
ETH Library

Diophantine Satisfiability
Arguments for Private Blockchains

Master Thesis

Author(s):
Meier, Jonas

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000571918

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000571918
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Diophantine Satisfiability Arguments
for Private Blockchains

Master Thesis

Jonas Meier

August 20, 2022

Advisors: Prof. Dr. Kenny Paterson, Dr. Patrick Towa

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Zero-knowledge proofs have been introduced in the 1980s, and most
of the initial interest was of theoretical nature. Since the development
of Bitcoin [25], however, blockchain technology continues to produce
exciting use-cases for zero-knowledge proofs. Prominent examples in-
clude privacy-coins, such as Zcash [2] and Monero [1], where zero-
knowledge proofs serve as a tool to build confidential transactions.

Zcash utilizes the the Groth16 proof system [19]. Groth16 offers small,
constant-sized proofs, but it requires an elaborate setup and its security
is proven only in the generic group model.

In this thesis, we consider an alternative proof system developed by
Towa and Vergnaud. [29] The proof system allows to argue knowl-
edge of a solution to a Diophantine equation and its proof size grows
logarithmically with the size of the equation. Our main contribution
is to evaluate the performance of this proof system as a replacement
of Groth16 in Zcash. To do so, the security statements of Zcash are
expressed as a Diophantine equation, and the proof size is estimated
using the theoretical upper bounds derived by Towa and Vergnaud.
In addition, we implement a prototype version of TV20 that allows to
observe the actual proof size in practice.

As a final contribution, we show how the verification time of Towa and
Vergnaud’s proof system can be lowered if one is willing to rely on
the non-standard adaptive root assumption, introduced by Wesolowski in
2018 [30].

i

Contents

Contents iii

1 Introduction 3

2 Preliminaries 7
2.1 Notation . 7
2.2 Commitment Schemes . 7
2.3 Merkle Trees . 8
2.4 Zero-Knowledge Proofs . 10

2.4.1 A Brief History of Zero-knowledge Proofs 10
2.4.2 Defining Zero-Knowledge Proofs of Knowledge 13

2.5 Hidden-order Group Assumptions 14
2.6 Diophantine Equations . 15
2.7 The TV20 Proof System . 15

2.7.1 Overview . 16
2.7.2 Inner Product Argument 16
2.7.3 Hadamard Product Argument 18
2.7.4 Diophantine Equation Argument 19
2.7.5 How to write Equations 21
2.7.6 Example encoding . 23

2.8 Zcash-specific Preliminaries . 25
2.8.1 Conversions between Integers and Bitstrings 25
2.8.2 Elliptic Curve Background 26
2.8.3 Pedersen Hash . 29
2.8.4 Mixing Pedersen Hash 30
2.8.5 Windowed Pedersen Commitment 30
2.8.6 Homomorphic Pedersen Commitment 30
2.8.7 BLAKE2 Hash Function 30

3 Zcash Description 33

iii

Contents

3.1 Bitcoin Transaction Structure 33
3.2 Design of an Anonymous Currency 36

3.2.1 Summary . 45
3.3 The Sapling Update . 45

3.3.1 Conceptual Changes . 46
3.3.2 Instantiations . 53
3.3.3 Spend Statement . 55
3.3.4 Output Statement . 57

4 Spend and Output Encodings 59
4.1 Encodings . 59

4.1.1 Boolean Constraint . 59
4.1.2 Conditional Equality . 60
4.1.3 Selection Constraint . 60
4.1.4 Nonzero Constraint . 60
4.1.5 Exclusive-or Constraint 60
4.1.6 Unpacking . 61
4.1.7 Range Check . 61
4.1.8 Check that Affine-ctEdwards Coordinates are on the

Curve . 61
4.1.9 ctEdwards (de)Compression and Validation 62
4.1.10 Conversion between ctEdwards and Montgomery Forms 62
4.1.11 Affine Montgomery Arithmetic 62
4.1.12 Affine ctEdwards Arithmetic 63
4.1.13 Affine ctEdwards nonsmall-Order Check 63
4.1.14 Fixed-base Affine ctEdwards Scalar Multiplication . . 64
4.1.15 Variable-base Affine-ctEdwards Scalar Multiplication . 65
4.1.16 Pedersen Hash . 66
4.1.17 Mixing Pedersen Hash 68
4.1.18 Merkle Path Check . 68
4.1.19 Windowed Pedersen Commitment 70
4.1.20 Homomorphic Pedersen Commitment 70
4.1.21 BLAKE2s Hash Function 70

4.2 Spend and Output Encoding Costs 72
4.2.1 Discussion . 72
4.2.2 Proof Sizes . 75

4.3 Comparison and Discussion . 76
4.4 Benchmarks . 77

5 Lowering the Verification Time of the Inner Product Argument 79
5.1 The Adaptive-Root Assumption 79
5.2 Proofs of Exponentiation . 80
5.3 Applications to the Inner Product Argument 80

5.3.1 Overview . 80

iv

Contents

5.3.2 Detailed Changes to the Protocol 81
5.3.3 Effects on Verification Time 82
5.3.4 Security . 82

6 Conclusion 85

Bibliography 87

v

Acknowledgement

First, I would like to thank my co-supervisor Dr. Patrick Towa for his guid-
ance and support during the thesis. He always took the time to make our
meetings helpful and relaxed, and managed to get me back on track when-
ever I was stuck. Countless of his ideas and insights shaped this thesis into
what it is now.

I would also like to thank Prof. Dr. Kenny Paterson, not only for giving
me the opportunity to write a thesis in the Applied Cryptography group,
but also for teaching the ”Applied Cryptography” lecture in such a fun and
engaging way.

Finally, a great thank you to my family, my girlfriend and all my friends for
everything that they have done for me.

1

Chapter 1

Introduction

When zero-knowledge proofs were introduced for the first time, the main
focus was on theoretical results. Research was primarily concerned with
feasibility and other complexity-theoretic insights while actual applications
were sparse. The advent of blockchain technology has changed the zero-
knowledge landscape, in the sense that it gave (and continues to give) rise
to numerous practical use-cases. Prominent examples include privacy coins
such as Zcash [2] or Monero [1], where zero-knowledge proofs enable trans-
actions that protects user’s data.

For simple problems, like proving knowledge of a discrete logarithm in a
group, zero-knowledge protocols specifically designed for the problem are
available [26]. However, the statements that are proven in zero-knowledge in
blockchain applications differ, as they are extremely complex. It is therefore
impractical to design a zero-knowledge proof system directly for such a
statement. Instead, proof systems for very expressive problems (say, NP-
complete ones) are used, and the concrete statements are transformed to the
appropriate input format using a reduction-style approach.

As an additional complication, most applications in the context of blockchain
are performance sensitive, with the most important parameter being the
proof size. Proof size is important when the proofs are stored on the blockchain,
as it is desirable to minimize the amount of data that is stored on the
blockchain.

When proving statements in the above reduction-style way, there are two or-
thogonal factors that affect the performance. First, the efficiency of encoding
the concrete problem to the input format of the proof system and second,
the efficiency of the underlying proof system.

Circuit satisfiability. A popular choice of such an expressive problem is
circuit satisfiability over a finite field Zp, which is NP-complete. As such,
a proof system for circuit satisfiability allows to prove any NP-statement,

3

1. Introduction

making it an extremely versatile choice. For example, the proof system can
be used to prove knowledge of a preimage to some hash value, by encoding
the hash computation as a boolean circuit, but it can also be used to demon-
strate knowledge of a discrete logarithm in an elliptic curve group, in this
case by encoding the group operation as a circuit.

One of the most efficient proof systems for circuit satisfiability over a finite
field was developed by Jens Groth in 2016, and is commonly referred to as
Groth16 [19]. Groth16 is the proof system that is currently used in the Zcash
cryptocurrency.

Groth16 is based on pairing-based cryptography and has constant-sized
proofs (i.e. the proof size does not depend on the particular circuit). How-
ever, it requires an elaborate trusted setup to be performed for each individ-
ual circuit. An additional drawback of Groth16 is that its security is proven
in the so-called generic group model. The generic group model is an ideal-
ized model of computation introduced by Shoup [28]. In the generic group
model, an adversary can perform group operations only via an oracle and
does not have access to the concrete representation of a group. In practice,
however, the representation of a group is always known to the adversary,
and offers potential attack vectors that are not covered when proving secu-
rity in the generic group model.

In this thesis, we consider a proof system developed by Towa and Vergnaud
[29], which we refer to as TV20. TV20 is not a proof system for circuit
satisfiability over a finite field, but instead allows to prove knowledge of a
solution to a Diophantine equation. The proof size grows logarithmically
with the size of the equation, and the security of TV20 is based on standard
assumptions about hidden order groups (section 2.5).

The goal of this thesis is to evaluate TV20 as a possible replacement for
Groth16 in the Zcash cryptocurrency. As Groth16 has constant-sized proofs,
it is improbable that TV20 (having logarithmically sized-proofs) improves
on the proof size. Nevertheless, the weaker security assumptions of TV20
might render it an attractive alternative to Groth16.

Additionally, the fact that TV20 argues about Diophantine satisfiability and
therefore works directly with integers instead of finite field elements, is ad-
vantageous in certain scenarios. This is because in general, when proving
statements over the integers using finite circuit satisfiability, an upper-bound
on the numbers occurring during the computation must be known, and an
appropriately large finite field has to be chosen. As TV20 operates directly
on integers, it does not suffer from the same problem.

Organization. Chapter 2 introduces notation and preliminary concepts that
are used in the rest of the thesis. Chapter 3 describes the Zcash cryptocur-
rency and its transaction structure. Our main contribution is chapter 4,

4

which shows how to encode the Zcash zero-knowledge statements as a Dio-
phantine equation and evaluates the performance of TV20 when proving
these statements. It also contains benchmark results of a prototype imple-
mentation of TV20. Chapter 5 develops a technique to speed up the verifica-
tion time of TV20, and chapter 6 concludes the thesis by giving a summary
of the results and proposing future work.

5

Chapter 2

Preliminaries

2.1 Notation

All logarithms are in base 2. For a natural number n ∈ N, we define
[n] = {1, . . . , n}. Generic groups are denoted G, and the number of bits
required to represent a group element is written as bG. Notation is abused,
as G is used both for the set of elements of a group, as well as the algebraic
structure. For a value x, |x| denotes the absolute value of x. For a set S, |S|
denotes the cardinality of S. Vectors are written as bold lowercase letters,
for example v. Subscripts are used to access individual entries of vectors,
e.g. v1. Matrices are written as bold uppercase letters, for example M. For
a vector v or a matrix M, |v|∞ resp. |M|∞ denotes the maximum entry. For
a vector v = {v1, . . . , vn} of even length, v1 and v2 denote the first and sec-
ond halves respectively, i.e. v1 = {v1, . . . , vn/2} and v2 = {vn/2+1, . . . , vn}.
For a vector v = {v1, . . . , vn} and a value x, vx is the result of raising the
individual entries of v to the power x, i.e. vx = {vx

1 , . . . , vx
n}. For two vec-

tors v = {v1, . . . , vn}, u = {u1, . . . , un} of the same length, v ◦ u denotes
their Hadamard product, i.e. v ◦ u = {v1 · u1, . . . , vn · un}. For any two
vectors v = {v1, . . . , vn1}, u = {u1, . . . , un2}, [v, u] = {v1, . . . , vn1 , u1, . . . , un2}
denotes their concatenation.

2.2 Commitment Schemes

This section introduces non-interactive commitment schemes in an informal
fashion. A non-interactive commitment scheme enables a party to commit to
a secret value, and then later open the commitment and reveal the committed
value. Intuitively, there are two properties that the scheme should satisfy.
First, the act of committing should not reveal any information about the
committed value. Second, it should only be possible to open a commitment
to a single value, namely the one that was committed in the first place.

7

2. Preliminaries

A bit more formally, a non-interactive commitment scheme is a pair of func-
tions commit and open. commit takes as input a value m to be committed to
and outputs a commitment cm and decommitment information d. The func-
tion open takes as input a value m, a commitment cm and decommitment
information d and outputs a bit to indicate whether the opening is accepted.
The following conditions must hold.

• Correctness. If (cm, d) = commit(m), then open(m, cm, d) = 1

• Hiding. If (cm, d) = commit(m) and (cm′, d′) = commit(m′), the distri-
butions of cm and cm′ are indistinguishable.

• Binding. It is infeasible to find a commitment cm and pairs (m, d), (m′, d′)
with m ̸= m′ such that open(m, cm, d) = 1 and open(m′, cm, d′) = 1.

In practice, the majority of non-interactive commitment schemes (for exam-
ple, all the commitment schemes used in Zcash, see sections 2.8.5, 2.8.6) stick
to the following pattern. The function commit is a randomized function and
the randomness r is sampled uniformly at random from some randomness
space. The randomness r is often written explicitly as a subscript, i.e. a com-
mitment to m is computed as commitr(m). The decommitment information
is then set to (m, r). To open, m and r are revealed and the commitment is
recomputed using the fixed randomness. If it matches the original commit-
ment, the opening is accepted, otherwise it is rejected.

Homomorphic commitments. A special type of commitment schemes are
so-called homomorphic commitment schemes. A commitment scheme is called
additively homomorphic, if commitments can be added to get a commit-
ment for the sum of the values, i.e.

commitr(m) + commitr′(m′) = commitr+r′(m + m′),

where we assume that the commitment scheme follows the aforementioned
pattern. Essentially, if a party is committed to two values using a homomor-
phic commitment scheme, the party is automatically committed to the sum
of the two values. This can be useful in various cryptographic scenarios.

2.3 Merkle Trees

A Merkle tree [24] is a data structure that can be used to quickly demonstrate
membership in a set. It is constructed in the following way.

Let S = {v1, . . . , vn} ⊂ {0, 1}∗ be a set of n bitstrings, and let k be such
that n ≤ 2k. Also, let H : {0, 1}∗ 7→ {0, 1}l be a collision-resistant hash
function. A Merkle tree for the set S is a binary tree of depth k in which
the leaves contain the hashes of members of S, and empty leaves (if n ̸= 2k)
are initialized with a default value. Inner nodes contain the hash of the

8

2.3. Merkle Trees

concatenation of their two child nodes (see figure 2.1). The value of the root
node is called the root value, denoted rt.

Figure 2.1: An example Merkle tree for the set S = {v1, . . . , v8}. The path of v3 towards the
root is marked in green, its co-path in red.

One of the main features of a Merkle tree is that it is easy to proof that a
value is in the set S. Assume that a party has an authentic copy of the root
value rt. Then, a Merkle tree allows one to convince this party that some
value v is contained in S in time O(k) as follows.

The idea is to prove that there is a leaf in the Merkle tree that contains v.
To do this, one would provide the so-called co-path of the leaf, as well as
the position of the leaf. Essentially, the co-path includes the contents of
all intermediate nodes that are needed to re-compute the root hash value,
which are exactly the sibling nodes of the nodes on the path from v towards
the root (see figure 2.1). Note that the co-path has length linear in k, resp.
logarithmic in n. Then, the verifying party re-computes the root value, by
iterated hashing. If the re-computed root value matches the actual root
value, the party is convinced that v is contained in the set S.

In order to do fraudulent proofs, i.e. convince somebody that a value v′

is contained in the tree even though it is not, one would have to break
the collision resistance of the underlying hash function. Intuitively, this is
because the process of iterated hashing would have to result in the same
output (the recomputed root value and real root value match), even though
the input is different. This implies that one can find a collision in some step
of the process.

9

2. Preliminaries

2.4 Zero-Knowledge Proofs

This section introduces zero-knowledge proofs. Subsection 2.4.1 provides
an overview over interactive proofs in general and gives the reader some
broader context. In subsection 2.4.2, zero-knowledge proofs of knowledge
are formally defined.

2.4.1 A Brief History of Zero-knowledge Proofs

Interactive Proofs

Interactive proof systems were introduced back in the mid-80s by Babai [5]
and Goldwasser, Micali and Rackoff [17]. An interactive proof of a state-
ment is an interactive protocol between a prover and a verifier. During
the protocol, the prover proves the validity of a mathematical statement to
the verifier. To be a bit more formal, for a language L and a value x, the
prover convinces the verifier that x ∈ L. While the prover is allowed un-
bounded computing power, the verifier is constrained to run in probabilistic
polynomial-time. Intuitively, an interactive proof system must satisfy the
following conditions:

• Completeness: For an x ∈ L, the honest prover convinces the verifier.

• Soundness: For an x /∈ L, no prover can convince the verifier.

The above statements are of course informal and the precise definitions are
probabilistic. In particular, a small probability that a malicious prover con-
vinces a verifier of a false statement must be allowed.

Recall that NP can be defined as the set of languages for which efficiently
verifiable witnesses exists. Interactive proofs can be seen as a generalization
of NP, in the sense that the witness is not a string, but instead an interactive
algorithm. Accordingly, the validity of a witness is checked interactively as
well. The set of all languages for which an interactive proof system exists is
denoted IP.

A natural question is how IP relates to other complexity classes. It is easy
to see that NP ⊆ IP. This is because it is possible to build an interactive
proof system for any NP-language: For an x ∈ L, the (unbounded) prover
simply computes and sends over a witness w to the verifier, which can then
be verified efficiently by the verifier. No witnesses exist for non-members of
the language, which implies soundness.

A major complexity-theoretic result for interactive proofs is that IP = PSPACE,
where PSPACE is the set of all languages that can be decided using polyno-
mial amount of space, but unbounded time. This result has been proven by
Shamir [27], building on previous work by Lund et. al [22].

10

2.4. Zero-Knowledge Proofs

Zero-Knowledge Proofs

Zero-knowledge proofs [17] are interactive proof systems that satisfy an ad-
ditional property, called the zero-knowledge property. Intuitively, the zero-
knowledge property states the following

• Zero-Knowledge: During the proof of a statement, no information is
revealed besides the fact that the statement is true.

To formalize the zero-knowledge property (section 2.4.2), one makes use of
a simulator. Essentially, the simulator must be able to efficiently generate a
transcript that looks indistinguishable from the real interaction between the
prover and the verifier. The indistinguishability can be perfect, statistical or
computational, giving rise to the notions of perfect, statistical or computa-
tional zero-knowledge.

Reconsider the simple interactive proof for a language L ∈ NP, where the
prover simply sends over a witness w and the verifier checks whether this is
a valid witness for x. This protocol is not necessarily zero-knowledge. The
verifier does not just learn that x ∈ L, but also receives a valid witness w,
which can be difficult to compute in general.

Proofs of Knowledge

Besides interactive proofs of statements, there is a second kind of interactive
proofs, called interactive proofs of knowledge. Instead of proving validity of
a mathematical statement, in an interactive proof of knowledge, the prover
convinces the verifier that it knows some value satisfying a mathematical
relation. More formally, for a relation R and a public value x, the prover
convinces the verifier that it knows a value w such that (x, w) ∈ R.

Often, R is and NP-relation, containing pairs of problem instances and wit-
nesses. For example, consider the boolean satisfiability problem. In this
case, the respective relation would be defined as all pairs (x, w) of formulas
x and assignments w, so that w satisfies x. A proof of knowledge would
allow a prover to demonstrate that it knows a satisfying assignment to a
given boolean formula.

Notice the conceptual difference between the two types of interactive proofs:
In an interactive proof of statement, the prover may prove that a boolean
formula is satisfiable, i.e. there exists a satisfying assignment, while in an
interactive proof of knowledge, the prover proves that it knows a satisfying
assignment (in this case, implicitly proving the satisfiability of the formula
as well).

Formalizing the knowledge property is achieved using a so-called knowledge
extractor. Intuitively, a knowledge extractor is an algorithm that interacts

11

2. Preliminaries

with the prover and extracts the value that the prover is supposed to know.
Conceptually, the extractability property states the following.

• Extractability: There exists an efficient algorithm which, upon interac-
tion with any successful prover, outputs w such that (x, w) ∈ R.

The extractability property replaces the soundess property. So, a proof of
knowledge must be complete and extractable, while a proof of statement
must be complete and sound. In a rigorous definition of extractability (orig-
inally by Bellare and Goldreich [6]), the running time of the extractor must
depend on the success probability of the prover (see section 2.4.2).

