 shows, it is challenging
to notice the blemish in steganographic image by naked eyes.

(a) Original Image (b) Steganography Image

Fig. 4. Comparison of original and steganographic image.

4 Our Proposed Defense Framework

To address the above PowerShell attacks, we proposed a machine-learning
based defense framework, IMShell-Dec. In this section, we provide an overview
of the proposed framework, and describe two key components of our framework:
feature extractor and detection model.

4.1 Overview of IMShell-Dec

IMShell-Dec is a detection framework that aims to identify suspicious payload
hiding in image. It starts by locating the external image links in PowerShell
scripts. Once located, IMShell-Dec attempts to retrieve the image file, and
determine whether there is a malicious payload in the image. The overview of
IMShell-Dec is illustrated in Fig. 5.

When IMShell-Dec receives an unknown script, it starts by seeking for
the external image links in PowerShell scripts and attempts to retrieve the

IMShell-Dec 195

Check Image Path Suspicious Picture ReportDeployment

Training Classifier
Unknown

Script

Normal
Images Set

Steganographic
Images Set

Local

Web Download

Fig. 5. Overview of IMShell-Dec

image for any link located. Once the image has successfully retrieved, the feature
extractor will transform images into useful features, and then the detection model
will determine the category of these images. If the detection model label the
image as malicious, then IMShell-Dec will mark the source script as suspicious
and raise a warning to the user. In the following subsections, we thoroughly
describe the two key components of our proposed framework: feature extractor,
and detection model.

4.2 Feature Extractor

Before calling the detection model, we use feature extractor to distill useful
information from the raw images. A pixel in the typical RGB-colored image
consists of three integers, where each integer represents a colored channel with a
range between 0 to 255. If we plot the number of pixels for each possible value,
we obtain a frequency graph that represents the tonal distribution in a digital
image. Such a graph is called “histogram”.

Usually, the distribution in an unmodified image histogram tends to be
smooth in general. However, steganography tools like Invoke-PSImage will intro-
duce additional offsets to pixels, which may break the smooth shape of the dis-
tribution.

To examine this conjecture, we record several image histograms and com-
pare the smoothness of distribution before and after the steganographic pro-
cess. As Fig. 6 shows, the steganographic process introduces numerous small yet
obvious spikes in the image histogram. Hence, we leverage a filter with kernel
[−0.5, 1,−0.5] to process each color histograms, and transform the result of three
channels into one feature vector, which reflected the smoothness of the transi-
tion between a particular value with its neighbor. To neutralize the influence
of frequency scale, we further apply a min-max normalization and re-scale the
feature vector to the range of [−1, 1]. The visualized image features are displayed
in Fig. 7. It can be observed from the figure that the features extracted from a
benign and malicious image are quite different.

196 R. Han et al.

(a) Steganographic Image Histogram

(b) Original Image Histogram

Fig. 6. Image color histogram. (Color figure online)

(a) Steganographic Image Feature

(b) Original Image Feature

Fig. 7. Visualization feature.

4.3 Detection Model

Once the image has processed into a feature, we can use a detection model to
classify the images into two categories: benign or malicious. To obtain this model,
we need to train it before the deployment with a training set.

A training set contains a set of images with a ground-truth label, where
each image is processed forehand with feature extractor to generate correspond-
ing feature vector. During the training process, these features are merged into
one matrix, then the detection model takes the feature matrix as input and
output the prediction. By comparing the prediction with ground-truth, the

IMShell-Dec 197

machine learning algorithm is able to correct and update the detection model,
thus improving its classification performance. When the training is completed,
we freeze the model parameter and deploy the discriminative model to predict
unseen images.

The label prediction process takes as input the discriminative model and a
feature vector that the label is to be predicted. The discriminative model would
assign the likelihoods of the feature to belong to each of the two categories. The
category with the highest likelihood would be outputted as the predicted label
for the feature. The prediction result of the feature is the judgment of the image.

There are several machine learning algorithms able to perform the classifica-
tion task. In this study, we select three algorithms, namely Linear Discriminant
Analysis (LDA), Random Forest (RF), and Back-Propagation Networks (BPNs)
as our experiment candidates. Their detection performance and time consump-
tion will be evaluated in the next section.

5 Experiment of IMShell-Dec

5.1 Experiment Setting and Metrics

We implement our code in Python 3.7 and perform the experiment on a PC
equipped with Intel i7-9700 CPU. We use iocs, a corpus contains 4079 Pow-
erShell scripts as our malicious script database, which has an average size of
312 Bytes and can be divided into 27 categories by the attack behavior. Then,
we collect 5,510 high-definition images from the Internet, and randomly select
4,079 of them to generate synthetic copies with malicious payloads. This image
dataset(9,589 samples in total) is used for classifier training.

To ensure the fidelity and reproducibility of the experiment, we apply k-fold
cross-validation to generate a diversified dataset for both training and evaluation.
Specifically, the entire dataset is randomly split into k(k = 10 in our work)
subsets, each subset contains approximately 958 images, with roughly 550 benign
and 408 malicious. We then generate ten distinctive data groups by taking each
unique subset as test data while the remaining subsets as training data. We train
and evaluate models on each data groups, and report the average performance.

We use accuracy, precision, recall, and F1-score as the performance metrics,
which are defined as follows:

Accuracy =
TP + TN

P + N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 × Precision×Recall

Precision + Recall
(4)

198 R. Han et al.

where P is the number of malicious image, N is the number of benign image,
TP is the number of correctly identified malicious image, FP is the number of
benign images that incorrectly labeled as malicious, and FN is the number of
malicious image that wrongly classified as benign.

We also apply the receiver operating characteristic curve (ROC), area under
curve (AUC) and precision/recall curve (PR) to assess the overall effectiveness
of IMShell-Dec. ROC curve is a graphical plot that illustrates the diagnos-
tic ability of a binary classifier system as its discrimination threshold is varied,
and AUC, the size of the area under the ROC curve, represented the model’s
capability to distinguish between classes. Both indicators of the PR curve focus
on positive examples in a binary classifier system. If the PR of one classifier is
entirely covered another, it can be asserted that the classifier has better perfor-
mance than another. In past studies, F1, accuracy, recall and precision scores of
0.8 or above are often considered reasonable (e.g., [3,13,17]).

5.2 Result

We implement and evaluate three classification algorithm, including linear dis-
criminant analysis, back-propagation network, and random forest. Experiment
results are shown in Table 1.

Table 1. Metrics of each classifiers.

Classifier Accuracy Precision Recall F1 AUC

LDA 0.918 0.898 0.943 0.920 0.972

RF 0.941 0.927 0.959 0.943 0.988

BPNs 0.961 0.954 0.968 0.961 0.993

Table 2. Average training time.

Classifier Training (S) Predicting (S)

LDA 0.31077 0.00151

RF 0.72302 0.01240

BPNs 5.67275 0.00747

We note that the results of these classifiers are reasonably good, which
means our proposed scheme performs well in classifying images. Among the
three machine learning algorithms, their F1 results achieve 0.920, 0.943, and
0.961 (out of 1) respectively. The result of LDA is lower than the other two
algorithms. Through the ROC, AUC and PR results shown in Fig. 8 and Fig. 9,
the result differences between these three algorithms are visible.

No matter which classifier is applied, we obtain a conclusion that our frame-
work shows high performance in malicious image detection. Moreover, it repre-
sents that BPNs performs better than the other two algorithms, and we believe
that BPNs is more suitable for our framework. The back-propagation network
classifier has the following advantages:
– It can handle thousands of input features without feature deletion.
– It points out the important potential features for classification.
– It performs an internal unbiased estimate of the generalization error.

We also investigate the time consumption of each algorithm by measuring the
time to process the entire training dataset and the time to predict 1000 images
with malicious payloads. The result is illustrated in Table 2.

IMShell-Dec 199

(a) LDA (b) RF (c) BPNs

Fig. 8. ROC and AUC of algorithms.

(a) LDA (b) RF (c) BPNs

Fig. 9. Precision/Recall curve of algorithms.

5.3 Discussion

Limitation. We manually inspected some incorrectly classified images and iden-
tified the following issues that cannot be proceeded by IMShell-Dec.

– If a malicious image contains a sizeable pure color area, IMShell-Dec may
predict the image as the wrong label.

– IMShell-Dec may incorrectly report a benign image with inferior quality.
– If the image path is deliberately obfuscated, our proposed scheme is unable

to locate the image’s position.

Future Work. To address the limitation mentioned above, we plan to find new
feature extraction methods to solve the problem that some edges of the image
may extract inaccurate features. Besides, we decide to design a better pattern
matching method to locate the links of images more accurately.

6 Related Work

6.1 Malicious PowerShell Script Detection

Several works [6,8,11,16] has proposed their methods and algorithms to detect
malicious scripts.

For example, Hendler et al. [8] extract features from malicious PowerShell
scripts through the bag-of-words model, a natural language processing approach,

200 R. Han et al.

where the system transform PowerShell commands into a multi-set of words,
then calculate their frequency to generate the feature vectors. These feature
vectors are further processed with Convolutional Neural Networks(CNNs) and
Recurrent Neural Networks(RNNs) to identify the category of PowerShell
commands.

Khan et al. [11] extract critical features through the wrapper approach to
detect unseen malicious scripts. They collect malicious JavaScript codes from
client sides, apply the wrapper method to distill an info-enriched feature subset,
then feed this feature subset into the detection model. In this work, the author
compared four supervised machine learning classifiers (Naive Bayes, Support
Vector Machines, K-Nearest Neighbour and Decision Trees), and choose the one
with the best prediction performance as the detection model.

Although these research apply different feature extraction strategies, none
of them consider the attack vectors outside of the script. Therefore, existing
script detection scheme can not identify our proposed attack, as the true attack
payload is located in an external resource, and the release script itself is clean
and harmless.

6.2 Steganography Image Detection

Due to the data structure of image, researchers has proposed several machine-
learning based detection method [9,14,21–23] to recognize image processed with
steganography tools. Wu et al. [21] leverage the residual network [7] to detect
steganographic images. Ye et al. [22] promote a CNNs architecture to analyze
steganography consisted of diverse activation modules. Ke et al. [9] proposed
a hybrid deep learning framework, which combines the bottom hand-crafted
convolutional kernels and threshold quantizers pairing with the upper compact
deep-learning model.

For the adaptive pattern-based detection, Chen et al. [4] utilize local texture
pattern (LTP) to detect binary image steganography, which LTP describes the
texture distribution of areas and consist of pixels within the areas. Similarly, a
feature selection approach [2] implemented adaptive inertia weight-based par-
ticle swarm optimization is proposed. Saman et al. [18] proposes a novel blind
statistical analysis technique to detect the least significant bit flipping image
steganography.

7 Conclusion

We investigate a new class of PowerShell attack combined with steganogra-
phy, which allows an attacker to conceal their malicious payload in a medium
outside of script, thus bypassing conventional intrusion detection methods. To
examine the feasibility, we generate images hosted with script through a popular
steganography tool, Invoke-PSImage, then retrieved and executed the payload
successfully through another harmless release script. Pilot research shows that
the synthesized image has no visual difference with the original, and multiple

IMShell-Dec 201

mainstream defenders failed to intercept the image nor the release script. Both
results confirmed the stealthiness of this attack.

To address the emerging threat, in this paper, we propose a machine-learning-
based defense framework, IMShell-Dec, to identify malicious PowerShell
script that hiding their real payload in the external image. We train and evalu-
ate our proposed framework on a synthesized dataset, in which our framework
achieved high detection performance across multiple measurements. Our work
can serve as an inspiration in designing a more robust and secure detection model
against the proposed attack schemes.

Acknowledgments. This research has received funding from The Key Program
of NSFC Grant (U140525), The National Nature Science Foundation of China
(No. 61672415), Key Research and Development Program of Shaanxi Province
(No. 2018ZDCXL-G-9-5), Open Foundation of Science and Technology on Com-
munication Networks Laboratory (No. SXX18641X024), Key R&D Program of
Shaanxi Province (No. 2019ZDLGY12-04), Scientific and Technical Innovation Plan
of Shaanxi Province (No. 201809168CX9JC10) and National Key R&D Program of
China(No. 2017YFB0801805).

References

1. Abadi, M., Xie, Y., Yu, F., John, J.P.: Identifying malicious queries, US Patent
8,495,742, 23 July 2013

2. Adeli, A., Broumandnia, A.: Image steganalysis using improved particle swarm
optimization based feature selection. Appl. Intell. 48(6), 1609–1622 (2017).
https://doi.org/10.1007/s10489-017-0989-x

3. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.G.: Is it a bug or
an enhancement?: a text-based approach to classify change requests. In: CASCON,
vol. 8, pp. 304–318 (2008)

4. Chen, J., Lu, W., Fang, Y., Liu, X., Yeung, Y., Xue, Y.: Binary image steganalysis
based on local texture pattern. J. Vis. Commun. Image Represent. 55, 149–156
(2018)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. Technical report, WISCONSIN UNIV-MADISON DEPT OF COMPUTER
SCIENCES (2006)

6. Fass, A., Krawczyk, R.P., Backes, M., Stock, B.: JaSt: fully syntactic detection of
malicious (Obfuscated) JavaScript. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.)
DIMVA 2018. LNCS, vol. 10885, pp. 303–325. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93411-2 14

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Hendler, D., Kels, S., Rubin, A.: Detecting malicious PowerShell commands using
deep neural networks. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pp. 187–197. ACM (2018)

9. Ke, Q., Ming, L.D., Daxing, Z.: Image steganalysis via multi-column convolutional
neural network. In: 2018 14th IEEE International Conference on Signal Processing,
pp. 550–553 (2018)

https://doi.org/10.1007/s10489-017-0989-x
https://doi.org/10.1007/978-3-319-93411-2_14
https://doi.org/10.1007/978-3-319-93411-2_14

202 R. Han et al.

10. Kertesz, V., et al.: Dynamic data exchange server, US Patent 5,764,155 (1998)
11. Khan, N., Abdullah, J., Khan, A.S.: Defending malicious script attacks using

machine learning classifiers. Wirel. Commun. Mob. Comput. 2017, 9 (2017)
12. Lee, T., Mitschke, K., Schill, M.E., Tanasovski, T.: Windows PowerShell 2.0 Bible,

vol. 725. Wiley, Hoboken (2011)
13. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification mod-

els for software defect prediction: a proposed framework and novel findings. IEEE
Trans. Softw. Eng. 34(4), 485–496 (2008)

14. Li, B., Wei, W., Ferreira, A., Tan, S.: ReST-Net: diverse activation modules and
parallel subnets-based CNN for spatial image steganalysis. IEEE Signal Process.
Lett. 25(5), 650–654 (2018)

15. Li, Z., Chen, Q.A., Xiong, C., Chen, Y., Zhu, T., Yang, H.: Effective and light-
weight deobfuscation and semantic-aware attack detection for PowerShell scripts.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1831–1847. ACM (2019)

16. Milosevic, J., Sklavos, N., Koutsikou, K.: Malware in IoT software and hardware.
In: Workshop on Trustworthy Manufacturing and Utilization of Secure Devices,
pp. 14–16 (2016)

17. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings
of the 30th International Conference on Software Engineering, pp. 181–190. ACM
(2008)

18. Shojae Chaeikar, S., Zamani, M., Abdul Manaf, A.B., Zeki, A.M.: PSW statistical
LSB image steganalysis. Multimedia Tools Appl. 77(1), 805–835 (2018)

19. Ugarte, D., Maiorca, D., Cara, F., Giacinto, G.: PowerDrive: accurate de-
obfuscation and analysis of PowerShell malware. In: Perdisci, R., Maurice, C.,
Giacinto, G., Almgren, M. (eds.) DIMVA 2019. LNCS, vol. 11543, pp. 240–259.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22038-9 12

20. Wilson, E.: Windows PowerShell 3.0 First Steps. Pearson Education (2013)
21. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multime-

dia Tools Appl. 77(9), 10437–10453 (2017). https://doi.org/10.1007/s11042-017-
4440-4

22. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganal-
ysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

23. Zeng, J., Tan, S., Li, B., Huang, J.: Large-scale JPEG image steganalysis using
hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 13(5), 1200–
1214 (2018)

https://doi.org/10.1007/978-3-030-22038-9_12
https://doi.org/10.1007/s11042-017-4440-4
https://doi.org/10.1007/s11042-017-4440-4

Secure Attestation of Virtualized
Environments

Michael Eckel1(B), Andreas Fuchs1, Jürgen Repp1, and Markus Springer2

1 Fraunhofer SIT, Rheinstraße 75, 64295 Darmstadt, Germany
{michael.eckel,andreas.fuchs,Jurgen.Repp}@sit.fraunhofer.de

2 Darmstadt, Germany

Abstract. Securing the integrity of virtualized environments like clouds
is challenging yet feasible. Operators have discovered the advantages of
virtualization technology in terms of flexibility, scalability, cost-effective-
ness, and availability. Applications range from network and embedded
devices to big data centers and cloud computing. Trusted Computing
technology can be employed to protect the integrity of a system by lever-
aging a Trusted Platform Module (TPM) and remote attestation.

Existing research on remote attestation of virtualized environments
differs in scalability, resource consumption, and provided security guar-
antees. While some approaches scale at large and use the TPM efficiently,
they are way more intrusive, requiring changes to hypervisor and Virtual
Machine (VMs). Others render entirely impractical with an increasing
number of VMs, caused by the TPM being the bottleneck.

In this paper we analyze existing work on remote attestation for
virtualized environments and discuss benefits as well as shortcomings.
We identify an approach that provides adequate security and is easy to
implement but is prone to relay attacks. We improve that approach by
developing countermeasures, while maintaining existing security guar-
antees. Our contribution requires only minimal changes to the hypervi-
sor system, keeping existing attestation protocols intact. We implement
and evaluate on production-grade hardware, and compare our improved
attestation approach with the most sophisticated alternative approach.

With performance measurements and further evaluations we show
that our solution outperforms the other approach for a small number
of VMs, as used in network devices and embedded systems.

Keywords: Virtualization · Remote attestation · Trusted computing

1 Introduction

Virtualization technology has paved the way for businesses to reduce infras-
tructure costs while also improving dependability and scalability. Being able to
dynamically launch and tear down new VMs on demand, infrastructure costs
are cut even further. Especially when handling huge amounts of data on the go,
cloud services come in very handy. Based on virtualization technologies, they can

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 203–216, 2020.
https://doi.org/10.1007/978-3-030-58201-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_14

204 M. Eckel et al.

be hosted internally or externally, and be migrated back and forth. Depending
on the use case, data and workloads handled by VMs may be of sensitive or
confidential nature. Those can be protected against disclosure and manipulation
by providing encryption and authenticated channels during transport. However,
data can still leak if VMs or hypervisor hosts are manipulated.

To mitigate these threats, Trusted Computing technologies, such as the TPM
and remote attestation, can be leveraged. Remote attestation is the process of a
verifier making claims about the integrity of target systems, based on executed
software. Hypervisors equipped with a TPM allow for this kind of remote attes-
tation. Before data is to be processed on a VM, its trustworthiness could be
verified using remote attestation.

Current technologies allow for both attestation of boot time and attestation
of runtime. Boot time attestation encompasses all components that are executed
in strictly sequential order during system boot, i.e. up to the kernel of an operat-
ing system (OS). From there, the runtime of a system begins, executing software
applications in parallel in an unpredictable, non-deterministic order. A major
problem is that software inside VMs is per se not considered in a remote attes-
tation process. To make sure that VMs behave as expected, tools like Intel’s
Open Cloud Integrity Technology (Open CIT) implement features to measure
the integrity of VM images prior to their execution. This approach turns out to
be very time-consuming and inflexible since it supports only static images.

Hypervisor solutions like KVM support passing through the Physical TPM
(pTPM) to VMs. That allows for identical attestation technologies to be used
for VMs and hypervisor. However, forwarding the same pTPM to many VMs,
makes the TPM a bottleneck and introduces race conditions. Virtual TPMs
(vTPM) are software implementations of a TPM which can be assigned to VMs,
conveying the impression to a VM of using a pTPM [2,3]. This way the same
attestation technologies as for physical machines can be used. However, integrity
of VMs depends on the integrity of the underlying hypervisor.

In this paper we analyze existing attestation approaches for virtualized envi-
ronments. We improve the existing separate attestation approach to strengthen
it against relay attacks. We implement the hypervisor-based attestation app-
roach as proposed by Lauer and Kuntze [12] as well as our improved separate
attestation approach. Eventually, we evaluate the feasibility of both approaches
with performance measurements on production-grade hardware.

In Sect. 2 we analyze related work on attestation for virtualized environments.
We present our target reference architecture in Sect. 3. Section 4 identifies attes-
tation requirements which we consider vital. Section 5 then presents our main
contribution, the strengthening of the separate attestation approach. In Sect. 6
we describe our implementation, followed by our evaluation in Sect. 7. Section 8
summarizes the paper and finishes with potential future work.

2 Related Work

Existing research on attesting virtualized environments focuses on either pro-
viding isolated attestations of the hypervisor or of single VMs [11,17]. Some

Secure Attestation of Virtualized Environments 205

propose more sophisticated solutions that attempt to build a trusted virtual
machine monitor (VMM).

One of these approaches is Terra from Garfinkel et al. [10]. Terra protects
VMs by isolating them from each other. It measures individual blocks of memory
prior to loading them and enables remote attestation to external appraisers.
This memory introspection approach is computing-intensive and requires a huge
amount of main memory. However, Terra builds a basis for many other work
which further elaborates on the idea of protecting VM memory, such as Cerberus
[6] and TrustVisor [13].

Other approaches, such as the Hypervisor-Based Integrity Measurement
Agent (HIMA) by Azab et al. [1], measure programs and services running inside
a VM. Prior to execution by the hypervisor, VM system calls and hardware
interrupts are intercepted and analyzed. It requires NX bit (no-execute bit) sup-
port on the hypervisor to mark measured memory pages prior to their execution.
HIMA requires all memory pages of a program to be loaded into memory. As a
consequence, changes to the OS are necessary. HIMA requires a large amount of
computing power and its applicability must be carefully evaluated.

There exist CPU based attestation approaches to achieve software integrity
protection, such as Bastion [5] and HyperWall [15]. These CPU extensions allow
for measuring and verifying software modules prior to their execution and were
analyzed by Zhang et al. in [18] regarding their applicability to cloud solutions.

Since memory verification techniques based on TPMs are slow, there was a
desire to supply VMs with TPM functionality in a resource efficient manner. The
work in [14] introduced an abstraction layer inside the VMM, adding context
switching functionality in a pTPM. This provides VMs with the illusion of having
exclusive access to a real pTPM. The problem with this approach is that sharing
one physical TPM with many VMs makes the pTPM a bottleneck. With the
introduction of vTPMs by Berger et al. [2], attestation of VMs changed to some
extend. With vTPMs it is possible to supply every VM with its own TPM in
software which is securely anchored in a pTPM. Since its introduction in 2006,
Berger et al. have altered the vTPM implementation slightly, turning it into a
hypervisor extension. Thus, eliminating the need for an additional management
VM [3]. Due to its efficiency, many researchers now focus on the integration of
vTPMs to attest software running inside VMs. Migration of VMs and associated
vTPMs is another topic that is actively researched [17].

While the majority of existing research treats attestation of VMs and hyper-
visors separately, almost no research on binding these attestations together is
conducted. A verifier may trust a VM after verifying its integrity, using remote
attestation. However, if the underlying hypervisor is compromised, the integrity
and trustworthiness of the VM may also be compromised. In case an attacker
manages to compromise a hypervisor, she may be able to extract or manipulate
sensitive information, e.g. by tampering with VM main memory.

The Virtualized Platform working group of the Trusted Computing Group
(TCG) defined a deep attestation scheme [16] to link attestations of VMs and

206 M. Eckel et al.

hypervisor. In [4], Celesti et al. describe how remote and deep attestation can
be used to build federated cloud environments.

Lauer and Kuntze propose Hypervisor-based Attestation (HYPA) [12]. It
adds an Attestation Manager (ATAMAN) to the hypervisor which directly reads
the internal state of running vTPM instances. The approach falls into the cate-
gory of bottom-up attestation approaches and aims at improving scalability of
VM attestations, in cases where tens or hundreds of VMs are running.

In a HYPA process, the Verifier sends a single attestation request to the
hypervisor (cf. Fig. 1, 1). In return, it receives a single attestation response (9),
including attestations of all running VMs (2–7) as well as the hypervisor itself
(8).

Fig. 1. Hypervisor-based attestation (based on [12])

The Attestation Manager directly accesses running vTPM instances to read
their internal state, i.e. vPCRs. Furthermore, it reads the virtual Stored Mea-
surement Log (vSML) from inside each VM. All vPCRs and vSMLs are compiled
into a data structure, which is then hashed. The resulting digest is passed as qual-
ifying data (nonce) to a TPM Quote operation of a hypervisor attestation, using
the pTPM. The Attestation Manager runs within the bounds of the hypervi-
sor, and as such, it is part of the hypervisor attestation. The overall attestation
result includes the data structure with the vPCRs and vSMLs as well as the
hypervisor attestation. The Verifier verifies both the hypervisor attestation and
the VM attestations.

The main benefit of the hypervisor-based attestation approach is its huge
scalability improvement compared to individual VM attestations. This is
reflected by the reduction of attestation protocol overhead as well as reduced
I/O operations. However, it is very intrusive, requiring access to currently run-
ning vTPM instances as well as access to VM internals, i.e. the vSMLs.

Separate Attestation (SEPA) of VMs and hypervisor is another approach
described by Lauer and Kuntze in [12]. The Verifier sends an attestation request
to a single VM (cf. Fig. 2, 1) and receives an attestation result (2). Then the
Verifier sends an attestation request to the hypervisor (3), using the same nonce,
and receives the attestation result (4). By using the same nonce, a weak layer
linking is achieved between the VM and hypervisor.

Secure Attestation of Virtualized Environments 207

Fig. 2. Separate attestation (based on [12])

As stated by the authors, the SEPA approach is not resource-conserving and
makes the pTPM the bottleneck during consecutive VM attestations. The fact
that each individual VM attestation also requires an additional hypervisor attes-
tation, reduces the scalability of this approach drastically. Another problem is
that layer linking is not very strong and a Verifier requires constant up-to-date
information on which hypervisor a VM is running. Since this kind of layer linking
is neither enforced nor verifiable, it undermines the strong attestation statements
of pTPM and vTPM. Lauer and Kuntze propose a way to improve the linking
between VM and hypervisor by providing the VM with a secret value N which
is used to generate remote attestation data. After the VM terminates, it pro-
vides the hypervisor with the secret value N over a secure channel between VM
and hypervisor. The hypervisor then uses this secret value for attestation. The
downside of this approach is that the Verifier does not treat VM and hypervisor
equally. It requires changes to the guest OS and hypervisor. Thus, complicating
the implementation and reducing scalability [12].

SEPA does not require changes to existing software components or protocols,
and thus can be easily integrated into existing attestation solutions. It is possible
to treat VMs and hypervisors equally from a Verifier point of view. In systems
which only run a small number of VMs, this approach represents a feasible
attestation solution. However, we observed that separate attestation as proposed
by Lauer and Kuntze is subject to relay attacks.

There exist other cloud integrity verification techniques that are more com-
plex but rely on previously described technologies. In the upcoming section we
introduce our reference architecture, which we use to further evaluate the SEPA
and HYPA approaches.

3 Reference System

Our reference architecture is based on the one presented by Intel and Hytrust in
[8] which splits data into work packages to process them in parallel (cf. Fig. 3). We
propose to use VMs for that purpose which can be flexibly spawned and teared
down on current demands. The Workflow Orchestration handles distribution and
scheduling of work packages to VMs. We assume host systems and VMs to be
owned and operated by the same party.

208 M. Eckel et al.

Fig. 3. vTPM-based reference architecture. The workflow Orchestration relies on the
Verifier to verify the integrity of VMs and their hypervisor.

Before entrusting a VM with processing of potentially sensitive work pack-
ages, the Workflow Orchestration ensures the VM to be trustworthy. This process
is complex and requires in-depth knowledge about the configuration of a par-
ticular VM. That is why a Verifier is dedicated to that task. It attests hosts
and VMs to provide the Workflow Orchestration with up-to-date integrity infor-
mation. The Verifier maintains a database of Reference Integrity Measurements
(RIMs) which represent known good system configurations. By comparing them
to the current operational state of a system, the Verifier decides whether or not
hosts and VMs to be trustworthy.

Hosts are equipped with a pTPM and run Linux. They have a TPM-enabled
BIOS and boot loader, and support Measured Boot for boot time integrity, and
the Linux Integrity Measurement Architecture (IMA) for runtime integrity. The
VM hypervisor supports vTPMs to be assigned to VM, such as QEMU/KVM.
vTPMs are executed in the context of the hypervisor and one vTPM is assigned
to exactly one VM [3]. vTPMs provide identical functionality as pTPMs. How-
ever, they lack a True Random Number Generator (TRNG) as well as an
Endorsement Key Certificate (EK Cert) from the TPM manufacturer. Further,
they cannot provide the same security guarantees as a pTPM as they are only
software.

4 Attestation Requirements

Coker et al. [7] already postulate requirements for remote attestation based solu-
tions. Lauer and Kuntze analyzed and extended them in [12]. The first of these
requirements is the freshness of attestation information, which requires to keep
the gap between the time of a measurement and the time of its use as small as
possible to minimize the risk of using outdated information. The next require-
ment is the comprehensiveness of attestations to enable the verifier to deduct
the state of a system in a replicable, accountable and comprehensive manner.
The attestation information must also be presented in a logical form that helps
the verifier to correlate multiple attestations over time to further improve the

Secure Attestation of Virtualized Environments 209

detection of misbehavior. Since attestations expose sensitive information about
a target system, their disclosure must be constrained to valid verifiers. In order
to build trust into an attestation, the verifier relies on the trustworthiness of
delivery mechanisms which ensure authenticity and integrity of reported data.

In terms of cloud attestations, Lauer and Kuntze further require layer link-
ing between VMs and hypervisor in order to trust VMs attestations [12]. Hence,
there must be valid attestation information available for both VM and hypervi-
sor. And it must be possible to correlate these in order to ensure a VM runs on
its assigned hypervisor. Another requirement by Lauer and Kuntze is scalability
of the attestation scheme, which targets systems with a large number of VMs.
In terms of TPM-based attestations, that means to reduce the number of calls
to the pTPM [12].

In addition, we propose implementation-specific requirements: implementa-
tion complexity and guest independence.

Implementation Complexity. Depending on the used attestation scheme and
how attestation information is acquired, modifications to guest OS or vTPM
are required, which increase development costs. This also applies to installa-
tion of additional software inside a guest system, even though these are not
considered as critical as OS code changes. In a typical cloud environment,
customers want to chose software and OS based on application needs, rather
than whether an implementation for additional security tools exists. Impact
and intrusiveness of these tools must be taken into account. The smaller and
less intrusive tools are the better they can be ported. Huge code changes
and dependencies to other software may yield a bigger obstacle in porting.
Required system privileges for the software must also be taken into account.

Guest Independence. In order to reduce the attack surface, the attestation
solution must rely on as little additional infrastructure as possible. Depen-
dencies to additional infrastructure also influence the overall reliability of the
solution. Increasing implementation complexity, results in systems becoming
more error-prone. Less complex solutions are easier to maintain.

5 Secure Separate Attestation

During our analysis of the SEPA approach [12], we discovered a flaw in the
layer linking mechanism between VM and hypervisor. An attacker could launch
a relay attack to generate a verifiable VM attestation and thus fool the verifier
into trusting a Bad VM.

We assume a threat model following the definitions of Dolev and Yao in [9].
The attacker has full control over the network, and thus can read, modify, insert,
or block messages anywhere on the network. However, she is not able to break
any underlying cryptographic primitives. Furthermore, the attacker is able to
gain control over the system running inside a VM, but not the hypervisor.

To launch her attack the attacker operates her own hypervisor host (Attacker-
Controlled System) outside the bounds of the target system, as depicted in Fig. 4.

210 M. Eckel et al.

Fig. 4. Relay attack on separate attestation

On that system she runs a pristine copy of the VM alongside with the corre-
sponding vTPM, including its configuration and keys. She further gains access
to a VM on the Original System, in such a way that she can modify and run
compromised software inside (cf. Bad VM in Fig. 4).

Figure 4 shows a time sequence diagram of the relay attack process. Whenever
the Verifier (V) sends its attestation request to the VM, the Bad VM relays
this request to the pristine VM on the Attacker-Controlled System. From there,
the VM forwards the request to its vTPM which generates a VmAttestation.
The VM returns this response to the Bad VM, which eventually forwards the
VmAttestation to the Verifier. In a subsequent attestation of the hypervisor
on the Original System, the pTPM is used. The Verifier in turn verifies both
attestations, incorrectly considering the Bad VM trustworthy.

We solve the relay problem by using the vTPM itself as a trusted channel to
the hypervisor. Whenever a VM receives an attestation request from the Verifier
(V), it triggers a TPM Quote operation on the vTPM (cf. Fig. 5), as usual. At
this point, as a matter of mitigation, we let the vTPM store a hash of the vTPM
Quote result (VmAttestationhash) on the hypervisor (3). Then, the usual flow
continues, and the VM returns the VM attestation result to the Verifier.

Subsequently, the Verifier sends an attestation request to the hypervisor. The
hypervisor uses the most recent VmAttestationhash for the VM and includes it in
the hypervisor attestation. For that purpose, the hypervisor creates a compound
nonce by hashing the concatenation of the nonce from the Verifier with the
VmAttestationhash. This compound nonce is used in the TPM Quote operation
on the pTPM. The result is returned to the Verifier. The Verifier verifies that
the VM attestation hashes match. For that purpose, it creates a hash of the
VM attestation data (VmAttestation) it received from the VM attestation. The

Secure Attestation of Virtualized Environments 211

Fig. 5. Secure separate attestation

Verifier generates the nonce exactly as the hypervisor did, and compares it with
the compound nonce from the hypervisor attestation data. Only if the compound
nonces match, the Verifier can be certain it received the correct VM attestation.
This way, layer linking between VM and hypervisor is significantly improved.
After that, the Verifier continues, verifying VM and hypervisor attestations.

This approach introduces the risk of disclosing the nonce designated to a VM
to other VMs or unauthorized third parties. We consider this risk to be minimal,
as the attestation approach ensures that both VM and the underlying hypervisor
host are trustworthy. Other security measures like encryption and access control
mechanisms can be used to further secure the forwarded hashes. A hypervisor
that is not trusted could potentially disclose forwarded information from the
vTPM anyway, but would be detected using the SEPA scheme.

6 Implementation

Memory introspection approaches are computing-intensive, require a lot of main
memory, and are not easy to implement. Intercepting system calls from VMs to
the host OS requires changes to the hypervisor as well as the host OS. Because
these violate many of our requirements, we do not consider them as candidates
for our implementation. Layer-linking is vital and we choose SEPA and HYPA
for our implementation, both of which are in accordance with our requirements.

We implement SEPA and HYPA as a single proof-of-concept, extending
Intel’s Open CIT 2.2. Open CIT features boot time attestation of host machines
and uses Intel Trusted Execution Technology (TXT) to establish a hardware

212 M. Eckel et al.

Root of Trust for Measurement (RTM). It supports several hypervisors, such as
VMware ESX, Citrix Xen, Kernel-based Virtual Machine (KVM), and Microsoft
HyperV. Attestation information is presented via a web interface.

Open CIT consists of two main components: Attestation Server and Trust
Agent. The Attestation Server acts as Verifier for remote attestations. It main-
tains a database with RIMs and attestation results, and exposes those via REST
API to relying parties. Trust Agents run on any attested machine handling attes-
tation requests from the Attestation Server. That is, performing TPM Quote
operations, collecting Stored Measurement Logs (SMLs), and returning those.

We add support for attesting VMs to Open CIT, including HYPA and our
improved SEPA layer binding mechanisms to associate VMs with their under-
lying hypervisor. This requires changes to both Trust Agent and Attestation
Server. We develop a vTPM instance manager to provide VMs with vTPMs,
using QEMU and Stefan Berger’s vTPM implementation, adapted to our needs.
That is, for HYPA we add Platform Configuration Register (PCR) read access
to the hypervisor Trust Agent, and for SEPA we store VM attestation hashes
in the hypervisor file system. For HYPA to access vSMLs inside VMs, we use
VirtIO on the hypervisor to share a tempfs folder with VMs. Further, we add
support for runtime integrity verification with IMA. This requires changes to
Attestation Server, Trust Agents, and VM OS.

7 Evaluation

In this section we evaluate both SEPA and HYPA attestation approaches. The
evaluation system is a Huawei RH5885 V2 server equipped with four Intel R©
Xeon R© E7-8870 CPUs at 2.40 GHz, 10 cores per CPU and 2 threads per core.
It provides 1 TiB of main memory and a plug-in physical TPM 2.0. It runs the
customized Open CIT Attestation Server in a VM as well as ten distinct client
VMs. The hypervisor host uses libvirt, KVM, and QEMU 2.6 for virtualization.
All machines run Ubuntu 16.04. Client VMs and hypervisor run the customized
Open CIT Trust Agents.

In order to compare performance measurements between SEPA and HYPA,
we define evaluation scenarios based on typical actions which Open CIT performs
to attest VMs and hypervisors: 1. Attest all VMs, 2. Attest a single VM, 3. Attest
hypervisor only.

7.1 Evaluation Criteria

To evaluate our proof-of-concept implementation we define evaluation criteria.
The following paragraphs explain them.

Execution Time. In order to compare the attestation schemes based on execu-
tion time, we measure the overall execution time of each scenario. This includes
attestation request generation, response handling, verification, and transport
over the network. Since Open CIT produces a lot of overhead in the backend in

Secure Attestation of Virtualized Environments 213

Table 1. Execution time in ms

Scenario Name SEPA HYPA

Min Avg Max Min Avg Max

All VMs Execution time 50097.25 50423.92 50751.25 12907.50 13152.17 13299.00

Retrieve TPM Quote 1494.50 1513.35 1545.25 1594.50 1605.50 1617.00

Verify TPM Quote 15.00 23.31 28.25 21.25 22.92 24.50

One VM Execution time 4690.50 4790.75 4895.75 12890.50 13091.92 13231.75

Retrieve TPM Quote 1509.25 1518.08 1525.75 1597.75 1610.83 1624.25

Verify TPM Quote 21.25 24.92 28.25 21.25 22.42 23.75

Hypervisor Execution time 2833.50 2857.00 2890.00 12815.00 13091.17 13258.00

Retrieve TPM Quote 1497.50 1510.17 1521.50 1587.50 1605.17 1623.50

Verify TPM Quote 24.50 25.84 26.50 21.00 21.83 23.00

order to generate and verify the TPM Quote response, we also measure the time
these two events require to complete.

Network Usage. For each evaluation scenario we capture the entire network
traffic for three subsequent attestations. For each connection from the Attesta-
tion Server to the hypervisor host or a VM, we compute the amount of received
and transmitted data, the throughput rate, and the time between the first and
last transmission. In our summary, we include only the accumulated amount of
data for all connections.

CPU and Memory Usage. For three attestations per attempt, we measure
the resident (non-swapped) physical memory consumption in megabytes as well
as the percentage of CPU utilization. Depending on the scenario, the Attestation
Server and the Trust Agent are measured every 100 ms with the Linux top
command, computing average and peak values. Some tasks consume more than
100% of the CPU, which means they occupy more than one CPU core.

7.2 Evaluation Results

During evaluation, we observed the expected behavior for the schemes. Table 1
shows measured execution times for the scenarios. We generate ten measure-
ments per scenario and accumulate them into a single table. That is, each value
of a group is computed as the arithmetic mean of all measured execution times
for a particular scenario.

As shown in Table 1, if all VMs are verified, HYPA is faster than SEPA, as
it attests the hypervisor only once. In case only one VM, or only the hypervisor
is verified, SEPA is a lot faster. An interesting observation is the time it takes
to retrieve a TPM Quote response, and the time to verify it. This seems to
be largely unaffected by the amount of attested VMs, with SEPA showing an
exceptional maximum peak. In practice, however, HYPA will scale worse if fewer

214 M. Eckel et al.

Table 2. Network usage

SEPA HYPA

Scenario Type Amount Amount Unit

All VMs Send 0.64 0.06 KiB
Receive 6317.20 2323.86 KiB
Time 178.89 63.19 s
Receive/s 43.11 36.81 KiB/s

One VM Send 0.14 0.06 KiB
Receive 592.56 2321.03 KiB
Time 43.47 62.93 s
Receive/s 13.64 36.93 KiB/s

Hypervisor Send 0.06 0.06 KiB
Receive 378.81 2320.77 KiB
Time 15.07 62.84 s
Receive/s 25.15 36.93 KiB/s

Table 3. CPU and memory usage

SEPA HYPA

Scenario Type avg peak avg peak

All VMs %CPU 50.93 280.50 69.15 217.18
RES/MB 966.48 1015.85 1045.48 1074.50

One VM %CPU 58.82 202.43 70.20 225.63
RES/MB 1146.65 1209.35 1055.06 1091.91

Hypervisor %CPU 19.16 106.20 70.06 215.50
RES/MB 1098.88 1105.92 1048.71 1086.60

attestations are requested, or if the IMA SMLs become very large in size. After
a certain threshold of requested attestations is reached, which depends on the
number of VMs, SEPA becomes less efficient than HYPA.

For CPU utilization, Table 3 shows that SEPA always has a smaller average
and peak CPU usage, with the exception of verifying all VMs at once. HYPA
requires less CPU time for attestation verifications as it performs fewer attesta-
tion operations than SEPA.

The memory consumption depicted in Table 3 shows unexpected behavior.
HYPA is in most cases more efficient than SEPA. In theory, HYPA should require
more memory at verification time, as it attests both hypervisor and VMs at the
same time. We can only explain this behavior with JAVA’s garbage collection,
or the general OS memory management messing up our measurements.

Table 2 shows that SEPA utilizes the network more efficiently until the
threshold of attestation requests is reached. If more client VMs were added to
the hypervisor host, or more attestations were requested at once, HYPA would
become more efficient.

We also tested whether or not the integrity of VMs or underlying hypervisor
hosts, influence the results of our measurements. However, we could not find cor-
relations or indicators that non-integer systems are more expensive. The results
are so close and indistinguishable, that the differences are probably caused by
different sources of noise, causing jitter on the measurements, such as network
communication, host utilization by other applications and services, Java Just in
Time (JIT) optimizations, garbage collection, or OS scheduling.

We also monitored the Trust Agent on the clients. We could not observe any
apparent differences between the schemes. CPU utilization and memory con-
sumption showed no difference between the schemes. This may again be caused
by JAVA’s overhead and garbage collection. Logically, there should be slightly
more memory consumption when the Attestation Manager gathers attestation
information in the form of SMLs and PCR values (which need to be loaded into
memory).

Secure Attestation of Virtualized Environments 215

Nonce generation time differs for both schemes. HYPA requires more time
to gather and combine all attestation information. It is overall stable and has
little only impact on the overall performance of the schemes. Nonce generation
time for HYPA increases with the number of running VMs. Thus, HYPA may
run into scalability issues on the hypervisor Trust Agent. But only if there are
many guests and very big SMLs. SEPA only has scaling issues when many hosts
need to be attested on the network, but not on a single Trust Agent.

We conclude that SEPA performs better than HYPA for a small number
of VMs. Performance of SEPA decreases as the number of VM attestations
increases. As expected, HYPA shows constant performance across all tests. Hav-
ing support for both of the attestation schemes on target systems, efficient com-
binations can be defined.

8 Conclusions and Future Work

In this paper we analyzed existing Trusted Computing based attestation
approaches for virtualized environments. We discovered a conceptual security
weakness in the existing separate attestation approach.

By proposing secure separate attestation, we strengthened layer linking
between hypervisor and VM layer. As a result, we improved security charac-
teristics of the original separate attestation approach and provided an effec-
tive countermeasure against relay attacks. We implemented and evaluated the
hypervisor-based attestation approach as well as our secure separate attestation
approach on production-grade hardware. With performance measurements we
underlined the feasibility of our approach for systems running a limited number
of VMs. Further, we pointed out that our security improvement allows for keep-
ing standard attestation protocols in place, by requiring only minimal changes
to hypervisor software.

Future directions of work include the application of secure separate attes-
tation in virtualized network equipment, fog, and edge computing. With the
evolution of container technology the applicability of our approach beyond full-
fledged machine virtualization is another interesting direction of research.

Acknowledgements. The work and results presented in this paper were developed
in the scope of a technical research cooperation project on cloud integrity verification,
together with the German Research Center of Huawei Technologies. We thank Huawei
for giving us the opportunity to work and evaluate on production-grade hardware.

References

1. Azab, A.M., Ning, P., Sezer, E.C., Zhang, X.: Hima: a hypervisor-based integrity
measurement agent. In: Computer Security Applications Conference, ACSAC 2009,
Annual, pp. 461–470, December 2009

2. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the trusted platform module. In: Proceedings of the 15th Conference
on USENIX Security Symposium, USENIX-SS 2006, vol. 15. USENIX Association
(2006)

216 M. Eckel et al.

3. Berger, S., Goldman, K.A., Pendarakis, D., Safford, D., Valdez, E., Zohar, M.:
Scalable attestation: a step toward secure and trusted clouds. In: 2015 IEEE Inter-
national Conference on Cloud Engineering (IC2E), pp. 185–194, March 2015

4. Celesti, A., Fazio, M., Villari, M., Puliafito, A., Mulfari, D.: Remote and deep
attestations to mitigate threats in cloud mash-up services. In: 2013 World Congress
on Computer and Information Technology (WCCIT), pp. 1–6, June 2013

5. Champagne, D., Lee, R.B.: Processor-based tailored attestation. Princeton Uni-
versity Department of Electrical Engineering, Technical Report (2010)

6. Chen, W.Z., Zhang, Z.P., Yang, J.H., He, Q.M.: Cerberus: a novel hypervisor to
provide trusted and isolated code execution. In: 2010 International Conference of
Information Science and Management Engineering (ISME), vol. 1, pp. 330–333,
August 2010

7. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011). https://doi.org/10.1007/s10207-011-0124-7

8. Cooperation, I.: Building trust and compliance in the cloud with intel trusted exe-
cution technology - the Taiwan Stock Exchange Corporation Develops a Secure
Cloud Infrastructure. Technical report, Intel Cooperaion (2013). https://www.
hytrust.com/uploads/2015/08/intel txt.pdf

9. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP 2003, pp. 193–206.
ACM, New York (2003)

11. Ghosh, A., Sapello, A., Poylisher, A., Chiang, C.J., Kubota, A., Matsunaka, T.:
On the feasibility of deploying software attestation in cloud environments. In: 2014
IEEE 7th International Conference on Cloud Computing, pp. 128–135, June 2014

12. Lauer, H., Kuntze, N.: Hypervisor-based attestation of virtual environments. In:
The 13th IEEE International Conference on Advanced and Trusted Computing,
July 2016

13. McCune, J.M., et al.: Trustvisor: efficient TCB reduction and attestation. In: 2010
IEEE Symposium on Security and Privacy, pp. 143–158, May 2010

14. Stumpf, F., Eckert, C.: Enhancing trusted platform modules with hardware-based
virtualization techniques. In: 2008 Second International Conference on Emerging
Security Information, Systems and Technologies, pp. 1–9, August 2008

15. Szefer, J., Lee, R.B.: Architectural support for hypervisor-secure virtualization. In:
Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 437–450. ACM, New York
(2012)

16. Trusted Computing Group: Virtualized Trusted Platform Architecture Specifica-
tion, specification version 1.0, revision 0.26 edn., September 2011

17. Yu, A., Qin, Y., Wang, D.: Obtaining the integrity of your virtual machine in
the cloud. In: 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 213–222, November 2011

18. Zhang, T., Szefer, J., Lee, R.B.: Security verification of hardware-enabled attes-
tation protocols. In: 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture Workshops (MICROW), pp. 47–54, December 2012

https://doi.org/10.1007/s10207-011-0124-7
https://www.hytrust.com/uploads/2015/08/intel_txt.pdf
https://www.hytrust.com/uploads/2015/08/intel_txt.pdf

Network Security and Privacy

Security and Performance Implications
of BGP Rerouting-Resistant Guard

Selection Algorithms for Tor

Asya Mitseva1(B), Marharyta Aleksandrova1, Thomas Engel1,
and Andriy Panchenko2

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
{asya.mitseva,marharyta.aleksandrova,thomas.engel}@uni.lu

2 Brandenburg University of Technology, Cottbus, Germany
andriy.panchenko@b-tu.de

Abstract. Tor is the most popular anonymization system with millions
of daily users and, thus, an attractive target for attacks, e.g., by mali-
cious autonomous systems (ASs) performing active routing attacks to
become man in the middle and deanonymize users. It was shown that
the number of such malicious ASs is significantly larger than previously
expected due to the lack of security guarantees in the Border Gateway
Protocol (BGP). In response, recent works suggest alternative Tor path
selection methods prefering Tor nodes with higher resilience to active
BGP attacks.

In this work, we analyze the implications of such proposals. We show
that Counter-RAPTOR and DPSelect are not as secure as thought
before: for particular users they allow for leakage of user’s location. DPS-
elect is not as resilient as widely accepted as we show that it achieves
only one third of its originally claimed resilience and, hence, does not
protect users from routing attacks. We reveal the performance implica-
tions of both methods and identify scenarios where their usage leads to
significant performance bottlenecks. Finally, we propose a new metric to
quantify the user’s location leakage by path selection. Using this metric
and performing large-scale analysis, we show to which extent a malicious
middle can fingerprint the user’s location and what kind of confidence it
can achieve. Our findings shed light on the implications of path selection
methods on the users’ anonymity and the need for further research.

Keywords: BGP routing attacks · Tor · Onion routing · Privacy

1 Introduction

In the age of mass surveillance and censorship, users rely on anonymization tech-
niques to exercise their right to freedom of expression and to freely access infor-
mation. Currently, Tor [7] is the most popular low-latency anonymization net-
work designed to hide users’ identities (i.e., IP addresses) from service providers

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 219–233, 2020.
https://doi.org/10.1007/978-3-030-58201-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_15

220 A. Mitseva et al.

and to prevent third parties from exposing the relationship between communi-
cating partners on the Internet. To accomplish this goal, the user traffic sent
via Tor is encrypted in multiple layers and forwarded through three Tor nodes,
known as entry, middle, and exit. Due to its popularity, it is an attractive target
for adversaries aiming to compromise Tor users, e.g., by applying traffic anal-
ysis. An adversary who simultaneously observes the user traffic entering and
exiting Tor can perform traffic correlation on packet sizes and timing and, thus,
deanonymize user connections [15,23]. Website fingerprinting (WFP) is another
type of traffic analysis, where the adversary aims to identify the website vis-
ited by a Tor user by observing patterns of data flows between the user and
its entry node [14,22]. A common example of entities in the position to execute
both types of attacks are autonomous systems (ASs), often called network-level
adversaries, which lie on the path between the Tor user and its destination.
Recent studies [23,25] have shown that natural Internet routing dynamics and
active attacks against Border Gateway Protocol (BGP), the de-facto standard
interdomain routing protocol, dramatically increase the number of ASs that are
in a position to compromise Tor traffic by applying traffic correlation or WFP.

In response, several works have focused on developing sophisticated Tor path
selection methods for choosing entry and exit nodes that consider not only the
nodes’ capacity but also the presence of asymmetric routing, potentially col-
luding ASs, and the robustness of network paths against active routing attacks
[2,21]. The most recent proposals are Counter-RAPTOR [24] and DPSelect [11].
Counter-RAPTOR is an alternative path selection method prefering entries with
higher resilience to BGP attacks, as estimated based on the network location of
the Tor user. The hardened protection against active routing attacks provided by
this method, though, negatively influences the randomness of entry node selec-
tion and leaks information about the user’s location. This allows an attacker to
link a user to its AS [11]. Such a leak can be further exploited to deanonymize
users. DPSelect aims to overcome this drawback by using differential privacy.

Hanley et al. [11] have recently explored the privacy loss of both Counter-
RAPTOR and DPSelect with respect to the fingerprintability of user ASs by
using notions of entropy. However, their evaluation is based on a small dataset of
95 ASs only. Hence, the results cannot be generalized to all Tor users. Moreover,
no existing work has examined the potential threats of malicious middle nodes
to deanonymize Tor users utilizing rerouting-resistant path selection. Recent
study has shown that traffic analysis from middle nodes can be as effective as
from entry and exit positions in case of Tor onion services, although middles
neither directly know the user nor its destination [14]. In this work, we show
to which extent a malicious middle can close this gap and successfully mount a
deanonymization attack by localizing a user. Our contributions are as follows:

1. We show that Counter-RAPTOR and DPSelect are not as secure as previously
thought: about 20% of users that rely on these methods select an entry node
from their country with five times higher probability than vanilla Tor. This
exposes user location and seriously endangers user’s anonymity. Our method
allows users to assess their vulnerability.

Security and Performance Implications of Guard Selection Algorithms 221

2. DPSelect is not as resilient as widely accepted. We show that it achieves only
one third of its originally claimed resilience and, hence, does not protect users
from active routing attacks.

3. We identify scenarios where the usage of both path selection methods leads
to serious performance bottlenecks, as they prefer poorly-performing entries.

4. We propose a new metric, confidence increase, to quantify the user’s location
leakage by Counter-RAPTOR and DPSelect. Using this metric, we show to
which extent a malicious middle can fingerprint the location of a user and
what kind of confidence it can achieve.

We perform a large-scale analysis and collect the most comprehensive set of
ASs containing Tor users to analyze the security properties of Counter-RAPTOR
and DPSelect. Our analysis allows to better understand the properties of these
methods and warn vulnerable users about possible implications.

2 Background

Internet Routing: The Internet comprises a large set of interconnected ASs
identified by unique AS numbers (ASNs) [18]. Each AS possesses a set of del-
egated IP addresses that are aggregated into blocks (i.e., IP prefixes) and is
responsible for forwarding traffic to and from them. Some ASs, called transit
ASs, are also able to forward traffic whose source and destination are not in
their IP prefixes. ASs set up dedicated links between each other, based on confi-
dential business agreements, and distribute reachability data using BGP. Since
BGP does not provide any security guarantees, ASs can manipulate the global
routing by distributing bogus data [18]. An AS is capable of claiming that it
originates an IP prefix not delegated to it, known as a prefix hijack, and attract
a fraction of Internet traffic to it. As this AS does not possess any valid route
to the victim AS, the redirected traffic will be dropped and affected users will
experience connectivity problems. A more sophisticated attack, BGP intercep-
tion [18], is an improved version of prefix hijacks, where the malicious AS has
a valid route to the victim AS. It can not only redirect traffic through itself,
but also forward it via a detour to the real destination without disturbing the
connectivity. These BGP attacks have been often exploited for country-level
censorship [26] and tracking users of anonymization networks such as Tor [23].

Tor [7] is the most popular anonymization network designed for low-latency
applications, e.g., web browsing. The traffic between a Tor user and its destina-
tion is sent via a virtual tunnel (i.e., circuit), over three nodes, known as onion
relays (ORs). Information about identities and status of the available ORs is
periodically distributed to Tor users in the form of a consensus document. Tor
users select ORs for circuits probabilistically according to the ORs’ bandwidth,
availability, and exit policy to a given target. After negotiating a symmetric key
between each OR in the circuit and the user, the user data is encrypted in mul-
tiple layers using these keys [7]. While forwarding the user data, each OR on

222 A. Mitseva et al.

the path removes (or adds, depending on the direction) one layer of encryption.
Thus, none of the ORs in the circuit knows both the user and its destination at
the same time. Each user also maintains a list of preselected entries, called guard
set, to reduce the information leakage caused by the frequent selection of new
entries for each new circuit. From its guard set, the user chooses a singe entry
(i.e., guard) as the first hop for its circuits and continues using it for months [8].
Although the use of a guard reduces the probability of picking a malicious OR
in a short time period, it does not prevent malicious ASs from being on the path
between the Tor user and its guard and compromising user traffic.

Counter-RAPTOR: Sun et al. [24] proposed an enhancement to the original
Tor path selection algorithm, called Counter-RAPTOR, aiming to decrease the
probability of an AS actively putting itself on the path between a Tor user and
its guard. According to the proposal, the user considers not only the available
OR’s bandwidth B(i) but also the OR’s resilience R(i) to hijack attacks when
choosing a guard. The OR’s resilience value indicates the fraction of ASs that
will not succeed in hijacking the user traffic sent to the OR by falsely claiming
to originate the IP prefix containing that OR. In other words, the probability of
a guard i being selected is proportional to its weight W (i):

W (i) = α · R(i) + (1 − α) · B̄(i), (1)

where B̄(i) is the OR’s bandwidth normalized in the range [0, 1] and α is a
configurable parameter to balance between the OR’s resilience to hijack attacks
and its bandwidth. To limit a user-specific guard selection, a random sampling is
applied to the ORs’ resilience values to produce a more uniform choice of guard.
While not stated differently, in our work we use α = 0.5 as recommended in [24].

DPSelect: Despite the use of random sampling to pick a guard from a set
of ORs with high resilience values, Hanley et al. [11] showed that Counter-
RAPTOR still leaks information about user locations. Consequently, the authors
proposed DPSelect, which integrates a differential privacy metric into the weight
function (1) of Counter-RAPTOR. This metric is intended to bound the differ-
ence between the largest probability of a user selecting a given guard and the
least probability of another user choosing the same guard and, thus, prevents
a statistical correlation between a guard selected by a user and the AS of that
user. To ensure guard selection homogeneity among users, DPSelect relies on an
exponential mechanism to compute the weight function W (i) of a guard i:

W (i) = eε·(α·R(i)x1+(1−α)·B(i)x2), (2)

where ε defines how private the guard selection should be and x1 and x2 are opti-
mization parameters aiming to preserve the main goal of the original Counter-
RAPTOR approach with respect to high bandwidth and resilience values of the
considered OR. Hanley et al. apply a Monte-Carlo sampling-based method with
equally-weighed resilience and bandwidth values (i.e., α = 0.5) to tune x1 and x2

and, so, achieve a reasonable trade-off between OR’s resilience and bandwidth.

Security and Performance Implications of Guard Selection Algorithms 223

3 Related Work

Threat of Network-Level Attackers: The threat of an AS simultaneously
observing both ends of Tor user connections was first examined by Feamster and
Dingledine [10], who detected that up to 30% of randomly generated Tor circuits
are vulnerable to an AS adversary. Due to the increased number of ASs carrying
Tor traffic over the years, the natural intuition was that the likelihood of a single
AS being able to observe user traffic entering and exiting Tor reduced. In [9],
this assumption was verified by using an updated model for Tor and showed that
the risk of deanonymization by a single AS is not reduced. Another work [20]
explored the threat to Tor users posed by Internet eXchange points (IXP) – a
shared physical infrastructure in a single location connecting several ASs. The
authors showed that an attacker, who is positioned at an IXP and observes the
traffic passing through any AS co-located at that IXP, can correlate high-speed
network flows even at low rates of sampling and compromise users’ anonymity.

Juen et al. [17] questioned the accuracy of the AS path inference methods
used to evaluate the vulnerability of Tor to AS attackers. Wacek et al. [27] used
traceroute data from the Center for Applied Internet Data Analysis (CAIDA) [6]
to reconstruct the AS interconnectivity and showed that the same AS may still
appear in both ends of 27.4% of randomly created Tor circuits. Johnson et al. [15]
explored the amount of time needed by an attacker controlling a set of ASs or
IXPs to compromise Tor circuits. Although the user’s security strongly depends
on its location, they showed that an attacker possessing several ASs or IXPs
has a much greater compromise speed, even against users in safer locations.
Sun et al. [23] showed that traffic correlation attacks succeed even when an AS
observes paths in different directions on both ends of a Tor circuit. In response,
Nithyanand et al. [21] reevaluated the threat posed by these attacks and discov-
ered that up to 40% of Tor circuits are vulnerable to traffic correlation by single
ASs, 42% by colluding ASs, and 85% by state-level (i.e., the set of ASs located
in a single country) attackers. In [23], the authors also showed that BGP hijack
and interception attacks used to redirect Tor traffic can dramatically increase
the likelihood of an AS eavesdropping on both ends of Tor connections. Tan et
al. [25] extended this analysis and detected that more than 90% of the total
bandwidth available in Tor is vulnerable to BGP hijack attacks.

Defenses Against Network-Level Attackers: The idea of avoiding a single
AS that appears on both ends of a Tor circuit when choosing entry and exit
was first proposed by Feamster and Dingledine [10] and developed by Edman
and Syverson [9] by using a snapshot of the current AS topology. LASTor [1] is
another alternative path selection method, which predicts the ASs through which
the user traffic entering and exiting Tor is highly likely to be routed. However,
Wacek et al. [27] showed that almost 25% of LASTor circuits remain vulnerable
to network-level adversaries. To limit the effectiveness of hijack attacks used to
redirect Tor traffic, Tan et al. [25] relied on periodical traceroute measurements
to detect guards under active BGP attack and prevent users from selecting them.

224 A. Mitseva et al.

However, this method can neither detect short-lived BGP attacks nor protect
already established circuits [23,24]. DeNASA [2] is another Tor path selection
method that avoids a predefined set of large ASs often appearing on both sides of
Tor circuits. Astoria [21] considers OR capacity, asymmetric routing, and poten-
tial colluding ASs during circuit creation. Contrary to Counter-RAPTOR and
DPSelect, DeNASA and Astoria only focus on passive AS-level attackers. Both
methods have also been shown to be user location-dependent and vulnerable to
network-level attackers who can exploit user behavior over time to compromise
anonymity [16,28]. Wails et al. [28] raised the further criticism that none of the
proposed location-aware approaches, including Counter-RAPTOR and DPSe-
lect, consider user mobility, which dramatically reduces the anonymity provided
by these methods over time. Wan et al. [29] showed that an attacker can exploit
the location awareness of the methods and strategically launch ORs in locations
that increase their likelihood of being selected as guards by target users.

4 Datasets

To throughly analyze the impact of the modified path selection schemes Counter-
RAPTOR and DPSelect on privacy of the users, there is a need to use represen-
tative real-world data. To this end, we gathered information about (i) available
guards and the ASs they are located in, (ii) the set of all possible user ASs,
and (iii) existing AS relationships. To obtain Tor network data, we downloaded
consensus from CollecTor1 for March 1, 2017 and extracted guards, whose IP
addresses were mapped to ASs using Maxmind GeoIP database2. In total, we
obtained 2,451 guards belonging to 475 unique ASs in 50 countries.

To acquire all possible user ASs, we collected all known ASs from CAIDA [3]
during March 2017, comprising 57,015 unique ASNs, and filtered out transit and
content hosting ASs (as these do not contain end-users). In total, we obtained
30,848 possible user ASs. As we are interested to know the estimated number
of end-users in a given AS for our analysis, we also collected the number of IP
addresses delegated to each of the ASs by using CAIDA AS Ranking dataset [5].
From our set of user ASs, we excluded 2,361 ASs for which we could not infer any
data about delegated IP addresses and 2,606 ASs for which Counter-RAPTOR
and DPSelect cannot compute a network path between these ASs and the col-
lected guard ASs (breadth-first search of these methods may discard unprofitable
AS relationship and yield no valid path). Finally, we obtained 25,881 possible
user ASs distributed in 223 countries, where 81.4% of them were located in
countries containing guard nodes too. We refer to this dataset as D.

For further analysis, we applied the method proposed in [27] to construct a
reduced map of the Internet including latency measurements between hosts. We
were able to extract latency values for a fully-connected graph of ASs containing
333 guard ASs and 7,052 user ASs from our initial sets of guard and user ASs. We
refer to this dataset as Dlat. The guard ASs in Dlat cover 88.9% of all available
1 https://metrics.torproject.org/collector.html.
2 https://dev.maxmind.com/geoip/geoip2/geolite2/.

https://metrics.torproject.org/collector.html
https://dev.maxmind.com/geoip/geoip2/geolite2/

Security and Performance Implications of Guard Selection Algorithms 225

guards in D and are located in 48 countries. The user ASs in Dlat contain 91%
of all IP addresses delegated to the set of user ASs in D and are distributed in
187 countries. Moreover, 80.6% of the user ASs in Dlat are located in countries
containing guards from Dlat. Table 1 summarizes the statistics for the sets of
collected user and guard ASs.

Like [11,24], we used CAIDA AS Relationship dataset [4] to acquire data
about existing commercial AS relationships and inferred network paths between
ASs necessary to compute the resilience values between user and guard ASs.

DPSelect Parameters for D and Dlat: DPSelect weight function (2) contains
two parameters, x1 and x2, that need to be tuned with regard to the set of
possible user ASs and the current Internet topology. In [11], the authors showed
that x1 = 2 and x2 = 0.75 are optimal for the set of top-93 Tor user ASs and α =
0.175 achieves a reasonable trade-off between OR’s resilience and bandwidth. As
the number of user ASs in our dataset is larger by several orders of magnitude,
we repeated the optimization procedure proposed in [11] before analyzing the
security properties of DPSelect. However, we did not observe any appreciable
impact of the newly obtained parameters on the average user resilience and
bandwidth. Thus, we sticked to the optimal values as proposed in [11].

Table 1. Statistics for collected user and guard ASs.

Description Number Countries Guards Dataset

Total number of collected ASs 57,015 230 – –

Total number of possible user ASs 25,881 223 2,451 D

Total number of guard ASs 475 50 2,451

Number of user ASs with latency 7,052 187 2,180 Dlat

Number of guard ASs with latency 333 48 2,180

5 Vulnerabilities in Counter-RAPTOR and DPSelect

In this section, we analyze information leakage in Counter-RAPTOR and DPS-
elect and summarize our key findings. In particular, we show that DPSelect is
not as secure concerning active routing attacks as widely accepted as it achieves
only one third of its originally claimed resilience. Then, we show that for 20% of
the users both methods select a guard from their country with five times higher
probability than vanilla Tor and propose a method allowing users to assess their
vulnerability. We also identify scenarios where the usage of both path selec-
tion methods leads to significant performance bottlenecks. Finally, we propose
a new metric that allows users to assess their location leakage with respect to a
malicious middle node and bound its confidence.

226 A. Mitseva et al.

Comprehensive Revision of DPSelect: The main goal of DPSelect is to
prevent information leakage concerning user locations while achieving resilience
to hijack attacks as by Counter-RAPTOR. Hanley et al. [11] evaluated the per-
formance of DPSelect in terms of user resilience for the set of top-93 Tor user
ASs and showed that DPSelect achieves very similar average user resilience to
Counter-RAPTOR. Our analysis reveals that these results cannot be general-
ized for all Tor users. As shown in Fig. 1, the user resilience achieved by DPSe-
lect (densely dotted line) degrades significantly compared to Counter-RAPTOR
(dash-dotted line). While for 57% of Tor users Counter-RAPTOR provides up to
a 70% probability of being resilient to hijack attacks, this probability reduces
by 10% for DPSelect. Compared to vanilla Tor, DPSelect is able to improve
the average user resilience only by 12.5% while Counter-RAPTOR achieves an
increase of up to 30.5%.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.8

0.6

0.4

0.2

0

Resilience

Fr
ac

ti
on

of
us

er
s

Vanilla Tor
Counter-RAPTOR (α = 0.5)
modified Counter-RAPTOR (α = 0.5)
DPSelect

Fig. 1. CDF of the average user resilience for different guard selection algorithms.

To identify the reason for the significant difference in user resilience obtained
by Counter-RAPTOR and DPSelect, we revisited the implementations of both
methods provided by the authors. To compute the weight function (2), DPSelect
relies on a resilience probability Rprob(i) = R(i)∑

i R(i) and a bandwidth probability

Bprob(i) = B(i)∑
i B(i) instead of a resilience value R(i) and a normalized bandwidth

B̄(i) used by Counter-RAPTOR. To see the impact of the adjusted values, we
modified the original code of Counter-RAPTOR to use resilience and bandwidth
probabilities. Figure 1 shows that DPSelect (densely dotted line) and the modi-
fied Counter-RAPTOR (loosely dotted line) produce very similar user resilience.

To sum up, we showed that DPSelect does not provide a user resilience as
high as the original Counter-RAPTOR method. Hence, Counter-RAPTOR still
remains the only alternative for keeping Tor users resilient against hijack attacks.

Information Leaks in Counter-RAPTOR and DPSelect: To evaluate
whether Tor users relying on Counter-RAPTOR and DPSelect increase their
probability of selecting a guard from the same country as the user, denoted by
pC , we consider all guards and only those user ASs that are located in countries

Security and Performance Implications of Guard Selection Algorithms 227

containing at least one guard from our dataset D. We obtained 21,064 user ASs
comprising 81% of all user ASs in D. We computed how many times pC increases
compared to pC for vanilla Tor. Figure 2 shows that for 80% of our users utilizing
the location-aware methods, the probability of selecting a guard located in the
same country as the user increases. For roughly 20% of users relying on Counter-
RAPTOR (α = 0.5), pC increases by more than five times and for around 10% of
DPSelect users, pC increases by nine times. Moreover, the higher values of α in
case of Counter-RAPTOR (i.e., the user is paying more attention to its resilience
to hijack attacks than to the performance of its circuits) result in significantly
higher probability of choosing a guard from the same country as the user.

We also examined information leaks in Counter-RAPTOR and DPSelect
using the number of ASs between a Tor user and its guard and geographical
distance between a Tor user and its guard (using GeoIP data). However, we did
not observe any significant correlation when applying both methods.

In summary, Counter-RAPTOR and DPSelect users are more likely to choose
a guard from the same country as the user, in contrast to vanilla Tor users. For
20% of the users, this probability is five times higher. This information leak can
be further exploited to improve guard placement attacks, as proposed in [29].

2 4 6 8 10

1

0.8

0.6

0.4

0.2

0

Ratio of different pC to pC for vanilla Tor

Fr
ac

ti
on

of
us

er
s

Vanilla Tor

Counter-RAPTOR (α = 0.25)
Counter-RAPTOR (α = 0.5)
DPSelect
Counter-RAPTOR (α = 0.75)
Counter-RAPTOR (α = 1)

26 28 30

(a) Overview for all users.

