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Preface

FC 2019, the 23rd International Conference on Financial Cryptography and Data
Security, was held February 18–22, 2019, at the St. Kitts Marriott Resort in Frigate
Bay, St. Kitts and Nevis.

We received 178 paper submissions. Of these, 32 full papers and seven short papers
were accepted, corresponding to a 21.9% acceptance rate. Revised papers appear in
these proceedings.

The surge in interest in cryptocurrencies heralded by Bitcoin has been reflected in
the composition of the program at FC for several years. Since 2014, a dedicated
workshop, the Workshop on Bitcoin and Blockchain Research (BITCOIN), has been
held in conjunction with FC. Given the quality and quantity of research appearing in
this workshop, the International Financial Cryptography Association (IFCA) Steering
Committee, in consultation with current and past program chairs of FC and the BIT-
COIN workshop, decided to integrate the BITCOIN workshop into the main FC
conference as a new blockchain track.

This decision resulted in a high-quality and balanced program, with 20 papers in the
new blockchain track and 19 papers in the non-blockchain track. The two tracks were
held on alternating days: The blockchain track was Monday and Wednesday, and the
non-blockchain track was Tuesday and Thursday. By not holding the tracks in parallel,
all FC attendees could enjoy the entirety of the program. Neha Narula, Director of the
MIT Digital Currency Initiative, gave an inspiring keynote entitled “Preventing
Catastrophic Cryptocurrency Attacks.” Her talk highlighted some pressing and unique
challenges of responsibly managing vulnerabilities affecting cryptocurrencies.

Overall, the program successfully realized the goal of creating a unified venue for
blockchain papers, while keeping room for other topics that have long been part of FC.
Feedback at the conference about the change was overwhelmingly positive. Therefore,
we anticipate that this arrangement will continue in future editions of the conference.

We are grateful for the contributions of the 72 members of the Program Committee.
Submissions had at least three reviews, or four in the case of a submission by a
Program Committee member. An extensive online discussion phase was utilized to
guide decisions. The Program Committee members provided thoughtful and con-
structive feedback to authors, which considerably strengthened the quality of the final
papers appearing in this volume. Of the 39 accepted papers, 14 were shepherded by
Program Committee members. We are especially thankful to the shepherds for their
additional contributions. We also appreciate the reviews contributed by 59 external
reviewers.

We would like to thank Rafael Hirschfeld for his unrivaled and continued dedication
to FC, including his role serving as conference general chair. We also thank the IFCA
directors and Steering Committee for their service.



Finally, we would like to thank the sponsors of the conference for their generous
support: Research Institute, Blockstream, Chainanalysis, Kadena, Op Return, Quadrans
Foundation, the Journal of Cybersecurity, and Worldpay.

We are excited to present the papers appearing in this volume. They represent some
of the leading research in secure digital commerce, and we look forward to many more
years of fruitful research presented at Financial Cryptography and Data Security.

July 2019 Ian Goldberg
Tyler Moore
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Biased Nonce Sense: Lattice Attacks
Against Weak ECDSA Signatures

in Cryptocurrencies

Joachim Breitner1 and Nadia Heninger2(B)

1 DFINITY Foundation, Zug, Switzerland
joachim@dfinity.org

2 University of California, San Diego, USA
nadiah@cs.ucsd.edu

Abstract. In this paper, we compute hundreds of Bitcoin private keys
and dozens of Ethereum, Ripple, SSH, and HTTPS private keys by car-
rying out cryptanalytic attacks against digital signatures contained in
public blockchains and Internet-wide scans. The ECDSA signature algo-
rithm requires the generation of a per-message secret nonce. If this nonce
is not generated uniformly at random, an attacker can potentially exploit
this bias to compute the long-term signing key. We use a lattice-based
algorithm for solving the hidden number problem to efficiently compute
private ECDSA keys that were used with biased signature nonces due to
multiple apparent implementation vulnerabilities.

Keywords: Hidden number problem · ECDSA · Lattices · Bitcoin ·
Crypto

1 Introduction

The security of the ECDSA signature algorithm relies crucially on the proper
generation of a per-signature nonce value that is used as an ephemeral private
key. It is well known that if an ECDSA private key is ever used to sign two
messages with the same signature nonce, the long-term private key is trivial to
compute [7,8,11,13,18,37].

Repeated nonce values are not the only type of bias that can render an ECDSA
key insecure, however. In fact, many types of nonuniformities in the ECDSA sig-
nature nonces can reveal the private key, given sufficiently many signatures. In
this paper, we carry out lattice-based cryptanalytic attacks against ECDSA sig-
natures collected from the Bitcoin, Ethereum, and Ripple blockchains as well as
Internet-wide scans of HTTPS and SSH hosts, and efficiently compute hundreds
of Bitcoin private keys and a handful of Ethereum and SSH private keys. As a
side effect, we also find numerous Bitcoin, Ethereum, Ripple, SSH, and HTTPS
private keys that were compromised through repeated signature nonces.

The lattice attacks we apply are based on algorithms for solving the hidden
number problem. [6] While the hidden number problem is a popular tool in
c© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-32101-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_1&domain=pdf
http://orcid.org/0000-0003-3753-6821
https://doi.org/10.1007/978-3-030-32101-7_1


4 J. Breitner and N. Heninger

the cryptanalytic literature for recovering private keys based on side channel
attacks [5,14], to our knowledge we are the first to apply these techniques to
already-generated keys in the wild, and the first to observe that these techniques
may apply to signatures in cryptocurrencies. In total, we computed around 300
Bitcoin keys with these techniques. As of this writing, 818,975 satoshis, or around
$54, and 30.40 XRP, or about $14, remain in Bitcoin and Ripple accounts whose
keys we were able to compute, suggesting that these flaws do not yet appear to
be known, or else the funds would have already been stolen.

The attacks we use are significantly faster than naive brute force or the
state of the art algorithms for the elliptic curve discrete log problem. Using a
square root-time algorithm like Pollard rho [28], one could feasibly carry out a
targeted attack against a small number of the 64-bit or 128-bit nonces we dis-
covered; carrying out this attack against all of the approximately 230 signatures
in the Bitcoin blockchain would have required significantly more computational
resources than we have access to. In contrast, we spent around 40 CPU-years
total on our computations, implemented in Python, for all of the blockchains.

The nonce vulnerabilities fall into several classes that suggest that we have
found several independent implementation vulnerabilities. We first use the hid-
den number problem algorithm to discover the long-term ECDSA signature key
when used with nonces that are shorter than expected, and found keys used
with nonces with lengths 64 bits, 110 bits, 128 bits, and 160 bits. We extend
this technique to discover nonces with shared prefixes and suffixes, and found
keys used with signature nonces that shared prefixes and varied in their 64 least
significant bits, as well as keys used with signature nonces that shared suffixes
and varied in their 128 and 224 most significant bits.

Ethics. We are unable to validate the existence of these vulnerabilities without
actually computing the private keys for vulnerable addresses. In the case of
cryptocurrencies, these keys give us, or any other attacker, the ability to claim
the funds in the associated accounts. In the case of SSH or HTTPS, these keys
would give us, or any other attacker, the ability to impersonate the end hosts.
We did not do so, and in the course of our research we did not carry out any
cryptocurrency transactions or active attacks ourselves; our research is entirely
passive, and requires only observation of transactions or general-purpose network
measurements. However, given that we find evidence that other attackers are
already emptying the accounts of cryptocurrency users whose keys are revealed
through known vulnerabilities (both repeated nonces and private keys posted
online), we anticipate that users will be affected once knowledge of this flaw
becomes public. We have attempted to disclose flaws to the small number of
parties we were able to identify, but in most cases we were unable to identify
any particular vendors, maintainers, or users to responsibly disclose to.

Countermeasures. All of the attacks we discuss in this paper can be prevented by
using deterministic ECDSA nonce generation [29], which is already implemented
in the default Bitcoin and Ethereum libraries.
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2 Related Work

The Hidden Number Problem and ECDSA. The Hidden Number Problem and
the lattice-based algorithm we used to solve it were formulated by Boneh and
Venkatesan, who used it to prove the hardness of computing most significant
bits for Diffie-Hellman [6]. Howgrave-Graham and Smart [19] and Nguyen and
Shparlinski [26] applied the hidden number problem to show that the DSA and
ECDSA signature schemes are insecure if an attacker can learn some most sig-
nificant bits of the signature nonces. Since then, this technique has been applied
in practice in the context of side-channel attacks [5,14].

Repeated DSA/ECDSA Signature Nonces. A number of works have examined
vulnerabilities in DSA and ECDSA due to repeated signature nonces in the wild.
Heninger, Durumeric, Wustrow, and Halderman [18] compromised SSH host keys
for 1% of SSH hosts in 2012 by searching for repeated DSA signature nonces
from SSH handshakes. They traced the problems primarily back to implementa-
tion vulnerabilities in random number generation on low-resource devices. Bos,
Halderman, Heninger, Moore, Naehrig, and Wustrow [7] documented repeated
nonces in the Bitcoin blockchain in 2013, as part of a broader study of elliptic
curve cryptography use. Valsorda studied repeated Bitcoin nonces in 2014 [37].
Courtois, Emirdag, and Valsorda [13] studied repeated Bitcoin nonces in 2014
and noted that it would be possible to chain compromises across keys. Castel-
lucci and Valsorda studied repeated nonces and variants of weak keys and nonces
repeated across keys in Bitcoin in 2016 [11]. Brengel and Rosow examined
repeated nonces within signatures from the same key and chained compromised
nonces across signatures from different keys in the Bitcoin blockchain in 2018 [8].

Key Generation Issues in Cryptocurrencies. In 2013, a major bug in Android
SecureRandom was blamed for the theft of Bitcoin from many users of Android
wallets, due to the faulty random number generators generating repeated
ECDSA signature nonces [20,22]. In 2015, the Blockchain.info Android appli-
cation was discovered to be generating duplicate private keys because the appli-
cation was seeding from random.org, which had started serving a 403 Redirect
to their https URL several months prior [35].

Cryptocurrency Cryptanalysis. The Large Bitcoin Collider is a project that is
searching for Bitcoin private keys using an apparently linear brute force search
algorithm [30] that has searched up to a 54 bit key space. For public keys that
are already revealed, it would be more efficient to use square root discrete log
algorithms [28,34] to recover short private keys of this type, but we are unaware
of any dedicated efforts in this direction.
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3 The Elliptic Curve Digital Signature Algorithm
(ECDSA)

The public domain parameters for an elliptic curve digital signature include an
elliptic curve E over a finite field and a base point G of order n on E. The private
signing key is an integer d modulo n, and the public signature verification key is
a point Q = dG. Elliptic curve public keys can be represented in uncompressed
form by providing both the x and y coordinates of the public point Q, or in
compressed form by providing the x coordinate only and a single parity bit from
the y value [9].