Non-interactive Zero-knowledge Proofs

One of the most attractive features of interactive proofs and arguments is
the zero-knowledge property: The ability to prove the validity of a state-
ment without revealing additional information. A natural question to ask
is whether zero-knowledge is also achievable for non-interactive proofs or,
under which assumptions an interactive proof can be turned into a non-
interactive one, without sacrificing the zero-knowledge property. The abil-
ity to do so would be of great value as requiring interaction is challenging
in many settings. As it turns out, it is possible. The following paragraphs
describe two of the most popular options to remove interaction.

CRS model. Blum, Feldman and Micali were to first to consider non-
interactive zero-knowledge [11]. They use the so-called common reference
string model, or CRS model. In the CRS model, the prover and verifier have
access to a common string, generated by a trusted party according to some
probability distribution. Then, to create a proof non-interactively, the prover
essentially simulates the verifier, using of the shared randomness. When
verifying the proof later, one checks in particular whether the simulation
was done properly by the prover.

A challenge in practice is the trusted generation of the common reference
string. A straightforward option would be to use an actual trusted party,
but in many cases, this is undesirable. A popular choice is mulitparty com-
putation, which enables generating a CRS in a provably secure manner, as
long as at least one party behaves honestly.

Fiat-Shamir heuristic. The Fiat-Shamir heuristic [16] uses a hash-function
to turn an interactive, so-called public-coin proof into a non-interactive one in
the random oracle model. A protocol is called public-coin if the verifier picks
its messages uniformly at random and independently from the messages of
the prover. To generate a proof non-interactively, the prover simulates the
verifier by computing its messages as the hash of the current transcript.
Modelling the hash function as a random oracle (with appropriate output
range), the messages from the simulated verifier look as if generated by

12

2.4. Zero-Knowledge Proofs

the real verifier and in particular, are unpredictable for the prover. When
verifying the proof, one again has to make sure that the challenges were
properly generated.

Interactive Arguments

The soundness and extractability properties are defined with respect to an
unbounded prover, i.e. even an all-powerful prover cannot break them. It
is possible to relax this notion by requiring soundness and extractability to
hold only for efficient provers. The resulting protocols are called argument
systems and were introduced by Brassard, Chaum and Crépeau [13]. Today,
in many settings, interactive arguments are preferred over interactive proofs,
as their communication complexity can be much lower.

In common language, argument systems are still referred to as proof sys-
tems, even though there is a technical difference. In fact, both ”proof” sys-
tems in this thesis, Groth16 and TV20, are actually argument systems.

Performance

There are three important aspects of performance that can be considered for
interactive proofs: The prover complexity, the verifier complexity and the
communication complexity.

The prover/verifier complexity simply refers to the amount on computation
that prover/verifier must do during a protocol execution.

The Communication complexity is the amount of data that is sent between
the two parties during a protocol run. In case of a non-interactive proof,
the parallel notion to communication complexity is the proof size, which,
in case of the Fiat-Shamir heuristic or CRS model, is equal to the prover
communication complexity of the interactive version of the protocol. This
is because a non-interactive proof only contains the messages sent by the
prover, while the verifier’s messages can be computed.

2.4.2 Defining Zero-Knowledge Proofs of Knowledge

This section formally defines zero-knowledge proofs of knowledge.

Definition 2.1 A zero-knowledge proof of knowledge (P ,V) between a prover P
and a verifier V for a language L with relation RL, containing pairs of members of
L and witnesses, is a pair of algorithms such that V runs in probabilistic polynomial
time and the following conditions hold:

1. Completeness (P ,V) is complete, if for any x ∈ L with a membership
witness w:

Pr[(P(w),V)(x) = 1] ≥ 2/3

13

2. Preliminaries

2. Knowledge Extraction. (P ,V) is knowledge-extractable with knowledge
error κ, if there exists an efficient algorithm Ext1 and a polynomial p such
that for any input x, for any prover P∗, Ext[P

∗] runs in expected polynomial
time and satisfies

Pr[w← Ext[P
∗] : RL(x, w′) = 1] ≥ ϵ−κ

p(|x|)

where ϵ denotes the probability that V accepts when interacting with P∗ on
common input x.

3. Zero-Knowledge. (P ,V) is zero-knowledge, if for every probabilistic poly-
nomial time V∗ there exists a probabilistic simulator Sim running in expected
polynomial time, such that for every x ∈ L, the output of Sim is indistin-
guishable from a transcript obtained by running the interactive protocol be-
tween P and V∗.

2.5 Hidden-order Group Assumptions

This section defines standard assumptions about hidden order groups. These
are the assumptions on which the security of the TV20 proof system is based.
The definitions are taken more or less directly from [29].

A hidden order group generator G is an algorithm that takes as input a
security parameter 1λ and outputs a description of a finite abelian group
(G, ·) and an integer P ≥ 2. The integer P is mostly used as an upper bound
when sampling challenges during an interactive proof and is assumed to be
superpolynomial in λ, but smaller than |G|.

Definition 2.2 Strong-Root Assumption. A group generator G satisfies the
(T, ε)-strong-root assumption, if for all λ ∈ N and for every adversary A that
runs in time at most T(λ),

Pr

 gn = h ∧ n > 1 :
(G, P)← G(1λ)

h←$ G

(g, n)← A(G, P, h)

 ≤ ε(λ)

The strong root assumption is a generalization of the strong-RSA assump-
tion to generic hidden-order groups.

Definition 2.3 Small-Order Assumption. A group generator G satisfies the
(T, ε)-small-order assumption if for all λ ∈ N, for every adversary A that runs
in time at most T(λ),

Pr

[
gn = 1G ∧ g2 ̸= 1G

0 < n < P
:

(G, P)← G(1λ)

(g, n)← A(G, P)

]
≤ ε(λ)

1Ext must be able to interact with P∗, and in particular, restart P∗ with chosen random-
ness

14

2.6. Diophantine Equations

The small-order assumption simply states that it is hard to find low order
elements in the group, except elements of order 2.

Definition 2.4 Orders with Low Dyadic Valuation. A group generator G sat-
isfies the low-dyadic-valuation assumption on orders if for all λ ∈ N, for every
(G, P)← G(1λ), for every g ∈ G, ord(g) is divisible by 2 at most once.

Definition 2.5 Many Rough-Order Elements Assumption. An integer is said
to be P-rough if all its prime factors are greater than or equal to P. A group generator
G satisfies the µ-assumption that there are many rough-order elements in the groups
generated by G if for all λ ∈N,

Pr

[
ord(h) is P-rough :

(G, P)← G(1λ)

h←$ G

]
≥ µ(λ)

All these assumptions are believed to hold in an RSA group Z∗N for a modu-
lus N = pq, with prime numbers p, q such that p, q = 3 mod 4, if the number
of prime factors of p− 1 and q− 1 that are ≤ P is of order O(λ).

2.6 Diophantine Equations

A Diophantine equation is a multivariate polynomial equation with integer
coefficients, where one is interested in integer solutions only. In this thesis,
the number of variables of a Diophantine equation is usually denoted ν
and the degree is denoted δ. An example Diophantine equation in ν = 3
variables of degree δ = 4 would be

2xy2z− 4xz + y + 1 = 0

A solution for the above equation is x = 1, y = 1, z = 1. A Diophantine
equation that has an integer solution is called satisfiable. Davis, Putnam,
Robinson and Matiyasevich [23] proved that there is no algorithm that can
determine whether any Diophantine equation has a solution, demonstrating
that the Diophantine satisfiability problem is undecidable. A large class of
problems can be reduced to Diophantine satisfiability.

2.7 The TV20 Proof System

The proof system of Towa and Vergnaud [29] allows to prove knowledge of
a solution to a Diophantine equation. Its security is based on the standard
assumptions about hidden order groups introduced in section 2.5. For a
Diophantine equation in ν variables of total degree δ with coefficients of
size at most 2H for some H ∈ N, the communication-complexity of TV20 is

15

2. Preliminaries

O(δℓ+ min(ν, δ) log(ν + δ) · bG + H) bits, if all integers of the solution are
upper-bounded by 2ℓ, for ℓ ∈N.

This section starts off by giving a coarse grained overview of how TV20
works. Then it discusses the main building blocks of TV20 in more detail.

2.7.1 Overview

In TV20, the first step is always to convert the input Diophantine equation
into a Hadamard product of the form aL ◦ aR = aO and integer linear con-
straints over the entries of aL, aR and aO. Towa and Vergnaud describe a
generic procedure to perform this step. After the reduction step, the prover
and verifier then run a protocol for the new problem, in which the prover
proves that it knows a solution to the Hadamard product and linear con-
straints. At the heart of this protocol is another sub-protocol, for proving
knowledge of values that satisfy an inner product relation. The following
paragraphs describe each of these building blocks, in reverse order.

2.7.2 Inner Product Argument

At the core of TV20 is an inner product argument for the following problem.
For a hidden-order group G, a length n, an upper bound on the witness
entries 2ℓ and parameters

e, f , C ∈ G g, h ∈ Gn,

the inner-product protocol allows to prove knowledge of a, b ∈ Zn and
r ∈ Z, such that

C2 =
(

gahbe⟨a,b⟩ f r
)4
∧ |[a, b, r]|∞ < 2ℓ

Overview. The protocol works recursively. To ease the explanation, assume
that n is a power of two. Also, note that the subscripts denote the first and
second half of a vector, respectively.

During the i-th recursion step, the prover samples two integers su, sv and
computes the two group elements

Ui =
(

ga2
1 hb1

2 e⟨a2b1⟩ f su
)2

Vi =
(

ga1
2 hb2

1 e⟨a1b2⟩ f sv
)2

.

The prover sends over Ui and Vi and receives a challenge xi, sampled uni-
formly at random by the verifier from {0, . . . , P− 1}.

16

2.7. The TV20 Proof System

Then, the new parameters for the next recursion step are computed. Both
the prover and the verifier compute new base vectors g′, h′ and a new C-
value as

g′ = gxi
1 ◦ g2, h′ = hxi

1 ◦ h2, Ci+1 = Ux2
i

i Cxi
i Vi

In addition, the prover also computes a new witness as

a′ = a1 + xia2, b′ = xib1 + b2, r′ = sv + rxi + sux2
i .

Crucially, the length n of the base vectors g, h and witness vectors a, b is
halved in each recursion step. As soon as these vectors only contain a sin-
gle element (after n′ = log(n) steps), the parties run a dedicated 3-move
protocol for the case n = 1.

In this protocol, the prover sends over two group elements, Γ and ∆, re-
ceives a challenge integer xn′+1 (sampled u.a.r. from {0, . . . , P − 1}) and
then computes and sends over integers a′, b′, u. At last, the verifier evaluates
the verification equation

(
gxn′+1a′hxn′+1b′ea′b′ f u

)4 ?
=

(
Cxn′+1

2

n′+1 Γxn′+1 ∆
)2

,

and accepts or rejects the protocol run.

Verification Complexity The lion’s share of the computation by the verifier
is done in between recursion steps, to compute the parameters g′, h′ and
Ci+1 for the next step. However, at any recursion level, the verifier simply
samples a challenge from the same challenge space {0, . . . , P− 1}. In partic-
ular, the challenge space only depends on P, which means that the verifier
can delay the computation of the new parameters until the very end, when
it has to evaluate the verification equation. This way, all the verifier’s com-
putation can be aggregated into a single multi-exponentiation. The explicit
expression for the multi-exponentiation is(

n

∏
i=1

g
∏j∈Si

xj

i

)4xn′+1a′ (n

∏
i=1

h
∏j∈[n]\Si

xj

i

)4xn′+1b′

e4a′b′ f 4u

=

(
Uxn′

n′

n′−1

∏
i=1

Uxixi+1...xn′
i Cx1 ...xn′

n′−1

∏
i=1

Vxi+1 ...xn′
i Vn′

)2x2
n′+1

Γ2xn′+1 ∆2,

where

Si = {j ∈ [n′] : n′ + 1− jth bit of i− 1 is 0}.

17

2. Preliminaries

The total number of bases in the multi-exponentiation is 2n+ 2⌈log2(n)⌉+ 5.
The value of the maximum exponent is at most

4 max
(

2ℓP2n′+1, 22ℓP2n′ , (2n′2bG+λPn′+1 + 2ℓ(P− 1)n′+2)(1 + 2λ)
)

,

implying that the logarithm of the maximum exponent isO(ℓ+ bG + log(n) log(P)).

Therefore, using a square-and-multiply approach, the verifier has to do
O(n(l + bG + log(n) log(P))) group operations in the RSA group. Using
pre-computed tables and sliding-window methods [4], one can reduce the
number of group operations that have to be performed, at the cost of in-
creased memory requirements. In the extreme case of using O(2n · bG)
bits of memory, one can bring down the number of necessary group oper-
ations to O(l + bG + log(n) log(P)). In practice, however, it is unlikely that
this amount of memory is available. Using less memory will still decrease
the number of group operations, and different memory/time trade-offs are
available.

Communication Complexity. During the whole protocol, the prover sends
over 2n′+ 2 group elements and three integers, a′, b′ and u. The integers a′, b′

have absolute value less than 2ℓPn′ and the integer u has absolute value less
than

(
2n′2bG+λPn′+3 + 2ℓ(P− 1)n′+2

)
·
(
1 + 2λ

)
. This results in an asymp-

totic communication complexity of O(l + log(n) · bG) bits. Note that the
communication complexity scales logarithmically with the length of the in-
ner product, n.

2.7.3 Hadamard Product Argument

The statement being proven in the Hadamard product argument is the fol-
lowing2. For parameters

WL, WR, WO ∈ ZQ×n, c ∈ ZQ,

where n is the length of the Hadamard product and Q is the number of
linear constraints, the protocol allows to prove knowledge of aL, aR, aO ∈ Zn

such that

aL ◦ aR = aO ∧ WLaT
L + WRaT

R + WOaT
O = cT

Description. The core idea of the protocol is to reduce the Hadamard prod-
uct and linear constraints to an inner product argument. Then, the inner
product protocol is invoked as a sub-protocol. The reduction is so that the
length n of the inner product is equal to the length of the Hadamard prod-
uct.

2In fact, the full argument is more general and allows some variables to be committed
to. However, the simplified version suffices for our case.

18

2.7. The TV20 Proof System

Besides the inner-product argument, there is also a call to a so-called base-
switching argument. The base switching argument is not described here (as
the details are irrelevant for us), but the communication complexity of the
call is estimated in section 4.2.2.

Communication Complexity. Overall, the communication complexity of the
protocol is O(ℓ+ log(n)bG) bits. The bulk of the communication complexity
originates in the calls to the two sub-protocols (inner-product argument and
base-switching argument).

2.7.4 Diophantine Equation Argument

This section describes the full TV20 argument system to prove knowledge of
a solution to a Diophantine equation. The protocol builds on the Hadamard
product argument. Using a reduction, knowing a solution to the input equa-
tion is demonstrated to be equivalent to knowing vectors aL, aR, aO that sat-
isfy a Hadamard product, i.e aL ◦ aR = aO, as well as a number of linear
constraints over the entries of the vectors. Then, the Hadamard product
protocol is invoked.

Reduction Procedure.

The reduction procedure described by Towa and Vergnaud works by trans-
forming any Diophantine equation to an equation of degree at most 4. Addi-
tionally, the resulting equation is easily seen to be equivalent to a Hadamard
product and linear constraints, i.e. knowing a solution to the former allows
computing a solution to the latter and vice-versa.

Example. In the following, the procedure is illustrated with an example. Let
the input polynomial be 4x1x2 + 2x5

1 + 3. The core idea of the reduction is
to introduce new variables that correspond to the product of two previous
variables.

In a first step, the polynomial is transformed such that all variables have de-
gree 1. In the example polynomial, the only term that violates this condition
is the second term, 2x5

1. Two new variables, v1 = x2
1 and v2 = v2

1 = x4
1 are

introduced and the term can be rewritten as 2x1v2. However, the relations
v1 = x2

1 and v2 = v2
1 also need to be enforced. To do so, the terms (v1 − x2

1)
2

and (v2 − v2
1)

2 are introduced into the polynomial, and the original polyno-
mial is squared to get a new polynomial

(4x1x2 + 2x1v2 + 3)2 + (v1 − x2
1)

2 + (v2 − v2
1)

2

The squaring makes sure that in a satisfying solution, all of the individual
terms are zero, not just the whole polynomial. Observe that a solution to the
original polynomial can be transformed to a solution for the new one and
vice-versa.

19

2. Preliminaries

In a second step, the polynomial is further transformed so that the part
that corresponds to the original polynomial (currently 4x1x2 + 2x1v2 + 3)
becomes of degree one, i.e. no products of variables appear. Two new
variables, u1 = x1x2 and u2 = x1v2 are introduced. Just as before, terms
(u1 − x1x2)2 and (u2 − x1v2)2 are added to constrain the variables. The
resulting polynomial is

(4u1 + 2u2 + 3)2 + (v1 − x2
1)

2 + (v2 − v2
1)

2 + (u1 − x1x2)
2 + (u2 − x1v2)

2

Note that the first term, 4u1 + 2u2 + 3, is now an affine equation.

Third step. In this form, the polynomial is ready to be transformed to a
Hadamard product and linear constraints over the entries of the Hadamard
product. The idea is that each of the last four terms, which are of the form
(a− bc)2, becomes an entry in the Hadamard product, so that the witness of
the prover is

aL = [x1 v1 x1 x1], aR = [x1 v1 x2 v2], aO = [v1 v2 u1 u2].

To make sure that the vectors are actually of this form, linear constraints are
used to guarantee consistency in a single vector as well as between different
vectors. For example, to make sure that the first, third and fourth entry of
the witness vector aL all contain the same value, the two linear constraints
aL,1 = aL,3 and aL,3 = aL,4 are used. For aR and aO, there are no in-vector
consistencies to be enforced (i.e. no variable appears twice). However, one
also needs to enforce the between-vector consistencies aL,2 = aR,2, aL,2 = aO,1
and aR,4 = aO,2.

Finally, it must be made sure that the actual equation is satisfied, by intro-
ducing the linear constraint 4aO,3 + aO,4 + 3 = 0.

In Summary, we have shown that knowing a solution to the Diophantine
equation 4x1x2 + 2x5

1 + 3 is equivalent to knowing three vectors aL, aR, aO ∈
Z4 such that aL ◦ aR = aO and

aL,1 = aL,3 ∧ aL,3 = aL,4 ∧ aL,2 = aR,2

∧ aL,2 = aO,1 ∧ aR,4 = aO,2 ∧ 4aO,3 + aO,4 + 3 = 0

Generic Procedure. In general, the reduction procedure consists of the fol-
lowing steps

1. Replace variables xk of degree k ≥ 2 by introducing variables v1, . . . , v⌊log k⌋
where v1 = x2 and vi = v2

i−1 for i ≥ 2 and replacing xk with the appro-
priate subset of the new variables. Constrain the new variables using
terms of the form (vi − v2

i−1)
2.

20

2.7. The TV20 Proof System

2. Replace products of the form ∏k
i=1 xi with a single variable, by intro-

ducing new variables u1, . . . , uk−1 that correspond to the prefixes of
the products, i.e. uj = ∏

j
i=1 xi, and replacing the product by uk−1.

Constrain the new variables with terms of the form (uj − xjuj−1)
2.

3. Transform the equation into a Hadamard product and linear constraints,
by adding Hadamard product entries for terms of the form (a− bc)2,
using linear constraints for consistencies and to enforce that the actual
equation is satisfied.

For a polynomial in Z[x1, . . . , xν] of total degree δ and µ monomials, the
procedure guarantees that the resulting Hadamard product is of length at
most ν⌊log(δ)⌋+ (δ− 1)µ and that there are at most 1 + 2ν(⌊log(δ)⌋ − 1) +
(δ− 2)µ linear constraints.

Communication Complexity.

The overall communication complexity of the protocol is equal to the com-
munication complexity of a call to the Hadamard product protocol with
parameters generated by the reduction procedure. For an input equation
with ν variables of total degree δ, coefficients less than 2H and witness en-
tries less than 2ℓ, the communication complexity in bits is of order O(ℓ +
min(ν, δ) log(ν + δ)bG + H).