1

1

0.96

0.92

0.88Fr
ac

ti
on

of
us

er
s

8 10 12 14 16 18 20 22 24 26 28 30
Ratio of different pC to pC for vanilla Tor

Vanilla Tor

Counter-RAPTOR (α = 0.25)
Counter-RAPTOR (α = 0.5)
DPSelect
Counter-RAPTOR (α = 0.75)
Counter-RAPTOR (α = 1)

(b) Overview for vulnerable users.

Fig. 2. CDF of the ratio of pC for location-aware methods to pC for vanilla Tor.

Fingerprinting User Locations: As shown above, Counter-RAPTOR and
DPSelect usually leak information about a user by allowing an attacker to link a
user to its location. To quantify this information leak, we propose a new metric,
confidence increase, and we use it to measure the increase of the attacker’s
confidence from a middle position3 about the location of Tor users. Our metric
shows the ratio of the cumulative probability of users in the top-N most probable
ASs selecting a guard to the cumulative fraction of IP addresses delegated to
those ASs. The larger is the fraction of IP addresses delegated to the user ASs
and the lower is the cumulative probability of those ASs, the smaller is the
confidence increase achieved by the attacker for the user location.

3 This metric can be used for other scenarios as well, not only from a middle position.

228 A. Mitseva et al.

Inspired by Gini index, confidence increase allows to account for small values
of probabilities due to the large number of possible user ASs and to focus on
inequality of distribution among the top most preferable ASs. A traditional met-
ric, i.e., decrease in entropy, as compared to the baseline (when the probability
is uniformly distributed among all user ASs), depends on the total number of
available user ASs. As opposite, if the number of IP addresses between user ASs
is uniformly distributed, the value of confidence increase will be constant. In case
of non-uniform distribution of the number of IP addresses, confidence increase
allows to additionally capture the information leak related to the association of
high probability values with ASs that have a small number of potential users.

2 4 6 8 10 12 14

1

0.8

0.6

0.4

0.2

0

Confidence increase

Fr
ac

ti
on

of
gu

ar
ds

Vanilla Tor (without latency)
Vanilla Tor (with latency)
Counter-RAPTOR (without latency)
Counter-RAPTOR (with latency)
DPSelect (without latency)
DPSelect (with latency)

(a) Influence of latency measures (θ = 5).

2 4 6 8 10 12 14

1

0.8

0.6

0.4

0.2

0

Confidence increase

Fr
ac

ti
on

of
gu

ar
ds Vanilla Tor

Counter-RAPTOR (θ = 5)
Counter-RAPTOR (θ = 10)
Counter-RAPTOR (θ = 25)
Counter-RAPTOR (θ = 50)
DPSelect (θ = 5)
DPSelect (θ = 10)
DPSelect (θ = 25)
DPSelect (θ = 50)

(b) Varying accuracy of latency measures.

Fig. 3. CDF of the confidence increase for different guard selection algorithms.

By using our dataset D, we first computed the Gini index for both location-
aware methods and observed deviations from the uniform distribution of guards
in case of vanilla Tor. Thus, we focus on the top of the inequality of the distri-
butions for both methods, where our metric is more illustrative. We established
N = 25% (inequality of distribution in the first quarter of top ASs) as a reason-
able threshold for the efficiency of our metric. Figure 3a shows that the confidence
increase for vanilla Tor (dashed gray line) always equals one as the probability
of a user being located in a given AS is distributed uniformly among all user ASs
and the cumulative probability of the first quarter of user ASs is always 0.25.
As the cumulative fraction of IP addresses delegated to these user ASs changes
depending on the chosen subset of user ASs, we take the mean of all combi-
nations, which is equal to 0.25. Contrariwise, Counter-RAPTOR (dash-dotted
gray line) and DPSelect (densely dotted gray line) leak a considerable amount
of user-specific information. For more than 40% of guards selected by Counter-
RAPTOR users and more than 20% of guards chosen by DPSelect users, the
confidence increase of a middle connected to these guards is 100% higher than
for vanilla Tor. Even worse, the confidence of the middle increases by 300% for
15% of guards connected to Counter-RAPTOR users and almost 10% of guards
chosen by DPSelect users. Although the overall confidence increase for DPSelect
is less than for Counter-RAPTOR, the protection provided by DPSelect is far
smaller than originally claimed.

Security and Performance Implications of Guard Selection Algorithms 229

Next, we examine if the use of latency-based attacks proposed in [12] can
further increase the attacker’s confidence about the location of Tor users. In
2007, Hopper et al. showed that an attacker, who has access to a web server,
a network coordinate system, and an OR, can estimate the latency between a
Tor user connected to the adversarial web server and its guard and localize the
user. To do this, the authors apply the Tor circuit clogging attack suggested by
Murdoch and Danezis [19] to detect the ORs utilized by the user in its circuit.
Then, the attacker creates its own circuit via the same ORs to estimate the
latency between the guard and the exit. The latency between the user and its exit
is also easily measured as the user is connected to the adversarial web server. By
subtracting both latency estimates, the attacker obtains the latency between the
user and its guard. The adversary further utilizes the network coordinate system
to compute a set of possible latencies between potential users and guards and
localize the user based on the estimated latency. In our work, we assume even
a weaker attacker model where the adversary controls only at least one middle
node. For all user connections traversing an adversarial middle, the attacker
knows the identities of the guards and exits utilized by these users. This allows
an estimation of the latency between the guard and the middle and between the
user and the middle and a computation of the latency between the user and its
guard. The rest of the attack remains identical to [12].

For our evaluation, we used the dataset Dlat containing latency measures
for each pair of ASs. We assume that each user AS contains at least one victim
user that the attacker is attempting to compromise, and iterate through each
user AS as a potential adversarial target. As the latency estimates measured
by the attacker are not precise, we consider a reduced set of potential user ASs
whose estimated latency to a guard is in the interval r ∈ [latmeas −θ, latmeas +θ]
where latmeas is the real latency between the target user and its guard and θ is a
configurable parameter indicating the inaccuracy of estimated latency measured
by the attacker. Once the adversary measured the latency between all candidate
user ASs and a guard, user ASs whose latencies are significantly different from
the estimated latency of the target user (i.e., those outside the interval r) can be
excluded from consideration. For the reduced number of user ASs, the attacker
computes the confidence increase as described above. As shown in Fig. 3a, for
more than 40% of guards selected by Counter-RAPTOR users (dash-dotted black
line) and more than 20% of guards chosen by DPSelect users (densely dotted
black line), the confidence increase of a middle is nearly 200% higher when
the attacker relies on latency estimates, compared to the confidence increase
obtained for these methods without any latency measures, and almost 400%
higher compared to vanilla Tor. Hence, taking into account latencies allows to
further narrow down the possible location of the user.

Lastly, we examine the confidence increase of an adversarial middle when the
accuracy of attacker’s latency measurements vary. We computed the confidence
increase of the middle for different values of θ. As the change of the confidence
increase for vanilla Tor was negligible for θ ∈ {0, 5, 10, 25, 50}, for this method we
present only θ = 0 for simplicity. Figure 3b shows that, as expected, the attacker

230 A. Mitseva et al.

gains less information about the user location when the latency estimates are
less precise. Still, even in the worst case scenario (θ = 50) the confidence increase
is doubled for nearly 50% of guards chosen by Counter-RAPTOR and DPSelect
users compared to vanilla Tor. Hence, even imprecise latency measurements help
to significantly boost the confidence increase in identifying a user location.

To sum up, we proposed a new metric for quantifying information leakage
about user’s location when using Counter-RAPTOR and DPSelect. Using this
metric, we showed that both location-aware methods strengthen the attacker’s
ability to fingerprint user locations from a middle node. The impact becomes
considerably higher when our approach is enhanced with the latency information.

Performance Analysis: In [11,24], the authors examined the performance of
Counter-RAPTOR and DPSelect and showed that both methods achieve very
similar average bandwidth in guard selections for the top-93 Tor user ASs to
vanilla Tor. We verify if these results can be generalized for all Tor users. To do
this, we recompute the average bandwidth of selected guards for our dataset D.
We observe that the average bandwidth of guards chosen by Counter-RAPTOR
users reduces by 52% compared to the average bandwidth of guards selected by
vanilla Tor users. This drop is by 30% for DPSelect. Thus, we can conclude that
– when considering all users – both location-aware methods have significantly
lower average bandwidth of selected guards than previously expected. In the
rest, we elaborate on the reasons for this and describe our performance analysis.

A major shortcoming of the previous analysis in [11,24] is the fact that
all guards in the simulated Tor network are highly-performing ORs (i.e., mid-
dles were the bottleneck for Tor circuits). Such analysis cannot capture the real
impact of both methods on Tor performance, as the guards (in the case of satu-
rated middles) do not have major influence on the performance of the circuits.
The described situation in the previous analysis is a particular case and can
change with the evolution of Tor. Thus, we revisit the performance of both
methods by using Shadow [13] with the same number of simulated Tor users and
ORs as in [11,24] but a slightly modified configuration of the Tor network as fol-
lows. First, the bandwidth of each middle and exit is higher than the maximum
bandwidth available to each guard in order to avoid network bottlenecks created
by middle or exit ORs. Second, the latency between each pair of users and ORs
is equal in order to eliminate the impact of latency on the speed and quality
of user connections. As Counter-RAPTOR and DPSelect require meaningful IP
addresses for their operation, we assigned randomly chosen user IP addresses
from our set of user ASs in D. As shown in Fig. 4, while the download time
for users relying on DPSelect and Counter-RAPTOR with α = 0.5 to browse
the web is similar to that of web users utilizing vanilla Tor, the download time
for Counter-RAPTOR users paying more attention on their resilience to hijack
attacks (α = 1) increases substantially. In the case of bulk users (i.e., users down-
loading files of large size), the increase in the download time for users utilizing
Counter-RAPTOR with α = 1 is by nearly 10%. Moreover, the average sender
and receiver throughput for all Tor nodes reduces significantly for DPSelect.

Security and Performance Implications of Guard Selection Algorithms 231

(a) Send throughput (b) Recv throughput

(c) Downloads (web) (d) Downloads (bulk)

Fig. 4. Average throughput and download time for the first experiment.

(a) Send throughput (b) Recv throughput

(c) Downloads (web) (d) Downloads (bulk)

Fig. 5. Average throughput and download time for the second experiment.

We modify the experiment presented above such that our simulated Tor
network contains highly resilient low-bandwidth guards and highly-performing
low-resilient guards. To this end, we assigned IP addresses to our users belonging
to a single AS and distributed the guards in two other ASs, whose network

232 A. Mitseva et al.

paths with the user AS are low- and high-resiliently, respectively. The rest of the
simulation configuration is the same as described above. As shown in Fig. 5, we
observe a significant increase of the download time for both, Counter-RAPTOR
and DPSelect, users. While the download time for web users utilizing vanilla Tor
does not exceed 0.3 s, only nearly 60% of Counter-RAPTOR users for α = 1 are
able to load a website within this time period. This drop is even worse for bulk
users, whose download time increases by almost 20% for Counter-RAPTOR with
α = 0.5 and DPSelect and to almost 80% for Counter-RAPTOR with α = 1.
Like the previous experiment, the average sender and receiver throughput for all
Tor nodes drops dramatically for DPSelect.

To sum up, we showed that Counter-RAPTOR and DPSelect negatively influ-
ence the Tor performance. We identified scenarios where the usage of both meth-
ods leads to significant bottlenecks, as users prefer poorly-performing guards.

6 Conclusion

We analyzed the susceptibility of the most recent location-aware Tor path selec-
tion methods Counter-RAPTOR and DPSelect with regard to malicious middle
ORs. To do this, we collected comprehensive set of ASs containing at least one
Tor user and available guards in Tor. We showed that both methods are not
as secure as thought before: for some users they leak their location. Moreover,
DPSelect is not as resilient as widely accepted. We showed that it achieves only
one third of its originally claimed resilience. Hence, it does not protect users from
routing attacks. We proposed a new metric to quantify the user’s location leakage
and with its help performed a large-scale analysis to show to which extent a mali-
cious middle can fingerprint the location of a user and what kind of confidence it
can achieve. We also revealed the performance implications of both methods and
identified scenarios where their usage leads to significant bottlenecks that were
not originally anticipated. Our findings shed light on the implications of both
location-aware methods on users’ anonymity and the need for further research.

References

1. Akhoondi, M., et al.: LASTor: A Low-Latency AS-Aware Tor Client. In: IEEE
S&P (2012)

2. Barton, A., Wright, M.: DeNASA: Destination-Naive AS-Awareness in anonymous
communications. In: PETS (2016)

3. CAIDA: AS Classification. https://www.caida.org/data/as-classification/
4. CAIDA: AS Relationships. http://www.caida.org/data/as-relationships/
5. CAIDA: ASRank. https://asrank.caida.org/
6. CAIDA: The IPv4 Routed/24 Topology Dataset. https://www.caida.org/data/

active/ipv4 routed 24 topology dataset.xml
7. Dingledine, R., et al.: Tor: the second-generation onion router. In: USENIX Secu-

rity (2004)
8. Dingledine, R., et al.: One fast guard for life (or 9 months). In: HotPETs (2009)
9. Edman, M., Syverson, P.: AS-awareness in Tor path selection. In: ACM CCS (2009)

https://www.caida.org/data/as-classification/
http://www.caida.org/data/as-relationships/
https://asrank.caida.org/
https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

Security and Performance Implications of Guard Selection Algorithms 233

10. Feamster, N., Dingledine, R.: Location diversity in anonymity networks. In: ACM
WPES (2004)

11. Hanley, H., et al.: DPSelect: a differential privacy based guard relay selection algo-
rithm for Tor. In: PETS (2019)

12. Hopper, N., et al.: How much anonymity does network latency leak? In: ACM CCS
(2007)

13. Jansen, R., Hopper, N.: Shadow: running Tor in a box for accurate and efficient
experimentation. In: NDSS (2012)

14. Jansen, R., et al.: Inside job: applying traffic analysis to measure tor from within.
In: NDSS (2018)

15. Johnson, A., et al.: Users get routed: traffic correlation on tor by realistic adver-
saries. In: ACM CCS (2013)

16. Johnson, A., et al.: Avoiding the man on the wire: improving Tor’s security with
trust-aware path selection. In: NDSS (2017)

17. Juen, J., et al.: Defending Tor from network adversaries: a case study of network
path prediction. In: PETS (2015)

18. Mitseva, A., et al.: The state of affairs in BGP security: a survey of attacks and
defenses. Comput. Commun. 124, 45–60 (2018)

19. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: IEEE S&P (2005)
20. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level

adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7 11

21. Nithyanand, R., et al.: Measuring and mitigating AS-level adversaries against Tor.
In: NDSS (2016)

22. Panchenko, A., et al.: Website fingerprinting at internet scale. In: NDSS (2016)
23. Sun, Y., et al.: RAPTOR: routing attacks on privacy in Tor. In: USENIX Security

(2015)
24. Sun, Y., et al.: Counter-RAPTOR: safeguarding Tor against active routing attacks.

In: IEEE S&P (2017)
25. Tan, H., et al.: Data-plane defenses against routing attacks on Tor. In: PETS (2016)
26. Tschantz, M.C., et al.: SoK: towards grounding censorship circumvention in empiri-

cism. In: IEEE S&P (2016)
27. Wacek, C., et al.: An empirical evaluation of relay selection in Tor. In: NDSS (2013)
28. Wails, R., et al.: Tempest: temporal dynamics in anonymity systems. In: PETS

(2018)
29. Wan, G., et al.: Guard placement attacks on path selection algorithms for Tor. In:

PETS (2019)

https://doi.org/10.1007/978-3-540-75551-7_11

Actively Probing Routes for Tor AS-Level
Adversaries with RIPE Atlas

Wilfried Mayer1(B), Georg Merzdovnik1, and Edgar Weippl2

1 SBA Research, Vienna, Austria
{wmayer,gmerzdovnik}@sba-research.org

2 University of Vienna, Vienna, Austria
edgar.weippl@univie.ac.at

Abstract. Tor provides anonymity to millions of users around the globe,
which has made it a valuable target for malicious actors. As a low-latency
anonymity system, it is vulnerable to traffic correlation attacks from
strong passive adversaries, such as large autonomous systems. Estima-
tions of the risk posed by such attackers as well as the evaluation of
defense strategies are mostly based on simulations and data retrieved
from BGP updates. However, this might only provide an incomplete
view of the network and thereby influence the results of such analyses. It
has already been acknowledged in previous studies that direct path mea-
surements, e.g. with traceroute, could provide valuable information. But
in the past, such measurements were thought to be impossible, because
they require the placement of measurement nodes in the same ASes as
the respective Tor network nodes. With the rise of new technologies and
methodologies, this assumption needs to be re-evaluated.

In this paper we present a novel methodology to utilize the RIPE Atlas
framework, a network of more than 10,000 probes worldwide, to actively
perform traceroute commands from and to Tor guard and exit relays
to clients and destinations. Based on multiple global scans our results
validate previous results and show the large influence on Tor posed by a
limited set of ASes. These are in a strong position to carry out effective
correlation attacks on Tor traffic. With this work, we provide an addi-
tional source of information that can be used together with BGP route
information to increase the accuracy of future models and simulations of
Tor and ultimately improve anonymity on the Internet.

Keywords: Tor · Ripe Atlas · Traceroute measurements

1 Introduction

Tor is the most notable anonymity network, used by 2 to 3 million people on a
daily basis and advertising up to 400 Gbit/s of bandwidth by utilizing around
6,500 voluntarily operated Tor relays. It provides anonymity by routing traffic
via three different Tor nodes. As a low latency network, due to its design, it is not
capable of guaranteeing anonymity in the case of a global passive observer. This
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 234–247, 2020.
https://doi.org/10.1007/978-3-030-58201-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_16

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 235

form of attacker is explicitly excluded from the threat model, assuming that such
a global passive observer does not exist. Although not global, powerful observers
exist, potentially threatening the anonymity of Tor users. However, their capa-
bilities are not exactly clear. One reason for this is the theoretical assumption,
that the underlying Internet hierarchy is flat and evenly distributed. Trivially,
this is not the case, as the Internet is shaped in different tiers and various entities
with different levels of control, e.g., Internet Exchange Points (IXP) with a high
level of control, and small ISPs with a low level of control. Also, the Tor network
does not utilize the Internet in an evenly distributed manner, as the location
of Tor relays is depending on various parameters, e.g., economical (the price of
bandwidth) or political (censorship, prosecution) reasons. Prior work [9,11,19]
has shown that traffic through the Tor network only takes a limited set of routes
on the Internet, making the threat of a powerful passive observer far more likely.
They point out that few AS-level entities provide a high proportion of the Tor
bandwidth, thus making them powerful entities for traffic correlation attacks.
These studies rely on BGP updates and a prediction of routes taken. While
they also describe that a traceroute-based approach could potentially yield bet-
ter results, they also argue that it would not be feasible for measuring AS-level
adversaries in the Tor network, because of the need to have measurement nodes
placed on the same ASes as Tor nodes and destinations. However, with the intro-
duction of the RIPE Atlas network [21] this assumption can no longer be taken
for granted. The RIPE Atlas network is a global measurement network, which
can be used by researchers to measure Internet connectivity and reachability. It
has already been used for several studies [4] concerning network routing [10] as
well as censorship measurements [3].

Our work presents a novel method of measuring the routes that traffic takes
from and to the Tor network by utilizing active network probing, in contrast to
estimations via BGP updates. We do this by utilizing probes that are placed
in autonomous systems (AS) also in use by Tor relays, Tor users or Tor con-
nection recipients. For this purpose, we utilize the RIPE Atlas network, which
consists of more than 10,000 globally distributed probes connected to many dif-
ferent autonomous systems. To measure the routes a packet takes from and to
the Tor network, we execute traceroute commands on these probes and collect
information on the ASes observed on the respective paths. With this method,
we gather data to create better predictions of powerful adversaries existing on
the Internet and thus to improve the anonymity of Tor users. More specifically,
the contributions of this paper are as follows:

Active Measurements of AS Interconnections: Using traceroute based
measurements we estimate the capabilities of AS-level adversaries and show
the influence of only a few ASes on a large amount of traffic.

Open-Source Active Measurement Tool: To improve the evaluation of
future attacks and defenses against Tor, we provide an open-source frame-
work to perform active measurement to acquire routing information for Tor
nodes.

236 W. Mayer et al.

2 Related Work

Tor, described originally by Dingledine et al. in 2004 [8], grew to the most impor-
tant anonymity system online nowadays. As a low-latency overlay network, it
is inherently vulnerable to passive attacks by global observers, which is already
described in the original specification. Instead, they work with a threat model
that includes attackers that can only observe fractions of the network traffic.

Feamster and Dingledine [11] provided the first analysis of location diversity
in the Tor network for independently operated autonomous systems based on
BGP routing tables. They analyzed the probability of an entry path to the
network and an exit path from the network will cross through the same AS.
Their analysis shows that previous methods of choosing paths/nodes based on
IP prefixes are not sufficient to guarantee a diverse set of ASes, since in about
10% to 30% of the time both the entry and exit path to the mix network will cross
through the same AS. A refinement of this approach by Edman and Syverson
in 2009 [9] shows that the previous study even underestimated the potential
threat. A study of Tor security properties against traffic correlation attacks was
presented by Johnson et al. [16]. Their results show that, depending on location, a
user’s chance of compromise can be at 95% within 3 months of monitoring against
a single AS. One mitigation they propose is to carefully select which entry and
exit nodes to use. Wacek et al. [25] built a graph of the Tor network to capture
the networks AS boundaries. Using this graph they provide an evaluation of a
set of proposed relay selection methods and quantify their respective anonymity
properties. Their results show that bandwidth is an important property for the
performance of such algorithms, and should not be neglected.

The importance of location diversity in the Tor network has been shown by
several attacks proposed in recent years. Vanbever et al. [24] provide a study of
the capabilities of AS level adversaries. Sun et al. [23] describe a set of advanced
routing attacks on Tor, named Raptor. They also describe the feasibility of asym-
metric AS-level attacks by observing not only data traffic from exit relay to the
server but also TCP acknowledgment traffic on other routes which increases
the capabilities of AS-level adversaries. In 2016, Nithyanand et al. [19] also use
data on the Internet’s topology [13] in a combination with AS-topology sim-
ulations [12] to estimate the threat posed by adversaries to Tor users. While
previous attempts at the correlation of traffic [15,17] had very limited perfor-
mance or required a large amount of captured traffic or time, DeepCorr [18],
developed by Nasr et al. greatly improves the feasibility of such attacks. By
leveraging emerging learning mechanisms they manage to achieve drastically
higher performance compared to existing state-of-the-art systems.

To mitigate the threat posed by an AS to be able to monitor Tor users, var-
ious kinds of protection mechanisms have been proposed [2]. Nithyanand et al.
proposed Astoria [19], an AS-aware Tor client. While similar in functionality to
LASTor [1], it provides improved protection with concern to threat models and
attacker capabilities. Sun et al. [22] presented a measurement study on the secu-
rity of Tor against BGP hijacking attacks and presented a new relay selection
mechanism to mitigate such attacks on Tor. In contrast to previous approaches

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 237

DeNASA from Barton et al. [5] provides a mechanism for AS-aware path selec-
tion independently of the destination. Additionally, they propose another system
for the creation of efficient and anonymous Tor circuits [6]. Hanley et al. [14]
proposed an extension to the work presented by Sun et al. [22] to increase the
provided privacy and anonymity guarantees. Wan et al. [26] showed that sev-
eral attacks against a set of the proposed protections are still possible, but they
also proposed simple solutions, which allow mitigating the threat posed by their
developed methods.

3 Active Acquisition of Routing Information

In the following section, we describe a novel method to measure strong AS-level
observers, which are in a good position to conduct correlation attacks. As an
overlay network, Tor depends on the underlying structure of the Internet. While
often a flat hierarchy is assumed, it is clear that this is not the case. We can model
the structure of the Internet by looking at autonomous systems identified by a
unique AS number (ASN). One AS can be seen as an administrative entity that
is responsible for a defined routing policy. Some AS are large and include a lot
of Tor users, destinations or relays, others do not contain users and destinations
but are used for routing Tor traffic through the Internet and others are not
important for Tor routing at all. Thus, some entities can observe more traffic
than others. With our measurements, we find a way to quantify which entities
are in a stronger position. Figure 1 illustrates the basic idea of a standard traffic
correlation attack, where one adversary (AS2) is placed on the incoming route to
Tor as well as on the outgoing route to the destination. Sun et al. [23] showed that
it is also possible to correlate reverse-path traffic. Other work already quantified
strong adversaries with the help of BGP route updates. In contrast, we develop
a method that utilizes the RIPE Atlas framework to actively acquire routing
information.

Client AS Destination AS

AS1

Guard AS Exit AS

Tor Network
AS2 AS3 AS2

Fig. 1. AS2 in a possible position for a traffic correlation attack

3.1 Relay as Diversity

As shown in Table 1 the Tor network currently consists of 6,509 relays
(January 5th, 2020). Only relays with the Guard flag (stable and reliable relays
after a ramp-up phase [7]), are used as entry relay. Only relays configured to allow

238 W. Mayer et al.

exiting traffic are potential exit relays in a Tor circuit. Because of the more
stringent requirements, the number of guard and exit relays (with guard/exit
probability >0) is a lot smaller than 6,509. This also affects the AS diversity,
which is the number of different ASes these relays are placed in. Current numbers
are shown in Table 1. Tor relays are chosen based on their flags and consensus
weight. In Fig. 3 we show the AS diversity relation to guard and exit probability.
We see that a small number of AS has a large share of exit (a) and guard (b)
probability. Eight ASes have more than 50% exit probability and 48 ASes have
more than 90%. We also see that only four AS have more than 50% guard prob-
ability and 122 have more than 90%. So although all Tor relays are distributed
over more than 1,100 ASes, the majority of entry and exit routing endpoints are
placed in a few ASes.

Table 1. Tor Relay overview

Relays Diff. AS BW (Gbit/s)

All Relays 6,509 1,104 418.07

Exit Relays 1,000 275 112.90

Guard Relays 2,415 470 254.61

3.2 The RIPE Atlas Framework

The RIPE Atlas framework is a highly distributed measurement network con-
sisting of more than 10,000 available probes, deployed in over 3,500 different
ASes. It allows us to execute various low-level commands, e.g., ping or tracer-
oute, on these probes and further process the results. We will utilize this to
execute traceroute commands from RIPE Atlas probes that are deployed in the
same ASes as Tor guard or exit relays as well as clients and popular destinations.
Figure 2 illustrates the global distribution of RIPE Atlas probes and the global
distribution of Tor relays. We see that countries with a higher number of Tor
relays also run more RIPE Atlas probes.

Fig. 2. (a) Worldwide RIPE Atlas Coverage (https://atlas.ripe.net/.) (b) Visualization
of Tor Relays (https://tormap.void.gr/.)

https://atlas.ripe.net/
https://tormap.void.gr/

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 239

Figure 3 also shows the cumulated guard and exit probability for autonomous
systems that contain RIPE Atlas probes. From 275 ASes that contain exit relays,
only 112 also contain a probe (419 relays out of 1,000). Still, that makes approx.
41% of the total exit probability (35% with only 17 ASes). This differs from
the cumulated guard probability. From 470 ASes that contain 2,415 relays, 238
ASes (with 1,848 relays) also include a RIPE Atlas probe, which represent guard
relays with a sum of 83% guard probability (80% with 98 ASes). Especially for
exit relays, these numbers could be drastically increased if only a few, exit-
focused ASes would also host RIPE Atlas probes. Table 2 identifies ASes, that
are currently not hosting any RIPE probes. By adding only 5 probes we could
measure ASes with 76% exit probability in total and 10 probes would gain up to
87% probability in total.

Fig. 3. Accumulated percentage of (a) exit, and (b) guard probability with the number
of autonomous systems

Table 2. AS with Tor relays currently not hosting a RIPE Atlas probe

AS Name Relays Gbit/s BW Pexit Pguard

200052 FERAL 54 17.01 .158 .004

208323 APPLIEDPRIVACY 16 7.28 .082 .001

53667 FRANTECH 94 8.78 .048 .011

8972 HOSTEUROPE 23 2.60 .000 .010

63949 LINODE-AP 162 3.71 .001 .008

3.3 Active traceroute Probing with RIPE Atlas

As illustrated in Fig. 4 we perform traceroute measurements to identify routes
taken for four different directions: (1) all client ASes to all guard ASes, (2) exit
ASes with probes installed to the destination ASes, (3) destination ASes to all
exit ASes, and (4) guard ASes with probes installed to the client ASes. With
these measurements, we do not cover all possible routes since not all ASes have
probes installed. In the different directions we measure (1) 1s00% (2) ∼40% (3)
100% (4) ∼83% in terms of route probability.

240 W. Mayer et al.

Guard Relays

RIPE
Probes

Exit Relays

RIPE
Probes

Destination

RIPE
Probes

User

RIPE
Probes (1)

Tor Network

(2)

(3)(4)

Fig. 4. Four different directions of active RIPE Atlas traceroute scans

In detail, this process works as follows:

1. Create the following sets:
i. ASclient ... ASes of the clients
ii. ASguard ... all ASes with guard relays
iii. ASguard+probe ... all ASes with guard relays and RIPE atlas probes
iv. ASexit ... all ASes with exit relays
v. ASexit+probe ... all ASes with exit relays and RIPE atlas probes
vi. ASdestination ... ASes of the destinations

2. Generate ICMP traceroute measurement definitions for the following direc-
tions:
(1) ASclient

traceroute−−−−−−−→ ASguard

(2) ASexit+probe
traceroute−−−−−−−→ ASdestination

(3) ASdestination
traceroute−−−−−−−→ ASexit

(4) ASguard+probe
traceroute−−−−−−−→ ASclient

3. Execute the traceroute with the RIPE Atlas measurement API. ("protocol":
"ICMP", "response timeout": 20000, "packets": 1). Every RIPE Atlas
measurement is charged with credits, obtained by hosting RIPE Atlas probes.
For the current deployment that estimates to 20 · 1230 = 24600 credits for
one client and one destination.

4. Process all results and look up the corresponding AS from the ip2asn
database.

5. For every traceroute, mark all included ASes with the probability of that path
being chosen, i.e., the corresponding guard/ exit probability.

6. Combine the values for the directions 1 and 4 for the entry side, and 2 and
3 for the exit side, s.t., if an AS appears on either the forward or the reverse
path it is assigned with the probability of that path being chosen. For multiple
destinations, all traceroutes are combined.

7. Point out the top ASes, that appear on entry and exit side by looking at
Pguard ∩ Pexit.

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 241

3.4 Origin and Destination AS

The sets of guard and exit relays can be derived by combining the Tor consensus
with the RIPE Atlas probe overview. However, a client set and a destination
set has to be chosen to conduct a measurement. A single client and a single
destination are easily scannable, but it doesn’t give us a full picture. However,
executing traceroutes for all possible client and destination ASes is not feasible.
Thus, we have to choose client and destination AS sets for our measurements.
In 2008, Edman and Syverson [9] captured traffic from Tor relays to determine
top autonomous systems. We are choosing a different approach using popular
destinations and large client ASes. For the client set, we choose different countries
and pick the 10 ASes containing the most RIPE Atlas probes. Then, we pick one
probe thereof. E.g., Germany has 1,485 probes installed, in 343 different ASes,
and we pick the ASes with most probes installed1. For the US we do the same2.
For the most common destinations, we derive a list of top destinations from
the Tranco [20] top sites list3. We take the 100 most popular domains, resolve
the domain, and match the corresponding ASes. From the 100 top sites in 44
different ASes, ten ASes also have a RIPE Atlas probe installed4 and will be
used as our destination ASes.

3.5 Data Sources

To facilitate reproducibility and encourage openness, all used data files are pub-
licly available at the project website5. In particular, our work relies on following
data sources:

1. The Tor consensus that contains all Tor relays with their IP address, asso-
ciated flags (particularly “Guard” and “Exit”), advertised bandwidth and
guard and exit probability. We collect this information via the Tor network
status protocol onionoo6.

2. Statistical data about the RIPE Atlas probes7. We use different data (e.g.,
id, number and AS of the probes) to find all probes connected to the same
ASes as guard and exit relays.

3. Freely accessible ip2asn8 databases to match IP addresses with the corre-
sponding AS number.

4. Active RIPE Atlas traceroute results9. The measurements used for this paper
are accessible at the projects website.

1 Client ASes Germany: 3320, 6830, 31334, 8881, 3209, 6805, 553, 680, 8422, 9145.
2 Client ASes USA: 7922, 701, 7018, 209, 20115, 22773, 5650, 20001, 10796, 11427.
3 Available at https://tranco-list.eu/list/YL6G.
4 Destination ASes: 3, 15169, 4837, 24940, 36351, 14618, 16509, 14907, 3356, 794.
5 Project website: https://github.com/sbaresearch/ripe-tor.
6 onionoo: https://metrics.torproject.org/onionoo.html.
7 probes: https://atlas.ripe.net/probes/.
8 ip2asn: https://iptoasn.com/.
9 measurements: https://atlas.ripe.net/measurements.

https://tranco-list.eu/list/YL6G
https://github.com/sbaresearch/ripe-tor
https://metrics.torproject.org/onionoo.html
https://atlas.ripe.net/probes/
https://iptoasn.com/
https://atlas.ripe.net/measurements

242 W. Mayer et al.

4 Evaluation

In the following section, we evaluate our traceroute scans and show results. We
start with an evaluation of a basic scan. Then, we present a larger measurement
with multiple clients and destinations. We assess both directions on the guard
and the exit side separately and also look at the combined results.

4.1 Measurment with a Single Client and a Single Destination

As an illustration of the capabilities of our methodology, we evaluate the results
of measurements with one fixed client AS and one fixed destination AS. There-
fore, we choose the AS of our research center as ASclient = {AS1764}, and the
AS of one mirror of the torproject.org website as ASdestination = {AS24940}.
We choose RIPE Atlas probes deployed in these ASes (id: 26895, 50609). We
then execute 1,240 traceroute commands as defined in Sect. 3.3. Thereof, 269
only contain the client and destination AS, while 971 contain additional ASes
on the path. In Table 3 we show various results. As expected, the client and
destination AS (Hetzner, Nextlayer) are found on all traceroutes. ASes with a
high guard or exit probability (Feral, Applied Privacy, OVH) also have a great
share, although they are not intermediary and only found on the single tracer-
oute to/from their AS. Large transit ASes, that appear on many routes are more
interesting. In our measurement, we identified AS6939, AS47147, AS1200, and
AS174 to be in a powerful position, as they appear on many routes and gain
probability of up to 18%. Table 4 shows that for this single measurement only
few ASes have a probability higher than 1% to appear on both sides.

Table 3. Results for a single client and single destination

AS Name Dir P Prelays Proutes Routes

24940 HETZNER-AS exit .988 .004 .984 269

200052 FERAL exit .161 .161 – 1

6939 HURRICANE exit .158 .001 .157 20

47147 AS-ANX exit .116 – .116 4

1200 AMS-IX1 exit .068 – .068 17

1764 NEXTLAYER guard .992 – .992 454

24940 HETZNER-AS guard .202 .202 – 1

16276 OVH guard .152 .152 – 1

1200 AMS-IX1 guard .180 - .180 55

174 COGENT-174 guard .095 .007 .088 87

As described in Sect. 3.2, not all ASes have RIPE Atlas probes installed,
ASexit+probes → ASdestination only represents around 38% of total exit proba-
bility and ASguard+probes → ASclient only represents around 83% of total guard
probability. This means real values are estimated to be even higher.

https://torproject.org

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 243

Table 4. Combined results for a single destination and a single client

AS Name Pguard Pexit Pcombined

24940 HETZNER-AS .202 .988 .199

1200 AMS-IX1 .180 .068 .012

16276 OVH .152 .065 .010

4.2 Measurements with Multiple Clients and Multiple Destinations

We conducted the scans on the guard side and exit side separately, and afterward
combined the results. We conducted 15,160 successful traceroutes for the 10
entry side ASes originating in the US and Germany. On the destination side, we
gathered 4,270 successful traceroute results. The scans were performed around
31.12.2019.

Client to Guard Relays. We found ASes that have a high probability to
appear on the route to/from guard relays. Figure 7 shows the probability of
different ASes to be on a route to/from a guard relay in the US and Germany. The
different data points represent the different originating ASes, and the line the min
and max values. We identify ASes in good positions for both countries. AS3356
(LEVEL 3) will be traversed with a high probability for all originating ASes and
has also a high probability for the set of German probes. We identify AS1200
and AS1273 and AS6830 only in German ASes. AS1299 (TELIANET), AS2914
(NTT-COMMUNICATIONS-2), AS174 (COGENT) and AS9002 (RETN) are
strong for both client sets (Fig. 5).

Fig. 5. Summarized guard probability for ASes that appear on a route from the origi-
nating client AS to all guard ASes

244 W. Mayer et al.

Destination Results. For the destination set, we are using probes of ten differ-
ent autonomous systems, derived from the Tranco Top pages list, as explained in
Sect. 3.4. We identified all ASes that were located on the routes for every desti-
nation AS. We then combined these values to represent the possibility of a client
connecting to all destinations. Table 5 shows all ASes that have a probability
over 20%. Figure 6 additionally shows the data points for every single destina-
tion AS. We excluded all destination ASes, because they appear with certainty,
and excluded ASes that only appear because exit relays are hosted (AS200052,
AS208323 - Applied Privacy).

Table 5. Results on the exit side, with a
summarized exit probability over 20%

AS Name P

6939 HURRICANE 0.808

6461 ZAYO-6461 0.510

174 COGENT-174 0.415

1299 TELIANET 0.377

1200 AMS-IX1 0.370

2914 NTT-COMMUN 0.362

10578 GIGAPOP-NE 0.359

3257 GTT-BACKBO 0.290

Fig. 6. Summarized probability with
single data points representing the dif-
ferent destination ASes

Combined Results. Combining all results, we identify ASes that have a high
probability to be on the guard side as well as on the exit side. We investigate
combinations of single client ASes with all ASes on the exit side, because users
connect from one client AS to different destinations. In Fig. 7, we can identify
strong ASes for our measurement setup. AS3356 (LEVEL3) has a combined
value of up to 67.1% (Pguard = .681 · Pexit = .985) for the client AS7018. Other
notable ASes are AS6939, AS1299 and AS2914 with combined values > 20%.

5 Discussion

We presented a methodology to utilize the RIPE Atlas network to gather valu-
able routing data from and to Tor relays. Related work already quantified AS-
level adversaries’ capabilities for traffic correlation attacks. Thus, our work will
not provide any surprising insights. However, our methods can be used to refine
existing models with timely and actively gathered routing data. While the result
set of this paper is rather limited with only 16,500 executed traceroute commands
and a small number of probes utilized, the methodology is highly scalable. For
future work, we plan to scale up the number of measurements performed in var-
ious ways. First, we want to enlarge the measured client and destination sets.

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 245

Fig. 7. Combined probability of ASes appearing on the client and destination path

Second, we think about reoccurring scans in contrast to oneoff measurements
conducted in this paper. Last, a more fine-grained measurement, using probes
in the same IP subnets as the relays could improve the results. We publish our
source code openly available as free software. This enables other entities, such
as large relay operators, to also perform measurements. All measurement results
gathered with RIPE Atlas are also openly available and could include valuable
results for the Tor network. We argue that large relay operators should deploy
RIPE Atlas probes in their networks, not only to further improve our future
results but also to enable other measurements. Only a few more probes would
increase the coverage significantly. In Sect. 3.2 we identified the largest relay
operators (AS-wise) without RIPE probes. The evaluation illustrates the possi-
bilities of our methodology. However, it is limited in various ways. We currently
do not consider various factors that are important to accurately quantify the
threat of AS-level observers. This includes user behavior, Tor circuit creation
algorithms, and others. Hence, a combination of our data acquisition method
with other simulations is necessary to correctly quantify the traffic correlation
threat.

Finally, we argue for increased AS diversity in the Tor network. Even with
simple measurements, we see that the distribution of Tor relays is skewed. We
hope that our measurements can improve the informed decision how this diver-
sity should be achieved.

6 Conclusion

To address Tor traffic correlation attacks through ASes we presented a novel
way to analyze the network routes taken by traffic from and to the Tor network.

246 W. Mayer et al.

While previous research relied on the analysis of BGP routing information and
simulations, we proposed a new method to utilize the RIPE Atlas framework to
measure network routes. We implemented a measurement framework that utilizes
the RIPE Atlas probes to perform traceroute commands between clients, servers
and Tor endpoints to collect information on the ASes involved in traffic routing.
Next, we utilized the collected information to create a model of paths to locate
and quantify strong observers.

By leveraging this methodology we were able to identify a small set of ASes
which have a great influence on the total amount of Tor bandwidth. This shows
that the collected information is a valuable additional data source when analyz-
ing attacks and defenses based on AS topology.

Acknowledgment. We want to thank David Schmidt for his preliminary work on this
topic. This research was funded by the Austrian Science Fund (FWF): P30637-N31,
the Josef Ressel Center (JRC) project TARGET and the Austrian Research Promo-
tion Agency (FFG) through project AutoHoney(I)IoT. The competence center SBA
Research (SBA-K1) is funded within the framework of COMET – Competence Cen-
ters for Excellent Technologies by BMVIT, BMDW, and the federal state of Vienna,
managed by the FFG.

References

1. Akhoondi, M., Yu, C., Madhyastha, H.V.: LASTor: a low-latency AS-aware Tor
client. In: Symposium on Security and Privacy. IEEE (2012)

2. AlSabah, M., Goldberg, I.: Performance and security improvements for Tor: a
survey. ACM Comput. Surv. (CSUR) 49(2), 1–36 (2016)

3. Anderson, C., et al.: Global network interference detection over the RIPE atlas net-
work. In: USENIX Workshop on Free and Open Communications on the Internet
(FOCI) (2014)

4. Bajpai, V., Eravuchira, S.J., Schönwälder, J.: Lessons learned from using the RIPE
atlas platform for measurement research. ACM SIGCOMM Comput. Commun.
Rev. 45(3), 35–42 (2015)

5. Barton, A., Wright, M.: DeNASA: Destination-Naive AS-awareness in anonymous
communications. In: Proceedings on Privacy Enhancing Technologies (2016)

6. Barton, A., Wright, M., Ming, J., Imani, M.: Towards predicting efficient and
anonymous Tor circuits. In: USENIX Security Symposium (2018)

7. Dingledine, R.: The lifecycle of a new relay (2013)
8. Dingledine, R., Mathewson, N., Syverson, P.: The second-generation onion router.

In: USENIX Security Symposium, Tor (2004)
9. Edman, M., Syverson, P.: AS-awareness in Tor path selection. In: Conference on

Computer and Communications Security. ACM (2009)
10. Fanou, R., Francois, P., Aben, E.: On the diversity of interdomain routing in Africa.

In: Passive and Active Network Measurement Conference (2015)
11. Feamster, N., Dingledine, R.: Location diversity in anonymity networks. In: Work-

shop on Privacy in the Electronic Society. ACM (2004)
12. Gill, P., Schapira, M., Goldberg, S.: Modeling on quicksand: dealing with the

scarcity of ground truth in interdomain routing data. ACM SIGCOMM Comput.
Commun. Rev. 42(1), 40–46 (2012)

Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas 247

13. Giotsas, V., Luckie, M., Huffaker, B., Claffy, K.C.: Inferring complex AS relation-
ships. In: Internet Measurement Conference. ACM (2014)

14. Hanley, H., Sun, Y., Wagh, S., Mittal, P.: DPSelect: a differential privacy based
Guard relay selection algorithm for Tor. In: Proceedings on Privacy Enhancing
Technologies (2019)

15. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network
latency leak? ACM Trans. Inf. Syst. Secur. (TISSEC) 13(2), 1–28 (2010)

16. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed:
traffic correlation on Tor by realistic adversaries. In: Conference on Computer and
Communications Security. ACM (2013)

17. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analy-
sis of low-latency anonymous communication using throughput fingerprinting. In:
Conference on Computer and Communications Security. ACM (2011)

18. Nasr, M., Bahramali, A., Houmansadr, A.: DeepCorr: strong flow correlation
attacks on Tor using deep learning. In: Conference on Computer and Commu-
nications Security. ACM (2018)

19. Nithyanand, R., Starov, O., Zair, A., Gill, P., Schapira, M.: Measuring and mitigat-
ing AS-level adversaries against Tor. In: Network and Distributed System Security
Symposium (NDSS) (2016)

20. Pochat, V.L., Van Goethem, T., Tajalizadehkhoob, S., Korczynski, M., Joosen,
W.: Tranco: a research-oriented top sites ranking hardened against manipulation.
In: Network and Distributed System Security Symposium (2019)

21. Staff, R.N.: RIPE atlas: a global internet measurement network. Internet Protoc.
J. 18(3), (2015)

22. Sun, Y., Edmundson, A., Feamster, N., Chiang, M., Mittal, P.: Counter-RAPTOR:
safeguarding Tor against active routing attacks. In: Symposium on Security and
Privacy. IEEE (2017)

23. Sun, Y., et al.: Routing attacks on privacy in Tor. In: USENIX Security Sympo-
sium, RAPTOR (2015)

24. Vanbever, L., Li, O., Rexford, J., Mittal, P.: Anonymity on QuickSand: using BGP
to compromise Tor. In: Proceedings of the 13th ACM Workshop on Hot Topics in
Networks. ACM (2014)

25. Wacek, C., Tan, H., Bauer, K.S., Sherr, M.: An empirical evaluation of relay selec-
tion in Tor. In: Network and Distributed System Security Symposium (2013)

26. Wan, G., Johnson, A., Wails, R., Wagh, S., Mittal, P.: Guard placement attacks
on path selection algorithms for Tor. In: Proceedings on Privacy Enhancing Tech-
nologies (2019)

Zeek-Osquery: Host-Network Correlation
for Advanced Monitoring and Intrusion

Detection

Steffen Haas1(B), Robin Sommer2, and Mathias Fischer1

1 Universität Hamburg, Hamburg, Germany
{haas,mfischer}@informatik.uni-hamburg.de

2 Corelight, Inc., San Francisco, CA, USA
robin@corelight.com

Abstract. Intrusion Detection Systems (IDSs) can analyze network
traffic for signs of attacks and intrusions. However, encrypted communi-
cation limits their visibility and sophisticated attackers additionally try
to evade their detection. To overcome these limitations, we extend the
scope of Network IDSs (NIDSs) with additional data from the hosts. For
that, we propose the integrated open-source zeek-osquery platform that
combines the Zeek IDS with the osquery host monitor. Our platform can
collect, process, and correlate host and network data at large scale, e.g.,
to attribute network flows to processes and users. The platform can be
flexibly extended with own detection scripts using already correlated,
but also additional and dynamically retrieved host data. A distributed
deployment enables it to scale with an arbitrary number of osquery hosts.
Our evaluation results indicate that a single Zeek instance can manage
more than 870 osquery hosts and can attribute more than 96% of TCP
connections to host-side applications and users in real-time.

Keywords: Intrusion detection · Network monitoring · Host-network
correlation · Zeek · Osquery

1 Introduction

Computer networks need a second line of defense against cyber-attacks, in which
network devices and connected systems are monitored to detect signs of intru-
sions. NIDSs can fill this gap and allow to collect extensive information about
a monitored network. They can detect ongoing attacks and compromised hosts.
However, the (definitely positive) ongoing trend towards secure and encrypted
communication, turns an IDS partially blind. It cannot analyze the encrypted
data anymore and thus might miss signs of intrusions. Furthermore, the com-
plete reconstruction of sophisticated attacks, e.g., Advanced Persistent Threats
(APTs) [7], is almost impossible based on network data only. Especially the
detection of multi-step attacks across multiple hosts [13] that requires to iden-
tify related or similar flows, e.g., the Command and Control channel after a
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 248–262, 2020.
https://doi.org/10.1007/978-3-030-58201-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_17

Zeek-Osquery 249

Trojan download and the following lateral movement in the network, can only
be correlated with uncertainty without any insights into host data [19].

Host context on network flows can improve the accuracy of NIDSs [1,5,14].
The combination of host and network monitoring leads to an increased visibility
on attacks and requires to jointly analyze host and network data. However, while
an NIDS can protect a complete network, a Host IDS (HIDS) has to run on
every device in the network. Moreover, this induces a high correlation load when
correlating host with network data. Furthermore, to be applicable for intrusion
detection, such a system must be able to process the data of the monitored hosts
close to real-time and thus need to scale with the number of HIDSs. Security
Information and Event Management (SIEM) systems have been designed for this
task [3]. They are centralized systems that usually read in log files collected from
NIDSs and HIDSs and perform high-level correlation and aggregations across
them. In contrast to their coarse-grained data that lacks detailed network data,
our fine-grained correlation system makes use of causal relations in the data for
the purpose of real-time intrusion detection in the network.

The main contribution of this paper is the novel open-source platform zeek-
osquery1 for the scalable and joint monitoring of networks and their hosts. For
that, we combine the network monitor and IDS Zeek [12] (formerly known as
Bro) with the host monitor osquery [6]. Our solution correlates data from the
Operating System (OS) level with network information in real-time. Further-
more, it allows to dynamically select from a great variety of OS data available
for processing. This way, we provide the fundamentals for a new class of detec-
tion algorithms that operate on a much broader visibility. We extend the context
of network flows, for example to attribute them to the originating processes and
the users that started them. Zeek-osquery can be flexibly adapted to different
detection scenarios, as osquery-hosts are directly managed from Zeek scripts and
all data processing can be implemented in Zeek. Examples are the detection of
executed files downloaded from the Internet, the detection of lateral movement
of attackers via SSH hopping [18], or to provide Zeek with Kernel-TLS keys
obtained at hosts for the decryption and inspection of network traffic.

We extensively evaluated zeek-osquery in a small-scale real-world deploy-
ment and conducted additional experiments to investigate its scalability with
an increasing number of osquery hosts. Our evaluation results indicate that we
can attribute more than 96% of all TCP connections to their originating pro-
cesses and the responsible users on monitored hosts, contrary to less than 0.1%
attributed connections when using Zeek alone. Moreover, our system seems to
scale with an increasing number of osquery hosts, enabling one Zeek instance to
handle more than 870 osquery hosts in our evaluation setting. For larger deploy-
ments, we also propose a distributed setup with multiple Zeek instances that
enable zeek-osquery to scale to arbitrarily large networks.

The remainder of this paper is structured as follows: Sect. 2 presents related
work. Section 3 highlights the concept of host-network correlation and shows how
to link host and network data for network attribution. Section 4 introduces our

1 https://github.com/zeek/zeek-osquery.

https://github.com/zeek/zeek-osquery

250 S. Haas et al.

open-source platform zeek-osquery to monitor both hosts and network and to
correlate monitoring data in real-time. The evaluation of zeek-osquery in Sect. 5
is done in a real-world deployment for insights and in a stress test to highlight
the scalability of our solution. We conclude with Sect. 6.

2 Related Work

We identified four groups of related work that is relevant for our work in the
following: (1) Collaborative IDS (CIDS), (2) host context for network intrusion
detection, (3) host activity to describe communication behavior, and (4) SIEM
systems that can correlate logs from several sources.

CIDSs consist of several host or network IDSs that collect, exchange, and
analyze data to create a holistic view of a network. However, these CIDS either do
not scale, are built for a very specific purpose, e.g., to detect worm outbreaks [4],
or offer a poor detection accuracy [17].

From the perspective of a NIDS, the inclusion of environmental context can
increase the detection accuracy [15]. An early work from Snapp et al. [14] com-
bines a NIDS with remote login events from hosts to identify login chains across
multiple hosts for the same user. More recently, the context directly comes from
the communicating application. Almgren et al. [1] instruct a NIDS to verify
that the application processed the network messages correctly and to retrieve
decrypted message payloads. Dreger et al. [5] compare how the NIDS and the
application decode network messages. This allows to detect attackers that obfus-
cate their traffic for IDS evasion. However, these approaches require modifica-
tions to all applications and do not systematically correlate host and network
data to increase the network visibility in general.

To gain more insight into host activities related to network communication,
dependency graphs with processes, files, and sockets are utilized to link host
activities [8]. The objects in the dependency graph are usually created from OS
audit data [2]. For example, Ma et al. [11] taint objects in these graphs to prop-
agate provenance in audit logs. This allows to enrich network-related activities
on a single host, but it is not incorporated into network intrusion detection. For
the usage of dependency graphs in intrusion detection [10], King et al. [9] extend
these graphs across hosts to argue for causal relationships between attack steps.
Sun et al. [16] incorporate IDS alerts into dependency graphs linked across hosts
to find the most likely attack path through the network. However, to the best
of our knowledge, no approach systematically leverages host context similar to
dependency graphs for network intrusion detection in real-time.

SIEM systems [3] store logs from various sources, including host monitors,
host applications, and network monitors in a central storage. They correlate host
and network data to detect and investigate security incidents. However, SIEM
systems fail to detect sophisticated attacks, because they miss detailed network
data and their capabilities for analysis are usually limited to data aggregation,
thresholding, and pattern detection. In contrast, our work provides additional
host context specifically for particular network flows. It is used flexibly in Zeek

Zeek-Osquery 251

scripts for network intrusion detection in real-time. Analysis results can be writ-
ten to log files, be processed by SIEM systems, or induce an alert.

3 Refining the Network Visibility

To increase the accuracy of intrusion detection, we highlight network-related
host activity that links between network and host monitoring. More generally,
we refine the network visibility by incorporating host context into network mon-
itoring. For all network traffic, we identify related properties that come from
the hosts, e.g., user or process information. In particular, we explain how to
attribute traffic in the network to applications and users on the respective hosts.

Network-Related Activities on Hosts. Throughout this paper, we use the
term flow to describe the communication between two hosts with a 5-tuple of IP
address and port of the hosts, and the protocol. We denote the flow initiator as
originator and the other host as responder. Processes, identified by a process ID
(pid), use sockets to abstract flows. A socket is identified by a unique socket ID,
i.e., the combination of a file descriptor (fd) and pid, and additionally includes
the attributes of the respective flow 5-tuple. Processes and sockets are retrieved
by monitoring the system calls (syscalls) to the kernel, e.g., as provided by the
kernel audit in Linux. Several syscalls exist for the interaction of processes with
the kernel, including execve to spawn processes as well as bind and connect
to establish incoming and outgoing flows, respectively. Another way to retrieve
processes and sockets is to probe the current kernel status of Windows, Mac,
and in particular the procfs in Linux. Kernel status data holds all attributes
about current processes and sockets.

The data from both kernel audit and kernel status come along with different
properties. While the audit allows for an asynchronous pushing of new processes
and sockets, the status has to be frequently probed and compared with the
previous one to detect any changes. Despite this probing overhead, it outperforms
the audit variant when looking at the available attributes (data soundness).
This is because audit monitors syscalls and consequently can only record actual
parameters of these calls. For example, in case of a connect, only the destination
IP address and port are part of the call. The local IP address and port remain
unknown, even when combining several socket-related syscalls. However, relying
on the status variant alone is error prone regarding retrieving all objects (data
completeness), as a short-living process or socket might start and end between
two status probes. Consequently, such processes or sockets would be missed.
Therefore, a combination of both audit and status variants is elaborated next to
achieve both full data soundness and completeness.

Attributing Network Flows. Both the originator and the responder of a
network flow can be attributed by identifying the respective socket on either
host, where applicable. For simplicity, we assume that the socket identification

252 S. Haas et al.

Destination Host

Source Host

Source IP Source Port Destination IPDestination Port

Local IP
Local Port

Remote IP
Remote Port

Local IP
Local Port

Remote IP
Remote Port

optionally (if local socket info available)

optionally (if remote socket info available)

1.

1.

2.

2.

3.

3.

Process

ProcessSocket on destination host
for incoming network flow

Socket on source host
for outgoing network flow

Network tuple

Fig. 1. Attributing a network flow to a process on source and destination host by
matching the network tuple to the socket information on each of the hosts.

is sufficient, as this is the missing link to other host activity like processes and
files [2]. The identification of the respective socket for a network flow requires
a match on the flow 5-tuple. On the originator, this is a socket representing
an outgoing flow, and an incoming flow on the responder. This is relevant as
the 5-tuple for sockets reflects the IP address and port of the local and remote
hosts, while it reflects originator and responder host for network flow. Thus, the
incoming socket actually requires to match the inverse 5-tuple as the destination
in the network flow is required to match the local host on the responder. Figure 1
illustrates the originator with its outgoing socket (top left), the responder with
its incoming socket (bottom right), and the network flow with its full 5-tuple
(middle).

In contrast to kernel status data, the incomplete data soundness from kernel
audit results in unavailable socket attributes to match the source of a network
flow. To account for that, we correlate sockets and network flows for attribution
as following in three steps:

(1) Identify originator and responder hosts by the IP addresses in the network
flow. This requires a maintained list of IP addresses and hosts in the network.

(2) On the originator and responder, identify the socket(s) for which the flow
destination equals the remote or local socket info, respectively.

(3) Also require the flow source to equal local or remote socket info, respectively.

The correlation is unambiguous when the socket attributes for Step 3 are avail-
able. Otherwise, the correlation might be vague. In case of two hosts with a
connect syscall to the same destination IP address and port, our correlation is
still unambiguous because of Step 1. However, it is vague for the same host with
multiple flows to the same remote IP and port (from different source ports).
Ideally, the correlation outcome is exactly one socket for the originator and the
responder. However, in case of vague correlation we list all candidate hosts, pro-
cesses, and users that might be responsible for the flow.

Zeek-Osquery 253

Validity of Activities. Processes and sockets that already terminated some
time ago must not be considered for attribution of a currently ongoing network
flow. For that, we hold state about host activities and remove them from the
state when the respective process terminated or socket is closed. Thus, with
maintaining the host activities according to their validity in our state, we aim to
follow the life-cycle of processes and sockets from their creation to termination.

Data from kernel status is easy to incorporate into the state, as the status
reflects a current snapshot and comparing it to the previous snapshot allows to
explicitly identify new or removed processes and sockets, respectively. For the
kernel audit, the life-cycle for processes and sockets can be followed by syscalls
like execve, socket, or close. This works as long as the process decides on its
own to terminate or to close a socket. But there will not be such an audit event
when the process crashes or the TCP connection breaks. To prevent our state
to be polluted in such cases, we regularly perform a verification of it. We do so
by probing the host if all the processes (pid) and sockets (pid, fd) in our state
are still present by the current kernel status.

4 Monitoring and Event Correlation with Zeek-Osquery

In the following, we will describe zeek-osquery, a system for the collection, anal-
ysis, and correlation of host and network data that follows the approach from
Sect. 3. After introducing the existing monitoring tools Zeek and osquery, we
explain how our system zeek-osquery combines these two tools for the purpose
of advanced monitoring and event correlation.

4.1 Monitoring Tools and Overview

The network monitoring and intrusion detection is performed by Zeek [12] (for-
merly known as Bro). It captures and parses network traffic in its core and
provides a powerful scripting language to further analyze the traffic with custom
scripts. The Zeek publish-subscribe (pub-sub) library Broker2 dispatches events
internally even among remote machines. We have enhanced Zeek to retrieve host
events from osquery hosts and to natively process them analogous to network
events in Zeek. Based on this, Zeek exposes itself as a platform with the ability
to correlate various information from both host and network events.

Osquery [6] is an OS instrumentation framework. It provides an SQL-like
interface to query the OS as a relational database, including from kernel audit
and status. SQL tables represent abstract concepts such as running processes,
open network flows, browser plugins, or file hashes. When running in background
as host sensor, osquery regularly executes SQL queries as defined in its sched-
ule. We extended osquery to communicate with Zeek via Broker to retrieve SQL
requests from Zeek and report matching host events. The flexible pub-sub com-
munication enables osquery hosts to join and leave the Broker overlay at any

2 https://docs.zeek.org/projects/broker.

https://docs.zeek.org/projects/broker

254 S. Haas et al.

Osquery host Proxy Zeek Authoritative
Zeek

Original
interests

Collection
of all

interests

stream/bulk of host events

Fig. 2. Communication among osquery and zeek.

time. The seamless integration of host events from osquery into the Zeek pro-
cessing pipeline allows for efficient processing of host events and their correlation
with network events directly in Zeek scripts.

In zeek-osquery, the hosts are continuously monitored by osquery, which send
host events to Zeek via the Broker overlay that connects osquery hosts and Zeek
among each other. Added or removed entries in an osquery table are retrieved
as a continuous stream of host events. Alternatively, osquery tables can be also
queried on demand to retrieve a snapshot of an osquery table, e.g., to gather
all running processes at a certain time. This allows for an interactive analysis
of hosts, e.g., to investigate a specific security issue. Zeek acts as a correlation
platform that analyzes and correlates both, the network events for the traffic
captured by Zeek and the host events retrieved from all osquery hosts. For that,
we extended Zeek by a new Zeek framework to define custom queries and result
handling. For large deployments, our Zeek correlation platform can be set up in
a distributed manner with multiple, communicating Zeek instances.

4.2 System Architecture

We implemented a novel Zeek framework, i.e., a collection of Zeek scripts, to
control osquery hosts. This way, Zeek is capable of: (1) requesting complete
results to a one-time query immediately and (2) scheduling queries that are
regularly executed. We address specific osquery hosts or groups of them in the
pub-sub overlay by distinct topic names, labeled as groups throughout this
paper. Apart from some default groups, custom ones can either be pre-configured
at the hosts or dynamically controlled by Zeek. It uses the group labels to control
the SQL queries for specific selections of osquery hosts. An interest denotes the
binding of a query to a group. It contains additional information, e.g., whether
the query is executed regularly or just once and how to send the results back to
Zeek. This way, Zeek can publish an interest over Broker to osquery hosts in a
particular group, e.g., for logged in users on all monitored servers.

When an interest is published, the currently connected osquery hosts will
receive it, but others that join the overlay later missed previous but valid inter-
ests. Thus, they would not execute the scheduled queries. For that, Zeek instances
can take over the following roles as illustrated in Fig. 2:

– An Authoritative Zeek is the origin of an interest. This role defines queries
and retrieves query results, i.e., host events, from the osquery hosts.

Zeek-Osquery 255

– A Proxy Zeek collects and holds all interests from Authoritative Zeek
instances. It forwards only applicable queries to its directly connected osquery
hosts. The Proxy Zeek maintains the query schedule and group assignments
of hosts, both when they join and later when their interests change.

Our overlay design with respect to the Zeek roles, enables a scalable deploy-
ment with multiple Zeek instances that run in a distributed fashion for load
balancing and availability reasons. Distributing the load among multiple Zeek
instances can be achieved in three ways:

– Resource intensive correlation tasks can run exclusively on an additional
Authoritative Zeek instance. For that, another Zeek joins the overlay and
publishes interests for events that are required for detection. The resources of
this instance are completely available to the detection and all other instances
can continue using their resources to perform their tasks.

– If large amounts of osquery hosts would overwhelm a single Authoritative
Zeek instance, the osquery hosts are organized in groups, with one out of
multiple Zeek instances being responsible for one group. All Zeek instances
are then interested in the same query that they publish to a specific group.

– To reduce the load on a single Proxy Zeek instance, multiple instances can
be deployed. Then, each one needs to handle a lower number of directly
connected hosts that still receive the same interests as before.

After an osquery host joined the Broker overlay, it is controlled by its Proxy
Zeek and now accepts and executes any forwarded interest. However, note that
interests originally come from Authoritative Zeeks and query results should also
be routed back to them via the pub-sub overlay. For that, the originating Author-
itative Zeek by default sets the response topic to its own topic when publishing
interests. If the same interest query originates from multiple Zeeks, we suggest
to choose the same response topic across Zeek instances for the same interest.
This way, interests can be consolidated on osquery hosts and the query results
are sent efficiently over Broker to multiple Authoritative Zeek instances.

4.3 Event Correlation for Network Attribution

We developed a processing pipeline as part of our Zeek framework to process and
correlate host and network events. We implemented it in the Zeek-typical event-
based fashion to allow custom scripts to reuse events emitted by our pipeline
for further analysis. The three different stages in the processing pipeline are
illustrated in Fig. 3, follow the concept as described in Sect. 3, and are detailed
in the remainder of this section.

In the Querying stage interests are defined, i.e., SQL queries, that are sent to
and scheduled on osquery hosts. Events on this stage are a continuous stream of
raw host events that directly come from osquery. Incoming events reflect updates
of an osquery table, e.g., processes or sockets.

The State stage assembles raw host events from osquery to a state in real-
time and reflects the current host status, e.g., a process is added upon creation

256 S. Haas et al.

Zeek:
Sniffing network
packets and
analyzing
network flows

Osquery:
Providing access
to several tables

Zeek Correlation Framework

(1) Retrieving
host events
from osquery

(3) Correlating different host
and network events based
on common attributes

continuous event
stream

one-time query results

Querying
Correlation

(2) Reconstructing
and maintaining state
of host information

State Capturing

Collecting

Fig. 3. Architecture of the processing pipeline.

and removed upon termination. Tables in osquery based on Linux kernel audit
(cf. Sect. 3) report only new processes and sockets, so we verify the state period-
ically against the kernel status utilizing one-time queries. The same mechanism
is used to retrieve a snapshot for initial state before continuously updating it
with audit events. The state consolidates raw host events from different tables in
case they describe the same class of data, e.g., the socket state is built based on
the osquery tables socket events, listening ports, and process open sockets. While
state of Windows and Mac hosts is reconstructed solely from tables reflecting
kernel status, state of Linux hosts is additionally based on kernel audit and
therefore more accurate because of data completeness (cf. Sect. 3).

In the Correlation stage, the data base for correlations encompasses the
triggering event and any state that is available both natively in Zeek and about
osquery hosts. As an example, we implemented the attribution of network flows
by linking them with the respective application and user in real-time. To demon-
strate the effect, we extended the statistics about every network flow in Zeek
(conn.log) to additionally list the respective host, application, and user.

4.4 Examples for Scenario Detection

Building on the network attribution (cf. Sect. 4.3), we implemented the detection
of three particular scenarios using our processing pipeline in Zeek scripts.

Execution of Mail Attachments. Once an email campaign with malware is rec-
ognized and its mail recipients identified, it must be reconstructed who of them
executed the attachment and on which machines. Zeek-osquery tracks the exe-
cution of mail attachments as follows: First, Zeek notices a file download from
the Internet as mail attachment and remembers the file hash associated with
the attachment. Second, in parallel Zeek interactively requests the file hash of
unknown binaries upon process creations. A match among the download hashes
and the binary hashes reveals the execution of an Internet download.

Stepping Stone Detection. Attackers often hide their identify by using an infected
machine in the network as proxy to reach the actual target. An example for such
an attack is SSH chaining and zeek-osquery detects it as follows: First, Zeek
identifies all hosts that have both an incoming and outgoing SSH connection, i.e.,
which is an indication for a SSH proxy. To verify the relation between incoming

Zeek-Osquery 257

and outgoing connection, Zeek interactively requests the pids of all children
under the process with the incoming connection. If this list contains the pid of
the process with the outgoing connection, a stepping stone is detected.

TLS Decryption. TLS proxies often actively break the end-to-end encryption for
traffic analysis. With zeek-osquery, we provide the ability to selectively request
cryptographic material from hosts such that Zeek can passively decrypt the traf-
fic. As proof-of-concept, we extended osquery to capture the respective system
call used in Kernel-TLS (KTLS), when the application forwards the keys to del-
egate the symmetric de- and encryption after the TLS handshake to the kernel.
Osquery then provides a tables with the obtained keys to Zeek.

5 Evaluation

In this section, we evaluate zeek-osquery. First, Sect. 5.1 gives insights into a
real-world deployment. Afterwards, we stress-test the system with more hosts
and host events in Sect. 5.2 to evaluate its scalability properties.

5.1 Real-World Evaluation

We deployed zeek-osquery to monitor eleven office machines of a working group
in the computer science department on a university campus for three work-
ing days. The machines were running different Linux distributions, including
Ubuntu, Linux Mint, Fedora, and Arch Linux. To monitor their network traffic
and to correlate it with host events, we tunnel the traffic through a VPN on the
campus site that is monitored by a Zeek instance. Note, that the correlation is
performed in real-time during this experiment.

The data processed by zeek-osquery in this setup is characterized in Table 1.
It reports characteristics of the flows that our zeek-osquery ideally correlated
with host data. Furthermore, the table reports the number of received host
events. On average, each of the eleven machines was monitored for 6 h and 21 min
per day. An individual host on average reported 20.22 process, 5.63 socket, and
0.37 user events per minute that go into state (cf. Sect. 4.3). Note, that also
the initial state that is retrieved from hosts upon their (re-)connects goes into
the average event rate. The following provides results and experiences on how
zeek-osquery enhances the visibility and accuracy of monitoring.

Table 1. Characteristics of the real-world dataset.

Network flows Host events for state

Total TCP UDP ICMP Process Socket User Interface

344,366 273,241 70,929 196 2,793,406 776,910 51,719 7,919

258 S. Haas et al.

Table 2. Attributing of network flows.

(a) Attribution rate

All UDP TCP

86.61% 50.43% 96.05%

(b) Attribution uniqueness

Host Process User

Unique attributions 100% 88.53% 98.14%
Average candidates 1.00 1.17 1.02

Attribution. Table 2a shows the success rate of our attribution for the 344,366
network flows in our dataset. For 96.05% of TCP connections and 86.61% of
all flows we identify the responsible processes and users. False negatives are
caused when: First, the host data is not retrieved in time for real-time correlation
with short-lived flows. Second, applications like Skype use Stateless IP/ICMP
Translation (SIIT) to embed the actual IPv4 destination address into an IPv6
address. But as the host sends an IPv4 message, this causes a mismatch between
IPv4 (in network flow) and IPv6 addresses (in host events). Third, remote hosts
continue a flow although the monitored host already left the VPN and a new
host joined the VPN reusing the same IP address. These packets cannot be
attributed to a process on the new host. The attribution rate for UDP flows
is only about 50% because Zeek retrieves host events about UDP sockets from
the audit status only (cf. Sect. 3), which is provided at discrete time slots only.
Thus, short-living sockets might be missed out. This holds especially true for
DNS requests that are responsible for 89% of the UDP flows.

We further evaluate the attributed flows with respect to a unique host,
process, and user. In Table 2b, we count the number of flows that have been
attributed to a single entity and furthermore calculate the average number of
candidate entries per attribution. Apart from the vague correlation (cf. Sect. 3),
a fast re-usage on hosts of the same process ID or socket, i.e., file descriptor,
can be a reason for multiple attribution candidates. The effects of the vague cor-
relation become visible, especially for DNS flows. Usually applications use the
DNS server defined by the OS and therefore many processes establish flows to
the same server and port combinations. If we skip attributing flows to the DNS
servers, the unique attribution of processes increases from 88.53% to 93.15%.
Although a single user was logged in on the monitored machines, in some cases
the user attribution overlaps with a system account, e.g., in case of parallel DNS
requests by the system and an user application.