To sign a message hash h, the signer chooses a per-message random integer
k modulo n, computes the point kG, and then computes the values (xr, yr) =
kG mod n, and outputs r = xr and s = k−1(h+dr) mod n. The signature is the
pair (r, s). To verify a message hash using a public key Q, the verifier computes
(x′

r, y
′
r) = hs−1G + rs−1Q and verifies that x′

r ≡ r mod n. If the bit length � of
the curve is shorter than the bit length of the hash function used to compute h,
h is truncated to its � most significant bits prior to the calculation [25].

3.1 ECDSA in Cryptocurrencies

Bitcoin [23], Ethereum [10], and Ripple [33] all use the elliptic curve secp256k1 [9].
A Bitcoin address is derived from a public key by repeatedly hashing the uncom-
pressed or compressed ECDSA public key with SHA-256 and RIPEMD-160. An
Ethereum address is the last 20 bytes of the Keccak-256 hash of the uncompressed
ECDSA public key, where Keccak-256 is an early version of the SHA-3 standard.
Ethereum public keys are not explicitly included along with the signature; instead,
the signature includes an additional byte v that allows the public key to be derived
from the signature. A Ripple address is derived from a compressed public key by
repeatedly hashing with SHA-256 and RIPEMD-160, and concatenating portions
of the hashes. For the purposes of the analysis in our paper, in all of these cryp-
tocurrencies the ECDSA public key is only revealed after an address has been used
to sign a transaction. Bitcoin and Ripple explicitly reveal the ECDSA public key in
uncompressed or compressed format along with a signature; in Ethereum, clients
must derive the public key from the signature itself using key recovery.

ECDSA signatures are used to authenticate the sending party of a transac-
tion. Addresses can be single signature, corresponding to a single public key, or
multisignature addresses, which require valid signatures from k out of a set of
n public keys in order to spend money from a transaction. Users are typically
recommended to use a fresh new address for every transaction [2].

Signature Normalization. ECDSA signatures have the property that both the
signatures (r, s) and (r,−s) will validate with the same public key. In October
2015, Bitcoin introduced a change in the signing procedure to use the smaller of
s and −s mod n in a signature in order to make signatures unique.1 Ethereum
and Ripple also do this type of signature normalization, which affects our attack.
1 https://github.com/bitcoin-core/secp256k1/commit/0c6ab2ff.

https://github.com/bitcoin-core/secp256k1/commit/0c6ab2ff


Biased Nonce Sense 7

3.2 ECDSA in Network Protocols.

ECDSA signatures can also be used in other network protocols. In TLS, every
certificate is signed either by a certificate authority or is self-signed. Most of
these signatures remain RSA signatures in practice. However, when ephemeral
Diffie-Hellman key exchange is chosen as part of the cipher suite in TLS 1.2 and
below, the server signs its portion of the the key exchange, and the client uses
the public key in the certificate to validate this signature [16]. In SSH, every
host has a host key that it uses to sign the entire handshake between client and
server [38]. The client authenticates the server by verifying the signature with
the host public key.

3.3 Elementary Attacks on ECDSA

If an attacker learns the per-message nonce k used to generate an ECDSA sig-
nature, the long-term secret key d is easy to compute as d = (sk −h)r−1 mod n.

It is also well known that if the same nonce k is used to sign two different
messages h1 and h2 with the same secret key, then the secret key is revealed.
Let (r1, s1) be the signature generated on message hash h1, and (r2, s2) be the
signature on message hash h2. We have immediately that r1 = r2, since r1 =
r2 = x(kG). Then we can compute k = (h1 − h2)(s1 − s2)−1 mod n, and recover
the secret key as above.

4 Lattice Attacks on ECDSA

The signature nonce k must also be generated uniformly at random modulo n. If
only a subset of the possible values module n are produce as nonces, techniques
for solving the hidden number problem can be used to solve for the secret key d.

4.1 The Hidden Number Problem

In the hidden number problem as formulated by Boneh and Venkatesan [6], there
is a secret integer α modulo a public prime p, and one is given information about
the most significant bits of multiples tiα mod p, where the ti are generated at
random and known to the attacker. In other words, one is given m pairs of
integers {(ti, ai)}m

i=1 such that tiα−ai mod p = bi with |bi| < B for some B < p.
One can reformulate this problem as seeking a solution x1 = b1, x2 = b2, . . . ,

xm = bm, y = α to the underconstrained system of linear equations

x1 − t1y + a1 ≡ 0 mod p

...
xm − tmy + am ≡ 0 mod p

(1)

There are two techniques used to solve this problem in the literature. The
first uses lattice-based techniques [6,19,26] to solve this system in the case of
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p
p

. . .
p

t1 t2 . . . tm B/p
a1 a2 . . . am B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

larger biases and fewer samples (up to
around 100 in practice, with B several bits
smaller than p), and the second uses Fourier
analysis [3,15] and is more suitable with
many samples (at least 232) and very small
bias. In this paper, we focus on the former
technique, which is better suited to the lim-
ited number of signatures we encounter in
the wild.

To solve the hidden number problem using lattices, consider the lattice gen-
erated by the rows of matrix M in Eq. (2). The m × m upper left quadrant is
a slightly rescaled version of the lattice given by Boneh and Venkatesan, who
suggest using a CVP algorithm to find a vector that is close to the target, which
is the (m + 1)st row in our lattice basis. The most efficient implementations of
lattice algorithms are SVP approximation algorithms, so we follow [5] in embed-
ding this lattice basis into a slightly larger one and using an SVP approximation
algorithm instead.

The vector vb = (b1, b2, . . . , bm, Bα/p,B) is a short vector generated by the
rows of Eq. (2), and by construction |vb| <

√
m + 2B. When |vb| ≤ det L1/ dimL,

we hope to recover vb among the short vectors of a reduced basis for the lattice
generated by M . We have det M = B2pm−1 and dimM = m+2. The LLL [21] or
BKZ [31,32] lattice basis reduction algorithms can be used to find short vectors
in this lattice. In practice on random lattices, the LLL algorithm will find a vector
satisfying |v| ≤ 1.02dimL(det L)1/ dimL in polynomial time [27]. The performance
of BKZ depends on the block size, and will in time exponential in the block size
β find vectors |v| ≤ (1 + ε)dimL

β (det L)1/ dimL where εβ depends on the block
size, but εβ = 0.01 is achievable in practice [12].

In this paper, we focus on relatively small dimension lattices, so that the
approximation factor of LLL or BKZ is largely insignificant. In this case, we
expect to solve the problem when log B ≤ �log p(m − 1)/m − (log m)/2�.

4.2 Optimizations

There are two further optimizations that should be applied to this attack. The
first is that in the case of most significant bits known, the value bi is always
positive, and thus one can increase the bias by recentering the bi by writing each
equation as x′

i − tiy + am + B ≡ 0 mod p which has a solution x′
i = bi − B.

The second improvement is to decrease the dimension of the lattice by one by
eliminating the variable y from Eq. (1) so that one has m − 1 equations in m
unknowns, all bounded.

4.3 Implicit Prefixes

We are also interested in the case where the bi share an identical prefix, or in
other words, that they share most significant bits when viewed as an integer
between 0 and p, but we do not know this prefix. That is, the input to the
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problem is samples {ti, ai}m
i=1 satisfying bi + c + ai ≡ tiα mod p, with |bi| < B

and 0 ≤ c < p is unknown. We can reduce this problem to the previous problem
with m − 1 samples by using one of the samples to eliminate the unknown c.
That is, we solve the hidden number problem with input {t′i = ti − tm]}m−1

i=1 ,
a′

i = ai − am, and the desired solutions b′
i = bi − bm satisfy |b′

i| ≤ 2B.

4.4 Implicit Suffixes

The technique described in Sect. 4.3 can also be adapted to solve for bi that share
an identical suffix, that is, that they share least significant bits when viewed as
an integer between 0 and p. More precisely, the input to our problem in this
case is samples {ti, ai}m

i=1 satisfying 2�bi + c + ai ≡ tiα mod p, with 0 ≤ bi < B,
0 ≤ c < p unknown, and 2�B ≤ p. We can reduce this problem to the case of
shared prefixes by multiplying each sample by 2−� mod n, so that our rescaled
input is samples {2−�ti, 2−�ai}m

i=1 satisfying bi +2−�c+2−�ai ≡ (2−�ti)α mod p,
where |bi| < B and 2−�c is still unknown. At this point this is precisely the
case of shared prefixes, so we may use the hidden number problem algorithm
to solve the case of m − 1 samples generated as {t′i = 2−�(ti − tm) mod n}m−1

i=1 ,
a′

i = 2−�(ai−am) mod n, and the desired solutions b′
i = bi−bm satisfy |b′

i| ≤ 2B.

4.5 Breaking ECDSA with the Hidden Number Problem

To attack ECDSA with biased k values using the hidden number problem [19,26],
note that each signature (ri, si) on hi satisfies

ki − s−1
i rid − s−1

i hi ≡ 0 mod n (3)

If the ki are all small (|ki| < B) or share a common prefix or suffix, then this is
precisely our setting for the hidden number problem variants we describe above,
with ki = bi, α = d, p = n, and si, ri, and hi public per signature.

We construct the input to our problem by hypothesizing that a set of sig-
natures contains one of the vulnerabilities necessary to carry out the attacks
described in Sects. 4.1, 4.3, or 4.4, construct the corresponding lattice, and apply
a lattice basis reduction algorithm. For each candidate solution for ki, we com-
pute the value dki

= (siki − hi)r−1
i mod n, and compare dki

G to the public key
or address.

Experimentally, we found that for a 256-bit n, our case of interest for
secp256k1, we were able to recover the private key from two signatures with 128-
bit nonces by reducing a 3-dimensional lattice with 75% probability, from three
signatures with 170-bit nonces with a 4-dimensional lattice with 95% probabil-
ity, from 4 samples with 190-bit nonces with 100% probability; from 20 samples
with 242-bit nonces by reducing a 21-dimensional lattice with 100% probability,
and from 40 samples with 248-bit nonces and 41-dimensional lattices.

One can keep continuing by increasing the dimension of the lattice, to a
practical limit of a bias of three or four bits for this 256-bit curve order, at the
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cost of solving near-exact SVP, which runs in time exponential in the lattice
dimension, in a high-dimensional lattice.