2.7.5 How to write Equations

The above discussion demonstrates that the communication complexity of
the Diophantine equation argument is dictated by the size of the result-
ing Hadamard product. While the generic reduction procedure gives us a
bound on this size, for many problems it is advantageous to not rely on it.
Instead, it is often possible to apply the ideas of the reduction procedure ’by
hand’, and directly write down the equation in a form where the Hadamard
product and linear constrains can be read off immediately. Most of the ex-
amples in the original paper follow this approach, which has the following
two benefits.

Immediate feedback. One can directly see the size of the resulting Hadamard
product. Otherwise, the generic bound from the reduction procedure would
have to be applied, which prevents immediate feedback, and furthermore
might not be tight.

Composability. This approach makes sure that encodings for two different
problems are efficiently composable. This point is now illustrated with an
example.

Consider two Diophantine equations, say a + b = 0 and c + a2 = 0. Note
that the same variable a appears in both equations. If both equations should

21

2. Preliminaries

be satisfied at the same time, one cannot simply add them, as a solution to
(a + b) + (c + a2) = 0 does not necessarily give solutions to the original two
equations. Instead, one would have to first square the individual equations
and then add them, to get (a + b)2 + (c + a2)2 = 0. This works, as the squar-
ing makes sure that in a satisfying solution of the composed equation, all
the individual terms are zero. However, this generic approach might not be
optimal in the size of the resulting Hadamard product when subsequently
applying the reduction procedure.

On the other hand, if Hadamard products and linear constraints for the
subproblems are available, they can be composed in the following way. The
Hadamard products are concatenated and additional linear constraints are
introduced that ’tie’ together variables that are shared by the two subprob-
lems. The new set of linear constraints is the union of the linear constraints
for the subproblems and the ones that are newly introduced. We go back to
our example, but this time using Hadamard product and linear constraints
directly.

The first subproblem, a + b = 0, can be reduced to a Hadamard product
a(1)L ◦ a(1)R = a(1)O of length two with linear constraint

a(1)O,1 + a(1)O,2 = 0.

The prover sets

a(1)L = [1 1], a(1)R = [a b], a(1)O = [a b]

As a side note, notice that ”dummy entries” need to be introduced in the
Hadamard product, to be able to have a linear constraint corresponding
to the original equation. This is needed whenever the original equation
contains a summand of only a single variable of degree one (in the above
case, both a and b).

The second subproblem, c + a2 = 0 is reduced to a Hadamard product
a(2)L ◦ a(2)R = a(2)O of length 2 with linear constraints

a(2)L,1 = a(2)R,1, a(2)O,1 + a(2)O,2 = 0.

The prover sets

a(2)L = [a 1], a(2)R = [a c], a(2)O = [a2 c].

Again, a dummy entry must be introduced for c.

To prove knowledge of a solution for both subproblems, we compose it in
the following way. The new Hadamard product aL ◦ aR = aO will be of
length 4, and the linear constraints are

aO,1 + aO,2 = 0, aL,3 = aR,3, aO,3 + aO,4 = 0, aR,1 = aR,3,

22

2.7. The TV20 Proof System

The witness vector of the prover is

aL = [1 1 a 1], aR = [a b a c], aO = [a b a2 c]

The first three linear constraints are simply the ones from the subproblems,
shifted to account for the concatenation of the witness vectors. The fourth
linear constraint, aR,1 = aR,3, was introduced to tie the a-values that appear
in both equation together. This is important, as otherwise the prover could
use different values for a in the first and second equation. Crucially, when
composing like this, the length of the resulting Hadamard product is the
sum of the lengths of the Hadamard products for the subproblems.

2.7.6 Example encoding

This section shows how to encode two classical NP-complete problems as
Diophantine equations.

k-Coloring of Graphs

Let G = (V, E) be a graph with n vertices and m edges. A valid k-coloring of
G is a labeling of the vertices in V with labels from {1, . . . , k}, such that no
neighbouring vertices have the same color. The goal is to find a Diophantine
equation such that knowing a k-coloring of G allows computing a solution
to the Diophantine equation and vice-versa.

Intuition. The idea is the following. For each vertex v ∈ V, k variables
xv,1, . . . , xv,k are introduced. The fact that v has a color j is indicated by set-
ting xv,j = 1 and ∀i ̸= j : xv,i = 0. Additionally, the variables are constrained
in such a way that a satisfying solution must correspond to a valid coloring
and vice-versa. Concretely, the following three things must hold:

1. Every variable is set to either 0 or 1. For all v ∈ V and for all j ∈ [k],
this is enforced by the equation x2

v,j − xv,j = 0

2. As every node can only have one color, for every node v, only one of
the the variables xv,j can be set to 1. This is enforced by the equation
∑k

i=1 xv,k = 1.

3. The assignment must be a legal coloring, meaning no two neighbour-
ing nodes have the same color. This is equivalent to saying that for
every edge (u, v) ∈ E and for every color j ∈ [k], xv,j · xu,j = 0.

The first two points make sure that some coloring can be extracted from
a solution to the equation. The third point additionally confirms that the
coloring is actually valid.

Composing. The above equations need to be composed so they all hold at
the same time, and this is exactly where the aforementioned composability

23

2. Preliminaries

(section 2.7.5) comes into play. Technically, one could square all the equa-
tions and add them up to get a single equation. However, the equations
are purposefully written in such a way that Hadamard product and linear
constraints can be easily read off.

Every equation of the first type, x2
v,j − xv,j = 0, can be transformed to a

single Hadamard product entry of the form (xv,j) ◦ (xv,j) = (xv,j). Addition-
ally, two linear constraints are needed to guarantee consistency in entries.
As we have k entries like this for every variable, we have kn entries in the
Hadamard product and 2kn linear constraints from the first point above.

The second type of equation can be translated into a single linear equation
over the entries of the Hadamard product. This takes n linear constraints.

For the third point, an equation xv,j · xu,j = 0 translates to a single Hadamard
product entry of the form (xv,j) ◦ (xu,j) = (x(v,u),j) where a new variable
(x(v,u),j) is introduced to store the result of the product. An additional linear
constraint (x(v,u),j) = 0 then enforces the product to be 0. Furthermore,
another two linear constraints are needed to tie xv,j and xu,j to previous
Hadamard product entries. For every edge, we have k equations as above.
Therefore, km entries to the Hadamard product and 3km linear constraints
are added.

In total, this results in a Hadamard product of length k(n + m), as well as
(2k + 1)n + 3km linear constraints.

Hamiltonian Cycle

Let G = (V, E) be a graph with n vertices, V = {v1, . . . , vn}, and m edges. A
Hamiltonian cycle in G is a cycle where each vertex is visited exactly once.
The goal is to find a Diophantine equation such that a solution can be found
whenever one knows a Hamiltonian cycle in G and vice-versa.

Intuition. The idea is as follows. There are n2 variables xi,j for i ∈ {1 . . . , n}, j ∈
{1 . . . , n}. A variable xi,j being set to 1 indicates that vj is the i-th vertex in
the Hamiltonian cycle. The variables need to be constrained such that:

1. All variables are either 0 or 1. For a variable xi,j this is enforced by the
equation x2

i,j − xi,j = 0

2. At every position of the cycle, only one vertex can occur. For a position
i ∈ [n], this is enforced by ∑n

j=1 xi,j = 1.

3. The implied cycle must actually be in G. This is checked by ensuring
for all positions i ∈ [n], the vertices at the i-th and (i + 1)-th position
are connected by an edge in the graph, i.e ∑{u,v}∈E xi,u · xi+1 mod n,v = 1

4. A vertex occurs exactly once in the cycle (i.e. the cycle is Hamiltonian).
For every j ∈ [n], this is enforced by ∑n

i=1 xi,j = 1

24

2.8. Zcash-specific Preliminaries

Intuitively, the first three points make sure that for any solution of the Dio-
phantine equation, one can actually get a valid cycle of length n in G. The
fourth point additionally confirms that the cycle is Hamiltonian.

Composing. The equations above are written in a way such that reading off
Hadamard product and linear constraints directly is possible.

The first point adds n2 entries of the form (xi,j) ◦ (xi,j) = (xi,j) to the Hadamard
product. 2n2 linear constraints are needed to guarantee consistency between
entries.

The second point contributes n linear equations over the entries of the Hadamard
product.

For the third point, a little more work is required. The idea is to introduce
new variables that essentially store the results of the products. For every
i ∈ [n] and {u, v} ∈ E, an entry of the form (xi,u) ◦ (xi+1 mod n,v) = (xi,{u,v})
is added to the Hadamard product to store the result of xi,u · xi+1 mod n,v in a
new variable called xi,{u,v}. To guarantee consistency of the values xi,u and
xi+1 mod n,v with previous Hadamard product entries, two linear constraints
are added. Also, for every i ∈ [n] the linear equation ∑{u,v}∈E xi,{u,v} = 1
is included. This adds nm entries to the Hadamard product and 2nm + n
linear constraints.

The fourth point adds another n linear equations.

In total, this results in a Hadamard product of size n2 + nm, as well as
2n2 + 3n + 2nm linear constraints.

2.8 Zcash-specific Preliminaries

This section introduces background specific to Zcash. This includes a brief
introduction to elliptic curves, as well as concrete descriptions of functions
such as hash functions or commitment schemes that are used in Zcash. Also,
some Zcash-specific notation is introduced. All of the content can be found
in the Zcash specification [20].

2.8.1 Conversions between Integers and Bitstrings

There are several functions in Zcash that convert between bits and integers.
These include:

• I2LEBSP : (ℓ : N)× {0, . . . , 2ℓ − 1} → {0, 1}ℓ. I2LEBSPℓ(x) is defined
as the sequence of ℓ bits representing x in little-endian order.

• LEBS2OSP : (ℓ : N)× {0, 1}ℓ → {0, 1}8·⌈ℓ/8⌉ is defined as follows. Pad
the input on the right with 8 · ⌈ℓ/8⌉ − ℓ zero bits so that its length is
a multiple of 8 bits. Then, convert each group of 8 bits to a byte value

25

2. Preliminaries

with the least significant bit first and concatenate the resulting bytes
in the same order as the groups.

• LEOS2IP : (ℓ : N|ℓ mod 8 = 0)×{0, 1}ℓ → {0, . . . , 2ℓ− 1}. LEOS2IPℓ(S)
is defined as the integer represented in little-endian order by the byte
sequence S of length ℓ/8.

2.8.2 Elliptic Curve Background

Zcash makes extensive use of elliptic curve cryptography. It is out-of-scope
for this thesis to provide a complete overview of elliptic curve theory. In-
stead, we choose to focus only on the parts that are directly relevant for the
project.

Zcash uses two distinct forms of representation of an elliptic curve: The
complete twisted Edwards form (referred to as ctEdwards) and the Montgomery
form. This section describes the two types of representation, the arithmetic
on them, and the specific curve that is used in Zcash. An understanding of
this is necessary, as the elliptic curve operations are encoded as Diophantine
equations in chapter 4.

The ctEdwards Form

A ctEdwards curve [9, 10] is an elliptic curve over a field F, parameterized by
values a, d ∈ F, where a is a square and d is non-square. The curve consists
of all points (u, v) ∈ F×F that satisfy the equation a · u2 + v2 = 1+ d · u2 · v2.
The neutral element on a ctEdwards curve is (0, 1), the inverse of an element
(u, v) is (−u, v). Addition of two points (u1, v1), (u2, v2) is computed using
the formula

(u1, v1) + (u2, v2) =

(
u1v2 + u2v1

1 + du1u2v1v2
,

v1v2 − au1u2

1− du1u2v1v2

)
The denominator is never 0, meaning that the above addition formula can
be used for any pair of points. This is one reason why the ctEdwards form
is convenient to use in a zero-knowledge setting, because it means that no
case-distinctions have to be implemented.

The Montgomery Form

A Montgomery curve [10] is a curve over a field F, parameterized by A, M ∈
F, where B(A2 − 4) ̸= 0. The curve contains all points (x, y) ∈ F× F that
satisfy the equation By2 = x3 + Ax2 + x. The neutral element is denoted O
and cannot be represented as a pair of coordinates. The negation of a point
(x, y) is (x,−y). To perform an addition (x3, y3) = (x1, y1) + (x2, y2), one
uses the formula

26

2.8. Zcash-specific Preliminaries

x3 = B · λ2 − A− x1 − x2

y3 = (x1 − x2) · λ− y1

where λ =

{
3·x2

1+2·A·x1+1
2·By1

, if x1 = x2
y2−y1
x2−x1

, otherwise

Notice that a case distinction is needed, depending on the input points,
which hinders the usage of the Montgomery form in a zero-knowledge proof
setting. However, if one can guarantee that the side condition x1 ̸= x2 always
holds, the Montgomery addition can actually be more efficient to implement
in zero-knowledge than a ctEdwards addition (see section 4.1.16).

Jubjub

The concrete elliptic curve that is used in Zcash is called Jubjub [20]. Jubjub
has been specifically designed for Zcash and to be efficiently implementable
in finite field circuits. The specification defines both a ctEdwards and a
Montgomery form of Jubjub as well as a way to convert between the two.
For completeness, we include a description of both forms here.

Jubjub ctEdwards Form. Let

qJ = 52435875175126190479447740508185965837690552500527637822603658
699938581184513,

rJ = 655448439689077380993096756352324572970592126587231728136535916
2392183254199,

where both qJ and rJ are prime. Furthermore, let

aJ = −1, dJ = −10240/10241 mod qJ.

The ctEdwards-Jubjub curve, denoted J, is defined as the ctEdwards curve
over FqJ

with parameters a = aJ and d = dJ. Jubjub has order 8 · rJ, i.e. the
curve has a co-factor of 8. The neutral element is denoted OJ. J(r) denotes
the rJ-order subgroup of J and J(r)∗ denotes J(r) \ {OJ}.

Notation is abused, in the sense that J is used for both the elliptic curve
group as well as the set of points on the curve, i.e. {(u, v) ∈ FqJ

× FqJ
:

aJ · u2 + v2 = 1 + dJ · u2 · v2}. Generally, points on the ctEdwards form of
Jubjub will be denoted (u, v). A point can also be stored in a compressed
form by storing the full v-coordinate, but only the sign of the u-coordinate.
This is because the v-coordinate already determines the absolute value of
the u coordinate.

27

2. Preliminaries

Jubjub Montgomery form. Let

qM = qJ, AM = 40962, BM = 1

The Montgomery-Jubjub curve, M, is defined as the Montgomery curve over
FqM

, with parameters A = AM and B = BM. Points on the Montgomery
Jubjub curve are denoted (x, y).

Again, notation is abused as M is used for both the elliptic curve group as
well as the set of points on the curve.

Conversion. The curves J and M are birationally equivalent. In Zcash,
conversion between the two is done in the following way. Let s be the square
root of −40964 in FqJ

, in the range {0, . . . , qJ−1
2 }. Then, to convert from

ctEdwards to Montgomery form, Zcash uses the function

CtEdwardsToMont : J→M

CtEdwardsToMont(u, v) =
(

1 + v
1− v

, s · 1 + v
(1− v) · u

)
, [1− v ̸= 0, u ̸= 0]

To convert in the other direction, i.e. from Montgomery to ctEdwards, Zcash
uses the function

MontToCtEdwards : M→ J

MontToCtEdwards(x, y) =
(

s · x
y

,
x− 1
x + 1

)
, [y ̸= 0, x + 1 ̸= 0]

Miscellaneous Elliptic Curve Functions

The Zcash specification uses many helper functions around the Jubjub curve.
The most relevant ones are described in the following.

• The function reprJ : J → {0, 1}256 is an injective function used to get a
bit-representative from a ctEdwards Jubjub point. It is defined as

reprJ((u, v)) = I2LEBSP256(v mod qJ) + 2255 · ũ), where ũ = u mod 2.

• The function ExtractJ(r) is used to convert a point in J(r) to a bit string.
It is defined as

ExtractJ(r) : J(r) → {0, 1}255

ExtractJ(r)(u, v) = I2LEBSP255(u)

Even though the v-coordinate is dropped, the function is still injective
as we are working in the subgroup J(r). A proof for this fact is given
in the Zcash specification.

28

2.8. Zcash-specific Preliminaries

• The function FindGroupHashJ(r)∗ : {0, 1}64 × {0, 1}∗ → J(r)∗ is a group
hash function that maps bit strings onto arbitrary (”random looking”)
group elements of J(r)∗. It is mostly used to get some fixed generators,
as for example in the windowed or homomorphic Pedersen commit-
ment schemes (sections 2.8.5, 2.8.6). Its full definition can be found in
the Zcash specification. Some of the most frequently used fixed points
on Jubjub are

GSapling := FindGroupHashJ(r)∗(”Zcash G ”, ””)

HSapling := FindGroupHashJ(r)∗(”Zcash H ”, ””)

J Sapling := FindGroupHashJ(r)∗(”Zcash J ”, ””)

2.8.3 Pedersen Hash

Intuition. The Pedersen hash function is an algebraic hash function with col-
lision resistance derived from the hardness of the discrete logarithm prob-
lem on an elliptic curve. It is based on various works [14][15][7] and has
additionally been tailored to fit well within the Zcash design. The collision
resistance only holds for inputs of the same length. It is not collision resistant
for inputs of different lengths.

The high level idea is the following. The message (a bitstring) is split into n
segments. Each of the segments is injectively encoded as an integer that is
smaller than the elliptic curve group order (the length of the segments in the
first step is chosen so that such an encoding is possible). Then, each encoded
segment serves as a scalar in a scalar-multiplication with some fixed point
on the elliptic curve (a different fixed point for each segment) and all the
resulting points are added together. The hash output is the first coordinate
of this final point.

Definition. Let us formally define the function as it is used in Zcash, with
Jubjub as the underlying elliptic curve. Let c = 63. First, pad the input mes-
sage M ∈ {0, 1}N with zeros so that the padded message M′ is a multiple
of 3 bits long. Then, split M′ into segments M′ = M1||M2|| . . . ||Mn, where
M1, . . . , Mn−1 are 3 · c = 189 bits long, and Mn is at most 189 bits long (but
the length of every segment, including Mn, is a multiple of 3).

Now, define the encoding ⟨·⟩ : {{0, 1}3}∗ → {− rJ−1
2 , . . . , rJ−1

2 } \ {0} of a
segment Mi as follows:

1. Let ki = length(Mi)/3.

2. Split Mi into ki chunks of 3 bits, Mi = [m1, m2, . . . , mki].

3. Write a chunk mj as mj = [s0, s1, s2], and let enc(mj) = (1− 2s2) · (1 +
s0 + s1).

29

2. Preliminaries

4. Let ⟨Mi⟩ = ∑ki
j=1 enc(mj) · 24(j−1).

Note that the maximum length of the segments (189 bits) has been chosen
exactly so that the encoding lies in the specified range.

Now, define

PedersenHashToPoint : {0, 1}64 × {0, 1}∗ → J(r)

PedersenHashToPoint(D, M) =
n

∑
i=1

[⟨Mi⟩] · FindGroupHashJ(r)∗(D, i)

and then

PedersenHash : {0, 1}64 × {0, 1}∗ → {0, 1}255

PedersenHash(D, M) = ExtractJ(r)(PedersenHashToPoint(D, M))

2.8.4 Mixing Pedersen Hash

The mixing Pedersen hash function is defined as

MixingPedersenHash : J× {0, . . . , rJ − 1} → J

MixingPedersenHash(P, x) = P + [x] · J Sapling

2.8.5 Windowed Pedersen Commitment

The windowed Pedersen commitment scheme is a commitment scheme with
commitments on Jubjub. It is defined as

WindowedPedersenCommitment : {1, . . . , rJ} × {0, 1}∗ 7→ J

WindowedPedersenCommitmentr(s) =

PedersenHashToPoint(”Zcash PH”, s) + [r] FindGroupHashJ(r)∗(”Zcash PH”, ”r”)

2.8.6 Homomorphic Pedersen Commitment

The homomorphic Pedersen commitment scheme is a homomorphic com-
mitment scheme with commitments on Jubjub. It is defined as

HomomorphicPedersenCommitment : {1, . . . , rJ} × {0, 1}64 × {1, . . . , 264 − 1} 7→ J

HomomorphicPedersenCommitmentrcv(D, v) =

[v] FindGroupHashJ(r)∗(D, ”v”) + [rcv] FindGroupHashJ(r)∗(D, ”r”)

2.8.7 BLAKE2 Hash Function

Zcash uses the BLAKE2 hash function. The BLAKE2 hash function was
proposed in 2012 by Aumasson et al. [3]. It is assumed to be collision

30

2.8. Zcash-specific Preliminaries

resistant. Zcash uses the BLAKE2s variant to construct a function

BLAKE2s− ℓ : {0, 1}64 × {0, 1}∗ → {0, 1}ℓ,

that is assumed to be collision resistant. More information on the inner
workings of BLAKE2 is given in section 4.1.21.