Network Applications. To identify communicating applications, the state-of-
the-art is to inspect network packets for application specific indicators like the
HTTP user agent. Zeek already analyses such indicators and derives the respec-
tive application, where applicable. If Zeek itself cannot derive the application
from the network packets, zeek-osquery can still verify the application via the
correlation with host data. Table 3 lists the top 10 network applications ranked
by their number of attributed flows. We observed two outcomes when comparing
both methods for identifying communicating applications: First, zeek-osquery is

Zeek-Osquery 259

Table 3. Top 10 attributed applications among all network flows.

Rank Zeek Zeek-osquery

Attributed flows 0.06% Attributed flows 86.61%

1 Chrome (0.01%) Firefox (23.17%)

2 Firefox (0.01%) Thunderbird (12.30%)

3 Spotify (0.01%) Spotify (6.11%)

4 Thunderbird (0.01%) Opera (5.41%)

5 Debian APT-HTTP (<0.01%) Syncthing (5.39%)

6 libdnf (<0.01%) Chromium (4.55%)

7 Wget (<0.01%) Skype (3.87%)

8 <unknown browser> (<0.01%) Seafile (3.80%)

9 OpenSSH (<0.01%) Chrome (3.56%)

10 gvfs (<0.01%) Qutebrowser (3.33%)

Total 33 applications 88 applications

able to attribute significantly more flows compared to Zeek, i.e., 298255 (86.61%)
compared to 212 (0.06%). Specifically for the Firefox browser, zeek-osquery was
able to attribute flows 2971 times more often than Zeek. Second, zeek-osquery is
able to identify applications that were not identified by Zeek. This includes user
applications such as Syncthing, Seafile, and Skype, but also system-related
components such as the network time synchronization daemon NTPD and the
Dynamic Host Configuration Protocol (DHCP) client dhclient.

However, we have also seen limitations of zeek-osquery, especially when a
process launches another application that immediately starts a network flow.
Because the flow could have happened before or after the parent process with
the same pid transferred control with the execve syscall to the new child, both
parent and child application are candidates for the attribution. In our experi-
ment, applications that are known to never communicate directly are candidates
for 0.18% of attributed flows. Also, some monitored hosts were running NATed
Virtual Machines (VMs) with a Windows guest system. While osquery runs on
the Linux hypervisor host only, it attributes any traffic of the VM to the virtu-
alization application (2.29%). However, Zeek might still identify the Windows
application inside the VM based on identifiers in the network packets (0.01%).

Zeek-osquery significantly increases the identification rate of communicating
applications. This enables to enforce the use of allowed applications and assists
threat hunters in detecting malware that covers its communication in well-known
protocols, e.g., HTTPS, that is usually allowed to pass the firewall.

5.2 Zeek Performance Analysis

In this section, we provide evaluation results to assess the scalability and effi-
ciency of zeek-osquery (cf. Sect. 4) with an increasing number of osquery hosts

260 S. Haas et al.

and an increasing number of events. For that, we implemented a simplified pro-
totype of our actual Zeek-enhanced osquery implementation in Python that sim-
ulates new processes and sockets. Each host continuously sends four events per
second to Zeek, which is more then in our real-world evaluation.

We distribute the total amount of the lightweight osquery instances equally
among ten bare-metal machines. Zeek takes over the role of both Proxy and
Authoritative Zeek and is running on another bare-metal machine. This comes
close to a real-world deployment, in which Zeek runs on a single machine and
osquery instances are distributed on different machines in the network. All of
the machines are equipped with an Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz
and 8 GB of RAM. We run each configuration setup for a specific number of
hosts for 20 min, measuring the average overhead of Zeek in terms of CPU and
RAM utilization for handling osquery hosts and processing host events in Fig. 4.
During the experiment, Zeek retrieves, logs, reconstructs state, and correlates
process, socket, and user events from hosts as it is done for the attribution of
network flows. The resources scale linearly with an increasing number of osquery
hosts. A single host causes 0.11% CPU and 0.45 MB RAM at the Zeek instance
during real-time correlation. Theoretically, to achieve 100% CPU utilization,
about 870 osquery hosts would be required, each sending four events per second.

Fig. 4. Resource utilization of Zeek for hosts with four host events per second.

6 Conclusion

In this paper, we introduced zeek-osquery as a novel approach to enrich network
intrusion detection with host data. For that, zeek-osquery leverages existing OS
instrumentation to collect processes and users and correlates them with network
flows. Our open-source implementation performs efficiently in real-time and in
a scalable fashion, as different roles in the platform can be distributed. Our
system gives broader network visibility and attributes network flows to users
and applications at large scale. Compared to a network-based IDS only, e.g.,
Zeek, the ratio of attributed network flows to applications increases by orders of

Zeek-Osquery 261

magnitudes. Zeek-osquery can attribute more than 96% of the TCP connections
to the originating process and the respective users in real-time. On that basis, we
can detect malware that encrypt its communication in protocols such as HTTPS,
which usually passes a NIDS without detection. Future work can include more
host data, e.g., opened files, and can develop more correlation algorithms on top
of zeek-osquery, e.g., to detect distributed and multi-step attacks.

References

1. Almgren, M., Lindqvist, U.: Application-integrated data collection for security
monitoring. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212,
pp. 22–36. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45474-8 2

2. Bates, A., Tian, D., Butler, K.R.B., Moyer, T.: Trustworthy whole-system prove-
nance for the Linux Kernel. In: Proceedings of the 24th USENIX Conference on
Security Symposium, pp. 319–334. USENIX Association (2015)

3. Bhatt, S., Manadhata, P.K., Zomlot, L.: The operational role of security infor-
mation and event management systems. IEEE Secur. Priv. 12(5), 35–41 (2014).
https://doi.org/10.1109/MSP.2014.103

4. Cai, M., Hwang, K., Kwok, Y.K., Song, S., Chen, Y.: Collaborative internet worm
containment. IEEE Secur. Priv. 3(3), 25–33 (2005). https://doi.org/10.1109/MSP.
2005.63

5. Dreger, H., Kreibich, C., Paxson, V., Sommer, R.: Enhancing the accuracy of
network-based intrusion detection with host-based context. In: Julisch, K., Kruegel,
C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 206–221. Springer, Heidelberg (2005).
https://doi.org/10.1007/11506881 13

6. Facebook: osquery — Easily ask questions about your Linux, Windows, and macOS
infrastructure. https://osquery.io/. Accessed 21 Feb 2020

7. Friedberg, I., Skopik, F., Settanni, G., Fiedler, R.: Combating advanced persistent
threats: from network event correlation to incident detection. Comput. Secur. 48,
35–57 (2015). https://doi.org/10.1016/j.cose.2014.09.006

8. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, pp. 223–236 (2003). https://
doi.org/10.1145/945445.945467

9. King, S.T., Mao, Z.M., Lucchetti, D.G., Chen, P.M.: Enriching intrusion alerts
through multi-host causality. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium. The Internet Society (2005)

10. Liu, M., Xue, Z., Xu, X., Zhong, C., Chen, J.: Host-based intrusion detection
system with system calls: review and future trends. ACM Comput. Surv. (CSUR)
51(5) (2018). https://doi.org/10.1145/3214304

11. Ma, S., Zhang, X., Xu, D.: ProTracer: Tt and distributed system security sympo-
sium. The Internet Society (2016)

12. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23), 2435–2463 (1999). https://doi.org/10.1016/S1389-1286(99)00112-7

13. Shin, J., Choi, S.H., Liu, P., Choi, Y.H.: Unsupervised multi-stage attack detection
framework without details on single-stage attacks. Future Gener. Comput. Syst.
100, 811–825 (2019). https://doi.org/10.1016/j.future.2019.05.032

14. Snapp, S.R., et al.: DIDS (distributed intrusion detection system) - motivation,
architecture, and an early prototype. In: Proceedings of the 14th National Com-
puter Security Conference, vol. 1, pp. 167–176 (1991)

https://doi.org/10.1007/3-540-45474-8_2
https://doi.org/10.1109/MSP.2014.103
https://doi.org/10.1109/MSP.2005.63
https://doi.org/10.1109/MSP.2005.63
https://doi.org/10.1007/11506881_13
https://osquery.io/
https://doi.org/10.1016/j.cose.2014.09.006
https://doi.org/10.1145/945445.945467
https://doi.org/10.1145/945445.945467
https://doi.org/10.1145/3214304
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/j.future.2019.05.032

262 S. Haas et al.

15. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signa-
tures with context. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, pp. 262–271 (2003). https://doi.org/10.1145/948109.
948145

16. Sun, X., Dai, J., Liu, P., Singhal, A., Yen, J.: Towards probabilistic identification of
zero-day attack paths. In: 2016 IEEE Conference on Communications and Network
Security (CNS), pp. 64–72 (2016). https://doi.org/10.1109/CNS.2016.7860471

17. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Taxonomy and
survey of collaborative intrusion detection. ACM Comput. Surv. (CSUR) 47(4)
(2015). https://doi.org/10.1145/2716260

18. Wang, L., Yang, J.: A research survey in stepping-stone intrusion detection.
EURASIP J. Wirele. Commun. Netw. 2018(1) (2018). https://doi.org/10.1186/
s13638-018-1303-2

19. Wilkens, F., Haas, S., Kaaser, D., Kling, P., Fischer, M.: Towards efficient recon-
struction of attacker lateral movement. In: Proceedings of the 14th International
Conference on Availability, Reliability and Security. ACM, New York (2019).
https://doi.org/10.1145/3339252.3339254

https://doi.org/10.1145/948109.948145
https://doi.org/10.1145/948109.948145
https://doi.org/10.1109/CNS.2016.7860471
https://doi.org/10.1145/2716260
https://doi.org/10.1186/s13638-018-1303-2
https://doi.org/10.1186/s13638-018-1303-2
https://doi.org/10.1145/3339252.3339254

Access Control and Authentication

Revisiting Security Vulnerabilities
in Commercial Password Managers

Michael Carr1 and Siamak F. Shahandashti2(B)

1 Piksel, York Science Park, York YO10 5ZD, UK
mikey.carr@piksel.com

2 Department of Computer Science,
University of York, York YO10 5GH, UK

siamak.shahandashti@york.ac.uk

Abstract. In this work we analyse five popular commercial password
managers for security vulnerabilities. Our analysis is twofold. First, we
compile a list of previously disclosed vulnerabilities through a compre-
hensive review of the academic and non-academic sources and test each
password manager against all the previously disclosed vulnerabilities. We
find a mixed picture of fixed and persisting vulnerabilities. Then we carry
out systematic functionality tests on the considered password managers
and find four new vulnerabilities. Notably, one of the new vulnerabilities
we identified allows a malicious app to impersonate a legitimate app to
two out of five widely-used password managers we tested and as a result
steal the user’s password for the targeted service. We implement a proof-
of-concept attack to show the feasibility of this vulnerability in a real-life
scenario. Finally, we report and reflect on our experience of responsible
disclosure of the newly discovered vulnerabilities to the corresponding
password manager vendors.

Keywords: Vulnerability testing · Password managers · Password
manager security · Authentication

1 Introduction

Passwords remain the dominant authentication mechanism in the digital realm
despite their shortcomings. Furthermore, they are expected to persist as a pri-
mary authentication mechanism for the some time [6]. Among the tools that
can greatly reduce the cognitive burden of remembering multiple passwords for
multiple services are password managers. Hence, their use is strongly advocated
by security experts, including the UK’s National Cyber Security Centre [13].

A password manager is an encrypted vault that stores any number of creden-
tials for the user and is accessed by a single master password. In this context,
a credential is a username-password pair that authenticates the user to a web-
based service. Over and above individual use, a commercial password manager

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 265–279, 2020.
https://doi.org/10.1007/978-3-030-58201-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_18

266 M. Carr and S. F. Shahandashti

usually provides extra features, e.g. credential sharing and admin interfaces, and
aims to increase enterprise security. Obviously, vulnerabilities in such an appli-
cation provide opportunities for malicious actors to extract credentials, compro-
mise commercial information, or violate employee privacy. Therefore, rigorous
security analysis of password managers is crucial.

Analyses focusing specifically on the security of password managers appear
within academic literature and other less formal publications such as blogs as
early as 2003. Each work usually reports one or more discovered vulnerabilities
and how they could be exploited in an attack against certain password man-
agers in the hope that password manager vendors eventually rectify these issues.
However, it is not clear to what extent reported issues apply to other password
managers and to what extent they are mitigated by corresponding vendors. In
fact, there does not seem to be any reference that aggregates the major security
vulnerabilities reported in the literature, and existing reports remain fragmented
in multiple sources. In this work we attempt to address this gap as well as report-
ing new vulnerabilities we discovered in our analyses.

We report the results of our work on analysing the security of the enterprise
editions of five major password managers: LastPass, Dashlane, Keeper, 1Pass-
word, and RoboForm. These password managers were chosen after a rigorous
selection process which considered popularity and features of the individual and
commercial offerings of 19 password managers. Our contributions are threefold:

1) We carried out a survey of both formally and informally published vulnerabil-
ities of password managers, identified six main vulnerabilities, tested current
versions of the five considered password managers against each vulnerability,
and report our results whether each password manager is susceptible to each
previously disclosed vulnerability.

2) Through comprehensive systematic testing of mobile, desktop, and web
applications (including browser extensions) of the considered password man-
agers, we discovered four new issues that can lead to exploitable vulnerabil-
ities, developed a proof-of-concept Android application to demonstrate how
the most serious issue might be used in a real-world phishing attack, and
report on whether each password manager is susceptible to each discovered
vulnerability.

3) Following the principle of responsible disclosure, we engaged with the corre-
sponding password manager vendors and informed them of the newly discov-
ered vulnerabilities. We report and reflect on our experience of interacting
with these vendors.

Many modern browsers provide password management services on the side.
However, we focus on stand-alone password managers that provide a commercial
offering for organisations and do not consider browser password managers.

The rest of this paper is organised as follows: in Sect. 2 we review the liter-
ature on password manager security; Sect. 3 specifies our method for selecting
and analysing the password managers considered; Sect. 4 reports on our results
on both previously disclosed and newly discovered vulnerabilities and discusses

Revisiting Security Vulnerabilities in Commercial Password Managers 267

their feasibility and impact; Sect. 5 reports on our responsible disclosure to the
corresponding vendors; and concluding remarks come in Sect. 6.

2 Related Work

In recent years password managers have been analysed a multitude of times, both
within and outside academia. Here we review the major reported vulnerabilities.

2.1 Autofill Vulnerabilities

An area that has been of substantial interest to researchers is the autofill feature
that password managers implement to increase their usability. A number of works
have exploited poor implementation of autofill to extract user’s credentials, in
some cases automatically [1,5,11]. In [11], a minimal survey implemented as an
HTML form was sent to users of multiple webmail services. The form contained
a visible question along with invisible email and password input boxes. The idea
was that the password managers would see the email as a login form with the
webmail domain as origin and autofill the credentials for the webmail service.
With auto-login enabled, merely opening the email would automatically fill in
the credentials and submit the form in some webmail services, and in others
the user was warned that a form is about to be submitted but would still be
vulnerable if they clicked through the warning.

2.2 Web-Based Vulnerabilities

A rigorous analysis of the security of five web-based password managers (includ-
ing two we consider here, LastPass and RoboForm) was performed by Li et al. [8].
The authors found a diverse range of vulnerabilities ranging from classic web
vulnerabilities such as cross-site scripting (XSS) and request forgery (CSRF)
to more specific authorisation and user interface vulnerabilities. Notably the
authors found that in some cases only authentication was carried out and not
authorisation. This allowed an attacker registered with the password manager
to successfully request a victim’s password to be shared with another party.

Bookmarklets were extensively used by password managers to provide
browser integration when extensions (a.k.a. add-ons) were not available, e.g.
in many mobile browsers. With the extended functionality of native APIs, and
in view of the inherent vulnerability of bookmarklet code execution, password
managers have moved on to providing separate applications on multiple oper-
ating systems, and either have already discontinued bookmarklet support or
discourage its use.

The vault encryption methods used in the enterprise versions of RoboForm
and LastPass have been analysed in [14] where the authors define a threat model
that takes into account two forms of attackers with different capabilities: outsider
attackers and insider attackers. The authors focus specifically on three forms of
attack: brute force attacks, local decryption attacks, and request monitoring
attacks. In LastPass, local decryption by outsider, brute force by outsider, and

268 M. Carr and S. F. Shahandashti

brute force by insider attacks were all capable of retrieving a user’s master
password. In RoboForm, vulnerabilities were found in local decoding by outsider,
brute force by outsider, and server-side request monitoring by insider attacks.

Dashlane was the subject of a security analysis in 2016 [4]. When attempting
to log on, if an invalid username is entered, a message stating ‘Incorrect login’ is
shown, whereas if an incorrect password is entered, a message stating ‘Incorrect
password’ is shown. This indicates that a username is registered with Dashlane
and would aid an attacker when attempting a brute force attack on usernames
and passwords. Although an attacker would need access to the victim’s devices
as Dashlane uses two-factor authentication (2FA) for any new devices, a device
authentication vulnerability meant that 2FA could be bypassed. This allows an
unauthorised device to access passwords.

2.3 Non-academic Sources

In 2017, a vulnerability in the implementation of 2FA (via a QR code) in Last-
Pass [12] was found. The issue was that the URL where the QR code was stored
was a predictable hash of the user’s master password. An attacker that is hoping
to bypass 2FA will already know the victim’s password and, therefore, is capable
of accessing the QR code, which is needed to generate the valid temporary codes.
The vulnerability was likened to a safe within a building that can be opened with
the same key as that of the building door [12]. However, for the request to access
the QR code to be valid, a user has to be authenticated, but it was shown that
this could be defeated using a cross site request forgery vulnerability. LastPass
have since patched this vulnerability.

In 2016 a vulnerability was discovered in the LastPass extension URL parsing
code used to decide on whether to autofill a website [7]. In short, it meant
that a specially crafted URL was able to extract the credentials for arbitrary
websites. Browsers treat a URL like example.com/@twitter.com/@xyz.php as
from example.com while the extension treated it as from twitter.com since only
the last occurrence of the @ was considered. Hence, it was possible to confuse
the extension and allow an attacker to identify the credentials for a targeted
website. LastPass have since patched this vulnerability.

There does not seem to be a survey of password manager security analyses
bringing together an aggregated list of reported vulnerabilities. In this work, we
address this issue. Note that there is a related line of research on the security of
encrypted database formats used in password managers (see e.g. [3]) which con-
siders the threat model in which an adversary gets direct access to the password
manager vault. We do not consider this threat model here.

3 Method

We specify the methods we used in each step of this work in the following.

3.1 Identification of Password Managers

To ensure a wide range of password managers were considered, a comprehen-
sive survey of individual and commercial password managers was undertaken.

Revisiting Security Vulnerabilities in Commercial Password Managers 269

This took into account the number of users documented by the password man-
ager vendors, install counts in application stores and recommendations by rep-
utable websites such as PCMag.com. Further, less publicised products were iden-
tified by inputting terms such as ‘password manager’ into web search engines.

Once the search reached saturation, identified by a lack of new products
appearing, each of the password managers listed was investigated and their fea-
tures compared. To make our final selection, we considered two characteristics:
popularity of the tool as an indicator of the number of users affected by a poten-
tial vulnerability, and richness of features, as an indicator of both desirability
for companies as customers and at the same time diversity of attack vectors.

3.2 Identification of Previously Disclosed Vulnerabilities

A comprehensive review of the literature on password managers was carried
out. Besides, we examined general and tech news sources for any security issues
reported for password managers. We limit our presentation to vulnerabilities
that lend themselves to feasible and impactful attacks.

To keep our survey focused on password manager specific vulnerabilities, we
do not consider general web vulnerabilities such as XSS or CSRF for which there
are standard recommended solutions. Furthermore, given the gradual phaseout
and the inherent vulnerability of bookmarklets, we leave bookmarklet-specific
vulnerabilities out of the presented results here. Ultimately, the results of our
survey needs to be considered alongside the vulnerabilities listed by Li et al. [8],
and those considered by the literature on database format security (e.g. [3]) for
a more comprehensive view of password manager security.

3.3 Testing for Identified and New Vulnerabilities

After selecting the products for testing, a two-week enterprise trial was started
with each of the products consecutively. To begin, the systems were tested under
normal operation to identify any abnormalities. This involved completing a large
number of tasks using features that are available (to users as well as admins) in
the enterprise editions of the software. A comprehensive list of all the operations
that were performed is not presented here, but included the following:

– logging in as a user and an administrator;
– adding a password through the vault and automatic capture features;
– sharing passwords between users;
– updating shared passwords and individual passwords on multiple devices;
– linking a personal account to the corporate account;
– analysing activity reports and their accuracy; and
– adding and removing users from groups and roles.

Following the initial testing of standard features, all of the password managers
were tested against the identified previously disclosed vulnerabilities. Through
checking previously disclosed vulnerabilities across all of the password managers

https://www.pcmag.com

270 M. Carr and S. F. Shahandashti

in the sample, it is possible to establish whether patches have been correctly
applied and whether the issues are common across password managers. The
abnormalities discovered through the initial testing were then capitalised on
through the development of proof of concept exploits.

Ethical Considerations: Throughout this work, ethical considerations have
been paramount. No live user account was used or attacked. All testing was car-
ried out using accounts that belong to the investigators. All vulnerabilities have
been responsibly disclosed to the vendors at least six months before publication.

4 Results

In this section we first give the detailed specifications of our test settings and then
provide our results on testing the selected password managers against previously
disclosed vulnerabilities and our discovery of new vulnerabilities.

Our search for password managers identified 19 applications supporting most
of the features that can be considered basic features for password managers,
e.g. password capture and encrypted storage, password generation, mobile app,
and autofill. Overall, we identified 27 features, including a number of desirable
additional security features, e.g. two-factor and biometric authentication, and
some that are especially desirable in a professional environment, e.g. password
sharing, security breach alerts, admin console, and API provision. The full list
of password managers and features we considered can be found in AppendixA.

From the 19 password managers identified, those with the greatest popularity
and richness of features were selected for testing. These password managers are
LastPass, Dashlane, Keeper, 1Password, and RoboForm.

The desktop components of the password managers were tested using a
laptop running Windows 10 Enterprise version 10.0.14393 build 14393 and
Chrome version 59.0.3071.115 where extensions were used. Any mobile com-
ponents were tested using an Android 7.0 phone. Note that Windows, Android,
and Chrome are respectively the current most widely-used OS, mobile OS, and
browser worldwide. Tested password manager versions are shown in Table 1.

Table 1. Version numbers of the password managers tested.

OS Password manager

Dashlane LastPass Keeper 1Password RoboForm

Windows 4.8.2 4.1.60 10.8.1 6.6.439 8.3.7.7

Android 4.17.0.1995 4.2.762 10.7.0 6.5.3 8.0.9

4.1 Previously Disclosed Vulnerabilities

Our survey resulted in the identification of six main issues that we list in this
section. Our initial tests indicated that authorisation vulnerabilities discussed by

Revisiting Security Vulnerabilities in Commercial Password Managers 271

Li et al. [8] appear to have been patched in all password managers we considered.
Hence, we do not list those vulnerabilities here in the interest of conciseness.

Two-Factor Authentication Seed Vulnerability: Disclosed for LastPass in
which the seed for enabling 2FA was stored at a predictable URL [12]. This was
tested on the password managers by initiating the 2FA set-up process and iden-
tifying whether the seed URL appear predictable based on any user information.

Element Inspection Vulnerability: Leakage of shared passwords through
DOM element inspector tools such as Chrome’s Inspect Element, as shown in
the Dashlane security analysis [4]. This can be tested by sharing limited access
to a password with another user, which allows them to use the password but
not see it. Following this, logging in as the other user and then using an element
inspector on the shared password exposes the password.

Registration Discovery Vulnerability: An indication of whether a username
is registered with the service through UI prompts, as shown in the Dashlane
security analysis [4]. This is tested through attempting to log in with an incorrect
username and then incorrect password.

URL Mismatch Vulnerability: Log in fields being filled with a username and
password, despite the source and destination URLs not matching [1].

HTTP(S) Autofill Vulnerability: Autofill policies do not distinguish between
HTTP and HTTPS when attempting to fill a credential that has been stored
with HTTPS on an HTTP version of the site [1]. This would enable a man-in-
the-middle attacker to impersonate an HTTP version of a popular website and
steal user credentials originally stored for the HTTPS version.

Ignoring Subdomains Vulnerability: Subdomains are ignored when filling
passwords [1]. This is tested with the university websites: york.ac.uk and
cs.york.ac.uk. An attacker in a subdomain can hence steal user credentials
for the parent domain or other subdomains. This is an issue in many websites
such as forums and blogs where different subdomains host different services.

Summary: Table 2 shows the results of testing the five password managers
against the vulnerabilities listed above. These vulnerabilities were tested using
the same processes and resources for all the password managers. As can be seen
from the table, at least one of the password managers is vulnerable to every
single issue apart from 2FA Seed vulnerability. The tested password managers
are most vulnerable to URL Mismatch, HTTP(S) Autofill, and Ignoring Subdo-
mains vulnerabilities, with all but one of the managers being susceptible to URL
Mismatch and all to HTTP(S) Autofill and Ignoring Subdomains vulnerabilities.
All of these vulnerabilities concern the web interfaces, and more specifically the
autofill feature, which has been an area of focus for previous works. Hence, it
was hoped that vendors had responded by making their software resilient to such
attacks. However, this appears not to be always the case.

272 M. Carr and S. F. Shahandashti

Table 2. Previously disclosed vulnerabilities analysed against the password managers
tested. A � indicates the application is vulnerable, a � indicates it is not.

Vulnerability Password manager

Dashlane LastPass Keeper 1Password RoboForm

2FA Seed � � � � �
Element Inspection � � � � �
Registration Discovery � � � � �
URL Mismatch � � � � �
HTTP(S) Autofill � � � � �
Ignoring Subdomains � � � � �

4.2 Discovered Vulnerabilities

Our extensive feature testing flagged some issues which we investigated further.
Here we present a developed proof-of-concept attack and three other vulnerabili-
ties of the tested password managers. Unlike previously disclosed vulnerabilities,
the ones we discuss here do not only concern web interfaces and some are related
to mobile or desktop applications.

Phishing Attack: Both the 1Password and LastPass Android applications were
found vulnerable to a phishing attack. The issue discovered was that both appli-
cations use weak matching criteria for identifying which stored credentials to
suggest for autofill. This allowed for a rogue application to impersonate a legit-
imate one simply by crafting the package name to be identical. A developed
proof-of-concept attack is described in detail below for LastPass but essentially
the same attack applies to 1Password.

To identify the process used when matching an application and credentials,
a blank login screen was created. After selecting the Add Login option in the
LastPass pop-up, the URL shown in the LastPass application is the package
name of the application developed. This indicated that the matching criteria
employed by LastPass is based on the package name of the application only.

After discovering how LastPass matches applications and credentials, a mali-
cious app was developed with the package name of com.google. Again, this app
had a login screen; this can be seen in Fig. 1. This login screen was designed to
mimic that of the official Google login screen and thereby be hard to distinguish.
The weak matching employed by LastPass means that if the malicious app is
launched, LastPass will offer to autofill the login page with Google credentials
stored in a user’s vault. This can be seen in Fig. 2. In our proof-of-concept attack,
after a victim has selected their credentials from the LastPass pop-up and tapped
the Next button, the credentials are sent across to a server and stored in a file.
Hence, as long as the victim is tricked into installing and launching a malicious
application, their credential can be stolen easily leveraging the weak matching
used by 1Password and LastPass.

Revisiting Security Vulnerabilities in Commercial Password Managers 273

Fig. 1. Login screen of the malicious
app mimics that of Google

Fig. 2. LastPass showing Google cre-
dentials for the malicious app

The attack developed here succeeds if the following conditions are met.
Firstly, the malicious app needs to be installed on the victim’s device. Attackers
might achieve this by either getting around app store security mechanisms (see
e.g. [10] in the case of Google Play Store) or otherwise fooling the victim into
sideloading the app onto their device. This could be done in combination with
another phishing attack, for example, sending an email stating the targeted ser-
vice’s application requires an upgrade. Secondly, the victim needs to be a user of
the vulnerable password managers and using the LastPass or 1Password autofill
prompt, although other users may be fooled and enter their password manually.
Finally, the user needs to have credentials for the target application, in this
case, Google, in their vault. Having said these, if an organisation is identified as
a commercial user of a vulnerable password manager along with other services
(e.g. Google email service), the latter two conditions are met and a large-scale
phishing campaign may be launched against the organisation employees which
one expects to have some degree of success in stealing employee credentials and
thereby potentially compromising organisation security. The suggested mitiga-
tion for this vulnerability is for password managers to apply more strict matching
criteria that is not merely based on an app’s purported package name.

Clipboard Vulnerability: A crucial usability feature of password managers
is the ability to autofill credentials on a website. While autofill performs as
expected on an overwhelming majority of websites across all the password man-
agers tested, occasionally it would not. When the autofill feature does not work,
password managers often provide the option to copy credentials to the clipboard.

It was discovered during the initial testing phase that the tested password
managers do not provide enough protection surrounding copying sensitive items
to the clipboard, except 1Password. Standard computer security advice recom-

274 M. Carr and S. F. Shahandashti

mends that a user locks their machine as soon as they leave it unattended and
if a user was to follow this advice, the risk associated with leaving passwords in
the clipboard should be reduced in theory. However, Windows 10 allows access
to the clipboard of a locked machine [9]. This allows pasting in the value of the
clipboard in cleartext by an adversary that may be a person with physical access
to the machine or an application running on the machine. Although the attack
will not be aware as to what account this password is associated with, they can
try the credentials with a precompiled list of websites for which autofill is known
not to work. The suggested mitigation for this issue would be for the password
managers to provide an option to clear the clipboard after a set amount of time.

PIN Brute Force Vulnerability: To ease authentication to the Android appli-
cations, some password managers allow for a user to set a four digit PIN to access
the application. This removes the need for a user to enter a long, complex master
password every time they wish to enter their vault.

It was discovered during testing, that the RoboForm and Dashlane Android
applications do not correctly implement a persistent counter on the number of
times an incorrect PIN can be entered when trying to access the application. It
is possible to attempt two PINs consecutively, remove the application from the
recent application drawer, then try a further two PINs. Both PINs were four
digits long and therefore, have 10,000 combinations. Through extrapolation of
manual testing, it is estimated that even a manual random guessing attack is
on average expected to find a randomly selected PIN in 2.5 h. If the attacker
was to factor in common PINs the results in [2] suggest that the attack time
would reduce to approximately 1.5 h, and if the birth date of the victim is known,
around 8% of the PINs are expected to be found within the first six guesses. We
did not fully automate this attack, but we expect an automated attack to take
considerably less time to brute force the PIN.

This attack has the potential to be catastrophic for the victim. A malicious
attacker would have full access to the application, providing there is no prompt
for the user to re-authenticate using something other than the PIN. Access to the
application in both Dashlane and RoboForm enables the user to view, modify,
or delete records within the password manager’s vault.

The suggested mitigation for this issue is to implement a persistent counter
that is not reset when the application is removed from recent applications.

Possible Brute Force via Extension: All password managers tested have
web-based extensions that can be used to access the respective vaults. When
logging into the application after it has initially been locked, the user only needs
to enter their master password.

Our tests suggested that Keeper, Dashlane and 1Password were vulnerable
to a UI driven brute force attack when entering the master password. This was
because there appear to be no measures in place to halt multiple attempts when
logging into the extension. This suggested that it would be possible to mount a
dictionary attack against a user’s account.

Technically, the attack should be identified and halted by the password man-
ager vendors. When testing, ten incorrect passwords were attempted against

Revisiting Security Vulnerabilities in Commercial Password Managers 275

accounts with each of the password managers with no indication that a count on
the number of incorrect attempts was being kept in any of the five. RoboForm
implements a five second time delay after three incorrect passwords and in Last-
Pass, there are multiple clicks required between entering successive passwords.
These measures slow down a possible attack, but do not prevent it.

Due to ethical reasons, the number of passwords attempted was considerably
less than would be required in a dictionary or brute force attack, and it is
possible that the vendors implement measures to identify larger number of login
attempts. Hence, we regard this as a possible vulnerability requiring further
investigation. The standard mitigation would be to lock the a user’s account
following a number of incorrect login attempts.

Summary: Table 3 shows a summary of the susceptibility of five tested password
managers to the discovered vulnerabilities. The reported issues are categorised
as an (implemented) attack, two vulnerabilities, and a potential vulnerability.

Table 3. Summary of new vulnerabilities discovered. A � indicates the application is
vulnerable, a �� indicates it is partially vulnerable, a � indicates it is not vulnerable.

Password manager

Dashlane LastPass Keeper 1Password RoboForm

Attack:

Phishing � � � � �
Vulnerabilities:

Clipboard � � � � �
PIN Brute Force � � � � �
Possible vulnerability:

Extension Brute Force � �� � � ��

Discussion on Feasibility and Impact: To further contextualise the discov-
ered attacks and vulnerabilities here, we discuss their feasibility and potential
impact. In our analysis, we adopt an approach similar to that of the Common
Vulnerability Scoring System (CVSS) industry standard (see www.first.org/cvss)
to make it easier to translate our discussions here to CVSS scores if necessary.

The phishing attack discovered and developed here is a highly feasible attack.
It does not require any physical or privileged access to the device, but it does
require user interaction. As long as a victim is tricked into installing a malicious
app it will be able to present itself as a legitimate and rather indistinguishable
option on the autofill prompt and have a high chance of success. The impact of
the attack is limited to the loss of a single credential at a time, although this may
be a highly valuable credential (such as an email password) that could possibly
enable access to further accounts. The loss of a single credential enables the
attacker to get access to the compromised account, change content, and make

www.first.org/cvss

276 M. Carr and S. F. Shahandashti

content unavailable by changing the credential, so the account is potentially
affected on all three aspects of confidentiality, integrity, and availability.

The clipboard vulnerability is limited to an attacker with physical access to
the device, however it does not require any privilege. This is an opportunistic
attack that requires a specific uncommon user action, i.e. copying credentials to
the clipboard. The impact is loss of the credential, hence affecting confidentiality,
integrity, and availability for the compromised account.

The PIN brute force vulnerability may also enable an opportunistic attack.
It requires physical access to the victim’s device. Although it does not require
any further privilege of user interaction. The impact of the attack is much more
severe than the previous two attacks since a successful attacker gets access to the
entire password manager vault and any services whose passwords are managed by
the password manager. This means that a successful attacker may freely access
and modify the contents and credentials of all the managed accounts and hence
it amounts to severe possible loss of confidentiality, integrity, and availability.

Finally, the possible brute force via extension vulnerability would only require
network access to the victim’s device and no specific privilege or user interac-
tion. However, since a password is being brute forced, the probability of suc-
cess is typically less than the case where a PIN is targeted. Nevertheless, the
low complexity and remote executability of this attack make it a highly fea-
sible attack which if not mitigated can be exploited rather comfortably. The
attack also has the potential of a severe impact in the form of loss of the master
password that enables the attacker to access all the accounts managed by the
password manager. Hence, confidentiality, integrity, and availability may be all
severely impacted. Perhaps the only limitation of this attack is that it can be, at
least in theory, easily identified through detecting higher than usual frequency
of attempts to gain access to the targeted password manager account(s).

5 Responsible Disclosure

In this section we go through our disclosure of the vulnerabilities to the vendors
and their responses. We started discovering the vulnerabilities discussed here
in 2017. After confirming the persistence of issues and developing and success-
fully testing our proof-of-concept attack, we started notifying the five vendors in
2018. For more severe vulnerabilities, we emailed the technical team and in some
cases were asked to follow up the conversations through dedicated vulnerability
reporting programs. For less severe issues, vendors were contacted through sup-
port tickets on their website. We continued our disclosure until late 2018 when
we notified the vendors of our intention to publish our results in the form of an
academic paper after a further public non-disclosure period of six months.

In general we found all the five vendors quite responsive. However, only a
few disclosures resulted in a fix to be rolled out. This was due to many of the
disclosed issues being classified as low priority. In the following we discuss some
of the more notable interactions we had with the vendors.

The phishing vulnerability was disclosed to LastPass via their vulnerability
reporting system and to 1Password via email. At LastPass, it was marked as

Revisiting Security Vulnerabilities in Commercial Password Managers 277

‘External Behaviour > Browser Feature > Autocomplete Enabled’ which has
a priority of 5 (lowest priority) according the Bugcrowd Vulnerability Rating
Taxonomy (https://bugcrowd.com/vulnerability-rating-taxonomy) and there-
fore was assigned a response of ‘Won’t Fix’. LastPass had no further comment.

The clipboard vulnerability was communicated to all vendors affected. Dash-
lane stated that unlike mobile OSs such as Android, Windows does not provide
any expiration mechanism for partial removal of data on clipboard and hence
the only way to remove data from clipboard would be to delete all data on it.
This would make such a solution quite invasive. Keeper responded that clipboard
expiration was supported on iOS devices only. RoboForm told us that “if you
are using copy/paste actions for inserting some passwords from the RoboForm
Editor, you will need to clear the clipboard manually.”

The PIN brute force vulnerability was disclosed to the affected vendors
including 1Password via their reporting system. 1Password fixed the issue within
11 days of reporting and emphasised that this vulnerability requires access to an
unlocked Android device to be exploited. Dashlane told us they will add a per-
sistent counter and later added that “this issue requires access to an unlocked
android device to be exploited”, implying a low priority.

The extension brute force vulnerability was disclosed to all vendors. 1Pass-
word responded that it would be infeasible to guess a user’s master credentials.

6 Conclusions

This work has analysed and reported on vulnerabilities in commercial password
managers through two distinct avenues: testing previously disclosed vulnera-
bilities and developing exploits for newly discovered vulnerabilities. Many of
the previously reported vulnerabilities have been found to persist in popular
password managers. Furthermore, four new vulnerabilities were found through
extensive testing and responsibly disclosed to the corresponding vendors. Some
were fixed immediately while others were deemed low priority.

In our correspondence with password manager vendors we saw both positive
and negative sides to how they deal with vulnerability disclosure. On the positive
side, vendors appear to be quite responsive and issues deemed high priority or
easily rectifiable are fixed promptly. On the negative side, issues assessed as low
priority appear to be considered non-issues and rather too easily dismissed.

We acknowledge that some issues, e.g. the clipboard vulnerability, do not
have an easy fix and vendors faced with a choice between leaving a low priority
issue and applying a fix that has side effects may choose the former.

A possible future direction would be developing rigorous security models and
canonical security tests for password managers. The newly discovered vulnera-
bilities is this work were all user interface related vulnerabilities, as in they were
discovered by testing the applications under typical operation scenarios. Such
functionality tests along with further analyses focusing on architecture and pro-
cesses may serve as a basis for standard tests.

https://bugcrowd.com/vulnerability-rating-taxonomy

278 M. Carr and S. F. Shahandashti

A Full List of Password Managers and Features

The 19 password managers we considered are (alphabetically): 1Password, Dash-
lane, EnPass, KeePass, Keeper, LastPass, LogMeOnce, mSecure, Password Boss,
Password Manager Pro, Password Safe, PasswordState, RoboForm, SplashID,
Sticky Password, TeamPassword Manager, TeamsID, TrueKey, and Zoho Vault.

The 27 features considered are as follows (in no specific order): Mobile Appli-
cations, Extension Support, Bookmarklet, AutoFill, Form Fill, Password Cap-
ture (automatically saving entered passwords), Password Generation (generat-
ing new strong passwords), Multi Device Sync, Biometric Authentication, AES-
256 Encryption, Vault Backup/Export Functionality, Password Sharing (with
other users), Two Factor Authentication, Store data types other than pass-
words, Automatic Password Changes (e.g. on a regular basis), Portable App,
Security Breach Alerts, Password Change Listener, Commercial Offering (for
organisations), Admin Console (for organisation admins), Active Directory Inte-
gration, Reports and Auditing, Personal and Business Password segmentation
(on the same app), Group Password Sharing, Manage User Account and Roles
(for organisation admins), Custom Password Policies, and API Provision.

References

1. Blanchou, M., Youn, P.: Password managers: exposing passwords everywhere.
White paper, iSEC Partners (2013)

2. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wallets?
The security of customer-chosen banking PINs. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 25–40. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32946-3 3

3. Gasti, P., Rasmussen, K.B.: On the security of password manager database formats.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
770–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-
1 44

4. Gentili, P., Shader, S., Yip, R., Zeng, B.: Security analysis of Dashlane (2016).
https://courses.csail.mit.edu/6.857/2016/files/25.pdf

5. Gonzalez, R., Chen, E.Y., Jackson, C.: Automated password extraction attack on
modern password managers. ArXiv e-print arXiv:1309.1416 (2013)

6. Herley, C., Van Oorschot, P.: A research agenda acknowledging the persistence of
passwords. IEEE Secur. Priv. 10(1), 28–36 (2011)

7. Karlsson, M.: How I made LastPass give me all your passwords, July 2016. https://
labs.detectify.com/2016/07/27

8. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager: secu-
rity analysis of web-based password managers. In: 23rd USENIX Security Sympo-
sium, San Diego, CA, pp. 465–479 (2014)

9. Moe, O.: Accessing clipboard from the lock screen in Windows 10, January 2017.
https://msitpros.com/?p=3746

10. Oberheide, J., Miller, C.: Dissecting the Android bouncer. In: SummerCon2012,
New York 95, 110 (2012)

11. Silver, D., Jana, S., Boneh, D., Chen, E.Y., Jackson, C.: Password managers:
attacks and defenses. In: Usenix Security, pp. 449–464 (2014)

https://doi.org/10.1007/978-3-642-32946-3_3
https://doi.org/10.1007/978-3-642-32946-3_3
https://doi.org/10.1007/978-3-642-33167-1_44
https://doi.org/10.1007/978-3-642-33167-1_44
https://courses.csail.mit.edu/6.857/2016/files/25.pdf
http://arxiv.org/abs/1309.1416
https://labs.detectify.com/2016/07/27
https://labs.detectify.com/2016/07/27
https://msitpros.com/?p=3746

Revisiting Security Vulnerabilities in Commercial Password Managers 279

12. Vigo, M.: Design flaws in Lastpass 2FA implementation (2017). www.martinvigo.
com/design-flaws-lastpass-2fa-implementation

13. Emma, W.: What does the NCSC think of password managers? (2017). www.ncsc.
gov.uk/blog-post/what-does-ncsc-think-password-managers

14. Zhao, R., Yue, C., Sun, K.: A security analysis of two commercial browser and
cloud based password managers. In: SocialCom, vol. 2013, pp. 448–453 (2013)

www.martinvigo.com/design-flaws-lastpass-2fa-implementation
www.martinvigo.com/design-flaws-lastpass-2fa-implementation
www.ncsc.gov.uk/blog-post/what-does-ncsc-think-password-managers
www.ncsc.gov.uk/blog-post/what-does-ncsc-think-password-managers

Evaluation of Risk-Based
Re-Authentication Methods

Stephan Wiefling1,3(B) , Tanvi Patil2 , Markus Dürmuth3,
and Luigi Lo Iacono1

1 H-BRS University of Applied Sciences, Sankt Augustin, Germany
{stephan.wiefling,luigi.lo iacono}@h-brs.de

2 University of North Carolina at Charlotte, Charlotte, NC, USA
tpatil@uncc.edu

3 Ruhr University Bochum, Bochum, Germany
{stephan.wiefling,markus.duermuth}@rub.de

Abstract. Risk-based Authentication (RBA) is an adaptive security
measure that improves the security of password-based authentication
by protecting against credential stuffing, password guessing, or phish-
ing attacks. RBA monitors extra features during login and requests for
an additional authentication step if the observed feature values devi-
ate from the usual ones in the login history. In state-of-the-art RBA
re-authentication deployments, users receive an email with a numerical
code in its body, which must be entered on the online service. Although
this procedure has a major impact on RBA’s time exposure and usabil-
ity, these aspects were not studied so far. We introduce two RBA re-
authentication variants supplementing the de facto standard with a link-
based and another code-based approach. Then, we present the results of
a between-group study (N = 592) to evaluate these three approaches.
Our observations show with significant results that there is potential
to speed up the RBA re-authentication process without reducing nei-
ther its security properties nor its security perception. The link-based
re-authentication via “magic links”, however, makes users significantly
more anxious than the code-based approaches when perceived for the first
time. Our evaluations underline the fact that RBA re-authentication is
not a uniform procedure. We summarize our findings and provide rec-
ommendations.

Keywords: Risk-based Authentication (RBA) · Re-authentication ·
Usable security

1 Introduction

Passwords were and continue to be the predominant authentication mecha-
nism of online services [23]. However, threats to password-based authentication
are increasing, e.g, by large-scale password database leaks and credential stuff-
ing [26]. Therefore, website operators have to provide additional or alternative

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 280–294, 2020.
https://doi.org/10.1007/978-3-030-58201-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_19&domain=pdf
http://orcid.org/0000-0001-7917-6065
http://orcid.org/0000-0003-3640-1124
http://orcid.org/0000-0002-7863-0622
https://doi.org/10.1007/978-3-030-58201-2_19

Evaluation of Risk-Based Re-Authentication Methods 281

authentication mechanisms to adequately protect their users. Two-factor authen-
tication (2FA) is one such measure which is widely used but has proven to be
unpopular among users [19]. Biometric authentication is considered impracti-
cal for large-scale online services since it requires special hardware and active
participation from the user [9]. For these reasons, several large online services
deployed risk-based authentication (RBA) to protect their users [27]. RBA is
an adaptive authentication measure that provides high security with minimal
impact on user interaction, and thus has the potential to be more accepted by
users than 2FA. Moreover, RBA is recommended in the NIST digital identity
guidelines to mitigate account takeover [12].

During password entry, RBA monitors additional features, e.g., IP address
or user agent, and requests for re-authentication when a particular risk is
detected [8]. In state-of-the-art deployments, the re-authentication is mostly
based on email address verification [27]. Here, the user receives an email with a
multi-digit code in the email body that has to be entered on the online service.

Despite its clear presence in RBA deployments, there are, to the best of
our knowledge, no studies that evaluate this state-of-the-art re-authentication
method. Investigating different devices is important for RBA because push noti-
fications from mobile email apps can make it possible to check emails on mobile
devices faster than on desktop devices. Furthermore, using the website on a
desktop PC and checking email on a mobile device can slow down the re-
authentication process since the code has to be typed in manually. We also dis-
covered that online services using RBA offer different email verification methods
for account registration than for RBA re-authentication. When registering an
account, the user received either an email with a digit code in the email subject
and body, or a verification link. Thus, we wondered why these verification meth-
ods are not being used in the RBA re-authentication context so far and whether
they have the potential to improve the RBA experience while maintaining the
same level of security. To close this gap, we formulated the following research
questions.

Research Questions. With these questions, we aim to give answers as to
whether the widespread email-based re-authentication method can be improved
by other approaches and how all of these methods are perceived by users.

RQ1: a) How does link-based re-authentication affect the authentication time
compared to the state-of-the-art with code-based re-authentication?

b) How does showing the authentication code inside the email subject
line and body affect the authentication time compared to showing the
authentication code only inside the email body?

RQ2: a) Does the re-authentication method (e.g., code or link-based) affect
the user behavior?

b) Do the devices used for re-authentication (e.g., desktop or mobile)
affect the user behavior?

RQ3: How do users perceive different re-authentication methods?

282 S. Wiefling et al.

Contributions. We designed and conducted a between-group study with 592
participants recruited from the online service Mechanical Turk (MTurk) [17]
and evaluated the usability and perception of email-based re-authentication
methods. Since there is still only one method used in practical deployments,
we introduce two alternative RBA re-authentication methods, both of which
have not yet been seen in the RBA context: a code-based and a link-based re-
authentication scheme. We compared these approaches with the state-of-the-art
RBA re-authentication method based on prior findings [27].

Our results show that code-based methods have the potential to significantly
speed up the re-authentication process while keeping the security properties at
a similar level. We also identify significant differences in the perception of the
re-authentication methods and provide recommendations.

Our work helps developers and website owners decide whether they should
consider alternative re-authentication methods for RBA in their use case scenar-
ios. Researchers obtain first insights on the perception of different email-based
RBA re-authentication methods.

2 Study

To compare different RBA re-authentication methods, we designed a between-
group usability study based on a specifically developed website. On this web-
site, the participants registered a user account, providing a username and pass-
word as login credentials. After registering, participants were prompted to log
in. When submitting the login credentials, the participants were asked for re-
authentication through an email associated with the user account. Each partic-
ipant perceived one of three different re-authentication methods, depending on
the three study conditions below:

(i) State of the Art (SOTA): The email had a six-digit authentication code
in the body, which needed to be entered on the online service.

(ii) Subject (SUBJ): The email contained the authentication code in both sub-
ject line and body, which had to be entered on the online service.

(iii) Link (LINK): The email body contained an URL link, which had to be
opened to confirm the authentication.

We chose these re-authentication methods based on state-of-the-art RBA
deployments [27] and email based verification methods known from popular
online services. For the evaluation, we also subdivided the devices into three
combinations, which we found realistic for practical RBA use case scenarios:

(i) Desktop/Desktop: The participants used a desktop PC on the website
and also checked the email with this device.

(ii) Desktop/Mobile: The participants used a desktop PC on the website and
checked the email with a mobile device.

(iii) Mobile/Mobile: The participants used a mobile device on the website and
also checked the email with this device.

Evaluation of Risk-Based Re-Authentication Methods 283

We did not test Mobile/Desktop since we considered it to be an unrealistic
use case scenario for RBA. We assume that most mobile devices have a pre-
installed email app, making it unnecessary for users to check their email on a
desktop PC while using a mobile device for the website.

2.1 Design Decisions

The dialogs and email contents for re-authentication differed in each condition.
We outline the differences and design criteria in the following (see Fig. 1).

State of the Art (SOTA). In previous work, we measured how RBA is used on
popular online services [27]. We analyzed the Alexa Top 50 for RBA properties
and extracted the RBA dialogs, if RBA was in use. Based on these observations
on state-of-the-art RBA deployments, we designed a generic RBA dialog and
confirmation email that we used in the study. We put text characteristics of
dialogs and emails into categories and took the characteristics with the highest
occurrences into the final dialog and email (see Fig. 1a).

Subject (SUBJ). Authentication codes in the email subject line have been
unknown in terms of RBA so far. However, we see potential in improving authen-
tication speed and usability since the code is visible before opening the email,
e.g., via push notifications on mobile devices. Codes in both subject line and
email body are often used in email verification when registering a new user on a
website. Both re-authentication dialog and email body are similar to those pre-
sented in SOTA. For the subject line, we collected account registration emails
of popular online services that were using authentication codes in both subject
line and body. Based on emails of LinkedIn, Facebook, and Slack, we created a
generic subject line.

Link (LINK). The link re-authentication method has not been seen in the
context of RBA yet. We based this method on similar methods using a link for
signing in (“magic links”), used by the popular online services Tumblr, Medium,

(a) SOTA, SUBJ (b) LINK

Fig. 1. Presented dialog types for the different study conditions

284 S. Wiefling et al.

(a) Confirmation dialog (b) After confirming the desktop device on a
mobile device in the Desktop/Mobile scenario

Fig. 2. Re-authentication dialogs for the access confirmation in the LINK condition

and Slack [3]. We adjusted the workflow for the RBA use case as follows: After
entering the correct login credentials, the user received an email containing a
link. The link contained a random verification string only known to the online
service. We slightly changed the confirmation dialog to match the link confirma-
tion use case (see Fig. 1b). When opening this link, the user was asked to confirm
the device for signing in (see Fig. 2a). We based the dialog on Google’s Android
device confirmation dialog [11]. After the user confirmed the device, this con-
firmed device was signed in. If the device that confirmed the login differed from
the confirmed device, e.g., mobile device in the Desktop/Mobile use case, the user
was advised to check the signed in device to proceed (see Fig. 2b). We did the
additional confirmation to prevent that link prefetching via GET requests [18]
would cause the confirmation to be successful, i.e., we required an additional
POST request to confirm the device. We tested this re-authentication method
since the lack of entering a code has the potential to improve authentication
speed and usability.

2.2 Attacker Models

In order to analyze our re-authentication methods in terms of usability metrics,
their security properties have to be comparable with state-of-the-art deploy-
ments. Thus, we compare their online guessing security properties with three
attacker models derived from known attacks on password-based authentica-
tion [8]. We assume that the victim uses different passwords for the targeted
online service and the email account. We also assume that the email provider
blocks access to accounts after a number of wrong password entries (rate limit-
ing). The attacker does not have physical access or eye contact with the victim’s
devices.

The password guesser is a weak attacker that tries to guess the password
of the victim, either by using brute-force or a list of popular passwords. When
guessing the victim’s password correctly, attackers still need to guess the email
password, making the attack rather impractical. Thus, this attacker will not be
able to bypass all targeted re-authentication methods with reasonable effort.

The credential stuffing attacker is a rather strong attacker that has access
to login credentials of the victim. The credentials are sourced from a password

Evaluation of Risk-Based Re-Authentication Methods 285

database leak of a different online service but are identical to the targeted one.
Assuming that the password of the email account is not leaked, this attacker
will not be able to bypass all targeted re-authentication methods.

The phishing attacker is a very strong attacker that tricks the victim to
reveal the correct login credentials. The attacker sets up a website on a phishing
domain imitating the appearance of the targeted online service. The degree of
imitation varies from simply copying the HTML code of the targeted online
service to forwarding the complete traffic between victim and online service
(man in the middle, MITM). On success, attackers obtain the victim’s login
credentials. For MITM, attackers can even forward the entered authentication
code to the online service, bypassing the re-authentication. However, attackers
cannot bypass email verification links, since the phishing domain is not included
in the email verification link. Thus, the link verification is conducted at the
real online service. Assuming that the email password is not leaked, a phishing
attacker could bypass SOTA and SUBJ but not LINK.

2.3 Study Design

We decided to conduct a two-part between-group study to compare different
re-authentication methods of RBA in terms of authentication time and user
perception, and to measure the behavior when perceiving this re-authentication
on the website for the first time. The study consisted of two parts:

Login. First, the participants registered on the study website with username
and password. The website was reachable via HTTPS via an internet domain not
linked to our university to mitigate social desirability bias [22]. After registering,
the participants tried logging into the website. After submitting the correct login
credentials, the website asked for re-authentication, which differed between the
three conditions SOTA, SUBJ, and LINK.

Exit Survey. After completing the re-authentication, the participants answered
a short survey. The questions were presented in random order to randomly dis-
tribute ordering effects [15]. The order of response options were also randomized
in each question to randomly distribute response order bias [4,14].

In the survey, the participants stated in a free text answer the device on
which they opened the identity verification email on, to determine if the device
used for verification is a desktop or a mobile device. They also listed in free text
answers three feelings they had when they were asked to verify their identity.
This question was inspired by Golla et al. [10]. We used it to discover the user
perceptions of the re-authentication. The participants also answered, by ticking
checkboxes, which online services they used in the last month. The list of online
services included the response option MTurk as an attention check to verify the
quality of our results [1]. The survey concluded with demographic questions.

286 S. Wiefling et al.

2.4 Data Collection

To answer our research questions, we collected the following data: (i) Tim-
ing and event information: We collected timestamps of when certain events
occurred on the website. We used the timestamps to calculate durations for parts
of the re-authentication process. In addition, we used the recorded events to ana-
lyze the participants’ behavior during re-authentication. (ii) Device informa-
tion: We collected the user agent string of the device that the participant used
to log in on the website. On the LINK condition, we also collected the user agent
string of the device that opened the verification link. We used this information
to determine the devices as mobile or desktop devices. We also used this infor-
mation to verify in the LINK condition if the survey answer regarding the used
device was correct. This enabled us to increase the quality of the collected data.
(iii) Survey answers: We stored the survey responses digitally and analyzed
them after the study.

2.5 Data Processing

After collecting the data, we processed the data as follows:

Devices. We subdivided our data set into the three different device combi-
nations Desktop/Desktop, Desktop/Mobile, and Mobile/Mobile. We determined
the device used for logging in with the recorded user agent string. Due to the dif-
ferent properties of the code and link-based conditions, we determined the email
checking device as follows. For the code based conditions SOTA and SUBJ,
we checked the corresponding free text responses given by the participants and
classified them into the categories mobile or desktop device. For LINK, we also
checked the user agent string of the device that clicked the link.

In the Desktop/Mobile use case, we furthermore analyzed the recorded
browser events to verify the given answer of the participant. If the event log
showed that the participant copied and pasted the code, which is not possible
for all setups except for those using the macOS Universal Clipboard feature, we
assumed that the participant gave an invalid response and filtered this response.

Times. We calculated different types of times from the timestamp information.
We measured the times to find out whether one of the re-authentication methods
is completed faster in parts of the re-authentication process than the other.

(i) Challenge Completion Time: We measured the time needed to com-
plete the re-authentication challenge. In the code-based challenges (SOTA and
SUBJ), the time was calculated as the timestamp differences between submitting
the code and the last focus event before entering the code. We decided to take
the last focus event since we needed to consider the delay between understanding
the user interface and conducting the code entering action. Also, when opening
the link in the LINK condition, the window is focused in that moment as well,
making LINK comparable to SOTA and SUBJ. In the Desktop/Mobile case, we

Evaluation of Risk-Based Re-Authentication Methods 287

took the timestamp differences between submitting the code and the beginning
of the code entering. Though we took a different timestamp in this case, we
expect the overall time for Desktop/Mobile to be higher than for Desktop/Desk-
top and Mobile/Mobile anyway since the code has to be entered manually. By
doing this, we aimed to ensure comparability between the code and link-based
re-authentication methods in any use case scenario. (ii) Re-Authentication
Duration: We also measured the time needed for the re-authentication in total.
We calculated this time as the difference between finishing the re-authentication
challenge and loading the identity confirmation dialog for the first time.

Feelings. From the feelings provided in the open ended question, we corrected
the grammar, and converted nouns and verbs to adjectives with the WordNet [20]
database where applicable. We did this to correct misspellings and differences
in tenses. We also clustered the feelings with Emolex [21] into the categories
positive, neutral, and negative, to analyze the sentiment towards the perceived
re-authentication method. This approach was similar to Golla et al. [10].

2.6 Piloting

We did a pilot study with 10 participants to test and verify our study procedure.
After the pilot study, we added additional measurements and slightly changed
some dialogs on the website as a result of piloting. Participants involved in the
pilot study were excluded from the final study to avoid bias.

2.7 Recruiting

We recruited participants via the crowdworker platform MTurk, which has shown
to be applicable for usability studies involving short reactional tasks [17]. We
required the participants to be 18 years or older, and have a 95% task approval
rate. The study was advertised as a website testing study that is expected to
take 10 min. We did not mention that we test authentication schemes to avoid
bias. Each participant was compensated with $1.64 after study completion.

Each participant was randomly assigned to one of the three conditions while
keeping the group size of each condition as equal as possible.

2.8 Ethical Considerations

We made sure to meet the needs of the MTurk participants (clickworkers) for
ethical issues and to improve our data quality. We offered the clickworkers more
flexibility by increasing the task time to 24 h since it has shown to both speeding
up task completion and improving the result quality [28]. Rejected work on
MTurk can result in clickworkers losing qualifications on the platform, affecting
their monthly income. Thus, we communicated to the workers that we do not
reject any work to make them feel comfortable [13]. We followed the paying
recommendations by Hara et al. [13], having in mind that workers are not paid

288 S. Wiefling et al.

Table 1. Number of participants in each condition and device use case scenario

Website/Email SOTA SUBJ LINK

Desktop/Desktop 67 67 72

Desktop/Mobile 50 45 48

Mobile/Mobile 30 36 36

between MTurk tasks. In order for the clickworkers to make a living, we set the
compensation so high that it is possible for them to earn more than the hourly
minimum wage of their home country, i.e., $7.25/hr in the US. We did not collect
any email addresses, as this is against MTurk’s acceptable use policy. Instead,
the MTurk service sent the emails out to the participants. All participants gave
informed consent. All questions offered a “don’t know” option.

We do not have a formal IRB process at TH Köln, where we conducted this
study, but besides our ethical considerations above, we made sure to minimize
potential harm by complying with the ethics code of the German Sociological
Association (DGS) as well as the standards of good scientific practice of the
German Research Foundation (DFG). We also made sure to comply with the
terms of the EU General Data Protection Regulation.

3 Results

The study took place between July and October 2019 and a total of 592 users
participated. 499 participants completed the study. From these participants, 48
were excluded from the set for the following reasons: (i) They copied and pasted
the authentication code while stating that they used a specific Desktop/Mobile
setup in which this is technically not feasible (n = 19). (ii) They failed the
attention check (n = 13). (iii) They used a mobile device on the website and
checked the email with a desktop PC, which we did not test in our study (n
= 11). (iv) We were unable to determine the device based on the participant’s
free text answer (n = 5). The dropouts were similarly distributed across all
conditions.

At the end, we retained 451 participants for the analysis. Table 1 shows how
these were distributed among the different conditions and device combinations.
The participants completed the study in four minutes on median average.

Our participants were 53.6% female, 45.0% male, and 0.2% non-binary. The
age of the participants ranged from 18 to 74. The majority of participants were
between 25 and 34 years old (41.9%), while 11.3% were younger and 46.4% were
older. The remaining percentages preferred not to answer the corresponding
demographical question. The majority of participants had an associate degree
or higher (62.8%) and did not have a computer science background (75.4%).

For statistical analysis of the timing data, we used Kruskal-Wallis tests for the
omnibus case and Dunn’s multiple comparison test with Bonferroni correction
for post-hoc analysis. For categorical data, i.e., the feelings and number of login

Evaluation of Risk-Based Re-Authentication Methods 289

(a) Desktop/Desktop (b) Desktop/Mobile (c) Mobile/Mobile

Fig. 3. Challenge completion times for the conditions and device combinations. There
are significant differences in Desktop/Desktop and Desktop/Mobile.

(a) Desktop/Desktop (b) Desktop/Mobile (c) Mobile/Mobile

Fig. 4. Re-authentication duration for the conditions and device combinations. The
difference between LINK and SUBJ in Desktop/Desktop is significant.

attempts, we used Pearson’s chi-square test for contingency table analysis (χ2).
We set 0.05 as the threshold for statistical significance, i.e., p < 0.05 is significant.
In the following, we outline the results ordered by the research questions given
in Sect. 1. A discussion follows after the results of each research question.

3.1 Authentication Times (RQ1)

Challenge Completion Time. The participants completed the re-
authentication challenge with median times between three and six seconds (see
Fig. 3). There were significant differences in some conditions and device combi-
nations.

For Desktop/Desktop, the challenge completion time for LINK was signif-
icantly higher than those for SOTA and SUBJ (LINK/ SOTA: p = 0.0024;
LINK/SUBJ: p = 0.0009). For Desktop/Mobile, the challenge completion time
for LINK was significantly lower than for SOTA (p = 0.0038). For Mobile/Mo-
bile, there were no significant differences between all three conditions.

Completing the re-authentication challenge took significantly more time on
Desktop/Mobile than on Desktop/Desktop for the code-based conditions (SOTA:
p<0.0001; SUBJ: p = 0.0002). For SOTA in addition, challenge completion took
significantly more time on Desktop/Mobile than on Mobile/Mobile (p = 0.0069).

Concluding the results, link-based authentication challenges were solved
faster than the code-based ones when they were not solved on the same device
that they used for the login attempt. In the other cases, they were either solved
slower (Desktop/Desktop) or with similar speed (Mobile/Mobile). Showing the
authentication code inside the email subject did not have a significant effect on
the challenge completion time.

290 S. Wiefling et al.

Discussion: In contrast to SOTA and SUBJ, LINK participants had to check
their device in an extra confirmation dialog and therefore loaded an additional
web page, which is why we assume that they needed more time on Desktop/Desk-
top to complete the challenge. Since all participants on Desktop/Mobile could
only manually enter the code, this explains the increased challenge completion
time for the code-based challenges on this device combination.

Re-Authentication Duration. In summary for all participants, it took a
median of 33.82 seconds to re-authenticate (mean: 71.89s, std: 398.22s). For the
Desktop/Desktop combination (see Fig. 4a), the overall re-authentication time
for SUBJ was significantly lower than for LINK (p = 0.0226). For all the other
conditions, we could not find any significant differences.

Concluding the results, showing the authentication code inside the email sub-
ject decreased the re-authentication time compared to link-based authentication.
However, it did not significantly affect the re-authentication time compared to
showing the authentication code only inside the email body. Also, link-based
authentication did not significantly affect the authentication time compared to
the state-of-the-art code-based authentication.

Discussion: Since there were significant differences, we assume that showing
the code in the subject line affected the login duration in total. Opening a link
introduces a delay to load the target website. Some email providers also introduce
additional delays when clicking on a link, mostly to advise their users that they
are redirected to another website. As a result, participants using login links
will always experience a constant delay. This explains the significantly longer
login duration for LINK. We assume that the faster login duration for SUBJ
with Desktop/Desktop combination lies in the fact that the participants saw the
authentication code earlier and thus did not have to open the email to receive
it. In summary, the email delivery and opening is the biggest factor affecting the
login duration. Thus, we suggest that this email based re-authentication should
not be asked too often, which is the case with RBA.

3.2 Behavior During Authentication (RQ2)

Most SUBJ and SOTA users and all LINK users passed the re-authentication
challenge on the first attempt (SOTA: 95.2%, SUBJ: 98.0%, LINK: 100%). The
remaining participants passed the challenge on the second attempt.

The majority of participants in the code-based conditions copied and pasted
the code into the code entering form when the device combination allowed it
(Desktop/Desktop: 88.1%; Mobile/Mobile: 59.1%). Concluding these results,
code-based re-authentication schemes have the tendency to cause users to copy
and paste the code when conducted on the same device.

Discussion: We assume that copying and pasting the code was the main reason
why the code-based challenges were solved faster than the link-based challenges
when solved on the same device. Our results reflect findings of Doerfler et al. [7]
regarding a high success rate for email-based re-authentication.

Evaluation of Risk-Based Re-Authentication Methods 291

3.3 Perceptions (RQ3)

All participants listed three feelings they had after they were asked to verify
their identity. Figure 5 shows the 25 most mentioned feelings ordered by the
number of occurrences. The re-authentication methods resulted in mixed emo-
tions. While there was no clear tendency for positive or negative feelings in
SOTA and LINK, the top 25 feelings in SUBJ were more negative. The feelings
security and annoying were the most mentioned ones in all three conditions.
We discovered significant differences between the three conditions for anxious,
nervous and neutral (see Table 2).

The other feelings were mentioned in similar occurrences across all categories.
The most mentioned positive feelings were curiosity, happy, safe, calm, and good.
For the neutral direction, these were security, concerned, relaxed, substitute, and
accept. The most mentioned negative feelings were annoying, confuse, nervous,
anxious, and worried.

Discussion: Due to phishing awareness campaigns and trainings, users are
trained not to open links in emails [25]. Being asked to click on a link in an
email for authentication contradicts the trained behavior, resulting in an inse-
cure feeling. We assume that this explains why participants named the anxious
feeling significantly more often in LINK . However, it is possible that this anx-
ious feeling declines when repeating the link-based re-authentication procedure
multiple times [29]. There are differences between re-authentication emails and
phishing emails that support this assumption. First, the website accessed by the
link does not require login credentials. Second, we assume that users expect this
re-authentication email to appear in their email inbox shortly.

SUBJ participants did not need to open the email to get the authentication
code. SOTA and LINK participants had to open an email whose contents they
had never seen before, i.e., the code or link. We assume that this is why SUBJ
participants named a nervous feeling less often than those of SOTA and LINK.

4 Limitations

The results are limited to a part of a population of a specific country. We assume
that the self-reported answers were typical for participants from the US with
college education that are younger than 50 years [24]. Due to the restrictions of

Table 2. Significant χ2 results for the mentioned feelings in each condition and the
percentage of mentions in each condition.

Feeling χ2 p SOTA SUBJ LINK

Anxious 7.8053 0.0202 7.5% 6.8% 15.4%

Nervous 6.9677 0.0307 15.6% 6.1% 10.9%

Neutral 6.6667 0.0357 4.1% 0.7% 0.6%

292 S. Wiefling et al.

(a) SOTA (b) SUBJ (c) LINK

Fig. 5. Feelings the participants had when asked to verify their identity

MTurk, we could only test email address verification for plain text emails. It is
possible that HTML emails are perceived differently by participants [16].

Since the participants were only authenticating once, we assume that they
expected the re-authentication for every login attempt when reporting the feel-
ings. Following that, we assume that the results were more related to 2FA than
for RBA. Since users tend to disable re-authentication when asked too often [5],
we assume that the feelings results would be more positive in the real world.

5 Related Work

RBA re-authentication challenges were not evaluated in literature so far. There
are related studies evaluating other authentication methods. De Cristofaro et
al. [6] compared three 2FA solutions with a study involving MTurk partici-
pants. In contrast to our study, their participants were not exposed to RBA
solutions. Agarwal et al. [2] evaluated four re-authentication methods for smart-
phones. Similar to our study, they introduced new re-authentication methods
and exposed their participants to them. However, these re-authentication meth-
ods were only applicable for mobile apps and thus were not suitable for RBA in
general.

Doerfler et al. [7] evaluated the effectiveness of Google’s re-authentication
challenges by analyzing login attempt data. Their results showed that code-based
re-authentication protected against more than 90% of all phishing attempts.
Although this shows the effectiveness of RBA against phishing, no usability
metrics are examined in their work that study its characteristic and potentials.

6 Conclusion

As long as online services continue to use password-based authentication, RBA is
becoming increasingly important as a complementary protection measure. This is
further underlined by the fact that RBA is explicitly recommended by NIST [12].

Evaluation of Risk-Based Re-Authentication Methods 293

However, there is little scientific research focused on RBA so far. Its development
is mainly driven by online services that already use RBA. Since these are popular
online services, they have a major impact on the state-of-the-art deployment as
can be derived from the single re-authentication method. No scientific evaluation
indicates that this is the most appropriate approach to use for implementation.