Unfortunately for the attacker applying these attacks to cryptocurrency sig-
natures, the signature normalization described in Sect. 3.1 adds complexity. We
expect half of the signatures to contain a negated s value, but we will not be
able to tell which. From Eq. (3), negating s will negate the derived value of ki.
Thus an attack on small ki would still be expected to succeed, since the lat-
tice algorithm can recover both small positive or small negative values, but the
normalizations required to solve for the case of shared prefixes in Sect. 4.3 or
shared suffixes in Sect. 4.4 would produce outputs that do not have the desired
properties. For these cases, we brute forced signs for the si.

The signature normalization also means that the relations defining ECDSA
private key recovery from known or repeated nonces as described in Sect. 3.3 may
not hold as described. For these cases we also brute forced sign values for s.

5 Bitcoin

5.1 Collecting Data

To collect Bitcoin signatures we modified the official client to output hash values
and signatures as they are verified, and re-validated the entire blockchain.

We used a snapshot of the blockchain from September 13, 2018 (block height
541,244). At this point, the blockchain contained 975,560,082 signatures from
446,605,479 distinct keys. 40,497,752 of these keys had been used to generate
more than one signature. 569,396,463, or 58% of the signatures in our snapshot
had been generated by one of these keys.

5.2 Cryptanalytic Tests for Biased Nonces

We clustered signatures by public key and eliminated signatures that were fully
identical, that is, that shared both the hash h and the signature (r, s). For keys
associated with m > 1 distinct signatures, we ran the following randomized tests
on subsamples of the signatures:

– Check if the set of distinct signatures generated by this key contains any
duplicate r values. If so, we compute the private key and all signature nonces
k using Sect. 3.3 and do not run any of the following.

– Select two signatures at random and check for nonces of length less than 128
bits. We repeated this test 2m times for each key.

– Select three signatures at random and check for nonces of length less than
170 bits. We repeated this test 2m times for each key.

– Select three signatures at random and check for nonces sharing 128 most
significant bits, brute forcing signature normalizations. We repeated this test
2m times for each key.

– Select three signatures at random and check for nonces sharing 128 least
significant bits, brute forcing signature normalizations. We repeated this test
2m times for each key.



Biased Nonce Sense 11

– For m ≤ 40, check for nonces of length less than �256(m − 1)/m� − 1 bits,
using all m signatures without signature normalization.

– For m > 40, choose a random subset of 41 signatures and check for nonces
of length less than 248 bits. We repeated this test m/20 times for each key,
without signature normalization.

The parameters were chosen so that these tests would complete in a reason-
able length of time even for the most common keys.

5.3 Running the Cryptanalysis

We implemented these tests in Sage [36], using the built-in BKZ implementation
for lattice basis reduction. We ran the computation parallelized across 2000 cores
of a heterogeneous cluster with mostly Intel Xeon E5 processors. We ended
up running the computation twice, once without signature normalization on a
snapshot of the blockchain from March 2018 and once with normalization in
September 2018. For the low-dimensional lattice attacks, the bottleneck of the
computation was the elliptic curve multiplications required to check whether we
had found the correct private key. The total running time for both jobs was 38
CPU years, and the longest-running job (corresponding to a single key that had
generated 1,021,572 signatures in March 2018) completed in 30 calendar days.

5.4 Results and Analysis

Biased Nonces. After running our attacks, we had computed the private keys
for 302 distinct keys that were compromised via small nonces, nonces with shared
prefixes, or nonces with shared suffixes. These keys had generated 6,026 sig-
natures with these vulnerable nonces in the blockchain, and 7,328 signatures
overall, including signatures that we did not classify as using vulnerable nonces.

For further analysis, we used the BlockSci library [4]. We classified keys by
the signature nonce vulnerability that had compromised them and summarize
the data in Table 1. Nearly all of the compromised keys had been used as part
of multisignature addresses of type 1-out-of-1, 1-out-of-2, 1-out-of-3, 2-out-of-2,
2-out-of-3, 2-out-of-5, or 3-out-of-5.

On September 23, 2018, a total of 745,990 satoshis were in non-multisignature
addresses whose keys were compromised by these biased nonces. An additional
72,985 satoshis were in a multisignature address where we possessed all of the
necessary keys for the account. A further 6,480,000 satoshis were present in
addresses for which we possessed one out of two necessary signatures.

We plot the signatures from biased nonces over time in Fig. 1. Nearly all of
the compromised nonces fell into a few clear classes based on the length of the
variable portion of the nonce. We found short nonces of length 160 bits, 128 bits,
110 bits, 64 bits, and a few sporadic nonces below 32 bits. We also found nonces
that shared a fixed prefix followed by a variable 64-bit suffix, and nonces that
varied in the 128 most significant bits and shared a fixed 128-bit suffix. Most of
the affected keys were part of multisignature addresses.
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Table 1. Biased signatures and keys. We classified the compromised keys and
signatures by the type of nonce vulnerability that had compromised the private key.
Nearly all of the compromised keys had been used as part of multisignature addresses.

Nonce type Signatures Distinct keys Multisignature keys

Prefix + 64 bits 27 2 0

128 bits + Suffix 121 13 4

160 bits 3 1 0

128 bits 4 2 2

110 bits 2 1 0

64 bits 5,863 280 279

≤ 32 bits 6 3 0

2014 2015 2016 2017 2018

32
64
64∗

110
128∗
160

128+suffix
128+suffix∗
prefix+64

N
on

ce
ty

pe

Fig. 1. Bitcoin signatures with small and biased nonces over time. We plot
signatures with biased nonces over time, grouped by the class of bias we observed, and
whether they are used with multisignature addresses (marked with ∗). Larger circles
correspond to more signatures on a given date. We note that the different types of
biases appear at different date ranges, suggesting that these vulnerabilities are specific
to distinct implementations.

64-bit Nonces. We found 5,863 signatures from 280 distinct keys that used 64-bit
nonces. All but one of these keys was used as part of multisignature addresses.
All of these signatures appeared between July 26, 2014 and June 1, 2015.

Two accounts related to these keys have a non-zero balance: One 2-out-of-2
address, for which we have one private key, has a single satoshi. One 2-out-of-3
address, for which we have two private keys, has a balance of 72,985 satoshis.

After we posted a preprint of this paper online, Gregory Maxwell in personal
communication identified the likely culprit: On July 12th, the bitcore library,
a general purpose JavaScript bitcoin library provided by BitPay, was updated
to use a different elliptic curve library. The changes introduced in this update
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included setting the length of the random nonces to eight bytes.2 This matches
the July 2014 appearance of the vulnerable 64-bit nonces we identified.

The bug was fixed on August 11, 2014.3 Yet we observed these nonces for
almost a full year; this indicates that not all products that build on top of bitcore
upgrade their dependencies in a timely manner.

64-bit Nonces and Single-Signature Keys. Our lattice attack only applies when
at least two signatures with a small nonce are created using the same secret key.
A single 64-bit nonce requires only 232 time to break using Shanks’s baby-step-
giant-step algorithm [34] or the Pollard rho algorithm [28], feasible with only
modest computation resources. However, applying this attack to all of the 230

Bitcoin signatures was beyond our resources, so we searched a random sample.
We precomputed a set of 239 small powers, storing the low 64 bits of the x

coordinate, and also computed a lookup table mapping 232 small powers to their
exponent. The bottleneck is the random accesses into the precomputed lookup
tables, so we chose the parameters so that they fit into the RAM of our largest-
memory machine (2.2TB). One signature takes approximately five minutes on
one core to search.4

We spent 4 calendar days of computation time, or 4,000 core-hours, to check
a random sample of 50,000 Bitcoin multisig signatures from the relevant period
in 2014–2015. We found 169 small nonces this way, revealing 116 private keys.
Of these, 108 were already compromised using the lattice attacks.

110-, 128-, and 160-bit Nonces. We found a few sporadic signatures that used
larger nonce lengths that were broken by our lattice techniques. These may
be individual programming errors, but do not appear to be part of common
implementations. None of the affected accounts had a non-zero balance.

– Three 160-bit nonces, all of which were used with the same key, all on the
same date in September 2017. This key did not produce any more signatures
in our data. We hypothesized that a 160-bit nonce length might be explained
by a user generating a nonce using a hash function with 160-bit output, as in
deterministic ECDSA, but were unable to verify this.

– Four 128-bit nonces from two keys. Each key generated two signatures with
128-bit nonces on the same two days in March 2016, and no further signatures.

– One signed 110-bit nonce, used with one key in January 2017, which had also
generated a normal-looking 256-bit nonce on the same day.

256-bit Nonces with Shared 128-bit Suffixes. 121 signatures were compromised
by nonces that shared a 128-bit suffix with at least one other signature. 55 of
these signatures were used with multisignature addresses and 66 were generated
by non-multisignature addresses. 13 keys were compromised this way, which had
generated a total of 224 signatures. There were 20 distinct suffixes that had
2 https://github.com/bitpay/bitcore/pull/409/commits/ac4d318.
3 https://github.com/bitpay/bitcore/commit/9f9e2f1d.
4 The code can be found at: https://github.com/nomeata/secp265k1-lookup-table.

https://github.com/bitpay/bitcore/pull/409/commits/ac4d3186bfbb4df2aee4389d1a51e488df08b52a#diff-00b2783d2bee76bedf0b6e41345c3bb3R114
https://github.com/bitpay/bitcore/commit/9f9e2f1d
https://github.com/nomeata/secp265k1-lookup-table
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been used by these keys. The earliest signature of this type that we found was
from March 2015, and the most recent was from August 2018. Some of the keys
were used with nonces that all shared the same suffix, and some were used with
nonces of varying and occasionally unique suffixes.

We found that a number of the addresses associated with these compromised
signatures had been posted on the web along with their private keys for a variety
of reasons: they corresponded to small integer private keys, private keys derived
from easy-to-guess passwords such as “satoshi”, or private keys used as examples
in documentation. All of the affected accounts had a zero balance.

2011 2012 2013 2014 2015 2016 2017 2018

other repeat

other repeat∗
(n− 1)/2

Fig. 2. Bitcoin signatures with repeated nonces over time. We plot repeated
signature nonces over time, separating the value (n − 1)/2, which seems to have been
used intentionally, from other repeated nonces. Larger circles correspond to more sig-
natures on a given date. Signatures involving multisignature addresses are marked with
∗. The vertical bars mark when the development (left) and release (right) versions of
the official bitcoin client began to create nonces deterministically [29].

Interestingly, in 54 of the signatures, the 128-bit nonce suffix is identical
to the 128 most significant bits of the private key. The vulnerable transactions
emptied the relevant accounts. We hypothesize that the vulnerable nonce suffixes
we observe may actually be due to a custom implementation used by an attacker
who is emptying accounts from Bitcoin addresses that were already compromised
online. The overlapping bits between the nonce and the private key might be an
artifact from a bug in a program written in a memory-unsafe language like C.