31

Chapter 3

Zcash Description

This chapter describes the Zcash cryptocurrency [2]. Zcash was developed
to enhance privacy of cryptocurrencies such as Bitcoin [25] and in fact, is
an extension of the Bitcoin protocol. The first Zcash block was mined on
october 28th, 2016. Zcash is based on ideas from Zerocash [8], a protocol
proposed in 2014 by Ben-Sasson et. al. However, the first version of Zcash
(called Sprout) already differs substantially from the original Zerocash pro-
tocol. In 2018, another major update (Sapling) introduced further consider-
able changes. The next large update, called Orchard, is currently running on
Zcash’s testing network.

The first section of this chapter, section 3.1, gives a simplified overview of
how Bitcoin works. A basic understanding of this is necessary in order to
understand the design choices made in Zcash.

Section 3.2 contains an intuitive description of the main ideas used in Zcash
to increase privacy. This is done by starting with the simplified Bitcoin pro-
tocol of section 3.1 and strengthening its privacy step-by-step until ending
up with something very similar to Sprout, the first version of Zcash. Section
3.3 then describes the current version of Zcash (Sapling) and presents the
precise statements that are being proven in zero-knowledge.

3.1 Bitcoin Transaction Structure

This section gives a simplified description of how a transaction is conducted
in Bitcoin. Note that this is not a full description of the Bitcoin protocol, but
suffices for our purposes.

Consensus. The Bitcoin network is a peer-to-peer network. Users send
bitcoin between each other by broadcasting transactions to the network. De-
pending on the location of some node in the network, it will receive trans-
actions in a particular order. Another node might see the transactions in a

33

3. Zcash Description

different order, or receive different transactions altogether. However, for the
protocol to function, nodes must have a way to agree on which transactions
were made in the past, and in what order. This is referred to as the consensus
problem. A solution for it, utilizing proof of work, is the main contribution of
the original Bitcoin paper. As a direct consequence of achieving consensus,
nodes are able to maintain the blockchain, a distributed ledger that contains
a list of all past transactions. For our purposes, the concrete technicalities of
the consensus mechanism are irrelevant, so the details are abstracted. In the
discussion that follows, it is simply assumed that every node has access to
the same, authentic ledger that contains a list of all past transactions.

Addresses. Each participant of the Bitcoin network holds a signing/verifying-
key pair of a digital signature scheme. The verifying key essentially serves
as an address to direct a payment, while the signing key is used to prove
being the recipient of a particular payment.

Transactions. In general, a transaction consists of multiple inputs and outputs.
An output is a pair (v, vk) of a value v (the amount of bitcoin being sent)
and a recipient verifying key, vk. On the other hand, an input is a pointer
to an output of some past transaction, essentially spending the money that
was received in that specific output 1. If Alice creates a transaction, she
must prove that for each input, the referenced output was really sent to
her. She does this by providing a digital signature over the hash of the new
transaction, using the signing key belonging to the verifying key in that
input. Anybody can verify the signature using the verifying key and will
be convinced that the signing key is owned by Alice. To prevent creating or
destroying money, the sum of all input amounts must be equal to the sum
of all output amounts. This can easily be checked by anybody receiving
the transaction. A transaction that violates this balancing property will be
rejected by the network.

Double Spending. An output of a transaction that has not yet been used
as the input to another transaction is called an unspent transaction output,
or UTXO. Whenever a transaction is made, the nodes have to check that
all inputs are UTXOs. To do this, each node needs to be aware of the set
of all current UTXOs, called the UTXO set. As we assume that nodes are
in consensus about the current state of the blockchain, it follows that they
also agree on the UTXO set as the UTXO set can be computed from the
blockchain. Hence, just as with the blockchain itself, we treat the current
UTXO set as a shared global state, to which every node has access to. Now,
to prevent double spending, every transaction that includes an input which
is not contained in the UTXO set is rejected by the network.

1In practice, this pointer consists of a transaction id and an output index. The transaction
id is essentially the hash of a transaction and is used to uniquely identify it.

34

3.1. Bitcoin Transaction Structure

Complete Transaction Example. We now go through a sample transaction
to see how it all comes together. Assume Alice wants to send 10 bitcoin to
Bob. Alice holds a key pair (ska, vka) and Bob holds the key pair (skb, vkb).
We assume that Alice has an authentic copy of vkb. To send the money to
Bob, Alice must now create a transaction and send it to the Bitcoin network.

It is likely that Alice does not have an unspent output containing exactly
10 bitcoin. In such a case, she can aggregate funds by specifying multiple
inputs. Assume that Alice has two unspent outputs, outold

1 = (5, vka) and
outold

2 = (7, vka), containing 5 and 7 bitcoin respectively. Alice creates a
transaction with inputs outold

1 , outold
2 . As she wants to send 10 bitcoin to bob,

she would include an output outnew
1 = (10, vkb). The inputs contain a total

of 12 bitcoin, but she only wants to send 10 bitcoins to Bob, so she needs to
balance the transaction. To do so, she would also create a change output,
outnew

2 = (2, vka), sending the spare money back to herself. In addition, for
each of the two inputs, she provides a digital signature over the transaction
hash.

Figure 3.1: An example transaction where Alice is sending 10 bitcoin to Bob.

A node that receives the transaction will check that:

1. Inputs and outputs balance, i.e. value is preserved.

2. The inputs are in the UTXO set.

3. Each signature verifies, using the verification key of the respective in-
put.

If any of the above checks did not go through, the transaction is rejected.

35

3. Zcash Description

If everything checks out, the transaction is accepted and appended to the
blockchain. Implicitly, this will remove the inputs from and add the outputs
to the UTXO set. At this point, the transaction has been completed.

3.2 Design of an Anonymous Currency

This section intuitively explains the core ideas used in Zcash, by building
a privacy-enhanced transaction structure step-by-step. The idea of an in-
cremental presentation is taken from the Zerocash paper [8], but has been
adapted for our purposes. The simplified version of the Bitcoin protocol
from section 3.1 will serve as a starting point.

Consider a transaction in which Alice is sending some v bitcoin to Bob.
Assume that she has an unspent output containing exactly the value v. In
this case, she would send the money using a Bitcoin transaction with exactly
one input and one output, as in figure 3.2.

Figure 3.2: An example transaction where Alice is sending v bitcoin to Bob using an unspent
output that contains exactly v bitcoin.

The following data is revealed by the transaction:

• The unspent output that is being spent in this transaction, which in-
cludes Alice’s public key

• The output that is being created in this transaction, which includes
Bob’s public key

• The transaction amount v.

Using cryptographic tools, the transaction format is to be modified so that it
avoids leaking all of the above information, while still supporting the same
functionality as an ordinary Bitcoin transaction. The final transaction format
will be very similar to JoinSplit, the original format used in Zcash. We start
off by looking at how we can prevent revealing Alice’s unspent output and
her verifying key.

Prevent revealing Alice’s unspent output and verifying key
Recall that in a Bitcoin transaction, Alice would reference the UTXO

36

3.2. Design of an Anonymous Currency

she is spending as an input in the transaction. Additionally, she pro-
vides a signature proving that this UTXO really belongs to her. This
is changed in the following way. Instead of revealing an UTXO with
value v and providing a signature, Alice proves the following state-
ment in zero-knowledge:

”For a given value v, I know a verifying key vka and a signing key ska
such that

• there exists a transaction output (v, vka) in the set of all past trans-
action outputs

• ska is the signing key corresponding to vka”

In order to be able to verify the proof, nodes need a list of all transac-
tion outputs that have ever been made. Just as with the UTXO set, we
can assume that such a list is part of the shared global state, as every
node is able to compute such a list from the public ledger.

Using zero-knowledge proofs in the above way, Alice neither reveals
vka nor the exact output that she is spending, but still convinces ev-
erybody that an appropriate output exists.

However, an immediate problem is that our new design makes it im-
possible to compute the UTXO set, as nodes cannot tell which outputs
have been spent, and which outputs have not. This means that the
current version is susceptible to double spends.

A comparatively smaller problem is that the proof that a transaction is
contained in a list is terribly inefficient. We put a pin in the double-
spend problem and first concern ourselves with proof efficiency.

Improve zero-knowledge proof efficiency
Keeping a list of all transaction outputs is unwieldy and makes the ZK
proof prohibitively complex. Instead, to prove that a certain transac-
tion was conducted in the past, a Merkle tree of fixed height is used,
instantiated with a collision-resistant hash function. The leaves of the
Merkle tree contain all past transaction outputs, as in figure 3.3.

In Zcash, this Merkle tree is called the note commitment tree (why will
become apparent in a couple of paragraphs). As the note commitment
tree can be computed from the public ledger, we treat it as part of the
shared global state. In particular, the current root value rt, is known
by every node. To prove that there is some suitable transaction output,
Alice proves that such an output is part of the note tree. The zero-
knowledge statement changes accordingly to:

”For a given note commitment tree root rt and value v, I know a veri-
fying key vka, a signing key ska such that

37

3. Zcash Description

Figure 3.3: An illustration of how the note tree is computed from the blockchain.

• (v, vka) is a leaf of a Merkle tree with root rt

• ska is the signing key corresponding to vka”

This proof improves exponentially on the previous one using the sim-
ple list. Intuitively, this is because to prove that a transaction output is
part of a Merkle tree with root rt, it suffices to provide the co-path of
the leaf that contains the transaction. As the co-path has logarithmic
length in the number of past transaction outputs, we get an exponen-
tial improvement.

Changing the keys
For an arbitrary signature scheme, it is not necessarily easy to prove
that some key is the signing key corresponding to a verifying key.
To address this problem, Zcash does not use a signing/verifying key
pair. Instead, each participant possesses a spending key ska and a paying
key pka. The spending key is generated as a uniformly random bit
string. The paying key pka is computed as pka = PRFska(0), for a
pseudorandom function PRF. Note that the security properties of the
PRF render it infeasible to compute the spending key from the paying
key. The paying key takes over the function of the verifying key before,
while the spending key takes the function of the signing key. The zero-
knowledge statement is changed to:

”For given note commitment tree root rt and value v, I know a paying

38

3.2. Design of an Anonymous Currency

key pka, a spending key ska such that

• (v, pka) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)”

Prevent Bob’s public key from being revealed
In Bitcoin, Alice includes Bob’s verifying key in the output so that
when he spends the output at a later point in time, he is able to prove
that he knows the corresponding signing key. In Zcash, a commitment
scheme is used to hide Bob’s paying key.

Concretely, when creating the output, Alice picks a random value rnew

and computes cm = commitrnew(pkb). Now, set the output to be (v, cm).
Additionally, Alice proves (in zero-knowledge) that cm is computed
correctly.

Note that now Alice’s input has the format (v, commitrold(pka)) which
we need to consider in our zero-knowledge proof. Crucially, Alice is
still able to prove in zero-knowledge that she knows the spending key
corresponding to the paying key that is contained inside the commit-
ment. The zero-knowledge proof changes to:

”For given note commitment tree root rt, value v and output commit-
ment cm, I know paying keys pka, pkb, a spending key ska and values
rold, rnew such that

• (v, commitrold(pka)) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)

• cm = commitrnew(pkb)”

The hiding property of the commitment scheme makes sure that no
one is able to learn Bob’s public key just from the commitment itself.
The binding property guarantees that the output uniquely determines
the recipient, i.e. Bob can be sure that no one else is able to spend his
money.

There is a problem with this approach, though. Alice needs to know
rold in order to complete the proof. However, it was not explained
how Alice received rold in the first place, or how she communicates
the value rnew to Bob. Certainly, the r-value should not be put in the
transaction output in plaintext, because then everybody learns r, po-
tentially undermining security properties of the commitment scheme.
Instead, addresses are extended to not only contain the paying key
pk, but also a public key pkenc of a public key encryption scheme,
where the corresponding secret key skenc is known only to the holder
of the address. In practice, these keys are derived from the spend-
ing key sk. When Alice sends money to Bob, she creates the output

39

3. Zcash Description

as (v, commitrnew(pkb), Encpkenc
b
(rnew)). Bob can decrypt rnew using skenc

b
and is able to use it when he wants to spend the output.

To ensure that Alice actually encrypted the real rnew value, Bob de-
crypts the ciphertext and re-computes cm. He accepts the payment
only if it matches the commitment that was released by Alice.

Conceal transaction amount v
In the current construction, a transaction still contains the value v in
plaintext. Fortunately, it is easy to extend the construction to hide v,
by simply putting it inside the commitment. To communicate v to Bob,
Alice sends it in encrypted form alongside rnew. The zero-knowledge
statement will have to be altered accordingly. The updated statement
is:

”For given note commitment tree root rt, and output commitment cm,
I know paying keys pka, pkb, a spending key ska and values rold, rnew, v
such that

• commitrold(pka, v) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)

• cm = commitrnew(pkb, v)”

In this way, v is never revealed but it is proven implicitly that input and
output commitment contain the same v, i.e. the transaction balances.

Prevent double spending
This paragraph addresses the double spending problem. Remember
that one needs to be able to determine whether some input has already
been spent. The idea is the following. When creating a transaction,
Alice also includes a random value ρnew in the output commitment. In
addition, she sends ρnew to Bob in encrypted form alongside rnew.

Then, when Bob spends the output at a later point in time, he reveals
what’s called the nullifier nf = PRFskb(ρ

new), for a pseudorandom func-
tion PRF. In addition, Bob proves in zero-knowledge that the nullifier
is computed correctly.

A node accepts the transaction only if the nullifier has never been re-
vealed before. This works because if Bob attempts to spend an output
twice, he must necessarily reveal the same nullifier twice, and the net-
work will reject one of the transactions as invalid.

In order to check whether a nullifier has been revealed before, every
node must have a list of all revealed nullifiers. This list can be com-
puted from the blockchain, and we therefore consider it as part of the
shared state.

40

3.2. Design of an Anonymous Currency

Because Bob computes the nullifier using a pseudorandom function
indexed with his secret key, he is the only one that is able to compute
it. In particular Alice, who knows ρnew, cannot tell when Bob spends
the money by checking whether a specific nullifier is revealed.

The zero knowledge statement is updated to include the nullifier com-
putation as follows:

”For given note commitment tree root rt, output commitment cm and
nullifier nf , I know paying keys pka, pkb, a spending key ska and values
rold, rnew, v, ρold, ρnew such that

• commitrold(pka, v, ρold) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)

• cm = commitrnew(pkb, v, ρnew)

• nf = PRFska(ρ
old)”

In Zcash, the tuple (pk, v, ρ, r) is called a note. The corresponding com-
mitment commitr(pk, v, ρ) is called a note commitment. This explains
why the Merkle tree is called note commitment tree, as the outputs
that are contained in the leaves are actually note commitments.

Integrity of the transaction
In the protocol of section 3.1, transactions are integrity protected. This
is because for each input, a signature over the whole transaction is
provided. Concretely, this means that anyone who does not know the
secret keys to all inputs cannot tamper with the transaction, as they
would be unable to create a new signature.

In the current design, no such integrity protection mechanism is in
place. The creator of a transaction proves knowledge of the secret
keys to the inputs, but does not provide a signature. In case the zero-
knowledge proof is malleable, this becomes a problem.

To get similar integrity protection as in Bitcoin, Zcash makes use of a
pseudorandom function as well as a one-time signature scheme. Con-
cretely, when creating a transaction, Alice performs the following ad-
ditional steps:

1. Sample a key pair (vksig, sksig) of a one-time signature scheme.

2. Compute h = PRFska(vksig).

3. Sign the whole transaction (including h) with sksig to obtain a
signature σ.

She includes vksig, h and σ in the transaction. Also, the zero-knowledge
statement is extended to contain a proof that h was computed correctly.
The updated zero-knowledge statement is

41

3. Zcash Description

”For given note commitment tree root rt, output commitment cm, nul-
lifier nf , verifying key vksig and value h, I know paying keys pka, pkb,
a spending key ska and values rold, rnew, v, ρold, ρnew such that

• commitrold(vka, v, ρold) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)

• cm = commitrnew(pkb, v, ρnew)

• nf = PRFska(ρ
old)

• h = PRFska(vksig)”

Intuitively, we can think about the value h as a way for Alice to approve
a particular one-time verifying key.

To see why this works, let us think about an adversary Charlie trying
to tamper with Alice’s transaction. Charlie knows neither the spend-
ing key of the input, ska, nor the one-time signing key sksig. Charlie
might attempt to change the content of the transaction while keeping
the one-time key pair the same. In this case, Charlie’s transaction ver-
ifying correctly would mean he broke the security properties of the
one-time signature scheme, because he must provide a signature on a
new message by just knowing the verifying key vksig. If, on the other
hand, he changes the one-time key pair, he has no way of computing
h, as the spending key ska is required to compute the PRF (and he
has to prove that h is compute correctly). Thus, Charlie has no way of
modifying the transaction.

Preventing the Faerie Gold attack
The current scheme is susceptible to the so-called Faerie Gold Attack. In
the attack, an adversary would send coins to the victim several times,
and purposefully include duplicate ρ-values. This means that when
spending the output notes, the same nullifier must be revealed and
the victim can only spend one of the notes. Notice that if ρ was picked
truly at random, the probability that the same value was picked twice
is negligible.

To prevent the attack, Alice does not simply pick ρnew u.a.r anymore,
but instead picks a value φ u.a.r and compute the nullifier as ρnew =
PRFφ(h), for the value h = PRFska(vksig, nf). Note that the computation
of the h-value was updated to also include the nullifier nf . This ensures
that the h-values for two different transactions differ, hence the ρnew-
values will differ as well.

The zero-knowledge statement is extended to contain a proof that the
nullifier was computed in this way. The full statement is now

42

3.2. Design of an Anonymous Currency

”For given note commitment tree root rt, output commitment cm, nul-
lifier nf and value h, I know paying keys pka, pkb, a spending key ska
and values rold, rnew, v, ρold, ρnew φ such that

• commitrold(pka, v, ρold) is a leaf of a Merkle tree with root rt

• pka = PRFska(0)

• cm = commitrnew(pkb, v, ρnew)

• nf = PRFska(ρ
old)

• h = PRFska(vksig, nf)

• ρnew = PRFφ(h)”

Note that Alice can still pick φ freely. To perform the Faerie Gold
attack with the new design, Alice would have to pick two values φ1, φ2
so that PRFφ1(h1) = PRFφ2(h2) for h1 ̸= h2. This is assumed to be
infeasible.

Allowing multiple inputs and outputs
Up until this point, we have considered the simplified situation where
a transaction contains exactly one input and output. Of course, trans-
actions with multiple inputs and outputs need to be supported. To do
so, the following changes need to be implemented.

• For inputs, perform the same steps as before, but for each input
separately. Compute and release a nullifier nf as well as a value h.
In addition, prove (in zero-knowledge) knowledge of the spend-
ing key, and that nf and h were computed correctly.

• For each output, generate ρnew and rnew as in the one-output case.
For every output commitment, prove it has been computed cor-
rectly.

• Prove that the sum of input values is equal to the sum of output
values. This was proven implicitly before, as there was only a
single value v for both input and output.

These changes will conclude the journey of creating an anonymous
transaction type. To summarize everything, the next section goes
through a complete example.

Complete transaction example
Suppose that Alice wants to spend n inputs, where the i-th input is
of the form cmold

i = commitrold
i
(pka,i, vold

i , ρold
i). For each input, Alice

knows rold
i , pka,i, vold

i , ρold
i as well as the spending key ska,i correspond-

ing to the paying key pka,i. She would like to send the money to m dif-
ferent addresses, (pkb,1, pkEnc

b,1), . . . , (pkb,m, pkEnc
b,m), sending an amount

43

3. Zcash Description

vnew
i to pkb,i. She needs to make sure that the transaction balances, i.e.