Our study closes this gap and compares the state-of-the-art email-based RBA
re-authentication method with two introduced alternatives regarding their time
exposure, security, and user-perceived security. Our results indicate that link-
based re-authentication results in higher time requirements and anxiety when
perceived for the first time. Code-based re-authentication has proven to be more
advantageous in this respect. More specifically, showing the authentication code
in the subject line has the potential to reduce re-authentication time with per-
ceptions comparable to the state-of-the-art deployment. Following that, web-
site owners should carefully adjust their RBA re-authentication design to be
appropriate for their applications. In general, our research suggests that further
research should study RBA more consistently so that all services can benefit from
reliable scientific results while hardening password authentication with RBA.

Acknowledgments. This research was supported by NERD.NRW sponsored by the
state of North Rhine-Westphalia. The research was also supported by a RISE Ger-
many scholarship granted by the German Academic Exchange Service (DAAD) and
sponsored by the German Federal Foreign Office.

References

1. Abbey, J.D., Meloy, M.G.: Attention by design: using attention checks to detect
inattentive respondents and improve data quality. JOM 53–56(1), 63–70 (2017)

2. Agarwal, L., Khan, H., Hengartner, U.: Ask me again but don’t annoy me: evalu-
ating re-authentication strategies for smartphones. In: SOUPS 2016 (2016)

3. van Amstel, K.: Should we embrace magic links and leave passwords alone?, Jan-
uary 2018. https://medium.com/@kelvinvanamstel/c73db7007fc4

4. Chan, J.C.: Response-order effects in Likert-type scales. Educ. Psychol. Measur.
51(3), 531–540 (1991)

5. Crawford, H., Renaud, K.: Understanding user perceptions of transparent authen-
tication on a mobile device. J. Trust Manag. 1(1), 1–28 (2014). https://doi.org/
10.1186/2196-064X-1-7

6. De Cristofaro, E., Du, H., Freudiger, J., Norcie, G.: A comparative usability study
of two-factor authentication. In: USEC 2014, February 2014

7. Doerfler, P., et al.: Evaluating login challenges as a defense against account
takeover. In: WWW 2019 (2019)

8. Freeman, D., Jain, S., Dürmuth, M., Biggio, B., Giacinto, G.: Who are you? A
statistical approach to measuring user authenticity. In: NDSS 2016, February 2016

9. Gaddam, A.: Usage of behavioral biometric technologies to defend against bots.
In: Enigma 2019, January 2019

10. Golla, M., et al.: “What was that site doing with my Facebook password?”: design-
ing password-reuse notifications. In: CCS 2018 (2018)

11. Google: Sign in faster with 2-Step Verification phone prompts, October 2019.
https://support.google.com/accounts/answer/7026266

https://medium.com/@kelvinvanamstel/c73db7007fc4
https://doi.org/10.1186/2196-064X-1-7
https://doi.org/10.1186/2196-064X-1-7
https://support.google.com/accounts/answer/7026266

294 S. Wiefling et al.

12. Grassi, P.A., et al.: Digital identity guidelines. Technical report NIST SP 800–63b
(2017)

13. Hara, K., et al.: A data-driven analysis of workers’ earnings on Amazon mechanical
turk. In: CHI 2018 (2018)

14. Hartley, J.: Some thoughts on Likert-type scales. Int. J. Clin. Health Psychol.
14(1), 83–86 (2014)

15. Kalton, G., Schuman, H.: The effect of the question on survey responses. J. Roy.
Stat. Soc. Ser. A (Gen.) 145(1), 42 (1982)

16. Karakasiliotis, A., Furnell, S.M., Papadaki, M.: Assessing end-user awareness of
social engineering and phishing. In: AIWSC 2006 (2006)

17. Kelley, P.G.: Conducting usable privacy & security studies with Amazon’s mechan-
ical turk. In: SOUPS 2010, July 2010

18. Komoroske, A.: Prerendering in Chrome, June 2011. https://blog.chromium.org/
2011/06/prerendering-in-chrome.html

19. Milka, G.: Anatomy of account takeover. In: Enigma 2018, January 2018
20. Miller, G.A.: WordNet. Commun. ACM 38(11), 39–41 (1995)
21. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexi-

con. Computat. Intell. 29(3), 436–465 (2013)
22. Nederhof, A.J.: Methods of coping with social desirability bias: a review. Eur. J.

Soc. Psychol. 15(3), 263–280 (1985)
23. Quermann, N., Harbach, M., Dürmuth, M.: The state of user authentication in the

wild. In: WAY 2018, August 2018
24. Redmiles, E.M., Kross, S., Mazurek, M.L.: How well do my results generalize? In:

SP 2019, May 2019
25. Sheng, S., et al.: Who falls for phish?: a demographic analysis of phishing suscep-

tibility and effectiveness of interventions. In: CHI 2010 (2010)
26. Thomas, K., et al.: Protecting accounts from credential stuffing with password

breach alerting. In: USENIX Security 2019, August 2019
27. Wiefling, S., Lo Iacono, L., Dürmuth, M.: Is this really you? An empirical study

on risk-based authentication applied in the wild. In: Dhillon, G., Karlsson, F.,
Hedström, K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 134–148. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22312-0 10

28. Yin, M., Suri, S., Gray, M.L.: Running out of time: the impact and value of flexi-
bility in on-demand crowdwork. In: CHI 2018 (2018)

29. Zajonc, R.B.: Attitudinal effects of mere exposure. JPSP 9(2, Pt.2), 1–27 (1968)

https://blog.chromium.org/2011/06/prerendering-in-chrome.html
https://blog.chromium.org/2011/06/prerendering-in-chrome.html
https://doi.org/10.1007/978-3-030-22312-0_10

Fuzzy Vault for Behavioral
Authentication System

Md Morshedul Islam(B) and Reihaneh Safavi-Naini

University of Calgary, Calgary, Canada
{mdmorshedul.islam,rei}@ucalgary.ca

Abstract. A fuzzy vault encrypts a message using fuzzy data such as
user’s biometric data as the vault key. Fuzzy vault can be used to pro-
tect users’ cryptographic keys in smart cards and inside applications.
We consider fuzzy vault based on behavioral data. A behavioral profile
of a user consists of a set of features that collectively authenticates the
user. Compared to biometric vault behavioral vault has the advantages
of being revocable and less privacy sensitive. Fuzzy vaults for behavioral
data, however, introduces significant challenges including feature repre-
sentation, and feature matching algorithms that can provide the required
correctness, security, and efficiency. We design and analyze a fuzzy vault
based on the user’s behavioral data that employs a novel soft-decision
decoding algorithm and implement our design for two behavioral authen-
tication (BA) systems. Our approach is general and can be used for other
BA systems. We discuss our results and directions for future research.

Keywords: Fuzzy vault · BA system · BAVault

1 Introduction

Fuzzy vault was proposed by Juels and Sudan [12] to encrypt (lock) a sensitive
value into a cryptographic vault such that unlocking needs a decryption key that
is “close” to the encryption key. In a fuzzy vault, the sensitive data (e.g., a
cryptographic key) defines a polynomial f(x) of degree k over a finite field Fq,
that will be evaluated for each element of a “locking” set A ⊂ Fq, to form a
set of “legitimate points”, L = {ai, f(ai) : ai ∈ A}. The set L is then combined
with a set Ch of chaff points that are randomly selected from F

2
q and used to

hide the elements of L in the vault (ciphertext) V = L ∪ Ch. The vault can be
“opened” (and the sensitive message recovered) by using an unlocking set B,
where B has a large overlap with A. Biometric-based fuzzy vault uses a user’s
biometric features for the locking and unlocking sets. Fuzzy vaults have been
implemented using fingerprint, iris, and face data [6,14,15,17,21], and for higher
security, using multimodal biometric systems [13]. Fuzzy vaults have been used
for biometric-based protection of cryptographic keys in smart cards [6] and online
authentication systems [24]. In these applications, the secret key is stored in the

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 295–310, 2020.
https://doi.org/10.1007/978-3-030-58201-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_20

296 M. M. Islam and R. Safavi-Naini

fuzzy vault and becomes available to the system when the user presents their
correct biometric. Fuzzy vault provides an attractive solution for the protection
of keys in mobile apps and electronic wallets.

Juels et al. proved that recovering the correct polynomial without knowing
the set A, has exponential computation in the number of chaff points. Biometric
implementations of fuzzy vault, however, introduce new attacks due to imperfect
selection of chaff points, and for the attacks on the underlying authentication
systems. Protection against these attacks together with providing efficiency has
been widely studied [6,21,22]. Using biometric-based fuzzy vaults in multiple
applications introduces a new threat: if multiple vaults of the same user are
leaked, the user biometric data will be compromised [19]. This will allow all
the previous vaults to be opened, and also the future usage of the fuzzy vault
for that user becomes insecure. So, it is important to make the bio-data of the
user changeable (revocable). We achieved this goal by using behavioral data and
referred to such vaults as BAVault. A Behavioral Authentication (BA) system [3,
8,10] constructs a profile for the users by identifying and capturing a number of
behavioral features during well-designed activities. A behavioral profile consists
of a set of d features, each represented by a set of n samples, forming a n × d
matrix. A BAVault will use a user’s profile to lock a secret, and its unlocking
algorithm will “match” the profile of a verification claim to unlock the vault.

Advantages of BAVaults compared to biomteric based systems are less link-
ability of behavioral data, revocability by replacing the underlying BA system
with a similar system, and no requirement for additional hardware.

Challenges of Implementing a BAVault. The main challenge of BAVaults is the
high dimensionality of feature data that results in inefficient implementations.
In a BA system, a feature consists of n sample vectors and direct mapping of a
behavioral feature to a finite field results in a high degree extension field (e.g.
in DAC[10] a sample feature vector has dimension 40–120). Generating (chaff
points), locking and unlocking over a field of this size result in an extremely
inefficient system (see Section 4).

Our Work. In BA systems, a feature corresponds to a probability distribution.
We represent a feature with its first and the second moments (mean and vari-
ance). We use the samples in the profile and the verification claim to construct
estimates of these moments. The task of feature matching is to decide if the two
pairs of estimates correspond to the same underlying distribution. This allows us
to represent a feature as a tuple of two elements of Fq, and will result in a vault
that is as efficient as a fingerprint vault (i.e. using a field extension of degree 2 or
3) [6,17,21]. It, however, requires a well-designed decoding approach to reduce
the error in matching. A major challenge in using this compact representation is
generating chaff points. In a BAVault, a feature is mapped to a point (ai, f(ai)),
where ai is obtained from the mean and variance of the feature. A chaff point is
of the form (ai, āi) where ai represents the mean and variance of a hypothetical
distribution, and āi �= f(ai). The value of ai in chaff point must be chosen such
that its corresponding distribution will be distinguishable for the distributions of
all features using the chosen statistical tests. Additionally, the set of chaff points

Fuzzy Vault for Behavioral Authentication System 297

should not “separable” from the set of vault points (ai, f(ai) which correspond
to true features.

Figures 1a and 1b are the block diagrams of the proposed locking and unlock-
ing algorithms of the BAVault, respectively. The algorithms follow the structure
of biometric vault (e.g., Fig. 2 in [21]), with the new components indicated with
dashed lines. In a BAVault, the secret message is first encoded using Cyclic
Redundancy Check (CRC) and used to define a polynomial f(x). The features
are preprocessed using a random projection (RP) algorithm that transforms the
feature set into a smaller set of features, each a random linear combination
of the original features. Each projected feature is then represented by a pair
ai = (μi, σ

2
i) of the mean and variance of the transformed feature which will

be used as the evaluation points for f(x). A chaff point (ai, āi) is generated
through a multi-step process such that ai corresponds to a hypothetical dis-
tribution with mean and variance (μ, σ2), which is not “close” to real feature
where closeness is measured by using statistical tests for mean (tTest [16]) and
variance (fTest [9]). The unlocking algorithm is a novel soft-decision decoding
algorithm (details is in Sect. 4).

We evaluate the security of the vault in protecting, (i) the secret message,
and (ii) the privacy of the profile. We consider the following attacks that have
been used to evaluate the security of biometric vault systems: (i) chaff point
recovery attack that uses uneven distribution of vault points in the vault space
allowing the attacker to infer the correct feature points, (ii) using multiple vaults
with the same user profile that allows the attacker to recover the true features
by comparing the set of vault points, and (iii) impersonation through mimicry
attack against the underlying BA system.

BAVault Implementation and Experiments. We implemented and evaluated our
design on two BA systems. The first system is Touchalytics [8] that uses touch
behavior such as up-down and left-right scrolling to verify the user’s identity. The
second system, DAC (Draw A Circle) [10], is a challenge and response system
that verifies the users’ identity using their behavior in drawing challenge circles.
We designed a feature-based verification algorithm and tuned the parameters
to ensure a lower error rate. The collected data was also used to implement
and evaluate the BAVault. We used the published data for Touchalytics, and
collected new data for the redesigned DAC. Through extensive experiments, we
show that (i) both BAVaults have acceptable error rate; (ii) a random invalid
claim can recover a very small number of legitimate points, while a mimicry
attack can recover more feature points. However, in both cases, the recovered
features are not sufficient to unlock the vault. We also show that RP prevents
the multi-vault attack, and ensures that in a compromised vault user’s profile
will not be leaked. We estimate the number of polynomials that a brute force
attacker must check to achieve success. The secret message sizes in Touchalytics
and DAC based BAV ault are 192–208 bits and 448–480 bits, respectively.

Ethics Approval. We obtained ethics approval from the Research Ethics Board of
our institution and performed our experiments in accordance with ethics guide-
lines governing user personal data privacy and security.

298 M. M. Islam and R. Safavi-Naini

Paper Organization. Section 2 is background and related works. Section 3 defines
BAVault and Sect. 4 gives the design of our BAVault. Section 5 is implementation
and experimental results and Sect. 6 concludes the paper.

2 Preliminaries and Related Works

We recall definitions and results that are used in the remainder of the paper.

BA System. A BA system constructs a behavioral profile for a user, which con-
sists of a set of features measurements, and uses it to verify verification request,
a second set of measurements of the features. A BA profile X = (F1, F2, · · · , Fd)
consists of d features, and can also be represented by a set {xi, i = 1, · · · , n} of
n vectors of dimension d over Rd. The set {xi,j , i = 1, · · · , n} grips n samples of
a feature Fj , represents intrinsic behavioral characteristics of a user.

Matching Algorithm. A matching algorithm M(X,Y) compares verification data
Y with the stored profile X of the claimed user u, and returns 1 (accept),
or 0 (reject). Feature-based matching algorithms [3,10] compare each feature
in the profile against the corresponding feature in the claim, and produces
a matching score that will be compared against a predefined threshold to
accept or reject the claim. A BA system has (δ1, δ2)-correctness, if it satisfies
Pr[M(X,Y) = 0 | u = v] ≤ δ1 &Pr[M(X,Y) = 1 | u �= v] ≤ δ2. False Accep-
tance Rate (FAR) and False Rejection Rate (FRR) are used to estimate the
value of δ1 and δ2, respectively. One can combine two parameters into a single
one, δE Equal Error Rate (EER), where FAR and FRR are equal. BA systems
may use vector-based matching algorithm [8] too. For the BAVault, we need to
use feature-based matching.

Attacks on BA Systems. Attacks on BA systems aim to fool the matching algo-
rithm to accept the verification data of an invalid user. In a mimicry attack
[25] the attacker attempts to mimic a user u by learning and mimicking u’s
behavior. An impersonation attack may use mimicry to claim a victim’s iden-
tity. The success of this attack depends on the design of the BA system and the
choice of features. We do not consider network-based attacks where the attacker
eavesdrops communication of the valid user and uses their data as the verifi-
cation data in an attacked session. Such attacks can be prevented by securing
the communication channel using protocols such as Transport Layer Security
(TLS) [18].

Random Projection (RP). RP is a distance preserving transformation that
projects vectors in a high-dimensional space to a lower-dimensional space using a
random projection matrix. The projection matrix Rt×d, t < d, projects a vector
x ∈ R

d to a vector x′ = Rx, x′ ∈ R
t, and (approximately) preserves the relative

Euclidean distances between the vectors in the projected space. Elements of
R are sampled from a standard normal distribution N(0, 1) (see Lemma 1.3
of [23]). For faster computation we use discretized form of N(0, 1) given by
Pr(x = +1) = 1

2φ , P r(x = +0) = 1− 1
φ , P r(x = −1) = 1

2φ . Distance preserving

Fuzzy Vault for Behavioral Authentication System 299

property of the resulting RP is shown in [1] for φ = 3. It was shown in [20] that
applying RP in the BA system will maintain correctness property of the system,
and will also provide privacy for the profile.

Definition 1 (Fuzzy Vault [12]). A fuzzy vault VA is specified by a 4-tuple
of parameters (Fq, r, t, k) and works as follows.

1. To encrypt a uniformly random secret message m = (m0 · · · mk) ∈ F
k+1
q , a

polynomial f(x) of degree k is constructed: f(x) =
∑k

i=0 mix
i.

2. The polynomial is then evaluated on a set of points A = {ai ∈ Fq : i =
1, · · · , t}, called the locking set. The set L = {(ai, f(ai)) ∈ F

2
q : i = 1, · · · , t}

forms the set of legitimate points in the vault.
3. To hide L, a random set of r − t chaff points Ch = {(ai, āi) ∈ F

2
q : i =

1, .., r − t} are selected with the property that āi �= f(ai), to get spurious
polynomials.

4. The fuzzy vault is obtained by permuting the elements of VA = L ∪ Ch, and
is published together with the parameters (Fq, r, t, k).

5. To unlock VA (decrypt the secret) using an unlocking set B, a decoding algo-
rithm is used to find the best estimate of the legitimate points, which will be
used to recover the message.

The output of the decoding algorithm may contain legitimate and chaff points.
To recover m, one can use Reed-Solomon (RS) decoder to correct the errors in
the recovered set [12], or append a CRC to the secret message and use the pair
(m,CRC(m)) in f(x). The CRC will be used to identify the correct polynomial
[17,21,22]. We will use this latter method that results in better error recovery.

Attacks on Fuzzy Vaults. Attacks can be grouped into, (i) algebraic attacks, and
(ii) implementation attacks. In an algebraic attack, also called brute force attack,
an attacker examines all candidate polynomials to find f(x). In implementation
attacks, the weaknesses of the vault implementation are used to recover the secret
message. Lemma 1 of [6] gives the relation between the success probability of
brute force attack and the number of spurious polynomials that the attacker must
examine in biometric fuzzy vaults. In CRC-based biometric fuzzy vault, a brute
force attacker must check on average

(
r

k+1

)(
t

k+1

)−1
polynomials [6]. Chang et al.

[5] showed how to distinguish chaff points if they are not evenly distributed in
vault space. Scheirer et al. [19] considered a number of attack scenarios including
multiple vaults attack where the attacker knows multiple vaults (different m)
with the same user biometric. This will allow the attacker to relate the data from
different vaults to recover the secret. They also considered the loss of biometric
privacy if the attacker learns the secret of a published vault.

3 BAVault

A BAVault uses a (δ1, δ2)-correct BA system (see Sect. 2) and profile data X of
the BA system to lock the vault. The BAVault will open only by using the veri-
fication data Y of the BA system of the same user. The feature-based matching

300 M. M. Islam and R. Safavi-Naini

algorithm of the BA system employs a similarity function Sim (., .) to decide if
two sets of samples have the same underlying distribution and output a confi-
dence value pi,j . A larger pi,j corresponds to higher confidence about the “same-
ness” of the distributions of the two sets. BAVault uses Sim (., .) function to
measure the similarity of elements of B and VA.

Definition 2. A BAVault is defined by the tuple (Fq, r, t, k, aux), where the
first four parameters are the same as Definition 1, and aux is the auxiliary
data that can be provided with the vault. BAVault has a pair of algorithms
(VLock,VUnLock) to lock and unlock the vault.

1. VLock works the same as Steps 1–4 in Definition 1 using the profile data X.
Locking algorithm uses the feature set of X to construct the legitimate point
set for the secret value m ∈ F

k+1
q . We use A, L, and Ch to denote the locking

set, sets of legitimate points and chaff points, respectively. Points in Ch must
each, (i) have a minimum “distance” from any legitimate point (to remain
distinguishable by the BA matching algorithm), and (ii) should not satisfy the
polynomial f(x).

2. VUnLock has a soft-decision decoding algorithm CGen which uses the
Sim (., .) function of the BA system to construct a r × t confidence matrix
[pi,j], that will be used to recover the f(x).

(Δ1,Δ2)-correctness: Consider a (δ1, δ2)-BA system that uses a feature match-
ing function Sim (., .), a matching algorithm M(., .). Let X and Y be two BA
profiles (or claims). For a uniformly distributed secret m, a BAVault VA ←
VLock(X,m) is (Δ1,Δ2)-correct if the conditions: (i) Pr[VUnLock(VA,Y) �=
m|M(X,Y) = 1] ≤ Δ1, and (ii) Pr[VUnLock(VA,Y) = m|M(X,Y) = 0] ≤
Δ2 hold. The correctness property1 of the BAVault is also referred to as Δ1-FRR
and Δ2-FAR.

Security. We evaluate the security of a BAVault in (a) protecting the secret m,
and (b) ensuring the privacy of X. Following Kirckoff’s principle, we assume the
details of the vault system is public. For (a) we consider a number of attacks,
including when the attacker has access to multiple vaults. To evaluate (b), we
assume the attacker knows a vault VA and its corresponding message m.

Attacker strategies. For (a), that is message recovery, we consider (i) algebraic
attacks, and (ii) system (implementation) attacks, including attacks that exploit
non-uniform distribution of vault points, attack using multiple vaults of the same
user, and using impersonation attack on the BA system. For (b), that is profile
privacy, the attacker knows the secret message of a published vault that allows
them to find the points in the vault that correspond to true features.

1 We used FAR and FRR to evaluate BAVault correctness.

Fuzzy Vault for Behavioral Authentication System 301

4 A Secure BAVault

Let the locking and unlocking sets be of the same size, that is |A| = |B|. Figure 1a
and 1b are the block diagrams of the BAVault locking and unlocking algorithms.
They are shown in the Appendix, Algorithm 1 and Algorithm 2.

4.1 Locking

The locking algorithm takes m and X and does the following.

Message m. The message is appended with a CRC (preprocessing) and is used
to construct the polynomial f(x).

Profile Data. The profile X will be transformed to X′ = RX by using an RP
(preprocessing). Because of the distance-preserving property of RP, the relative
distances among profile vectors will be maintained and so the correctness of the
feature matching algorithm will not be affected. Assuming that the distribution
of the features Fi in the profile are normal2, the distribution of the projected
features F ′

i will also be normal. We thus represent F ′
i with its mean and variance,

ai = (μi, σ
2
i). To map (μi, σ

2
i) to an element of Fq (locking set generation), we

write μi and σ2
i as binary strings, and concatenate them. The number of binary

digits for each component is determined by the required correctness parameters
(Δ1,Δ2), and will determine the finite field size. The set A consists of Fq values
of all transformed features. The mapping of (μi, σ

2
i) to an element of Fq is one-

to-one and invertible. The polynomial f(x) is then evaluated on elements of
A = {ai}t

i=1 to form the legitimate points set L = {(ai, f(ai)) ∈ F
2
q}t

i=1.
Generating chaff point needs feature similarity evaluation. A feature simi-
larity function SimMV(., .) measures the closeness (sameness) of two distributions
whose estimated3 means and variances are ai = (μi, σ

2
i) and bj = (μj , σ

2
j),

respectively. The function uses (i) tTest- test for the sameness of μi and μj ,
and (ii) fTest- test for the sameness of σ2

i and σ2
j , to obtain two confidence

values pm
i,j and pv

i,j , respectively, and combines them by a metadata analyzer
FMethod [4] (Fisher’s method) to obtain a final confidence value.

Available Chaff Points. Chaff points of the form (ai, āi) must be chosen such that
(i) ai does not correspond to the parameters of a distribution that is close to the
distributions of the true features, and (ii) āi �= f(ai). For given ranges R1, R2

of mean and variance, each a subinterval of R, we first find DF the number of
distinct variances in R2 that can be distinguished using fTest test. For this, we
start with the lowest value of the variance R2, σ2

0 , and find smallest σ2
1 for which

SimMV(a0, a1) = 0 for a chosen significance value α. That is the variance test will
consider σ2

1 not similar to σ2
0 . We repeat this starting from σ2

1 , and continue until
the next σ2

i is outside the upper limit of the range R2. For each found value of
σ2

i , we find DT,i, the number of distinguishable means using a similar approach
(now using tTest) within the range R1. This gives an estimate of the number
of available X-coordinates for chaff points.
2 This is true for features of BA systems that have been used in our experiments.
3 From the corresponding sample sets.

302 M. M. Islam and R. Safavi-Naini

Fig. 1. Block diagram of BAVault (a) locking and, (b) unlocking.

Lemma 1. The available X-coordinate for chaff points is upper bounded by
QX =

∑
σ2
i ∈DF

|DT,i|.

Generating Chaff Points. To provide even distribution for vault points, we use
algorithm ChaffGen (see Algorithm 3 in Appendix) for chaff point generation.
It divides F

2
q into ν2 subareas and attempts to put almost the same number

of vault points in each subarea. The algorithm generates random chaff points
(ai, āi) (that satisfy, ai distinguishable from all feature values, and āi �= f(ai)),
and place them in ν if they satisfy the bound on corresponding subarea, and
reject otherwise. The algorithm first obtains an estimate of the vault size r by
taking into account the required security against brute force attack, determines
r/ν2, the number of allowable points in a subarea. It then obtains the number
of chaff points in a subarea by subtracting the number of true feature points in
a subarea from r/ν2. To evaluate ChaffGen, we used Kolmogorov-Smirnov (KS)
test [11] to estimate the uniformity of vault points, and also the distribution of
their X-coordinates. The vault VA is obtained by permuting the points in each
subarea.

4.2 Unlocking

The unlocking algorithm takes a VA and the verification data Y of a user as
input. It uses the published helper data (aux) to generate R that is used to
transform Y, resulting in the unlocking set B.

Soft Decision Decoding CGen. For an unlocking set B, we find a matching
subset of VA in two steps: (i) a feature matching algorithm FMatch, and (ii)
a set matching algorithm SMatch. Feature matching FMatch uses SimMV(., .) to
construct an r × t matrix ConF = [Pi,j] of confidence values, by comparing each
element of B against each element of VA. The set matching algorithm finds
a subset of VA that is the best match. We define the best matching subset of
the vault points as a subset that maximizes the total confidence value. The set
matching SMatch must find a subset of r columns of ConF, and in each column
chooses exactly one element, such that no two elements are in the same row. We
formulate this as a Linear Assignment Problem (LAP) [2] by augmenting ConF

Fuzzy Vault for Behavioral Authentication System 303

to ˆConF, a r×r square matrix with zeros in all new entries. LAP is a fundamental
combinatorial optimization problem that minimizes the total cost of assigning
agents to tasks when all agent-task pairs are possible but have different costs.
There are efficient algorithms for solving the LAP. The output of CGen is a set
C (see Algorithm 4 in Appendix).

Theorem 1. Algorithm CGen outputs a set C that has the highest total confi-
dence of matching B, in O(r3) number of steps.

The final step is the polynomial reconstruction from C, and uses the CRC
of the secret message to recover the correct polynomial.

4.3 Security Analysis

Message recovery by brute force attack needs searching among at least
ψ
3 qk−t(r/t)t spurious polynomials for every ψ > 0 with probability 1 − ψ (see
Lemma 1 of [6]) that go through t vault points, or

(
r

k+1

)(
t

k+1

)−1
polynomials

that go through k + 1 vault points. The chaff points generation algorithm will
ensure the chaff points are evenly distributed and cannot be distinguished from
true feature points.

Multi-vault Attack. Consider two vaults V i
A and V j

A for a profile X. Using two
different random matrices Ri and Rj ensures that the projected profiles X′

i =
RiX and X′

j = RjX are independent and will not leak any information about X.
Impersonation (mimicry) attack on the underlying BA system will also break the
BAVault. This is similar to the attack on the biometric-based vault. A careful
selection of the behavioral features will protect against this attack.
Profile privacy requires profile data to be protected even if the attacker knows
the secret message of a vault. Using m and the vault, an attacker will only be
able to recover the projected profile X′. However, as shown in [20], recovering
X from X′ using the minimum-norm solution to R, which is the best-known
estimator of X from X′, cannot recover the original X.

5 BAVault Implementation

We implemented and evaluated our proposed BAVault using Touchalytics [8]
and DAC [10] data.

Touchalytics uses users’ touch data (up-down and left-right scrolling) when
interacting with an app, and uses a vector-based matching algorithm to achieve
an EER of less than 3.0%. The system uses 30 behavioral features and data from
41 users.

DAC uses the behavioral features of users that are collected while drawing
random challenge circles that are presented to them, to verify their verification
claims. We extended DAC [10] and added a new set of features. This results in
65 features and reduces the EER of DAC from 5.0% to 1.05%.

304 M. M. Islam and R. Safavi-Naini

Experiment Setup. We downloaded and cleaned4 Touchalytics data before
using them. There are 41 profiles and 41 valid verification claims. For DAC, we
collected data from 199 Amazon Mechanical Turks (AMT). Suitability of AMT
for cognitive behavioral experiments has been confirmed in [7]. After removing
outlier data (around 2.66%), we obtained 195 profiles and 891 valid verification
claims (each Turk had multiple verification attempts).

To obtain reliable features distributions from the collected data, we combined
all user data, shuffled them, and divided them into two halves: the first half was
used for vault locking and the second half was used for vault unlocking. Every
profile (unlocking claim) has 93–615 vectors of dimension 30 in Touchalytics
BAVault, and 40–120 vectors of dimension 65 in DAC BAVault. Against each
vault, there were one valid unlock attempt and 5 invalids unlock attempts from
5 randomly chosen users. The locking and unlocking of Touchalytics and DAC
based BAVault takes (10.78 and 1.66 seconds) and (26.89 and 3.37 seconds),
respectively, on a desktop that uses Intel Core(TM)i5-2400 CPU (3.10 GHz),
8 GB RAM.

Feature Encoding. For RP, the dimension of projected spaces for Touchalytics
and DAC are t = 25 and t = 45, respectively. We generated R from the dis-
crete distribution uses in [1] and normalized profile data after RP. To measure
distinctiveness and normality of BA features we used SimMV(., .) function, and
Chi-square goodness-of-fit test. Touchalytics and DAC profiles had 97.37% and
92.81% distinct features before RP, and 99.82% and 97.73%, after RP, respec-
tively. The normality test results for the two systems before and after RP are
2.32% and 53.4%, and 65.56%, 54.83%, respectively. EER of both BA systems
after RP remained almost the same; 1.20% in Touchalytics and 4.66% in DAC.

To encode (μ, σ2) as an element of Fq, we remove the decimal points of μi

and σ2
i , take the three most significant digits of each, and concatenate them. For

σ2 we only consider two digits because the first digit after the decimal place is
always zero. In Touchalytics profiles all ai ∈ A are in the range [15400, 84600],
and in DAC profiles they are in [15000, 80500]. We bring all the data to the
range [0,65535] by subtracting the lowest value, and cutting off all the values
above 655355 and then represented them as a binary string in F216 .

Generate Chaff Points. We estimated QX for both BAVaults. The mean and
variance range for the features in Touchalytics is between [230.0, 820.0] and
[1.02, 52.02], respectively. For DAC, the corresponding values are [108.0, 875.0]
and [1.02, 98.02], respectively. For Ni = Nj = 300 (average samples in a features)
in Touchalytics BAVault, DF allows 24 distinct σ2, and for each σ2

i ∈ DF the size
of all DT are 1896, 884, · · · , 42, respectively. In DAC BAVault for Ni = Nj = 80
the set size |DF | = 21 and all |DT | are 2464, 1039, · · · , 33, respectively.

To distribute vault points evenly, we divided the range of both X and Y -
axis of both vaults into equal size segments which produce ν2 = 25 subareas. We
4 We replace ‘NaN’ and ‘Infinity’ by zero and dropped the ‘doc id’, ‘phone id’, and

‘change of finger orientation’ columns.
5 In Touchalytics there are around 3.70% of ai that are out of the range [0, 65535]

and in DAC it is only 0.32%. This rounding slightly affects BAVault correctness.

Fuzzy Vault for Behavioral Authentication System 305

Fig. 2. The distribution of recovered legitimate points for both valid and invalid claims
for the different number of chaff points. Figure (a) for Touchalytics based BAVault and
(b) for DAC based BAVault.

chose |V | =125–325 for Touchalytics and |V | =145–345 for DAC based BAVault.
ChaffGen algorithm counts the number of legitimate points in each subarea and
added random points to each subarea when possible, taking into account the total
vault size |V |. The KS-test gives average confidence value for the uniformity of
Touchalytics and DAC based BAVault as 0.69 and 0.66, respectively. The average
confidence values of KS-test for uniformity of X-components of the two vaults
are 0.89 and 0.78, respectively.

Recovering Legitimate Points. The CGen algorithm of the BAVault outputs
a set C ⊂ VA that has t̂ ≤ t legitimate points out of t recovered points. The
value of t̂ depends on the unlocking claim. In our experiments, we added 100–300
chaff points to each vault. This number can be increased at the cost of increased
encoding and decoding time. Figure 2 is the recovered legitimate points in a Box-
plot for both valid and invalid claims. The valid and invalid claims can recover
15–22 and 0–3 (Touchalytics) and 33–41 and 7–20 (DAC), legitimate points.
A valid user may not be able to recover all legitimate points because of the
variability of the user’s behavior, and an attacker may be able to recover some
of the legitimate points of a target vault by using attacker’s profile and public
data R. The Box-plots show that the gap between the first quartile corresponding
to the valid claims and the third quartile corresponding to the invalid claims is
large and both BAVaults work correctly. The gap increases with the number of
chaff points.

BAVault Correctness and Security. Table 1 summarizes correctness and
security of the two BAVaults. The values are inline with existing fuzzy vault
systems. The degree of the polynomials in Touchalytics and DAC based
BAVaults are 12–13, and 28–30 respectively, resulting in FAR and FRR to be
0.0% and 2.43%, and 2.56% and 4.65%, respectively. The secret sizes in the two
cases are 192–208 bits, and 448–480 bits, respectively. For a valid polynomial
that goes through t or k + 1 valid vault points, the brute force attacker will

306 M. M. Islam and R. Safavi-Naini

Table 1. Both vaults ensure sufficient correctness and security. For its higher number
of features, DAC based BAVault allows larger secret size than Touchalytics based
BAVault.

Touchalytics DAC

FAR degree of f(x) :

k = 12-13

0.0% degree of f(x) :

k = 28-30

0.0%-2.56%

FRR 0.0%-2.43% 3.89%-4.65%

Size of m (bits) 192-208 448-480

fcand(x)(CRC) 254 − 258 2101 − 2110

Spurious polynomials 220-226 241 − 256

need to check 220-226 and 241-256 spurious polynomials, or 254-258 and 2101-2110

candidate polynomials in both BAVaults, respectively.

Multi-vault security. Two vaults of a user will have two different vault point sets.
To investigate possible residual relation between the two vaults that share true
features, we used a modification of CGen algorithm which takes V i

A and V j
A and

matches each X-element of the first set against all X-elements of the second set,
and returns a subset C that has the highest total confidence value. This recovers
only 3.0% and 7.0% legitimate points in Touchalytics and DAC based BAVault,
respectively.

Protection Against Impersonation Attack. We considered a pair of profiles Xi

and Xj , that have 5.0%–16.0% overlapping features (e.g. from a mimicry attack).
We then used Xi to construct a BAVaultand used Xj to recover the legitimate
points from the vault. This can recover around 2.0%–9.0% more legitimate points
compared to an invalid claim. This is, however, not sufficient to open the vault.

6 Concluding Remarks

BAVault offers significant advantages over biometric-based fuzzy vaults. We out-
lined challenges of implementing an efficient and secure BAVault, proposed a
design that addresses these challenges, and validated our design analytically and
experimentally. Our work can be extended to use higher-order statistics for rep-
resenting features. Another direction is to employ ranked assignment problem to
use the top t highest ranking sets to improve reliability.

Fuzzy Vault for Behavioral Authentication System 307

A Appendix

Algorithm 1: VA ← VLock(X,m)
1: Construct a polynomial. For a secret message m, appends CRC to m to obtain

m′ = [m0, m1, · · · , mk] ∈ F
k+1
q ; define f(x) =

∑k
i=0 mix

i.
2: Profile projection. Use RP to transform X ∈ R

n×d to X′ ∈ R
n×t (t ≤ d). The

random seed that is used to generate R is the helper data (aux).
3: Locking set generation. Each feature F ′

i ⊂ X′ will be represented by its mean and
variance, (μi, σ

2
i), and encoded to ai ∈ Fq to form a set A = {ai}t

i=1.
4: Polynomial evaluation. The polynomial f(x) is evaluated on the elements of A to

obtain the set of legitimate points L = {(ai, f(ai)) ∈ F
2
q}t

i=1.
5: Chaff point generation. Generate Ch = {(ai, āi) ∈ F

2
q, i = 1, · · · , r − t, āi �= f(ai)}

by using ChaffGen algorithm, taking into account t points in L, and polynomial
f(x). Chaff points must satisfy the required properties.

6: The vault. Permute the elements of VA = L ∪ Ch to obtain VA.

Algorithm 2: {m,⊥} ← VUnLock(VA,Y)
1: Claim projection. The claim Y will be transformed to Y′, using R that can be

reconstructed using aux.
2: Unlocking set generation. Each sample set F ′

j ∈ Y′ will be summarized to a pair
bj = (μj , σ

2
j) ∈ R

2; the set of t pairs will form the set B = {bj}t
j=1.

3: Recovering the legitimate points. The soft-decision decoding algorithm CGen recov-
ers the legitimate points from VA. The algorithm CGen(VA, B) has two steps: Step
1: FMatch uses SimMV(., .) for each pair of elements of B and VA; Step 2: SMatch uses
an optimization algorithm to find the “best” matching subset C ⊂ VA.

4: Recover the secret. A candidate polynomial fcand(x) =
∑k

i=0 m∗
i xi of degree k is

constructed from k +1 points of C. If the coefficients of fcand(x) do not satisfy the
CRC, fcand(x) is rejected, and a new set is chosen. The process will be repeated
until m is found, or ⊥ is outputted, indicating no polynomial was found.

308 M. M. Islam and R. Safavi-Naini

Algorithm 3: VA ← ChaffGen(Fq, L, r)

INPUT/OUTPUT:
F
2
q: Vault space

L: Legitimate points set
r: Total vault points
VA: A set of r points.

1: Divide F
2
q in ν2 subareas

2: |νmax| = � r
ν2 	

� max allowable-points in a subarea
3: for each νi do
4: |νi| ← number of (ai, f(ai)) ∈ L
5: if |νi| < |νmax| then

6: w(νi) = [1
ν2 (1 − |νi|

|νmax|)]
� calculate the weight

7: else
8: w(νi) = 0
9: end if

10: end for

11: for each k ≤ r − |L| do
� for each chaff point

12: pick a νi based on w(νi)
13: choose ai for νi from X-axis of VA

where ∀bj ∈ VA, SimMV(ai, bj) = 0
� X-component of the chaff point

14: choose āi for νi from Y -axis of VA

where āi �= f(ai)
� Y -component of the chaff point

15: Ch ← {(ai, āi)}
� add chaff point in Ch

16: Update VA ← L ∪ Ch
17: |νi| ← |νi| + 1

18: w(νi) = [1
ν2 (1 − |νi|

|νmax|)]
� update weight

19: end for
20: return VA

Algorithm 4: C ← CGen(VA, B)

INPUT/ OUTPUT:
VA = {(a1, a

∗
1), .., (ar, a

∗
r)}

B = {b1, b2, · · · , bt}
C ⊂ VA: t pairs of points

1: ConF = FMatch(VA, B)
2: Φ = SMatch(ConF)
3: for each i ≤ r do
4: for each j ≤ t do
5: if Φ[i, j] = 1 then
6: C ← (ai, a

∗
i)

7: end if
8: end for
9: end for

10: return C
//Pseudocode of FMatch

11: move ∀ai ∈ Fq to ai = (μi, σ
2
i) ∈ R

2

12: for each ai ∈ VA do
13: for each bj ∈ B do
14: pm

i,j ← tTest(μi, μj);
μi ∈ ai and μj ∈ bj

15: pv
i,j ← fTest(σ2

i , σ2
j);

σ2
i ∈ ai and σ2

j ∈ bj

16: pi,j ← FMethod(pm
i,j , p

v
i,j)

17: ConF[i, j] ← pi,j

18: end for
19: end for
20: return ConF

//Pseudocode of SMatch
21: add r − t pseudo points

B̂ = {b1, b2, · · · , bt, b̂t+1, · · · , b̂r}
22: for each i ≤ r do
23: for each j ≤ r do
24: if j > t then
25: ¯ConF[i, j] ← 0
26: else
27: ¯ConF[i, j] ← ConF[i, j]
28: end if
29: end for
30: end for
31: Φ ← LAP(¯ConF)

� assign 1 for optimal subset or 0
32: return Φ

Fuzzy Vault for Behavioral Authentication System 309

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. JCSS 66(4), 671–687 (2003)

2. Akgül, M.: The linear assignment problem. In: Akgül, M., Hamacher, H.W.,
Tüfekçi, S. (eds.) Combinatorial Optimization. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 82, pp. 85–122. Springer, Heidelberg (1992).
https://doi.org/10.1007/978-3-642-77489-8 5

3. Alimomeni, M., Safavi-Naini, R.: How to prevent to delegate authentication.
In: Thuraisingham, B., Wang, X.F., Yegneswaran, V. (eds.) SecureComm 2015.
LNICST, vol. 164, pp. 477–499. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28865-9 26

4. Brown, M.B.: A method for combining non-independent, one-sided tests of signif-
icance. Biometrics 31, 987–992 (1975)

5. Chang, E.C., et al.: Finding the original point set hidden among chaff. In: Pro-
ceedings of the ASIACCS 2006, pp. 182–188. ACM (2006)

6. Clancy, T.C., et al.: Secure smartcardbased fingerprint authentication. In: Pro-
ceedings of the ACM SIGMM WBMA 2003, pp. 45–52. ACM (2003)

7. Crump, M.J., et al.: Evaluating Amazon’s mechanical turk as a tool for experi-
mental behavioral research. PLoS One 8(3), e57410 (2013)

8. Frank, M., et al.: Touchalytics: on the applicability of touchscreen input as a behav-
ioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur.
8(1), 136–148 (2013)

9. Hahs-Vaughn, D.L., et al.: Statistical Concepts: A Second Course. Routledge,
Abingdon (2013)

10. Islam, M.M., et al.: Poster: a behavioural authentication system for mobile users.
In: Proceedings of the ACM CCS 2016, pp. 1742–1744. ACM (2016)

11. Massey, Jr., Frank, J., et al.: The Kolmogorov-Smirnov test for goodness of fit.
JASA 46(253), 68–78 (1951)

12. Juels, A., et al.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257 (2006).
https://doi.org/10.1007/s10623-005-6343-z

13. Kaur, M., et al.: Fuzzy vault template protection for multimodal biometric system.
In: Proceedings of the ICCCA 2017, pp. 1131–1135. IEEE (2017)

14. Lee, Y.J., Bae, K., Lee, S.J., Park, K.R., Kim, J.: Biometric key binding: fuzzy vault
based on iris images. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp.
800–808. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-
5 84

15. Li, C., et al.: A security-enhanced alignment-free fuzzy vault-based fingerprint cryp-
tosystem using pair-polar minutiae structures. IEEE Trans. Inf. Forensics Secur.
11(3), 543–555 (2015)

16. Mankiewicz, R.: The Story of Mathematics. Cassell, London (2000)
17. Nandakumar, K., et al.: Fingerprint-based fuzzy vault: implementation and per-

formance. IEEE TIFS 2(4), 744–757 (2007)
18. Salowey, J.A., et al.: TLS 1.3, 10 August 2018. https://www.ietf.org/blog/tls13/.

Accessed 22 Apr 2019
19. Scheirer, W.J., et al.: Cracking fuzzy vaults and biometric encryption. In: Biomet-

rics Symposium 2007, pp. 1–6. IEEE (2007)
20. Taheri, S., Islam, M.M., Safavi-Naini, R.: Privacy-enhanced profile-based authenti-

cation using sparse random projection. In: De Capitani di Vimercati, S., Martinelli,
F. (eds.) SEC 2017. IAICT, vol. 502, pp. 474–490. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58469-0 32

https://doi.org/10.1007/978-3-642-77489-8_5
https://doi.org/10.1007/978-3-319-28865-9_26
https://doi.org/10.1007/978-3-319-28865-9_26
https://doi.org/10.1007/s10623-005-6343-z
https://doi.org/10.1007/978-3-540-74549-5_84
https://doi.org/10.1007/978-3-540-74549-5_84
https://www.ietf.org/blog/tls13/
https://doi.org/10.1007/978-3-319-58469-0_32
https://doi.org/10.1007/978-3-319-58469-0_32

310 M. M. Islam and R. Safavi-Naini

21. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T.,
Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer,
Heidelberg (2005). https://doi.org/10.1007/11527923 32

22. Uludag, U., et al.: Securing fingerprint template: fuzzy vault with helper data. In:
Proceedings of the CVPRW 2006. pp, 163–163. IEEE (2006)

23. Vempala, S.S.: The Random Projection Method, vol. 65. American Mathematical
Society, Providence (2005)

24. Wu, L., et al.: A face based fuzzy vault scheme for secure online authentication.
In: Proceedings of the ISDPE 2010, pp. 45–49. IEEE (2010)

25. Yampolskiy, R.V.: Mimicry attack on strategy-based behavioral biometric. In: Pro-
ceedings of the ITNG 2008, pp. 916–921. IEEE (2008)

https://doi.org/10.1007/11527923_32

Crypto Currencies

Improvements of the Balance Discovery
Attack on Lightning Network Payment

Channels

Gijs van Dam(B) , Rabiah Abdul Kadir , Puteri N. E. Nohuddin ,
and Halimah Badioze Zaman

Institute of Visual Informatics, The National University of Malaysia (UKM),
43600 Bangi, Selangor, Malaysia

p95677@siswa.ukm.edu.my

http://www.ivi.ukm.my/en/

Abstract. The Lighting Network (LN) is a network of micropayment
channels that runs on top of Bitcoin. The balances of payment chan-
nels are not broadcasted to the LN network to preserve the privacy
of the nodes participating in the network. A balance disclosure attack
(BDA) has been proven to be successful in determining the balance of
large amounts of channels in the network. In this paper we propose an
improved algorithm for the BDA as well as a new type of attack that
leverages the differences between LN client software implementations.
Our improved algorithm extends the original BDA by performing pay-
ments from both sides of the channel. The new attack uses malformed
payments to shutdown payment channels an adversary is not part of.

Keywords: Bitcoin · Lightning Network · Network security

1 Introduction

Bitcoin, the cryptocurrency with the largest market capitalization, has inherently
limited scalability. Bitcoin generates 1 block of transactions every 10 min and the
size of that block is limited to 1 MB. With a basic transaction taking up 250 bytes
and an average transaction size of 500 bytes the network has a maximum capacity
of 4000 transactions per block and an average capacity of 2000 transactions per
block. This boils down to 3–7 transactions per second. Increasing this capacity
by either increasing the block size or the rate at which blocks are generated
reduces the security of the Bitcoin network [1]. Increasing scalability of Bitcoin
without abandoning security remains desirable. Firstly because if the amount of
transactions being broadcasted exceeds the capacity of the network, the law of
supply and demand dictates that the transaction fees will increase [2] Secondly, if
we want to achieve a viable alternative to current centralized payment networks
we need to achieve comparable throughput which is in the order of magnitude
of several thousand transactions per second.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 313–323, 2020.
https://doi.org/10.1007/978-3-030-58201-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_21&domain=pdf
http://orcid.org/0000-0002-6188-6859
http://orcid.org/0000-0003-3897-0873
http://orcid.org/0000-0003-0627-5630
http://orcid.org/0000-0003-1553-3785
https://doi.org/10.1007/978-3-030-58201-2_21

314 G. van Dam et al.

It was Satoshi Nakamoto, the mysterious pseudonymous person or group of
persons famous for developing Bitcoin, who suggested the use of transaction
replacement for something he called high frequency trading [3]. In Nakamoto’s
proposal a group of parties could keep updating a transaction that had yet
to be committed. The order of the updates was kept by a sequence number.
Only the last agreed upon transaction needed to be broadcast. By doing so all
the transactions prior to the final transaction were kept off-chain. Nakamato’s
approach couldn’t operate in a trustless environment and was never seriously
considered.

LN is a peer-to-peer (P2P) network of connected nodes that uses Poon-Dryja
[4] payment channels. Two connected nodes can open up a payment channel
between them. A transaction from node A to node B can only happen if there
is enough balance on the side of node A. Likewise, a transaction from node
B to node A can only happen if there is enough balance on the side of node
B. Both balances added together define the capacity of the channel. To create
a transaction between two nodes that don’t have a payment channel between
them, multiple payment channels can be connected to form a route, as long as
the balances along that route allow for the payment. This is known as a multi-
hop payment. To participate in LN you have to run LN client software. Each LN
client follows the LN specifications, set out in the Basis of Lightning Technology
(BOLT) [5] documents.

Balances on the other hand are kept private and are never broadcasted on the
network. The only balances known to a node are the balances of the channels that
node participates in. Because of this it is impossible to know upfront whether a
multi-hop payment will succeed, and there is only one way to find out: executing
the payment. By executing multiple (fake) payments it is possible to probe the
unknown balance of a payment channel. Disclosing balances this way has been
dubbed the balance discovery attack (BDA) [6]. LN uses an onion routing [7]
scheme called Sphinx [8] for the routing of payments.

In this study we analyzed potential BDA algorithm improvements and the
role of LN client software in BDA. We propose an improvement to the basic
algorithm for BDA that achieves a two-fold increase of the upper limit of balances
that can be disclosed. Furthermore, we found that in certain situations LN client
software can be leveraged to remove the upper limit of BDA completely. Finally
we describe a specific situation where the interplay between different LN client
software types leads to the permanent shutdown of a payment channel. This
new attack, dubbed Payment of Death (POD), makes it possible to remotely
shut down channels. We will show that POD is a threat to the integrity of LN,
as it has the potential for a malicious party to shutdown 17.5% of the network
capacity.

2 Background

A formal analysis of privacy in the context of PCNs has been hindered by a lack
of a rigorous definition of the PCN protocols, the absence of a threat model, and
the ambivalent interpretations of the concept of anonymity [9].

Improvements of the BDA on LN Payment Channels 315

A threat model is necessary to perform a formal analysis of privacy in the set-
ting of trustless PCNs. Malavolta [9] describes a threat model with four notions
of interest:

– Balance security: participants don’t run the risk of losing coins to a malevolent
adversary.

– Serializability: executions of a PCN are serializable as understood in concur-
rency control of transaction processing, i.e. for every concurrent processing
of payments there exists an equivalent sequential execution.

– (Off-path) value privacy: malicious participants in the network cannot learn
information about payments they are not part of.

– (On-path) relationship anonymity: given at least one honest intermediary,
corrupted intermediaries cannot determine the sender and the receiver of a
transaction better than just by guessing.

2.1 Balance Discovery Attack

In the basic scenario for channel balance discovery [6] it is assumed that there
is an open payment channel AB between Alice, A, and Bob, B, with capacity
CAB . The goal of the adversary, Mallory, M , is to discover the balances of each
node in channel AB: balanceAB and balanceBA. To do so Mallory opens up a
channel with Alice (see Fig. 1).

Fig. 1. Basic BDA were the adversary Mallory tries to disclose the balance between
Alice and Bob

Mallory tries to disclose balanceAB by routing invalid payments through
M ↔ A ↔ B, using the basic BDA algorithm. The inputs for the algorithm are
the target node B, the route to the target node, the value range to search in,
given by 0 and CAB , and the required accuracy for the algorithm. The algorithm
creates invalid payments by using random, invalid payment hashes for each pay-
ment. The value for each payment follows a binary search pattern for which the
initial lower and upper bounds are given by the value range input.

Bob, the recipient of the payment, is the only one who can determine that a
payment from Mallory is invalid. Therefore, receiving an error stating the pay-
ment hash is invalid, means that balanceAB was sufficient to route the payment,
because if it was not, Alice would have returned an error stating insufficient
funds and Bob would never have known about the payment. This fact is lever-
aged by updating the lower bound of the binary search to the value of the
last payment. If however the failure message states insufficient funds, the upper
bound is updated with the value of the last payment. This process repeats itself
recursively until the difference between the upper bound and the lower bound
of the binary search is within the threshold set by the accuracy input. The algo-
rithm returns a tuple that gives the range within which balanceAB sits. Since

316 G. van Dam et al.

the capacity of the channel CAB is known, the balanceBA can be calculated with
balanceBA = CBA − balanceAB .

By periodically executing a BDA, an adversary can monitor balances over
time. This allows for tracing transactions. Therefore, this type of attack poses a
threat for the value privacy as described in the threat model above.

3 Method

In order to research the role of LN client software in BDA we must first determine
which LN clients are available. We used 1ML Lightning Network Search and
Analysis Engine1 to estimate respective proportions of each client in LN. 1ML
is a website that publishes the current state of the LN graph and allows for node
owners to self-report on a voluntary basis the type of client they use.

We chose the three LN clients with the largest network share to run a local
cluster of LN nodes, each node running one of three supported clients. All LN
nodes used Bitcoin Core’s Bitcoind implementation as the Bitcoin backend. Bit-
coind ran in regression testing mode, known as regtest mode. This is a local test
mode, making it possible to almost instantly create blocks with no real-world
value. Using regtest mode, the different implementations could be tested without
incurring transaction fees for the on-chain transactions and without having to
wait for blocks to be mined.

On this cluster we analyzed the basic and improved algorithm having the LN
nodes in each possible permutation of supported clients. This helped us deter-
mine if the new algorithm was to be considered an improvement and whether
client differences could play a role in BDA.

3.1 Two-Way Channel Probing

The original algorithm [6] is bound by an upper limit set by MAX PAYMENT

ALLOWED. This limit makes it impossible to probe balances that are higher than
232 − 1msat. This paper proposes an improved algorithm.

Consider a channel AB with capacity CAB . Since CAB = CBA = balanceAB+
balanceBA, the following holds

CAB < 233 =⇒ min {balanceAB , balanceBA} < 232

For all channels with a capacity CAB < 233 there’s always a balance lower
than 233

2 = 232 on one end of the channel. With this knowledge we can extend
the algorithm by letting it probe the channel from the other side, once we assess
that the balance is higher than MAX PAYMENT ALLOWED on the initial probing
side. This setup requires an optional second channel from the adversary Node M
to Node B, to be able to probe the channel between Node A and Node B from
the side of Node B (See Fig. 2).

1 https://1ml.com/.

https://1ml.com/

Improvements of the BDA on LN Payment Channels 317

Fig. 2. Basic scenario with an optional second channel for two-way probing

Algorithm 1 describes BDA with optional two-way probing for channels with
a capacity above MAX PAYMENT ALLOWED. Algorithm 1 takes the same input
parameters as the basic algorithm and returns the same tuple.

Algorithm 1. Two-way Probing
Data: route, target, maxFlow, minFlow, accuracy treshold
Result: bwidth, an array of tuples that gives the range of bandwidth discovered for each

channel

1: missingTests ← True
2: bwidth.max ← maxFlow
3: bwidth.min ← minF low
4: channelCapacity ← getInfo(target).capacity

5: while missingTests do

6: if bwidth.max − bwidth.min ≤ accuracy threshold then
7: missingTests ← False

8: end if

9: if bwidth.max ≥ 232 then
10: flow ← 232 − 1

11: else
12: flow ← (bwidth.min+ bwidth.max)/2

13: end if

14: h(x) ← RandomV alue
15: response ← sendFakePayment(route = [route, target], h(x), f low)
16: if response = UnknownPaymentHash then

17: if bwidth.min < flow then
18: bwidth.min ← flow

19: end if
20: else if response = InsufficientFunds then

21: if bwidth.max > flow then

22: bwidth.max ← flow
23: end if

24: end if
25: if bwidth.min = 232 − 1 then
26: newTarget ← route.pop()
27: route ← route.push(target)
28: bwidthBA ← twowayProbing(route, newTarget, bwidth.min, 0, accuracy treshold)

29: bwidth.min ← channelCapacity − bwidthBA.max

30: bwidth.max ← channelCapacity − bwidthBA.min

31: missingTests ← False
32: end if

33: end while

34: return bwidth

318 G. van Dam et al.

If CAB is higher than MAX PAYMENT ALLOWED, the algorithm will try to
send a fake payment with a size of exactly MAX PAYMENT ALLOWED. If that
payment is possible, we have assessed that we are on the wrong end of the
channel for probing the balance. The algorithm now calls itself with the target
node and the final node of the route switched. The algorithm assumes that there
is a route from the adversary to this new target node. The return value of that
call is balanceBA, for calculating balanceAB we use the following formula:

balanceAB = CBA − balanceBA

If CAB > max payment allowed and CAB < 2 × max payment
allowed, the value of the first payment will not be exactly in the middle
of the value range for the binary search, since it will use the fixed value of
MAX PAYMENT ALLOWED for the first payment. That makes this algorithm
slightly less computationally efficient then a perfect binary search, but it mini-
mizes the use of the optional second channel.

4 Results

We confirmed the improvements provided by the two-way probing algorithm
in two ways. Firstly we confirmed the feasibility of the algorithm in our local
testing cluster. Secondly we analyzed LN running on top of Bitcoin mainnet, to
estimate the number of channels that can have their balances disclosed by this
algorithm and compare this to the earlier version of this attack.

4.1 Local Network Evaluation

We ran the Two-way Probing algorithm with every possible permutation of
clients. By analyzing the responses from the clients, and analyzing the code of
the respective clients on GitHub, we found that not every client implemented
the MAX PAYMENT ALLOWED the same way.

On May 23rd, 2017 the BOLT specification was changed2 by Paul “Rusty”
Russel, who authored the majority of the BOLT documents. The variable con-
taining the payment amount, amount msat, was changed from a 32 bit unsigned
integer to a 64 bit unsigned integer. This meant that before that change it
was impossible to create a payment bigger than 232 − 1 whatsoever, but after
that change in theory it was possible to create bigger payments. Additional
specifications required the sending node to set the four most significant bytes
of amount msat to 0. But those additional requirements aren’t implemented
equally by the three main clients.

C-lightning is the only client that fully adheres to the requirements. Eclair
has a limit of 5 · 109msat. LND doesn’t verify the amount for certain RPC’s. By
using the unverified RPC in our algorithm we could send fake payments up to the
2 https://github.com/lightningnetwork/lightning-rfc/commit/068b0bccf94e8cdaf5f29

8dade0fcc8cc8421ef6#diff-3369c5aa1774fef2ff1e246979f223eaR590.

https://github.com/lightningnetwork/lightning-rfc/commit/068b0bccf94e8cdaf5f298dade0fcc8cc8421ef6#diff-3369c5aa1774fef2ff1e246979f223eaR590
https://github.com/lightningnetwork/lightning-rfc/commit/068b0bccf94e8cdaf5f298dade0fcc8cc8421ef6#diff-3369c5aa1774fef2ff1e246979f223eaR590

Improvements of the BDA on LN Payment Channels 319

Fig. 3. Cumulative percentage graph of payment channels ordered by increasing capac-
ity. max payment allowed shows the percentage of channels with disclosable bal-
ances using the basic BDA algorithm. 2× max payment allowed shows the percent-
age of channels with disclosable balances using the two-way probing algorithm.

maximal channel capacity. This meant that we can disclose any balance between
two LND Nodes, even if the balance is above the upper limit of the two-way
probing algorithm. In the scenarios where Alice is a LND node and Bob is an
Eclair node or both are Eclair nodes, balances up to 5 ·109msat can be disclosed
without making use of two-way probing.

4.2 Channels Affected

The two-way probing algorithm works regardless of the client software. So we
can look at the channel capacity of all public channels in the LN graph and
determine the proportion of channels that are now susceptible to this type of
attack based on a snapshot of the network taken on the 3rd of October, 2019
(see Fig. 3).

To estimate the number of channels susceptible for BDA above the 233 limit
set by the Two-way algorithm, we need to know the type of client on either side of
a channel. There’s no known way of figuring out what kind of client is installed,
but if you know the proportion of each client type in the LN, it is possible to
estimate the amount of channels for each specific combination of clients.

We queried 1ML for each node in our snapshot of the LN. We identified the
client type for 273 nodes out of 3608 and estimated the proportion of nodes
running different clients based on that data (See Table 1).

The LN is a graph G, with the number of vertices n = |G(V)| and the number
of edges m = |G(E)|. Our analysis yielded the following values for n and m:

320 G. van Dam et al.

Table 1. Proportion of nodes running different Lightning clients

Client n Proportion (%) CIa (%)

LND 220 80.59 (79.35–81.83)

c-lightning 40 14.65 (13.54–15.76)

Eclair 11 4.03 (3.41–4.65)

Other 2 0.73 (0.47–1.00)
a 95% Confidence interval

n = 3608 m = 9438 with 1086 channels having a capacity greater than 232 and
540 channels having a capacity greater than 233.

The client software defines the type of the vertex. typel for LND nodes, typec
for c-lightning nodes and typee for Eclair nodes. An edge is said to be of type(l,c)
if it connects a typel vertex and a typec vertex. The graph is without self-loops
and undirected, so edge type(l,c) ≡ type(c,l). Since we know the proportions of
the different vertex types we can calculate the probability of an edge being of a
specific type.

– P (type(l,l)) = 0.80592

– P (type(c,c)) = 0.14652

– P (type(e,e)) = 0.04032

– P (type(l,c)) = 2 × 0.8059 × 0.1465
– P (type(l,e)) = 2 × 0.8059 × 0.0403
– P (type(c,e)) = 2 × 0.1465 × 0.0403

Assuming vertex type and channel capacity have a covariance of zero, the
number of edges of each edge type, having a capacity greater than 233 is calcu-
lated as follows: P (type([c,e,l],[c,e,l])) × 540. We are interested in the type(l,l) and
type(l,e) channels, because the type(l,c) channels are susceptible to the Payment
of Death explained below, which doesn’t allow for discovering the balance. So
the amount of channels with a capacity above 232 is 540 × P (type(l,l)) + 540 ×
P (type(l,e)) = 386 channels. So a total of 9438−540+386 = 9284 channels have
balances that can be disclosed. This is 98.4% of all channels.

4.3 Payment of Death

In the case where Alice is a LND node and Bob is a C-lightning node, we saw
interesting behavior of the C-lightning node which turned out to be a vulnera-
bility of the current LN that can be exploited.

If a C-lightning node is being requested to route a payment to another
node, or is the receiver of a payment, with an amount that his higher than
MAX PAYMENT ALLOWED, it decides to fail the channel with the requesting
node and close down that channel. Since LN uses onion routing, the request-
ing node from the perspective of the c-lightning node, is the one that comes
just before it in the route. But that isn’t necessarily the node from which the
payment originated.

Improvements of the BDA on LN Payment Channels 321

Consider the basic scenario (see Fig. 1), where Mallory and Alice run
LND, and Bob runs c-lightning. Both channels between Mallory and Alice and
between Alice and Bob have balances that allow for payments bigger than the
MAX PAYMENT ALLOWED limit. If Mallory would create a fake payment with an
amount above that limit, Bob would close down it’s channel with Alice, without
Alice being able to mitigate this in any way. We coined the term Payment of
Death (POD) for this attack, after the infamous Ping of Death.

For the amount of channels affected by the POD we are interested in all
type(l,c) channels, with a balance above MAX PAYMENT ALLOWED. This is 1086×
P (type(l,c)) = 256 channels, meaning that 2.7% of all channels can be shutdown
by using malformed payments.

We have notified the developers of the LN implementations by means of a
responsible disclosure.

5 Discussion

Herrera-Joancomarti [6] reported that 89.10% of all channels could have their
balances exactly disclosed. Our research showed that we can improve this to
98.37% of all channels, a 9.27% point increase (See Table 2). The basic BDA
performed slightly less in our snapshot of the LN network because in the period
between the two snapshots of the 8th of January, 2019 and the 3rd of October,
2019, the percentage of channels with a capacity C of C > 232 slightly increased.

Table 2. Percentage of channels susceptible for the basic BDA and the two-way probing
BDA

Disclosable channels Basic BDA (%) Two-way probing BDA (%)

C ≤ 232 89.10 88.49

C > 232 ∧ C ≤ 233 0 5.79

C ≤ 233 0 4.09

TOTAL 89.10 98.37

5.1 Impact of Payment of Death

The properties of the vulnerability make it so that the highly capitalized nodes
are more vulnerable, since it are these nodes that have channels with a bal-
ance above MAX PAYMENT ALLOWED limit. The average capacity of those 1086
channels is 10196116 msat. Using that average combined with the estimated pro-
portions of affected channels, 17.5% of the total capacity of the network could
be taken down with an organized attack. These proportions align with propor-
tions earlier found through alternative methods [10]. It’s reasonable to assume
that these channels are responsible for routing a disproportionate amount of the
payments on the network. Such an attack could have substantial impact on the
ability to route payments of the network as a whole.

322 G. van Dam et al.

The closing of channels comes at a cost to the victim nodes, since you have to
broadcast on-chain transactions for closing a channel and again for reopening it.
Those transactions have transaction fees attached to it. Furthermore, channel
age is used as heuristic for determining the reliability of a node for routing
payments, so routing nodes have an incentive to keep channels open as long as
possible.

5.2 Countermeasures

Clients should adhere to the BOLT specification, making it impossible to cre-
ate payments with a value higher than MAX PAYMENT ALLOWED and deny to
consider payments with a value above the MAX PAYMENT ALLOWED for rout-
ing. The latter would make it impossible to disclose balances above 233 msat.
Secondly, clients should not consider a malformed payment a reason for perma-
nently closing down a channel. This would make it impossible to mount a POD
attack.

Limiting the number of payment requests per unit of time or randomly deny
payment requests following a configurable dropping rate [6] are unfeasible. These
countermeasures, implemented generically, come at a high cost for usability of
the network as a whole. So a selective approach is preferable, identifying nodes
that are the source of suspicious payment requests, and limit or deny requests
from these nodes. But this selective approach could quite easily be circumvented
by inserting different non-malicious nodes with known balances in the route in
subsequent payment requests. This way the source of the attack from the point
of view of the attacked node is not determinable and each non-malicious node
itself doesn’t see a pattern that resembles an attack.

6 Conclusion

This paper presented an improvement to the algorithm of the original BDA. We
showed that by approaching a payment channel from both sides instead of from
one side, payment channels with a higher capacity than in the original BDA are
now also susceptible to this attack. Since monitoring balances over time makes it
possible to detect payments, it can be used to learn information about payments
an adversary isn’t part of [9]. We exposed differences in the implementation of
the BOLT specification by the main three clients. These differences led us to
develop a new attack that closes down remote payment channels. We estimated
the proportions of each client in LN, by using self-reported information. Based
on these proportions we estimated that this attack can be used to take down an
important part of LN’s entire network capacity.

Acknowledgements. We would like to thank the National University of Malaysia,
which has funded the publication of this paper with grant ZG-2018-001.

Improvements of the BDA on LN Payment Channels 323

References

1. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

2. Easley, D., O’Hara, M., Basu, S.: From mining to markets: the evolution of bitcoin
transaction fees. J. Financ. Econ. 134, 91–109 (2019). https://doi.org/10.1016/j.
jfineco.2019.03.004

3. Hearn, M.: Anti DoS for tx replacement (2013). https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002417.html

4. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments (2016). https://www.bitcoinlightning.com/wp-content/uploads/2018/
03/lightning-network-paper.pdf

5. Basis of Lightning Technology. https://github.com/lightningnetwork/lightning-
rfc/blob/master/00-introduction.md

6. Herrera-Joancomart́ı, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà,
C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network
channels, pp. 602–612 (2019). https://doi.org/10.1145/3321705.3329812

7. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE J. Sel. Areas Commun. 16, 482–493 (1998). https://doi.org/10.
1109/49.668972

8. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
Proceedings of the IEEE Symposium on Security and Privacy, pp. 269–282 (2009).
https://doi.org/10.1109/SP.2009.15

9. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security - CCS 2017, pp.
455–471. ACM Press, New York (2017). https://doi.org/10.1145/3133956.3134096

10. Pérez-Solà, C., Ranchal-Pedrosa, A., Herrera-Joancomart́ı, J., Navarro-Arribas,
G., Garcia-Alfaro, J.: LockDown: Balance Availability Attack against Lightning
Network Channels (2019). https://eprint.iacr.org/2019/1149

https://doi.org/10.1007/978-3-662-47854-7_32
https://doi.org/10.1016/j.jfineco.2019.03.004
https://doi.org/10.1016/j.jfineco.2019.03.004
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://doi.org/10.1145/3321705.3329812
https://doi.org/10.1109/49.668972
https://doi.org/10.1109/49.668972
https://doi.org/10.1109/SP.2009.15
https://doi.org/10.1145/3133956.3134096
https://eprint.iacr.org/2019/1149

CCBRSN: A System with High
Embedding Capacity for Covert

Communication in Bitcoin

Weizheng Wang and Chunhua Su(B)

Division of Computer Science, University of Aizu, Aizuwakamatsu, Japan
chsu@u-aizu.ac.jp

Abstract. Covert communication has been using to prevent confiden-
tial information from being leaked to an unintended receiver. In this
paper, we present a general purpose novel methodology for blockchain-
based covert communication system design to be used in Bitcoin envi-
ronment. Blockchain is a distributed system which combines P2P net-
work, consensus protocol, encryption algorithm to complete the first
reliable cryptocurrency system Bitcoin. According to the high security
and convenient access of this technology, many applications based on
Blockchain such as smart contracts, distributed cloud storage have been
developed. However, in the field of covert communication, there are few
researches are applied in Blockchain. Therefore in this paper, we pro-
pose a system called Covert Communication based on Bitcoin Regtest
Self-built Network (CCBRSN), which takes Blockchain as a covert com-
munication channel and embeds encrypted messages into Blockchain’s
addresses to transmit. In this model, users can transmit covert messages
via Blockchain mutually and fast. Finally, we provide experimental anal-
ysis for our proposal to show that it is suitable for practical application.