256-bit Nonces with Shared 192-bit Prefixes. We computed 2 keys that had
been used with 27 signatures with nonces sharing prefixes. Each key had some
signatures with the shared prefix and some without. One of the two keys has a
balance of 495,990 satoshis, and seems to be in current use at the time of writing.

Repeated Nonces. As a side effect of our analysis, we also calculated 1,296 pri-
vate keys from repeated signature nonces. These keys had generated 4,295,141
signatures. Nearly all of the repeated nonces, in 2,456,870 signatures, used
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0.
As noted by [8], this is (n − 1)/2 where n is the order of the secp256k1 curve. The
x-coordinate of G · (n − 1)/2 is 166 bits long, where one would expect a random
point tohave 256bits. It appears tonotbeknownwhy secp256k1has this property;
Gregory Maxwell [1] notes that secp224k1 shares the same 166-bit string doubled
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to produce the generator, and speculates that this value is the output of SHA-1.
According to [1], this value is used to sweep “dust” transactions.

We note that even for a “final” transaction for a given key, an attacker
could observe a proposed transaction, derive the secret key, and race the original
transaction. This is not a concern if the key has already been compromised,
however. Some of the transactions using k = (n − 1)/2 are withdrawing money
from addresses derived from easily guessable brainwallet passwords.

Table 2 summarizes the distribution of compromised keys and signatures.
There were no funds left in any of the addresses with repeated nonces at the time
that we examined the results. Since this failure mode of ECDSA is well known, it
appears that multiple entities regularly scan the blockchain for repeated nonces
and remove any funds from vulnerable keys. However, there were two multisigna-
ture addresses with nonzero account balances for which repeated nonces revealed
one of the necessary addresses:

– The website https://www.darkwallet.is/ asks for donations to be sent to
a 3-out-of-5 multisignature address, which currently holds a balance of
1,722,498,619 satoshis (approx. 110 kUSD). One of the five keys was com-
promised by a repeated signature nonce. We contacted Amir Taaki, one of
the founders, who told us that signatures from these addresses had been cal-
culated manually, suggesting that the random number generator may not
have been seeded.

– One 2-out-of-3 address had a balance of 179,400 satoshis.

In Fig. 2, we plot non-unique signature nonces over time. Clusters of repeated
nonces in 2013 appear to correspond to one of the reported RNG vulnerabilities
discussed in Sect. 2. The rate of repeats decreases after 2014.

Other Small Nonces. We brute forced all 32-bit nonce values, and found 275
signatures from 52 keys. The small number and the observed nonces (1, 2, 9,
100, 1337, 13337, 133337, 1333337, 12345678, and 2147491839) do not point to
a flawed implementation, but rather hand-crafted transactions and signatures.

6 Ethereum

Collecting Data. We collected Ethereum signatures by querying a local
Ethereum node via its RPC interface. We ran our analysis on a snapshot of the
blockchain from September 17, 2018 (block 6,346,730). It contained 311,118,952
signatures from 34,754,686 distinct public keys. 19,558,608 (57%) keys had gen-
erated more than one signature, resulting in 295,922,874 (95%) signatures from
such keys.

Running the Cryptanalysis. We clustered signatures by public key, and
examined the keys that had generated more than one signature. We ran the
same tests as for Bitcoin, and as with Bitcoin, we ran the computation twice,
once with signature normalization on our September 2018 blockchain snapshot

https://www.darkwallet.is/
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and once without on a snapshot from July 2018. The total computation took 9.5
CPU years, and the longest-running job (corresponding to a single key that had
generated 1,321,734 signatures in July 2018) completed in 25 calendar days.

Table 2. Repeated signature nonces. Nearly all of the repeated signature nonces
on the Bitcoin blockchain have the value (n − 1)/2. These represented the majority of
keys compromised through repeated nonces.

Nonce Total signatures Repeated nonce signatures Distinct keys

(n − 1)/2 4,275,639 2,456,870 918

Others 19,052 2,214 378

Results and Analysis

256-bit Nonce with 192-bit Prefix. One key was compromised via biased nonces.
It had generated seven signatures in our dataset, of which five nonces shared the
same nonzero, random-looking 192-bit prefix and differed only in the last 64 bits
of the nonce. The remaining two signatures that had been generated by this key
look random, and do not share this prefix. The key holds 0.00002 Ether.

Repeated Nonces. Three keys were compromised from repeated nonces, with
185 signatures between them. The repeated nonces include four occurrences
of the nonce 1, two occurrences of a seemingly random 256-bit nonce, and
123456789abcdef. No funds are held by these keys.

7 Ripple

Collecting Data. We downloaded a portion of the Ripple blockchain that
included 218,101,343 signatures. There were 571,482 unique public keys, of which
379.575 had generated more than one signature, totaling 217,909,436 signatures
(99%) that were generated by a key that had been used more than once.

Running the Cryptanalysis. We clustered signatures by public key, and
examined the keys that had generated more than one signature. We ran the
same tests as for Bitcoin. The total computation time took 1.1 CPU years, and
the longest single computation took 5 calendar days for a single key that had
generated 361,366 signatures.

Results and Analysis. We found one private key that had been compromised
by a repeated signature nonce. This key had generated 21 signatures. It holds
30.40 XRP (approx. 14 USD) and 1.81 CNY. We deduce that attackers have not
yet begun to systematically observe the Ripple blockchain for repeated nonces.
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8 SSH

Collecting Data. We gathered DSA and ECDSA signatures from Internet-
wide scans of SSH on port 22 that were performed by Censys [17] between April
3, 2018 and September 18, 2018. The scans contained between 7.9 million and 9.4
million DSA and ECDSA signatures each, for a total of 196,884,009 signatures
from 20,103,764 distinct public keys. These included 191,855,472 NIST P-256
signatures, 2,634,869 DSA signatures, 2,095,181 NIST P-521 signatures, 164,919
NIST P-384 signatures, and 133,568 ed25519 signatures.

Running the Cryptanalysis. The SSH dataset included a wide variety of
different DSA groups. We ran the tests described in Sect. 5.2, scaled to the
relevant group size. The total computation time was 2.8 CPU-years, and the
longest computation took 8 days to process the most common key, which had
been used for 1,450,916 signatures from our scans.

Results and Analysis

256-bit Keys with 32-bit Shared Suffixes. Three private keys produced signatures
whose nonces all shared the suffix f27871c6. The hosts have gone offline since,
and we were unable to identify the implementation. This suffix is one of the
“constant words” used in the calculation of a SHA-2 hash [24], with swapped
byte order. We can speculate that the server is using SHA-2 to generate the
nonce, but has a bug in the implementation.

224-bit Keys with 160-bit Nonces. One further key was compromised due to the
use of small nonces. All 23 signatures by this key used a 160 bit nonce with
a 2048-bit DSA public key with a 224-bit subgroup, and were observed at the
same IP address. We speculate that this may be due to the use of a 160-bit hash
function like SHA-1 or MD5 being used to generate the nonce in a 224-bit group.

Repeated Nonces. 681 signatures were compromised by repeated nonces. Of
these, 612 used DSA, and 69 used ECDSA with NIST P-256. These came from
34 distinct public keys on 80 distinct IP addresses.

We compared this number to repeated nonces found in a March 25, 2012
scan of SSH that requested only DSA host keys provided by the authors of [18].
In the 2012 scan, 22,182 nonces had been used more than once, and 58 distinct
keys were vulnerable on 24,893 distinct IP addresses. We conclude that many of
these vulnerable implementations have been taken offline or patched since then.

9 HTTPS

Collecting Data. We gathered ECDSA signatures from weekly Internet-wide
scans of HTTPS on port 443 performed by Censys [17] between April 3, 2018
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and September 6, 2018. The number of ECDSA signatures per scan increased
from 1.5 million to 1.9 million, resulting in 50,313,795 total ECDSA signatures
from 182,843 distinct keys on 3,333,482 distinct IP address. 50,096,848 signatures
were from NIST P-256, 212,523 were from NIST P-384, 4,400 were from NIST
P-521, and 24 were from NIST P-224.

Running the Cryptanalysis. We ran the same sequence of tests as described
in Sect. 5.2, scaling the number of bits to the curve order. The total computation
time was 152 CPU-days, and the longest computation took 17 days to process
a single key that had produced 4,093,917 signatures from our scan.

Results and Analysis. We did not find any small or biased signature nonces.
We found three different sources of signatures with repeated nonces, which we
hypothesize are due to flawed random number generators. These resulted in 462
vulnerable signatures that had been generated by 7 distinct private keys on 97
distinct IP addresses.
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Abstract. We present the a provably secure proof-of-stake protocol
called Snow White. The primary application of Snow White is to be used
as a “green” consensus alternative for a decentralized cryptocurrency sys-
tem with open enrollement. We break down the task of designing Snow
White into the following core challenges:
1. identify a core “permissioned” consensus protocol suitable for proof-

of-stake; specifically the core consensus protocol should offer robust-
ness in an Internet-scale, heterogeneous deployment;

2. propose a robust committee re-election mechanism such that as stake
switches hands in the cryptocurrency system, the consensus commit-
tee can evolve in a timely manner and always reflect the most recent
stake distribution; and

3. relying on the formal security of the underlying consensus protocol,
prove the full end-to-end protocol to be secure—more specifically, we
show that any consensus protocol satisfying the desired robustness
properties can be used to construct proofs-of-stake consensus, as long
as money does not switch hands too quickly.

Snow White was publicly released in September 2016. It provides the
first formal, end-to-end proof of a proof-of-stake system in a truly decen-
tralized, open-participation network, where nodes can join at any time
(not necessarily at the creation of the system). We also give the first for-
mal treatment of a well-known issue called “costless simulation” in our
paper, proving both upper- and lower-bounds that characterize exactly
what setup assumptions are needed to defend against costless simula-
tion attacks. We refer the reader to our detailed chronological notes on
a detailed comparison of Snow White and other prior and concurrent
works, as well as how subsequent works (including Ethereum’s proof-of-
stake design) have since extended and improved our ideas.

1 Introduction

Although consensus protocols have been investigated by the distributed sys-
tems community for 30 years, in the past decade a new breakthrough called
Bitcoin established a new, blockchain-based paradigm for reaching consensus in
a distributed system. Relying on proof-of-work, Bitcoin’s consensus protocol
c© International Financial Cryptography Association 2019
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(often called Nakamoto consensus), for the first time, enabled consensus in
an open, unauthenticated environment where nodes do not share any pre-
established public keys [11,17,18,22]. One commonly known painpoint with this
approach is the enormous energy waste. Motivated by the need for a green alter-
native, the community searched for a paradigm shift, and hoped to obtain a con-
sensus paradigm, commonly called “proof-of-stake”, that is based on the idea of
“one vote per unit of stake” (as opposed to “one vote per unit of hash-power”).