∑n
i=1 vold

i = ∑m
j=1 vnew

j .

First, Alice samples a one-time signature pair (vksig, sksig). Then, she
proceeds as follows.

for each i ∈ {1, . . . , n}:

1. Compute nf i = PRFska,i(ρi)

2. Compute hi = PRFska,i(vksig, nf i)

Then she picks a random value φ and for each j ∈ {1, . . . , m}:

1. Pick random values rnew
j

2. Compute ρnew
j = PRFφ(i, h1, . . . , hn)

3. Compute cmj = commitrnew
j
(pkb,j, vnew

j , ρnew
j)

4. Compute Cj = EncpkEnc
b,j
(ρnew

j , rnew
j , vnew

j)

Then, she computes a zero-knowledge proof π for the statement:

”Given input:

• note commitment tree root rt

• output commitments cm1, . . . , cmm

• nullifiers nf 1, . . . , nf n

• values h1, . . . , hn

I know

• paying keys vka,1, . . . , vka,n, vkb,1, . . . , vkb,m

• spending keys ska,1, . . . , ska,n

• values rold
1 , . . . , rold

n , rnew
1 , . . . , rnew

m

• values vold
1 , . . . , vold

n , vnew
1 , . . . , vnew

m

• values ρold
1 , . . . , ρold

n , ρnew
1 , . . . , ρnew

m

• value φ

such that the following statements hold:

• ∀i ∈ {1, . . . , n}: commitrold
i
(pka,i, vold

i , ρold
i) is a leaf of a merkle tree

with root rt

• ∀i ∈ {1, . . . , n}: pka,i = PRFska,i(0)

• ∀i ∈ {1, . . . , n}: nf = PRFska,i(ρ
old
i)

44

3.3. The Sapling Update

• ∀j ∈ {1, . . . , m}: cmi = commitrnew
i

(pkb,i, ui, ρnew
i)

• ∀i ∈ {1, . . . , n}: hi = PRFska,i(vksig, nf i)

• ∀j ∈ {1, . . . , m}: ρnew
j = PRFφ(i, h1, . . . , hn)

• ∑n
i=1 vi = ∑m

j=1 uj ”

Finally, she creates a signauture σ over all public values of the transac-
tion, using sksig. The final transaction contains:

• commitments cmnew
1 , . . . , cmnew

m

• nullifiers nf 1, . . . , nf n

• values h1, . . . , hn

• ciphertexts C1, . . . , Cm

• the one-time-signature verifying key vksig

• signature σ

• the zero-knowledge proof π.

A node receiving the transaction would verify the proof π as well as
the signature σ using the one-time verifying key pksig. If any verifica-
tion fails, the transaction would be rejected. Otherwise, the transaction
is accepted and appended to the blockchain. As a result, the new com-
mitments cm1, . . . , cmm are inserted into the note commitment tree, and
the revealed nullifiers nf 1, . . . , nf n are added to the nullifier set.

3.2.1 Summary

This section showed how Zcash uses zero-knowledge proofs to in-
crease privacy of transactions. The zero-knowledge statements became
increasingly complex towards the final design. Except for some subtle
differences, this final design is essentially the original Zcash trans-
action design, called JoinSplit. The associated zero-knowledge proof
statement is called the JoinSplit statement. In 2018, a major update
called Sapling introduced considerable changes. These changes are
discussed in section 3.3.

3.3 The Sapling Update

This section discusses the changes to the transaction structure that were in-
troduced in the Sapling update. While section 3.2 serves to give an intuition
to the reader of how an anonymous currency can work, the purpose of this
section is do introduce the exact statements that are used in the Sapling ver-
sion of Zcash. It will also use the same notations for keys, functions, etc.

45

3. Zcash Description

as the Zcash specification, to give the reader an opportunity to cross-check
easily.

Section 3.3.1 describes the most important changes and the motivation be-
hind them on a conceptual level. Section 3.3.2 defines the primitives that
are to be used in the zero-knowledge proof, such as commitment schemes
and hash functions. Then, sections 3.3.3 and 3.3.4 will define the exact zero-
knowledge statements that are proven in the Sapling version of Zcash.

3.3.1 Conceptual Changes

This section describes the changes that the Zcash design has undergone in
the Sapling update. As all the changes are interconnected, it is difficult to
find an order for presentation that is really satisfactory. We have opted to
first describe the changes to the key schedule (i.e. the procedure in which
cryptographic keys and addresses are generated), as it serves as a catalyst
for numerous other changes down the line.

Keys and Addresses

The format of cryptographic keys and addresses has changed considerably
in Sapling. To understand the motivation for this change, recall the key
schedule of Sprout, depicted in figure 3.4.

Figure 3.4: The Sprout key schedule. Figure adapted from the Zcash specification.

Essentially, the spending key sk serves as a master and is used to derive
both the paying key pk = PRFsk(0) as well as a public/private key pair
(skenc, pkenc) of an encryption scheme. Additionally, whenever spending
funds, knowledge of sk has to be proven in the zero-knowledge proof.

One reason why this key schedule is suboptimal is that it does not allow for
fine grained access. To give an example, the spending key is needed even
just to identify outgoing transactions on the blockchain. This means that
there is no way to allow someone to see one’s transactions without giving
full spending authority as well.

46

3.3. The Sapling Update

The Sapling key schedule, on the other hand, allows for much finer grained
access, as there is a hierarchy of keys, and each level provides increasing
functionality.

The new key schedule. Figure 3.5 shows the new key schedule. The next
couple of paragraph explain the format of the different keys, how to derive
them and their function.

Figure 3.5: The Sapling key schedule. Two parallel lines indicate that the same key is used as
part of different key tuples. Figure adapted from the Zcash specification.

The spending key sk ∈ {0, 1}256 functions as a master key that is used to

47

3. Zcash Description

derive all other keys. It is picked as a uniformly random string of bits.
The spending key is only used to derive keys, but never used directly in a
zero-knowledge proof or anywhere else.

Utilizing a PRF called PRFExpand, the spending key is used to derive a tuple
called the expanded spending key, which consists of two keys: The spend
authorizing key ask ∈ ZrJ

, which is derived as ask = PRF
Expand
sk (0) and the

nullifier private key nsk ∈ ZrJ
, which is derived similarly to ask as nsk =

PRF
Expand
sk (1).2

It is helpful to think of the expanded spending key as a bisection of the
old spending key sk in Sprout. Knowledge of both ask and nsk must be
demonstrated when spending funds. However, while knowledge of nsk is
proven directly in zero-knowledge (as with sk in Sprout), knowledge of ask
is demonstrated outside the zero-knowledge proof using a so-called spend
authorization signature. The signature scheme is further explained below, in
the paragraph ”Spend Authority”.

The reason for this separation is that computationally limited devices can
delegate the creation of the zero-knowledge proof without sharing the spend
authorizing key ask. The third party is able to create the zero-knowledge
proof, but does not have the power to spend any notes on its own. Note
that this was impossible in Sprout: To delegate the creation of the zero-
knowledge proof, one must share the spending key sk, giving full power to
the external party.

The next key tuple is called the proof authorizing key and contains nsk
as well as a new key ak ∈ J derived as ak = [ask] GSapling. The proof
authorizing key allows to create the zero-knowledge proof (see paragraph
”spend authority” below for how ak is used in the zero-knowledge proof).
However, the proof authorizing key does not give the capability to spend
any notes, as ask would be required for this.

The last key tuple is called the full viewing key3. It contains the key ak
as well as a key nk ∈ J derived from nsk as nk = [nsk] HSapling. The key
nk is used to compute the nullifier as nf = PRF

n f Sapling
nk (ρ), using a PRF

called PRFn f Sapling. Note that the nullifier is computed in a similar way in
Sprout, except that there, the PRF is indexed directly by the spending key
sk. However, ρ is derived differently in Sapling (see below). Knowledge of
nk allows to identify outgoing transactions by recomputing the nullifier and
comparing it with the published nullifier. If they match, the transaction was
sent from the party owning nk.

2Technically, the PRF does not directly map to ZrJ
. Instead, one interprets the PRF

output (which is a bitstring) as a number, and then squishes to a scalar in ZrJ

3Technically, the full viewing key contains another key called ovk. The role of this key is
not discussed here, as it is irrelevant for our purposes.

48

3.3. The Sapling Update

The incoming viewing key ivk is derived from ak and nk using a collision
resistant hash function CRHivk as ivk = CRHivk(ak, nk). The incoming view-
ing key allows to view all incoming transactions. How it works is that in
Sapling, the incoming viewing key is used to decrypt the ciphertext that
contains the randomness of commitments, etc. (see ”Key Agreement” be-
low). Therefore, to find incoming transactions on the blockchain, one goes
through all transactions one by one and tries to decrypt the associated ci-
phertexts. A successful decryption indicates that a transaction was sent to
an address derived from ivk.

Finally, the incoming viewing key is then used to derive diversified ad-
dresses, which are the counterpart of the paying key in Sprout. The advan-
tage of diversified addresses over paying keys is that one can create many
diversified addresses for a single spending key, where in Sprout, a new
spending key must be sampled for every paying key.

A diversified address is derived using DiversifyHashSapling, a function that
essentially maps bit strings onto arbitrary elements on the Jubjub curve.
To compute a diversified address, pick a random diversifier d ← {0, 1}88,
and compute gd = DiversifyHashSapling(d). Then, compute pkd = [ivk] gd
and set the address to be (d, pkd). Multiple addresses can be generated by
repeatedly picking new d values.

Note Format

In Sprout, a note contains four values: The paying key pk, the value v, a
value ρ to compute the nullifier, and randomness r which is used to compute
the commitment.

In Sapling, the paying key pk is replaced by a diversified address (d, pkd).
This change is reflected in the note format, as a Sapling note contains the
two values gd = DiversifyHashSapling(d) and pkd instead of pk.

The ρ-value is also no longer part of the note. Instead, ρ is computed from
the note commitment and its position on the note commitment tree as ρ =
MixingPedersenHash(cmold, pos), using a hash function called MixingPedersenHash.
Computing ρ in this fashion makes sure that each transaction contains a
unique ρ-value and is essentially a replacement for the previous defense
against the Faerie Gold attack.

The values v and r are still part of the note. To align with the Zcash specifi-
cation, r will be denoted rcm from now on.

Note commitments are computed as cm = NoteCommitSaplingrcm (reprJ(gd), reprJ(pkd), v),
using a commitment function called NoteCommitSapling.

49

3. Zcash Description

Spend Authority

As was already described, knowledge of both ask and nsk is required to
spend any notes. Knowledge of nsk is proven directly in the zero-knowledge
proof, in the same manner as knowledge of sk is proven in Sprout. How-
ever, knowledge of ask is demonstrated outside the zero-knowledge proof.
Concretely, one has to provide a separate spend authorization signature using
ask as the signing key.

The spend authorization signature is a Schnorr-based signature scheme that
allows so-called re-randomization of the verifying key ak = [ask] GSapling.
The verifying key ak cannot be revealed directly, because this would al-
low linking payments as it would essentially be equivalent to the sign-
ing procedure in Bitcoin. Rather, a re-randomization of the verifying key,
rk = ak + [α] GSapling is published, and it is proven in zero-knowledge that
rk is a valid re-randomization of ak.

Then, the whole transaction is signed using the re-randomized signing key
rsk = ask + α. The signature can be verified using only the re-randomized
verifying key rk, but still convinces the verifying party that the signer is in
possession of the original signing key ask.

As a bonus, Alice not only proves that she knows the spend authorization
key ask, but the signature additionally provides integrity protection, render-
ing the previously used integrity protection mechanism redundant.

As was already mentioned, the main reason to have two separate keys
ask and nsk, and proving knowledge of ask outside the zero-knowledge
proof is that it allows computationally limited devices to delegate the zero-
knowledge proof by only sharing the proof authorizing key (ak, nsk). The
external party is still able to re-randomize ak in the zero-knowledge proof,
but does not gain capability to spend any notes by itself, as it does not know
ask.

Tying the Address to the Extended Spending Key

In Sprout, the paying key pk is derived directly from the spending key as
pk = PRFsk(0). Proving knowledge of sk therefore immediately proves that
an output note containing pk belongs to Alice, as she proves that the pay-
ment was directed at a paying key that was derived from her spending key.

The new key schedule introduces several layers of indirection between the
proof authorizing key and the diversified address. This makes it necessary
to prove in several steps that the address was actually derived from the par-
ticular values of ak and nsk that are used in the proof. To do so, the address
is essentially re-computed from ak and nsk in the zero-knowledge proof and

50

3.3. The Sapling Update

asserted to be equal to the address contained in the input commitment (see
”diversified address integrity” in section 3.3.3).

Splitting up the Zero-Knowledge Proof

Sapling introduces a big change in the format of the zero-knowledge proof,
by splitting up the large JoinSplit statement that is used in Sprout. Instead,
Sapling defines two smaller, more modular statements called Spend and Out-
put. While this drastically changes the format, it is conceptually straightfor-
ward:

The Spend statement contains those parts of the zero-knowledge proof that
concern inputs. Concretely, the following things are part of the Spend state-
ment:

• The Merkle path check

• Integrity of the value commitment (see ”Value commitments” below)

• Nullifier computation

• Re-randomization of ak

• Tying the address to the extended spending key

In contrast to the JoinSplit statement, a single Spend statement only covers
a single input. If a transaction has several inputs, several proofs for Spend
statements have to be included.

The Output statement, on the other hand, includes all parts that are con-
cerned with outputs. Specifically, the following things are proven:

• Integrity of the output commitment

• Integrity of the output value commitment (see ”Value Commitments”
below)

• Integrity of the ephemeral public key (see ”Key Agreement” below)

Just as the Spend statement, the Output statement also only covers a single
output. Several outputs require several separate Spend statement proofs.

Consequences. Most parts of the zero-knowledge proof are relatively un-
affected by the split-up. The only part that needs to be changed is the bal-
ancing property as the new proof format makes it impossible to prove the
balancing property in zero knowledge. This is because the new statements
only concern themselves with a single input or output, but are unaware
of other inputs or outputs in the transaction. The next paragraph ”Value
Commitments” discusses how this problem is solved in Sapling.

51

3. Zcash Description

Value Commitments

Splitting up the zero-knowledge proof renders it impossible to prove the
balancing property directly in zero-knowledge. To guarantee balance in a
transaction, Sapling uses a separate (homomorphic) commitment scheme
ValueCommitSapling and a so-called Sapling binding signature.

Concretely, when creating a transaction, Alice does the following. For every
input note containing some value vold

i , she samples randomness rcvold
i uni-

formly at random and publishes the commitment ValueCommitSapling
rcvoldi

(vold
i).

Similarly, for every output note with value vnew
j , she generates randomness

rcvnew
j uniformly at random and publishes the commitment ValueCommitSaplingrcvnewj

(vnew
j).

Additionally, for each input and output she proves in the associated Spend/Output-
statement that the published value commitment contains the same value as
the note commitments.

Then, a new commitment c is computed by adding up all input value com-
mitments and subtracting all output values commitments as

c = ∑
i
ValueCommitSapling

rcvoldi
(vold

i)−∑
j
ValueCommitSaplingrcvnewj

(vnew
j)

= ValueCommitSapling
∑i rcv

old
i −∑j rcv

new
j

(
∑

i
vold

i −∑
j

vnew
j

)

Note that if the transaction balances, c is a commitment to the value 0 as
ValueCommitSapling is additively homomorphic. The sapling binding signa-
ture allows Alice to prove exactly this, that she is able to open c to the value
0. Therefore, by providing a sapling binding signature, Alice demonstrates
that the transaction balances.

Key Agreement

Recall that Alice needs to communicate the values ρnew, rnew, and v to Bob,
so that he is later able to spend the money. In the design of section 3.2, this is
achieved using Bob’s public encryption key pkEnc

b and including a ciphertext
C = EncpkEnc

b
(ρnew, rnew, v) in the transaction.

Instead of directly using public key encryption, Sapling uses a key agree-
ment scheme as follows. When sending funds to an address (d, pkd), one
picks an ephemeral key esk and computes a shared secret

[esk] pkd = [esk][ivk] gd = [esk · ivk] gd.

From this shared secret, one derives a symmetric key that is then used to
do the encryption. The sender also includes their ephemeral public key

52

3.3. The Sapling Update

epk = [esk] gd in the output, and in addition, proves in zero-knowledge that
epk is computed correctly.

The receiver (who knows ivk) is able to compute the shared secret as

[ivk] epk = [ivk] [esk] gd = [esk · ivk] gd.

Which allows them to derive the symmetric key and do the decryption.

3.3.2 Instantiations

This section discusses how the primitives which, up to this point, were de-
scribed in abstract terms, like commitments and pseudorandom functions,
are actually instantiated in Zcash. Following a convention in the Zcash spec-
ification, a ⋆-symbol is used to mark variables that are bit-representatives of
scalars or Jubjub curve points.

Note Commitment

The note commitment function NoteCommitSapling is a commitment function
instantiated as a windowed Pedersen commitment. It is defined as

NoteCommitSapling : {0, . . . , 2252 − 1} × {0, 1}256 × {0, 1}256 × {0, . . . , 264 − 1} → J

NoteCommitSaplingrcm (g⋆d, pk⋆d, v) =
WindowedPedersenCommitmentrcm(111111||I2LEBSP64(v)||g ⋆d ||pk⋆d)

Value Commitment

The value commitment function ValueCommitSapling is a commitment func-
tion instantiated using the homomorphic Pedersen commitment scheme. It
is defined as

ValueCommitSapling : {0, 1}252 ×
{
− rJ − 1

2
, . . . ,

rJ − 1
2

}
→ J

ValueCommitSaplingrcv (v) = HomomorphicPedersenCommitmentrcv(”Zcash cv”, v)

Pseudorandom function

A pseudorandom function PRFnfSapling is used to compute the nullifier from
a value ρ. PRFnfSapling is instantiated using the BLAKE2s hash function. It is
defined as

PRFnfSapling : {0, 1}256 × {0, 1}256 → {0, 1}256

PRFnfSapling(nk⋆, ρ⋆) = BLAKE2s− 256(”Zcash n f ”, LEBS2OSP256(nk⋆)||LEBS2OSP256(ρ⋆))

53

3. Zcash Description

Collision Resistant Hash Function

The collision resistant hash function CRHivk is defined as

CRHivk : {0, 1}256 × {0, 1}256 → {0, . . . , 2251 − 1}
CRHivk(ak⋆, nk⋆) =

LEOS2IP256(BLAKE2s− 256(”Zcashivk”, LEBS2OSP256(ak⋆)||LEBS2OSP256(nk⋆))) mod 2251

54

3.3. The Sapling Update

3.3.3 Spend Statement

As described in section 3.3.1, the zero-knowledge proof in Sapling is divided
into two parts. The first part, called the Spend statement, is associated with
spending an old note (d, pkd, vold, rcmold). The Spend statement is defined as
follows.

Spend Statement

Given public input

(rtSapling ∈ {0, 1}255,

cvold ∈ J,

nf old ∈ {0, 1}256,
rk ∈ J),

the prover knows

(path ∈ {0, 1}255·28,

pos ∈ {0, . . . , 228 − 1},
gd ∈ J,
pkd ∈ J,

vold ∈ {0, . . . , 264 − 1},
rcvold ∈ {0, . . . , 2252 − 1},
cmold ∈ J,

rcmold ∈ {0, . . . , 2252 − 1},
α ∈ {0, . . . , 2252 − 1},
ak ∈ J,

nsk ∈ {0, . . . , 2252 − 1}),

such that the following holds:

Note commitment integrity cmold = NoteCommitSapling
rcmold (reprJ(gd), reprJ(pkd), vold).

Merkle path validity Either vold = 0 or (path, pos) is a valid Merkle path
from ExtractJ(r)(cmold) to the root rtSapling.

Value commitment integrity cvold = ValueCommitSapling
rcvold

(vold).

Small order checks gd and ak are not of small order, i.e. [hJ] gd ̸= OJ and
[hJ] ak ̸= OJ.