Keywords: Blockchain · Bitcoin · Cryptography · Covert
communication

1 Introduction

Covert communication targets at hiding wireless transmissions, which meets the
ever-increasing desire of strong security and privacy. In a typical covert commu-
nication system, a transmitter (Alice) intends to communicate with a legitimate
receiver (Bob) without being detected with a warden (Willie), who is observ-
ing this communication [1]. Hence a reliable communication channel is the most
important thing for covert communication, which can level up the security of
critical communication or be confidential during the transmitting process.

Covert communication has two important parts—Cryptography and
Steganography. Cryptography encrypts the plaintext to ciphertext, which can
protect users’ privacy. The method of steganography conceals the existence of
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 324–337, 2020.
https://doi.org/10.1007/978-3-030-58201-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_22

CCBRSN for Covert Communication in Bitcoin 325

the message, to make them unintelligible. Simultaneously, channel is crucial for
steganography. In practical use, many channels have been tried as covert channels
for steganography, for example, Covert Channels in the HTTP Network Proto-
col [2], Covert Channels in IPv6 [3], A novel covert channel based on length of
messages [4] and so on. Whereas, most of them are not stable, such as HTTP, if
we meet an error during communication, maybe the transferring message is lost
forever. Meanwhile, with the advance of decryption technology, the security of
these channels can not be ensured in the future. All in all, it is still hard for us
to find a high-quality and securable medium for steganography.

On the other hand, Blockchain is becoming more and more popular. As
a highly decentralized, open and transparent distributed database structure,
Blockchain was first introduced in the paper [5] which was published by
Nakamoto in 2008. Blocks which are in a sequential order consist of the
Blockchain. Every list of the transaction which is traded and packed is all
recorded in a block. To maintain the runtime of Blockchain, every main node in
the Blockchain real-time updates a separate global ledger. At the same time, all
the main nodes are also competitors, they use their computing power to calculate
a puzzle. In this race, the faster one will be the winner and get the authority
of bookkeeping. If a winner in a mining race tries to tamper the data of one
block or one transaction to get more profit, then the hash value of this block
and the subsequent blocks will be changed immediately. After receiving this
new-generated block, the honest nodes will compare the new ledger with owns
and perceive the falsity of the chain. At last, they will refuse this published
ledge and rollback. Based on security and openness, many applications choose
to build up on the Blockchain, for example, smart contracts in the Ethereum
[6], intelligent transport system [7], e-voting system [8]. In consideration of the
above advantages of Blockchain, we also take Blockchain as a tentative covert
communication channel.

There are plenty types of Blockchains in the world. Why do we select the
Bitcoin as our experiment communication medium? There are the following four
reasons: (1) huge computing power in the Bitcoin’s network ensures the safety
of Bitcoin, and until now the hash rate has already reached 92,468,911 (TH/s)
[9]. If an attacker attempts to take control of Bitcoin’s network and do some bad
things, it means he must get the 51% resource of the computing power. However,
a regular GPU of PC can just provide 50–60 (MH/s). Therefore, as a commu-
nication channel, Bitcoin is relatively reliable. (2) no matter where you are and
what you have, as long as you can get access to the Internet, then you can use
tens of thousands of applications that serve as light nodes in the Bitcoin to con-
duct transactions. Compared with other Blockchains, Bitcoin is more convenient
as a channel. (3) cheap—you can deliver a million dollars’ transaction with only
a few dollars’ transaction fees. (4) everyone can join or leave the network as they
will, and this is an anonymous mode, you needn’t concern about the disclosure
of your privacy [10].

326 W. Wang and C. Su

1.1 Related Works

Covert communication can be traced back to the steganography which was pro-
posed in the 16th century’s book—“Steganographia”. With the development of
the Internet, covert communication began to spring up in the late 20th century
and now is widely used in the field of digital communication and network security.
Covert communication can be generally divided into two sides—Steganography
and digital watermarking.

In terms of Steganography, there are many mature technologies, such as in the
paper [11] suggested a way that uses a class of new distortion functions known as
uniform embedding distortion function (UED) for both side-informed and non
side-informed secure JPEG steganography, and in paper [12] also proposed an
enhanced least significant bit modification technique for audio steganography,
finally paper [13] proposed method creates an index for the secret information
and the index is placed in a frame of the video itself.

On the other side, the digital watermarking means capable of carrying such
information as authentication or authorisation codes or a legend essential for
image interpretation, which is also an efficient way for covert communication. In
1997, Ingemar J. Cox et al. proposed a NEC algorithm [14] that combines the
author’s identification code with the image hash value to generate a key as a
seed generation sequence, and then DCT transforms the image. This algorithm
not only reduces the redundancy of the video signal, but also guarantees the
robustness and security of the algorithm. Bender W suggested a digital water-
mark based on statistics [15], which selects a certain number of arbitrary pairs of
image points in the image. When the brightness of one point in each pair of image
points increases, the brightness of the corresponding other point decreases. To
achieve the loading of the watermark, this method has good concealment and
strong resistance but is not suitable for images with only a small amount of
arbitrary texture.

1.2 Motivation

Although there are many methods for covert communication, however, we can
only find a few experiments and applications on the Blockchain. In paper [16],
Juha Partala et al. firstly suggested a method of submitting covert messages
through a Blockchain considered as a payment platform. The overview of his
ideal is to separate the message into unit bit and use the LSB (Least Significant
Bit) of the address to match the unit bit, if the unit bit accords with the LSB
then we use this address to do a transaction, repeat previous steps after this
transaction is recorded into a block, finally the receiver can restore the message
in a specific order.

This is an innovative way for covert communication in Blockchain, but it still
exists some problems as follows:

1. In paper [16], they only provide a simplified Blockchain model hypothetically
and discuss their scheme all in theory, in practical use it is hard to verify the
feasibility of their named BLOCCE scheme.

CCBRSN for Covert Communication in Bitcoin 327

2. A block is produced in Blockchain will cost users several minutes, if you want
to transmit all bits of the message but one block only has one transaction,
the whole process will need a long time to be finished. The timeliness of the
message can’t be promised.

3. Every transaction needs transaction fee, if the number of transaction is huge,
you should pay a colossal sum of money. The Performance-to-Price ratio of
this communication may be low. Although there are some Blockchains which
don’t need transaction fee, it seems this problem could be solved. In fact,
most of them are not the mainstream, we can’t ensure their security.

Hence, we try to find a more practical and efficient way for covert communi-
cation on Blockchain.

1.3 Our Contributions

In this paper, we propose a scheme—CCBRSN which realizes covert communi-
cation on the Bitcoin’s Regtest network. We also base on this scheme to develop
a visualized operating system for the users. The users who join this network
and use our devised tools can exchange messages safely, efficiently, conveniently.
The main procedure of our ideal is to use DES and Base58 to encrypt and code
the message successively, then we embed the ciphertext into a set of addresses
in order, finally, we employ this set as output to conduct a transaction. After
a transaction, a file for decryption will be produced. When the transaction is
recorded into the Bitcoin ledger, the opponent can import the above-mentioned
file into our tool to track this particular transaction and decrypt the ciphertext
automatically. There are two remarking characteristics of our measures. One
is we increase the embedded rate of address, which means one address can be
embedded more information. The other feature is a message needn’t be sepa-
rated into multiple transactions, we can only use one transaction to transmit
the whole address set(message) in most of the time. Although this system is
proposed for Bitcoin, while other Blockchain only if which adopts address can
also use this model to construct a covert communication system.

1.4 The Organization of Remaining Paper

The rest of the paper is organized as follows. Section 2 explains the preliminaries
for the rest of the paper, such as the structure of Blockchain we use, the configu-
ration of Regtest Network, the method of encryption, coding and threat model.
Section 3 describes the detail of our proposed CCBRSN Scheme. The experiment
environment and evaluation are presented in Sect. 4. Finally, we conclude and
propose future work in Sect. 5.

2 Preliminaries

2.1 The Structure of Blockchain

The birth of Bitcoin creates the conception of Blockchain. All the nodes in the
Blockchain maintain a public ledger. When each transaction is produced, it will

328 W. Wang and C. Su

be verified by all nodes to ensure no error. After checking, this transaction will
be packed into a block in the structure of the Merkle tree and added into a
decentralized ledger. The relation between transaction and block is illustrated
in Fig. 1.

Fig. 1. The structure of Block.

The biggest difference between Bitcoin and other systems is whether or not
exists a central trusted authority. Blockchain is a decentralized system, in this
network trust is achieved by every participated node. If there is an attacker who
attempts to take charge of the system, firstly he must occupy the 51% computing
power of the entire Blockchain. However, it is difficult for common people to get
enormous computing power. For this reason, Blockchain is quite safe, people can
feel free to do the transaction on them.

Blockchain technology has attracted enormous investors and researchers from
fields of healthcare, finance, transportation, government and so on. Until now,
there are various applications that are built on the Blockchain, such as smart
contracts, intelligent transportation, and identity verifying, etc. Bitcoin is a
“first-generation” Blockchain, Ethereum broke the mold by becoming the first-
ever second-generation Blockchain. Ethereum revolutionized the crypto-space
by bringing in smart contracts on the Blockchain. Smart contracts were first
conceptualized by Nick Szabo. The idea is simple, have a set of self-executing
instructions between two parties that don’t need to be supervised or enforced by
a third-party. The idea seems pretty straightforward. However, smart contracts
enabled Ethereum to create an environment wherein developers from around the
world could create their decentralized application aka Dapps [17].

2.2 The Configuration of Regtest Network

Bitcoin and most other cryptocurrencies have 3 modes of operation. Mainnet
is the network which is used as the official version, and it has value. All real
transactions happen on this network, people get paid or pay using Mainnet.

Testnet, a network which has almost the same rules (some opcodes are for-
bidden on Mainnet, while this restriction is lifted on Testnet) as Mainnet. It

CCBRSN for Covert Communication in Bitcoin 329

has peer discovery, that is it can find peers on the Testnet network, similar to
Mainnet, and a peer-to-peer (P2P) network is running it.

Regtest is a private Blockchain which has the same rules and address format
as Testnet, but there is no global p2p network to connect to [18]. It is con-
venient because this feature makes us easily to build Bitcoin network in local.
After dowloading the Bitcoin core client, only one thing we need do configuring
Bitcoin.conf file to change network from Mainnet to local Regtest network.

Fig. 2. The successful execution of Regtest network.

From the Fig. 2, we can see the program shows Bitcoin client version and the
information of network creation. It means the local network have been estab-
lished successfully. Then we can use bitcoin-cli commands to execute some oper-
ations in the Bitcoin network, such as send transactions or get block information.

2.3 The Method of Encryption and Coding

In this model, we do two operations on original message, one is DES encryption,
the other one is Base58 encoding.

In the covert communication, it is necessary for us to encrypt the message
firstly in case of disclosure. At present, maybe the encryption of DES are not
strong enough very safe, an attacker who attempts to use brute-force can crack
the ciphertext. As a result, many corporations and individuals tend to choose
other encryption such as AES, RSA. In the consideration of achieving a bal-
ance between simplicity and security, the DES encryption is better. Because the
outcome of DES encryption is shorter than AES or 3DES, and the security of
message can be ensured in some ways. The length of ciphertext is of great impor-
tance for transaction. In theory, the shorter one needs less addresses to match.

330 W. Wang and C. Su

Hence, we select DES as our encryption scheme, which can increase the huge
efficiency of embedded rate.

After encrypting, then we should use Base58 to encode our encrypted mes-
sage. In Bitcoin, the adaptation of coding scheme is Base58, if we want to embed
ciphertext into addresses, the absolutely necessary thing is to unit the coded sys-
tem. Then we can make some matches.

Finally, the system will produce a decrypt file for receivers to find the original
message. We put another DES encryption to this decrypt file again, which can
resist the cryptoanalysis from the leakage of the this file.

2.4 Threat Model

Here, we assume there are some attackers in our model who attempt to tamper
or intercept message, cryptoanalyse transaction.

If attackers attempt to tamper data on the Bitcoin, it means they should
create enough fake identities, which can repel real nodes on the network by a
majority of votes. Then fake nodes can reject the receive or transfer blocks,
effectively preventing other users from accessing the network. In the relatively
large-scale Sybil attack, the premise is that when the attackers have controlled
most of the computer network or hash rate, they can carry out the system attack
covering 51%. In this case, they can easily change the order of the trades and
prevent the trades from being confirmed. They can even take over and reverse
transactions, leading to a double payout problem. But Bitcoin mining is intense
and highly rewarding, most of the miners are keen on legitimate mining methods
instead of trying to conduct Sybil attack. Bitcoin as a covert communication
medium, which can guarantees the truth of the data [19].

All the transactions in the Blockchain are transparent, the attackers also
can witness the generation of these transactions. If a user continues to transmit
overlong length of messages, the attackers may notice the continuous transactions
with multiple output addresses. Maybe they will analyse these transactions,
even if they distinguish some transactions from the same sender, they still can’t
understand how to restore the addresses to the ciphertext. Because our model
CCBRSN takes a special rules to embed messages into addresses and use DES
to encrypt the decrypt file again. The only way to crack the ciphertext is to
intercept the decrypt file the model produced and get access to our tool at the
same time. In fact, it seems very impossible unless the user reveals initiatively.

3 The Proposed CCBRSN Scheme

In this section, we give an exhaustive description of our scheme called CCBRSN.
Firstly we introduce the configuration of the Regtest network in Bitcoin. Then
we describe the overview of our method. At last, we will talk about the process
of embedding and restore in detail.

CCBRSN for Covert Communication in Bitcoin 331

3.1 General Overview of CCBRSN

In our scheme, User A wants to send an encrypted message to User B through the
Bitcoin, however, User A doesn’t expect this message is revealed or decrypted
to anyone other than User B. Due to consensus algorithm in Bitcoin, if User A
completes all the process of sending, anyone even User A himself can’t change
the content of the message. For malicious guys, they also have no ability to
tamper the text of the message because of this feature in Bitcoin. The general
procedure of our scheme is as follows:

1. User A inputs a message m that he wants to send.
2. User A enters a password k for DES encryption, the outcome of encrypting

m is DESk(m). Then DESk(m) is encoded into Base58(b) by Base58.
3. User A applies ECDSA to generate a pair of private and public key(s(1)k , p

(1)
k)

4. User A starts with the p
(1)
k , computes the SHA256 hash and then computes

the RIPEMD160 hash of the result, finally uses Base58 to produce an address
a(1).

5. User A compares each bit of Base58(b) with each bit of a(1). If the match is
successful, then User A will record the corresponding indexes of Base58(b)
and a(1)setm[[1, 2, ..., n], ..., [1, 2, ..., n]] and seta[[1, 2, ..., n], ..., [1, 2, ..., n]].

6. User A replaces the corresponded bits in Base58(b) with *, then Base58(b)
will be transformed into Base58(b1). User A continues to use Base58(b1) to
repeat the above steps until all bits in Base58(b1) are matched.

7. User A submits a transaction whose output addresses are a(1), a(2),
a(3), ..., a(n). Transaction fee of each address are in a address generated time
order. After sending process, a file File will be produced.

8. For the protection of information in the file, we should use DES encryption
with a defined key in advance to encrypt the File to encF ile again.

9. Until this transaction is packed into a block, User B can import file encF ile
to restore the message.

Fig. 3. The process of execution.

332 W. Wang and C. Su

During the entire transaction, User A only pays a little money for transaction
fee. Because all pairs of private and public key are all in User A’s charge, he
can transfer back the money. Although we base this system on Bitcoin, other
Blockchains who accept address can also use this model to build a new covert
communication system on their own. The detailed steps have been illustrated in
the Fig. 3.

3.2 Messages Embedment

In this section, we explain the detailed steps of the embedding algorithm. Firstly,
we assume that User A can transmit encrypt file to User B in a public channel.
Although somebody could intercept this file, however, it is hardly possible for
him to find our tool for decryption. In the initial stage, we use DES to encode the
original messages. Now DES is not safe which can be cracked by some analysis.
Considering the length of the outcome, we still choose this encryption algorithm.
Like Base64, Base58 is also a specific coding scheme that is employed in the
Bitcoin system. To make our ciphertext correspond with address, we take the
same way to encode text.

In our model, we build our test experiment on the Bitcoin Regtest network.
Even though, Regtest is developed in local and doesn’t have all the abilities of
Mainnet. It still can satisfy most of the requirements it needs, for example, the
generation of public and private keys, generate address, transaction and so on.

The following Algorithm 1 is our embedding procedures.

Algorithm 1. Messages Embedding Algorithm

1: procedure Embed(k,m)
2: c ← DES(k,m)
3: b ← Base64(c)
4: n ← 0
5: while b != ′ ∗ ∗... ∗ ∗′ do
6: n ← n + 1
7: s

(n)
k ← Random(20, 2256)

8: p
(n)
k ← KeyGen(s(n)k)

9: a
(n)
k ← BASE58(RIPEMD160(SHA256(p(n)k)))

10: Flag ← False

11: for each bit1 in a
(n)
k do

12: for each bit2 in b do
13: if bit1 == bit2 then
14: Flag ← True
15: setAddrindex ← IndexOf(bit1)
16: setMsgindex ← IndexOf(bit2)
17: end if
18: end for
19: end for
20: if Flag == True then

CCBRSN for Covert Communication in Bitcoin 333

21: setAddraddr ← a
(n)
k

22: end if
23: end while
24: if setAddraddr != NULL then
25: TxID ← Transaction(setAddraddr)
26: encF ile ← Write(Enc(′wwz12345′),
27: setAddrindex, setMsgindex, TxID)
28: end if
29: end procedure

3.3 Messages Extraction

Extraction is the reverse process of embedment. User B will import the received
file into the system to restore some important parameters. Then User B uses the
value of TxID to locate the corresponding transaction information and find all
the addresses. Finally, User B can decode and decrypt the ciphertext to plaintext.
The detailed procedure of extraction is described in Algorithm2.

Algorithm 2. Messages Extraction Algorithm
1: procedure Extract(File)
2: File ← Dec(′wwz12345′, encF ile)
3: TxId ← Restore(File)
4: setAddrindex ← Restore(File)
5: setMsgindex ← Restore(File)
6: k ← Restore(File)
7: setAddaddr ← FindTx(TxID)
8: b ← Match(setAddrindex, setMsgindex,
9: setAddraddr)

10: c ← deBase64(b)
11: m ← Dec(c, k)
12: end procedure

4 Experiment and Evaluation

4.1 Experiment Environment

Our model is deployed in Windows 10. The main used tools are Bitcoin Core
0.18.1 client and python 3.6. Based on the scheme we proposed, we use python
and the package of bitcoinlib to develop a covert communication system which
connects to the Bitcoin Regtest Network. Users can use this system to transmit
messages in this self-built network at any time. For the evaluation of our model,
we choose 10 different length of text from 5 bits to 50 bits. Then inputting
random generated data to the tool we developed, every type of text is tested 100
times for the accuracy of the experiment. Then we calculate the average value
for our experiment.

334 W. Wang and C. Su

4.2 Evaluation Results

We are from three aspects to build experiments for the evaluation of our model.

1. Embeded Rate: Firstly, we use our dataset to analyse the embed rate of
generated addresses. As we can see from Fig. 4, although there is a fluctuation
during the whole process, overall the reuse rate of address becomes higher
with the increment of text length. The increment is very apparent, at last,
the embed rate even reaches to 11.08%.

Fig. 4. The embed rate in CCBRSN Fig. 5. The encrypt rate in CCBRSN

Fig. 6. The decrypt rate in CCBRSN

2. Transmission Rate: We record all the time from inputting data to the gen-
eration of decrypt file. Figure 5 describes the transmission rate between the
length of messages and the transmission times. At the beginning, the encrypt
rate is a little low which is just around 2.15 bit/s. Because there are 34 bits
text in address, whereas, some bits in an address are also repetition. If we
attempt to pair address and text, the short length of sending text need the
same number of addresses like long ones. Hence the first step will cost fixed

CCBRSN for Covert Communication in Bitcoin 335

time, then the processing time will slow down and have a little difference.
Once the length of text increases a lot, the rate of address utilization will be
raised, then the embed rate will have a huge gap. As we can see from the
figure, the fastest transmission rate can be up to 19.97 bit/s. Therefore, at
first, the transmission rate is very low, but as length increases, the transmis-
sion rate is getting faster. In conclusion, the increment of bits corresponds
with the trend of the time, and the transmission time is in the tolerance
interval.

3. Decryption Rate: Figure 6 shows the decrypt rate in CCBRSN. We can see
decrypt rate is the same as encrypt rate, which is very low at the beginning,
then high at the ending. The reason for explaining this phenomenon is the
same as embed rate. However, in this stage, the difference is restoring message
dominates the main time, other things only have a small effect on it. Hence,
the tiny increment of text size leads to enormous improvement in decrypt
rate, which even achieves 23.56 bit/s. Although the decrypt rate is not fast at
the beginning, but there are always some delays in communication, decrypt
time is around 2 s which is also considered as acceptable.

4.3 Compared with Other Schemes

Few related papers also take blockchain as a covert channel medium. In the paper
[16], they proposed a pioneering concept attempts to conduct covert communi-
cation in Blockchain and give us a simple example. BlBasuki et al. [20] suggested
joint steganography by utilizing blockchain-based transaction steganography and
image steganography to achieve a secure and secret communication medium. We
try to use the following tables to analyze the pros and cons of these methods.

Table 1. Transaction steganography comparison

Method Capacity/transaction Security Blockchain networks

BLOCCE 2000 bits + Any

JTISHCC 29 bits ++ Ethereum

CCBRSN 68000 bits ++ Any(default: Bitcoin)

As we can see from Table 1, in the aspect of capacity, our scheme-CCBRSN
has the overwhelming advantages of the other methods. Due to the reuse fea-
tures of the addresses, if possible CCBRSN can make use of every bit in an
address(most of the addresses have 34 bits). The max number of addresses in
a transaction is usually between 2000 and 3000. When it refers to security, our
scheme uses Des encryption and special coding rules to ensure the privacy of our
content. Simultaneously, only if the blockchain who has addresses for the transac-
tion, our schemes can be applied to, therefore the appliance is rarely widespread.
Based on the above analysis, CCBRSN is suitable for covert communication.

336 W. Wang and C. Su

5 Conclusions and Future Work

In this paper, we present a method which is called CCBRSN. This method firstly
encrypts and encode plaintext into a specific type, then embed this type of mes-
sage into Bitcoin’s addresses, finally construct a transaction that includes these
addresses to transmit information. If this transaction is finished successfully, a
decrypt file will be produced. If a user who owns the decrypt file can input it
into the same system, then the plaintext will be restored.

Although our way has successfully implement covert communication on Bit-
coin, It still needs further improvement. For example: 1) Our model is just based
on local network, so we don’t take deeply consideration of the crowd of transac-
tion, the latency of the block generation and so on which really exists in public
network. 2) We use multiple match to greatly improve the efficiency of transmis-
sion. However if a user attempts to send a huge size of message such as document,
the number of address may reach thousand or even ten thousand, then the size
of a transaction will exceed the rated value. As a result, this transaction can’t be
generated. 3) Decrypt file is significant for receivers, users will use this specific
file to restore message. Nonetheless, we don’t know people how to transmit it,
maybe in a public communication way. If an attacker intercepts this file and just
right has access to this tool, the security of transmission can’t be ensured. 4)
In the future research, we can attempt to apply our model to other Blockchain
systems.

For the improvement of our scheme, we will attempt to take some counter-
measures to solve the above mentioned problems in our future research.

Acknowledgement. This work is partly supported by JSPS Kiban(B) 18H03240 and
JSPS Kiban(C) 18K11298.

References

1. Zhang, W., Zhao, N., Zhang, S., Yu, F.R.: Multi-antenna covert communications
with random access protocol. arXiv preprint arXiv:1907.07481 (2019)

2. Brown, E., Yuan, B., Johnson, D., Lutz, P.: Covert channels in the HTTP network
protocol: Channel characterization and detecting man-in-the-middle attacks. In:
5th European Conference on Information Management and Evaluation, ECIME
2011 (2011)

3. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert channels in IPv6. In: Danezis,
G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 147–166. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11767831 10

4. Ji, L., Jiang, W., Dai, B., Niu, X.: Novel covert channel based on length of mes-
sages. In: Proceedings of International Symposium on Information Engineering and
Electronic Commerce. IEEC 2009, vol. 2009 (2009)

5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system—Satoshi Nakamoto
Institute. Technical report, bitcoin.org (2008)

6. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

http://arxiv.org/abs/1907.07481
https://doi.org/10.1007/11767831_10

CCBRSN for Covert Communication in Bitcoin 337

7. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation sys-
tems. In: IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC (2016)

8. Pawlak, M., Poniszewska-Marańda, A., Kryvinska, N.: Towards the intelligent
agents for blockchain e-voting system. Procedia Comput. Sci. 141, 239–246 (2018)

9. The number of tera hashes per second in the bitcoin network. https://www.
blockchain.com/zh-cn/charts/hash-rate. Accessed 17 Oct 2019

10. Zhou, Q., Huang, H., Zheng, Z., Bian, J.: Solutions to scalability of blockchain: a
survey. IEEE Access 8, 1–10 (2020)

11. Guo, L., Ni, J., Shi, Y.Q.: Uniform embedding for efficient JPEG steganography.
IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)

12. Asad, M., Gilani, J., Khalid, A.: An enhanced least significant bit modification
technique for audio steganography. In: International Conference on Computer Net-
works and Information Technology, pp. 143–147. IEEE (2011)

13. Balaji, R., Naveen, G.: Secure data transmission using video steganography. In:
2011 IEEE International Conference on Electro/Information Technology, pp. 1–5.
IEEE (2011)

14. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum water-
marking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

15. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM
Syst. J. 35(3.4), 313–336 (1996)

16. Partala, J.: Provably secure covert communication on blockchain. Cryptography
2(3), 18 (2018)

17. Different Blockchains: Ethereum vs cosmos vs hyperledger and more! https://
blockgeeks.com/guides/different-blockchains/. Accessed 20 Oct 2019

18. How to set up a bitcoin regtest environment. https://bisq.network/blog/how-to-
set-up-bitcoin-regtest. Accessed 19 Oct 2019

19. Huang, H., et al.: Real-time fault-detection for IIoT facilities using GBRBM-based
DNN. IEEE Internet Things J. (2019)

20. Basuki, A.I., Rosiyadi, D.: Joint transaction-image steganography for high capacity
covert communication. In: 2019 International Conference on Computer, Control,
Informatics and its Applications (IC3INA), pp. 41–46. IEEE (2019)

https://www.blockchain.com/zh-cn/charts/hash-rate
https://www.blockchain.com/zh-cn/charts/hash-rate
https://blockgeeks.com/guides/different-blockchains/
https://blockgeeks.com/guides/different-blockchains/
https://bisq.network/blog/how-to-set-up-bitcoin-regtest
https://bisq.network/blog/how-to-set-up-bitcoin-regtest

Privacy-Friendly Monero Transaction
Signing on a Hardware Wallet

Dusan Klinec(B) and Vashek Matyas

Masaryk University, Brno, Czech Republic
{xklinec,matyas}@fi.muni.cz

Abstract. Keeping cryptocurrency spending keys safe and being able to
use them when signing a transaction is a well-known problem, addressed
by hardware wallets. Our work focuses on a transaction signing process
for privacy-centric cryptocurrency Monero, in the hardware wallets. We
designed, implemented, and analyzed a privacy-preserving transaction
signing protocol that runs on a hardware wallet and protects the spending
keys. Moreover, we also implemented a privacy-preserving multi-party
version of the Bulletproof zero-knowledge prover algorithm, which runs
on a hardware wallet with constant memory. We present the protocols
and evaluate their performance on a real hardware wallet.

Keywords: Monero · Transaction signing · Bulletproofs ·
Zero-knowledge system · Multi-party computation · Hardware wallets

1 Introduction

Cryptocurrencies gained popularity and increased adoption by general public
in the recent years. They became a valuable asset worth protecting. In the vast
majority of the cryptocurrency designs, the only thing needed to transact (spend)
the coins is a cryptographic key (master key). Recently, we have seen several
attacks on the software wallets storing the master keys and leading to coin
thefts [4,11].

Software wallets are inherently vulnerable to malware threats, so users seek
better ways to protect their cryptographic assets. One option is to use a dedicated
hardware device, the hardware wallet, that stores the master key securely and
performs the signature on the transactions specified by the user. The device
can be equipped with a display to show the transaction details to the user (e.g.,
destination and the amount) and buttons to confirm the transaction information.
As the hardware wallet (HW) is a special-purpose device, it has a much smaller
attack surface than a PC. The HW is limited and usually needs a PC client for
operation, e.g., transaction construction, transaction scanning.

Bitcoin, the first massively used cryptocurrency, does not provide much
privacy to its users. i.e., the whole transaction history is stored in a public

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 338–351, 2020.
https://doi.org/10.1007/978-3-030-58201-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_23

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 339

blockchain (append-only ledger), it contains source, destination addresses (cryp-
tographic keys, pseudonymous identifiers), and transacted amounts in a clear
form so the attacker can mount several chain analysis techniques to trace the
financial flow between the users. On the other hand, creating the signature and
implementing the logic in the HW is usually straightforward as it requires just
transaction serialization logic and ECDSA signature over the data.

We focus on a privacy-centric cryptocurrency, Monero [1], which is the most
used privacy-centric cryptocurrency1. In Monero, all destination addresses are
unique, and the amounts being transacted are hidden using Pedersen commit-
ments [9]. The secure implementation of the Monero transaction signing is thus
a more challenging task. Moreover, HWs are resource-constrained devices with
limited memory and computational power.

For the practical testing, we choose a Trezor HW model T2 (Trezor for short)
as it represents a class of HWs with generally available processors used in the
embedded devices, with around 100 kB of RAM. It runs Micropython3, a Python
version for resource-constrained devices.

Contribution: This work builds on our previous technical report [5] and for an
extended version of this paper please refer to the [6]. We designed and imple-
mented a Monero transaction signing protocol for HWs. The protocol is simple,
which helps with the security analysis. Moreover, it mimics the already deployed
cold-signing protocol [5] used with offline Monero wallets. We implemented the
protocol to Trezor and Monero codebases, and it is being used in practice. More-
over, we designed and implemented a secure multi-party protocol (MPC) version
of a zero-knowledge proving system called Bulletproof [3], which uses constant
memory and works on HWs. The MPC version protects private values, from
PC-based attacker. To the best of our knowledge, this is the first MPC imple-
mentation of the Bulletproof runnable on HWs.

General Methods: As the HW is a resource-limited device, the general methods
for converting arbitrary protocols into MPC, such as Garbled circuits [10], are
not applicable, as those usually require significantly more memory and running
time than we have available. We thus resort to a more effective protocol offloading
design tailored specifically to the application domain, to preserve the practical
usability of the resulting protocol.

1.1 Cryptocurrency Primer

The elementary operation of transacting a particular amount from a sender to
a receiver is called transaction. The transaction is an atomic state transition.
Transactions are stored in the blocks, the block contains a hash of a previously
generated block, thus forming a ledger of blocks, a blockchain. A new block is
created every 10 min.

1 By the market value https://coinmarketcap.com, accessed on 5. 1. 2020.
2 https://wiki.trezor.io/Trezor Model T.
3 https://micropython.org.

https://coinmarketcap.com
https://wiki.trezor.io/Trezor_Model_T
https://micropython.org

340 D. Klinec and V. Matyas

Transaction has |T in| = m inputs T in
j , |T out| = p outputs T out

t and a fee. The
amounts values in the input and the output side have to be equal, i.e.,

∑m
j=1 vin

j =
∑p

t=1 vo
t + fee, so the transaction is a valid state transition (and no value is lost

or created). Let’s denote transaction outputs TXOs. Transaction inputs are also
called unspent transaction outputs (UTXOs). UTXOs are addresses that have
a non-zero balance that can be spent. A balance can be trivially computed by
replaying all transactions recorded in the blockchain. Blockchain clients usually
track all UTXOs and update the state with each new block.

Transaction construction is controlled from the PC client as it scans the
blockchain for UTXOs that can be spent. A user enters the transaction recipi-
ent addresses and amounts on the PC. The client then performs the transaction
signing protocol with an HW to obtain a signed transaction. The signed trans-
action is then broadcasted to the cryptocurrency network and eventually added
to a block.

The Monero user wallet has two key-pairs, (kv,Kv) and (ks,Ks), the view-
key, and spend-key, respectively. The view-key is used to scan the blockchain for
incoming transactions to the user wallet; the spend-key is required to create a
signature for spending the incoming coins.

1.2 Attacker Model

HWs are considered as trusted in all attacker models in this paper, i.e., HW
securely stores master keys, and an attacker can gain no knowledge by observing
and tampering the HW device. We only focus on an attacker controlling the
PC client. The honest-but-curious attacker model is defined by an attacker that
obeys the protocol precisely but tries to learn new information observing the
protocol transcripts. The malicious attacker model is stronger, an attacker can
arbitrarily deviate from the protocol. He can start multiple instances of protocols,
interleave protocol runs, send, replay, delay, or drop any protocol messages.

1.3 Notation

We use a standard notation used in the related literature, such as [1,3]. Due to the
paper application domain in the Monero transactions, we use the elliptic curve
(EC) Ed25519 [2] as a specialization of the cyclic group G of the prime order l,

let’s denote Zl the ring of integers modulo l. The Z∗
l denotes Zl\{0}. The x

$←− Z
∗
l

denotes a uniform sampling of an element from Z
∗
l . Capital letters represent

points on the curve G, lower-case letters represent scalars from Z
∗
l unless said

otherwise. We use the EC additive notation for G, e.g., P +Q is a point addition,
aP = (P + · · · + P) is a scalar multiplication, 0P = O, i.e., neutral element,
point in infinity. Let Fn denote a vector space over F, the a ∈ F

n is a vector from
the vector space with elements a0, . . . , an−1 ∈ F. The a · b =

∑n−1
i=0 aibi denotes

a dot-product of a, b ∈ F
n, the a ◦ b = {(aibi)}i is element product. We also use

Python notation for vector slicing, i.e., a[:l] = (a0, . . . , al−1), a[l:] = (al, . . . , an).
For k ∈ Z

∗
l , the kn ∈ F

n denotes the vector k|i| = ki. The G is a generator of the

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 341

G, i.e., a base point. Let’s define a cryptographic hash function H : {0, 1}∗ →
{0, 1}256, the Hp : {0, 1}∗ → G is a cryptographic hash function to curve points,
Hs : {0, 1}∗ → Z

∗
l is a cryptographic hash function to scalars. Moreover, let’s

define H = Hp(G), a point of unknown logarithm. Binary format of the scalars
and points is 256 bits long. Let’s denote the binary concatenation as || and a
key derivation function as KDF(x) = H(H(x)).

2 Transaction Signing Protocol

Ring signatures are signatures generated by a single private key kπ corre-
sponding to the public key Kπ which is in the ring of unrelated public keys
R = {K0, . . . ,Kπ, . . . ,Kn}. The verifier is not able to tell which Ki ∈ R gen-
erated the signature. This provides n-anonymity for the signer. Keys Ki, i �= π
are called decoy keys. Let’s define n = |R|, i.e., the ring size.

Monero uses Schnorr-style multilayered linkable spontaneous anonymous
group signatures (MLSAG) [8]. The linkability is a property that links signa-
tures generated with the same private keys. The linked signatures have the same
key image (explained later). Signatures with already seen key images are con-
sidered as invalid to protect from double-spending the same UTXO.

Monero uses the Pedersen commitment to conceal the transacted amounts
and to prove that transaction input amounts are equal to transaction out-
put amounts. A Monero range proof is a zero-knowledge proof that the TXO
amount encoded in the scalar value v ∈ Z

∗
l lies4 in the interval of allowed values

[0, 2N], N = 64. The range proof is an essential part of the confidential transac-
tions as it protects from overflows and new coin generation.

The transaction generator takes T in and set of destination addresses and
amounts T out and produces a transaction with signature. The value |T in| can be
quite high and is limited by the fee the user is willing to spend for the transaction
to be added to the blockchain and the current block size. The current Monero
protocol version (0.15.0.1), i.e. hard-fork, specifies that for a valid transaction
it holds that 2 ≤ |T out| ≤ 16. Thus the |T in| is the main limiting factor for the
transaction generator with respect to the memory. The ring size n is fixed to 11
at the current version, but it is likely to increase in the future.

It is not feasible to construct a transaction in the HW in one pass. Thus the
building process has to be separated into several steps so it can be computed
with limited memory. We designed, implemented, and tested the transaction
generation protocol that runs in the HW with unlimited T in (the protocol).

Transaction Signing Protocol with State Offloading: The offloaded sign-
ing protocol is described fully in the extended paper [6]. Here we explain only
key ideas of the protocol construction.

A state offloading is required to build the transaction incrementally. Some
parts of the state are sent to the host for later retrieval during the trans-
action construction. The protocol uses HMAC to protect the public state

4 v in Pedersen commitment γG + vH, γ
$←− Z

∗
l . Refer to Sect. 3 for more details.

342 D. Klinec and V. Matyas

parts, e.g., parts of the final transaction, and an authenticated encryption
(Chacha20Poly1305) for private state information, e.g., T in private spending
keys.

All MLSAG signatures are generated in the HW, the ks never leaves the
device, while the kv is exported to the host so it can scan all blockchain trans-
actions to determine whether the funds were sent to the recipient wallet keys.
Performing the blockchain scanning with the device would be inefficient.

The transaction is built on the host incrementally, from the information
provided by the HW. In general, the host sends initial transaction information
to the HW. The user is asked to confirm transaction details on the HW screen,
such as destination address, amounts, and transaction fee. If confirmed, the HW
generates HMACs for transaction input elements so they cannot be changed
later (commitment to values).

Then all T in are sent to the HW one by one; the HW derives required sign-
ing keys, serializes T in to blockchain format, incrementally hashes information
required for later MLSAG construction. Then destination information is sent
one by one; the HW generates T out related information, serializes T out to the
blockchain format, range proof generation (see Sect. 3) is handled. Finally, the
MLSAG is generated per T in.

Key Construction Scheme: Let’s describe HMAC key construction on the T out

example, generated after user confirmation. HW returns to the host T out: {T out
i ,

HMAC(T out
i , key= KDF(kmac ||“txdest”||i))}i, where kmac is a random HMAC

master key generated per-transaction. The HMAC keys construction prevents
from changing destination specification later in the protocol by an attacker. All
the offloading keys used in the protocol are generated correspondingly, i.e., the
keys are unique per offloaded element to make the protocol strictly commit to
the offloaded values and their ordering. The key is derived from the master keys,
the domain separator, e.g., “txdest”, and the item index.

Encrypt-then-Reveal: In order to limit the attacker’s reactivity, MLSAG signa-
tures are returned encrypted to the host. The encryption key is returned to the
host after the protocol finishes successfully.

Analysis: The protocol is based on the cold-signing protocol [5] implemented
in Monero codebase, which takes all transaction inputs T in, transaction outputs
T out, asks the user to confirm transaction outputs, and a fee and generates a
valid Monero transaction. Cold-signing protocol is trivially secure as it is evalu-
ated in a secure environment (offline Monero wallet), and the user confirms all
transaction outputs. Our offloaded protocol mimics the cold-signing protocol. It
is evaluated in a HW, which is considered a secure environment. The transaction
is constructed incrementally, from the basic input blocks T in, T out sent one by
one to the HW. The user confirms the T out on the HW, as it has a display
and touch screen. After the confirmation is done, the HW generates HMAC for
confirmed T out. Thus it cannot be later modified by an attacker.

Each call is guarded by a state automaton, set up in step 1 by the parameters
of the transaction. This prevents from calling protocol methods in a different

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 343

than expected order. Moreover, due to HMAC and encryption key construction,
it is not possible to modify, reorder, reply, or drop the offloaded state elements.
Protocol aborts if invalid input is provided.

The only place where the ks is used is during spend key computation, during
T in construction. The result of the computation is offloaded in an encrypted
form, which could only be used as input in the last protocol step, during MLSAG
generation per each T in. MLSAG signature is generated over hash commitment
m, which hashes the entire transaction specification (T in, T out). The protocol is
thus secure in the malicious attacker model as cheating in each protocol step is
detected by HMAC, auth tag, or state transition failure.

The only information the attacker can obtain from the protocol runs (without
a need to finish the protocol) is key images corresponding to the T in

j . The key
images are part of the constructed transaction. As we need the host to sort key
images so some kind of order-preserving encryption would have to be used to
protect key images from leaking before the protocol finish. However, we do not
consider this as a required measure as the key images are computed during the
blockchain scanning once the transaction sent to our wallet has been found.

Performance and Space Complexity: The space complexity is determined
by O(n + p), i.e., by a ring size and the number of the transaction outputs, i.e.,
n = 11 and p ≤ 16 in the current Monero version. The whole ring is needed only
for the MLSAG signature, which can be easily extended to support large rings. If
the p is increased later, the protocol can be easily changed to offload all output-
related values. The transaction signing protocol implemented in Micropython

Table 1. Performance of the transaction signing protocol on Trezor HW. The algo-
rithm was tested on the emulator and Trezor T HW. Configuration is a tuple (#inputs,
#outputs). The first metric, “Time emu”, is a runtime in an emulator, other statistics
are from runs on the real hardware. “

∑
Steps” is protocol computation time without

communication overhead, “rounds” is a total number of message round-trips. Rows
with “State” show a maximal state size over the protocol, where “real” is the real
size measured in the implementation, “min” is the minimal space required, without
Micropython objects overhead. Note that the range-proof is not included in the statis-
tics as it is measured separately in Sect. 3. It is visible that the state size is constant,
and timing is linear to the number of inputs.

Configuration 2-2 16-2 32-2 64-2 128-2 2-16

Time Emu [s] 9.31 29.93 58.13 106.32 209.88 21.45

Time [s] 16.90 83.22 156.82 306.74 604.09 46.13
∑

Steps 12.49 56.30 106.69 207.33 408.42 36.62

Rounds 14 56 104 200 392 28

RAM [B] 41 264 42 176 42 208 42 048 58 512 41 376

State min [B] 2 385 2 385 2 385 2 385 2 385 4 406

State real [B] 5 315 5 315 5 315 5 315 5 315 9 224

344 D. Klinec and V. Matyas

for Trezor HW was tested with various input transactions. Refer to Table 1 for
performance overview data.

3 Range Proof

A range proof is a zero-knowledge proof that the amount encoded in a scalar v ∈
Z

∗
l (256-bit number for Ed25519), lies in the interval [0, 264), without revealing

the amount value. Range proof computations are the most resource expensive
operations in the transaction construction (time and memory). Thus it makes
sense to offload the computation to the host.

The range proofs make use of commitments V = γG + vH, where γ
$←− Z

∗
l

is a mask, and the V is part of the publicly stored information. If the attacker
generates the masks in a special way, he can exfiltrate information about the
keys or the transaction. From the binding property of the commitment scheme
which relies on the discrete logarithm problem, it is infeasible to find a different
v′, γ′, s.t. γ′G + v′H = γG + vH. The attacker already knows the amount as
he observes the transaction construction, but knowing the masks enables the
attacker to prove the amount to a third party (e.g., court). This poses a privacy
risk as the attacker can prove that he has seen the transaction construction or
knows the amount keys.

The Bulletproof [3] (BP) is the range proof system used in Monero. The
proof size increases logarithmically with respect to the number of statements
(transaction outputs). BP can prove statement of the form M = 2x. We imple-
mented the memory-optimized prover version for the Trezor HW, described in
Algorithm 1.

Space Complexity: Up to the while-loop on line 29, all vectors can be evaluated
on-the-fly with a constant memory and low CPU overhead with just v,γ stored.
Vector foldings on lines 36–39 dominate the space complexity. Overall the space
complexity is O(MN). Please refer to full paper [6] for detailed analysis.

Implementation: We implemented the in-memory Bulletproof prover as specified
in the Algorithm 1 and the verifier in Micropython and tested on the Trezor
HW. The memory usage is 32(128M +12log(M))+O(max(log(N),M)) B. The
verification algorithm runs with O(max(log(N),M)) memory. Table 2 shows the
performance of the prover and the verifier implemented on the Trezor.

3.1 Offloaded Bulletproofs

Due to increasing space complexity, it is not possible to generate BPs with
M ≥ 4 on the Trezor. We thus designed a new privacy-preserving secure multi-
party computation protocol (MPC) to compute Bulletproofs jointly with the PC
host and an HW with a constant memory on the HW side. We do not consider
the time and memory requirements of the protocol running on the host in the
following5.
5 Multiplying by 8−1 protects from small subgroup addition https://www.getmonero.

org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html.

https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 345

Algorithm 1. Bulletproof prover. N = 64,M = |v|,v is a vector of amounts
1 function BulletproofProver(v, γ) � Input: Amounts and masks
2 (V , A, S, T1, T2, τx, μ, x, h, l0,i, l1,i, r0,i, r1,i) ← BulletproofPrefix(v, γ)
3 li ← l0,i + xl1,i � Vector l
4 ri ← r0,i + xr1,i � Vector r
5 t ← l · r;;; x′ ← Hs(x||x||τx||μ||t) � Evaluated with const. memory up to here

6 (L, R, a′
0, b

′
0) ← BulletproofLoop(l, r, G̊, y−|H̊| ◦ H̊ , MN, −1, x′, x′)

7 return (V , A, S, T1, T2, τx, μ, L, R, a′
0, b

′
0, t)

8 function BulletproofPrefix(v, γ) � varint encodes integer to bytes
9 G̊i∈[0,...,MN) ← Hp(H(“bulletproof”||H||varint(2i + 1)))

10 H̊i∈[0,...,MN) ← Hp(H(“bulletproof”||H||varint(2i)))
11 Vj ← γjG + vjH � Compute commitment vector V used on line 18

12 α
$←− Z

∗
l � expand(v)=x:

∑63
i=0 2ix64j+i = vj , j ∈ [0, |v|), xi ∈ {0, 1}

13 aL ← expand(v);;; aR = aL − 1MN

14 A ← 8−1
(
αG +

∑MN−1
i=0 aL,iG̊i + aR,iH̊i

)
� Commitment over values

15 ρ, R
$←− (Z∗

l)
2 � randVct(j) = x : |x| = MN, xi = Hs(”mask”||R||i||j)

16 sL ← randVct(0), sR ← randVct(1)

17 S ← 8−1
(
ρG +

∑MN−1
i=0 sL,iG̊i + sR,iH̊i

)
� Commitment over random masks

18 y ← Hs(Hs(V)||A||S);;; z ← Hs(y) � Compute commitments over inputs
19 l0 ← aL − z1MN;;; l1 ← sL � Evaluated with const. memory, with v
20 ζi ← z2+�i/N�2i%N � Evaluated with const. memory and time
21 r0 ← ((aR + z) ◦ yMN) + ζ;;; r1 ← sR ◦ yMN

22 t1 ← l0 · r1 + l1 · r0;;; t2 ← l1 · r1

23 τ1, τ2
$←− (Z∗

l)
2

24 T1 = 8−1 (τ1G + t1H) ;;; T2 = 8−1 (τ2G + t2H)
25 x ← Hs(z||z||T1||T2)
26 τx ← τ1x + τ2x

2 +
∑M

i=0 γiz
i+2;;; μ ← ρx + α

27 return (V , A, S, T1, T2, τx, μ, x, h, l0,i, l1,i, r0,i, r1,i)

28 function BulletproofLoop(a′, b′, G′, H ′, n′, c, w, x′)
29 while n′ > 1 do
30 n̄ ← n′;;; n′ ← n′/2;;; c ← c + 1
31 cL ← a′

[0,...,n′) · b′
[n′,...,n̄)

32 cR ← a′
[n′,...,n̄) · b′

[0,...,n′)

33 Lc ← 8−1
((∑n′

i=0 a′
i G′

i+n′ + b′
i+n′H ′

i

)
+ (cLx′) H

)

34 Rc ← 8−1
((∑n′

i=0 a′
i+n′G′

i + b′
i H ′

i+n′
)

+ (cRx′) H
)

35 w ← H(w, Lc, Rc)
36 a′

i∈[0,...,n′) ← w a′
i + w−1a′

i+n′ � Scalar vector folding

37 b′
i∈[0,...,n′) ← w−1b′

i + w b′
i+n′ � Folding reduces vector size by 2

38 G′
i∈[0,...,n′) ← w−1G′

i + w G′
i+n′ � Hadamard folding

39 H ′
i∈[0,...,n′) ← w H ′

i + w−1H ′
i+n′ � Folding reduces vector size by 2

40 return (L, R, a′
0, b

′
0) � vector L composed from Lc

346 D. Klinec and V. Matyas

Table 2. BP performance on the Trezor T HW. Verifier is faster than prover and
requires significantly lower memory. Prover time and space complexity increase linearly
to the input size. The RAM min shows the minimal amount of RAM required to cover
the BP generation w.r.t. dominating cost - vectors, excluding the constants and state
required for on-the-fly evaluation. The difference between Total RAM and minimal
RAM is due to memory handling mechanisms in Micropython and constant memory
overhead for on-the-fly vector evaluation.

Prover outputs 1 2 4 8 16

Time [s] 16.88 30.55 57.40 121.21 246.57

RAM min [B] 4 480 8 640 16 896 33 344 66 176

RAM total [B] 9 648 13 536 22 224 39 696 74 400

Verifier outputs 1 2 4 8 16

Time [s] 5.12 9.58 18.56 39.00 80.40

RAM total [B] 5 664 6 256 6 912 7 616 8 512

Proof size [B] 704 800 928 1120 1440

A näıve offloading protocol computes all vector-related operations by chunk-
ing, i.e., exporting encrypted vectors to a host, then asks for vector chunks to
compute the intermediate results. The vectors l, r and dot-products cL, cR, t
can be computed incrementally as t =

∑
liri. This yields a constant memory

protocol, but with high communication overhead.
We present basic offloading techniques in the following paragraphs, which are

used to transform the in-memory prover to the privacy-preserving MPC prover
with constant memory.

Dot-Product Offloading: We can evaluate dot-products and foldings on the
host privately, using homomorphic property of a blinding. We export the vectors
πa′a′, πb′b′ to the host, where πa′ , πb′

$←− Z
∗
l
2 are random blinding scalars known

only to the HW. The host computes the dot-product of blinded vectors sr =
πa′a′ · πb′b′ =

∑
πa′a′

iπb′b′
i = πa′πb′

∑
a′

ib
′
i and returns sr, i.e., blinded value r,

to the HW. The HW then unblinds the sr as π−1
a′ π−1

b′ sr = r = a′ · b′ to get the
dot-product.

As the scalars are from Z
∗
l and vector elements are essentially random, the

attacker cannot infer a′ from πa′a′. The πa′a′
0 = z does not have a unique

factorization, i.e., ∀z, x ∃y : xy = z; y = zx−1. Thus, a blinded vector is
indistinguishable from an unblinded one for an attacker. Moreover, each element
is divisor of 1 in Z

∗
l so we cannot extract the blinding masks by GCD(πl0, πl1)

as it is undefined.

Folding Offloading: A vector folding is defined as a′
i∈(0,...,n′] = wa′

i+w−1a′
i+n′ ,

before folding it holds |a′| = 2n′, after the fold |a′| = n′. Computing the folding
on the host saves CPU and communication round-trips. Only the w is needed for

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 347

the host to compute the folding, but it is desired to keep internal constants secret
to preserve the privacy-preserving property of the offloading. Thus {w,w−1} are
incorporated into blinding masks.

We have two distinct blinding constants for one vector. One for the lower
half (LO), the other for the higher half (HI): {πa′

LO
, πa′

HI
}. The folding is then

computed in two parts, as we preserve the LO/HI blinding also for the folding
result vector, as shown in Eq. 1, so this blinding scheme is composable.

Let’s thus define xLO = x[: n
2] and xH I = x[n

2 :] for vector x of
length n, Lh(0)=LO, Lh(1)=HI, then define folding constants as φx,j ,x ∈
{a′, b′,G′,H ′}, j ∈ [0, 3], φx,j = θxLh(�j/2�)w

1−(2j%4)πxLh(j%2) , e.g., φa′,0 =
θa′

L O
wπ−1

a′
L O

, where θ are randomly generated blinding masks from Z
∗
l for the

next round. The φ is constructed so it cancels the blinding mask π, multi-
plies by w{1,−1}, and multiplies by a new blinding mask θ. It is also easy to
observe that folding offloading is compatible with the dot-product offloading, as
cL = a′

LO · b′
H I , cR = a′

H I · b′
LO .

The blinding technique differs from the dot-product offloading due to con-
stants {w,w−1} being used. We need to have distinct blinding masks for each
term in the folding sum, so an attacker cannot extract the w from the blinding
masks. The folding offloading works in the following way:

θa′
LO

a′[
: n ′

2

] ←

φa ′,0
︷ ︸︸ ︷(
θa′

LO
wπ−1

a′
LO

)(
πa′

LO
a′
[:n ′]

)
+

φa ′,1
︷ ︸︸ ︷(
θa′

LO
w−1π−1

a′
HI

)(
πa′

HI
a′
[n ′:]

)

θa′
HI

a′[
n ′
2 :

]

︸ ︷︷ ︸
High half of new a′
blinded by θa′

HI

←
(
θa′

HI
wπ−1

a′
LO

)

︸ ︷︷ ︸
φa ′,2

(
πa′

LO
a′
[:n ′]

)

︸ ︷︷ ︸
Low half of a′

blinded by πa′
LO

+
(
θa′

HI
w−1π−1

a′
HI

)

︸ ︷︷ ︸
φa ′,3

(
πa′

HI
a′
[n ′:]

)

︸ ︷︷ ︸
High half of a′
blinded by πa′

HI

(1)

Initial G′, H ′Folding: The folding of the G′,H ′ cannot be performed as
defined above as the vectors are protocol constants in the first round (known
to attacker), i.e., πG′ = πH′ = 1. Thus the attacker could extract w from the
φ and unblind the folded vectors. We define folding constants φ(0) for the first
round as in the Eq. 2: φ

(0)
x,j ,x ∈ {G′,H ′}, j ∈ [0, 3], φ

(0)
x,j = θxLh(�j/2�)w

(2j%4)−1+

(1 − j%2)πxLO
, e.g., φ

(0)
G′,0 = θG′

L O
w−1 + πG′

L O
.

The host computes the folding with the G′,H ′,φ(0), the HW then generates
a vector of correction points πG′

LO
G′

LO and returns it to the host so the host
can remove extraneous component caused by the additive blinding mask πG′

LO
.

θG′
LO

G′
[: n ′

2]
+ πG′

LO
G′

LO ←
(
θG′

LO
w−1 + πG′

LO

)
G′

[:n ′] +
(
θG′

LO
w

)
G′

[n ′:]

θG′
HI

G′
[n ′

2 :]
+ πG′

LO
G′

LO ←
(
θG′

HI
w−1 + πG′

LO

)
G′

[:n ′] +
(
θG′

HI
w

)
G′

[n ′:]

(2)

Lc, Rc Offloading: Observe that Lc from line 33 contains 3 independent com-
ponents: Lc = 8−1

(((∑n′

i=0 a′
iG

′
i+n′

)
+

(∑n′

i=0 b′
i+n′H ′

i

))
+ (cLx′) H

)
. Each

348 D. Klinec and V. Matyas

component can be computed by the host with blinded vectors. The cL is offloaded
dot-product, host returns πa′

LO
πb′

HI
cL. The sum

∑n′

i=0 a′
iG

′
i+n′ is computed from

the blinded vectors in a similar way, the host returns: ĚLcA = πa′
LO

πG′
HI

∑n′

i=0

a′
iG

′
i+n′ , the other sum is analogical. The HW unblinds the components and

computes Lc.

Analysis: The offloaded Bulletproof prover as defined in Algorithm2 was imple-
mented in the Micropython for the Trezor and performance of the implementa-
tion was evaluated. Please refer to Table 3 and Fig. 1 for performance metrics.
Attacker Constraints: As we transformed the Algorithm 1 to the Algorithm 2

using offloading steps that preserve the privacy of the computation, the protocol
remains secure in the honest-but-curious attacker model. The malicious attacker
could tamper the intermediate results to learn new information or break the secu-
rity properties of the protocol. However, such manipulation leads to an invalid
proof with overwhelming probability due to the use of a cryptographic hash func-
tion on line 16. Rejection of an invalid proof leads to attack being detected. We
could also run a Bulletproof verifier on the generated proofs, abort the trans-
action signing, and alert the user on the invalid proof. As in-memory verifier
runs in constant memory, the protocol becomes malicious attacker resistant;
however, the running time increases. There might be more effective methods to
verify intermediate results or catch attacker cheating with high probability. Such
extensions are left for future work.

Table 3. Offloaded BP performance on the Trezor emulator and Trezor, parameters:
btch = 32, nthr = 32. Offloaded version is faster and requires only constant memory
compared to in-memory prover. The table shows a total time and memory consumption
for the HW PC-based emulator and the HW. The performance statistics for previous in-
memory implementation is included for comparison. The HW part contains maximum
RAM needed for all steps of the algorithm, which gives minimal RAM needed for
the offloaded algorithm. Real total RAM usage is higher due to Micropython memory
management, message recoding, serialization, etc.

Prover outputs 1 2 4 8 16

Time Emu [s] 6.97 9.69 14.75 25.48 44.81

Total RAM Emu [B] 24 896 25 056 25 120 25 408 25 632

Time HW [s] 25.10 37.49 59.03 99.96 184.02

Total RAM HW [B] 8 768 8 928 9 488 10 656 12 816

Max state RAM used [B] 5 576 7 720 7 848 8 040 8 360

Time HW in-mem [s] 16.88 30.55 57.40 121.21 246.57

RAM HW in-mem [B] 9 648 13 536 22 224 39 696 74 400

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 349

4 Related Work

The work in [7] presents a signature protocol for a Ledger6 HW (Ledger for
short). Ledger is an HW with a secure element (SE). Using the SE and the
overall architecture limits the usable RAM to a few tens kB. Thus they had to
implement a more low-level protocol with basic operations such as: generate key
image, Hs(x), xP , get sub-address secret key, etc.

Low-level cryptographic operations are computed in the device, acting as
crypto proxy. The protocol is tightly integrated into the Monero codebase, and
it imposes maintainability challenges as a Monero algorithm change usually
requires an HW signing protocol change. The low-level protocol design makes
the security analysis difficult as the information flow is quite complicated, and
the attacker can call several methods in an arbitrary order, which can lead to
information leak and potential vulnerability.

Algorithm 2. Bulletproof prover with offloading. btch is a number of elements
to offload in one batch, nthr is a n′ threshold for in-memory finish
1 function BulletproofProverOffloaded(v, γ)
2 (V , A, S, T1, T2, τx, μ, x, h, l0,i, l1,i, r0,i, r1,i) ← BulletproofPrefix(v, γ)

3 t ← 0;;; c ← −1;;; n′ ← MN;;; π
$←− (Z∗

l)
8 � New random blinding masks π

4 for i ∈
[
0, . . . , MN

btch

)
do � Compute t, export blinded l, r vectors

5 lc ← l0,j + xl1,j;;; rc ← r0,j + xr1,j , j ∈ [ibtch, (i + 1)btch)
6 slc ← πa′

δ(i)
lc � δ(x) = x < n′ ? LO : HI, slc means blinded lc

7 Ďrc ← πb′
δ(i)

rc ;;; t ← t + lc · rc

8 Send(slc , Ďrc) � slc , Ďrc are sa′, sb′ for the first while iteration

9 w ← x′ ← Hs(x||x||τx||μ||t) � t = l · r
10 Send(y) � The host needs y to compute H ′ and Lc, Rc related sums

11 while n′ > 1 do � The y is public, computable from the final proof
12 n̄ ← n′;;; n′ ← n′/2;;; c ← c + 1
13 Receive(ĎcL, ĎcR, ĚLcA, ĚLcB , ĚRcA, ĚRcB) � ĚLcA is first blinded sum from the Lc

14 Lc ← 8−1
(
π−1
a′

LO
π−1
G′

HI

ĚLcA + π−1
b′
HI

π−1
H′

LO

ĚLcB + x′π−1
a′

LO
π−1
b′
HI

ĎcLH
)

15 Rc ← 8−1
(
π−1
a′

HI
π−1
G′

LO

ĚRcA + π−1
b′
LO

π−1
H′

HI

ĚRcB + x′π−1
a′

HI
π−1
b′
LO

ĎcRH
)

16 w ← H(w||Lc||Rc);;; θ
$←− (Z∗

l)
8 � Compute w, generate blindings θ

17 if n′ ≤ nthr then � Finish in-memory with original algorithm
18 Receive

(
sa′, sb′, ĎG′, ĎH ′);;; Unblind to obtain {a′, b′, G′, H ′}

19 (L, R, a′
0, b

′
0) ← BulletproofLoop(a′, b′, G′, H ′, n′, c, w, x′)

20 return (V , A, S, T1, T2, τx, μ, L, R, a′
0, b

′
0, t) � Combine L, R

21 Send
(
φ
(c)
x,l : x ∈ {a′, b′, G′, H ′}, l ∈ [0, 3]

)
� Compute and send blindings

22 if c = 0 then
23 Compute and send folding correction points for G′, H ′, by chunks

24 π ← θ � Update blinding masks for the next round

6 https://www.ledger.com.

https://www.ledger.com

350 D. Klinec and V. Matyas

Fig. 1. Privacy-preserving multi-party BP with M = 16 cryptographic operations and
timing breakdown. The most expensive operations are aP and point recodings.

To the best of our knowledge, the overall protocol is not documented nor
analyzed. The low-level commands are documented in [7] only. The protocol
does not use a state machine to guard the command calls.

To the best of our knowledge, there is no other Monero transaction signing
protocol published nor used. Our protocol addresses issues with the security
analysis, works on higher abstraction level, has very simple interface and thus
reduced attack surface, it is more stable over protocol changes, easy to maintain,
and needs less message round trips. Moreover, we compute the Bulletproofs in
HW thus protecting blinding masks.

5 Conclusion

We designed, implemented, and tested a secure Monero transaction signing pro-
tocol for HWs. We designed and analyzed the memory and time complexity of
the zero-knowledge proofs (range-proofs, Bulletproofs [3]), algorithms focused on
low-memory consumption so they can be computed in HW. The memory con-
sumption is linear in the number of inputs/UTXOs. The results can be easily
applied to other protocols based on ring signatures, Pedersen commitments, and
Bulletproof range proofs.

We also designed, implemented, and tested a privacy-preserving two-party
Bulletproofs computation protocol with constant memory, enabling the compu-
tation of large input instances securely and in a reasonable time. This is the
first privacy-preserving Bulletproof prover implementation running on an HW
in constant memory. Techniques used in the protocol are applicable to similar
protocols like Bulletproof, and Bulletproof also has several applications outside
of Monero.

The implemented protocols are practically usable. The transaction signing
protocol has been deployed since Nov. 7, 2018, integrated both to Trezor and
Monero codebases. All implemented sources are available online under a permis-
sive open source license at: https://github.com/ph4r05/monero-tx-paper.

https://github.com/ph4r05/monero-tx-paper

Privacy-Friendly Monero Transaction Signing on a Hardware Wallet 351

Acknowledgement. We thank our colleagues Petr Švenda and Marek Sýs, who pro-
vided valuable insights and ideas that helped to improve the protocols. Thanks also
go to SatoshiLabs employees, Tomáš Sušánka, Jan Pochyla and Ondřej Vejpustek who
did the security review of the design and implementation and helped significantly with
simplifying the protocol implementation. We also thank the anonymous reviewers for
their feedback and suggestions for improvement, and to Daniel Slamanig for shepherd-
ing the final revisions of our submission. This work was partly supported by the Czech
Science Foundation project 20-03426S. For an extended paper please refer to the [6].

References

1. Alonso, K.M.: Zero to monero: first edition (2018). https://www.getmonero.org/
library/Zero-to-Monero-1-0-0.pdf. Accessed 20 Feb 2020

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptograph. Eng. 2(2), 77–89 (2012). https://doi.org/10.
1007/s13389-012-0027-1

3. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: short proofs for confidential transactions and more, pp. 315–334, May 2018.
https://doi.org/10.1109/SP.2018.00020

4. Goodin, D.: Official monero website is hacked to deliver currency-stealing mal-
ware (2019). https://arstechnica.com/information-technology/2019/11/official-
monero-website-is-hacked-to-deliver-currency-stealing-malware. Accessed 26 Feb
2020

5. Klinec, D.: Monero wallet trezor integration (2018). https://github.com/ph4r05/
monero-trezor-doc. Accessed 26 Feb 2020

6. Klinec, D., Matyas, V.: Privacy-friendly monero transaction signing on a hard-
ware wallet, extended version. Cryptology ePrint Archive, Report 2020/281 (2020).
https://ia.cr/2020/281

7. Mesnil, C.: Ledger device for Monero. Online (2019). https://github.com/
LedgerHQ/ledger-app-monero. Accessed 20 Feb 2020

8. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098

9. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

10. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, pp. 160–164. IEEE (1982). https://doi.org/10.
1109/SFCS.1982.88

11. Young, J.: Malware steals user funds & bitcoin wallet keys from PCs (2017).
https://cointelegraph.com/news/malware-steals-user-funds-bitcoin-wallet-keys-
from-pcs-bitcoin-altcoins-targeted. Accessed 26 Feb 2020

https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1109/SP.2018.00020
https://arstechnica.com/information-technology/2019/11/official-monero-website-is-hacked-to-deliver-currency-stealing-malware
https://arstechnica.com/information-technology/2019/11/official-monero-website-is-hacked-to-deliver-currency-stealing-malware
https://github.com/ph4r05/monero-trezor-doc
https://github.com/ph4r05/monero-trezor-doc
https://ia.cr/2020/281
https://github.com/LedgerHQ/ledger-app-monero
https://github.com/LedgerHQ/ledger-app-monero
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88
https://cointelegraph.com/news/malware-steals-user-funds-bitcoin-wallet-keys-from-pcs-bitcoin-altcoins-targeted
https://cointelegraph.com/news/malware-steals-user-funds-bitcoin-wallet-keys-from-pcs-bitcoin-altcoins-targeted

Privacy and Security Management

A Matter of Life and Death: Analyzing
the Security of Healthcare Networks

Guillaume Dupont1(B), Daniel Ricardo dos Santos2, Elisa Costante2,
Jerry den Hartog1, and Sandro Etalle1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
g.f.c.dupont@tue.nl

2 Forescout Technologies, Eindhoven, The Netherlands

Abstract. Healthcare Delivery Organizations (HDOs) are complex
institutions where a broad range of devices are interconnected. This inter-
connectivity brings security concerns and we are observing an increase
in the number and sophistication of cyberattacks on hospitals. In this
paper, we explore the current status of network security in HDOs and
identify security gaps via a literature study and two observational stud-
ies. We first use the literature study to derive a typical network archi-
tecture and the threats relevant to HDOs. Then we analyze in the first
observational study data from 67 HDOs to highlight the challenges they
face with regards to device security and management. The second study
leverages the network traffic from 5 HDOs in order to point out a number
of concrete observations which depict how patient data can be exposed
and how cyber-physical attacks could impact patient health. Finally we
offer in this paper a starting point for securing HDOs’ network.

Keywords: Healthcare · Network security · Medical devices

1 Introduction

Healthcare Delivery Organizations (HDOs), such as hospitals and clinics, are
complex institutions where a broad range of Information Technology (IT), Oper-
ational Technology (OT), and Internet of Things (IoT) devices are increasingly
interconnected [28]. IT devices and enterprise systems process and exchange
highly sensitive data (e.g., patients’ health records and financial information),
whereas OT and IoT devices are used for diverse functions such as building
automation, and guest entertainment. Specialized IoT devices, refers to as Inter-
net of Medical Things (IoMT) [11], are connected medical devices supporting
clinical care and can generate and exchange patient data with other devices,

S. Etalle—This work was supported by ECSEL joint undertaking SECREDAS (783119-
2), EU-H2020-SAFECARE (no. 787002) and SunRISE (PENT181005).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 355–369, 2020.
https://doi.org/10.1007/978-3-030-58201-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_24

356 G. Dupont et al.

such as Electronic Health Records (EHR) systems [20]. These new technologies
and increased connectivity can help improve the efficiency and quality of care.

However, this reliance on such technologies can also introduce new privacy
and security risks [1,16]. We are witnessing an increase in the number and sophis-
tication of cyberattacks on hospitals [14]. So far, these attacks are mainly in the
form of ransomware [21], targeting mostly the IT part of the network. But the
increased connectivity is not restricted to the IT systems as it also applies to the
OT systems. Does this raise security and compliance risks for HDOs that have
not been (sufficiently) considered so far?

Targeted attacks against life-supporting devices may have devastating con-
sequences for patients and HDOs. Attacks already seen in different domains like
Building Automation Systems (BAS) [27,32] show that OT may be targeted.
Specialized tools (e.g., Shodan) for finding exposed OT devices and potential
exploits can aid attackers in launching such attacks. All of this makes it essen-
tial to be prepared for attacks that exploit the complexity of HDO ecosystems.

Security assessment for IT infrastructures is a well covered topic [24], and
work like [17] looks at the human factor in HDOs. Here we aim to establish
the current technical state of readiness of HDOs with respect to cyberattacks
targeting their networks and aiming at, for example, stealing or altering patients’
data or even harming their health.

To achieve this aim, we address the following Research Questions (RQs):

RQ1 How is an HDO’s network organized?
RQ2 What are some potential threats to an HDO’s network?
RQ3 What kinds of devices and software are present in an HDO’s network?
RQ4 What security vulnerabilities are linked to HDO’s network protocols?

We answer RQ1 and RQ2 by investigating existing literature to give an
overview of the network architecture and examples of threats on typical HDOs
(Sect. 2). To answer RQ3, we conduct a large-scale investigation of 67 HDO net-
works (Sect. 3). To answer RQ4, we perform a network security assessment of
5 of these HDO networks (Sect. 4). Finally, we conclude the paper with a dis-
cussion on the results, a description of related work and an outlook on future
research (Sect. 5). Our key findings are:

1. HDO networks are very diverse: the diversity of connected medical
devices, including different vendors and operating systems, make it increas-
ingly difficult to secure networks.

2. Common services and legacy operating systems leave the network
vulnerable: Certain devices found in HDOs are not only running network
services often exploited by malware and malicious actors (e.g., SMB and
RDP) but also legacy operating systems no longer supported by vendors,
thus providing potential access to attackers.