The design of proof-of-stake protocols was first initiated in online forums and
blog-posts and subsequently considered by the academic community [2,3,7,14–
16,24–26]. Prior to our work, we were not aware of any candidate protocol that
offered provable guarantees.

Snow White is the first work to provide end-to-end, formal proofs of security
of a full proof-of-stake protocol. Security is proven in a truly decentralized, open-
participation environment where honest nodes can join the protocol late in time
(and not necessarily at the system’s creation). We give the first formal treatment
of the well-known “costless simulation” problem (also called posterior corruption
in this paper) pertaining to proof-of-stake, proving upper- and lower-bounds that
precisely characterize under what assumptions it is possible to defend against
costless simulation.

In the remainder of the introduction, we first present an informal technical
overview of our results. We then provide detailed chronological notes that posi-
tion our work in light of other concurrent and subsequent works, and summarize
our work’s contributions and impact.

1.1 Robustly Reconfigurable Consensus

We ask the question: what is a suitable consensus protocol for a proof-of-stake
system? In a proof-of-stake system, at any point of time, we would like the present
stake-holders to have voting rights that are weighed by their respective stake
amount. Thus if we examine any single snapshot in the system, proof-of-stake in
fact requires a “permissioned” core consensus protocol, since the set of public-
keys owning stake is publicly known. However, proof-of-stake systems aim to
support open participation—and this can be enabled through periodic committee
reconfiguration. Suppose that the system starts with a well-known set of stake-
holders who form the initial consensus committee. As stake switches hands in
the system, the consensus committee should be updated in a timely manner to
track the present (and not the past) stake distribution. This is important for the
security of a proof-of-stake system, since users who no longer hold stake in the
system may be incentivized to deviate, e.g., to launch a double-spending attack.

We formulate the task of designing “a consensus protocol suitable for proof-
of-stake” as “robustly reconfigurable consensus”. A robustly reconfiguration con-
sensus protocol should have the following desirable properties.

Robustness in the Presence of Sporadic Participation. In a large-scale,
decentralized environment, users tend to have sporadic participation, and it may
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be difficult to anticipate how many users will be online at any point of time.
Almost all classical-style consensus protocols rely on tallying sufficiently many
votes to make progress. If fewer than the anticipated number of users actually
show up to vote, the consensus protocol may get stuck.

To address this challenge, Snow White employs the recently proposed “sleepy
consensus” [21] paradigm as its core permissioned consensus building block.
Sleepy consensus [21] is inspired by the beautiful “longest-chain” idea behind
Nakamoto’s consensus [17], but the idea is instead applied to a non-proof-of-
work, permissioned setting with a public-key infrastructure (PKI). Pass and Shi
prove that the resulting consensus protocol is robust in the presence of sporadic
participation: concretely, the protocol need not be parametrized with an a-priori
fixed number of players that are expected to show up. As long as the majority
of online players are honest, the protocol guarantees consistency and liveness.

Robust Committee Reconfiguration. Roughly speaking, our system pro-
ceeds in epochs. In each epoch, a most recent set of stake-holders are elected
as committee and may be randomly chosen to generate blocks. We argue that
committee reconfiguration and random block-proposer selection are challenging
and subtle due to the following two possible attacks.

1. Adaptive key selection attacks. Since proof-of-stake systems admit open par-
ticipation, anyone can buy up stake in the system and participate. This also
means anyone can (possibly maliciously) choose their public-keys through
which they participate in the consensus. A possible attack, therefore, is to
adaptively choose public-keys, after gathering partial information about the
randomness seed used for block-proposer selection, such that corrupt nodes
are elected more often as block-proposer than their fair chance.

2. Randomness-biasing attacks (commonly known as the “grinding attack”).
Another important question is: how do we obtain the randomness needed
for block proposer selection? A most straightforward idea is to use the hash
of past blocks—but as several works have shown [4], the blocks’ hashes can
be subject to adversarial influence, and it is unclear what security can be
guaranteed when we use such randomness sources with adversarial bias for
block proposer selection. For example, the adversary can bias the randomness
in a way that allows corrupt nodes to be selected more often.

In the worst case, if through possibly a combination of the attacks, the adver-
sary can control the majority of the block-proposer slots, consistency of the
underlying consensus (in our case, sleepy consensus) can be broken.

Snow White proposes a novel “two-lookback” mechanism that addresses the
above two challenges simultaneously1. We determine each epoch’s new consensus
committee and randomness seed in a two-phase process, where each phase spans

1 Subsequent works, including newer versions of Algorand [6] released after our pub-
lication, Ouroboros Praos [9], and the latest Ethereum’s proof-of-stake proposal [1]
incorporated elements of this design and suggested improvements, e.g., for concrete
security. See Sect. 1.3 for more discussions.
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roughly κ blocks of time for some appropriate security parameter2 κ. This two-
phase process is enabled by two look-back parameters as we describe informally
below (a formal description is deferred to the technical sections)—henceforth
suppose that chain is the current longest chain.

1. We look back 2κ blocks, and use the prefix chain[: −2κ] (i.e., the prefix
of chain removing the trailing 2κ blocks) to determine the new consensus
committee.

2. We look back κ blocks, and extract the randomness contained in the blocks
chain[−2κ : −κ] (i.e., the part of chain from 2κ blocks ago to κ blocks ago)
to form a randomness seed—this seed then seeds a random oracle used for
block-proposer selection in the current epoch.

Roughly speaking, we defeat the adaptively chosen key attack by determining
the consensus committee κ blocks earlier than the randomness seed, such that
when corrupt nodes choose their public keys, they cannot predict the random-
ness seed, which will be generated much later in time and with sufficient entropy
contributed by honest nodes as we explain below. We argue that due to chain
quality of the underlying sleepy consensus, the blocks chain[−2κ : −κ] must
contain an honest block. Since honest nodes embed a sufficiently long uniform
random seed in its block, we can extract sufficiently high-entropy randomness
from chain[−2κ : −κ] which is then used to seed the block-proposer-selection
random oracle. Even though the extracted randomness is subject to adversar-
ial bias, as long as it is high-entropy, and importantly, as long as the same
randomness is used to seed the block-proposer selection sufficiently many times,
we can achieve the desired measure concentration properties. More specifically,
although indeed, the adversary can bias the random seed to allow corrupt nodes
to be selected (as block-proposers) quite surely for a few number of slots; the
adversary is not able to consistently gain advantage over a sufficiently large num-
ber of slots, i.e., corrupt nodes cannot own noticeably more block-proposer slots
than its fair share.

We stress that turning the above intuitive argument into a formal proof
requires significant and non-trivial effort which is part our main contributions.
In our technical sections, we formally prove security of this approach under a
mildly adaptive adversary, i.e., when the adversary is subject to a mild cor-
ruption delay and as long as nodes remain honest till shortly after they stop
serving on a consensus committee, our robustly reconfigurable consensus proto-
col is secure. Subsequent works (including newer versions of the Algorand paper
that are published after the release of Snow White, as well as the subsequent
work Ourboros Praos [9]) have suggested approaches for achieving fully adap-
tive security, but relying on the fact that the majority of nodes will erase secret
signing keys from memory after signing a block (and by introducing mild addi-

2 Suppose that except with negligible in κ probability, the underlying sleepy consensus
guarantees consistency by chopping off the trailing κ blocks, and guarantees the
existence of an honest block in every consecutive window of κ blocks.
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tional complexity in the cryptographic schemes employed)—see Sect. 1.3 for a
more detailed comparison.

Understanding Posterior Corruption, i.e., “Costless Simulation” Att-
acks. A oft-cited attack for proof-of-stake systems is the so-called “costless sim-
ulation” attack (also referred to as a posterior corruption attack in this paper).
The idea is that when stake-holders have sold their stake in the system, nothing
prevents them from performing a history-rewrite attack. Specifically, suppose
that a set of nodes denoted C control the majority stake in some past commit-
tee. These nodes can collude to fork the history from the point in the past when
they control majority—and in this alternate history money can transfer in a
way such that C continues to hold majority stake (possibly transferred to other
pseudonyms of the corrupt nodes) such that the attack can be sustained.

In this paper, we formally prove that under a mild setup assumption—when
nodes join the system they can access a set of online nodes the majority of whom
are honest—we can provably defend against such a posterior corruption attack.
This is achieved by having the newly joining user obtain a somewhat recent
checkpoint from the set of nodes it can access upon joining.

We also prove a corresponding lower bound, that absent this setup assump-
tion, defense against such posterior corruption attacks is impossible—to the best
of our knowledge, ours is the first formal treatment of this well-known costless
simulation attack in the context of proof-of-stake.

1.2 From Robustly Reconfigurable Consensus to Proof-of-Stake

Application to Proof-of-Stake and Achieving Incentive Compatibility.
We show how to apply such a “robustly reconfigurable consensus” protocol to
realize proof-of-stake (the resulting protocol called Snow White), such that nodes
obtain voting power roughly proportional to their stake in the cryptocurrency
system. As long as money does not switch hands too fast (which is enforceable by
the cryptocurrency layer), we show that the resulting proof-of-stake protocol can
attain security when the adversary controls only a minority of the stake in the
system. Further, borrowing ideas from the recent Fruitchain work [19], we suggest
incentive compatible mechanisms for distributing rewards and transaction fees,
such that the resulting protocol achieves a coalition-resistant ε-Nash equilibrium,
i.e., roughly speaking, as long as the adversary controls a minority of the stake,
it cannot obtain more than ε fraction more than its fair share of payout, even
when it has full control of network transmission and can deviate arbitrarily from
the protocol specification.

Preventing Nothing-at-Stake Attacks. Later in Sect. 3, we will also discuss
how to leverage guarantees provided by our core consensus protocol, and build
additional mechanisms that not only discourage nothing-at-stake attackers, but
in fact penalize them.
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1.3 Chronological Notes, Closely Related, and Subsequent Works

Comparison with Algorand. The first manuscript of Algorand [6] was pub-
lished prior to our work. Algorand also proposes a proof-of-stake system. Their
core consensus protocol is a newly designed classical-style consensus protocol,
and therefore they cannot guarantee progress under sporadic participation—
instead, Algorand proposes a notion of “lazy participation”, where users know
when they are needed to vote in the consensus and they only need to be online
when they are needed. However, if many users who are anticipated to show
up failed to do so, progress will be hampered. Algorand employs a Verifiable
Random Function (VRF) to perform random leader/committee election.