55

3. Zcash Description

Nullifier integrity nf old = PRF
n f Sapling
nk⋆ (ρ⋆), where

nk⋆ = reprJ([nsk] HSapling),
ρ⋆ = reprJ(MixingPedersenHash(cmold, pos))

Spend authority rk = ak + [α] GSapling

Diversified address integrity pkd = [ivk] gd, where
ivk = CRHivk(ak⋆, nk⋆),
ak⋆ = reprJ(ak)

Discussion

This section discusses the different parts of the statement and their purpose.

Note commitment integrity This part of the proof is essentially the same as
in JoinSplit, except that the note commitments have changed in format.

Merkle path validity. This is a slightly more concrete version of what in
section 3.2 was simply described as ”cm(..) is a leaf of a Merkle tree with root
rt”. In reality, the prover provides a merkle tree co-path path and the posi-
tion of the leaf, pos. These two values allow to recompute the root value and
compare it with rt inside the zero-knowledge circuit. For more details, see
section 4.1.18. Additionally, the Merkle check is only needed if any money
is spent, i.e. vold ̸= 0.

Value commitment integrity Similar to note commitment integrity - It is
simply proven that cvold is computed correctly and contains the same value
vold as the note commitment.

Small order checks These small order checks are a technical necessity to
defend against some attacks. We don’t go into details here.

Nullifier integrity This part is similar to the nullifier integrity of the Join-
Split statements, but adapted for the new nullifier computation. In addition,
notice that nk is not directly provided as an auxiliary input, but rather com-
puted as nk = [nsk] HSapling. This is a crucial detail, as it makes sure that
the prover knows the value nsk.

Spend authority Here it is proven that rk is a valid re-randomization of
the key ak, i.e. was computed by picking a value α and computing rk =
ak + [α] GSapling.

Diversified address integrity The purpose of this statement is to show that
pkd is really a diversified address derived from the keys ak and nk. This is
necessary to tie the values together, as otherwise, an attacker could poten-
tially spend a note containing pkd using a different spending key ask′.

56

3.3. The Sapling Update

3.3.4 Output Statement

The second type of zero-knowledge statement is called the Output state-
ment. Every proof of an Output statement is associated with the creation of
an output note (d, pkd, vnew, rcmnew). The Output statement is:

Output statement

Given public input

(cvnew ∈ J,

cmu ∈ {0, 1}255,
epk ∈ J),

the prover knows

(gd ∈ J,

pk⋆d ∈ {0, 1}256,

vnew ∈ {0, . . . , 264 − 1},
rcvnew ∈ {0, . . . , 2252 − 1},
rcmnew ∈ {0, . . . , 2252 − 1},
esk ∈ {0, . . . , 2252 − 1}),

such that the following holds:

Note commitment integrity cmu = ExtractJ(r)(NoteCommitSaplingrcmnew (g⋆d, pk⋆d, vnew)),
where g⋆d = reprJ(gd)

Value commitment integrity cvnew = ValueCommitSaplingrcvnew (vnew)

Small order check gd is not of small order i.e. [hJ] gd ̸= OJ

Ephemeral public key integrity epk = [esk] gd

Discussion

Note commitment integrity This point proves that the output commitment
is well formed. As a technical detail, note that the output commitment cmu
is given as a bitstring instead of a point on Jubjub, which is why ExtractJ(r)

has to be used in the proof.

Value commitment integrity Here, it is proven the the output value com-
mitment is well formed and contains the same value vnew as the note com-
mitment.

57

3. Zcash Description

Small order check It is required to demonstrate that gd is not a point of
small order on the elliptic curve. This helps to prevent some attacks, but we
do not go into details here.

Ephemeral public key integrity It is proven that the ephemeral public key,
used by the receiver to decrypt the ciphertext, is well formed.

58

Chapter 4

Spend and Output Encodings

This chapter first shows how to encode the Zcash Spend and Output state-
ments as Diophantine equations, so that they can be proven using TV20.
Then, a comparison is drawn between the proof size of the current system
(Groth16) and the proof size when using TV20. The last section contains
benchmarks on the proof size, obtained with a prototype implementation of
the inner product argument of TV20.

4.1 Encodings

Appendix A of the Zcash specification [20] contains a detailed description of
how the Spend and Output statements are encoded as Quadratic Constraint
Programs or QCPs, which is the input format of Groth16. Their presenta-
tion is incremental, in that they first provide constraints for simple building
blocks, that are then assembled into the more involved statements. We fol-
low this approach exactly. All equations for the building blocks are written
as discussed in section 2.7.5, so that the Hadamard product and linear con-
straints can easily be read off. Additionally, for every building block, we in-
clude the cost of tying input variables to previous variables in the Hadamard
product, as in the majority of the cases where the buildings blocks are used,
this cost needs to be included (see section 2.7.5). Helper variables that are
introduced to store intermediate values will generally be denoted zi.

4.1.1 Boolean Constraint

A variable b is constrained to be a bit, i.e. b ∈ {0, 1} using the equation

(b2 − b) = 0

This adds a single entry to the Hadamard product and two linear constraints
to guarantee consistency between entries. When used in composition, we

59

4. Spend and Output Encodings

need an additional linear constraint to tie b to previous variables in the
Hadamard product. In total, this amounts to one entry in the Hadamard
product and three linear constraints.

4.1.2 Conditional Equality

To implement the statement ”either a = 0 or b = c”, one can use the equation

(ab− z1)
2 + (ac− z2)

2 + (z1 − z2)
2 = 0

This adds two entries to the Hadamard product and two linear constraints:
One for consistency between a-values and another one for the last term.
When used in composition, three linear constraints are needed to bind the
input value a, b, c to previous variables. In total, these are 2 entries in the
Hadamard product and 5 linear constraints.

4.1.3 Selection Constraint

Assume b has already been boolean-constrained. Then ”z = (b ? x : y)” can
be encoded using the equation

(by− z1)
2 + (bx− z2)

2 + (z1 − z2 − y + z)2 = 0

This adds two entries to the Hadamard product, a linear constraint for con-
sistency between b values and another linear constraint for the second term.
To compose, three linear constraints are needed to bind b, x, y to previous
values. In total, 2 entries to the Hadamard product and 5 linear constraints
are needed.

4.1.4 Nonzero Constraint

To prove that a value a is nonzero modulo r, it suffices to provide an inverse,
e.g. values ainv and k such that ainv · a = 1 + kr. This can be implemented as
the equation

(a · ainv − z1)
2 + (1 + kr− z1)

2 = 0

The first term adds an entry to the Hadamard product, the second one is a
single linear constraint. To compose, another linear constraint is needed to
tie a to a previous output. In total, this amounts to 1 entry in the Hadamard
product and 2 linear constraints.

4.1.5 Exclusive-or Constraint

Assume that a, b are boolean-constrained. One can implement ”a⊕ b = c”
with the equation

(ab− z1)
2 + (2z1 − a− b + c)2 = 0

60

4.1. Encodings

This adds an entry to the Hadamard product as well as a linear constraint.
In addition, 2 linear constraints are needed to tie a, b when composing. In
total, 1 entry to the Hadamard product and 3 linear constraints are needed.

4.1.6 Unpacking

Let n ∈N+ be a constant. The operation of converting a field element a ∈ Fr
to boolean variables b0, . . . , bn−1 ∈ {0, 1} such that a = ∑n−1

i=0 bi · 2i mod r is
called unpacking. The inverse operation is called packing. Assuming that
the boolean variables are constrained separately, this can be implemented
with a single linear constraint,

n−1

∑
i=0

bi · (2i mod r) = a + kr.

4.1.7 Range Check

Assume we want to constrain a ≤ c for some constant c ∈ N. We can use
the fact that for every natural number x, 4x + 1 can be written as the sum of
3 squares (as suggested by Groth [18]), and prove that a ≤ c by providing
three numbers such that the sum of their squares is equal to 4(c − a) + 1.
This is expressed by the equation

(z1 − x2
1)

2 + (z2 − x2
2)

2 + (z3 − x2
3)

2 + (c− a− z1 − z2 − z3)
2 = 0

3 entries in the Hadamard product and three linear constraints for consis-
tency are needed for the first three terms. Additionally, another single linear
constraint is needed for the last term. When composing, one more linear
constraint is needed to tie a to a previous value. In total, this amounts to 3
Hadamard product entries and 5 linear constraints.

4.1.8 Check that Affine-ctEdwards Coordinates are on the Curve

The ctEdwards Jubjub curve has been introduced in section 2.8.2. To check
that a point (u, v) is on the curve, we simply need to check that aJ · u2 + v2 =
1 + dJ · u2 · v2 + kr, for some k. This can be implemented with the equation

(u2− z1)
2 +(v2− z2)

2 +(z1 · z2− z3)
2 +(aJ · z1 + z2− 1− dJ · z3− kr)2 = 0,

The first three terms add 3 entries to the Hadamard product, 2 linear con-
straints to provide consistency for the u and v values, and 2 linear constraints
for consistency between the z1 and z2 values. The last term is a single linear
constraint. When composed, another 2 linear constraints are needed to bind
u, v to previous Hadamard product entries. In total, these are 3 Hadamard
product entries and 7 linear constraints.

61

4. Spend and Output Encodings

4.1.9 ctEdwards (de)Compression and Validation

On the ctEdwards Jubjub curve (section 2.8.2), given a compressed point
(ũ, v) and u, check that (u, v) is a valid decompression of (ũ, v) or vice-versa.
To do so, we need to perform three separate checks.

1. Check that (u, v) is on the curve.

2. Unpack u modulo qJ, as u = ∑254
i=0 ui · 2i. Additionally, boolean-constrain

u0, . . . , u254. Equate ũ with u0.

3. Check that u ≤ rJ − 1.

The first part adds 3 entries to the Hadamard product and 7 linear con-
straints. The second part adds 255 entries to the Hadamard product and
256 linear constraints. The third part adds 3 entries to the Hadamard prod-
uct and another 5 linear constraints. In total, this adds 261 entries to the
Hadamard product and 268 linear constraints.

4.1.10 Conversion between ctEdwards and Montgomery Forms

Given a point (u, v) on the ctEdwards Jubjub curve, we want to convert it
to the point (x, y) on the Montgomery Jubjub curve and vice-versa, using
the functions introduced in section 2.8.2. Let s be defined as in section 2.8.2.
The conversion can be implemented using the following equation

(yu− z1)
2 + (xv− z2)

2 + (z1 − sx)2 + (z2 + v− x + 1)2 = 0,

These add a total of 2 entries to the Hadamard product, as well as 2 linear
constraints. To tie u, v (or x, y respectively when converting in the other di-
rection) to previous variables when composing, another 2 linear constraints
are needed. In total, 2 entries to the Hadamard product and 4 linear con-
straints are needed.

Note that the equations above only implement the conversion correctly if no
exceptional cases occur. The Zcash specification contains a proof that con-
versions are only used whenever exceptional cases cannot occur (Appendix
A, section 3.3.3).

4.1.11 Affine Montgomery Arithmetic

To add two points (x1, y1), (x2, y2) on a Montgomery curve, we directly im-
plement the formulas from section 2.8.2. Actually, we only implement the
case where x1 ̸= x2, as the Montgomery addition will only be used in cases
where this can be assumed (there is a proof on this in the Zcash specifica-
tion, appendix A, section 3.3.4). To add the two points in this case we use

62

4.1. Encodings

the equation

(x1λ− z1)
2 + (x2λ− z2)

2 + (x3λ− z3)
2 + (λ2 − z4)

2

+(z2 − z1 − y2 − y1 + k1r)2

+(BMz4 − AM − x1 − x2 − x3 + k2r)2

+(z1 − z3 − y3 − y1 + k3r)2 = 0

The first four terms add 4 entries to the Hadamard product and 4 linear
constraints to guarantee consistency between λ values. The last three terms
add three 3 constraints. When composing, we need another 4 linear con-
straints to bind the input values to previous variables. In total, 4 entries to
the Hadamard product as well as 11 linear constraints are needed.

4.1.12 Affine ctEdwards Arithmetic

The formulas for adding two points (u1, v1), (u2, v2) on a ctEdwards curve
that were introduced in section 2.8.2 can be turned into Diophantine equa-
tions directly as

(1 + dJu1u2v1v2) · u3 = u1v2 + v1u2 + k1r
(1− dJu1u2v1v2) · v3 = v1v2 − aJu1u2 + k2r

To read off a Hadamard product and linear constraints, the above is trans-
formed into

(u1v2 − z1)
2 + (v1u2 − z2)

2 + (v1v2 − z3)
2 + (u1u2 − z4)

2

+(z1z2 − z5)
2 + (z5u3 − z6)

2 + (z5v3 − z7)
2

+(u3 + dJz6 − z1 − z2 + k1r)2

+(v3 − dJz7 − z3 + ajz4 + k2r)2 = 0

The first seven terms add 7 entries to the Hadamard product and need 4
linear constraints to check consistency for the values u1, u2, v1, v2. The last
two terms add a linear constrain each. To bind the input values to previ-
ous variables, another 4 linear constraints are needed. In total, these are 7
Hadamard product entries and 10 linear constraints.

4.1.13 Affine ctEdwards nonsmall-Order Check

The Jubjub curve has a cofactor of hJ = 8 and we want to be able to check
whether a point is of order hJ or less. To do so, one can double the point
three times and check if the u-coordinate is 0 (recall that the neutral element

63

4. Spend and Output Encodings

is OJ = (0, 1)). Doubling three times adds 21 entries to the Hadamard
product and 30 linear constraints (section 4.1.12). A nonzero check needs a
single Hadamard product entry and two linear constraints (section 4.1.4). In
total, 22 Hadamard product entries and 32 linear constraints are needed for
a nonsmall-order check.

4.1.14 Fixed-base Affine ctEdwards Scalar Multiplication

We want to compute [k]B for a fixed point B on the ctEdwards Jubjub curve
and a scalar k. For now, we assume the scalar k to be as large as the group
order, which is 251 bits in the case of Jubjub (if it is larger, we can add
one additional linear constraint to reduce it modulo the group order, but it
could be smaller). Also assume that the scalar has been boolean-constrained
separately.

To do the operation, we will use pre-computed 3-bit window tables. The
technique is based on the following idea. The scalar can be expressed in
base 8 as k = ∑83

i=0 ki · 8i (one could choose any other base and proceed
similarly, but base 8 results in the most efficient encoding). Therefore we
can write

[k]B =
83

∑
i=0

[ki · 8i] · B =
83

∑
i=0

w(B,i,ki)

where w(B,i,ki) := [ki · 8i] · B. The values w(B,i,s) are pre-computed for i ∈
{0, . . . , 83} and s ∈ {0, . . . , 7}. Then, for each 3-bit window, we will use an
equation that ’selects’ the correct pre-computed value depending on the bits
of that window. Finally, we add up all the selected values to get the results.

Window selection. To see how the selection works, let us fix a value i
and look only at the i-th window, ki. Denote the three bits of this window as
ki = [s0, s1, s2]. We want to select the value w(B,i,s) such that s = 4s2 + 2s1 + s0.
Recall that a value w(B,i,s) =: (us, vs) is a point on an elliptic curve, and
therefore a pair of coordinates. We use the following equations to select the
correct value. The first equation defines ”AND”-style variables for subsets
of the three bits. The remaining two equations select the us and vs values ac-
cording to the inclusion-exclusion principle using the previously computed
variables. Note that these last two equations are linear.

(s01 − s0s1)
2 + (s02 − s0s2)

2 + (s12 − s1s2)
2 + (s123 − s01s2)

2 = 0

64

4.1. Encodings

us = u0+(u1 − u0) · s0 + (u2 − u0) · s1 + (u4 − u0) · s2

+(u3 + u0 − u1 − u2) · s01

+(u5 + u0 − u1 − u4) · s02

+(u6 + u0 − u2 − u4) · s12

+(u7 − u6 − u5 − u3 + u1 + u2 + u4 − u0) · s123

vs = v0+(v1 − v0) · s0 + (v2 − v0) · s1 + (v4 − v0) · s2

+(v3 + v0 − v1 − v2) · s01

+(v5 + v0 − v1 − v4) · s02

+(v6 + v0 − v2 − v4) · s12

+(v7 − v6 − v5 − v3 + v1 + v2 + v4 − v0) · s123

The first equation adds four entries to the Hadamard product and 5 linear
constraints to guarantee consistency between entries. The other equations
are two linear constraints.

The selection has to be done for all of the 84 windows. Thereafter, we need
to add the selected values using 83 ct-Edward additions, each of which takes
7 entries in the Hadamard product and 10 linear constraints (section 4.1.12).
When composed, another 255 linear constrains are needed to bind the input
bits to previous variables. In total, this amounts to 84 · 4 + 83 · 7 = 917
entries in the Hadamard product as well as 84 · 7 + 84 · 10 + 255 = 1683
linear constraints.

In case the scalar does not have the full length of 252 bits, the number of
windows decreases. The scalar multiplication is also used with scalars of
64 and 32 bits. In the case of 64 bits, we have ⌈64/3⌉ = 22 windows. This
results in a Hadamard product of length 22 · 4+ 21 · 7 = 235 and 22 · 7+ 21 ·
10 + 64 = 428 linear constraints. In the case of 32 bits, we have ⌈32/3⌉ = 11
windows. There, a Hadamard product length of 11 · 4 + 10 · 7 = 114 and
11 · 7 + 10 · 10 + 32 = 209 linear constraints suffice.

4.1.15 Variable-base Affine-ctEdwards Scalar Multiplication

If we want to do a scalar multiplication R = [k] · B, where the base point B
on the ctEdwards Jubjub curve is not fixed (i.e. it is only computed during
the zero-knowledge proof and depends on the witness), we cannot use the
method from 4.1.14, as pre-computation is impossible. Instead, we use a
double-and-add approach. Assume that k is a full length scalar (251 bits)
and has already been boolean-constrained into bits as in k = ∑250

i=0 ki · 2i.

For i ∈ {0, . . . , 250}, we denote by bi the current base (i.e. bi = [2i] · B) and
by ai the current accumulator (i.e ai = ∑i

j=0[k j · 2j] · B). We use superscripts
to access individual coordinates, for example au

i denotes the u-coordinate of

65

4. Spend and Output Encodings

the accumulator ai. We will make use of the building block for the selection
constraint, described in section 4.1.3. First, do an initialization step using

b0 = B, au
0 = k0 ? bu

0 : 0, av
0 = k0 ? bv

0 : 1

In this first step, a0 is set to OJ = (0, 1) if the lowest bit of k is 0 and to B
otherwise. Now, for i ∈ {1, . . . , 250}, we perform the double-and-add using
the following equations

bi = [2] · bi−1, ui = ki ? bu
i : 0, vi = ki ? bv

i : 1, ai = ai−1 + (ui, vi)

Finally, we let R = a250. Each of the 502 selections (section 4.1.3) adds two
entries to the Hadamard product as well as five linear constraints. The 250
doublings and the 250 additions each add 7 entries to the Hadamard product
and 10 linear constraints (section 4.1.12). In total, these are 4504 Hadamard
product entries as well as 7510 linear constraints.

4.1.16 Pedersen Hash

The Pedersen hash is defined in section 2.8.3. Assume that the input bits are
already boolean-constrained separately. Also, assume that the label D, and
therefore the points Gi := FindGroupHashJ(r)∗(D, i) are fixed too. A straight-
forward approach would be to first evaluate all values ⟨Mi⟩, then do several
scalar multiplications and finally add up all the resulting points. However,
this is not the best way to do it, if we want to minimize the size of the
Hadamard product. In fact, Zcash has several optimizations in place to re-
duce the number of constraints of their QCP. We take the same approach
but adapt it to our setting.

If we expand the definition, we see that

ExtractJ(r)

(
n

∑
i=1

[⟨Mi⟩] · Gi

)
= ExtractJ(r)

(
n

∑
i=1

[
ki

∑
j=1

enc(mj) · 24(j−1)

]
· Gi

)

= ExtractJ(r)

(
n

∑
i=1

ki

∑
j=1

[
enc(mj) · 24(j−1)

]
· Gi

)
.