3. Insecure protocols and communications are common: these flaws in
network security in healthcare organizations can expose sensitive data and
create the potential to harm patients by tampering with the network com-
munication of connected medical devices.

A Matter of Life and Death 357

Fig. 1. Simplified network architecture of a typical HDO

2 Network Model and Threats

In this section we conduct a literature study to answer the first and a second
research questions, namely “How is an HDO’s network organized?” (RQ1) and
“What are some potential threats to an HDO’s network?” (RQ2). We address
RQ1 by providing a network model of a typical HDO and RQ2 by listing exam-
ples of threats to HDOs. In addition we validate the attacks in a laboratory
setting.

Organization of HDO’s Network. The major distinction between HDO net-
works and typical enterprise networks comes from (i) the type of devices deployed
and (ii) the communication protocols used, both of which are described below.

Network Devices. HDOs are generally divided into several departments, deliv-
ering specific clinical care (e.g., radiology) or organizational services (e.g., admin-
istration). We represent on Fig. 1 a simplified model of typical HDO networks,
including two departments in the plain-line boxes, as well as some of the IT, OT,
and IoMT devices commonly found. While some departments can have special-
ized equipment related to their operations (e.g., imaging modalities in radiology
department), there also are certain devices that can be found in multiple depart-
ments. In addition, there are systems that can be found ubiquitously across an
HDO such as IT devices, as depicted in the upper left side of the figure.

We classify HDO’s networked devices into 4 categories. The connected medical
devices support clinical care, while interoperability devices assure communica-
tion for some devices on the network. Then medical information systems store
and manage clinical data and finally staff endpoints provide human interfaces
to information systems. Connected medical devices can be further divided into
active or passive devices [15]. Active medical devices are meant to deliver medical
treatment and sustain patient life (e.g., drug pumps). Passive devices monitor
patient information such as vital signs or test results, and report events or need
for treatment to clinical staff (e.g., patient monitors and laboratory equipment).

358 G. Dupont et al.

Depending on the network protocol used by the aforementioned devices, they
may be connected to interoperability devices, which will convert network data
into an interoperable format, allowing it to be further processed and/or stored
by medical information systems. Such systems can be seen as the backbone of
an HDO, as they collect, store and manage various types of healthcare data. For
example, health, radiology, and laboratory information systems (respectively
HIS, RIS and LIS), will manage electronic medical records, radiology pictures
from imaging modalities and laboratory analysis results, respectively. Finally,
HDOs also have other types of devices represented together under Building
Automation Systems, OT and other IoT devices.

Communication Protocols. Medical devices in HDOs transmit data using
standard or proprietary protocols. Table 1 summarizes the most important med-
ical protocols we identified during our research. Depending on the protocol,
specific information about the device can be found in packets’ payload such as
the firmware version and hardware version for that device.

HL7v2 is the most widely used interoperability and data exchange protocol in
medical networks. This messaging standard allows the exchange of patient, clin-
ical and administrative information. DICOM defines both the format for storing
medical images and the communication protocols used to exchange them. As de-
facto standard, it is implemented by all major vendors of devices involved in med-
ical imaging processes (e.g., modalities and diagnostic workstations). POCT1-A
and LIS2-A2 are used for point-of-care and laboratory devices, respectively.
These protocols can issue test orders with patient information and transfer the
results of tests to a Data Management System (DMS). The proprietary protocols
Philips Data Export [29] and GE RWHAT [23] are used to control patient mon-
itors of their respective vendors. They allow patient monitors to communicate
the vital readings of patients to a central monitoring system.

While supporting critical operations in HDOs, these medical protocols sup-
port neither encryption nor authentication (or support them without enforcing
their usage, in the case of DICOM), a situation similar to what is found in other
cyber-physical systems, e.g., Industrial Control Systems (ICS) [4] and Building
Automation Systems (BAS) [5]. We also identified other protocols such as HL7
FHIR, as well as other proprietary protocols. However we choose to ignore them
in this paper as they are not as widely deployed as the ones in Table 1.

Table 1. Main medical protocols identified

Protocol Type Devices

DICOM Standard Imaging modalities, PACS

HL7v2 Standard Connected Medical Devices, Medical Information
Systems, Interoperability Gateways

POCT1-A Standard Point of Care Testing

LIS2-A2 Standard Laboratory devices

Data Export Prop. (Philips) Patient monitors

RWHAT Prop. (GE) Patient monitors

A Matter of Life and Death 359

Potential Threats to an HDO’s Network. Malicious actors may have vari-
ous motivations to attack HDOs [14,15]. All reported attacks on HDOs (see,
e.g., [8,36,37]) seem to have been motivated by financial gains directly via
ransomware and cryptomining, or indirectly via stolen information and use of
infected computers in botnets.

However in the light of the security research done on medical devices and
their protocols [3,6,13,23,25,30,31,42], one can wonder how an attacker could
leverage vulnerabilities on such devices. We provide below some examples of
attacks, considering an attacker on the network. Such foothold can be estab-
lished in various ways [14]. These attacks can be the final step in a multi-step
attack [15].

Attack Examples. Security research in healthcare focuses either on devices or
network protocols. Vulnerabilities in specific medical devices have been found
over the past years (see, e.g., [12,30,31]), and the number of security advisories
in the medical space has been growing [39,42]. Currently, there is a trend of
research into protocol insecurity [7,10]. Vulnerabilities of the protocols below
have been demonstrated.

HL7 standards, which are used to exchange patient data between systems, can
be abused in several ways and are often insecurely implemented [3,6,13]. As HL7
data is sent over unauthenticated communications, attackers can intercept and
modify information in transit, which may lead to life threatening consequences.

Similarly, unauthenticated and unencrypted DICOM communications also
allow attackers to tamper with medical images, misleading medical staff to wrong
diagnostics. The DICOM standard supports user authentication and message
encryption, however while their implementations and usage are left to product
vendors and HDOs, we observe in a number of HDOs that these security mech-
anisms are not implemented. To demonstrate the possible consequences of this
situation, researchers implemented a proof-of-concept to add or remove tumors
from CT scan images being transferred over the network, leading to dramatic
consequences for patients [25].

Proprietary protocols have also caught the attention of security researchers,
who have shown [23] how one could intercept a patient’s vital signs sent by a GE
patient monitor over their RWHAT protocol. Once intercepted, a malicious actor
could modify the patient signs arbitrarily. In the same fashion, we reproduced
in our lab a similar attack with a Philips patient monitor. Such monitors send
information over the Data Export protocol, which can be intercepted, decoded
and modified on the fly.

Attacks against unprotected protocols such as POCT1-A and LIS2-A2 have
not yet been demonstrated but can follow the same procedure. In Table 2, we
summarize seven example attacks against these protocols.

3 Large-Scale Study

In this section we answer the third research question, “What kinds of devices and
software are present in an HDO’s network?” To this end we leverage data from

360 G. Dupont et al.

Table 2. Potential attacks on the main medical protocols identified

ID Protocol Target Attack Description

A1 HL7v2 Patient data Data theft An attacker can retrieve sensitive patient

data such as clinical and financial

information as the data is sent unencrypted

A2 HL7v2 Patient health Tamper with EHR An attacker can modify arbitrarily the

electronic health records of patients (e.g.,

change the allergies or medication

prescription)

A3 DICOM Patient health Tamper with test results An attacker can tamper with medical images

by virtually adding or removing tumors for

respectively healthy or sick patients

A4 POCT1-A Patient health Tamper with test results An attacker can change the results of point

of care equipment (e.g., blood glucose

analysis)

A5 LIS2-A2 Patient health Tamper with test results An attacker can modify the test results of

laboratory equipment (e.g., blood analysis)

A6 Data Export Patient health Tamper with vitals An attacker can tamper with patients’ vital

signs read by Philips patient monitors

A7 RWHAT Patient health Tamper with vitals An attacker can tamper with patients’ vital

signs read by GE patient monitors

various HDOs, providing us insights into the devices connected on their networks.
We present the charts resulting from our analysis, alongside our conclusions.

Methodology. We collected data in 67 HDOs, consisting in traffic gathered
and analysed by network monitoring appliances connected to network switches
in each HDO. The appliances collect data both by passively listening and actively
interacting with the devices on the network (e.g., using Nmap and other network
scanning tools). The data is then analyzed by the appliance to find attributes of
devices (e.g., MAC address or operating system).

Some of these attributes, called raw attributes, can be directly obtained
from the network traffic, like the MAC address. Other attributes we refer to
as Classified attributes are obtained by classifying devices using a Device Pro-
file Library. It is a set of rules which assign a profile to a device once a given
combination of raw attributes have been detected for that device. A profile is
a triple of attributes (vendor, OS, function), where the first two elements are
self-explanatory and the third element represents the function of a device in the
network (e.g., ‘OT/Healthcare/X-ray machine’ or ‘IT/Printer’). The classifica-
tion of devices is not the focus of this work and we assume that the Device

Fig. 2. Average distribution of IT and OT devices found on HDOs’ networks

A Matter of Life and Death 361

Fig. 3. Top-10 connected medical devices on HDO networks

Profile Library is correct. We comment on that assumption in Sect. 5. The data
is anonymized and sent to a data lake which aggregates the data collected in all
HDOs. We further analyze the data retrieved by executing a number of queries.

Sample Description. The dataset comprises a total of 2.3 million devices. The
amount of unique devices per HDO, regardless of their type, ranges from 597
to 234305 with an average of 50078 and a median value of 12766. We see a
wide range of sizes across the sample, but most are in the thousands to tens
of thousands of devices. To help better understand the composition of HDO
networks we provide below different perspectives through our data analysis.

High-Level Device Overview. Figure 2 represents the three main classes of
device found in HDOs, namely IT, OT and unknown devices. On average, these
classes correspond to respectively 84%, 7% and 9% of the total number of devices.
IT devices include personal computers, VoIP devices, network printers, mobile
devices, and various networking equipment among other things. OT devices are
comprised of not only healthcare devices and infusion pumps, but also BAS
devices, points of sale, physical security and other facilities-related devices such
as IP security cameras. Finally, the devices that were not possible to be classified
are referred to as unknown devices.

Figure 2 also shows the average distribution of device types in HDOs. One can
observe that more than roughly a third of the connected devices are computers
(36.4%), followed by VoIP devices (13.8%) and smartphones (5.7%). Understand-
ing the distribution of devices is important because many networks still operate
in organizational silos, where different departments are responsible for different
sections of the network. This situation tend to leave gaps in security [22].

Types of Medical Devices. Since connected medical devices are especially
critical for HDOs, it is important to understand the distribution of these devices
in a finer granularity. Figure 3 shows the most common types of connected med-
ical devices. Per-patient devices, such as infusion pumps and patient monitors
represent the majority of healthcare devices on HDO networks, as well as per-
personnel devices like communication systems. This makes sense as they are the
devices deployed mostly on a 1:1 ratio. Devices such as those used in laboratory
diagnostics or medical imaging represent a smaller number because they are

362 G. Dupont et al.

shared devices. The “healthcare” device type on Fig. 3 refers to medical devices
that cannot be further categorized into a more specific type.

Diversity of Vendors and Operating Systems. We now look at the diversity
of the device ecosystem in HDOs in terms of vendors and Operating Systems
(OS). Our analysis shows that on average, HDOs have a total of 152 different
device vendors. When looking at the number of unique vendors for specific device
types in HDOs, we observe for example that IT computers have on average 51.5
unique vendors and networking and VoIP equipment have respectively 25.5 and
7.2 unique vendors. Regarding medical devices, infusion pumps, patient monitors
and point of care diagnostics devices have respectively 2.5, 2.2 and 2.6 unique
vendors on average.

The complexity of device management is linked to the number of unique
vendors whose devices are deployed on a network. Vendors have different support,
maintenance, and patching programs, which can affect the time between the
disclosure of a vulnerability and the patching of the related systems. As an
example, consider the recently disclosed set of vulnerabilities on the IP stack of
the VxWorks real-time OS [34]. Some medical devices run this particular OS, but
it is not immediately clear to the users whether a particular device is affected,
if there is a patch available and how it can be applied. Contacting each vendor
for inquiry would be very time consuming.

Additionally, it is important to consider the diversity in OS as it can bring
some security concerns as well. Figure 4 shows the OS variants of devices on HDO
networks. For each OS, its proportion relative to the others is given and, for some
of them, a breakdown of the version in use. Windows is the most common OS
across HDO’s devices (41%). Windows 7, 10 and Windows Server 2012 represent
respectively 11%, 8% and 1% of the OS, while we still observe a non-negligible
amount of other variants such as Windows XP, Windows Server 2008 and 2003.

Fig. 4. Distribution of OS variants in devices on HDO networks

A Matter of Life and Death 363

Fig. 5. Occurrences of HDOs with devices not in VLAN

Our analysis revealed that 40% of networks have more than 20 different OS.
We see that 0.4% of devices are running an unsupported version of Windows and
70% of devices a version of Windows for which Microsoft support is planned to
expire by January 14, 20201, such as Windows 7, Windows 2008 and Windows
Mobile. Running unsupported OS is a well known security issue. HDOs’ networks
will most likely continue to have medical devices running legacy OS since updat-
ing can be too costly or even infeasible, due to unacceptable downtime required
or (software) compatibility issues. Consequently many devices would have to
keep operating while remaining potentially vulnerable. This situation calls for
additional protections, such as appropriate segmentation of systems, which can
be achieved through Virtual Local Area Networks (VLAN) for example.

VLAN Analysis. Network segmentation is a commonly advised security mea-
sure [24]. VLANs can segment the network by effectively isolating critical sys-
tems, segregating similar devices by function, and limit access to data and other
assets in a segment. In this context, isolating medical devices in VLANs could
help to keep them separated from the rest of the network.

However, our study shows that, on average less than 20% of the medical
devices are deployed in a VLAN and, as Fig. 5 shows, 86.5% of the HDOs have
medical devices outside of VLANs.

In addition we also found that 61 of these HDOs have at least one VLAN
with a combination of medical devices and other OT devices, thus undermining
the segmentation that use of a VLAN may provide. Examples of such cases that
we saw in the data are VLANs containing both medical imaging modalities and
IP cameras or HVAC systems, or even blood glucose monitors with points of
sale.

This observation confirms the statement of the ISE regarding HDO’s network
being improperly segmented [15].

Enabled Common Services. Some common network services are often tar-
geted by recent malware and malicious actors [26]. Table 3 shows the amount of
devices that have the given service’s port open.

Server Message Block Protocol (SMB) is the transport protocol used by Win-
dows machines for a variety of purposes such as file sharing and access to remote

1 https://bit.ly/38e9QXc.

https://bit.ly/38e9QXc

364 G. Dupont et al.

Windows services. WannaCry and NotPetya are two examples of ransomware
that exploit vulnerabilities in SMB. Remote Desktop Protocol (RDP) is another
common protocol exploited by modern automated threats. Secure Shell (SSH)
may be abused by brute-force attacks to log remotely onto machines. Telnet and
File Transfer Protocol (FTP) are often-exploited vectors: these protocols do not
secure nor encrypt network sessions.

Overall, after analyzing the kinds of devices and software present in an HDO’s
network, we can conclude that a large number of devices on HDO networks have
high-risk services turned on. The access requirements of medical vendors and
outsourced suppliers often require devices to have services like RDP enabled.
Other times, the network ports are left open by default without the knowledge
of IT and security staff. In the next section we look closer at HDO networks to
better understand the security vulnerabilities linked to network protocols.

4 In-Depth Study

The in-depth study described in this section aims at answering our fourth
research question, “What security vulnerabilities are linked to HDO’s network
protocols?” We analyze network traffic of HDOs in order to provide a detailed
view on their network security posture, identify insecure protocols and suscep-
tibility to attacks.

Methodology. We captured raw network traffic and perform various analyses,
looking at network activities and communication protocols among other things.
Collecting all network data from all HDOs is clearly not feasible. Instead, the
study leverages datasets from five HDOs captured at key locations in their net-
work. These HDOs are referred to as HDO1−5.

The network traffic is analyzed using Forescout’s SilentDefense2 solution,
enhanced with our Protocol Dissectors for the key medical protocols presented
earlier in Table 1. For each of those protocols, we created a dissector which allows
us to identify its presence in traffic and parse the contents of network packets.

Sample Description. The datasets used in this study correspond to raw net-
work traffic of five different HDOs. For HDO1 and HDO2 the data was captured

Table 3. Common enabled network services

Network service (port number) Devices (%) Devices (absolute)

SMB (445) 26% 573,455

RDP (3389) 14% 318,634

SSH (22) 8% 187,135

Telnet (23) 5% 113,071

FTP (21) 5% 107,719

2 https://www.forescout.com/platform/silentdefense/.

https://www.forescout.com/platform/silentdefense/

A Matter of Life and Death 365

over a period of 2 days and it comprises a total of respectively 2207 and 1513
devices. For HDO3 the capture lasted one day and it collected data from 12289
devices. Finally for HDO4 and HDO5 the captures ran over four days and account
for 11051 and 4423 devices respectively.

Overview and Network Activities. In the datasets, we found the healthcare
network protocols presented on the left side of Table 4. Recall that these protocols
are used by diverse device types in HDOs as described previously in Sect. 2.

The presence of these protocols indicates that these HDOs are susceptible to
some of the attacks described in Sect. 2. We propose in Table 2 a list of attacks
leveraging these protocols’ weaknesses that an attacker could execute once hav-
ing access to the HDO’s network. As one can see in Table 4, all five HDOs in our
analysis are susceptible to be vulnerable to at least two attacks on medical device
protocols. We also found obsolete versions of other protocols such as SNMPv1
and v2 and NTPv1 and v2. We do not elaborate on those findings because they
do not fit the attack examples that we defined in Sect. 2.

Weak Encryption. As presented on the right side of Table 4, we found that
SSLv3, TLSv1.0 and TLSv1.1 are still used. Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) are cryptographic protocols used to secure net-
work communications of higher-level protocols, such as HTTPS or FTPS. SSLv3,
TLSv1.0/1.1 are known to be insecure. They are impacted, for instance, by the
POODLE and BEAST attacks [35], in which an attacker can downgrade a con-
nection and decrypt the traffic. Our analysis shows that these weak protocols are
used internally in HDOs, where one could still argue that other additional secu-
rity measures could compensate. However, they are also used externally, even to
connect to organizations such as Microsoft and Google.

Additionally, our analysis revealed issues with the SSL/TLS certificates used
in HDOs. Such certificates play a critical role in authentication and data encryp-
tion. We found that all HDOs use certificates with non-whitelisted issuers. For
security purposes, it is usually recommended to only use certificates delivered
by trusted issuers (i.e., whitelisted issuers). Also two of the HDOs displayed

Table 4. Findings of network traffic analyses in five HDOs

Healthcare protocols Susceptible to attacks Weak protocols Certificates

Dataset

H
L
7v

2

D
IC

O
M

P
O
C
T
1-
A

L
IS
2-
A
2

D
at
a
E
xp

or
t

R
W

H
A
T

A1 A2 A3 A4 A5 A6 A7

SS
L
v3

T
L
Sv

1.
0

T
L
Sv

1.
1

Is
su
er

no
t

w
hi
te
lis
te
d

E
xp

ir
ed

HDO1 � � � � � � � � � �
HDO2 � � � � � �
HDO3 � � � � � � � � � � �
HDO4 � � � � � � � � � � � �
HDO5 � � � � � � � � � �

366 G. Dupont et al.

are still using expired certificates, both for healthcare applications and network
equipment.

External Interfaces and Communication. As discussed, HDO networks are
complex and use many different protocols, including ones dedicated to health-
care. For operational reasons, some medical applications can be reached from
the outside of the network, sometimes using healthcare protocols. This adds to
the complexity of managing such systems and increases the probability of sensi-
tive information or systems being exposed. For example we found in one HDO
a system containing an EHR application exposed on the public Internet.

In addition, in all HDOs except for HDO2, we observed communications
between public and private IP addresses using HL7v2. As these communications
are unencrypted, they can be easily read, and leak sensitive patient information
such as names and addresses, employment status, phone number, allergies and
also test results. Other information regarding the care provider can also be found
such as the doctor’s name in charge of the patient, with his or her license number.

Moreover, there were also in two HDOs medical devices communicating over
non-medical protocols with external servers. For example, a medical information
system was seen to communicate over SSH, and another to reach a web server
over HTTP. In one instance, a communication with an external file server over
FTP was observed, and we confirmed (using Shodan) that this external machine
contains up to 25 vulnerabilities. If exploited, it could potentially lead to the
compromise of such a server and create an entry point into the HDO’s network.

Additionally, we also observed in an HDO a machine behaving suspiciously.
In our sample, this computer was trying to reach a number of public IP addresses
over various ports. We noted a number of port scans executed and other host dis-
covery attempts. Finally, it was communicating internally with 11 other machines
over Telnet. These signs of compromise require further investigation, and we are
validating our hypothesis with the network’s owners.

Firmware Versions and Vulnerabilities. Certain firmware are known to be
vulnerable, as reported in ICS Medical Advisories [39]. To determine whether
HDOs have medical devices running known vulnerable firmware, we employ the
protocol dissectors we developed (see Sect. 2). We find that in HDO2 Philips
IntelliVue patient monitors deployed in intensive care units have a firmware
which could potentially be abused. If successfully exploited, the vulnerabilities
could allow an attacker to read and write the memory of the device, and force it
to restart, potentially leading to delays in diagnosis and treatment of patients3.

In HDO4, we find vulnerable Roche Accu-Chek Inform II blood glucose
meters. This model, popular and commonly found in HDOs, presents multi-
ple vulnerabilities in which attackers could execute arbitrary code on the device
by crafting POCT1-A packets and change the instrument configuration. This
could lead to false analysis results and inaccurate diagnosis4.

3 https://bit.ly/2E8wCC2 and https://bit.ly/2YFCwnE.
4 https://www.us-cert.gov/ics/advisories/ICSMA-18-310-01.

https://bit.ly/2E8wCC2
https://bit.ly/2YFCwnE
https://www.us-cert.gov/ics/advisories/ICSMA-18-310-01

A Matter of Life and Death 367

5 Conclusion

We explore the technical state of readiness of HDOs through studies across
67 organizations. The key findings, given in Sect. 1 indicate gaps such as inse-
cure protocols, weak encryption, and private-to-public network communications
which can directly expose patient data to attackers. Filling these gaps is challeng-
ing: HDOs are large diverse ecosystems of devices, including legacy and safety
critical systems, processing sensitive data. They are also difficult to manage
and secure because they comprise a variety of software, vendors, and protocols.
Solutions that address the combination of these characteristics will be needed.

Related Work. Most work on cybersecurity in healthcare focuses on connected
medical devices (e.g. [2,18,38,41]), with special attention on implantable devices
because of their potential direct harm to patients [33]. These works mostly ignore
other kinds of devices present in an HDO’s network and that can be used dur-
ing cyberattacks. Some works discuss the security threats not only to medical
devices, but also to medical data (see, e.g., [19]). Jaigirdar et al. [16] analyzed the
trust that physician’s place in secure end-to-end communication of healthcare
data. Kune et al. [9] surveyed medical and non-medical protocols used in HDOs
and analyzed their security properties. Wood et al. [40] introduced a method
to capture network traffic from medical IoT devices and automatically detect
cleartext information that may reveal sensitive medical conditions.

Limitations and Future Work. We were not in control of the traffic cap-
tured in the HDOs and the location of the appliances has an impact on the
traffic they see. Device classification is based on a set of heuristics that is con-
tinually improved, but which can contain errors (see Sect. 3). We plan to work
on improving the device classification heuristics and vulnerability matching for
medical devices.

References

1. Alsubaei, F., Abuhussein, A., Shiva, S.: Security and privacy in the Internet of
medical things: taxonomy and risk assessment. In: LCN (2017)

2. Altawy, R., Youssef, A.: Security tradeoffs in cyber physical systems: a case study
survey on implantable medical devices. IEEE Access 4, 959–979 (2016)

3. Bland, M., Dameff, C., Tully, J.: Pestilential protocol: how unsecure HL-7 messages
threaten patient lives (2018)

4. Bodungen, C., Singer, B., Shbeeb, A., Wilhoit, K., Hilt, S.: Hacking Exposed Indus-
trial Control Systems. McGraw-Hill, New York City (2016)

5. Ciholas, P., Lennie, A., Sadigova, P., Such, J.: The security of smart buildings: a
systematic literature review. arXiv e-prints (2019)

6. Duggal, A.: Understanding HL7 2.X standards, pen testing, and defending HL7
2.X messages. Black Hat US 2016 (2016). https://youtu.be/MR7cH44fjrc

7. Fiebig, T., et al.: SoK: an analysis of protocol design: avoiding traps for implemen-
tation and deployment. arXiv e-prints (2016)

8. FireEye: Double dragon (2019). https://bit.ly/38nj6bU

https://youtu.be/MR7cH44fjrc
https://bit.ly/38nj6bU

368 G. Dupont et al.

9. Foo Kune, D., Venkatasubramanian, K., Vasserman, E., Lee, I., Kim, Y.: Toward
a safe integrated clinical environment: a communication security perspective. In:
MedCOMM (2012)

10. Forshaw, J.: Attacking Network Protocols. No Starch Press, San Francisco (2017)
11. Gatouillat, A., Badr, Y., Massot, B., Sejdic, E.: Internet of medical things: a review

of recent contributions dealing with cyber-physical systems in medicine. IEEE IoT
J. 5(5), 3810–3822 (2018)

12. Hanna, S., Rolles, R., Molina-Markham, A., Poosankam, P., Fu, K., Song, D.: Take
two software updates and see me in the morning: the case for software security
evaluations of medical devices. In: HealthSec (2011)

13. Haselhorst, D.: HL7 data interfaces in medical environments: attacking and defend-
ing the achille’s heel of healthcare. Technical report, SANS (2017)

14. HIMSS: 2019 HIMSS cybersecurity survey. Technical report (2019)
15. ISE: Securing hospitals: a research study and blueprint. Technical report (2016)
16. Jaigirdar, F., Rudolph, C., Bain, C.: Can I trust the data I see?: A physician’s

concern on medical data in IoT health architectures. In: ACSW (2019)
17. Koppel, R., Smith, S.W., Blythe, J., Kothari, V.H.: Workarounds to computer

access in healthcare organizations: you want my password or a dead patient? ITCH
15(4), 215–220 (2015)

18. Kramer, D., Baker, M., Ransford, B., Molina-Markham, A., Stewart, Q., Fu, K.:
Security and privacy qualities of medical devices: an analysis of FDA postmarket
surveillance. PLoS ONE 7(7) (2012)

19. Kumar, C.: New dangers in the new world: cyber attacks in the healthcare industry.
Intersect 10(3), 3–4 (2017)

20. Lee, I., et al.: Challenges and research directions in medical cyber-physical systems.
Proc. IEEE 100(1), 75–90 (2011)

21. Mansfield-Devine, S.: Ransomware: taking businesses hostage. Netw. Secur. 2016,
8–17 (2016)

22. McAdams, A.: Security and risk management: a fundamental business issue. Inf.
Manag. 38(4), 36 (2004)

23. McKee, D.: 80 to 0 in under 5 seconds: falsifying a medical patient’s vitals (2018).
https://bit.ly/2LJI8bB

24. McNab, C.: Network Security Assessment. O’Reilly Media, Newton (2016)
25. Mirsky, Y., Mahler, T., Shelef, I., Elovici, Y.: CT-GAN: malicious tampering of

3D medical imagery using deep learning. In: USENIX Security (2019)
26. MITRE: ATT&CK tactic: lateral movement (2019). https://bit.ly/2qwuUaE
27. Mundt, T., Wickboldt, P.: Security in building automation systems - a first anal-

ysis. In: Cyber Security (2016)
28. O’Brien, G., Edwards, S., Littlefield, K., McNab, N., Wang, S., Zheng, K.: Securing

wireless infusion pumps. In: Healthcare Delivery Organizations (2017)
29. Philips: Data export interface programming guide (2015)
30. Regalado, D.: Inside the alaris infusion pump, not too much medicine, plz. DEF

CON 25 IoT Village (2017). https://youtu.be/w4sChnS4DrI
31. Rios, B.: Infusion pump teardown. S4x16 (2016). https://youtu.be/pq9sCaoBVOw
32. Roberts, P.: Let’s get cyberphysical: Internet attack shuts off the heat in Finland.

https://bit.ly/33XQgeK
33. Rushanan, M., Rubin, A., Kune, D., Swanson, C.: SoK: security and privacy in

implantable medical devices and body area networks. In: IEEE S&P (2014)
34. Seri, B., Vishnepolsky, G., Zusman, D.: Critical vulnerabilities to remotely com-

promise VxWorks, the most popular RTOS. Technical report, Armis (2019)

https://bit.ly/2LJI8bB
https://bit.ly/2qwuUaE
https://youtu.be/w4sChnS4DrI
https://youtu.be/pq9sCaoBVOw
https://bit.ly/33XQgeK

A Matter of Life and Death 369

35. Sheefer, Y., Porticor, Holz, R., Munchen, T.U., Saint-Andre, P.: Summarizing
known attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)
(2015)

36. Symantec: New orangeworm attack group targets the healthcare sector in the U.S.,
Europe, and Asia (2019). https://symc.ly/33Rpp3S

37. Symantec: Whitefly: Espionage group has Singapore in its sights. https://symc.ly/
2qoF3WG (2019)

38. Taylor, C., Venkatasubramanian, K., Shue, C.: Understanding the security of inter-
operable medical devices using attack graphs. In: HiCoNS (2014)

39. US DoH CISA: ICS-CERT advisories (2019). https://bit.ly/369pLnZ
40. Wood, D., Apthorpe, N., Feamster, N.: Cleartext data transmissions in consumer

IoT medical devices. In: IoTS&P (2017)
41. Xu, J., Venkatasubramanian, K., Sfyrla, V.: A methodology for systematic attack

trees generation for interoperable medical devices. In: SysCon (2016)
42. Xu, Y., Tran, D., Tian, Y., Alemzadeh, H.: Poster: analysis of cyber-security vul-

nerabilities of interconnected medical devices. In: CHASE (2019)

https://symc.ly/33Rpp3S
https://symc.ly/2qoF3WG
https://symc.ly/2qoF3WG
https://bit.ly/369pLnZ

Establishing a Strong Baseline for Privacy
Policy Classification

Najmeh Mousavi Nejad1,2(B), Pablo Jabat3, Rostislav Nedelchev1,
Simon Scerri2, and Damien Graux4

1 Smart Data Analytics (SDA), University of Bonn, Bonn, Germany
nejad@cs.uni-bonn.de, rostislav.nedelchev@uni-bonn.de

2 Fraunhofer Intelligent Analysis and Information Systems (IAIS),
Sankt Augustin, Germany

simon.scerri@iais.fraunhofer.de
3 Company Watch Ltd., London, England

pjabat@companywatch.net
4 ADAPT Centre, Trinity College Dublin, Dublin, Ireland
damien.graux@adaptcentre.ie, https://sda.tech/,

https://www.iais.fraunhofer.de/, https://www.companywatch.net/,

https://www.adaptcentre.ie/

Abstract. Digital service users are routinely exposed to Privacy Policy
consent forms, through which they enter contractual agreements con-
senting to the specifics of how their personal data is managed and used.
Nevertheless, despite renewed importance following legislation such as
the European GDPR, a majority of people still ignore policies due to
their length and complexity. To counteract this potentially dangerous
reality, in this paper we present three different models that are able to
assign pre-defined categories to privacy policy paragraphs, using super-
vised machine learning. In order to train our neural networks, we exploit
a dataset containing 115 privacy policies defined by US companies. An
evaluation shows that our approach outperforms state-of-the-art by 5%
over comparable and previously-reported F1 values. In addition, our
method is completely reproducible since we provide open access to all
resources. Given these two contributions, our approach can be considered
as a strong baseline for privacy policy classification.

Keywords: Privacy policy · Multi-label classification · Deep learning

1 Introduction

Various studies indicate that, despite their proliferation, a majority of consumers
still skip privacy policy consent forms due to the difficulty required for lay users
to comprehend their contents. In fact, a recent study called “The Biggest Lie
on the Internet” reported that only around a fourth of participants read privacy
policies, and they only invest just over a minute to do so [15]. Moreover, these
statistics are probably lower outside of laboratory conditions. Another survey
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 370–383, 2020.
https://doi.org/10.1007/978-3-030-58201-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_25

Establishing a Strong Baseline for Privacy Policy Classification 371

showed that if users were to read the privacy policies of all services they visit on
the Internet, they would need on average 244 h each year which is almost more
than half of the average time a user spends on the Internet [12].

To assist end-users with consciously agreeing to the conditions, we consider
Natural Language Processing (NLP) and Machine Learning (ML) methods and
apply them to classify privacy policy paragraphs into pre-defined categories for
easier comprehension. Our efforts seek to build on the results of two earlier
dominant studies in the literature. The first is the OPP-115 dataset, which con-
tains 115 privacy policies at paragraph level, each of which includes fine-grained
annotations from 3 experts [22]; e.g., the paragraph in Fig. 1 from the Amazon
policy1 is annotated with two classes: User Access, Edit & Deletion and Data
Retention. The second study which inspired our research is the effort by Polisis
to build a Convolutional Neural Network (CNN) model exploiting OPP-115 [5].
Despite the valuable contribution of these earlier studies, they exhibit one major
weakness: reproducibility. Due to a lack of information on the exact ML dataset
splits used, and the lack of a common gold standard in the literature, subsequent
studies have created their own. This makes it difficult to collectively interpret
and compare the different results. A major contribution of the efforts presented
here is our provision of a strong and reproducible baseline for future research.

“ [. . .] You can add or update certain information on pages such as
those referenced in the Which Information Can I Access? section.
When you update information, we usually keep a copy of the prior
version for our records. [. . .] ”

– User Access, Edit and Deletion
– Data Retention

Fig. 1. Excerpt from Amazon privacy notice

More concretely, our contributions are the following:

– A comprehensive set of experiments based on two different gold standards;
– A presentation of a strong baseline for privacy policy classification using NLP

and ML that successfully reproduces state-of-the-art findings (though with
our self-created data splits and gold standards) and furthermore improves the
results by employing the BERT framework [3] for the two gold standards;

– Ensuring the reproducibility of our results by providing all resources utilised
to generate our conclusions.

Central to our efforts is a multi-label classification problem with 12 classes,
which can be used to predict one or more classes for each paragraph of a given
privacy policy, based on a neural network and the OPP-115 dataset. We first

1 To retrieve the exact source used: <https://www.amazon.com/gp/help/customer/
display.html?nodeId=468496> (Sub-entry What Choices Do I Have?) – last accessed
March.2nd.2020.

https://www.amazon.com/gp/help/customer/display.html?nodeId=468496
https://www.amazon.com/gp/help/customer/display.html?nodeId=468496

372 N. Mousavi Nejad et al.

compiled two gold standards from OPP-115: one based on majority votes (i.e.,
two or more experts agree on a label); and the other with the union of all expert
annotations. The dataset creators [22] considered the majority-vote-based stan-
dard, whereas Polisis used the union-based, with the rationale that disagree-
ments are a result of the experts’ high understanding of legal texts and that
therefore, none of their annotations should be deemed incorrect.

In order to establish a strong baseline, we compare three models with both
gold standards. The first model is a CNN, whose generation is directly compa-
rable to the earlier Polisis efforts. The second and third models are based on
the BERT transformer, a model that has recently gained a lot of attention as
a potential superior alternative. To the best of our knowledge, our efforts are
the first attempt to produce a reliable and completely reproducible result on
privacy policy classification. The results attained demonstrate consistency and
significant improvement over the baseline and indicate good reliability: A 77%
micro-average F1 on the union-based gold standard, and a 85% micro-average
F1 on the majority-based gold standard.

The rest of the paper is divided as follows: in Sect. 2 we compare our app-
roach to the existing studies on privacy policies. Section 3 provides details of the
three models. In Sects. 4 and 5, an extensive set of experiments is presented and
discussed. Finally, Sect. 6 concludes this study and suggests future directions
towards privacy policy analysis.

2 Related Work

In light of the, now enforced EU-wide, General Data Protection Regulation
(GDPR), there has been an increasing interest toward privacy policy analysis.
Some studies investigated the essential regulatory model, notice and choice [9]
in web privacy principles [10,16]. Libert monitored data flows on websites and
identified third parties who collect and use personal data [10]. Afterward, over
200,000 websites’ privacy policies are scanned to determine whether the parties
identified, are explicitly mentioned in the page’s privacy policy. Furthermore, pri-
vacy policies are additionally analyzed to check whether they respect the“Do Not
Track” browser setting2. In another study, the authors applied NLP and super-
vised ML to automatically extract control choice excerpts and opt-out hyperlinks
from privacy policy documents [16]. In order to evaluate their work, OPP-115
was used and the results showed that ML is feasible, even with the small num-
ber of samples for ‘User Choice/Control’ category in OPP-115. In contrast to
our problem, these approaches have addressed only a specific feature of privacy
policies, whereas our method processes the whole document for the benefit of
regular end-users.

A few approaches developed a model with supervised ML to measure com-
pleteness of privacy policies [2,4]. The dataset used in training, contains a set of
pre-defined categories based on privacy regulations and guidelines. Finally the
trained model predicts a category for an unseen paragraph. According to the
2 https://en.wikipedia.org/wiki/Do Not Track.

https://en.wikipedia.org/wiki/Do_Not_Track

Establishing a Strong Baseline for Privacy Policy Classification 373

papers, this structure helps users to examine privacy policies faster and allows
them to focus on those categories in which they are interested. However, based on
our observation, most of online privacy policies use rich HTML representations
and therefore offer a basic level of structural view to the end-users. Moreover, to
the best of our knowledge none of the corpora were created with the full support
of experts, which is an essential prerequisite in legal text processing.

A prominent group on privacy policy analysis is Usable Privacy Policy
Project3, they provided OPP-115, the first comprehensive dataset with fine-
grained annotations on paragraph level [22]. The project aims to extract impor-
tant information for the benefit of regular and expert end users. To do so, a
corpus containing 115 privacy policies from 115 US companies was annotated
by 3 experts on paragraph level (10 experts in total and 3 experts per doc-
ument). The annotations in OPP-115 dataset are in two levels: 10 high level
categories and 22 distinct attributes. For instance, the high level category First
Party Collection has 9 low level attributes, some of which are: Collection Mode,
Information Type, Purpose. Along with the creation of dataset, the authors built
different ML models for prediction of high level categories. The gold standard
for evaluating the methods was compiled based on majority votes: if two or more
experts agreed on a single category, it was considered in the final gold standard.
The best reported micro-average F1 is 66% that was achieved with Support
Vector Machine.

Leveraging OPP-115 and deep learning, Polisis extracts segments from pri-
vacy policies and presents them to users in a visualized format [5]. According
to the paper, the union-based gold standard is used for experiments; 65 privacy
policies were considered for training and 50 policies were kept for the test set.
The authors claim that a successful multi-label classifier should not only predict
the presence of a label, but also its absence4. They report only macro-averages
and further compute the average of F1 and F1-absence and yield 81% average
on the test set. Despite the encouraging work done in Polisis, we believe that
the paper lacks two fundamental elements: there is no validation set involved in
training phase; and there is no information on micro-averages.

It is worth to mention that none of the above studies provided their dataset
splits and therefore there is no standardized benchmark for privacy policy classi-
fication. As a result, in the following sections, first we show how we successfully
reproduce Polisis results (though with different data splits) and further present
two transformer models that significantly outperform Polisis.

3 Approach

In order to establish a firm foundation, we attempt to reproduce the work of [5]
with additional improvements. To do that, we conduct experiments using word

3 https://usableprivacy.org/.
4 They also claim that a model that predicts that all labels are present would have

100% precision and recall, which is obviously wrong.

https://usableprivacy.org/

374 N. Mousavi Nejad et al.

embeddings and a Convolutional Neural Network (CNN). Furthermore, we eval-
uate Bidirectional Encoder Representations from Transformers (BERT) [3] that
has state-of-the-art performance on many other text classification tasks.

3.1 Convolutional Neural Network

Pre-trained Word-Embeddings. Traditionally, text classifiers have taken
advantage of vector representations like bag of words or term-frequency inverse-
document-frequency (TF-IDF). However, it is clear that this method has the
disadvantage of not retaining the semantic information depicted by the order of
words, as well as the meaning of the single words as independent units and be
purely dependent on the context. Thus, we investigate word embeddings.

Word embeddings were initially proposed by [1,14] and were later popularized
by [13]. The continuous bag of words method, which is a variant of word2vec,
creates a numeric representation of words by attempting to predict a given word
by considering its neighbors as seen in text. A huge benefit such an algorithm is
that, no labeled data is necessary, but only great amounts of correct text.

While word2vec is effective at storing some semantic meaning in a vector
representation, it treats words as atomic units and thus, it does not consider the
internal structure of words. Such information can be useful for less frequent or
compound words like rainfall or greenhouse. FastText uses a bag of character
n-grams to represent words, where each character n-gram is a vector and all the
constituents are summed up to create a representation for the word [6,25].

The aforementioned properties can be useful for the context of privacy poli-
cies. Since most openly available word embeddings are trained on news or
Wikipedia corpora [25], we utilize fastText to create vector representations that
are more suitable for the current task. For that purpose, we used a big corpus
of 130k privacy policies scraped from an application store for smart phones. In
app stores, applications are required to provide privacy policies. After tokeniz-
ing the text with NLTK [18], there are 132 595 084 tokens in total and 173 588
unique ones. We compared the vocabulary between this corpus and two version
of OPP-115 that we utilize. We saw that there are 1 072 words which are seen
only in OPP-115 majority-vote version, but not in the corpus used for drafting
the word vectors. Similarly, for the gold standard containing union of all classes,
there were 1 119 out-of-vocabulary (OOV) words. The difference in the amount
of OOVs is due to the fact that the majority vote dataset has less paragraphs
(when there was no agreement on a single category) and thus, it is less likely
that there are unseen words. More details regarding the size of the dataset ver-
sions are provided in Sect. 4. After manual inspection, we concluded that most of
the OOV words are names of brands, products, services or their web-addresses.
These are completely omitted, since from an intuitive perspective they should
not be decisive for the correct detection of a policy class. Hence, the vocabulary
is sufficient.

Architecture. To tackle the multi-label classification problem, we follow the
work of [5] by using a CNN (displayed in Fig. 2). The previously explained word

Establishing a Strong Baseline for Privacy Policy Classification 375

embeddings are provided as input to the neural network. A convolutional oper-
ation is applied with a context window of 3 words, whose output then passes
through a Rectified Linear Activation (ReLU) function. Then, from each con-
text output, only the strongest features are selected by a max-pooling layer,
resulting in a single vector that contains the most informative properties of each
context, thus the neural network is forced to focus only on certain features that
are specific to the current goal. Furthermore, a linear layer followed by a ReLU
are applied to create a higher level representation of the collected information.
Finally, a linear layer with as many nodes as classes is applied to provide an out-
put in the target dimensions and passed through a sigmoid function to obtain
per label probability scores.

Fig. 2. CNN architecture

The proposed architecture shares a strong resemblance with the work of [7],
where a CNN is used for multi-class classification of sentences. However, it lacks
a random dropout just before the last linear layer. We conduct experiments with
50% dropout. Additionally, we used Adam [8] optimization algorithm combined
with early stopping. The convolutional neural network is optimized using binary
cross entropy loss:

�(x, y) = L = {l1, . . . , lN}� (1)
ln = −wn [yn · log xn + (1 − yn) · log(1 − xn)] (2)

where l1, . . . , lN specify the 12 loss values for each of the 12 possible labels that
we have in the dataset. It is being calculated for each, since this is a multi-label
classification and we could have any combinations of those. After we have the
12 losses, we take the mean of those 12 to get one scalar number. Furthermore,
x is the model prediction, y is the true label, w is the class specific weight which
in our case are all 1. For instance, if we consider that our current model assigns
probability p to observation o for the Data Retention label, the loss function for
this specific label will be:

loss(DataRetention) = y · log p + (1 − y) · log(1 − p) (3)

where y is 1 if observation o is labeled with Data Retention in the gold standard
and 0 if not.

376 N. Mousavi Nejad et al.

3.2 Bidirectional Encoder Representations from Transformers

The BERT framework [3] uses several layers of transformer encoders [20] to
create a bidirectional representation of the tokens in the sequence. The app-
roach operates in two stages: first, the model is pre-trained on large amounts
of unlabelled data; second, it is fine-tuned on specific labeled data to solve a
downstream problem, which in our case is multi-label classification.

To handle various domains and tasks, BERT is using WordPiece [23] tok-
enization. It provides a reasonable balance between character and subword level
information. For example, a model using it, can detect similar suffixes or roots
among words. This way, the vocabulary stays within a reasonable size, without
having too many entries. The chosen vocabulary size is 30 000 [3].

BERT is pre-trained using two unsupervised tasks. The first one is masked
language modeling (MLM), i.e., the model is being taught to predict 15% of
the randomly “masked” tokens in a sentence. The masking uses one of three
randomly chosen possible ways: 1) in 80% of the cases, a token is replaced with
[MASK]; 2) in 10% with another random word; and 3) in the remaining 10% no
replacement is done [3]. The other unsupervised language modeling task is next
sentence prediction (NSP). Every input sequence to the framework always starts
with the classification token [CLS], which provides a fixed-length representation
for the whole input. For NSP, two subsequent sentences from the corpora are
concatenated with another separator token, [SEP], so that the model is aware
of the separation between the two. In 50% of the cases, the second sentence
is replaced by another one. Thus, BERT is trained to recognize when a pair of
sentences appear together in the corpora (or they don’t), using the CLS token [3].

We use a pre-trained version of BERTBASE
5, 6 which has 12 encoder layers,

a hidden state size of 768, and 12 attention heads, totaling in 110M parameters.
Additionally, we also prepare another fine-tuned version of the language model
with our 130 K privacy policy corpus7. Ninety percent of those were used for
training while the remaining ten for validation. We fine-tune the model for three
epochs and achieved a cross-entropy loss on the mask languaged model task of
0.1151 and perplexity, 1.1220. Finally, both versions of the approach are trained
on the privacy policy classification task and evaluated. For more detail on BERT,
we would forward the reader to the relevant references [3,20].

4 Evaluation

In pursuance of providing a reliable baseline for privacy policy classification,
two gold standards were compiled out of OPP-115 dataset. OPP-115 high-level
annotations are divided into 10 classes:

5 https://github.com/huggingface/transformers.
6 https://github.com/kaushaltrivedi/fast-bert.
7 The BertLMDataBunch class contains from raw corpus method that takes a list of

raw texts and creates DataBunch for the language model learner.

https://github.com/huggingface/transformers
https://github.com/kaushaltrivedi/fast-bert

Establishing a Strong Baseline for Privacy Policy Classification 377

1. First Party Collection/Use: how and why the information is collected.
2. Third Party Sharing/Collection: how the information may be used or col-

lected by third parties.
3. User Choice/Control : choices and controls available to to users.
4. User Access/Edit/Deletion: if users can modify their information and how.
5. Data Retention: how long the information is stored.
6. Data Security : how is users’ data secured.
7. Policy Change: if the service provider will change their policy and how the

users are informed.
8. Do Not Track : if and how Do Not Track signals is honored.
9. International/Specific Audiences: practices that target a specific group of

users (e.g., children, Europeans, etc.)
10. Other : additional practices not covered by the other categories.

Ten experts were hired to create fine-grained annotations and each privacy
policy was randomly assigned to 3 of them. OPP-115 comprises 3 792 para-
graphs, 10 high-level classes and 22 distinct attributes8. Each paragraph was
labeled with one or more classes (out of 10). According to the dataset creators,
the best agreement was achieved on Do Not Track class with Fleiss’ Kappa
equal to 91%, whereas the most controversial class was Other, with only 49% of
agreement [22]. The latter category was further decomposed into its attributes:
Introductory/Generic, Privacy Contact Information and Practice Not Covered.
Therefore, we face a multi-label classification problem with 12 classes. It should
be clarified here that computing Fleiss’ kappa considering all categories together
is not feasible for OPP-115, as annotators differ per policy. Aforementioned,
there were 10 experts and each policy was randomly assigned to 3 of them. If 3
experts were the same experts for the whole dataset, it was rational to compute
an overall Fleiss’s kappa for all 10 categories and between 3 annotators. For this
reason, [22] reported Fleiss’ kappa per category.

To evaluate our three models, we compiled two gold standards: union-based,
which contains all expert annotations; and the majority-vote-based gold stan-
dard, where only annotations with an agreement between at least 2 experts were
retained. Label distributions in both gold standards are shown in table 1. Fol-
lowing conventional ML practices, dataset splits are randomly partitioned into a
ratio of 3:1:1 for training, validation and testing respectively; while maintaining
a stratified set of labels. In total, the union-based dataset contains 3 788 unique
segments and the majority-based one comprises 3 571 unique segments9. The
latter has less segments due the 217 paragraphs that were eliminated because
no expert agreement was reached.

In total, 6 experiments were carried out. The scores obtained (micro-averages
ranging from 70–85% and macro-average in range of 65–76% for both gold
standards) are considered very accurate, especially in the context of the Fleiss
expert agreements, reported in [22], which showed human agreement between
49–91% for the same classes here considered. As expected, for all 6 experiments,
8 Here, we only consider high-level categories.
9 All splits are available for further experiments. See footnote 13.

378 N. Mousavi Nejad et al.

Table 1. Label distribution in gold standards; Tr: Train; V: Validation; T: Test

Labels Union Majority votes
Tr V T Tr(%) V(%) T(%) Tr V T Tr(%) V(%) T(%)

First party collection & Use 988 243 288 40.8 40.1 38 781 176 250 34.2 30.9 35
Third party sharing & collection 755 204 227 31.1 33.7 30 584 158 203 25.5 27.7 28.4
User access, edit and deletion 155 29 46 6.4 4.8 6.1 101 24 24 4.4 4.2 3.4
Data retention 111 21 24 4.6 3.5 3.2 50 14 14 2.2 2.4 2
Data security 251 65 59 10.3 10.7 7.8 139 31 40 6.1 5.4 5.6
International/specific audiences 225 67 61 9.3 11.1 8.1 204 41 56 9 7.2 7.8
Do not track 22 3 7 1 0.5 0.9 22 6 3 1 1 0.4
Policy change 118 27 47 4.9 4.4 6.2 73 25 21 3.2 4.4 3
User choice/control 405 97 130 16.7 16 17.2 233 48 77 10.2 8.4 10.8
Introductory/generic 514 137 162 21.2 22.6 21.4 240 72 78 10.5 12.6 11
Practice not covered 402 102 138 16.6 16.8 18.2 83 21 25 3.6 3.7 3.5
Privacy contact information 207 44 72 8.5 7.3 9.5 129 32 42 5.6 5.6 5.9

Table 2. F1 for three models on the two gold standards in (%) with tuned epochs on
validation; V: Validation; T: Test; Threshold= 0.5

Labels Majority-vote gold standard Union-based gold standard
CNN BERT BERT-fine-tuned CNN BERT BERT-fine-tuned
V T V T V T V T V T V T

First party collection/use 83 82 87 88 88 91 83 81 83 84 87 86
Third party sharing/collection 84 82 86 85 87 90 80 79 79 82 83 86
User access, edit & deletion 80 70 82 63 77 73 56 45 54 49 56 65
Data Retention 43 40 42 33 54 56 36 48 36 68 62 71
Data security 76 75 87 82 87 80 66 72 71 80 73 76
International/specific audiences 96 82 94 81 95 83 89 92 87 93 92 92
Do not track 91 100 80 100 80 100 80 60 80 60 100 92
Policy change 80 88 80 88 85 90 69 77 75 78 77 80
User choice & Control 77 72 75 81 78 81 66 64 64 63 66 65
Introductory/Generic 63 73 75 76 78 79 63 65 74 68 73 67
Practice not covered 8 13 18 32 35 35 41 37 44 46 45 48
Privacy contact information 86 84 79 80 79 78 79 71 75 71 83 78

Macro averages 72 71 74 74 77 79 67 65 68 70 75 76

Micro averages 79 78 81 82 83 85 72 70 73 74 77 77

micro- outperform macro-averages, because for a few labels, the model is not
able to learn the class weights properly due to sample scarcity. For instance,
Data Retention corresponds to only 2–3% of dataset, and yet this class has 1/12
weight in macro-average calculation; whereas micro-average considers dataset
heterogeneity and decreases the impact of scarce categories on the final result.
Furthermore, the category Practice Not Covered shows low F1 on both gold
standards. This category refers to all practices that are not covered by other 11
categories and therefore represents a broad range of topics. Consequently, due
to diversity of vocabulary, it is difficult for the model to learn this specific class.

Table 2 shows that even BERTBASE achieves state-of-the-art and further
improves the results (without domain-specific embeddings). This is due to the
facts that 1) transformers scale much better on longer text sequences because
they operate in a concurrent manner; 2) BERT is using WordPiece encoding
and therefore it has a dictionary which is hard to have an OOV case with it;
and 3) it has been trained on massive amounts of data. Moreover, the fine-tuned
BERTBASE with 130 K corpus privacy policy has significantly enhanced F1

Establishing a Strong Baseline for Privacy Policy Classification 379

average on both gold standards10. Interestingly, fine-tuned BERT has improved
macro-average more than micro. It is a proof that exploiting a good language
model enables the classification model to learn the weights more properly, even
with the scarce number of samples.

In order to compare our result to Polisis, we present table 3 which provides
macro-averages on the union-based gold standard. As mentioned in Sect. 2, Poli-
sis used the union-based dataset to report their results. The average lines in the
table represent the macro-average of the metric (precision, recall or F1) in pre-
dicting the presence of each label and predicting its absence (the 7th line in the
table - F1 - is also included in table 2).

As shown in table 3, we successfully reproduce Polisis findings (although with
different splits, which remain unavailable) and further improve the result by 5%
compared to the state-of-the-art. However, we believe this type of average is not
a fair measure for multi-label classification. As shown in table 2, the fine-tuned
BERT model has nevertheless significantly enhanced macro-averages (from 65%
to 76%) which is not visible in table 3, where the enhancement is limited to 5%.

Table 3. Macro averages on the union-based gold standard in (%) with tuned epochs
on validation; V:Validation; T:Test; Threshold=0.5

Measure CNN BERT BERT-fine-tuned

V T V T V T

Precision 81 81 81 84 81 83

Precision-absence 94 94 94 95 95 95

average 86 86 86 89 88 89

Recall 58 57 60 62 70 71

Recall-absence 97 97 97 97 97 97

average 78 77 79 80 84 84

F1 67 65 68 70 75 76

F1-absence 95 95 95 96 96 96

average 81 80 82 83 86 86

In case of multi-label classification, it is not clear which average (macro or
micro) best defines a model’s performance. As Sebastiani argues, there is no
agreement to choose between micro- and macro-averages in literature [17]. Some
studies claim that macro-average is fair in case of class imbalance, since all the
categories have the same weight, whereas micro-average favours methods that
just correctly predict the most frequent categories [21]. However, others (the
majority) believe that when the label distribution is not balanced, computation

10 Fine-tuning BERT took 33 h for 3 epochs on a single GPU. Once it is completed,
training the classification model takes only a few hours, depending on the number
of epochs.

380 N. Mousavi Nejad et al.

of micro-average is preferable, because a micro-average aggregates the contribu-
tions of all classes to compute the average metric [11,19]. In order to establish
a firm foundation, we report both averages.

Table 2 presents F1 scores across all labels with a threshold equal to 0.5 for
the two gold standards. For CNN, we applied Adam with default parameters and
with 50% dropout just before the last linear layer (learning rate = 0.001, decay
rates: β1 = 0.9, β2 = 0.999). BERT is optimized with the default configuration
and LAMB optimizer [24].

5 Discussion

This paper considers notoriously cumbersome privacy policies and investigates
automatic methods to assist end-users in comprehending these contractual agree-
ments. The conducted experiments confirm the feasibility of our approach in
reaching this objective. Since we are benefiting from supervised ML, the perfor-
mance of the generated model highly depends on the training dataset quality.
As shown in table 1, there is a huge difference between the two gold standards
for the Practice Not Covered class. In the union-based dataset 642 segments are
categorized as Practice Not Covered, whereas the majority-based gold standard
only records 129 occurrences. Unsurprisingly, for this specific label, all models
trained with the union-based dataset outperform the models which were trained
by the majority-based one. In addition, 513 variation for the Practice Not Cov-
ered category between the two gold standards shows high expert disagreement.
This was not evident in the original paper [22], because the authors reported
Fleiss’ Kappa on the parent category (Other) and there is no information on
annotator agreement for its subcategories.

Figure 3 shows an example of disagreement on Practice Not Covered category
in two gold standards. The shown paragraph explains Amazon’s policy on treat-
ing children’s data. In the union-based dataset this segment is annotated with
International and Specific Audiences and Practice Not Covered classes, whereas
in the majority-based, it is only labeled with International & Specific Audiences.

“ [. . .] Amazon.com does not sell products for purchase by children.
We sell children’s products for purchase by adults. If you are under
18, you may use Amazon.com only with the involvement of a parent
or guardian. [. . .] ”

– International and Specific Audiences
– Practice Not Covered

Fig. 3. Disagreement example for the Amazon privacy notice

Regarding label-specific performance, almost all models perform quite well
on Do Not Track class in spite of the low sample occurrence. This is probably due
to a smaller set of terminology that is often used in such paragraphs, including

Establishing a Strong Baseline for Privacy Policy Classification 381

specifically the word track. Furthermore, as mentioned earlier, the best human
agreement was also achieved on Do Not Track class with Fleiss’ Kappa equal to
91%, which indicates that our ML models simulate human thinking fairly.

In summary, OPP-115 has proven to be a small, yet reliable dataset for super-
vised privacy policy classification. However, our experiments confirmed legal text
subjectivity for a few classes. One possible solution is decomposing those cate-
gories into less controversial subclasses with higher experts agreement. In Fig. 3,
breaking the Specific Audiences segment into more specific classes will make
annotations less subjective, for human experts and machines alike.

To the extent of our knowledge, this is the first effort to establish a stan-
dard benchmark on privacy policy classification. In the light of recently enforced
data protection laws in the EU, all parties that use and collect personal infor-
mation must ensure their compliance with GDPR. Although OPP-115 consists
of policies defined by American companies, most of the top-level categories
can still be largely mapped to GDPR articles11. For instance, the category
First Party Collection/Use can reflect many practices stated in the Article 13,
‘Information to be provided where personal data are collected’ and
User Access, Edit & Deletion can be linked to Articles 16 & 17 (‘Right to
Rectification/Erasure’)12. The OPP-115 dataset also contains annotations
at attribute level. By extracting these values from an arbitrary privacy policy, it
is possible to perform an in-depth analysis and assist experts to check compliance
of privacy policies text based on GDPR.

6 Conclusion and Future Work

In this paper we investigate the potential of automatic classification of consent
agreements in privacy policy consent forms that are frequently faced by lay users.
Our findings are based on the compilation of two gold standards, thus providing
a reference privacy policy classification baseline for the relevant research commu-
nity. To the best of our knowledge, this is the first effort towards a standardized
benchmark for privacy policies experiments. The evaluation shows that our best
model yields F1 score highs of 77–85% (micro-avg) and 76–79% (macro-avg)
for union-based and majority-based gold standards, respectively. Both metrics
outperform the reported state-of-the-art. In light of human annotator agree-
ment levels achieved for the same data and classes (ranging from 49%–91%), the
results can safely be considered as successful.

The approach and method presented are completely reproducible and all
resources and data splits are openly accessible13. Since the context surrounding
our methods (including the data splits) are available, they can be used as a

11 Website privacy policies in EU depend also on Directive 2002/58/CE.
12 Website privacy policies in European union depend also on Directive 2002/58/CE.
13 A supplementary archive is available online for download: <https://github.com/

SmartDataAnalytics/Polisis Benchmark>. The archive contains inter alia the
source-code required to reproduce all the experiments, some useful documentation
and necessary datasets.

https://github.com/SmartDataAnalytics/Polisis_Benchmark
https://github.com/SmartDataAnalytics/Polisis_Benchmark

382 N. Mousavi Nejad et al.

benchmark for other approaches exploring machine-assisted privacy policy clas-
sification for improved human understanding.

To further improve the F1 scores achieved, the imbalanced label distribution
of OPP-115 (see table 1) could be addressed. A possible solution is to use a
weighted objective function with respect to the frequency of the labels. Another
approach in consideration is to use sampling techniques to improve the balance.
Finally, alternative novel methods can be investigated to take fuller advantage of
the three different expert annotations available. In this regard, we will examine
the usage of methods that take the varying labels collectively into consideration.

In conclusion, we intend to continue building upon the baseline achieved and
the positive results presented in this paper. As demonstrated by the EU-wide
GDPR implementation, data regulation is increasingly recognized as a critical area
at a political and governance level, whose impact is felt by all digitally-enabled
world citizens. Therefore, although not novel, the application of AI techniques to
this area has renewed relevance, and there is great value in exploring automation
to support private users entering contractual agreements to have a clearer and
more secure understanding of their rights, risks and implications.

Acknowledgment. This work has been partly supported by the European H2020
project “DAPSI” under the Grant Agreement 871498.

References

1. Collobert, R., Weston, J.: A unified architecture for natural language process-
ing: deep neural networks with multitask learning. In: Proceedings of the 25th
International Conference on Machine Learning, ICML 2008, pp. 160–167. ACM,
New York (2008). https://doi.org/10.1145/1390156.1390177, http://doi.acm.org/
10.1145/1390156.1390177

2. Costante, E., Sun, Y., Petković, M., den Hartog, J.: A machine learning solution
to assess privacy policy completeness: (short paper). In: Proceedings of the 2012
ACM Workshop on Privacy in the Electronic Society, WPES 2012. ACM, New
York, pp. 91–96 (2012). https://doi.org/10.1145/2381966.2381979, http://doi.acm.
org/10.1145/2381966.2381979

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv preprint (2018).
arXiv:1810.04805

4. Guntamukkala, N., Dara, R., Grewal, G.W.: A machine-learning based approach
for measuring the completeness of online privacy policies. In: 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pp.
289–294 (2015)

5. Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K.G., Aberer, K.: Polisis:
automated analysis and presentation of privacy policies using deep learning. In:
Proceedings of the 27th USENIX Security Symposium (2018)

6. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint (2016). arXiv:1607.01759

7. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014).
https://doi.org/10.3115/v1/D14-1181, http://aclweb.org/anthology/D14-1181

https://doi.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177
https://doi.org/10.1145/2381966.2381979
http://doi.acm.org/10.1145/2381966.2381979
http://doi.acm.org/10.1145/2381966.2381979
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1607.01759
https://doi.org/10.3115/v1/D14-1181
http://aclweb.org/anthology/D14-1181

Establishing a Strong Baseline for Privacy Policy Classification 383

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2015)

9. Landesberg, M.K., Levin, T.M., Curtin, C.G., Lev, O.: Privacy online: a report to
congress. NASA (19990008264) (1998)

10. Libert, T.: An automated approach to auditing disclosure of third-party data col-
lection in website privacy policies. In: Proceedings of the 2018 World Wide Web
Conference, WWW 2018, International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, pp. 207–216 (2018).
https://doi.org/10.1145/3178876.3186087

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2008)

12. McDonald, A.M., Cranor, L.F.: The cost of reading privacy policies. ISJLP 4, 543
(2008)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of the
26th International Conference on Neural Information Processing Systems, NIPS
2013, vol. 2, pp. 3111–3119. Curran Associates Inc., USA (2013). http://dl.acm.
org/citation.cfm?id=2999792.2999959

14. Mnih, A., Hinton, G.: Three new graphical models for statistical language mod-
elling. In: Proceedings of the 24th International Conference on Machine Learn-
ing, ICML 2007, pp. 641–648. ACM, New York (2007). https://doi.org/10.1145/
1273496.1273577, http://doi.acm.org/10.1145/1273496.1273577

15. Obar, J.A., Oeldorf-Hirsch, A.: The biggest lie on the Internet: ignoring the privacy
policies and terms of service policies of social networking services. Inf. Commun.
Soc. 23, 1–20 (2018)

16. Sathyendra, K.M., Schaub, F., Wilson, S., Sadeh, N.M.: Automatic extraction of
opt-out choices from privacy policies. In: AAAI Fall Symposia (2016)

17. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002). https://doi.org/10.1145/505282.505283, http://doi.acm.
org/10.1145/505282.505283

18. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1555–1565. Association for Computational Linguistics (2014). https://
doi.org/10.3115/v1/P14-1146, http://aclweb.org/anthology/P14-1146

19. Van Asch, V.: Macro-and Micro-Averaged Evaluation Measures (Basic Draft).
CLiPS, Belgium (2013)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

21. Wiener, E., Pedersen, J.O., Weigend, A.S.: A neural network approach to topic
spotting (1995)

22. Wilson, S., et al.: The creation and analysis of a website privacy policy corpus.
In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 1330–1340 (2016)

23. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint (2016). arXiv:1609.08144

24. You, Y., Li, J., Hseu, J., Song, X., Demmel, J., Hsieh, C.J.: Reducing BERT pre-
training time from 3 days to 76 minutes. arXiv abs/1904.00962 (2019)

25. https://code.google.com/archive/p/word2vec/

https://doi.org/10.1145/3178876.3186087
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.1145/1273496.1273577
https://doi.org/10.1145/1273496.1273577
http://doi.acm.org/10.1145/1273496.1273577
https://doi.org/10.1145/505282.505283
http://doi.acm.org/10.1145/505282.505283
http://doi.acm.org/10.1145/505282.505283
https://doi.org/10.3115/v1/P14-1146
https://doi.org/10.3115/v1/P14-1146
http://aclweb.org/anthology/P14-1146
http://arxiv.org/abs/1609.08144
https://code.google.com/archive/p/word2vec/

Cross-Platform File System Activity
Monitoring and Forensics – A Semantic

Approach

Kabul Kurniawan1,3(B) , Andreas Ekelhart1,2 , Fajar Ekaputra1 ,
and Elmar Kiesling1

1 TU Wien, Favoritenstraße 9–11, Vienna, Austria
kabul.kurniawan@tuwien.ac.at

2 SBA Research, Floragasse 7, Vienna, Austria
3 University of Vienna, Währingerstraße 29, Vienna, Austria

Abstract. Ensuring data confidentiality and integrity are key concerns
for information security professionals, who typically have to obtain and
integrate information from multiple sources to detect unauthorized data
modifications and transmissions. The instrumentation that operating
systems provide for the monitoring of file system level activity can yield
important clues on possible data tampering and exfiltration activity but
the raw data that these tools provide is difficult to interpret, contextual-
ize and query. In this paper, we propose and implement an architecture
for file system activity log acquisition, extraction, linking and storage
that leverages semantic techniques to tackle limitations of existing mon-
itoring approaches in terms of integration, contextualization, and cross-
platform interoperability. We illustrate the applicability of the proposed
approach in both forensic and monitoring scenarios and conduct a per-
formance evaluation in a virtual setting.

Keywords: Semantic log analysis · Digital forensics · File system
monitoring · Exfiltration detection

1 Introduction

In our increasingly digitized world, Information and Communication Technolo-
gies pervade all areas of modern life. Consequently, organizations face difficult
challenges in protecting the confidentiality and integrity of the data they control,
and theft of corporate information – i.e., data breaches or data leakage – have
become a critical concern [7].

In the face of increasingly comprehensive collection of sensitive data, such
incidents can become an existential threat that severely impacts the affected
organization, e.g., in terms of reputation loss, decreased trustworthiness, and
direct consequence that affect their bottom line. Fines and legal fees, either
due to contractual obligations or laws and regulations (e.g., the General Data

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 384–397, 2020.
https://doi.org/10.1007/978-3-030-58201-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_26&domain=pdf
http://orcid.org/0000-0002-5353-7376
http://orcid.org/0000-0003-3682-1364
http://orcid.org/0000-0003-4569-2496
http://orcid.org/0000-0002-7856-2113
https://doi.org/10.1007/978-3-030-58201-2_26

Cross-Platform File System Activity Monitoring and Forensics 385

Protection Regulation in the EU), have become another critical risk. Overall,
the number and size of data breaches have been on the rise in recent years1.

On a technical level, exfiltration of sensitive data is often difficult to detect. In
this context, we distinguish two main types of adversaries and associated threat
models: (i) an insider with legitimate access to data, who either purposely or
accidentally exfiltrates data, and (ii) an external attacker who obtains access
illegitimately. Insiders typically have multiple channels for exfiltration at their
disposal, including conventional protocols (e.g., ftp, sftp, ssh, scp), cloud stor-
age services (e.g., dropbox, onedrive, google drive, WeTransfer), physical media
(e.g., USB, laptop, mobile phone), messaging and email applications, and dns
tunneling [11]. Whereas an insider may leverage legitimate access permissions
directly or at least internal resources as a starting point, an external attacker
must first infiltrate the organization network and obtain access to the data (e.g.,
by spreading malware or spyware, stealing credentials, eavesdropping, brute forc-
ing employee passwords, etc.).

State-of-the-art perimeter security solutions such as intrusion detection and
prevention systems (IDS/IPS), firewalls, and network traffic anomaly detection
are per se generally not capable of detecting insider attacks [20]. However, such
activities typically leave traces in the network and on the involved systems,
which can be used to spot potential misuse in real time or to reconstruct and
document the sequence of events associated with an exfiltration and its scope
ex-post. This examination, interpretation, and reconstruction of trace evidence
in the computing environment is part of digital forensics. Upon detection of
security violations, forensic analysts attempt to investigate the relevant causes
and effects, frequently following the hypothesis-based approach to digital foren-
sics [6]. Although there are a variety of tools and techniques available that are
employed during a digital investigation, the lack of integration and interoper-
ability between them, as well as the formats of their sources and resulting data
hinder the analysis process [8].

In this paper, we introduce a novel approach that leverages semantic web
technologies to address these challenges in the context of file system activity
analysis. This approach can harmonize heterogeneous file and process informa-
tion across operating systems and log sources. Furthermore, it provides con-
textualization through interlinking with relevant information and background
knowledge.

The research question we address in this article is: How can semantic tech-
nologies support digital file activity investigations? Addressing this question
resulted in the following main contributions: (i) a set of log and file event vocab-
ularies (Sect. 3); (ii) an architecture and prototypical implementation for file
system log acquisition, event extraction, and interlinking across heterogeneous
systems and with background knowledge (Sect. 4); (iii) a set of demonstration
scenarios for continuous monitoring and forensic investigations (Sect. 5); and (iv)
a performance evaluation in a virtual setting (Sect. 6).