Algorand’s algorithm has been improved for several iterations. The version of
Algorand that existed before the publication of Snow White gave proofs of their
core consensus protocol but did not provide end-to-end proofs for the full proof-
of-stake system. In particular, the version of Algorand that existed prior to Snow
White’s publication did not discuss the well-known issue of costless simulation or
clearly state the implicit assumptions they make to circumvent the lower bound
we prove in this paper.

In their subsequent versions, they adopted the erasure model and rely on
honest nodes’ capability to safely erase secrets from memory to achieve adaptive
security (and implicitly, by adopting erasures one could defend against the cost-
less simulation). The newer versions of Algorand (released after the Snow White)
also started to adopt a similar look-back idea (first described by Snow White)
to secure against the adaptive chosen-key attack mentioned earlier. The recent
versions also provided more thorough mathematical proofs of this approach.

Comparison with Ouroboros and Ouroboros Praos. Snow White was pub-
licly released in September 2016. A closely related work (independent and con-
current from our effort) known as Ouroboros [13] was release about 10 days prior
to Snow White. Ouroboros Praos is an improvement over Ouroboros published
in 2017 [9].

The Ouroboros version that was released around the same time as Snow
White focused on proving the underlying permissioned consensus building block
secure, and there is only a short paragraph containing a proof sketch of their full
proof-of-stake system (and this proof sketch has been somewhat expanded to a
few paragraphs in later versions). In comparison, our Snow White paper adopts a
permissioned consensus building block whose security was formally proven secure
in a related paper [21]—the full-length of our technical sections are dedicated to
a thorough treatment of the security of the end-to-end proof-of-stake system.

A notable difference between Snow White and Ouroboros seems to be that
their formal treatment does not seem to capture a truly decentralized environ-
ment (necessary for decentralized cryptocurrency applications) where nodes may
join the system late and not from the very start—had they done so, they would
have encountered the well-known costless simulation issue, which, as we show, is
impossible to defend against without extra setup assumptions (and indeed, we
introduce a reasonable setup assumption to circumvent this lower bound).
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A subsequently improved work, called Ouroboros Praos [9], extends the VRF
approach described first by Algorand [6] and Dfinity [12] for random block-
proposer election. Similar to the newer versions of Algorand, Ouroboros Praos [9]
also started adopting an erasure model to achieve adaptive security (and implic-
itly, defend against costless simulation3).

Neither Ouroboros nor Ouroboros Praos adopts an underlying consensus
mechanism that provably provides support for sporadic participation. Finally,
the improved version Ouroboros Praos [9] started adopting a look-back mecha-
nism that appears to be inspired by Snow White to for committee rotation and
random block-proposer selection.

Comparison with Ethereum’s Proof-of-Stake Design. Ethereum began
proof-of-stake explorations several years ago. Their design has undergone several
versions. At the time of the writing, Ethereum was aiming to do “hybrid proof-of-
stake”, i.e., use Casper as a finality gadget on top of their existing proof-of-work
blockchain.

In the past year 2018, conversations with Ethereum core researchers suggest
that Ethereum is considering replacing their proof-of-work blockchain with a
proof-of-stake blockchain similar to Snow White. Their committee election and
random block proposer selection algorithm seems to be improvement of Snow
White. Specifically, they would like to adopt an economically secure coin toss
protocol for randomness generation (commonly known as RANDAO). This spe-
cific protocol is also subject to adversarial bias much like our randomness seed
generation (although biasing attacks may lead to economic loss). Thus they rely
on exactly the same observation that was proposed in our paper: although the
adversary can bias the randomness sufficiently to control a few block proposer
slots, he cannot consistently get an advantage over a large number of slots. Inter-
estingly, Ethereum has several practical optimizations that improve the concrete
security parameters of the above analysis [1].

2 Snow White’s Core Consensus Protocol

We focus on an intuitive exposition of our scheme in the main body. In the
online full version [8], we present formal definitions, a formal description of the
protocol, as well as the full proofs. We stress that formalizing the end-to-end
security of a proof-of-stake system is a significant effort and this leads to our
choice of presentation.

2.1 Background: Sleepy Consensus and Sleepy Execution Model

Sleepy Execution Model and Terminology. We would like to adopt an
execution model that captures a decentralized environment where nodes can
3 Snow White’s approach of combining checkpointing and “bootstrapping through

social consensus” to defend against costless simulation is simpler and more practical
in real-world implementations (than relying on VRFs and erasure [6,9]). Notably,
our usage of checkpointing and “bootstrapping through social consensus” already
exists in real-world cryptocurrencies.
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spawn late in time, and can go to sleep and later wake up. In such a model, the
protocol may not have a way to anticipate the number of players at any time.

We thus adopt the sleepy model of execution proposed by Pass and Shi [21].
Nodes are either sleepy (i.e., offline) or awake (i.e., online and actively partici-
pating). For simplicity, we also refer to nodes that are awake and honest as alert;
and all corrupt nodes are assumed to be awake by convention.

Messages delivered by an alert node is guaranteed to arrive at all other alert
nodes within a maximum delay of Δ, where Δ is an input parameter to the
protocol. A sleepy node captures any node that is either offline or suffering a
slower than Δ network connection. A sleepy node can later wake up, and upon
waking at time t, all pending messages sent by alert nodes before t − Δ will be
immediately delivered to the waking node.

We allow the adversary to dynamically spawn new nodes, and newly spawned
nodes can either be honest or corrupt. Further, as we discuss later, we allow the
adversary to declare corruptions and put alert nodes to sleep in a mildly adaptive
fashion.

For readability, we defer a detailed presentation of the formal model to our
online full version [8].

The Sleepy Protocol as a Starting Point. Classical consensus protocols must
count sufficiently many votes to make progress and thus the protocol must know
a-priori roughly how many nodes will show up to vote. Since Pass and Shi’s
Sleepy consensus protocol is the only protocol known to provide consensus under
sporadic participation, i.e., the protocol need not have a-priori knowledge of the
number of players at any time. We thus consider Sleepy as a starting point for
constructing our notion of robustly reconfigurable consensus. We now briefly
review the Sleepy consensus protocol as necessary background.

Sleepy is a blockchain-style protocol but without proof-of-work. For practical
considerations, below we describe the version of Sleepy instantiated with a ran-
dom oracle (although Pass and Shi [21] also describe techniques for removing the
random oracle). Sleepy relies on a random oracle to elect a leader in every time
step. The elected leader is allowed to extend a blockchain with a new block, by
signing a tuple that includes its own identity, the transactions to be confirm, the
current time, and the previous block’s hash. Like in the Nakamoto consensus,
nodes always choose the longest chain if they receive multiple different ones. To
make this protocol fully work, Sleepy [21] proposes new techniques to timestamp
blocks to constrain the possible behaviors of an adversary. Specifically, there are
two important blockchain timestamp rules:

1. a valid blockchain must have strictly increasing timestamps; and
2. honest nodes always reject a chain with future timestamps.

All aforementioned timestamps can be adjusted to account for possible clock
offsets among nodes by applying a generic protocol transformation [21].
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2.2 Handling Committee Reconfiguration

As mentioned, our starting point is the Sleepy consensus protocol, which assumes
that all consensus nodes know each other’s public keys; although it may not be
known a-priori how many consensus nodes will show up and participate.

We now discuss how to perform committee reconfiguration such that the con-
sensus committee tracks the latest stake distribution. To support a wide range of
applications, our Snow White protocol does not stipulate how applications should
select the committee over time. Roughly speaking, we wish to guarantee secu-
rity as long as the application-specific committee selection algorithm respects
the constraint that there is honest majority among all awake nodes. Therefore,
we assume that there is some application-specific function elect cmt(chain) that
examines the state of the blockchain and outputs a new committee over time. In
a proof-of-stake context, for example, this function can roughly speaking, output
one public key for each currency unit owned by the user. In Sect. 3, we discuss
in a proof-of-stake context, how one might possibly translate assumptions on
the distribution of stake to the formal requirements expected by the consensus
protocol.

Strawman Scheme: Epoch-Based Committee Selection. Snow White pro-
vides an epoch-based protocol for committee reconfiguration. To aid understand-
ing, we begin by describing a strawman solution. Each Tepoch time, a new epoch
starts, and the beginning of each epoch provides a committee reconfiguration
opportunity. Let start(e) and end(e) denote the beginning and ending times of
the e-th committee. Every block in a valid blockchain whose time stamp is
between [start(e), end(e)) is associated with the e-th committee.

It is important that all honest nodes agree on what the committee is for
each epoch. To achieve this, our idea is for honest nodes to determine the new
committee by looking at a stabilized part of the chain. Therefore, a straightfor-
ward idea is to make the following modifications to the basic Sleepy consensus
protocol:

– Let 2ω be a look-back parameter.
– At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node

determines the e-th committee in the following manner: find the latest block
in its local chain whose timestamp is no greater than start(e) − 2ω, and
suppose this block resides at index �.

– Now, output extractpks(chain[: �]) as the new committee.

In general, the look-back parameter 2ω must be sufficiently large such that all
alert nodes have the same prefix chain[: �] in their local chains by time start(e).
On the other hand, from an application’s perspective, 2ω should also be recent
enough such that the committee composition does not lag significantly behind.

Preventing an Adaptive Key Selection Attack. Unfortunately, the above
scheme is prone to an adaptive key selection attack where an adversary can
break consistency with constant probability. Specifically, as the random oracle
H is chosen prior to protocol start, the adversary can make arbitrary queries
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to H. Therefore, the adversary can spawn corrupt nodes and seed them with
public keys that causes them to be elected leader at desirable points of time. For
example, since the adversary can query H, it is able to infer exactly in which
time steps honest nodes are elected leader. Now, the adversary can pick corrupt
nodes’ public keys, such that every time an honest node is leader, a corrupt node
is leader too—and he can sustain this attack till he runs out of corrupt nodes.
Since the adversary may control up to Θ(n) nodes, he can thus break consistency
for Ω(n) number of blocks.

Our idea is to have nodes determine the next epoch’s committee first, and
then select the next epoch’s hash—in this way, the adversary will be unaware
of next epoch’s hash until well after the next committee is determined. More
specifically, we can make the following changes to the Sleepy protocol:

– Let 2ω and ω be two look-back parameters, for determining the next com-
mittee and next hash respectively.

– At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node
determines the e-th committee in the following manner: find the latest block
its local chain whose timestamp is no greater than start(e)−2ω, and suppose
this block resides at index �0. Now, output extractpks(chain[: �0]) as the new
committee.