Intuition. Now, on a high level, the approach is as follows. To evaluate
the inner sums, we use window tables, similarly to section 4.1.14. Con-
cretely, for each chunk, we will have an equation to select the correct value
for that chunk from a set of pre-computed values. To optimize further, the
base points Gi (respectively the pre-computed values) are actually points on

66

4.1. Encodings

the Montgomery Jubjub curve, instead of the ctEdwards Jubjub curve. Af-
ter having done the selection for individual chunks, we add up the selected
values to evaluate the inner sum using Montgomery additions. Using Mont-
gomery additions here is advantageous over ctEdwards additions, as it adds
fewer entries to the Hadamard product. However, Montgomery addition is
incomplete, and can only be used if we are certain that the points that we
are adding satisfy the respective side condition. This is proven to be true
for the terms in the inner sums in the Zcash specification ([20], Appendix
A, section 3.3.9). Unfortunately, for the terms of the outer sum, the side
conditions do not necessarily hold. This implies that before evaluating the
outer sum, we first have to convert all the points back to ctEdwards form.
Then, these points are added to each other using ctEdwards additions and
the u-coordinate is extracted to get the final hash output.

Details. Let us look concretely at how the inner sums are evaluated, as this
operation is the main contributor in terms of complexity and size. First,
we focus on the selection that is performed for a single summand. Notice
that the function enc has the range {−4, . . . , 4} \ {0} and that for a single
chunk of 3 bits, the lower two bits determine the absolute value, while the
uppermost bit negates the result of enc whenever it is set to 1. Note also that
as we are operating on the Montgomery curve, we invert a point by flipping
the second coordinate.

The above facts yield to following strategy for computing a term of the inner
sum. First, disregard the sign of the scalar and simply select the correct
absolute value in a manner similar to the fixed-base scalar multiplication
(section 4.1.14). Then, conditionally flip the y-coordinate of the selected
point if the uppermost bit of the chunk is set to 1.

As a segment has a maximum length of 189 bits, the maximum number of
chunks in a segment is 189/3 = 63. Therefore, to implement the above idea,
we need to pre-compute the values

[
s · 24(j−1)

]
·Gi, for all s ∈ {1, . . . , 4}, j ∈

{0, . . . , 63}, i ∈ {1, . . . , n}. Now, to explain how the selection is performed,
fix j and i and let [s0, s1, s2] be the bits of the j-th chunk in segment i. Denote
(xk, yk) =

[
k · 24(j−1)

]
· Gi, for k ∈ {1, 2, 3, 4}. First, we introduce a new

variable s01 using a single Hadamard product and two linear constraints to
tie s0 and s1 to the input bits.

(s0s1 − s01)
2 = 0

Next, we use two linear constraints to select the two coordinates xs, yr from
pre-computed values.

xs = x1 + (x2 − x1) · s0 + (x3 − x1) · s1 + (x4 + x1 − x2 − x3) · s01

yr = y1 + (y2 − y1) · s0 + (y3 − y1) · s1 + (y4 + y1 − y2 − y3) · s01

67

4. Spend and Output Encodings

As a third step, compute the real y-coordinate ys by conditionally negating
yr.

yr = s2?(−yr) : yr

Which takes a single Hadamard product and five single linear constraint (see
section 4.1.3). In total, for each chunk, we add 2 entries to the Hadamard
product and 9 linear constraints to compute the elements of the inner sum.
After having selected the summands, we add them all up using Mont-
gomery additions (section 4.1.11). For a segment Mi with qi chunks, we
need to do qi − 1 additions, each of which takes 4 entries in the Hadamard
product and 11 linear constraints.

To finish up the computation after the inner sums have been evaluated, for
each segment, we need to convert the obtained point to a ctEdwards point
(section 4.1.10). If the number of segments is n, we do n such conversions,
and each conversion takes 2 entries in the Hadamard product and 4 linear
constraints. Finally, we need to add these points using ctEdwards additions.
Here, n − 1 additions are done, each addition takes 7 Hadamard product
entries and 10 linear constraints.

To summarize the cost, let n = ⌈ N
189⌉ be the number of segments, and

q = ⌈N
3 ⌉ be the total number of chunks. The cost of the selections and

the Montgomery additions can be aggregated over all segments. Therefore,
2q+ 4(q− n)+ 2n+ 7(n− 1) = 6q+ 5n− 7 entries in the Hadamard product,
as well as 9q + 11(q− n) + 4n + 10(n− 1) = 20q + 3n− 10 linear constraints
are needed.

4.1.17 Mixing Pedersen Hash

The function MixingPedersenHash is defined in section 2.8.4. This function
is only used in one place in the Zcash circuit. There, the second input x,
which is used to do a fixed-base scalar multiplication, has a size of 32 bits.
Therefore, the scalar multiplication requires 114 entries to the Hadamard
product and 209 linear constraints (section 4.1.14). The ctEdwards addition
needs another 7 entries to the Hadamard product as well as 10 linear con-
straints (section 4.1.12). In total, MixingPedersenHash adds 121 entries to the
Hadamard product and 253 linear constraints.

4.1.18 Merkle Path Check

The note commitment tree is instantiated as a binary Merkle tree with 28 lay-
ers and the Pedersen hash function as the underlying hash. Internal nodes
store values of the set {0, 1}255. Leaves do not store note commitments di-
rectly, instead, ExtractJ(r) is used to convert note commitments (which are
Jubjub curve points) to bitstrings that are then stored in the leaves.

68

4.1. Encodings

Remember that we can use the co-path to check whether an element is part
of a Merkle tree, by re-computing the root value (see section 2.3). In ad-
dition, to do the re-computation, one must know the location of the leaf
containing the value. This information is needed to compute the correct
hashes at each layer, as one needs to know whether the value in the co-path
is the left or the right input to the hash function. Thus, the prover provides
two secret inputs:

1. The co-path, containing only the hash values

2. The position of the leaf

It is assumed here that the position of the leaf is given as a bitstring of length
28 (the number of layers in the note tree), where every bit indicates whether
the co-path contains the left or the right child of the node. If you recompute
the root value using the two items, it must be equal to the public root value.
To encode this computation as a Diophantine equation, four computational
steps are needed on each layer of the tree.

• Boolean constrain the path-bit

• Conditionally swap the accumulated hash and the hash contained in
the co-path, depending on the path-bit

• Unpack the inputs into 255 bits each and boolean-constrain the bits

• Compute the Pedersen Hash

Boolean constraining the path bit can be done by using a single Hadamard
product and three linear constraints (section 4.1.1).

The conditional swapping can be implemented with 2 selection constraints
(section 4.1.3), taking 4 Hadamard products as well as 10 linear constraints
in total.

The unpacking and boolean-constraining takes 2 · 255 = 510 Hadamard
product entries as well as 2 · 2 · 255 + 2 = 1022 linear constraints (section
4.1.6 and 4.1.1).

The input length of the hash is 512 bits (two 256 bit inputs which are the
outputs of the previous layer). For a 512 bit input, the number of segments
is 3 and the number of chunks is 172. Therefore, the hash evaluation needs
1040 Hadamard product entries and 3439 linear constraints. In total, this
means that for each layer of the Merkle tree, 1555 Hadamard product entries
as well as 4474 linear constraints are needed.

As the note commitment tree has 28 layers, the total cost to prove that a note
commitment is contained in a leaf are 43540 Hadamard product entries and
125272 linear constraints.

69

4. Spend and Output Encodings

4.1.19 Windowed Pedersen Commitment

The function WindowedPedersenCommitment is defined in section 2.8.5. The
windowed Pedersen commitment scheme is used only when computing
note commits. There, s has a size of 582 bits. This means that we need 1177
Hadamard product entries and 3882 linear constraints for PedersenHashToPoint
(see section 4.1.16). For the scalar multiplication, we need 917 entries in the
Hadamard product as well as 1683 linear constraints (section 4.1.14). Finally,
to add the two points, we need another 7 entries in the Hadamard product
and 10 linear constraints (section 4.1.12). In total, these are 2101 Hadamard
product entries as well as 5575 linear constraints.

4.1.20 Homomorphic Pedersen Commitment

The function HomomorphicPedersenCommitment is defined in section 2.8.6.
Note that s is constrained to be in {1, . . . , 264 − 1}, and can therefore be
represented by 64 bits. Hence, the scalar multiplication by s needs only
235 Hadamard product entries and 428 linear constraints (section 4.1.14).
The scalar multiplication by (the full length scalar) r needs 917 Hadamard
product entries as well as 1683 linear constraints (section 4.1.14). The final
ctEdwards addition needs 7 Hadamard product entries and 10 linear con-
straints (section 4.1.12). In total, these are 1159 Hadamard product entries
and 2121 linear constraints.

4.1.21 BLAKE2s Hash Function

The BLAKE2s hash function was proposed in 2012 by Aumasson et al. [3].
We will not look at the full definition of the functions, instead focusing on
the parts that are relevant for us. The full definition can either be found in
the original paper or the Zcash specification. At its core, BLAKE2s uses a
function G that is defined as follows.

G : {0, . . . , 232 − 1}6 7→ {0, . . . , 232 − 1}4

G(a, b, c, d, x, y) = (a′′, b′′, c′′, d′′), where

a′ = (a + b + x) mod 232

d′ = (d⊕ a′)≫ 16

c′ = (c + d′) mod 232

b′ = (b⊕ c′)≫ 12

a′′ = (a′ + b′ + y) mod 232

d′′ = (d′ + a′′)≫ 8

c′′ = (c′ + d′′) mod 232

b′′ = (b′ ⊕ c′′)≫ 7

70

4.1. Encodings

The function G is used to shuffle parts of the input (x, y), into the state
(a, b, c, d). Next, it is explained how to encode G as a Diophantine equation.

As several xor operations need to be done during the function, one cannot
work with integer values but instead has to operate directly on the bits. The
xor operations followed by right-shifts can be done as described in section
4.1.5 and then simply using only those bits that where not ’discarded’ by
the shift operation. For 32-bit values (as in the G function), this needs 32
Hadamard product entries and 96 linear constraints per xor operation.

An addition of two 32-bit values, say c = (a + b) mod 232, is performed as
follows. As we are operating on bits at all times, the binary representation
of a = ∑31

i=0 ai · 2i and b = ∑31
i=0 bi · 2i is available. To do the addition, 33 new

variables c0, . . . , c32 are introduced and boolean-constrained. An equality
check is used to make sure that they correspond to the binary representation
of the output of the addition:

31

∑
i=0

(ai + bi) · 2i =
32

∑
i=0

ci · 2i

As the operation is done modulo 232, the bit c32 is then discarded (i.e. simply
not used in the subsequent computation). With this approach, 33 Hadamard
product entries and 67 linear constraints are needed.

An addition with three 32-bit values, say c = (a + b + m) mod 232, can be
implemented by following exactly the same approach, but we need to use
34 bits (instead of 33) c0, . . . , c33, to account for a ”double overflow”. In this
case, 34 Hadamard product entries and 69 linear constraints are needed.

Therefore, for a single evaluation of G, 4 · 32 + 2 · 33 + 2 · 34 = 262 entries
in the Hadamard product and 4 · 96 + 2 · 67 + 2 · 69 = 656 linear constraints
are needed.

A BLAKE2s evaluation is subdivided into ten rounds in total, in each round
G is evaluated eight times. Therefore, G will be evaluated a total of 10 · 8 =
80 times. This means that in total, 80 · 262 = 20960 entries in the Hadamard
product and 80 · 656 = 52480 linear constraints are needed for G evaluations.

In addition to the G-evaluations, at the very end of BLAKE2s, one also needs
to evaluate eight expressions of the form (a⊕ x ⊕ y), where x, y are 32-bit
variables and a is a 32-bit constant. As a is constant, each expression can be
encoded using 32 entries in the Hadamard product and 96 linear constraints.
For the whole BLAKE2s hash function, 20960 + 8 · 32 = 21216 entries in the
Hadamard product as well as 52480 + 8 · 96 = 53248 linear constraints are
needed.

71

4. Spend and Output Encodings

4.2 Spend and Output Encoding Costs

This section computes the full cost of encoding the Zcash Spend and Output
statements as Diophantine equation. Computing the cost of the statements
is essentially done by adding all the costs of individual operations. These
include evaluating functions like NoteCommitSapling, ValueCommitSapling, etc.
and doing various elliptic curve operations such as scalar multiplications.
Additionally, some operations are needed to convert between different rep-
resentation of values, such as going from an integer to its binary represen-
tation and furthermore, some inputs need to be constrained to lie in the
correct range. The Zcash Spend and Output statements are defined in sec-
tion 3.3.3 and 3.3.4. The encoding costs are summarized in tables 4.1 and
4.2.

4.2.1 Discussion

Unpacking. There are several operations that unpack values into their bi-
nary representation. For example, the scalar to re-randomize the public key,
α is unpacked into its binary representation as α⋆, or the integer value vold

is unpacked into its binary representation as vold
⋆ . Each unpacking opera-

tion includes the cost of boolean-constraining the bits, as subsequent oper-
ations (such as the scalar multiplication) rely on their inputs to be boolean-
constrained already.

Computing representatives. Computing reprJ(ak), reprJ(nk) and reprJ(gd)
essentially amounts to doing a compression operation (section 4.1.9), as one
has to check that the points lie on the curve as well as boolean-constrain the
output bits.

Merkle path validity. To check the Merkle path validity, a value pos⋆ =
I2LEBSP28(pos) is computed. This simply converts the integer position pos
to a string of bits as required by 4.1.18. Note that the bits do not need to
be boolean-constrained when computing pos⋆, as the cost for this is already
included in the Merkle tree check.

72

4.2. Spend and Output Encoding Costs

Operation Statement Part HPE LC Ref.

gd is on the curve gd ∈ J 3 7 4.1.8
Unpack vold into vold

⋆ ∈ {0, 1}64 vold ∈ {0, . . . , 264 − 1} 64 193 4.1.1, 4.1.6
Unpack rcv into rcv⋆ ∈ {0, 1}252 rcv ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
Unpack rcm into rcm⋆ ∈ {0, 1}252 rcm ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
Unpack α into α⋆ ∈ {0, 1}252 α ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
ak is on the curve ak ∈ J 3 7 4.1.8
Unpack nsk into nsk⋆ ∈ {0, 1}252 nk ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
cm = NoteCommitSaplingrcm (gd, pkd, vold) Note commitment integrity 2101 5575 2.8.5
cmu = ExtractJ(r)(cm) Merkle path validity 0 0
rt′ is the root of a Merkle tree with leaf
cmu with co-path path and path bits pos⋆ Merkle path validity 43540 125272 4.1.18

pos⋆ = I2LEBSP28(pos) Markle path validity 0 1 4.1.6
If vold ̸= 0 then rt′ = rt Merkle path validity 2 5 4.1.2
cv = ValueCommitSaplingrcv (vold) Value commitment integrity 1159 2121 2.8.6
gd is not of small order Small order checks 22 32 4.1.8
ak is not of small order Small order check 22 32 4.1.8
nk = [nsk⋆] HSapling Nullifier integrity 917 1683 4.1.14
nk⋆ = reprJ(nk) Nullifier integrity 261 268 4.1.9
ρ = MixingPedersenHash(cmold, pos) Nullifier integrity 121 253 4.1.17
ρ⋆ = reprJ(ρ) Nullifier integrity 262 268 4.1.9

n f old = PRF
n f Sapling
nk⋆ (ρ⋆) Nullifier integrity 21216 53248 4.1.21

α′ = [α⋆] GSapling Spend authority 917 1683 4.1.14
rk = α′ + ak Spend authority 7 10 4.1.12
ak⋆ = reprJ(ak) Diversified address integrity 261 268 4.1.9
ivk⋆ = I2LEBSP251(CRH

ivk(ak, nk)) Diversified address integrity 21216 53248 4.1.21
pkd = [ivk⋆]gd Diversified address integrity 4504 7510 4.1.15

Total 97607 254714

Table 4.1: Cost of encoding the Spend statement as a Diophantine equation. The Operation
columns describes the actual operation that is performed. The statement part column specifies
which part of the Spend statement is implemented. HPE is the number of Hadamard product
entries and LC is the number of linear constraints.

73

4. Spend and Output Encodings

Operation Statement Part HPE LC Ref.

Boolean constrain pk⋆d pk⋆d ∈ {0, 1}256 256 768 4.1.1
Unpack vnew into vnew

⋆ ∈ {0, 1}64 vnew ∈ {0, . . . , 264 − 1} 64 193 4.1.1, 4.1.6
Unpack rcv into rcv⋆ ∈ {0, 1}252 rcv ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
Unpack rcm into rcm⋆ ∈ {0, 1}256 rcm ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
Unpack esk into esk⋆ esk ∈ {0, . . . , 2252 − 1} 252 757 4.1.1, 4.1.6
g⋆d = reprJ(gd) Note commitment integrity 261 268 4.1.9
cm = NoteCommitSaplingrcm (gd, pkd, vold) Note commitment integrity 2101 5575 2.8.5
cv = ValueCommitSaplingrcv (vold) Value commitment integrity 1159 2121 2.8.6
gd is not of small order Small order checks 22 32 4.1.8

epk = [esk⋆] gd
Ephemeral public key in-
tegrity

4504 7510 4.1.15

Total 9123 18738

Table 4.2: Cost of encoding the Output statement as a Diophantine equation. The Operation
columns describes the actual operation that is performed. The statement part column specifies
which part of the Output statement is implemented. HPE is the number of Hadamard product
entries and LC is the number of linear constraints.

74

4.2. Spend and Output Encoding Costs

4.2.2 Proof Sizes

This section estimates the proof size of TV20 when proving the Spend and
Output statements. Section 2.7 already discusses how the communication
complexity of the Diophantine equation argument comes together. The
length n of the Hadamard product is the determining factor, as the resulting
asymptotic prover communication complexity (in bits) is O(ℓ+ log(n)bG).
Note that in case of using the Fiat-Shamir Heuristic to make the protocol
non-interactive, the proof size will be equal to the prover communication
complexity.

The prover-communication complexity originates mainly in two calls to sub-
protocols: A call to the inner product argument and a called to a so-called
base-switching argument. The cost of the two calls are estimated below. In-
stead of relying on the asymptotic communication complexity, the following
computation considers the exact amount of communication required. We set
λ = 128, bG = 3072 and P = λlog(λ).

Inner product argument. To compute the proof size of the inner product
argument, recall from section 2.7.2 that in the inner product argument with
vectors of length n and witness entries bound by 2ℓ, the prover sends over
2n′+ 2 RSA group elements, two integers with absolute value less than 2ℓPn′

and an integer with absolute value less than
(

2n′2bG+λPn′+3 + 2ℓ(P− 1)n′+2
)
·(

1 + 2λ
)
, where n′ = ⌈log n⌉. Therefore, the total amount of communication

in bits is

(2n′ + 2) · bG + 2 log(2ℓPn′) + log
((

2n′2bG+λPn′+3 + 2ℓ(P− 1)n′+2
)
·
(

1 + 2λ
))

≤(2n′ + 2) · bG + 2ℓ+ 2n′ · log(P) + 1 + λ + log(Pn′+3(2n′ + 2bG+λ + 2ℓ))
≤(2n′ + 2) · bG + 2ℓ+ 2n′ · log(P) + 1 + λ + (n′ + 3) · log(P) + 1 + log(n′) + bG + λ + ℓ

=(2n′ + 3) · bG + 3ℓ+ 2n′ · log(P) + 2λ + (n′ + 3) · log(P) + log(n′)

When being called as a subroutine in the Hadamard product argument, n
is equal to the length of the Hadamard product. Also, Towa and Vergnaud
show that the maximum bit-length of a witness is ℓ = bG + λ + 4. Plug-
ging in the lengths of the Hadamard products for the Spend and Output
statement results in a proof size for the inner-product proof of about 15.3
kilobytes for the Spend statement, and 12.9 kilobytes for the Output state-
ment.