1 https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breache
s-hacks/.

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

386 K. Kurniawan et al.

2 Related Work

Our approach builds upon and integrates multiple strands of work, which we will
review in the following: (i) approaches for file activity monitoring, both in the
academic literature and commercial tools; (ii) file system ontologies; and (iii)
semantic file monitoring & forensics.

File Activity Monitoring. In contrast to the approach presented in this paper,
prior work in this category does not involve semantic or graph-based model-
ing, which facilitates interoperability and integration, contextualization through
interlinking with background knowledge, and reasoning.

The authors in [12] focus on data exfiltration by insiders. They first apply sta-
tistical analyses to characterize legitimate file access patterns and compare those
to file access patterns of recent activities to identify anomalies. The authors men-
tion that the approach can result in a high number of suspicious activities, which
can be impractical for individual investigation. [4] aims to predict insider threats
by monitoring various parameters such as file access activity, USB storage activ-
ity, application usage, and sessions. In their evaluation, they train a deep learning
model on legitimate user activity and then use the model to assign threat scores
to unseen activities. In [3], the authors introduce a policy-based system for data
leakage detection that utilizes operating system call provenance. They facilitate
real-time detection of data leakage by tracking operations performed on sensitive
files. This approach is similar to the one presented in this paper in its objectives,
i.e., it also aims to monitor file activities (copy, rename, move), but it does not
cover contextualization and linking to background knowledge. [9] proposes an
approach that leverages data provenance information from OS kernel messages
to detect exfiltration of data returned to users from a database. The proposed
system builds profiles of users’ actions to determine whether actions are consis-
tent with the tasks of the users. While it has similar goals, the focus is limited
on data exfiltration from databases via files.

Apart from the academic research on various techniques for file activity mon-
itoring, a wide range of tools is available commercially, such as Solarwind Server
and Application Monitor, ManageEngine DataSecurity Plus, PA File Insight,
STEALTHbits File Activity Monitor, and Decision File Audit. These tools cover
varying scopes of leakage detection and typically provide a simple alerting mech-
anism upon suspicious activity. Another category of existing tools are Security
Information and Event Management systems (e.g., LogDNA, Splunk, Elastic-
Search). Their purpose is to manage and analyze logs and they do not specifically
tackle the problem of tracking file activity life-cycles.

File System Ontologies. Ontological representation of file system informa-
tion has been explored, e.g., in [18], in which the authors propose TripFS, a
lightweight framework that applies Linked Data principles for file systems in
order to expose their content via dereferenceable HTTP URIs. The authors
model file systems with their published vocabulary that is aligned with the
NEPOMUK File Ontology (NFO)2. Similar to TripFS, [19] proposes VDB-
2 http://oscaf.sourceforge.net/nfo.html.

http://oscaf.sourceforge.net/nfo.html

Cross-Platform File System Activity Monitoring and Forensics 387

FilePub to expose file systems as Linked Data and to publish user-defined content
metadata. With focus on end-user access, [17] provide an extension to TripFS
which enables users to navigate the published files, and to annotate and down-
load them via common web browsers without the need to install special software
packages.

In recent work, the authors of [16] proposed a Semantic File System (SFS)
Ontology3 which extends terms from the NEPOMUK ontology. They further
provide technical definitions of terms and a class hierarchy with persistent URIs
and content negotiation capabilities. In our approach, we use the basic concepts
for files, such as file names and file properties as proposed in the related work, but
our approach integrates additional concepts, such as, e.g., file activities, source
and target locations, and file classification.

Semantic Approaches to File Access Monitoring & Forensics. The
application of semantics for digital forensics has been the topic of multiple
research publications. While they are motivated by similar challenges, such as
heterogeneity, variety and volume of data, they do not focus on file activity
monitoring and life-cycle construction in particular, but on the digital evidence
process in general.

Early work on using semantic web technology in the context of forensics
includes [13], which introduces an evidence management methodology to seman-
tically encode why evidence is considered important. An ontology is used to
describe the metadata file contents and events in a uniform and application-
independent manner. In [1], the authors propose a similar ontology-based frame-
work to assist investigators in analyzing digital evidence. They motivate the use
of semantic technologies in general and discuss the advantage of ontological link-
ing, annotations, and entity extraction. A broader architecture to lift the phases
of a digital forensic investigations to a knowledge-driven setting is proposed in
[8]. This results in an integrated platform for forensic investigation that deals
with a variety of unstructured information (e.g., network traffic, firewall logs,
and files) and builds a knowledge base that can be consulted to gain insights
from previous cases via SPARQL queries.

Finally, in a recent contribution [2], the authors propose a framework that
supports forensic investigators during the analysis process. This framework
extracts and models individual pieces of evidence, integrates and correlates them
using a SWRL rule engine, and persists them in a triplestore. Compared to our
approach, their focus is on text processing while file activity analysis is not
considered.

The approach presented in this paper extends preliminary work published
in [15] by introducing cross-platform interoperability, scenarios that demonstrate
the approach, linking to background knowledge and a performance evaluation.

3 https://w3id.org/sfs-ontology#.

https://w3id.org/sfs-ontology#

388 K. Kurniawan et al.

3 Conceptualization

Operating systems typically provide mechanisms and instrumentation to obtain
information on system-level file system operations, typically on the level of
kernel calls. Reconstructing the corresponding user activities, such as editing,
moving, copying or deleting a file from these low-level signals can be challeng-
ing. In particular, the sequence of micro-operations triggered by a file system
operation varies across operating systems and applications, which complicates
the analysis. On Windows systems, for instance, file operations such as Create
generate a number of access operations including ReadAttributes, WriteData,
ObjectClosed, etc.

To construct our vocabularies, we analyzed the structure, format, and access
patterns of the different file activity log sources on both Windows and Linux.
Furthermore, as contextualization is a key requirement for the interpretation of
file activity in forensic analyses, we also include sources of (i) process activity
information, and (ii) authentication events (login, logout, etc.). The scenarios
in Sect. 5 illustrate how we make use of process information and authentica-
tion information. Due to space restrictions, we will not cover the process and
authentication vocabulary in full detail and refer the interested reader to the
source4.

3.1 Vocabulary

As existing ontologies (reviewed in Sect. 2) do not fully cover the requirements
of our approach, we developed a custom ontology. We followed a bottom-up
approach starting from low-level information from log sources with the goal to
choose and collect appropriate terms directly from the sources of evidence (e.g.
users, hosts, files). We organize our semantic model into two levels, i.e., log entry
level and file operation level. On the log entry level, we define a vocabulary to
represent information on micro-level operations for both Windows and Linux
OS log sources which is based on a previously developed vocabulary [10] for
generic log data. On the file operation level, we model a generic vocabulary
to express higher-level events such as actual file event activity (e.g., created,
modified, copied, rename, delete) derived from micro-level operations (Fig. 1).

Log Entry Vocabularies. The Windows Log Event (wle) vocabulary5 rep-
resents Windows file access events using wle:WindowsEventLogEntry, a sub-
class of cl:LogEntry from the SEPSES core log6. The wle:Subject class rep-
resents account information such as wle:accountName and wle:logonID; the
wle:AccessRequest class represents file access information such as wle:access-
Mask and wle:accesses; the wle:Process class represents running pro-
cesses and the wle:Object class represents object file information such as
wle:objectName, wle:objectType, and wle:handleID. To cover Linux file
4 https://w3id.org/sepses/vocab/event/process-event.
5 https://w3id.org/sepses/vocab/log/win-event.
6 https://w3id.org/sepses/vocab/log/core.

https://w3id.org/sepses/vocab/event/process-event
https://w3id.org/sepses/vocab/log/win-event
https://w3id.org/sepses/vocab/log/core

Cross-Platform File System Activity Monitoring and Forensics 389

Fig. 1. High-Level event vocabularies (File Access Event)

access events, we developed the Linux Log Event (lle)7 vocabulary that com-
prises five main classes: lle:LinuxEventLogEntry, a subclass of cl:LogEntry
from the SEPSES core vocabulary, lle:Event class, which covers information on
file access events such as lle:eventType, lle:eventId, lle:eventCategory,
and lle:eventAction; the lle:File class represents information about file
objects such as lle:fileName and lle:filePath; the lle:User class covers
information on users who perform the file event activities such as lle:userName
and lle:userGroup; the lle:Host class represents lle:hostArchitecture,
lle:hostOS, lle:hostName, lle:hostId, etc.

The File Operation vocabulary8 describes fae:FileAccessEvents by
means of the following properties: fae:hasAction reflects the type of access
(e.g., created, modified, copied, renamed, deleted); fae:hasUser links the file
event to the user accessing the file; fae:hasProgram represents the executable
used to access the file, and fae:timestamp captures the time of access. The prop-
erties fae:hasSourceFile and fae:hasTargetFile model the relation between
an original and copied instance of a file. Finally, property fae:hasSourceHost
and fae:hasTargetHost represent the hosts where the source and target files
are located.

3.2 Background Knowledge

To support contextualization and enrichment, we leverage several existing
sources of internal and external background knowledge.

Internal background knowledge can be developed by manually or automati-
cally collecting an organization’s persistent information (e.g. IT Assets, Network
Infrastructure, Users). In our scenarios, we use predefined internal background
knowledge to contextualize and create linking with file access events during event
extraction.

7 https://w3id.org/sepses/vocab/log/linux-event.
8 https://w3id.org/sepses/vocab/event/file-access.

https://w3id.org/sepses/vocab/log/linux-event
https://w3id.org/sepses/vocab/event/file-access

390 K. Kurniawan et al.

Fig. 2. Solution architecture

Furthermore, it is possible to leverage existing external knowledge, such as
the SEPSES cybersecurity knowledge graph (CSKG)9, to link external informa-
tion with system events.

4 Architecture and Prototype Implementation

In this section, we describe our architecture and prototypical implementation for
semantic integration, monitoring, and analysis of file system activity as depicted
in Fig. 2.

The Log Acquisition component deals with the acquisition of log informa-
tion and is installed as an agent on clients or servers. We implement our Log
Acquisition component on Filebeat10, an open-source log data acquisition tool
that ships log data from a host for further processing. Using Filebeat, we can
easily select and configure and add log sources from both Windows and Linux
machines. Furthermore, we use the Filebeat Audit module to ship process and
authentication information from the log sources.

The Log Extraction component handles the parsing of various log data
provided by the Log Acquisition component and can act as a filter that keeps
only relevant parts. We use Logstash11, an open source log processing tool that
provides options for developing processing pipelines to distinguish and handle
different types of log sources. Furthermore, it provides different output options
such as a web socket protocol that supports data streaming.

The RDF-ization component transforms data into RDF by mapping struc-
tured log data produced by the Log Extraction component to a set of predefined
ontologies (cf. Sect. 3). This produces an RDF graph as the basis of file operation
events extraction. We use TripleWave12 to publish RDF streaming data through
specified mappings (e.g. RML13). Furthermore, TripleWave supports the web
socket protocol to publish the output.

The Event Extraction component generates file operation events by iden-
tifying a sequence of low level (e.g., kernel-level) file system events. Furthermore,
9 http://sepses.ifs.tuwien.ac.at.

10 https://www.elastic.co/products/beats/filebeat.
11 https://www.elastic.co/products/logstash.
12 https://streamreasoning.github.io/TripleWave/.
13 http://rml.io.

http://sepses.ifs.tuwien.ac.at
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/products/logstash
https://streamreasoning.github.io/TripleWave/
http://rml.io

Cross-Platform File System Activity Monitoring and Forensics 391

it enriches the events by creating links between file operation events and exist-
ing internal (hosts, users, etc.) and external (e.g., the SEPSES cybersecurity
knowledge graph [14]) background knowledge. We developed a Java-based event
extractor14 and use the C-Sprite [5] engine to implement the event extraction
process. C-Sprite is an RDF stream processing engine that allows us to register
a set of continuous SPARQL-Construct queries against the low level RDF graph
of file system events to generate a graph of file operation events.

Finally, the Data Storage, Querying, and Visualization component
stores the extracted RDF graph of file operation events in a persistent storage
(e.g., a triplestore) and facilitates querying and further analysis. We choose the
widely-used Virtuoso15 triple store, which provides a SPARQL endpoint, for our
prototypical implementation. Furthermore, we developed a simple web-based
graph visualization interface16 that helps analysts to interpret file access life-
cycles (cf. Sect. 5 for an example).

5 Application Scenarios

In this section, we demonstrate the feasibility of our approach by means of two
application scenarios. For both scenarios, we set up a virtual lab with several
Windows and Linux machines, users, groups, and shared folders.

5.1 Scenario 1: Data Exfiltration

In the first scenario, we assume that an organization has learned that confidential
information was leaked. The task in this scenario is to investigate how and by
whom this information has been transferred out of the organizational network.

Figure 3 depicts an excerpt of the company network, including Linux and
Windows workstations and a Linux file server that stores company-wide shared
data as well as confidential data with restricted access permissions (e.g., customer
and financial data). The organization’s access model distinguishes two groups:
manager and office users. Both groups are authorized to log in to the company
workstations and access the internal file shares. Access to the confidential data
is restricted to the manager group.

As a starting point, the analyst has the name of a file that contains the leaked
sensitive information and starts to investigate its history. Listing 1.2 depicts the
SPARQL query to obtain lifecycle information for this file. The result is given in
Table 1 and shows that the file cstcp001.xls was accessed and modified multiple
times. Inspecting the timeline, we can see that a file customer.xls was modified
on FileServer1 with the IP 193.168.1.2. It thereafter was copied, renamed and
modified on the file server. Then, the file appeared on Workstation2 and got
deleted from the file server. Finally, the file was renamed to cstcp001.xls and
copied to another folder on Workstation2 with the name Dropbox in its file
path. Figure 4 visualizes the file history.
14 https://github.com/kabulkurniawan/fileAccessExtractor.
15 https://virtuoso.openlinksw.com/.
16 https://w3id.org/sepses/sparqlplus.

https://github.com/kabulkurniawan/fileAccessExtractor
https://virtuoso.openlinksw.com/
https://w3id.org/sepses/sparqlplus

392 K. Kurniawan et al.

Fig. 3. Scenario 1 network excerpt

SELECT distinct ?time ?accessType ?sourceFile ?targetFile ?hostIP ?hostType
WHERE {

?y fae:timestamp ?timestamp.
?y fae:hasAction/fae:actionName ?accessType.
?y fae:hasSourceFile/fae:pathName ?sourceFile.
?y fae:hasTargetFile/fae:pathName ?targetFile.
?y fae:hasTargetHost ?h.
?h cl:IpAddress ?hostIp.?h fae:hasSourceHost ?hostName.
?y fae:hasSourceFile/fae:fileName ”cstcp001.xls”.
?x fae:relatedTo∗ ?y .

} ORDER BY ASC(?time)

Listing 1.1. SPARQL query to retrieve the history of a file

Table 1. File history results

timestampaccessTypesourceFile TargetFile hostIP hostName

11:06:55 Modified /home/alc/secdt/customer.xls/home/alc/secdt/customer.xls193.168.1.2FileServer1

13:39:01 Copied /home/alc/secdt/customer.xls/home/alc/customer.xls 193.168.1.2FileServer1

13:39:35 Renamed /home/alc/customer.xls /home/alc/customer-cp.xls 193.168.1.2FileServer1

13:40:23 Modified /home/alc/customer-cp.xls /home/alc/customer-cp.xls 193.168.1.2FileServer1

13:43:17 Created C:nWorkncustomer-cp.xls C:nWorkncustomer-cp.xls 193.168.2.2Workstation2

13:43:52 Deleted /home/alc/customer-cp.xls /.trash/customer-cp.xls 193.168.1.2FileServer1

15:50:57 Renamed C:nWorkncustomer-cp.xls C:nWorkncstcp001.xls 193.168.2.2Workstation2

15:53:52 Copied C:nWorkncstcp001.xls C:nDropBoxncstcp001.xls 193.168.2.2Workstation2

Fig. 4. Graph visualization of the file history

Table 2. Potential exfiltration process – results

timestampeventType hostIP hostName programName pid userNamegroupName

13:43:17 ProcessStopped193.168.1.2FileServer1 /usr/bin/scp 223 Alice Manager

13:43:17 ProcessStopped193.168.1.2FileServer1 /usr/bin/ssh 224 Alice Manager

13:43:17 ProcessStarted 193.168.2.2Workstation2C:n . . . nsshd.exe1988- -

13:43:18 ProcessStopped193.168.2.2Workstation2C:n . . . nsshd.exe1988- -

Cross-Platform File System Activity Monitoring and Forensics 393

Next the analyst wants to know how the file was transferred from FileServer1
to Workstation2. A SPARQL query17 lists the running processes and user names
in the time period of the suspicious activities. Potential exfiltration processes are
modeled in the background knowledge with the concept sys:potentialExfitration-
Processes, which includes channels such as FTP, SCP, SSH, etc. This illustrates
how queries can automatically make use of modeled background knowledge.
Table 2 shows the results of the query. From this, the analyst learns that a
secure copy event /usr/bin/scp was started on FileServer1 prior to the file copy
and also on the Windows host Workstation2. The processes on the file server
were performed by user Alice from the manager group. The analyst concludes
that the customer-cp.xls file was successfully transferred via SCP (SSH service)
by the user Alice.

Next, the analyst wants to collect more information about this file transfer
and the users involved in those steps. Therefore, a LoginProcess18 query is exe-
cuted to retrieve a list of users logged in to these hosts in the time period of inter-
est, including userName, sourceIp, targetIp, hostName, and the timestamp.
The query result depicted in Table 3 shows that Alice was not logged in to Work-
station1 during this time. Instead, Bob shows up several times in the login list of
Workstation1. From Workstation1, a login event was performed on FileServer1
with Alice’s credentials. At the time the file copy to the Dropbox folder hap-
pened on Workstation2, only Bob was logged in on this computer. Concluding
from this evidence, the analysts suspects that Bob logged in to Workstation1,
then accessed the confidential file on FileServer1 with the credentials of Alice.
Finally, he copied the file to Workstation2 and exfiltrated the data via Dropbox.

Table 3. Login process results

timestampeventTypesourceHost sourceIp targetHost targetIp userName

13:30:23 Login - 172.24.66.19Workstation1192.168.2.1Bob

13:33:31 Login - 172.24.66.19Workstation1192.168.2.1Bob

13:38:16 Login Workstation1192.168.2.1 FileServer1 192.168.1.2Alice

14:53:06 Login - 172.24.66.19Workstation2192.168.2.2Bob

5.2 Scenario 2: Sensitive Data on Vulnerable Hosts

In the second scenario, we illustrate how the semantic monitoring approach
can be used to protect confidential information by combining public vulnera-
bility information with file activity information from inside the company net-
work. We assume a policy that restricts handling of confidential files on hosts
with known vulnerabilities. The objective in this scenario is to automatically
detect violations of this policy. More precisely, the goal is to spot whenever files
flagged as confidential19 are copied or created on an internal host with a known
vulnerability.
17 https://w3id.org/sepses/IFIP2020/queries/potentialExfitrationProcesses.sparql.
18 https://w3id.org/sepses/IFIP2020/queries/loginProcess.sparql.
19 Using a classification schema of confidential, private, protected, public.

https://w3id.org/sepses/IFIP2020/queries/potentialExfitrationProcesses.sparql
https://w3id.org/sepses/IFIP2020/queries/loginProcess.sparql

394 K. Kurniawan et al.

SELECT ∗ WHERE {
?s rdf:type fae:FileAccessEvent;

fae:hasFileAccessType sys:Created;
fae:hasSourceFile/fae:fileName ?filename;
asset:hasDataClassification sys:Private;
fae:hasSourceHost/fae:hostName ?hostName;
{SELECT ?hostName ?OSName ?hostIP ?cveId ?conf ?score WHERE {

?t rdf:type sys:Host. ?t sys:hostName ?hostName.
?t sys:OSName ?OSName. ?t sys:IPAddress ?hostIP.
?t sys:hasProduct ?p.

SERVICE <http://sepses.ifs.tuwien.ac.at/sparql> {
?cve cve:hasCPE ?p. ?cve cve:id ?cveId.
?cve cve:hasCVSS2BaseMetric ?cvss2. ?cvss2 cvss:confidentialityImpact ?conf.
?cvss2 cvss:baseScore ?cvssScore. }}}}

Listing 1.2. Query to check vulnerable host

Table 4. Vulnerability assessment results excerpt

fileName hostName OSName hostIP cveId conf score

C:nDocumentsnCustomer.xlsWorkstation2Windows192.168.2.12016-1653complete9.3

/home/docs/employee.xls Workstation3Linux 192.168.2.12016-1583complete7.2

As background knowledge, we import information on installed software on
each host. This information is represented in the Common Platform Enumer-
ation (CPE) format and can be collected automatically by means of software
inventory tools. To link this information to known vulnerabilities, we rely on
Common Vulnerabilities and Exposures (CVE), a well-established enumeration
of publicly known cybersecurity vulnerabilities. We take advantage of our recent
work on transforming this structured knowledge into a knowledge graph [14]
available via various semantic endpoints. This allows us to directly integrate
this information and use it in our scenario.

To implement the monitoring in this scenario, we set up a federated con-
tinuous SPARQL query at Listing 1.2 to identify whether a sensitive file shows
up on a vulnerable workstation. To restrict the query to confidential files, we
use the property asset:hasDataClassification and restrict our query to
sys:Private files. Table 4 shows the query results and reveals that Worksta-
tion2 and Workstation3 have critical vulnerabilities, but store confidential files.
The results include the fileName, hostName, hostIP, cveId, etc. As a next
step, an analyst can inspect the life-cycle of the files to understand where they
came from, who accessed them and explore information on the vulnerabilities
and potential mitigations. Taking automated actions based on the results, such
as blocking the access or alerting the user, is a further option.

6 Evaluation

In this section, we present our empirical evaluation setup and discuss the results.

https://w3id.org/sepses/page/cve/CVE-2016-1653
https://w3id.org/sepses/page/cve/CVE-2016-1583

Cross-Platform File System Activity Monitoring and Forensics 395

6.1 Experimental Setup

We ran the experiments on an Intel Core i7 processor with 2,70 GHz, 16 GB
RAM, and 64-bit Microsoft Windows 10 Professional and emulate hosts as docker
containers. We used C-Sprite as event extraction engine with a 3 seconds time
window that slides every second. In order to simulate user activity, we developed
a java-based event generator20 to generate scripts for random file activities and
use weighted random choices to select activities.

6.2 Experiments and Results

To measure the correctness and the completeness of the event extraction and
detection using RDF stream processing with C-Sprite, we define a set of metrics,
including (i) Actual Events (AE) – number of the events executed in the simula-
tion (ground truth), and (ii) Returned Events (RE) – number of events correctly
detected by the RDF-Stream processing (C-Sprite). We get detection (%D) by
dividing RE by AE.

Detection(%D) =
ReturnedEvents(RE)

ActualEventsGenerated(AE)
∗ 100%

On each target OS (Linux and Windows), we test a varying number of events
per second, i.e. 1, 10, 20, 50, 80, 100, 125 and 200 events/sec. In the results, we
report the mean of detected events over 5 runs with 480 simulated events each.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

events/second

d
et
ec

ti
on

(%
)

Linux

created modified

copied renamed

deleted

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

events/second

d
et
ec

ti
on

(%
)

Windows

created modified

copied renamed

deleted

Fig. 5. Detection rate on Linux (l) and Windows (r)

As shown for Linux in Fig. 5, all events can be detected close to 100% for
all frequencies (1 event/sec up to 200 events/sec) except the copy event, which
reached a maximum of 91,89%. At 200 events/sec, we observe that the detection
of copy events decreases to approx. 70%, which is mainly caused by incorrect
pairings of readAttribute and create events when these micro operations gener-
ated by two or more sequential copy events appear together in the same win-
dow. Furthermore, we noticed that low-level events sometimes do not arrive in
sequence and hence, are not detected by our queries.
20 https://github.com/sepses/fileAccessExtractor/tree/master/eventGenerator.

https://github.com/sepses/fileAccessExtractor/tree/master/eventGenerator

396 K. Kurniawan et al.

For Windows, the event detection performance for created, modified, renamed
and deleted events is higher with almost 100% of detected events for all frequen-
cies. However, the copy event detection in Windows achieves a lower detection
with a maximum of 75,46%.

Finally, considering scalability we can make an estimation based on [5], which
shows that C-Sprite achieves a throughput of more than 300000 triples/s. Con-
sequently, it should be able to handle up to 23000 events/s (an individual event
consists of at least 13 triples). For forensic scenarios, the Virtuoso triple store
can load more than 500 million triples per 16 GB RAM21, which means that it
should be possible to handle more than 38 million events per 16 GB RAM.

7 Conclusions

In this paper, we tackled current challenges in file activity monitoring and anal-
ysis, such as the lack of interoperability, contextualization and uniform querying
capability, by means of an architecture based on Semantic Web technologies.
We introduced a set of vocabularies to model and harmonize heterogeneous file
activity log sources and implemented a prototype. We illustrate how this proto-
type can monitor file system activities, trace file life cycles, and enrich them with
information to understand their context (e.g., internal and external background
knowledge). The integrated data can then be queried, visualized, and dynami-
cally explored by security analysts, as well as be used to facilitate detection and
alerting by utilizing stream processing engines.

Finally, we demonstrate the applicability of the approach in two scenarios in
virtual environments – one focused on data exfiltration forensics, and another
on monitoring policy violations integrating public vulnerability information. The
results of our evaluation indicate that the approach can effectively extract and
link micro-level operations of multiple operating systems and consolidate them
in an integrated stream of semantically explicit file activities.

Overall, the results are promising and demonstrate how semantic technolo-
gies can enrich digital investigations and security monitoring processes. In future
work, we aim to address the accuracy and scalability limitations of the current
approach identified in the streaming evaluation, e.g., by evaluating alternative
streaming engines and alternative approaches (e.g. complex event processing)
based on big data technologies. Furthermore, we will investigate the integra-
tion of our approach into existing standards (e.g., STIX and CASE) to increase
interoperability for forensic investigation.

Acknowledgments. This work was sponsored by the Austrian Science Fund (FWF)
and netidee SCIENCE under grant P30437-N31, and the COMET K1 program by the
Austrian Research Promotion Agency. The authors thank the funders for their generous
support.

21 http://docs.openlinksw.com/virtuoso/virtuosofaq11/.

http://docs.openlinksw.com/virtuoso/virtuosofaq11/

Cross-Platform File System Activity Monitoring and Forensics 397

References

1. Alzaabi, M., Jones, A.: An ontology-based forensic analysis tool. In: Annual
ADFSL Conference on Digital Forensics, Security and Law (2013)

2. Amato, F., Cozzolino, G., Mazzeo, A., Moscato, F.: An application of semantic
techniques for forensic analysis. In: 32nd WAINA (2018)

3. Awad, A., Kadry, S., Maddodi, G., Gill, S., Lee, B.: Data leakage detection using
system call provenance. In: International Conference on INCoS (2016)

4. Bhavsar, K., Trivedi, B.: Predicting insider threats by behavioural analysis using
deep learning. In: International Conference on SAM (2018)

5. Bonte, P., Tommasini, R., De Turck, F., Ongenae, F., Valle, E.D.: C-sprite: effi-
cient hierarchical reasoning for rapid RDF stream processing. In: 13th ACM Inter-
national Conference on DEBS, pp. 103–114. ACM (2019)

6. Carrier, B.D.: A hypothesis-based approach to digital forensic investigations. Ph.D.
thesis, Purdue University (2006)

7. Cheng, L., Liu, F., Yao, D.D.: Enterprise data breach: causes, challenges, preven-
tion, and future directions. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 7(5),
e1211 (2017)

8. Cuzzocrea, A., Pirró, G.: A semantic-web-technology-based framework for support-
ing knowledge-driven digital forensics. In: 8th MEDES Conference (2016)

9. Daren Fadolalkarim, E.B.: PANDDE: provenance-based anomaly detection of data
exfiltration. J. Comput. Secur. 84, 276–278 (2019)

10. Ekelhart, A., Kiesling, E., Kurniawan, K.: Taming the logs - vocabularies for
semantic security analysis. In: 14th SEMANTiCS Conference (2018)

11. Gordon, P.: Data leakage - threats and mitigation. Report, SANS Institute (2007)
12. Hu, Y., Frank, C., Walden, J., Crawford, E., Kasturiratna, D.: Profiling file repos-

itory access patterns for identifying data exfiltration activities. In: IEEE Sympo-
sium on CICS, April 2011

13. Kahvedžić, D., Kechadi, T.: Semantic modelling of digital forensic evidence. In:
2nd ICDF2C (2010)

14. Kiesling, E., Ekelhart, A., Kurniawan, K., Ekaputra, F.: The SEPSES knowledge
graph: an integrated resource for cybersecurity. In: Ghidini, C., et al. (eds.) ISWC
2019. LNCS, vol. 11779, pp. 198–214. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30796-7 13

15. Kurniawan, K., Ekelhart, A., Kiesling, E., Froschl, A., Ekaputra, F.: Semantic
integration and monitoring of file system activity. In: 15th SEMANTiCS (2019)

16. Mashwani, S.R., Khusro, S.: The design and development of a semantic file system
ontology. J. Eng. Technol. Appl. Sci. Res. 8, 2827–2833 (2018)

17. Popitsch, N., Schandl, B.: Ad-hoc file sharing using linked data technologies. In:
International Workshop on PSD 2010 (2010)

18. Schand, B., Popitsch, N.: Lifting file systems into the linked data cloud with TripFs.
In: WWW2010 Workshop on Linked Data on the Web (2010)

19. Shen, Z., Hou, Y., Li, J.: Publishing distributed files as linked data. In: 8th Inter-
national Conference on FSKD (2011)

20. Suresh, N.R., Malhotra, N., Kumar, R., Thanudas, B.: An integrated data exfiltra-
tion monitoring tool for a large organization with highly confidential data source.
In: 4th CEEC, September 2012

https://doi.org/10.1007/978-3-030-30796-7_13
https://doi.org/10.1007/978-3-030-30796-7_13

Machine Learning and Security

A Correlation-Preserving Fingerprinting
Technique for Categorical Data

in Relational Databases

Tanja Sarcevic(B) and Rudolf Mayer

SBA Research, Vienna, Austria
{TSarcevic,RMayer}@sba-research.org

Abstract. Fingerprinting is a method of embedding a traceable mark
into digital data, to verify the owner and identify the recipient a certain
copy of a data set has been released to. This is crucial when releasing
data to third parties, especially if it involves a fee, or if the data is of
sensitive nature, due to which further sharing and leaks should be dis-
couraged and deterred from. Fingerprinting and watermarking are well
explored in the domain of multimedia content, such as images, video, or
audio.

The domain of relational databases is explored specifically for numeri-
cal data types, for which most state-of-art techniques are designed. How-
ever, many datasets also, or even exclusively, contain categorical data.

We, therefore, propose a novel approach for fingerprinting categori-
cal type of data, focusing on preserving the semantic relations between
attributes, and thus limiting the perceptibility of marks, and the effects
of the fingerprinting on the data quality and utility. We evaluate the
utility, especially for machine learning tasks, as well as the robustness of
the fingerprinting scheme, by experiments on benchmark data sets.

Keywords: Fingerprinting · Relational database · Categorical data ·
Data utility analysis · Robustness analysis

1 Introduction

Digital watermarking is a method that helps protecting intellectual property for
various types of data. It embeds a piece of information into the data to provide
an identification of the data owner. Since it does not control access to data,
watermarking is a passive protection tool. Applications include copyright pro-
tection, fraud or tamper detection. Fingerprinting is used for data leakage source
tracking. It is a special application of watermarking, where different recipients of
the data obtain differently watermarked content. This property allows identify-
ing the authorised recipient of the information. First techniques were developed
for the multimedia domain (images, audio, video). The generally large amount
of data required to represent this content offers space to embed the marks,
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 401–415, 2020.
https://doi.org/10.1007/978-3-030-58201-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_27&domain=pdf
http://orcid.org/0000-0003-0896-9193
http://orcid.org/0000-0003-0424-5999
https://doi.org/10.1007/978-3-030-58201-2_27

402 T. Sarcevic and R. Mayer

without significantly affecting the actual content. The application domain was
later extended to other types of digital data such as text, software, or relational
databases. The effects caused by marking this type of data is a bigger concern.

In the domain of fingerprinting relational data, most state-of-the-art tech-
niques address only numerical type of data. It is important to address the prob-
lem of fingerprinting categorical values, as many real world datasets contain some
or exclusively categorical attributes. Limitations are the discrete nature of cate-
gorical values, where the required modifications for embedding the marks cause
a discrete (and not minor) alteration, as well as mutual correlations between
attributes. Therefore, any change to the categorical value is more perceptible
than a (minor) change to the numerical.

Our approach addresses the problem of semantic relations between categor-
ical attributes in a relational database that can be disturbed by fingerprinting.
Considering attributes independently of each other and embedding a random
mark into a categorical value might lead to non-consistent records, by introduc-
ing an uncommon or impossible combination of values in the data. For example,
in a database containing attributes such as sex and numberOfPregnancies, these
attributes intuitively contain an impossible combination of values: (sex :male,
numberOfPregnancies:1). A very uncommon combination of values could be in
a medical database containing information about the patients suffering from
Alzheimer’s disease: (alzheimersStage:middle, employed :yes), but this might be
introduced by a random fingerprint mark. With database domain knowledge,
these examples would be rather suspicious and thus perceptible. In our app-
roach, we therefore aim to take into account the correlation between the values
of different attributes and avoid uncommon combinations.

The remainder of this paper is organised as follows. In Sect. 2 we describe the
related work in the area of watermarking and fingerprinting relational databases.
In Sect. 3 we describe our scheme for fingerprinting categorical attributes. In
Sect. 4 we present the analysis of the scheme’s robustness against malicious
attacks and data utility. We provide conclusions in Sect. 5.

2 Related Work

The technique pioneering watermarking relational data by Agrawal et al.
[1] allows watermarking datasets containing numerical data. Minor alterations
to the data are made in specific positions, creating a pseudo-random pattern. If
the pattern is known, it is possible to extract the watermark from the data, and
thus prove the ownership. The technique relies on a key property of one-way hash
functions – it is easy to calculate an output (hash value) for a given input, but
computationally difficult to do the inverse. This means that only by knowing the
key that was used in the embedding process of watermarking (which is kept by
the owner of data), one can extract the watermark from the data. The technique
has been extended in later approaches. They differ by the patterns of embedding
the watermark, or the type of information used as a watermark. For instance,
a watermark in a form of a binary image [2], owner’s speech compressed and
converted into a bit-stream as watermark information [3], etc.

A Correlation-Preserving Fingerprinting Technique 403

Categorical data types require different techniques for watermarking pur-
poses than numerical ones, due to their discrete nature. This is a major the
reason for considerably fewer watermarking and fingerprinting techniques pro-
posed for categorical data types. Sion et al. [4] propose a watermarking scheme
for categorical data in relational databases, and later extend it [5]. The scheme in
its simplest form applies a pseudo-random mark to the categorical value based
on the primary key of the relation by changing it to another value from the
attribute domain. The authors further address the malicious attack of verti-
cal data partitioning where even the primary key is potentially removed. The
extended version of the scheme applies a pseudo-random mark to the categorical
value based on other categorical values from the relation and repeats the pro-
cess for every pair of categorical attributes in the dataset. It utilises correlation
and discreteness of the categorical attributes as a strength to avoid the scheme’s
dependence on the primary key, instead of it being a weakness in terms of lack
of data redundancy for mark embedding. However, the scheme quickly gets too
complex for dataset with many categorical attributes. Furthermore, it does not
address semantic correlation between categorical attributes.

One of the earliest fingerprinting schemes for relational data [6] is based
on Agrawal et al. [1]. Other fingerprinting schemes propose different patterns for
marking the data. In [7], the owner’s unique fingerprinting is embedded into pre-
viously partitioned blocks of data. In [8] the fingerprint is embedded in two-layers
- the first of which identifies the owner. Once the verification is successful, the
recipient can be detected from the second layer. The watermarking and finger-
printing system Watermill [9] extends the methods by considering the constraints
of data alteration and treating fingerprinting as an optimisation problem.

Fingerprinting techniques for categorical data are less researched, compared
to techniques for numerical. The fingerprinting technique from [10] can be
applied on relational database containing any type of data. It exploits the fact
that different sets of equivalence classes can be created in the data when mak-
ing it k-anonymous [11]. However, the scheme has several limitations, such as
a limited number of available fingerprints, diverging utility of different finger-
printed data copies and needing to keep each recipient’s fingerprint in a separate
data storage which associates additional security risk. In our previous work [12],
we introduced a simplistic scheme for fingerprinting categorical values. In this
approach, all categorical values are firstly encoded to numerical. The scheme for
fingerprinting numerical values from [6] is then applied to the dataset, and the
values are decoded back to categorical. This scheme is essentially altering a cat-
egorical value to a random one from the domain of the attribute. One limitation
is that the scheme does not consider any relation between the attributes of the
dataset. However, the scheme may serve as a robust solution for fingerprinting
datasets with semantically independent and non-highly correlated attributes.

All the above schemes claim to satisfy the blindness property – the original
dataset is not needed for the successful watermark/fingerprint extraction.

404 T. Sarcevic and R. Mayer

3 Fingerprinting Categorical Data

Fingerprinting consists of two main processes: insertion (embedding) and detec-
tion (extraction). The insertion process comprises fingerprint creation and
embedding to the data. It embeds a different mark for each distributed copy,
specific for each recipient. The output is the marked copy of the data that can
be distributed. The detection process extracts the fingerprint from the data. It
reports the existence of a fingerprint in the data given as the input, and identifies
the recipient. We describe these two processes in detail below for our proposed
scheme.

3.1 Prerequisites and Notation

A Cryptographic Hash function is a deterministic function that takes a string
input of any length and returns a fixed-size string value called hash value. A hash
function has three main properties: (i) it is easy to calculate a hash value for
any given input string, (ii) it is computationally difficult to calculate an input
that has given a certain hash value and (iii) it is extremely unlikely that two
different inputs, even remotely different, have the same hash value.

A Pseudo-random number sequence generator (PRNG) is an algorithm for
generating a sequence of numbers whose properties approximate the properties
of sequences of random numbers. The PRNG-generated sequence is not truly
random, because it is completely determined by an initial value, called the seed.

k-nearest neighbours algorithm (k-NN) is a method that (in classification task)
classifies the object by a plurality vote of its neighbours, with the object being
assigned to the class most common among its k nearest neighbours. The neigh-
bourhood of an object can be determined in multiple ways, frequently for discrete
variables a form of the Hamming distance (overlapping measure) is used. We use
an adaptation of k-NN with Hamming distance as a step in the insertion algo-
rithm. k-NN is, as well, used as one of the classifiers for our data utility analysis
in Sect. 4.2. Table 1 shows the notation used in the remainder of the paper.

Table 1. The notions of the most common parameters and functions

Notation Meaning Notation Meaning

R database relation K owner’s secret key

P primary key attribute 1/γ Ratio of tuples to be marked

Ai ithattribute L length of a fingerprint

v number of attributes | concatenation function

N number of tuples H hash function

A Correlation-Preserving Fingerprinting Technique 405

3.2 Insertion

The insertion algorithm introduces modifications to the original data on the
pseudo-randomly selected positions in the dataset. The main outline of the algo-
rithm is modelled on the fingerprinting algorithm from [6]. Namely, the legitimate
owner of the data holds her secret key which is used to verify the ownership of
the data and detect the potential malicious users. For each data user that is
authorised to use the fingerprinted data (recipient), a distinct fingerprint is gen-
erated. The fingerprint defines the pattern of applying the modifications on the
data, and ultimately, this pattern identifies the specific data recipient.

The insertion algorithm is designed with the aim of preserving the correla-
tions between categorical attributes in a relational database. This is resulting
in zero occurrences of value combinations that were not initially in the original
database, and low frequency occurrences of value combinations that were already
rare in the original database. This insertion algorithm reduces perceptibility of
a fingerprint mark in a relational database.

Algorithm 1.1: Insertion
Input: database R with scheme (P, A0, ..., Av−1), buyer n’s ID id
Output: fingerprinted database R′

1 fingerprint of buyer n: F(K, id) = H(K|id)
2 foreach tuple r ∈ R do
3 if (S1(K|r.P) mod γ == 0) then
4 attribute index i = S2(K|r.P) mod v
5 fingerprint index l = S3(K|r.P) mod L
6 fingerprint bit f = fl
7 mask bit x = 0 if S4(K|r.P) is even; x = 1 otherwise
8 mark bit m = x ⊕ f
9 if m == 1 then

10 neighbourhood = select neighbours()
11 target values, freq = get frequencies(neighbourhood)
12 r.Ai = random(target values, weight = freq)

13 else
14 no marking

15 end

16 end
17 return R′

The insertion algorithm of our fingerprinting scheme is shown in Algo-
rithm1.1. The algorithm starts with creating a distinct fingerprint for an autho-
rised data receiver. A user’s fingerprint F is a bit-string of length L generated
as a hash value of the owner’s secret key K and user’s identification id (which
may be available publicly).

In lines 2–15 of Algorithm1.1, the fingerprint is embedded in the data. For
each tuple (row) r in the database R, a pseudo-random number sequence gen-

406 T. Sarcevic and R. Mayer

erator S is seeded with a concatenation of the owner’s secret key K and the pri-
mary key of the tuple, r.P . This step allows the creation of a distinct sequence
of numbers for each of the database’s tuples. Furthermore, seeding the genera-
tor with the owner’s secret key ensures that the sequence cannot be generated
without knowing the secret key. Using the modulo value of the first number
from the pseudo-random sequence with the parameter γ, the algorithm decides
if the observed tuple is selected for introducing a modification (line 3). Due to
the uniform distribution of the output of a pseudo-random sequence generator,
approximately N/γ tuples will be selected for marking. Therefore, with param-
eter γ, we control the amount of modifications in a fingerprinted copy of the
data. In the line 4, the next pseudo-random number is generated, which is used
to select the attribute Ai for marking. In lines 5–6, the next pseudo-random
number from the sequence is used to select the fingerprint bit fl that will mark
the value r.Ai. The purpose of lines 7 and 8 is to obtain a uniform distribution
of marks that are modifying the data. We can see in lines 9–14 that the marking
is performed only if the mark value is 1. If fingerprint bits are directly used as
marking bits, they can heavily influence the amount of modifications in the data,
as it is not expected that ones and zeroes will be equally represented in a fin-
gerprint. Fingerprint bits are, thus, subjected to an xor function with uniformly
distributed mask bits x, in the line 8. Finally, if the mark value is 1, the data
value is modified.

In the process of marking the data we do not only consider the value r.Ai

selected for marking, but the entire tuple r. The goal is to modify the value r.Ai

to a value that is likely to occur in the original database, considering the other
values of the same tuple. To achieve this, the algorithm searches in the database
for the tuples most similar to the one observed, i.e the most similar “neighbours”
(cf. line 10). Once the neighbours are selected, the algorithm extracts the values
of the attribute Ai from the neighbouring tuples, target values, and calculates
their frequencies (line 11). The value r.Ai will be changed to one of the values
appearing in the attribute Ai of the neighbourhood. The calculated frequencies
of these values correspond to the probability for a specific value being selected.
The line 12 shows the selection of the new value: it is randomly chosen from
the neighbourhood values, weighted by the frequency of their occurrences. This
technique is known in genetic algorithms as a fitness proportionate selection, or
roulette wheel selection, a genetic operator used for selecting potentially useful
solutions for recombination. The analogy to a roulette wheel can be drawn as
follows: each candidate value represents a pocket on the roulette wheel; the
size of the pockets are proportionate to the frequency of the values among the
neighbours. Thus, the most common value is the most likely to be drawn, but
any value with a non-zero frequency can be chosen.

Once all the tuples are examined, the output of the algorithm is a finger-
printed copy of the data, R′.

A Correlation-Preserving Fingerprinting Technique 407

3.3 Detection

The detection algorithm extracts a fingerprint from a fingerprinted copy of the
data by searching for the specific pattern embedded by the insertion algorithm.
The pseudo-code for the detection algorithm is shown in Algorithm1.2.

Algorithm 1.2: Detection
Input: fingerprinted database R′ with scheme (P, A0, ..., Av−1), original

database R with scheme (P, A0, ..., Av−1)
Output: suspected buyer’s ID id

1 fingerprint template F = (f0, ..., fL−1) = (?, ..., ?)
2 count[i][0] = count[i][1] = 0 for i = 0 to L − 1
3 foreach tuple r ∈ R′ do
4 if S1(K, r.P) mod γ == 0 then
5 attribute index i = S2(K, r.P) mod v
6 fingerprint index l = S3(K, r.P) mod L
7 mask bit x = 0 if S4(K, r.P) is even; x = 1 otherwise
8 if r.Ai is different from the original then
9 mark bit m = 1

10 else
11 mark bit m = 0
12 fingerprint bit f = m ⊕ x
13 count[l][f] + +

14 end

15 end
16 //recover the fingerprint
17 for l = 0 to L − 1 do
18 if count[l][0] + count[l][1] == 0 then
19 return none suspected
20 end
21 fl = 0 if count[l][0]/(count[l][0] + count[l][1]) > τ
22 fl = 1 if count[l][1]/(count[l][0] + count[l][1]) > τ
23 return none suspected otherwise

24 end
25 F = (f0, ..., fL−1)
26 id = detect(F
27 if id ≥ 0 then
28 return id
29 else
30 return none suspected
31 end

Each fingerprint bit might be embedded multiple times in the data, so the
detection algorithm searches for all the occurrences and counts the detected
values. The algorithm starts by initialising the empty fingerprint template of
length L, and the votes for fingerprint bit values, all set to zero. The next step is

408 T. Sarcevic and R. Mayer

to find the tuples and attributes that should have been fingerprinting according
to the pseudo-random number sequence (lines 3–5). Note that the concatenation
of the owner’s secret key and dataset primary key values is used as a seed to
generate exactly the same number sequences as in the insertion algorithm. We
retrieve the fingerprint bit index l and the mask bit x in the same manner (lines
6 and 7). Next, to find the value of the mask bit m, it is necessary to compare
the suspected fingerprinted database to the original. If the corresponding value is
different from the original, meaning it was modified by the insertion algorithm,
then the value m was 1 in the insertion algorithm, otherwise 0. This step is
performed in the lines 8–11. In line 12, we obtain the fingerprint bit value f
from the mark bit m and mask bit x1. The line 13 represents the vote that the
fingerprint bit on position l is value f .

After all votes are collected, the algorithm attempts to recover the finger-
print. In case the votes for some fingerprint bit on position l do not exist (all
remained zero), then the fingerprint can not be recovered and it is not possible to
identify the authorised user who owns the given fingerprinted copy (lines 18–20).
Otherwise, the value for every fingerprint bit is decided by a majority voting,
i.e. the most frequent value is chosen. The quorum for the majority can, besides
the simple absolute majority described above, also be a user-specified setting,
with the parameter τ ∈ [0.5, 1), i.e. a larger consensus among the votes can be
required.

The extracted fingerprint template is compared to fingerprints of authorised
recipients of the data (cf. line 26 in Algorithm1.2). In case of a perfect match,
a user is identified.

3.4 Discussion

In the Sect. 3.2 we propose an insertion algorithm that can be applied to cat-
egorical attributes in the relational data and keep it as the main focus of the
study. Indeed, the insertion algorithm, Algorithm1.1, assumes a database R with
attributes A0, ...Av−1 of a only categorical variables as its input. Following our
claims from above, real-world databases are oftentimes containing attributes of
various data types. For the purpose of fingerprinting such databases, one may
select either numerical or categorical attributes, depending on what makes the
majority and apply a corresponding fingerprinting scheme, as one solution. The
other solution would be to combine schemes for each data type and perform them
separately. This way, all of the attributes may be selected for marking, and there-
fore harder to attack compared to the first solution. On the other hand, dealing
with multiple secret keys and parameters in the fingerprinting process might not
be convenient for a practical use.

The proposed scheme relies on the existence of database’s primary key
attribute. Li et. al. [6] proposed a technique for creating a virtual primary key
for relational databases in case one does not exist in the original database.

1 If m = x ⊕ f , then f = m ⊕ x.

A Correlation-Preserving Fingerprinting Technique 409

In the data marking phase of Algorithm1.1, we need to select the neighbour-
hood of the observed tuple. We find the neighbours using the nearest neighbours
algorithm with a form of the Hamming distance and let the user define the
parameter k and the attributes that will be included in calculating the nearest
neighbours.

Due to the requirement to preserve semantic relations in the fingerprinted
copy of the dataset, the modified values are calculated from the data itself,
instead of some external deterministic method. As a result, for fingerprint extrac-
tion, it is necessary to have access to the original dataset (line 8 of Algorithm1.2).
Therefore, our scheme is a non-blind scheme.

4 Evaluation

For our experiments, we choose two datasets from the UCI Machine Learning
repository2 that feature categorical data: Breast Cancer3 and Nursery4. The
Breast Cancer dataset describes breast cancer features and whether or not the
cancer reoccurred. The dataset has ten columns (including the target attribute)
and 286 rows. The Nursery dataset contains data for ranking applications for
nursery schools. It contains 12,980 rows and nine columns (including the target
attribute). In this section we present our analyses on the scheme’s robustness
and the utility of the fingerprinted data.

4.1 Attacks and Robustness Analysis

Fingerprinting techniques are vulnerable to operations that potentially erase the
fingerprint from the database. These operations can be either a result of benign
updates of the database, or malicious attacks by an adversary. In either case, a
fingerprint should be robust enough to be recognisable by the owner even from
the altered data.

For our evaluation of the scheme for categorical data, we consider the follow-
ing attacks on the fingerprinted database:

– Subset attack: The attacker releases only a subset of the fingerprinted
database. We differentiate two cases: In a horizontal attack, a subset of
complete tuples (rows) is removed from the original copy of the dataset. In a
vertical attack, one or more columns are removed from the database.

– Flipping attack: The attacker flips a selected value to a random, valid one,
and repeats this for multiple data values. This attack is the adapted version
of the bit-flipping attack from the domain of fingerprinting numerical values,
where the attacker flips a least significant bit of a chosen set of values.

In the following, we present our empirical evaluation of the robustness of the
proposed fingerprinting techniques against the attacks described above. We use
the following robustness measures [6] in our experiments:
2 http://archive.ics.uci.edu/ml.
3 https://archive.ics.uci.edu/ml/datasets/breast+cancer.
4 https://archive.ics.uci.edu/ml/datasets/nursery.

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/nursery

410 T. Sarcevic and R. Mayer

– Misattribution false hit (fhA): The probability of detection of an incorrect,
but existing fingerprint from fingerprinted data.

– False negative (fn): The probability of not detecting a valid fingerprint
from fingerprinted data.

– False miss (fm): The probability of failing to detect an embedded fingerprint
correctly. False miss rate is the sum of the false negative and misattribution
false hit rates, i.e. fm = fhA + fn.

In our scheme for fingerprinting categorical data, the exact positions of fin-
gerprint marks are known only with the knowledge of the owner’s secret key.
Assuming the key being protected, we thus model the attacker such that her
choice of positions within the database to attack is random. We further assume
the attacker knows the algorithmic steps of insertion and detection processes,
and its parameters – in fact, the only unknown is the owner’s secret key.

We choose the values for γ for the Breast Cancer dataset: (1, 2, 3, 5) and
length of fingerprints is L = 8. Parameter γ is expected to contribute the most
to the robustness level of the scheme, since it defines the number of fingerprint
marks in the data. For the Nursery dataset, due to its bigger size, we experiment
with the larger values for γ: (5, 10, 20, 30). The length of the fingerprint is set
to L = 64.

(a) Breast Cancer dataset (b) Nursery dataset

Fig. 1. Robustness against horizontal subset attack

Horizontal Subset Attack. We simulate the horizontal subset attack, and over a
number of runs measure the attacker’s success via the False Miss rate depending
on the amount of data she chooses to publish.

As can be seen in Figs. 1a and 1b, the false miss rate shows a decreasing
trend for more data released. A robust scheme should minimise the false miss
rate. Choosing smaller values for γ, i.e. more marks in the data, results in lower
false miss rates.

The analysis shows the best robustness for the scheme with γ = 1 (i.e.
each row will be fingerprinted) for fingerprinting Breast Cancer data. The false

A Correlation-Preserving Fingerprinting Technique 411

miss rate is close to zero for approximately 40% of published rows, i.e. the
attacker needs to delete more than 60% of the data to increase her chances of
destroying a fingerprint. Choosing the value γ = 5 for the same dataset gives the
attacker better chances for success. Similar results are presented in Figs. 1b for
the Nursery dataset, where schemes with smaller data show better robustness.
Interestingly, the scheme with γ = 5 for Nursery dataset outperforms even the
most robust scheme (the one with γ = 1) for Breast Cancer data. Furthermore,
it even more outperforms the scheme for Breast Cancer with the same value
γ = 5. This is because the size of the fingerprinted dataset plays an important
role in the robustness of the scheme. Fingerprinted using the same value for the
parameter γ, larger dataset will count more marks than the smaller, therefore
making the fingerprint harder to erase.

fhA was zero in all of the experiments, therefore the recorded fm was con-
tained of false negatives only (fn).

Fig. 2. Robustness against vertical subset attack

Vertical Subset Attack. Datasets with few columns may be very susceptible to a
vertical attack. The results of our analysis are shown in Figs. 2a and 2 for Breast
Cancer and Nursery datasets, respectively. The false miss rate is larger for cases
where the attacker releases fewer columns. The most robust scheme for Breast
Cancer with γ = 1 shows the fm of only 0.1 for only one released column. In
the Fig. 2b, the trend of decrease of the false miss rate is slower than in the
previous case due to fewer columns in the Nursery data. Erasing one column
in the Nursery data shows more negative effect on robustness than erasing a
column in the Breast Cancer dataset. fhA was zero in all of the experiments.

Flipping Attack. We show the results of the flipping attack simulation in Fig. 3a
and Fig. 3b. The false miss rate is recorded in dependence on the percentage of
data values not affected by the attacker. The false miss rate is generally bigger if
the attacker altered more data. We show the results for 40% and more unchanged
values. Modifying more than 60% of the data values seriously affects the dataset

412 T. Sarcevic and R. Mayer

Fig. 3. Robustness against flipping attack

credibility, therefore we assume such data is not usable. The most robust scheme
for Breast Cancer is again the scheme with γ = 1; false miss rate measured on
datasets with 40% of unchanged(original) values is about 0.1. The scheme for
Nursery data with γ = 5 is very robust against a flipping attack; the false miss
rate is close to zero in most of the experiments. On the other hand, schemes
with larger γ values, γ = 20 and γ = 30, show much poorer robustness results.

4.2 Data Utility Effects

In the previous section we showed that better robustness of the scheme is
achieved by embedding more marks into the data. However, more marks imply
more alterations and reduction of data quality and utility, e.g. for the data min-
ing tasks we want to perform on the data.

We thus measure utility of the fingerprinted data. To this end, we compare
the performance of a predictive classifier trained with that data, to one trained
on the original, not modified dataset.

Table 2. Parameter settings

Decision tree Logistic regression k-NN Gradient boosting

Breast Cancer max depth: 2 solver: ‘saga’ n neighbors: 19 n estimators: 200

criterion: ‘entropy’ C: 90 algorithm: ‘kd tree’ loss: ‘exponential’

criterion: ‘mae’

Nursery max depth: 13 solver: ‘lbfgs’ n neighbors: 8 n estimators: 100

criterion: ‘entropy’ C: 20 algorithm: ‘kd tree’ loss: ‘deviance’

criterion: ‘friedman mse’

A Correlation-Preserving Fingerprinting Technique 413

Specifically, we measure the micro-averaged classification accuracy, which
is the percentage of correctly classified data samples, using a 10-fold cross-
validation. The classification accuracy is measured in the interval [0,100]%. We
use the following classification models: Decision Tree, Logistic Regression, k
Nearest Neighbours (k-NN) and Gradient Boosting, with the hyper-parameter
settings in Table 2 obtained from a random search with 10 iterations over the
following search domain5:

– Decision Tree: max depth:(1, 30), criterion:[‘gini’, ‘entropy’]
– Logistic Regression: solver:[‘liblinear’, ‘newton-cg’, ‘lbfgs’, ‘saga’], C:(10,

100)
– k-NN: n neighbors:(1, 20), algorithm:[‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’]
– Gradient Boosting: n estimators:(50, 200), loss:[‘deviance’, ‘exponential’],

criterion:[‘friedman mse’, ‘mse’, ‘mae’]

For each of the models, we first obtained the result on the original dataset
(equivalent to γ = 0). We then trained the models on the fingerprinted datasets,
using the same hyper-parameters. For clarity of the results, we report the dif-
ferences in classification accuracy when training these two settings.

Table 3 shows the results for the Breast Cancer dataset. We can observe that
there is a general trend that the lower the value is for γ, the lower is also the
impact on the classification accuracy, though the trend is not linear, and some
deviations from this trend occur for specific settings. Specifically Logistic Regres-
sion is affected only marginally. While Decision Trees show a larger degradation,
k-NN and even better Gradient Boosting are not degrading significantly.

In Table 4, we see that the general trend, i.e. that the impact on the classifi-
cation accuracy is lower for bigger γ, is present in the Nursery dataset as well.
We can see that the loss in accuracy for γ = 1 and γ = 3 is significantly bigger
compared to other cases and is in the same magnitude as the results with Breast
Cancer data and the same γ values. However, in this case with the low γ values,
Gradient Boosting is the worst classifier, and Logistic Regression has a signifi-
cantly higher degradation for small γ values than on the Breast Cancer dataset.
For higher values of γ, Decision Trees and Gradient Boosting are affected the
most. Logistic Regression and k-NN show a smaller degradation in this case.

Overall, the choice of the parameter γ should lean towards larger values
because the impact on the classification accuracy is in that case lower. However,
an acceptable trade-off with the desired robustness settings needs to be found.

5 Other parameters are set to default values from the scikit-learn Python library.

414 T. Sarcevic and R. Mayer

Table 3. Impact on classification accuracy on the Breast Cancer dataset

γ Decision tree Logistic regression k-NN Gradient boosting

0 71.68% 66.78% 75.17% 67.83%

1 −3.15% −0.15% −1.86% −1.14%

2 −1.75% −0.08% −1.29% −0.40%

3 −5.24% −0.70% −1.18% −0.61%

5 −1.74% −0.35% −0.77% −0.30%

Table 4. Impact on classification accuracy on the Nursery dataset

γ Decision tree Logistic regression k-NN Gradient boosting

0 77.99% 84.50% 77.30% 98.38%

1 −1.84% −2.22% −2.94% −5.82%

3 −0.66% −0.78% −1.02% −2.05%

5 −0.85% −0.42% −0.41% −1.30%

10 −0.59% −0.21% −0.21% −0.64%

20 −0.83% −0.10% −0.10% −0.33%

30 −0.40% −0.08% −0.18% −0.25%

5 Conclusion and Future Work

We present a novel scheme for fingerprinting categorical attributes in relational
databases. The scheme is designed such that it minimises the occurrence of non-
existing and rare combinations of values in the fingerprinted dataset, preserving
that way the semantic coherence of the dataset. Furthermore, we presented two
types of analysis for our scheme: (i) robustness analysis that measures scheme’s
vulnerability to malicious attacks, and (ii) the data utility analysis that measures
the effects that the fingerprint has on a classification accuracy.

The most important parameter γ, defining the amount of marks in the data,
has a dual effect on the scheme. We showed in Sect. 4.1 that a smaller γ values
make the scheme more robust against all types of mentioned attacks. On the
other hand, the analysis in Sect. 4.2 shows that smaller γ values lead to larger
effect on the data classification accuracy. Therefore, γ should be selected in a
trade-off between scheme’s robustness and data utility.

Future work will be focused towards designing a scheme that unifies the
processes of fingerprinting different types of data and, therefore, enhance the
applicability of fingerprinting to real-life, mixed-type relational datasets.

Acknowledgement. This work was partially funded by the EU Horizon 2020 research
and innovation programme under grant agreement No 732907 (project “MyHealthMy-
Data”) and the “Industrienahe Dissertationen” program (No 878786) of the Austrian
Research Promotion Agency (FFG) (project “IPP4ML”)

A Correlation-Preserving Fingerprinting Technique 415

References

1. Das, S., Dingman, A., Camp, L.J.: Why Johnny doesn’t use two factor a two-phase
usability study of the FIDO U2F security key. In: Meiklejohn, S., Sako, K. (eds.)
FC 2018. LNCS, vol. 10957, pp. 160–179. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6 9

2. Wang, C., Wang, J., Zhou, M., Chen, G., Li, D.: Atbam: an Arnold transform
based method on watermarking relational data. In: International Conference on
Multimedia and Ubiquitous Engineering (MUE), Busan, Korea, pp. 263–270. IEEE
(2008)

3. Wang, H., Cui, X., Cao, Z.: A speech based algorithm for watermarking relational
databases. In: International Symposiums on Information Processing, Moscow, Rus-
sia, pp. 603–606. IEEE (2008)

4. Sion, R.: Proving ownership over categorical data. In: Proceedings of the Inter-
national Conference on Data Engineering, Boston, MA, USA, pp. 584–595. IEEE
(2004)

5. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data. IEEE
Trans. Knowl. Data Eng. 16(12), 1509–1525 (2004)

6. Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: schemes and
specialties. Trans. Dependable Secure Comput. 2(1), 34–45 (2005)

7. Liu, S., Wang, S., Deng, R.H., Shao, W.: A block oriented fingerprinting scheme
in relational database. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506,
pp. 455–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11496618 33

8. Guo, F., Wang, J., Li, D.: Fingerprinting relational databases. In: ACM Symposium
on Applied Computing (SAC), Dijon, France, pp. 487–492. ACM (2006)

9. Lafaye, J., Gross-Amblard, D., Constantin, C., Guerrouani, M.: Watermill: an opti-
mized fingerprinting system for databases under constraints. IEEE Trans. Knowl.
Data Eng. 20(4), 532–546 (2008)

10. Kieseberg, P., Schrittwieser, S., Mulazzani, M., Echizen, I., Weippl, E.: An algo-
rithm for collusion-resistant anonymization and fingerprinting of sensitive micro-
data. Electron. Markets 24(2), 113–124 (2014). https://doi.org/10.1007/s12525-
014-0154-x

11. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

12. Šarčević, T., Mayer, R.: An evaluation on robustness and utility of fingerprinting
schemes. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE
2019. LNCS, vol. 11713, pp. 209–228. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29726-8 14

https://doi.org/10.1007/978-3-662-58387-6_9
https://doi.org/10.1007/978-3-662-58387-6_9
https://doi.org/10.1007/11496618_33
https://doi.org/10.1007/s12525-014-0154-x
https://doi.org/10.1007/s12525-014-0154-x
https://doi.org/10.1007/978-3-030-29726-8_14
https://doi.org/10.1007/978-3-030-29726-8_14

FDFtNet: Facing Off Fake Images Using
Fake Detection Fine-Tuning Network

Hyeonseong Jeon1, Youngoh Bang1, and Simon S. Woo2(B)

1 Department of Artificial Intelligence,
Sungkyunkwan University, Suwon, South Korea

{cutz,byo7000}@g.skku.edu
2 Department of Applied Data Science,

Sungkyunkwan University, Suwon, South Korea
swoo@g.skku.edu

Abstract. Creating fake images and videos such as “Deepfake” has
become much easier these days due to the advancement in Generative
Adversarial Networks (GANs). Moreover, recent research such as the
few-shot learning can create highly realistic personalized fake images
with only a few images. Therefore, the threat of Deepfake to be used for
a variety of malicious intents such as propagating fake images and videos
becomes prevalent. And detecting these machine-generated fake images
has been more challenging than ever.

In this work, we propose a light-weight robust fine-tuning neural
network-based classifier architecture called Fake Detection Fine-tuning
Network (FDFtNet), which is capable of detecting many of the new fake
face image generation models, and can be easily combined with existing
image classification networks and fine-tuned on a few datasets. In con-
trast to many existing methods, our approach aims to reuse popular pre-
trained models with only a few images for fine-tuning to effectively detect
fake images. The core of our approach is to introduce an image-based self-
attention module called Fine-Tune Transformer that uses only the atten-
tion module and the down-sampling layer. This module is added to the
pre-trained model and fine-tuned on a few data to search for new sets of
feature space to detect fake images. We experiment with our FDFtNet on
the GANs-based dataset (Progressive Growing GAN) and Deepfake-based
dataset (Deepfake and Face2Face) with a small input image resolution of
64×64 that complicates detection. Our FDFtNet achieves an overall accu-
racy of 90.29% in detecting fake images generated from the GANs-based
dataset, outperforming the state-of-the-art.

Keywords: Fake image detection · Neural networks · Fine-tuning

1 Introduction

The emergence of Generative Adversarial Networks (GANs) [6], which produces
high-quality images through a generator and a discriminator that is trained
adversely and competitively, enables the generated outputs to be highly realistic
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 416–430, 2020.
https://doi.org/10.1007/978-3-030-58201-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_28

FDFtNet: Facing Off Fake Images 417

Fig. 1. Overview of our FDFtNet. FDFtNet modules are shown in yellow and green:
(2) Fine-Tune Transformer to an input image and, (3) MobileNet block V3 is attached
to (1) pre-trained model (backbone network), where details of each block is shown in
Sect. 3. (4) Classification layer, which consists of a global average pooling layer (GAP
layer), predicts the real and fake. (Color figure online)

and sophisticated [17,18,34,38]. However, such high-quality images and videos
generated by machines have been abused and harmed the general public (e.g.,
DeepFake [33]). Furthermore, a recent study using the few-shot learning tech-
nique [28] in GAN allows Deep Learning models to produce high-quality out-
puts with only a small amount of training data. Zakharov et al. [38] demon-
strated that models capable of generating highly realistic personalized talking
head faces could be constructed using few-shot learning techniques, where the
training inputs provide attention to the generator as a compressed form of fea-
ture landmarks, extracted through embedding layers. Leveraging this method,
DeepFake can easily be generated even with only a small amount of training
data. Recently reported incidents [36] related to DeepFake [33] and DeepNude
show that these technologies are an imminent threat to the public.

Most of the previous approaches have focused on exploiting metadata infor-
mation or handcrafted characteristics of images to detect fake images. However,
these approaches fail to detect GAN-based fake images, because they are cre-
ated from scratch and metadata can be also forged; handcrafted features are no
longer useful for detection. Recent models, such as ShallowNet [30] and FakeTalk-
erDetect [16], used neural networks to detect GANs-generated fake images Yu
et al. [37] used patterns from GAN generated fake to show improvement in
detection. FaceForensics [23] showed various forgery detection techniques. How-
ever, they lack generalization and will thus have difficulties coping with newly
developed DeepFake generation techniques.

In this paper, we propose Fake Detection Fine-tuning Network (FDFtNet), a
new robust fine-tuning neural network-based architecture for fake image detec-
tion. FDFtNet combines Fine-Tune Transformer (FTT), with a pre-trained
Convolutional Neural Network (CNN) as a backbone, and MobileNet block V3
(MBblockV3). Figure 1 shows an overview of our approach, where we utilize well-
known, existing CNN architectures [7,11–13,27,29] for fake image detection. Our

418 H. Jeon et al.

FTT is designed to use different feature extraction from images using the self-
attention, and MBblockV3 extracts the feature using different convolution and
structure techniques. MBblockV3 is added to the pre-trained model as a backbone
network after removing the classification layers. We apply data augmentation by
implementing the Cutout method to overcome the limitation of using a small fine-
tuning dataset and improve the performance. Our approach provides a reusable
fine-tuning network, improving the existing backbone CNN architectures, which
were not designed to detect fake images effectively. Our main contributions are as
follows:

– We propose FDFtNet, a novel neural network-based fake image detector,
showing superior performance on detecting fake images compared to previ-
ous approaches by achieving 97.02% accuracy, improving the baseline model
accuracy from 4% to 45% through our methods.

– We provide a robust fine-tuning neural network-based classifier, which
requires only a small amount of data for fine-tuning and can be easily inte-
grated with popular CNN architectures.

2 Related Work

Traditional Image Forgery Detection. Many researchers [5,19,21,35,37]
have investigated various digital forensics algorithms to detect forged images.
One way to detect forged images is to analyze them in the frequency domain.
However, it is difficult to analyze images with refined, smooth edges, thus giv-
ing rise to a different method. In JPEG Ghost [5], the forged part is regularly
copied from different real images. The normalized pixel distance of the repro-
duced image differs from the original image, causing a difference in JPEG qual-
ity. However, this method will not work if the original image and the forged
image have the same quality level. Another approach is Error Level Analysis
(ELA) [19], which checks the error level of the images. However, with GANs-
generated fake images, ELA cannot classify the error level between the real
and generated images. Another algorithm called the Copy-move Forgery detec-
tion [21] is based on Pixel Based approach. Firstly, the dyadic wavelet transform
(DWT) is applied to the input image. This transforms the original image to an
image of a reduced dimension representation, i.e., the LL1 sub-band. Then this
LL1 sub-band is divided into sub-images. To compute the spatial offset between
the Copy-move regions, the phase correlation is adopted. The Copy-Move regions
can easily be located by pixel matching, which shifts the input image according
to the offset and calculates the difference between its shifted version and the
original image. In the final step, the Mathematical Morphological Operations
(MMO) are used to remove isolated points to improve the location. Traditional
digital forensic tools fail to detect GANs-generated images because they are
generated as a single image. For this reason, these approaches are not effective.

Image Forgery Detection with Neural Network. Various CNN-based
models have been used to detect forged images. ShallowNet [30] outperformed
previous architectures in detecting real vs. PGGAN with a shallow layer

FDFtNet: Facing Off Fake Images 419

architecture. However, their approach showed limitations when detecting other
types of DeepFake images. FaceForensic++ [24] proposed a forgery detection
method tailored to facial manipulations and provided an extensive evaluation
in a supervised manner. In addition, they introduced an automatic metric that
takes into account the four forms of distortion in realistic scenarios (i.e., ran-
dom encoding and random dimensions). Using these benchmarks, they analyzed
various methods of forgery detection pipeline. However, transfer learning or fine-
tuning capabilities were not explored. Recent research by Yu et al. [37] proposed
a method by learning the metadata, mentioned as GAN fingerprints, to effec-
tively detect GANs-generated images. However, our method includes deepfake
datasets as well as GANs for detection without the usage of metadata.