– At any time t ∈ [start(e), end(e)) an alert node determines the e-th hash in
the following manner: find the latest block its local chain whose timestamp is
no greater than start(e)−ω, and suppose this block resides at index �1. Now,
output extractnonce(chain[: �1]) as a nonce to seed the new hash.

– We augment the protocol such that alert nodes always embed a random seed
in any block they mine, and extractnonce(chain[: �1]) can simply use the seeds
in the prefix of the chain as a nonce to seed the random oracle H.

For security, we require that

1. The two look-back parameters 2ω and ω are both sufficiently long ago, such
that all alert nodes will have agreement on chain[: �0] and chain[: �1] by the
time start(e); and

2. The two look-back parameters 2ω and ω must be sufficiently far part, such
that the adversary cannot predict extractnonce(chain[: �1]) until well after the
next committee is determined.

Achieving Security Under Adversarially Biased Hashes. It is not hard
to see that the adversary can bias the nonce used to seed the hash, since the
adversary can place arbitrary seeds in the blocks it contributes. In particular,
suppose that the nonce is extracted from the prefix chain[: �1]. Obviously, with
at least constant probability, the adversary may control the ending block in this
prefix. By querying H polynomially many times, the adversary can influence the
seed in the last block chain[�1] of the prefix, until it finds one that it likes.

Indeed, if each nonce is used only to select the leader in a small number of
time steps (say, O(1) time steps), such adversarial bias would indeed have been
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detrimental—in particular, by enumerating polynomially many possibilities, the
adversary can cause itself to be elected with probability almost 1 (assuming that
the adversary controls the last block of the prefix).

However, we observe that as long as the same nonce is used sufficiently many
times, the adversary cannot consistently cause corrupt nodes to be elected in
many time steps. Specifically, suppose each nonce is used to elect at least Ω(κ)
leaders, then except with negl(κ) probability, the adversary cannot increase its
share by more than an ε fraction—for an arbitrarily small constant ε > 0. There-
fore, to prove our scheme secure, it is important that each epoch’s length (hence-
forth denoted Tepoch) be sufficiently long, such that once a new nonce is deter-
mined, it is used to elect sufficiently many leaders.

Reasoning About Security Under Adversarially Biased Hashes. For-
malizing this above intuition is somewhat more involved. Specifically, our proof
needs to reason about the probability of bad events (related to chain growth,
chain quality, and consistency) over medium-sized windows such that the bad
events depend only on O(1) number of hashes (determined by the nonces used
to seed them). This way, we can apply a union bound that results in polynomial
security loss. If the window size is too small, it would not be enough to make
the failure probability negligible; on the other hand, if the window were too big,
the blowup of the union bound would be exponential. Finally, we argue if no
bad events occur for every medium-sized window, then no bad events happen
for every window (as long as the window is not too small). We defer the detailed
discussions and formal proofs to our online full version [8].

2.3 Handling Mildly Adaptive and Posterior Corruptions

We now consider how to defend against an adversary that can adaptively corrupt
nodes after they are spawned. In this paper, we will aim to achieve security
against a mildly adaptive adversary. Specifically, a mildly adaptive adversary is
allowed to dynamically corrupt nodes or make them sleep, but such corrupt
or sleep instructions take a while to be effective. For example, in practice, it
may take some time to infect a machine with malware. Such a “mildly adaptive”
corruption model has been formally defined in earlier works [20], where they
call it the τ -agile corruption model, where τ denotes the delay parameter till
corrupt or sleep instructions take effect. Intuitively, as long as τ is sufficiently
large, it will be too late for an adversary to corrupt a node or make the node
sleep upon seeing the next epoch’s hash. By the time the corrupt or sleep
instruction takes effect, it will already be well past the epoch.

The main challenge in handling mildly adaptive corruptions is the threat of
a history rewriting attack when posterior corruption is possible: members of past
committees may, at some point, have sold their stake in the system, and thus
they have nothing to lose to create an alternative version of history.

We rely on a checkpointing idea to provide resilience to such posterior
corruption—as long as there is no late joining or rejoining (we will discuss how
to handle late joining or rejoining later). Checkpointing is a technique that has
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been explored in the classical distributed systems literature [5] but typically for
different purposes, e.g., in the case of PBFT [5] it was used as an efficiency
mechanism. Suppose that we can already prove the consistency property as long
as there is no majority posterior corruption. Now, to additionally handle major-
ity posterior corruption, we can have alert nodes always reject any chain that
diverges from its current longest chain at a point sufficiently far back in the past
(say, at least W time steps ago). In this way, old committee members that have
since become corrupt cannot convince alert nodes to revise history that is too
far back—in other words, the confirmed transaction log stabilizes and becomes
immutable after a while.

2.4 Late Joining in the Presence of Posterior Corruption

Indeed, the above approach almost would work, if there are no late spawning
nodes, and if there are no nodes who wake up after sleeping for a long time. How-
ever, as mentioned earlier, handling late joining is important for a decentralized
network.

Recall that we described a history revision attack earlier, where if the major-
ity of an old committee become corrupt at a later point of time, they can simulate
an alternate past, and convince a newly joining node believe in the alternate past.
Therefore, it seems that the crux is the following question:

How can a node joining the protocol correctly identify the true version of
history?

Unfortunately, it turns out that this is impossible without additional trust—
in fact, we can formalize the aforementioned attack and prove a lower bound
(see our online full version [8]) which essentially shows that in the presence of
majority posterior corruption, a newly joining node has no means of discerning
a real history from a simulated one:

[Lower bound for posterior corruption]: Absent any additional trust, it is
impossible to achieve consensus under sporadic participation, if the majority
of an old committee can become corrupt later in time.

We therefore ask the following question: what minimal, additional trust
assumptions can we make such that we can defend against majority posterior
corruption? Informally speaking, we show that all we need is a secure bootstrap-
ping process for newly joining nodes as described below. We assume that a newly
joining node is provided with a list of nodes L the majority of whom must be
alert—if so, the new node can ask the list of nodes in L to vote on the current
state of the system, and thus it will not be mislead to choose a “simulated”
version of the history.

2.5 Putting It Altogether: Informal Overview of Snow White

In summary, our protocol, roughly speaking, works as follows. A formal descrip-
tion of the protocol, the parameter choices and their relations, and proofs of
security are deferred to our online full version [8].
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– First, there is a random oracle H that determines if a member of the
present committee is a leader in each time step. If a node is leader in
a time step t, he can extend the blockchain with a block of the format
(h−1, txs, time, nonce, pk, σ), where h−1 is the previous block’s hash, txs is
a set of transactions to be confirmed, nonce is a random seed that will be
useful later, pk is the node’s public key, and σ is a signature under pk on the
entire contents of the block. A node can verify the validity of the block by
checking that (1) Hnoncee(pk, time) < Dp where Dp is a difficulty parameter4

such that the hash outcome is smaller than Dp with probability p, and noncee

is a nonce that is reselected every epoch (we will describe how the nonce is
selected later); (2) the signature σ verifies under pk; and (3) pk is a member
of the present committee as defined by the prefix of the blockchain.

– A valid blockchain’s timestamps must respect two constraints: (1) all times-
tamps must strictly increase; and (2) any timestamp in the future will cause
a chain to be rejected.

– Next, to defend against old committees that have since become corrupt from
rewriting history, whenever an alert node receives a valid chain that is longer
than his own, he only accepts the incoming chain if the incoming chain does
not modify blocks too far in the past, where “too far back” is defined by the
parameter κ0.

– Next, a newly joining node or a node waking up from long sleep must invoke
a secure bootstrapping mechanism such that it can identify the correct ver-
sion of the history to believe in. One mechanism to achieve this is for the
(re)spawning node to contact a list of nodes the majority of whom are alert.

– Finally, our protocol defines each contiguous Tepoch time steps to be an epoch.
At the beginning of each epoch, committee reconfiguration is performed in
the following manner. First, nodes find the latest prefix (henceforth denoted
chain−2ω) in their local chain whose timestamp is at least 2ω steps ago. This
prefix chain−2ω will be used to determine the next committee—and Snow
White defers to the application-layer to define how specifically to extract the
next committee from the state defined by chain−2ω. Next, nodes find the
latest prefix (denoted chain−ω) in their local chain whose timestamp is at
least ω steps ago. Given this prefix chain−ω, we extract the nonces contained
in all blocks, the resulting concatenated nonce will be used to seed the hash
function H for the next epoch.

4 As we discuss in our online full version [8], in practice, the next committee is read
from a stabilized prefix of the blockchain and we know its total size a-priori. There-
fore, assuming that an upper bound on the fraction of awake nodes (out of each
committee) is known a-priori, we can set the difficulty parameter Dp accordingly to
ensure that the expected block interval is sufficiently large w.r.t. to the maximum
network delay (and if the upper bound is loose, then the confirmation time is pro-
portionally slower). Although on the surface our analysis assumes a fixed expected
block interval throughout, it easily generalizes to the case when the expected block
interval varies by a known constant factor throughout (and is sufficiently large w.r.t.
to the maximum network delay).
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Resilience Condition. In the online full version [8], we will give a formal
presentation of our protocol and prove it secure under the following resilience
condition. We require that the majority of the committee remain honest not
only during the time it is active, but also for a short duration (e.g., a handoff
period) afterwards. In particular, even if the entire committee becomes corrupt
after this handoff period, it should not matter to security.

In other words, we require that for any committee, the number of alert com-
mittee members that remain honest for a window of W outnumber the number of
committee members that become corrupt during the same window. In particular,
we will parametrize the window W such that it incorporates this short hand-
off period after the committee becomes inactive. Somewhat more formally, we
require that there exists a constant ψ > 0 such that for every possible execution
trace view, for every t ≤ |view|, let r = min(t + W, |view|),

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)
corruptr(cmtt(view), view)

≥ 1 + ψ (1)

where alertt(cmts(view), view), honestt(cmts(view), view), and corruptt(cmts

(view), view) output the number of nodes in the committee of time s that are
alert (or honest, corrupt, resp.) at time t.

3 From Robustly Reconfigurable Consensus to PoS

We now discuss how to apply our core consensus protocol in a proof-of-stake
(PoS) application. There are two challenges: (1) in a system where money can
switch hands, how to make the committee composition closely track the stake
distribution over time; and (2) how to distribute fees and rewards to ensure
incentive compatibility.

3.1 Base Security on Distribution of Stake

Roughly speaking, our core consensus protocol expects the following assumption
for security: at any point of time, there are more alert committee members that
will remain honest sufficiently long than there are corrupt committee members.
In a proof-of-stake setting, we would like to articulate assumptions regarding
the distribution of stake among stake-holders, and state the protocol’s security
in terms of such assumptions.