Base-switching argument As the base switching argument was not dis-
cussed, we do not go into detail of how its proof size comes together. The
main part is due to a call to a sub-protocol that works in a similarly recur-
sive fashion as the inner-product argument. All in all, when being called
from the Hadamard product argument, the proof size of the base-switching

75

4. Spend and Output Encodings

argument is at most

log(P) + ℓ′ + λ + (2 log(n) + 2) · bG,

where

ℓ′ = max
[

log(max(ℓ, 2 + log(P) + bG + λ + 3) + n′ log(P)),

2λ + 2 + (n′ + 3) log(P) + log(n′) + bG + max(ℓ, 2 + log(P) + bG + λ + 3)
]

This results in a size of about 14.4 kilobytes for the Spend and 11.8 kilobytes
for the Output statement. Note that the two sub-protocols are of comparable
size.

Final proof size. The final proof size is equal to the sum of the proof sizes
for the two sub-protocols as well as two additional group elements that are
sent during the proof. This results in a maximum size of 30.5 kilobytes for
the Spend statement and 25.5 kilobytes for the Output statement.

4.3 Comparison and Discussion

Section 4.2.2 shows that the expected proof size for TV20 is about 30.5 kilo-
bytes for the Spend statement and 25.5 kilobytes for the Output statements.
The current proof size (using Groth16 at the same 128-bit security level) for
any one of the two statements is 192 bytes. The size therefore increases by a
factor of 133 to 159.

It is clear that the difference in size is substantial, and this is also expected.
In addition to the logarithmic growth (in contrast to Groth16’s constant size
proofs), another factor increasing the proof size of TV20 is the reliance on
hidden-order groups with much larger bit-size of elements (3072 bits) for
the same security level compared to the elliptic curve groups underlying
Groth16 (384 bits).

Both the Spend and Output statements can be considered rather large. How-
ever, note that the (about) tenfold difference in the lengths of the Hadamard
products only translate to a growth factor of about 1.2 in the proof sizes,
which is due to the logarithmic growth. This also means that even for a
much smaller statement, the proof size of TV20 exceeds the proof size of
Groth16. For example, setting n = 50 (and λ, bG, P as above) yields a proof
size of about 12.7 kilobytes.

Recall once more that the benefit of using TV20 is the fact its security relies
only on standard assumptions (section 2.5), while the security of Groth16 is
proven only in the generic group model. So in spite of the large difference

76

4.4. Benchmarks

in proof size, there is still a trade-off to be considered between efficiency
and strength of assumptions. The question whether the weaker security
assumptions compensate for this substantial increase in proof size is difficult
to answer in general.

4.4 Benchmarks

This section presents proof sizes obtained via a prototype implementation
of the inner product proof of TV20. The implementation is written in Rust
and can be found on Github [21]. The evaluated security levels are 80, 112
and 128 bits, which require RSA groups of 1024, 2048 and 3072 bits. For
each security level, the proof size for different vector lengths is evaluated.
For a given security level λ and bG bit RSA group, the bit-length ℓ of the
maximum witness entry was set to be ℓ = bG + λ + 4, to emulate a call as a
subroutine from the Hadamard product argument (see section 4.2.2).

Figure 4.1: Proof sizes for different RSA strengths and inner product lengths obtained via a
prototype implementation of the inner product argument. Note the log-scale on the x-axis. For
reference, the figure also includes the proof sizes of the inner-product sub-protocol computed in
section 4.2.2 for the Spend and Output circuit (red and purple dot).

Methodology. For each pair of security level and vector length, a new RSA
group with appropriate bit-size is generated. Then, an element f is sampled

77

4. Spend and Output Encodings

uniformly at random from the group. The entries of g, h and the element
e are generated by picking random exponents from {0, . . . , 2ℓ} and raising
f to the respective power. Similarly, witness entries of a, b as well as r
are simply sampled randomly from {0, . . . , 2ℓ}. Finally, C is computed as

C =
(

gahbe⟨a,b⟩ f r
)2

, and the inner product proof is generated.

The results are shown in figure 4.1. The figure also contains two data points
for the proof size of the inner-product sub-protocol of the Spend and Output
circuit that was derived in section 4.2.2. These estimates should be directly
comparable to the proof sizes obtained via the prototype implementation.
Indeed, the computed proof sizes match the real size closely, while slightly
overestimating due to the upper bounds used.

In other aspects, the proof sizes behave as expected. The figure depicts
nicely how the proof size scales logarithmically with the length of the inner
product (note the log-scale on the x-axis).

78

Chapter 5

Lowering the Verification Time of the
Inner Product Argument

This chapter shows how the verification of the inner product argument due
to Towa and Vergnaud [29] can be improved fromO(n(ℓ+ bG + log(n) log(P)))
RSA group operations to O(n log(λ)) RSA group operations, O(n(ℓ+ bG +
log(n) log(P))/λ) multiplications in Zp, where p is a λ-bit prime, andO(n log(n))

integer multiplications with integers less than max
(

2ℓP2n′+1, 22ℓP2n′
)

. This
is achieved using techniques based on non-standard assumptions and de-
veloped by Wesolowski [30] and then Boneh, Bünz and Fisch [12].

5.1 The Adaptive-Root Assumption

The adaptive root assumption was introduced by Wesolowski in 2018 [30].
Intuitively, the adaptive-root assumption states that it is hard to find random
roots of arbitrary group elements. Let Primes(λ) denote the set of all λ-bit
prime numbers. The adaptive root assumption is defined as follows.

Definition 5.1 Adaptive-Root Assumption A group generator G satisfies the
(T, ε)-adaptive-root assumption, if for all λ ∈ N and for all adversaries (A0,A1)
with running time at most T(λ),

Pr

 uℓ = 1∧ w ̸= 1 :

(G, P)←$ G(1λ)

(w, state)←$ A0(G)

ℓ←$ Primes(λ)
u←$ A1(ℓ, state)

 ≤ ε(λ)

An important remark is that this assumption does not hold in an RSA group
Z∗N , as it is easy to find roots of the element −1 in Z∗N . Instead, one must
work in the group Z∗N \ {−1, 1}, where the assumption is believed to hold.

79

5. Lowering the Verification Time of the Inner Product Argument

5.2 Proofs of Exponentiation

Wesolowski proposed the following interactive proof, whose security relies
on the adaptive root assumption. Let G be a group and let y, g ∈ G and
t ∈ Z+ be public values. The protocol allows a prover to prove to a verifier
that y = g2t

. Note that as both the prover and the verifier know the values
g, and t, the verifier could compute g2t

on its own. Concretely, using a
square-and-multiply method, y can be computed in t group operations. The
protocol allows, however, to verify the computation in time polylog(t). The
setting for which the protocol was originally proposed is one where t is
super-polynomial and the verifier wants to verify quickly that the prover
has performed the expensive computation.

Boneh, Bünz and Fisch generalized the above protocol in 2018 to support
exponents that are not powers of two, i.e. allow to prove that w = ux for
w, u ∈ G and arbitrary x ∈ Z. In the same work, they further generalize
the protocol to support proving that w = ϕ(x), for an arbitrary function
ϕ : Zn 7→ G that is homomorphic, i.e. ϕ has the property that ∀a, b,∈
Z, x, y ∈ Zn : ϕ(ax + by) = ϕ(x)a · ϕ(y)b. They called this protocol Proof
of Homomorphism Preimage, or PoHP. Still, just as with the original protocol,
the only purpose of PoHP is to reduce the verifier’s computation time. This
most general version is also applicable in our case, as we will show below.

All these protocols can be proven secure (i.e. the prover cannot convince the
verifier of a false statement) under the adaptive root assumption.

5.3 Applications to the Inner Product Argument

This section shows how to use the PoHP to reduce the verification time of the
inner product argument from O(n(ℓ+ bG + log(n) log(P))) RSA group op-
erations toO(n log(λ)) RSA group operations,O(n(ℓ+ bG + log(n) log(P))/λ)
multiplications in Zp, where p is a λ-bit prime and O(n log(n)) integer mul-

tiplications with integers less than max
(

2ℓP2n′+1, 22ℓP2n′
)

.

5.3.1 Overview

Recall that in the inner-product argument of TV20 (section 2.7), the verifier’s
work is aggregated into a single multi-exponentiation of the form(

n

∏
i=1

g
∏j∈Si

xj

i

)4xn′+1a′ (n

∏
i=1

h
∏j∈[n]\Si

xj

i

)4xn′+1b′

e4a′b′ f 4u (5.1)

=

(
Uxn′

n′

n′−1

∏
i=1

Uxixi+1...xn′
i Cx1 ...xn′

n′−1

∏
i=1

Vxi+1...xn′
i Vn′

)2x2
n′+1

Γ2xn′+1 ∆2 (5.2)

80

5.3. Applications to the Inner Product Argument

Now, instead of the verifier evaluating the multi-exponentiation, we pro-
pose to run a PoHP, shifting the burden of the heavy computation from the
verifier to the prover.

Before going into more detail, it is briefly demonstrated that any multi expo-
nentiation in a group G using some fixed bases g1, . . . , gn is a homomorphic
function and therefore eligible for a PoHP. Let

ϕ : Zn → G

(x1, . . . , xn) 7→
n

∏
i=1

gxi
i .

Then, for a, b ∈ Z and x, y ∈ Zn,

ϕ(ax + by) =
n

∏
i=1

gaxi+byi
i =

n

∏
i=1

gaxi
i ·

n

∏
i=1

gbyi
i

=

(
n

∏
i=1

gxi
i

)a

·
(

n

∏
i=1

gyi
i

)b

= ϕ(x)a · ϕ(y)b.

Therefore, the PoHP can be applied with a multi-exponentiation ϕ.

5.3.2 Detailed Changes to the Protocol

This section describes the changes to the protocol in detail. There are two
possible ways to integrate the PoHP. For both variants, the respective PoHP
are run after the final values of the parent protocol (i.e. a′, b′, u) have been
received. This is important as for example, integrating the PoHP with the
last two steps of the parent protocol would violate the assumptions of PoHP.

The first approach mimics the design of the original protocol, where the
verifier evaluates 5.1 and 5.2 separately, and then asserts that they evaluate
to the same value w. To do so, the prover first sends over w. Then, two
instances of PoHP are run in parallel to prove that both sides evaluate to w.

In the second approach, equations 5.1 and 5.2 are rearranged by moving all
the terms to one side of the equation. Then, a PoHP is run to prove that this
evaluates to 1.

The advantage of the latter approach is that less communication is required,
as the protocol is only run once and w does not have to be sent over. The
advantage of the former approach is that all the exponents are positive, and
the prover does not have to do any inversions of group elements. We discuss
the second approach below, but both can in practice be considered.

81

5. Lowering the Verification Time of the Inner Product Argument

5.3.3 Effects on Verification Time

Before it is argued that extractability of the parent protocol still holds, this
section shows how the verification performance is affected.

Previous Performance. The verifier’s performance in the original inner
product argument has already been discussed in section 2.7.2. To recap, us-
ing a square-and-multiply approach, one has to doO(n(l + bG + log(n) log(P)))
group operations in the RSA group. The number of required group oper-
ations can be reduced by using pre-computation, at the cost of increased
memory requirements.

New Performance. In the alternative version of the protocol, the verifier
does not compute the multi-exponentiation on its own, but still does a fair
amount of computation during the PoHP [12]. First, the verifier must com-
pute the exponents, which requires O(n log(n)) integer multiplications with
integers less than max

(
2ℓP2n′+1, 22ℓP2n′

)
in absolute value. Thereafter, the

verifier computes, for each base of the multi-exponentiation, the residue of
the exponent of that base modulo p, a random λ-bit prime. Computing the
residues takes O(n(ℓ+ bG + log(n) log(P))/λ) multiplications in Zp. Note
that an operation in Zp (where p is a λ-bit prime) is significantly faster than
a group operation in an RSA group with security level λ. Then, it has to
evaluate the multi-exponentiation with reduced exponents, i.e. exponents
that are at most λ bits in size (plus another single exponentiation with an
exponent of the same length and another single group operation). This
takes O(n log(λ)) group operations in the RSA group using a square-and-
multiply approach (and the same optimizations using pre-computation are
applicable here).

5.3.4 Security

Finally, we provide proof sketches that the change breaks neither zero-
knowledge nor extractability of the parent protocol.

Zero-knowledge

When running the PoHP at the end of the parent protocol as described
above, the verifier only receives values that it can compute efficiently on
its own. Therefore, the zero-knowledge property of the parent protocol con-
tinues to hold.

Extractability

This section describes how the original proof of extractability can be adapted
to the new version. For the original proof, the concrete assumptions on the
underlying hidden-order group are the (Tstrg, εstrg)-strong-root assumption,

82

5.3. Applications to the Inner Product Argument

the (Tord, εord)-small-order assumption, the low dyadic-valuation assump-
tion and the µ-assumption. Newly, the security will also be relying on the
(Tar, εar)-adaptive root assumption.

The Original Proof. The proof of extractability of the inner product argu-
ment by Towa and Vergnaud can be divided into two parts.

In the first part, it is shown that the sub-protocol that is run at the end of
the recursion, i.e. when n = 1, is extractable, given five distinct accepting
transcripts.

The structure is roughly as follows. The proof starts off by considering five
distinct accepting transcripts, i.e.(

Γ, ∆, xj, a′j, b′j, uj

)5

j=1
such that (gxja′j hxjb′ea′ja

′
j f uj)4 = (Cx2

j Γxj ∆)2 for all j ∈ [5].

It is then shown that with these accepting transcripts, one is either able
to extract a valid witness, i.e. values (a, b, r) so that C2 = (gahbe⟨a,b⟩ f r)4,
or break one of the security assumptions. All in all, the probability that
extraction fails in this first step where n = 1 is determined to be at most

εext
1 := εord + εstrg + max

(
2−bG−λ+1, (1/2− 2−λ − (1− µ))−1(εord + εstrg + 1− µ)

)
.

In the second part, it is proven that at each recursion layer, extraction of a
solution for the previous recursion layer is possible, given five distinct wit-
nesses for the current layer. The resulting extraction error for the full protcol,
i.e. the probability that extraction fails at any step during the protocol is

εext := εext
1 +

(
1/2− 2−λ − (1− µ)

)−1
(εord + εstrg + 1− µ).

Necessary Adaptions. The second part of the proof is unaffected by the
change as the multi-exponentiation only comes into play at the last step of
the recursion. Therefore, we only discuss on how to adapt the case n = 1 of
the proof to the updated protocol.

There, the very beginning of the proof has to be changed: Given the five
accepting transcript, one cannot assume anymore that the verification equa-
tion holds for all of them. This is because it could also happen that instead,
the security of the PoHP was broken. However, we do know that either all
accepting transcripts satisfy the verification equation, or the security of the
PoHP (and hence the adaptive root assumption) was broken, which hap-
pens with probability at most εar. In the former case, we continue as in the
original proof. To account for the latter case, we add a term εar to the extrac-
tion error. The new extraction failure probability, for the step n = 1 is now
εext

1 + εar. The new extraction error for the full updated protocol is therefore
εext + εar.

83

Chapter 6

Conclusion

Our contributions. In this thesis, we evaluated the TV20 proof system as a
possible alternative to Groth16 in the Zcash cryptocurrency. The motivation
to do a comparison of this kind is that while Groth16 has extremely small
(constant sized) proofs, it relies on an intricate trusted setup and its security
is only proven in the generic group model. On the other hand, the (trusted)
setup of TV20 is simple, the security is based on standard assumptions, but
the proofs are of logarithmic size.

To be able to draw a comparison, the concrete proof size of TV20 when
proving the statements in Zcash (called the Spend and Output statement)
had to be computed. To do so, we encoded the statements as Diophantine
equations and then computed a theoretical upper bound on the proof size.

In the case of 128 bits of security, the resulting proof sizes are 30.5 kilobytes
for the Spend statement and 25.5 kilobytes for the Output statement. For
Groth16, the size for any statement is 192 bytes. This translates to an increase
in proof size by a factor of 133 to 159.

Additionally, we implemented a prototype version of the inner product ar-
gument of TV20 the get empirical data on how the proof size changes with
the length of the inner product. The proof sizes derived on paper fit the
observed data of the prototype implementation well.

As a final contribution, we demonstrated how the verification time of the
inner product argument of TV20 can be lowered. This is achieved using a
protocol called Proof of Homomorphic Preimage.

Future work. The topic offers great opportunity for future work.

An aspect of TV20 that unfortunately did not come into play when doing
the encoding in chapter 4.1 is the fact that it works directly with integers
instead of finite field elements. A possible explanation is that the Spend
and Output statements of Zcash were designed directly for a proof system

85

6. Conclusion

for circuit satisfiability in finite fields. As such, any operations that are
not efficiently encodable as a circuit over a finite field (but might be well-
encodable as a Diophantine equation), were avoided from the start. There-
fore, it would be interesting to look into whether there are any applications,
in the blockchain-space or else, that are able to profit from the additional
expressability of TV20. Candidate problems include RSA operations or inte-
ger linear programming, which are both difficult to encode as a circuit over
a finite field.

Also, verification in TV20 is still computationally-intensive, even with the
techniques from Chapter 5, which rely on a non-standard assumption. It
would be interesting to see whether there is a way to lower the verification
time even more, or use standard assumptions instead of the adaptive root
assumption.

Another research direction is to extend the prototype implementation to
the full TV20 proof system, as it currently only covers the inner product
argument. This would allow to measure the proof size for the complete
protocol.

86

Bibliography

[1] The official monero website. https://www.getmonero.org/. Accessed:
2022-08-02.

[2] The official zcash website. https://z.cash/. Accessed: 2022-08-02.

[3] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. Blake2: Simpler, smaller, fast as md5. IACR
Cryptol. ePrint Arch., 2013:322, 2013.

[4] Roberto Maria Avanzi. The complexity of certain multi-exponentiation
techniques in cryptography. Journal of Cryptology, 18:357–373, 2004.

[5] László Babai and Shlomo Moran. Arthur-merlin games: A randomized
proof system, and a hierarchy of complexity classes. J. Comput. Syst.
Sci., 36:254–276, 1988.

[6] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.
In CRYPTO, 1992.

[7] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental
cryptography: The case of hashing and signing. In CRYPTO, 1994.

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. 2014 IEEE Symposium on Security
and Privacy, pages 459–474, 2014.

[9] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. Twisted edwards curves. In AFRICACRYPT, 2008.

[10] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the mont-
gomery ladder. IACR Cryptol. ePrint Arch., 2017:293, 2017.

87

https://www.getmonero.org/
https://z.cash/

Bibliography

[11] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In STOC ’88, 1988.

[12] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for
accumulators with applications to iops and stateless blockchains. IACR
Cryptol. ePrint Arch., 2018:1188, 2018.

[13] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-
sure proofs of knowledge. J. Comput. Syst. Sci., 37:156–189, 1988.

[14] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty
computations ensuring privacy of each party’s input and correctness of
the result. In CRYPTO, 1987.

[15] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Crypto-
graphically strong undeniable signatures, unconditionally secure for
the signer. In CRYPTO, 1991.

[16] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, 1986.

[17] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems. In STOC ’85, 1985.

[18] Jens Groth. Non-interactive zero-knowledge arguments for voting. In
ACNS, 2005.

[19] Jens Groth. On the size of pairing-based non-interactive arguments.
IACR Cryptol. ePrint Arch., 2016:260, 2016.

[20] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
Specification. Electronic Coin Company, 2022. https://zips.z.cash/

protocol/protocol.pdf.

[21] Jonas Meier and Patrick Towa. TV20 prototype implementation. https:
//github.com/JomeierFL/tv20, August 2022.

[22] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. Proceedings [1990] 31st
Annual Symposium on Foundations of Computer Science, pages 2–10 vol.1,
1990.

[23] Ju. V. Matijasevich. Enumerable sets are diophantine. Sov. Math., Dokl.,
11:354– 358, 1970.

[24] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In CRYPTO, 1987.

88

https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://github.com/JomeierFL/tv20
https://github.com/JomeierFL/tv20

Bibliography

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[26] Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of Cryptology, 4:161–174, 2004.

[27] Adi Shamir. Ip = pspace. J. ACM, 39:869–877, 1992.

[28] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In EUROCRYPT, 1997.

[29] Patrick Towa and Damien Vergnaud. Succinct diophantine-satisfiability
arguments. IACR Cryptol. ePrint Arch., 2020:682, 2020.

[30] Benjamin Wesolowski. Efficient verifiable delay functions. In IACR
Cryptol. ePrint Arch., 2018.

89