Self-attention and Transformer. To achieve long-term dependencies on
image data, CNN needs to increase the amount of computation via deeper layers,
because one-time convolution computation sees only the convolution kernel size.
In contrast, self-attention solves this long-term dependency issue by using the
softmax outputs of the entire sequence that provide attention to CNN. Zhang
et al. [39] used self-attention modules to generate images with GANs. Our FTT
is different in that we build only self-attention modules, such as Transformer,
during the feature extraction in the classification tasks. We apply FTT for the
image feature extractor and not for the generator. This approach is similar to
the Multi-head Attention Module [32] (Query, key, and Value), but the difference
is that FTT is suitable for the image to be applied to the 1× 1 convolution.

3 Fake Detection Fine-Tuning Network (FDFtNet)

3.1 Dataset Description

CelebA. CelebFaces Attributes Dataset (CelebA) [20] is a large-scale face
attributes dataset with more than 200,000 celebrity images. It is widely used
for benchmarking and as inputs for generating training and test datasets for
various GAN and VAE approaches. We use CelebA as an input to generate
PGGAN [17] fake images.

PGGAN. For the GAN-generated image, we used Progressive Growing GANs
Dataset (PGGAN) [17], consisting of 100,000 GAN-generated fake celebrity
images at 1024× 1024 resolution using the CelebA dataset. The key idea in
PGGAN is to grow both the generator and discriminator progressively. The
training starts with both the generator and the discriminator having a low res-
olution. New layers are added as the training process advances, thus increasing
the resolution of the generated images.

Deepfakes. Deepfakes [33] was the first publicly available method, which anyone
can download and use to produce fake images and videos. The code is based on
two autoencoders with a shared encoder. The trained encoder and decoder of
the source image are applied to the target image face to produce a forged image.
The output of the autoencoder is then blended with the target image. For our
experiment, we used the dataset provided by Google/Jigsaw (Fig. 2).

420 H. Jeon et al.

Fig. 2. Illustration of our datasets. CelebA [20] images are used as inputs for
PGGAN [17] fake image generation. Images from the FaceForensics [23] dataset are
cropped and used as input images for Deepfakes [33] and Face2Face [31] fake image
generation.

FaceForensics. FaceForensics [23] is a video dataset comprised of more than
500,000 frames, containing faces from 1004 videos that can be used to study
image or video forgeries. An automated version of Face2Face [31] approach is
used to create the videos. The goal is to animate the facial expressions of the
target video by a source actor and re-render the manipulated output video in a
photo-realistic fashion. Face2Face re-renders the synthesized target face on top
of the corresponding video stream such that it seamlessly blends with the real-
world illumination. Since our goal is to detect fake images, we use each frame
from the generated output.

3.2 Description of Pre-trained Backbone CNN Networks

We used the following CNN networks as our backbone networks, as shown in
Fig. 1, as well as our baselines (backbone networks): SqueezeNet, ShallowNetV3,
ResNetV2, and Xception. Each network is pre-trained from each dataset (i.e.,
PGGAN, Deepfakes, and Face2Face).

SqueezeNet. SqueezeNet [14] has an AlexNet-level accuracy with fewer param-
eters and would generally have poor performance in fake detection tasks because
SqueezeNet is not designed for fake detection. We chose SqueezeNet as the base-
line because our FDFtNet can provide a huge improvement.

ShallowNetV3. ShallowNetV3 [30] has the highest area under the receiver
operating characteristic (AUROC) (93.99%) on 64× 64 resolution images from
the CelebA and PGGAN datasets. However, ShallowNetV3 has burdensome
fully-connected layers (FC layer) for binary classification. Convolution lay-
ers have 115,490 parameters, while FC layers have 4,725,762 parameters.

FDFtNet: Facing Off Fake Images 421

Table 1. Specification for the self-attention module. Conv denotes convolution, W , H,
and C define the input size for the previous layer, and b denotes the bottleneck ratio in
the block. The number of parameters are simulated with the following hyperparameters:
W = H = C = 64 and b = 8.

Input size Operation Num. parameters Output dim Stride

W × H × C 1× 1 Conv 16 C / b 1

W × H × C 1× 1 Conv 16 C / b 1

W × H × C 1× 1 Conv 16 C 1

W × H × C / b Matmul 0 W × H –

WH × WH Softmax 0 W × H –

WH × WH Batchdot 0 C –

W × H × C Multiply 1 C –

W × H × C Add 0 C –

In addition, since this approach has not been tested on deepfakes other than
those generated by PGGAN, we aim to investigate the performance.

ResNetV2. ResNetV2 has been widely adopted in many image classification
tasks. We chose ResNetV2 [8] as one of the baselines, because ResNetV2 has
an opposing characteristic to ShallowNetV3 in terms of the model depth, i.e.,
ResNetV2 has 50 layers, while ShallowNetV3 has only 8 layers. We believe that
these two architectures would show complementary results, and we plan to see
the effect of our approach on such deep and shallow CNN architectures.

Xception. Xception [2] has been served as the baseline for fake image detection
in [24,30]. For FaceForenscis++, Xception showed the highest accuracy, i.e.,
96.36% in Deepfake and 86.86% in Face2Face, justifying our choice of it as a
baseline. Xception has no FC layers, but extracts various image feature spaces
thanks to depthwise separable convolutions, compared to the burdensome FC
layers in the ShallowNetV3. We cut the classification layers in a pre-trained
model, and add our FTT and MBblockV3 modules.

3.3 Fine-Tune Transformer (FTT)

Fine-Tune Transformer (FTT) consists of several self-attention modules, as
shown in Fig. 3, where each attention module has f(x), g(x), and h(x) using
a 1× 1 convolution filter. We iterate M times from the image inputs. M is a
hyper-parameter, and we empirically determined that M = 3 yields the highest
performance.

f (x) = Wfx, g (x) = Wgx, h (x) = Whx,

βj,i = Softmax
(
f (xi)

T
g (xj)

)
.

(1)

422 H. Jeon et al.

Fig. 3. Self-attention module in the Fine-Tune Transformer. The input x (the image
or the output from the previous layer) is divided by a 1 × 1 convolution into f , g, and
h. The attention map β is the softmax output from f and g. The batchdot o multiplies
h and the attention map β. The input image x is added to o. The final output y is the
self-attention feature maps.

Table 2. Specification for Fine-Tune Transformer (FTT). Conv, BN, DConv, and GAP
denote convolution, batch normalization, depth-wise separable convolution, and global
average pooling operation, respectively. The “Attention” operation in bold indicates
the end of one transformer block. We repeat FTT three times (M = 3) to maximize
the performance.

Input size Operation Num. parameters Output dim. Stride

64 × 64 × 3 3× 3 DConv 123 32 2

32 × 32 × 32 BN 128 32 –

32 × 32 × 32 ReLU 0 32 –

32 × 32 × 32 1st Stage self-attention 1,321 32 –

32 × 32 × 32 3× 3 DConv 2,336 64 2

16 × 16 × 64 BN 256 64 –

16 × 16 × 64 ReLU 0 64 –

16 × 16 × 64 2nd Stage self-attention 5,201 64 –

16 × 16 × 64 3× 3 DConv 8,768 128 2

8 × 8 × 128 BN 512 128 –

8 × 8 × 128 ReLU 0 128 –

8 × 8 × 128 3rd Stage self-attention 20,641 128 –

8 × 8 × 128 1× 1 Conv 73,728 576 1

8 × 8 × 576 BN 2,304 576 –

8 × 8 × 576 ReLU 0 576 –

8 × 8 × 576 GAP 0 576 –

In Fig. 3, the input x of the previous layers or the input image is divided
into three feature spaces f(x), g(x), and h(x). As shown in Eq. 1, all of them
are obtained through the 1× 1 convolution, where Wf ,Wg, and Wh are the

FDFtNet: Facing Off Fake Images 423

respective filter weights of each space. f(x) and g(x) have b channel bottleneck
ratio parameter, C

b , where C is the number of channels. In this study, we choose
b = 8 as suggested by Zhang et al. [39]. In particular, we use the dot-product
attention to produce the attention map β in Fig. 3, synthesizing the ith and jth

locations after the Softmax operation as shown in the above equation.

oj = Batchdot (βj,i , h (x)) (2)
yi = γoj + xi. (3)

After obtaining the attention map β, we apply the Batchdot operation to mul-
tiply the attention map βj,i with h(x), as shown in Eq. 2, and produce output
oj . After the Batchdot multiplication, oj is added to the input xi. Finally, the
self-attention feature map, yi, is obtained via multiplying γ and adding the input
xi, as shown in Eq. 3. In particular, γ is a learnable parameter initialized as 0 at
the early stage of learning. This is favorable since the softmax function equally
provides attention to all the feature spaces at the early stage of learning.

Table 3. Specification for MBblockV3 with W = H = 8 and C = 256. Conv, BN,
DConv and GAP denote convolution, batch normalization, depth-wise separable con-
volution, and global average pooling. W , H and C indicate input size. If the stride of
3× 3 DConv is 2, the addition operation is skipped, and W and H are divided by 2.
Bold operations represent the Squeeze-and-Excitation block.

Input size Operation Num. parameters Output dim. Stride

W × H × C 1× 1 Conv 294,912 576 1

W × H × 576 BN 2,304 576 –

W × H × 576 h-swish 0 576 –

W × H × 576 3× 3 DConv 5,184 576 1 or 2

W × H × 576 BN 2,304 576 –

W × H × 576 GAP 0 576 –

1 × 1 × 576 1×1 Conv 82,944 144 1

1 × 1 × 144 ReLU 0 144 –

1 × 1 × 144 1×1 Conv 82,944 576 1

1 × 1 × 576 hard-sigmoid 0 576 -

1 × 1 × 576 Multiply 0 576 –

W × H × 576 h-swish 0 576 –

W × H × 576 1× 1 Conv 73,728 128 1

W × H × 128 Linear 0 128 –

W × H × 128 BN 2,304 128 –

W × H × 128 Add 0 128 –

424 H. Jeon et al.

Next, in our FTT, we apply the self-attention module three times (M = 3)
with an input size of 64× 64× 3, as shown in Table 2. The first layer is a 3× 3
separable convolution with 32 filters and 2 strides followed by Batch Normaliza-
tion (BN) [15] and ReLU. The dimension of the output feature map from the
self-attention module is 32, 64, and 128, respectively; the width (the number of
channels) is doubled when the resolution is down-sampled, as shown in Table 2.
After that, self-attention is performed three times (M = 3), followed by Separa-
bleConv3× 3, BN, and ReLU. The main reason we apply self-attention modules
in FTT is to overcome the limitations of CNN in achieving long-term depen-
dencies, caused by the use of numerous Conv filters with a small size. On the
other hand, only one-time use of the FTT is necessary to achieve the long-term
dependencies, avoiding the construction of deep CNN layers. Also, a three-time
application of self-attention modules allows us to explore and learn diverse deep
features of the input images via fine-tuning.

3.4 MobileNet Block V3

We chose MobileNet block V3 (MBblockV3) to explore the image feature space
through inverted residual structure and linear bottleneck [25]. Depthwise sep-
arable convolutions, as in Xception and MobileNetV1 [11], are also included
in MBblockV3. Comprehensively, MobileNet is an architecture that has already
proven its efficiency by using a small number of parameters, drastically increasing
computational efficiency. We chose MBblockV3, because it is a suitable module
for the efficient extraction of the feature space over the pre-trained feature space.
FTT and MBblockV3 are repeatedly used M and N times, respectively. Each of
them is added before the final classification layer. MBblockV3 has the parameter
N after the pre-trained model. In our experiment, we use N = 4, determined
empirically, yielding the best performance for fine-tuning. In particular, we use
the modified h-swish [10] and the ReLU6 as activation functions. This non-
linearity [4,9,22] significantly improves the performance of neural networks and
is defined as follows:

h-swish[x] = x
ReLU6 (x + 3)

6
, where ReLU6[x] = min (max (0, x) , 6) . (4)

Since clipping the input values at the bottom layers may have a side effect
of distorting the data distribution [26], we apply these activation functions at
the top layers to reduce distortion and extract different signals from ReLU.
Next, the Squeeze-and-Excitation blocks (SE block) in Squeeze and Excitation
networks [12] are applied in the bottleneck layer. Global information on the
image resolution is embedded in the squeeze stage, and information aggregation
is used to capture channel dependencies and is re-calibrated through the gated
computation (element-wise multiplication), similar to the attention mechanism
in the excitation stage. Details of the SE block parameters are summarized in
Table 3.

FDFtNet: Facing Off Fake Images 425

4 Experimental Results

4.1 Training Details

All datasets have train, validation, test, and fine-tune sets. The size of each
dataset is shown in Table 4. Our FDFtNet is trained with Stochastic Gradient
Descent (SGD) with momentum for 300 epochs on all datasets. The learning
rate is initialized at 0.3 and annealed using a cosine function. The momentum
rate is set to 0.9, and the mini-batch size is set to 128. Early stopping is applied,
when the validation loss ceases to decrease for 20 epochs. To reenact the most
challenging scenario in detecting fake images, all input images are resized to
64× 64 resolution.

Data Augmentation. Input images are translated into a width and height
range of [−2, 2] with the nearest-padding on empty pixels generated after trans-
lation. Zoom and rotation are also applied to a degree range of [−0.2, 0.2]. We
also perform random horizontal flipping. These data augmentations are applied
to all fine-tune sets. For validation and test sets, only a 1/255 scaling augmen-
tation to the input image is applied.

Cutout. Cutout method applies squared zero masks on a random location of
each input image. Figure 4 presents an example of a Cutout data augmentation.
DeVries et al. [3] used random zero masks of 16 pixels for CIFAR-10 (32× 32
pixels images), 5 random iteration parameters α for cutting, and 16 random
size multipliers β for the cutting masks. We use 4× 4 pixels mask, 3 itera-
tions, and 5-size multipliers for cutting masks for 64× 64 images (α = 3 and
β = 5). Since we use random translation, we do not use random center cropping,
which was used in the original paper. When we conducted with the original set-
ting, we faced severe underfitting with no convergence of losses. We observed

Table 4. The respective size of the train, validation, test, and fine-tune sets. We use
only 1,000 real and fake images, respectively, for fine-tuning.

Dataset Train Validation Test Fine-tune

PGGAN 128,404 32,100 37,566 1,000 (real), 1,000 (fake)

Deepfake 60,000 18,000 20,000 1,000 (real), 1,000 (fake)

Face2Face 60,000 18,000 20,000 1,000 (real), 1,000 (fake)

Fig. 4. Example of a Cutout data augmentation. Random regions of the original image
(left) are masked out by black rectangles. Every epoch, the rectangular mask changes
in form and all images are resized to 64× 64 resolution.

426 H. Jeon et al.

higher performance with a setting of low Cutout parameters (α = 3 and β =
5) as compared to the implementation without Cutout, which showed strong
overfitting. Because we fine-tune with a small amount of data, we apply this
non-aggressive parameter setting.

4.2 Performance Evaluation

We present our overall performance results in Table 5. In Table 5, we use the
accuracy (ACC) and AUROC as evaluation metrics. We experimented with all
four baseline models on each dataset with similar training strategies. The exper-
imental results show that our FDFtNet has superior detection performance in
both ACC and AUROC, compared to all the baselines. In terms of training data
size, our model shows high performance using 1,000 images for real and fake,
respectively.

PGGAN. To yield the best detection performance, we freeze the weight param-
eters of all layers of the pre-trained models. FTT with parameter M = 3 is used,
and MBblockV3 with parameter N = 2 is added; the same data augmentation
is applied. Table 5 shows the results of our models compared with the baseline
models. Our results show that Xception, among all baseline models, achieved the
highest performance (87.12% ACC and 94.96% AUROC). Our model showed a
performance of 90.29% ACC and 95.98% AUROC, which is higher than that of
ShallowNetV3 with an ensemble [30]. ShallowNetV3 is improved from 85.73%
and 92.90% ACC to 88.03% and 94.53% AUROC, respectively, similar to the
ensemble version. SqueezeNet baseline shows the lowest baseline performance,
but it is significantly improved to a similar level to that of ShallowNetV3, from
50.00% to 92.76%, by applying our model.

Table 5. Overall performance evaluation results. The evaluation metrics used are ACC
(%) and AUROC (%). The underlined results are improved performance compared to
the baseline and the best detection results among all are highlighted in bold.

Model Dataset PGGAN Deepfake Face2Face

Backbone ACC (%) AUROC ACC (%) AUROC ACC (%) AUROC

SqueezeNet baseline 50.00 50.00 50.00 50.00 50.00 50.00

FDFtNet (Ours) SqueezeNet 88.89 92.76 92.82 97.61 87.73 94.20

ShallowNetV3† baseline 85.73 92.90 89.77 92.81 83.35 88.49

FDFtNet (Ours) ShallowNetV3 88.03 94.53 94.29 97.83 84.55 93.28

ResNetV2 baseline 84.80 88.58 81.52 89.72 58.83 62.47

FDFtNet (Ours) ResNetV2 84.83 94.05 91.03 96.08 85.15 92.91

Xception baseline 87.12 94.96 95.10 98.92 85.78 93.67

FDFtNet (Ours) Xception 90.29 95.98 97.02 99.37 96.67 98.23

FDFtNet: Facing Off Fake Images 427

Table 6. Ablation study for Fine-Tune Transformer (FTT). Our model with FTT
has 2.46% higher accuracy (ACC) than those without FTT, increasing the ACC from
94.56% to 97.02%.

Method Backbone Dataset Acc AUROC

With FTT Xception Deepfake 97.02% 99.37%

Without FTT Xception Deepfake 94.56% 98.89%

Deepfake. Here also, the same data augmentation techniques are applied. For
FTT, we use M = 3 and N = 4 for MBblockV3. Cutout has α = 3 iteration
parameters and β = 10 multiplier parameters. The results show that all models
achieve significant improvement in performance. Table 5 indicates that Xception
has the highest performance of 95.10% ACC and 98.92% AUROC. Using our
approach, this baseline model is also improved to 97.02% ACC and 99.37%
AUROC. ShallowNetV3 has 89.77% ACC and 92.81% AUROC. They increased
to 94.29% ACC and 97.83% AUROC, respectively. ResNetV2 is also improved
from 81.52% ACC and 89.72% AUROC to 91.03% ACC and 96.08% AUROC.
SqueezeNet baseline shows the lowest performance, 50.00% ACC and AUROC,
but is improved to 92.82% ACC and 97.61% AUROC.

Face2Face. The training strategies for Face2Face are very similar to those of
the Deepfake dataset. Data augmentation is also applied. M , N , α, and β are set
to 3, 4, 3, and 10, respectively. The interesting point is that ResNetV2 baseline
performed poorly (58.83% ACC and 62.47% AUROC), but significant improve-
ments are made using our methods (85.15% ACC and 92.91% AUROC). Our
results demonstrate the generalization ability of our approach, improving the
poorly performing baseline above 90% across all models and datasets. Compared
to FaceForensics Benchmark Results [1], the highest state-of-the-art method is
Xception, which shows 96.4% ACC in Deepfake and 86.9% ACC in Face2Face.
Our FDFtNet achieves higher performance (97.02% and 96.67%) than the cur-
rent state-of-the-art method for the same dataset.

5 Ablation Study, Discussions, and Limitations

In this section, we validate each module and technique through an ablation study.
In Table 6, we choose the Xception model and the Deepfake dataset to compare
our model with and without the FTT, while all other settings remain the same.
With FTT, we can achieve about 2.5% higher performance than without FTT, as
shown in Table 6. Our current work has the following limitations: First, we used
both real and fake data for training and fine-tuning, but we have constrained
resources in practice. In FakeTalkerDetect [16] for fake detection, researchers
used Siamese networks for training only on real data. However, in our imple-
mentation, few-shot learning and unbalanced learning are major obstacles to
achieving high performance. Second, transfer learning is required to improve

428 H. Jeon et al.

performance. We trained each model on each dataset. For future work, we plan
to research the transfer learning ability to further generalize our model.

6 Conclusion

We propose FDFtNet, which is a robust fine-tuning neural network-based archi-
tecture, to detect fake images and significantly improve the baseline CNN archi-
tectures. Our model achieves the state-of-the-art accuracy in fake image detec-
tion on the GAN-based dataset and the Deepfake-based dataset. Our experimen-
tal results with the use of a limited amount of data show the exploration and
exploitation of image feature space beyond the pre-trained models. Our results
show that FDFtNet is a promising method for detecting fake images generated
by powerful deep learning methods, requiring only a small amount of images
for re-training. Therefore, FDFtNet can be a viable option even for detecting
new fake images in a real-world scenario, where available datasets are extremely
limited. Further, we offer open source versions of our work for it to be widely
leveraged by the research community1.

Acknowledgements. We thank Siho Han for providing his expertise to greatly
improve this work. This work was partly supported by Institute of Information
communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2019-0-00421, AI Graduate School Support Program
(Sungkyunkwan University)). Also, this research was supported by Energy Cloud R&D
Program through the National Research Foundation (NRF) of Korea funded by the
Ministry of Science, ICT (No. 2019M3F2A1072217), and was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2017R1C1B5076474, and 2020R1C1C1006004).

References

1. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: This
table lists the benchmark results for the binary classification scenario. (2019).
http://kaldir.vc.in.tum.de/faceforensics benchmark/

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference On Computer Vision and Pattern Recogni-
tion, pp. 1251–1258 (2017)

3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout (2017). arXiv preprint arXiv:1708.04552

4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

5. Farid, H.: Exposing digital forgeries from jpeg ghosts. IEEE Trans. Inf. Forensics
Secur. 4(1), 154–160 (2009)

6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

1 https://github.com/cutz-j/FDFtNet.

http://kaldir.vc.in.tum.de/faceforensics_benchmark/
http://arxiv.org/abs/1708.04552
https://github.com/cutz-j/FDFtNet

FDFtNet: Facing Off Fake Images 429

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE Conference On Computer Vision and Pattern
Recognition, pp. 770–778 (2016)

8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

9. Hendrycks, D., Gimpel, K.: Bridging nonlinearities and stochastic regularizers with
gaussian error linear units. ArXiv abs/1606.08415 (2017)

10. Howard, A., et al.: Searching for mobilenetv3. arXiv preprint arXiv:1905.02244
(2019)

11. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications (2017). arXiv preprint arXiv:1704.04861

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

13. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer,
K.: Densenet: implementing efficient convnet descriptor pyramids (2014). arXiv
preprint arXiv:1404.1869

14. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size (2016). arXiv preprint arXiv:1602.07360

15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167

16. Jeon, H., Bang, Y., Woo, S.S.: Faketalkerdetect: effective and practical realistic
neural talking head detection with a highly unbalanced dataset. In: Proceedings of
the IEEE International Conference on Computer Vision Workshops (2019)

17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for
improved quality, stability, and variation (2017). arXiv preprint arXiv:1710.10196

18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4401–4410 (2019)

19. Krawetz, N., Solutions, H.F.: A picture’s worth. Hacker Factor Solutions 6, 2 (2007)
20. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.

In: Proceedings of the IEEE International Conference on Computer Vision, pp.
3730–3738 (2015)

21. Mankar, S.K., Gurjar, A.A.: Image forgery types and their detection: a review. Int.
J. Adv. Res. Comput. Sci. Softw. Eng. 5(4), 174–178 (2015)

22. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function 7
(2017). arXiv preprint arXiv:1710.05941

23. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics: a large-scale video dataset for forgery detection in human faces (2018).
arXiv preprint arXiv:1803.09179

24. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: learning to detect manipulated facial images (2019). arXiv preprint
arXiv:1901.08971

25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1404.1869
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1803.09179
http://arxiv.org/abs/1901.08971

430 H. Jeon et al.

26. Sheng, T., Feng, C., Zhuo, S., Zhang, X., Shen, L., Aleksic, M.: A quantization-
friendly separable convolution for mobilenets. In: 2018 1st Workshop on Energy
Efficient Machine Learning and Cognitive Computing for Embedded Applications
(EMC2), pp. 14–18. IEEE (2018)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556

28. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learn-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 403–412 (2019)

29. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

30. Tariq, S., Lee, S., Kim, H., Shin, Y., Woo, S.S.: Gan is a friend or foe?: a framework
to detect various fake face images. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pp. 1296–1303. ACM (2019)

31. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face:
real-time Face Capture and Reenactment of RGB Videos. In: Proceedings of the
Computer Vision and Pattern Recognition (CVPR). IEEE (2016)

32. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information
processing systems, pp. 5998–6008 (2017)

33. Wikipedia: Deepfake. https://en.wikipedia.org/wiki/Deepfake (2019). Accessed 15
July 2019

34. Wu, J., et al.: Sliced wasserstein generative models. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019). https://arxiv.org/pdf/
1706.02631.pdf

35. Yang, X.: Estimating distribution costs with the e aton-k ortum model. Rev. Dev.
Econ. 19(3), 653–665 (2015)

36. Yin, C.: Altering faces via ai deepfake may be outlawed. China Daily, April
2019. http://global.chinadaily.com.cn/a/201904/22/WS5cbd15c4a3104842260b76
c8.html

37. Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to GANs: learning and
analyzing Gan fingerprints. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 7556–7566 (2019)

38. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learn-
ing of realistic neural talking head models (2019). arXiv preprint arXiv:1905.08233

39. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adver-
sarial networks (2018). arXiv preprint arXiv:1805.08318

http://arxiv.org/abs/1409.1556
https://en.wikipedia.org/wiki/Deepfake
https://arxiv.org/pdf/1706.02631.pdf
https://arxiv.org/pdf/1706.02631.pdf
http://global.chinadaily.com.cn/a/201904/22/WS5cbd15c4a3104842260b76c8.html
http://global.chinadaily.com.cn/a/201904/22/WS5cbd15c4a3104842260b76c8.html
http://arxiv.org/abs/1905.08233
http://arxiv.org/abs/1805.08318

Escaping Backdoor Attack Detection
of Deep Learning

Yayuan Xiong1, Fengyuan Xu1(B), Sheng Zhong1, and Qun Li2

1 State Key Lab for Novel Software Technology,
Nanjing University, Nanjing, China
yayuan.xiong@smail.nju.edu.cn,

{fengyuan.xu,zhongsheng}@nju.edu.cn
2 Department of Computer Science,

College of William and Mary, Williamsburg, USA
liqun@cs.wm.edu

Abstract. Malicious attacks become a top concern in the field of deep
learning (DL) because they have kept threatening the security and safety
of applications where DL models are deployed. The backdoor attack, an
emerging one among these malicious attacks, attracts a lot of research
attentions in detecting it because of its severe consequences. Latest back-
door detections have made great progress by reconstructing backdoor
triggers and performing the corresponding outlier detection. Although
they are effective on existing triggers, they still fall short of detecting
stealthy ones which are proposed in this work. New triggers of our back-
door attack can be generally inserted into DL models through a hidden
and reconstruction-resistant manner. We evaluate our attack against two
state-of-the-art detections on three different data sets, and demonstrate
that our attack is able to successfully insert target backdoors and also
escape the detections. We hope our design is able to shed some light on
how the backdoor detection should be advanced along this line in future.

Keywords: Backdoor attack · Trigger reconstruction · Evading
detection

1 Introduction

Currently deep neural networks (DNN) are used in every field of machine learn-
ing tasks, such as the image classification [10], the face recognition [17], and
the autonomous driving [16]. DL models have shown significant performance
improvements compared to traditional methods.

Usually the user and the trainer of a DL model are different for the following
reasons. First, the training of DL models is an end-to-end procedure consuming
the huge computational resources and training data, which is unaffordable to
a user. Second, a good-quality DL model needs a lot of tuning experience and

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Hölbl et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 431–445, 2020.
https://doi.org/10.1007/978-3-030-58201-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58201-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-58201-2_29

432 Y. Xiong et al.

domain expertise, which is impossible for a user to do. Therefore, users frequently
utilize DL models from third-party trainers, which could be honest or malicious.

When a trainer is malicious, he can manipulate his DL models during the
training procedure and cause dangerous consequences or even life-threatening
situations after the models are utilized. Among all attacking methods available,
the backdoor attack [6,9,11,14] is uniquely hard to be detected due to its stealthy
malicious behaviors which can only be triggered by certain rare inputs. In order
to launch a backdoor attack, a malicious trainer needs to insert a backdoor into
the target model, just like making a Trojan, during the training procedure. It is
achieved by deliberately poisoning the training data which is totally controlled
by the trainer. After the poisoned training, this model is able to perform the
inference tasks like classification honestly and normally except the case when
there is a special trigger appearing in the inference input. This trigger, usually
a rare visual content like a special sunglasses, will activate malicious actions of
the poisoned model and lead to severe outcomes.

A vast number of detection methods have been proposed [4,7,8,12,15,18] to
address this dangerous backdoor attack. Some of them want to detect if the pre-
trained model contains a backdoor while others aim to detect if the input data
to the target model contains a trigger. Neural Cleanse [18], for example, is one of
the state-of-the-art methods of detecting the backdoor in a pre-trained model,
and it shows a new direction of detection. It proposes “reverse-engineer” to find
the potential backdoor trigger for each class and then identifies the victim class
via the outlier detection.

Although this new direction is promising as it works well on existing triggers.
However, we show that a malicious trainer is able to escape such detection like
Neural Cleanse (NC) if he conducts either of two concealed backdoor attacks
proposed in this paper. The first proposed attack is a basic one which utilizes
the trigger reconstruction in NC for attacking. The second proposed attack is
an advanced one which scatters a trigger like randomly generated noises on a
poisoned image. This trigger scattering is independent of any specific trigger
reconstruction. Moreover, we also show that both basic and advanced back-
door attacks proposed are also able to escape the detection of another trigger-
reconstruction based detection method called DeepInspect [5]. Therefore, our
attack design is generic and might shed light on how the detection along this
line should be developed in the future.

Our Contributions. First, we proposed two new backdoor attacks, both of
which can successfully insert the backdoor and escape the state-of-the-art detec-
tions based on the trigger reconstruction [5,18]. Second, we further raise our
attack ability as well as the detection difficulty by reducing the ratio of our trig-
ger size. In our evaluation, the trigger size is only 5% of MNIST image size, 3%
of GTSRB image size, and 0.6% of YouTube-Faces image size, respectively. Last,
we implement our two attacks for the MNIST, GTSRB and YouTube Faces data
sets, and evaluate them against the Neural Cleanse [18] and DeepInspect [5] to
demonstrate their effectiveness and concealment.

Escaping Backdoor Attack Detection of Deep Learning 433

2 Related Work

2.1 Backdoor Attack

There have been a number of backdoor attacks. Gu et al. proposed Badnets [9],
which inserts the backdoor into models by poisoning training data. These models
will classify the input data with the trigger into the target class, while the clean
input will be classified normally. Chen et al. further proposed an attack in which
the attacker only needs to poison a very small amount of data to complete the
attack [6].

The attacker may also use perturbation-based method to achieve data poison-
ing. Liao et al. proposed two methods of data poisoning based on perturbation
for backdoor attack [11], static perturbation and dynamic perturbation. The
former has a fixed perturbation pattern, while the latter will adjust the per-
turbation pattern according to the difference between the original class and the
target class, which is more stealthy and dangerous.

In addition to directly poisoning the training data, Liu et al. proposed a
backdoor attack that does not require access to the training data [14]. In this
scenario, the target model is a pre-trained model, the attacker looks at neurons
inside the model and designs trigger based on neurons that are more sensitive
to the changes in input.

2.2 Backdoor Detection

There are already some defenses to mitigate the backdoor attack. Fine-Pruning
combines pruning and fine-tuning to mitigate the impact of the backdoor [12],
while this method will affect the performance of the model [18]. Liu et al. sug-
gested three ways to defend the attack [15], input anomaly detection, re-training,
and input preprocessing, which bring significant computing overhead [13].

Some work tries to defend against the backdoor attack by detecting whether
the input contains the trigger. STRIP [8] determines if an input contains a trigger
by adding a strong perturbation to the input, they argue that the trigger would
be disrupted by the strong perturbation added. However, this can disrupt the
normal input and lead to misclassification [13].

Neural Cleanse [18] is one of the most powerful and representative methods. It
provides an advanced and promising method for detecting the backdoor attack.
For a pre-trained model, it reconstructs the trigger for each class with some clean
data as input. Then it applies outlier detection on these reconstructed triggers.
Since the mask of true trigger performs differently from other generated triggers,
the outlier is marked as the true trigger. According to their experiment, the
trigger of size up to 18% of the whole image can be detected on MNIST, and the
trigger of size up to 39% of the whole image can be detected on YouTube Faces.
Chen et al. proposed another detecting method against backdoor attack called
DeepInspect [5], in which the trigger is reconstructed by a generative neural
network.

434 Y. Xiong et al.

3 Concealed Backdoor Attacks

In this section, we introduce our concealed backdoor design, including the recon-
structed trigger approach and the randomly-generated trigger approach. We
first provide our threat model, and describe how to conduct such two backdoor
attacks respectively.

3.1 Threat Model

In our proposed attack, the attacker has the ability to manipulate the training
data and to train the model. The attacker aims to make the trained model to
classify the data with the trigger into the target class while classifying the clean
data correctly. At the same time, the backdoor inserted in the trained model can
not be detected by Neural Cleanse.

One of the most important challenges is that the trigger reconstructed by
Neural Cleanse has been trained by neural network, which is different from the
original trigger we added at the beginning [18]. The reconstructed trigger then
seems like just the characteristics of the original trigger, which is still relatively
small and easy to be detected by outlier detection naturally. That is to say, even
the original trigger injected into the model seems normal, the reconstructed one
can still be detected through the shrinking. In order to overcome this challenge,
we proposed the countermeasure of adding noise to clean data, which can be
found in the following section in detail.

3.2 Reconstructed Trigger Approach

In this section, we describe the first attack, which is intuitively inspired by the
result of trigger reconstruction [18].

In the backdoor attack, the attacker can manipulate part of the training data,
inserts the trigger into the data and modifies their labels to the target class. Then
through neural network learning enables the trained model to learn the trigger
and connect it to the target class. In Neural Cleanse [18], the trigger that needs
to be added if the clean data is misclassified into each class is recovered by
reverse reconstruction. It is based on the assumption that the trigger is often
small so that the real trigger could be identified by outlier detection. The paper
also mentions that the detection effect on the larger trigger would decrease, so
we tried to find a way to construct the trigger without significantly increasing
its size but being able to evade the detection.

We note that the trigger used for attack in Neural Cleanse [18] is a square
placed in the corner of an image. And we wonder if a more complicated trigger
will have a more shady effect.

Intuitively we tried to carry out the attack directly using the trigger recon-
structed from the clean model. As such the reconstructed trigger will not be
recognized as outlier if Neural Cleanse can restore the trigger as the original
one. Next, we will describe the process of the attack in detail, which can also be
found in Algorithm 1.

Escaping Backdoor Attack Detection of Deep Learning 435

Algorithm 1: Reconstructed trigger attack
Input: i: the target class

labelimg: the label of img
S: the whole training set
Sp: training set that needs to be poisoned, Sp ⊆ S
Sn: training set that needs data argumentation, Sn ⊆ S
Sc: the rest clean data set
α: sampling rate of adding noise

Output: the poisoned model
1 Mclean ← Train on S
2 Setmask, Setpattern ← Neural Cleanse(Mclean)
3 mask, pattern ← mask and pattern that belongs to class i
4 for img ⊆ Sp do
5 img ← (1 − mask) × img + mask × pattern
6 labelimg ← i

7 for img ⊆ Sn do
8 mask′ ← RandomSampleα(mask)
9 pattern′ ← pattern

10 img ← (1 − mask′) × img + mask′ × pattern′

11 S′ ← Sp ∪ Sn ∪ Sc

12 Mpoisoned ← Train on S′

Data Poisoning. First, we train a clean model M with the original training
set, then trigger of each class can be reconstructed by Neural Cleanse on M . We
set the target label as l, so we select the corresponding mask and pattern for
the attack. Then we manipulate part of the training data as the carrier of the
trigger. Specifically, we do the following with these data, and change their label
to be l.

img = (1 − mask) × img + mask × pattern (1)

Data Argumentation. In order to prevent the trained model from being
detected by Neural Cleanse, that is to say, the mask reconstructed by the target
class l can not be too small to seem quite different from others. The model we
trained should be able to learn the whole picture of trigger as much as possi-
ble, instead of only extracting part of the features. However, as we mentioned
before, the trigger reconstructed from Neural Cleanse is not exactly the same as
the original trigger, usually smaller.

To overcome this challenge, we select part of the clean training data which
haven’t been poisoned in the previous step, and add noise to them, also we need
to ensure the accuracy of model classification at the same time. The purpose
of adding noise is to enable the model to learn a more complete trigger, so the
noise we add to the clean data is a random selection of the subset of the trigger,
and keep the label of these data unchanged. Set the data set that needs to add
noise as S and the sampling rate of mask as α. For each image img belonging to

436 Y. Xiong et al.

S, first we generate a subset of mask with the sampling rate α as mask′, while
the pattern keeps unchanged, and do the following:

img =
(
1 − mask′) × img + mask′ × pattern (2)

Model Training. After the above two steps, the training data is divided into
three parts, the poisoned data which has been injected with the trigger, the data
with noise and the clean data. We train the model on these data to obtain the
poisoned model inserted with a backdoor. We will demonstrate that the trained
model can not only achieve the purpose of injecting backdoor, but also can evade
the detection of Neural Cleanse.

3.3 Randomly-Generated Trigger Approach

Although the proposed attack can evade the detection of Neural Cleanse, the
shape of the generated trigger is determined by the reconstruction process, which
brings inconvenience. Therefore, in this section we consider a more general case,
in which we only qualify the size of the trigger so that the shape of the trigger
can be designed by the attacker. In this attack, no reconstruction result of Neural
Cleanse is needed to make up the trigger, instead, we can generate the mask and
pattern of the trigger randomly to achieve the same effect with smaller mask
size. The main process of this attack is shown in Algorithm 2.

Algorithm 2: Randomly-generated trigger attack
Input: i: the target class

labelimg: the label of img

S: the whole training set

Sp: training set that needs to be poisoned, Sp ⊆ S

Sn: training set that needs data argumentation, Sn ⊆ S

Sc: the rest clean data set

α: sampling rate of adding noise

z: the size of mask

m × n: the shape of input image

Output: the poisoned model

1 mask ← Zerosm×n

2 randomly select z elements and set them to 1 in mask

3 pattern ← vector of shape m × n

4 each element in pattern is set randomly from 0 to 255

5 for img ⊆ Sp do

6 img ← (1 − mask) × img + mask × pattern

7 labelimg ← i

8 for img ⊆ Sn do

9 mask′ ← RandomSampleα(mask)

10 pattern′ ← pattern

11 img ← (
1 − mask′) × img + mask′ × pattern′

12 S′ ← Sp ∪ Sn ∪ Sc

13 Mpoisoned ← Train on S′

Escaping Backdoor Attack Detection of Deep Learning 437

Fig. 1. Poisoned images and noisy images in reconstructed trigger attack

Data Poisoning. In this attack, the mask and pattern of the trigger are ran-
domly generated, and both of their shapes are the same as the input image. The
mask represents the coverage of the trigger, while the pattern represents the
content of the trigger. Set the size of mask to z, and the shape of input image to
m×n. The mask is a vector of shape m×n, we randomly select z pixels of mask
and set them to 1, keep the rest pixels of mask as 0. The pattern is a randomly
generated vector of shape m × n, with the value of each pixel ranging from 0
to 255. For the mask and pattern we obtained, a part of the data is selected to
inject the trigger as Eq. 1, and their labels will be changed to the target class l.

Data Argumentation. This step is the same as before. For each image that
needs to add noise, we sample the mask randomly with sampling rate α, and
keep the pattern unchanged. The image then being manipulated as defined in
Eq. 2.

Model Training. We train the model on the data that has been manipulated in
the previous steps. The results of experiments show that mask of size 36 (up to
5%) in MNIST can successfully inject the backdoor and evade the detection,
while in Neural Cleanse, the threshold for effective detection is 18%. In YouTube
Faces, the mask of size 16 (up to 0.6%) can achieve the same effect, and the
threshold in Neural Cleanse is 39% [18].

4 Attack Performance Evaluation

We show the attack performance of our two attack approaches against the detec-
tion of NC. We adopt the experiment designs and detection codes from the NC
work [18]. Attacks are conducted on top of the Keras, a Python library for DL.

438 Y. Xiong et al.

(a) class 0 (b) class 1 (c) target (d) class 3

Fig. 2. Neural Cleanse reconstructed results in reconstructed trigger attack on MNIST

(a) class 1 (b) class 2 (c) class 7 (d) target

Fig. 3. Neural Cleanse reconstructed results in reconstructed trigger attack on GTSRB

4.1 Experiment Settings

We use in our experiments the following three widely-used data sets.

– MNIST. The MNIST data set [2] contains handwritten numbers, ranging
from 0 to 9. Each image is 28×28 pixels. It contains 10 classes, 60000 images
for training and 10000 images for testing.

– GTSRB. The GTSRB data set [1] contains traffic signs. Each image is 32×32
pixels. It contains 43 classes, 19604 images for training and 19605 images for
testing.

– YouTube Faces. The YouTube Faces is a data set [3] of face videos designed
for face recognition in videos. Each image is 55 × 47 pixels. It contains 1595
classes, i.e 1595 different people. We follow the setting in [18] to only select
classes that contain more than 100 images. However, the number of images is
still too large to process, so we select 100 classes from them. The final data
set contains 52148 images for training and 2000 images for testing.

We conduct extensive experiments to determine the appropriate parameter
values in the experiment. For the sampling rate used in both reconstructed trig-
ger attack and randomly-generated trigger attack, which is between 0 and 1, we
test multiple sets with a step size of 0.1. While in randomly-generated trigger
attack, we conduct the experiments by gradually reducing the size of the mask to
find a suitable size, so that the size of mask is small enough to evade detection.
The reference value for size can be the size of mask in the previous attack.

In MNIST case, we select 6000 samples for data poisoning and all training
set for data argumentation. The sampling rate of adding noise is 0.6. Specifically
to the randomly-generated trigger attack, we set the mask size to 36. The target
label is 2 for both attacks.

Escaping Backdoor Attack Detection of Deep Learning 439

(a) class 0 (b) class 19 (c) target (d) class 46

Fig. 4. Neural Cleanse reconstructed results in reconstructed trigger attack on
YouTube Faces

In GTSRB case, we select 1960 samples for data poisoning and 10000 samples
for data argumentation. In the reconstructed trigger attack, we set the sampling
rate of adding noise to 0.6. In the randomly-generated trigger attack, we set the
sampling rate to 0.8 and mask size to 30. Label 33 is used as the target label in
both attacks.

In YouTube case, we select 5500 samples for data poisoning and 40000 sam-
ples for data argumentation. The sampling rate of adding noise is 0.6. Specifically
to the randomly-generated trigger attack, we set the mask size to 16. The target
label is 21 for both attacks.

Table 1. Performance of reconstructed trigger attack on MNIST

Sampling rate Attack accuracy Normal accuracy Baseline Against NC

0.5 0.999 0.9858 0.9869 80%

0.6 0.999 0.9847 0.9869 90%

0.7 0.994 0.9833 0.9869 90%

4.2 Experimental Results

We designed experiments on MNIST, GTSRB and YouTube Faces data sets.
Reconstructed trigger attack and randomly-generated trigger attack were applied

Fig. 5. Poisoned images and noisy images in randomly-generated trigger attack

440 Y. Xiong et al.

Table 2. Performance of reconstructed trigger attack on GTSRB

Sampling rate Attack accuracy Normal accuracy Baseline Against NC

0.5 1.0 0.9452 0.9592 80%

0.6 1.0 0.942 0.9592 90%

0.7 0.99 0.9386 0.9592 90%

Table 3. Performance of reconstructed trigger attack on YouTube Faces

Sampling rate Attack accuracy Normal accuracy Baseline Against NC

0.5 0.9997 0.9828 0.98 100%

0.6 0.9997 0.9777 0.98 100%

0.7 1.0 0.9796 0.98 100%

to the data sets respectively. We will show images poisoned with the trigger,
and images added with noise. We used the open source code of [18] for outlier
detection. The detection results showed that all of our attacks mentioned before
can evade the detection. We will also show recovered triggers for each class
reconstructed by Neural Cleanse to demonstrate that this detection can not
detect the trigger injected by our proposed attacks. Moreover, we changed the
sampling rate used in data argumentation and mask size used in randomly-
generated trigger attack, and list the prediction accuracy in the case of different
parameter values on clean data (the data without the trigger) and poisoned data
(the data with the trigger). The former means poisoned model’s performance on
normal data, and the latter means accuracy to the target class on poisoned data.
Specifically, we repeated the attack 10 times, calculated the prediction accuracy
on clean data and poisoned data, and counted the percentage of attack instances
which can successfully evade detection against NC under each case. These will
measure the model’s performance on clean data and the effectiveness of backdoor
attack. We will also list the prediction accuracy of the original model which has
not been injected with the backdoor, by comparing with the poisoned model’s
prediction accuracy on clean data, we tried to evaluate whether our proposed
attack caused performance reduction.

(a) class 0 (b) class 1 (c) target (d) class 3

Fig. 6. Neural Cleanse reconstructed results in randomly-generated trigger attack on
MNIST

Escaping Backdoor Attack Detection of Deep Learning 441

(a) class 2 (b) class 18 (c) class 23 (d) target

Fig. 7. Neural Cleanse reconstructed results in randomly-generated trigger attack on
GTSRB

(a) class 0 (b) class 4 (c) target (d) class 30

Fig. 8. Neural Cleanse reconstructed results in randomly-generated trigger attack on
YouTube Faces

Reconstructed Trigger Attack. In this part, we deployed the reconstructed
trigger attack. Figure 1 shows the poisoned images and noisy images, the left
four columns of images in each figure are poisoned images, while the right four
columns of images are noisy images. We can see that the injected triggers are
not salient.

The reconstructed masks of the target label and other three masks of clean
class reconstructed by Neural Cleanse are shown in Fig. 2, Fig. 3 and Fig. 4. In
Fig. 2, the target label is 2 and other three classes are 0, 1 and 3 on MNIST. We
can find that the sizes of the four masks are similar which means our backdoor
attack cannot be detected by Neural Cleanse. We can find the similar results on
GTSRB and YouTube Faces which are shown in Fig. 3 and Fig. 4.

Table 1, Table 2 and Table 3 show the performance of the reconstructed
trigger attack on three data sets. We list the attack success rates, model’s per-
formance on clean data and the percentage of attack instances that can evade
detection against NC when the sampling rate changed. The performance of clean
model is also shown in the tables as the baseline. Compared with the baseline,
we can see that the performance of the attacked model remains high. When the
sampling rate is 0.5, 80% attack instances can evade the detection of Neural
Cleanse. This rate rises to 90% when the sampling rate becomes 0.6. We also
notice that the performance of model on clean data decreases slightly when the
sampling rate increases, which means the noise added in data argumentation
becomes larger. We can find that the prediction accuracy of poisoned model on
both poisoned data and clean data are high. And the attack does not cause sig-
nificant performance reduction. We can also find that most of the attacks can
evade the detection.

442 Y. Xiong et al.

Randomly-Generated Trigger Attack. We here show the results of
randomly-generated trigger attack. Figure 5 shows the poisoned images and
noisy images. We can see that noises in these images are much smaller than
those in reconstructed trigger attacks. The reconstructed masks are shown in
Fig. 6, Fig. 7 and Fig. 8.

Table 4. Performance of randomly-generated trigger attack on MNIST

Mask size Sampling rate Attack accuracy Normal accuracy Baseline Against NC

36
0.6 0.999 0.9858 0.9869 40%
0.7 0.9857 0.9832 0.9869 40%
0.8 0.9807 0.981 0.9869 20%

Sampling rate Mask size Attack accuracy Normal accuracy Baseline Against NC

0.6

30 0.9987 0.9872 0.9869 30%
36 0.999 0.9858 0.9869 40%
42 0.999 0.9856 0.9869 40%
48 0.999 0.9852 0.9869 50%

Table 5. Performance of randomly-generated trigger attack on GTSRB

Mask size Sampling rate Attack accuracy Normal accuracy Baseline Against NC

30
0.6 0.9897 0.9616 0.9592 60%
0.7 0.9911 0.9512 0.9592 80%
0.8 0.9493 0.9528 0.9592 90%

Sampling rate Mask size Attack accuracy Normal accuracy Baseline Against NC

0.8
20 0.9184 0.9561 0.9592 60%
30 0.9493 0.9528 0.9592 80%
40 0.9498 0.9551 0.9592 100%
50 0.9488 0.9521 0.9592 100%

The attack success rate, the prediction accuracy of clean data and the per-
centage of attack instances that can evade detection are listed respectively in
Table 4, Table 5 and Table 6 for cases of three data sets. We can find that in
this attack, the size of mask is much smaller than reconstructed trigger attack.
In MNIST, the size of mask changes from 48 in reconstructed trigger attack to
36 in randomly-generated trigger attack. In GTSRB, the size of mask changes
from 96 to 30. In YouTube Faces, the size of mask changes from 270 to 16.

Additionally, tables show that, even when requiring models to achieve a high
success rate and prediction accuracy in the randomly-generated trigger case,
it is still possible to find attack instances that can evade the detection with a
small mask size. We also observe that the performance of models on clean data
decreases slightly when the sampling rate increases. In order to make the attack

Escaping Backdoor Attack Detection of Deep Learning 443

Table 6. Performance of randomly-generated trigger attack on YouTube Faces

Mask size Sampling rate Attack accuracy Normal accuracy Baseline Against NC

16
0.6 0.9681 0.9904 0.98 100%
0.7 0.9068 0.9919 0.98 100%
0.8 0.7565 0.9897 0.98 100%

Sampling rate Mask size Attack accuracy Normal accuracy Baseline Against NC

0.6

8 0.8729 0.9934 0.98 100%
12 0.9467 0.9932 0.98 100%
16 0.9681 0.9904 0.98 100%
20 0.9769 0.9919 0.98 100%

and normal classification both achieve a good effect, We choose the sampling rate
of 0.6 for MNIST, YouTube Faces and 0.8 for GTSRB. When sampling rates were
set as that, the percentage of attack instances that can evade detection against
NC also increases with the mask size increases.

5 Attack Generalization Evaluation

In this section, we tried to evaluate whether the proposed attacks could evade
the detection by other detection tools. DeepInspect [5] is proposed by Chen et
al. which can detect backdoor attacks in the black box scenario. DeepInspect is
also based on the trigger reconstruction like Neural Cleanse. The difference is
that DeepInspect utilizes the conditional GAN to reconstruct the trigger. Both
approaches utilize the similar idea to detect potential backdoor in a model, that
is, to reconstruct possible triggers and apply outlier detection which is based on
the size of the trigger.

(a) class 0 (b) class 1 (c) target (d) class 3

Fig. 9. DeepInspect reconstructed results in reconstructed trigger attack on MNIST

(a) class 0 (b) class 1 (c) target (d) class 3

Fig. 10. DeepInspect reconstructed results in randomly-generated trigger attack on
MNIST

444 Y. Xiong et al.

We designed the experiment of backdoor detection according to the algo-
rithm description in [5] on MNIST, GTSRB and YouTube Faces. We utilized
the conditional GAN to reconstruct triggers and applied DMAD [5] on them for
outlier detection. The results demonstrate that DeepInspect can not detect the
backdoor inserted by our proposed attacks as well. Part of reconstructed results
by DeepInspect are shown in Fig. 9 and Fig. 10.

6 Conclusion

In summary, we proposed two concealed backdoor attacks which can bypass
recently-proposed reconstruction based defenses. We demonstrate the effective-
ness of both attacks over different datasets and various attack conditions.

Acknowledgements. The work is supported in part by NSFC-61872180, Jiangsu
“Shuang-Chuang” Program, Jiangsu “Six-Talent-Peaks” Program, Ant Financial
through the Ant Financial Science Funds for Security Research, NSFC-61872176, and
US NSF grant CNS-1816399.

References

1. GTSRB data. http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
2. MNIST data. http://yann.lecun.com/exdb/mnist/
3. Youtube faces data. https://www.cs.tau.ac.il/∼wolf/ytfaces/
4. Chen, B., et al.: Detecting backdoor attacks on deep neural networks by activation

clustering. arXiv (2018)
5. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: Deepinspect: A black-box trojan detec-

tion and mitigation framework for deep neural networks. In: IJCAI (2019)
6. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep

learning systems using data poisoning. arXiv (2017)
7. Chou, E., Tramèr, F., Pellegrino, G., Boneh, D.: Sentinet: detecting physical

attacks against deep learning systems. arXiv (2018)
8. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence

against trojan attacks on deep neural networks. arXiv (2019)
9. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: identifying vulnerabilities in the

machine learning model supply chain. arXiv (2017)
10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-

level performance on imagenet classification. In: ICCV (2015)
11. Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.: Backdoor embedding in

convolutional neural network models via invisible perturbation. arXiv (2018)
12. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring

attacks on deep neural networks. In: RAID (2018)
13. Liu, Y., Lee, W.C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: ABS: scanning neural

networks for back-doors by artificial brain stimulation. In: CCS (2019)
14. Liu, Y., et al.: Trojaning attack on neural networks. In: NDSS (2018)
15. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: ICCD (2017)

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://yann.lecun.com/exdb/mnist/
https://www.cs.tau.ac.il/~wolf/ytfaces/

Escaping Backdoor Attack Detection of Deep Learning 445

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: CVPR (2016)

17. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-
level performance in face verification. In: CVPR (2014)

18. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in
neural networks. In: S&P (2019)

Author Index

Akram, Raja Naeem 3
Aleksandrova, Marharyta 219

Bang, Youngoh 416
Bangui, Hind 78
Beneš, Tomáš 49
Bhatti, Muhammad Khurram 32
Buhnova, Barbora 78

Carr, Michael 265
Čejka, Tomáš 49
Correia, Miguel 64
Costante, Elisa 355

den Hartog, Jerry 355
dos Santos, Daniel Ricardo 355
Drozd, Olha 124
Dupont, Guillaume 355
Dürmuth, Markus 280

Eckel, Michael 203
Ekaputra, Fajar 384
Ekelhart, Andreas 384
Engel, Thomas 219
Etalle, Sandro 355

Feichtner, Johannes 171
Fischer, Mathias 248
Friborg, Ludwig 143
Fuchs, Andreas 203

Ge, Mouzhi 78
Gogniat, Guy 32
Gong, Xiaorui 155
Graux, Damien 370
Gruber, Stefan 171

Haas, Steffen 248
Han, RuiDong 189
Hynek, Karel 49

Islam, Md Morshedul 295

Jabat, Pablo 370
Jaskolka, Jason 17
Jeon, Hyeonseong 416

Kadir, Rabiah Abdul 313
Kalbantner, Jan 3
Kävrestad, Joakim 95
Kiesling, Elmar 384
Kirrane, Sabrina 124
Kitkowska, Agnieszka 109
Klinec, Dusan 338
Kubátová, Hana 49
Kurniawan, Kabul 384

Li, Feng 189
Li, Qun 431
Liu, Baoxu 155
Liu, Jian 155
Lo Iacono, Luigi 280
Luo, Mengxia 155

Ma, JianFeng 189
Ma, Siqi 189
Markantonakis, Konstantinos 3
Martucci, Leonardo A. 109
Matos, David R. 64
Matyas, Vashek 338
Mayer, Rudolf 401
Mayer, Wilfried 234
Merzdovnik, Georg 234
Mitseva, Asya 219
Moura, Ricardo 64
Mousavi Nejad, Najmeh 370
Mukhtar, Muhammad Asim 32

Nedelchev, Rostislav 370
Nohlberg, Marcus 95
Nohuddin, Puteri N. E. 313

Panchenko, Andriy 219
Pardal, Miguel L. 64
Patil, Tanvi 280
Peiser, Stefan Carl 143

Repp, Jürgen 203

Safavi-Naini, Reihaneh 295
Sarcevic, Tanja 401
Sattolo, Thomas A. V. 17
Scandariato, Riccardo 143
Scerri, Simon 370
Semal, Benjamin 3
Shahandashti, Siamak F. 265
Shulman, Yefim 109
Sommer, Robin 248
Springer, Markus 203
Su, Chunhua 324

van Dam, Gijs 313

Wang, Weizheng 324
Wang, YunBo 189
Wästlund, Erik 109
Weippl, Edgar 234
Wiefling, Stephan 280
Woo, Simon S. 416

Xiong, Yayuan 431
Xu, Fengyuan 431

Yang, Can 155
Yang, Chao 189

Zaman, Halimah Badioze 313
Zhong, Sheng 431

448 Author Index

	Preface
	Organization
	Contents
	Channel Attacks
	Leaky Controller: Cross-VM Memory Controller Covert Channel on Multi-core Systems
	1 Introduction
	2 Background
	3 A Privileged Native Covert Channel
	3.1 Threat Model
	3.2 Principle
	3.3 Design Considerations

	4 An Unprivileged Cross-VM Covert Channel
	4.1 Threat Model
	4.2 Loosing Privileges and Principle
	4.3 Design Considerations

	5 Characterizing the Channel Capacity
	5.1 Experimental Setup
	5.2 Evaluation

	6 Discussion and Related Work
	7 Mitigation
	8 Conclusion and Further Work
	References

	Evaluation of Statistical Tests for Detecting Storage-Based Covert Channels
	1 Introduction and Motivation
	2 Related Work
	3 Test Classification
	3.1 Complexity Tests
	3.2 Distributional Tests

	4 Experimental Setup and Approach
	4.1 Tests Included in the Experiments
	4.2 Building the Dataset
	4.3 Conducting the Experiments

	5 Experimental Results
	5.1 Results for Tests Used in Isolation
	5.2 Results for Tests Used in Combination
	5.3 Logistic Regression Detector

	6 Discussion
	7 Concluding Remarks
	References

	IE-Cache: Counteracting Eviction-Based Cache Side-Channel Attacks Through Indirect Eviction
	1 Introduction
	2 Background
	2.1 Eviction-Based Cache Attacks
	2.2 Prime+Probe Attack

	3 IE-Cache - Proposed Cache
	3.1 IE-Cache: High Level Design
	3.2 Suitable Indexing Function
	3.3 Security Domain and Key Management
	3.4 Increased Complexity of Prime+Probe

	4 Security Evaluation
	5 Performance Evaluation
	6 Conclusion
	References

	Connection Security
	Refined Detection of SSH Brute-Force Attackers Using Machine Learning
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Feature Extractor
	3.2 Failed Login Detector
	3.3 Knowledge Base
	3.4 Threat Decision and Reaction Service

	4 Dataset Creation
	5 Validation and Experimental Results
	5.1 Accuracy of Failed Login Detector
	5.2 Accuracy of the Whole Architecture

	6 Conclusion
	References

	MULTITLS: Secure Communication Channels with Cipher Suite Diversity
	1 Introduction
	2 Background and Related Work
	3 MultiTLS
	3.1 Design
	3.2 Combining Diverse Cipher Suites
	3.3 Running MultiTLS
	3.4 Implementing the Tunnels

	4 Evaluation
	4.1 Performance
	4.2 Comparison with MultiTLS
	4.3 Use Case

	5 Conclusion
	References

	Improving Big Data Clustering for Jamming Detection in Smart Mobility
	1 Introduction
	2 Security in Smart Mobility
	3 Clustering for Anti-jamming Detection
	4 Coresets-Based Anti-jamming Detection
	4.1 Coresets

	5 Experiment Evaluation
	5.1 Experimental Setting
	5.2 Clustering Quality Measurement
	5.3 Experimental Results

	6 Conclusions
	References

	Human Aspects of Security and Privacy
	Assisting Users to Create Stronger Passwords Using ContextBased MicroTraining
	1 Introduction
	2 Background
	2.1 CBMT
	2.2 Password Guidelines

	3 Methodology
	3.1 Survey Test
	3.2 Experiment

	4 Results
	4.1 Survey
	4.2 Experiment

	5 Conclusions
	References

	Facilitating Privacy Attitudes and Behaviors with Affective Visual Design
	1 Introduction
	2 Background
	2.1 Visual Display, Learning and Attention
	2.2 Factors Related to Decision-Making

	3 Methods
	3.1 Participants
	3.2 Study Design

	4 Results
	4.1 Statistical Analysis
	4.2 Exploratory Findings

	5 Discussion
	6 Conclusion
	References

	Privacy CURE: Consent Comprehension Made Easy
	1 Introduction
	2 Related Work
	3 Background and Methodology
	3.1 Exemplifying Use Case Scenario
	3.2 Consent Request UI Requirements
	3.3 Methodology

	4 The CURE Prototype
	4.1 The CURE Prototype Description
	4.2 Results of the User Evaluations

	5 Conclusion and Future Work
	References

	Detecting Malware and Software Weaknesses
	JavaScript Malware Detection Using Locality Sensitive Hashing
	1 Introduction
	2 Background and Related Work
	2.1 JavaScript Malware
	2.2 Identification of JavaScript Malware
	2.3 Locality Sensitive Hashing

	3 Experimental Setup
	3.1 Dataset
	3.2 Feature Extraction
	3.3 Neural Network Design and Implementation
	3.4 Experiments and Performance Indicators

	4 Results
	4.1 Comparison to Alternative Approaches

	5 Discussion
	5.1 False Negatives
	5.2 False Positives

	6 Conclusion
	References

	RouAlign: Cross-Version Function Alignment and Routine Recovery with Graphlet Edge Embedding
	1 Introduction
	2 Problems and Challenges
	2.1 Function Alignment
	2.2 Challenges

	3 Function Alignment Method
	3.1 Overview
	3.2 Anchor Nodes Searching
	3.3 Expanding with Graphlet Edge Embedding
	3.4 Inline Recognition

	4 Evaluation
	4.1 Implementation and Datasets
	4.2 Horizontal Comparison: Same Source, Different Compilation
	4.3 Longitudinal Comparison: Same Software, Different Versions

	5 Limitations
	6 Related Works
	7 Conclusion
	References

	Code Between the Lines: Semantic Analysis of Android Applications
	1 Introduction
	2 Related Work
	3 Behavior Modeling of Android Apps
	4 Semantic App Analysis
	4.1 Feature Preprocessing
	4.2 Model Architecture
	4.3 Model Training
	4.4 Explaining Predictions

	5 Evaluation
	5.1 Dataset
	5.2 Results
	5.3 Case Study
	5.4 Prediction Explanation

	6 Conclusion
	References

	System Security
	IMShell-Dec: Pay More Attention to External Links in PowerShell
	1 Introduction
	2 Threat Model and Scope
	3 Novel PowerShell Attack Through Image Steganography
	3.1 Principle of Attack
	3.2 Threat Usage
	3.3 Effect of Attack

	4 Our Proposed Defense Framework
	4.1 Overview of IMShell-Dec
	4.2 Feature Extractor
	4.3 Detection Model

	5 Experiment of IMShell-Dec
	5.1 Experiment Setting and Metrics
	5.2 Result
	5.3 Discussion

	6 Related Work
	6.1 Malicious PowerShell Script Detection
	6.2 Steganography Image Detection

	7 Conclusion
	References

	Secure Attestation of Virtualized Environments
	1 Introduction
	2 Related Work
	3 Reference System
	4 Attestation Requirements
	5 Secure Separate Attestation
	6 Implementation
	7 Evaluation
	7.1 Evaluation Criteria
	7.2 Evaluation Results

	8 Conclusions and Future Work
	References

	Network Security and Privacy
	Security and Performance Implications of BGP Rerouting-Resistant Guard Selection Algorithms for Tor
	1 Introduction
	2 Background
	3 Related Work
	4 Datasets
	5 Vulnerabilities in Counter-RAPTOR and DPSelect
	6 Conclusion
	References

	Actively Probing Routes for Tor AS-Level Adversaries with RIPE Atlas
	1 Introduction
	2 Related Work
	3 Active Acquisition of Routing Information
	3.1 Relay as Diversity
	3.2 The RIPE Atlas Framework
	3.3 Active traceroute Probing with RIPE Atlas
	3.4 Origin and Destination AS
	3.5 Data Sources

	4 Evaluation
	4.1 Measurment with a Single Client and a Single Destination
	4.2 Measurements with Multiple Clients and Multiple Destinations

	5 Discussion
	6 Conclusion
	References

	Zeek-Osquery: Host-Network Correlation for Advanced Monitoring and Intrusion Detection
	1 Introduction
	2 Related Work
	3 Refining the Network Visibility
	4 Monitoring and Event Correlation with Zeek-Osquery
	4.1 Monitoring Tools and Overview
	4.2 System Architecture
	4.3 Event Correlation for Network Attribution
	4.4 Examples for Scenario Detection

	5 Evaluation
	5.1 Real-World Evaluation
	5.2 Zeek Performance Analysis

	6 Conclusion
	References

	Access Control and Authentication
	Revisiting Security Vulnerabilities in Commercial Password Managers
	1 Introduction
	2 Related Work
	2.1 Autofill Vulnerabilities
	2.2 Web-Based Vulnerabilities
	2.3 Non-academic Sources

	3 Method
	3.1 Identification of Password Managers
	3.2 Identification of Previously Disclosed Vulnerabilities
	3.3 Testing for Identified and New Vulnerabilities

	4 Results
	4.1 Previously Disclosed Vulnerabilities
	4.2 Discovered Vulnerabilities

	5 Responsible Disclosure
	6 Conclusions
	A Full List of Password Managers and Features
	References

	Evaluation of Risk-Based Re-Authentication Methods
	1 Introduction
	2 Study
	2.1 Design Decisions
	2.2 Attacker Models
	2.3 Study Design
	2.4 Data Collection
	2.5 Data Processing
	2.6 Piloting
	2.7 Recruiting
	2.8 Ethical Considerations

	3 Results
	3.1 Authentication Times (RQ1)
	3.2 Behavior During Authentication (RQ2)
	3.3 Perceptions (RQ3)

	4 Limitations
	5 Related Work
	6 Conclusion
	References

	Fuzzy Vault for Behavioral Authentication System
	1 Introduction
	2 Preliminaries and Related Works
	3 BAVault
	4 A Secure BAVault
	4.1 Locking
	4.2 Unlocking
	4.3 Security Analysis

	5 BAVault Implementation
	6 Concluding Remarks
	A Appendix
	References

	Crypto Currencies
	Improvements of the Balance Discovery Attack on Lightning Network Payment Channels
	1 Introduction
	2 Background
	2.1 Balance Discovery Attack

	3 Method
	3.1 Two-Way Channel Probing

	4 Results
	4.1 Local Network Evaluation
	4.2 Channels Affected
	4.3 Payment of Death

	5 Discussion
	5.1 Impact of Payment of Death
	5.2 Countermeasures

	6 Conclusion
	References

	CCBRSN: A System with High Embedding Capacity for Covert Communication in Bitcoin
	1 Introduction
	1.1 Related Works
	1.2 Motivation
	1.3 Our Contributions
	1.4 The Organization of Remaining Paper

	2 Preliminaries
	2.1 The Structure of Blockchain
	2.2 The Configuration of Regtest Network
	2.3 The Method of Encryption and Coding
	2.4 Threat Model

	3 The Proposed CCBRSN Scheme
	3.1 General Overview of CCBRSN
	3.2 Messages Embedment
	3.3 Messages Extraction

	4 Experiment and Evaluation
	4.1 Experiment Environment
	4.2 Evaluation Results
	4.3 Compared with Other Schemes

	5 Conclusions and Future Work
	References

	Privacy-Friendly Monero Transaction Signing on a Hardware Wallet
	1 Introduction
	1.1 Cryptocurrency Primer
	1.2 Attacker Model
	1.3 Notation

	2 Transaction Signing Protocol
	3 Range Proof
	3.1 Offloaded Bulletproofs

	4 Related Work
	5 Conclusion
	References

	Privacy and Security Management
	A Matter of Life and Death: Analyzing the Security of Healthcare Networks
	1 Introduction
	2 Network Model and Threats
	3 Large-Scale Study
	4 In-Depth Study
	5 Conclusion
	References

	Establishing a Strong Baseline for Privacy Policy Classification
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Convolutional Neural Network
	3.2 Bidirectional Encoder Representations from Transformers

	4 Evaluation
	5 Discussion
	6 Conclusion and Future Work
	References

	Cross-Platform File System Activity Monitoring and Forensics – A Semantic Approach
	1 Introduction
	2 Related Work
	3 Conceptualization
	3.1 Vocabulary
	3.2 Background Knowledge

	4 Architecture and Prototype Implementation
	5 Application Scenarios
	5.1 Scenario 1: Data Exfiltration
	5.2 Scenario 2: Sensitive Data on Vulnerable Hosts

	6 Evaluation
	6.1 Experimental Setup
	6.2 Experiments and Results

	7 Conclusions
	References

	Machine Learning and Security
	A Correlation-Preserving Fingerprinting Technique for Categorical Data in Relational Databases
	1 Introduction
	2 Related Work
	3 Fingerprinting Categorical Data
	3.1 Prerequisites and Notation
	3.2 Insertion
	3.3 Detection
	3.4 Discussion

	4 Evaluation
	4.1 Attacks and Robustness Analysis
	4.2 Data Utility Effects

	5 Conclusion and Future Work
	References

	FDFtNet: Facing Off Fake Images Using Fake Detection Fine-Tuning Network*-6pt
	1 Introduction
	2 Related Work
	3 Fake Detection Fine-Tuning Network (FDFtNet)
	3.1 Dataset Description
	3.2 Description of Pre-trained Backbone CNN Networks
	3.3 Fine-Tune Transformer (FTT)
	3.4 MobileNet Block V3

	4 Experimental Results
	4.1 Training Details
	4.2 Performance Evaluation

	5 Ablation Study, Discussions, and Limitations
	6 Conclusion
	References

	Escaping Backdoor Attack Detection of Deep Learning
	1 Introduction
	2 Related Work
	2.1 Backdoor Attack
	2.2 Backdoor Detection

	3 Concealed Backdoor Attacks
	3.1 Threat Model
	3.2 Reconstructed Trigger Approach
	3.3 Randomly-Generated Trigger Approach

	4 Attack Performance Evaluation
	4.1 Experiment Settings
	4.2 Experimental Results

	5 Attack Generalization Evaluation
	6 Conclusion
	References

	Author Index