Since our core consensus protocol allows a committee reelection opportunity
once every epoch, it is possible that the distribution of the stake in the system
lags behind the committee election. However, suppose that this is not the case,
e.g., pretend for now that there is no money transfer, then it is simple to translate
the assumptions to distribution on stake. Imagine that the application-defined
elect cmt(chain) function will output one public key for each unit of currency as
expressed by the state of chain. If a public key has many units of coin, one could
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simply output the public key pk along with its multiplicity m—and the strings
pk||1, . . . , pk||m may be used in the hash query for determining the leader. Snow
White’s core consensus protocol does not care about the implementation details
of elect cmt(chain), and in fact that is an advantage of our modular composition
approach. In this way, our Snow White protocol retains security as long as the
at any point of time, more stake is alert and will remain honest sufficiently long
than the stake that is corrupt. Here when we say “a unit of stake is alert (or
honest, corrupt, resp.)”, we mean that the node that owns this unit of stake is
alert (or honest, corrupt, resp.).

In the real world, however, there is money transfer—after all that is the entire
point of having cryptocurrencies—therefore the committee election lags behind
the redistribution of stake. This may give rise to the following attack: once a
next committee is elected, the majority of the stake in the committee can now
sell their currency units and perform an attack on the cryptocurrency (since
they now no longer have stake). For example, the corrupt coalition can perform
a double-spending attack where they spend their stake but attempt to fork a
history where they did not spend the money.

The Limited Liquidity Assumption. One approach to thwart such an attack
is to limit the liquidity in the system—in fact, Snow White expects that the
cryptocurrency layer enforces that money will not switch hands too quickly.
For example, imagine that at any point of time, a = 30% of the stake is alert
and will remain honest sufficiently long, c = 20% is corrupt, and the rest are
sleepy. We can have the cryptocurrency layer enforce the following rule: only
a−c
2 − ε = 5% − ε of the stake can switch hands during every window of size

2ω + Tepoch + W . In other words, if in any appropriately long window, only l
fraction of money in the system can move, it holds that as long as at any time,
2l + ε more stake is alert and remain honest sufficiently long than the stake
that is corrupt, we can guarantee that the conditions expected by the consensus
protocol, that is, at any time, more committee members are alert and remain
honest sufficiently long, than the committee members that are corrupt.

4 Achieving Incentive Compatibility

4.1 Fair Reward Scheme

In a practical deployment, an important desideratum is incentive compatibility.
Roughly speaking, we hope that each node will earn a “fair share” of rewards and
transaction fees—and in a proof-of-stake system, fairness is defined as being pro-
portional to the amount of stake a node has. In particular, any minority coalition
of nodes should not be able to obtain an unfair share of the rewards by deviat-
ing from the protocol—in this way, rational nodes should not be incentivized to
deviate.

Since Snow White is a blockchain-style protocol, we also inherit the well-
known selfish mining attack [10,18] where a minority coalition can increase its
rewards by a factor of nearly 2 in the worst case. Fortunately, inspired by the
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recent work Fruitchains [19] we provide a solution to provably defend against
any form of selfish mining attacks, and ensure that the honest protocol is a
coalition-safe ε-Nash equilibrium. At a high level, Fruitchains provides a mech-
anism to transform any (possibly unfair) blockchain that achieves consistency
and liveness into an approximately fair blockchain in a blackbox manner. Our
key observation is that this transformation is also applicable to our non-proof-
of-work blockchain—since we realize the same abstraction as a proof-of-work
blockchain. Since we apply the essentially same techniques below as Fruitchains,
we give an overview of the mechanisms below for completeness and refer the
reader to Fruitchains [19] for full details.

Two Mining Processes. Like in Fruitchains [19], we propose to have two
“mining” processes piggybacked atop each other. Recall that earlier each node
invokes the hash function H in every time step to determine whether it is a leader
in this time step. Now, we will use the first half of H to determine leadership,
and use the second half to determine if the user mines a “fruit” in this time step.
Additionally, we will add to the input of H the digest of a recently stablized block
such that any fruit mined will “hang” from a recently stablized block—which
block a fruit hangs from indicates the roughly when the fruit was “mined”, i.e.,
the freshness of the fruit. Whenever an honest node finds a fruit, it broadcasts
the fruit to all peers, and honest nodes will incorporate all outstanding and
fresh fruits in any block that it “mines”. Note that fruits incorporated in blocks
are only considered valid if they are sufficiently fresh. Finally, all valid fruits
contained in the blockchain can be linearized, resulting in an ordered “fruit
chain”.

The formal analysis conducted in Fruitchains [19] can be adapted to our
setting in a straightforward manner, giving rise to the following informal claim:

Claim (Approximate fairness [19]). Assume appropriate parameters. Then for
any (arbitrarily small) constant ε, in any κ

ε number of consecutive fruits, the
fraction of fruits belonging to an adversarial coalition is at most ε fraction more
than its fair share, as long as, informally speaking, in any committee, alert
committee members that remain honest by the posterior corruption window
outnumber members that become corrupt by the same window.

We refer the reader to Fruitchains [19] for a formal proof of this claim. Intu-
itively, this claim holds because the underlying blockchain’s liveness property
ensures that no honest fruits will ever be lost (i.e., the adversary cannot “erase”
honest nodes’ work in mining fruits like what happens in a selfish mining attack);
and moreover, in any sufficiently long window, the adversary can incorporate
only legitimate fruits belonging to this window (and not any fruits ε-far into the
past or future).

Payout Distribution. Based on the above claim of approximate fairness, we
devise the following payout mechanism following the approach of Fruitchain [19].
We will distribute all forms of payout, including mining rewards and transaction
fees to fruits rather than blocks. Furthermore, every time payout is issued, it
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will be distributed equally among a recent segment of roughly Ω(κ
ε ) fruits. Like

in Fruitchains, this guarantees that as long as at any time, there are more alert
committee members that remain honest sufficiently long than corrupt committee
members, the corrupt coalition cannot increase its share by more than ε no
matter how it deviates from the prescribed protocol—in other words, the honest
protocol is a coalition-safe ε-Nash equilibrium.

4.2 Thwarting Nothing-at-Stake Attacks

Nothing-at-stake refers to a class of well-known attacks in the proof-of-stake
context [23], where participants have nothing to lose for signing multiple forked
histories. We describe how Snow White defends against such attacks. Nothing-
at-stake attacks apply to both signing forked chains in the past and in the
present—since the former refers to posterior corruption style attacks which we
already addressed earlier, in the discussion below, we focus on signing forked
chains in the present.

First, as long as the adversary does not control the majority, our core con-
sensus protocol formally guarantees that signing forked chains does not break
consistency. In fact, we incentivize honest behavior by proving that the adver-
sary cannot increase its rewards by an arbitrarily small ε fraction, no matter
how it deviates from honest behavior which includes signing forked chains.

With ε-Nash equilibrium, one limitation is that players can still do a small
ε fraction better by deviating, and it would be desirable to enforce a stronger
notion where players do strictly worse by deviating. We can make sure that
nothing-at-stake attackers do strictly worse by introducing a penalty mechanism
in the cryptocurrency layer: by having players that sign multiple blocks with the
same timestamp lose an appropriate amount of collateral—to achieve this we
need that the underlying core consensus protocol achieves consistency, when
roughly speaking, the adversary controls only the minority. Even absent such a
penalty mechanism, players currently serving on a committee likely care about
the overall health of the cryptocurrency system where they still hold stake due to
the limited liquidity assumption—this also provides disincentives for deviating.

The holy grail, of course, is to design a provably secure protocol where any
deviation, not just nothing-at-stake attacks, cause the player to do strictly worse.
We leave this as an exciting open question. It would also be interesting to consider
security when the attack controls the majority—however, if such a majority
attacker can behave arbitrarily, consistency was shown to be impossible [21].
Therefore, it thus remains an open question even what meaningful notions of
security one can hope for under possibly majority corruption.

Additional Materials in Online Full Version

In our online full version [8], we present full formalism including definitions,
proofs, and lower bound results. We also present simulation and experimental
results, and discuss concrete parameters in the online full version.
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Abstract. Proof-of-stake (PoS) is a promising approach for designing
efficient blockchains, where block proposers are randomly chosen with
probability proportional to their stake. A primary concern in PoS systems
is the “rich getting richer” effect, whereby wealthier nodes are more
likely to get elected, and hence reap the block reward, making them
even wealthier. In this paper, we introduce the notion of equitability,
which quantifies how much a proposer can amplify her stake compared to
her initial investment. Even with everyone following protocol (i.e., honest
behavior), we show that existing methods of allocating block rewards lead
to poor equitability, as does initializing systems with small stake pools
and/or large rewards relative to the stake pool. We identify a geometric
reward function, which we prove is maximally equitable over all choices
of reward functions under honest behavior and bound the deviation for
strategic actions; the proofs involve the study of optimization problems
and stochastic dominances of Pólya urn processes. These results allow
us to provide a systematic framework to choose the parameters of a
practical incentive system for PoS cryptocurrencies.

Keywords: Proof-of-stake · Cryptocurrencies · Random processes

1 Introduction

A central problem in blockchain systems is that of block proposal: how to choose
which block should be appended to the global blockchain next. Many blockchains
use a proposal mechanism by which one node is randomly selected as leader (or
block proposer). This leader gets to propose the next block in exchange for a
token reward—typically a combination of transaction fees and a freshly-minted
block reward, which is chosen by the system designers. Early cryptocurrencies,
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including Bitcoin, mainly used a leader election mechanism called proof of work
(PoW). Under PoW, all nodes execute a computational puzzle. The node who
solves the puzzle first is elected leader. PoW is quite robust to security threats,
but also energy-inefficient, consuming more energy than developed nations [1].

An appealing alternative to PoW is called proof-of-stake (PoS). In PoS, pro-
posers are not chosen according to their computational power, but according to
the stake they hold in the cryptocurrency. For example, if Alice has 30% of the
tokens, she is selected as the next proposer with probability 0.3. Although the
idea of PoS is both natural and energy-efficient, the research community is still
grappling with how to design a PoS system that provides security while also
incentivizing nodes to act as network validators. Part of incentivizing validators
is simply providing enough reward (in expectation) to compensate their resource
usage. However, it is also important to ensure that validators are treated fairly
compared to their peers. In other words, they cannot only be compensated ade-
quately on average; the variance also matters.

This observation is complicated in PoS systems by a key issue that does
not arise in PoW systems: compounding. Compounding means that whenever
a node (Alice) earns a proposal reward, that reward is added to her account,
which increases her chances of being elected leader in the future, and increases
her chances of reaping even more rewards. This leads to a rich-get-richer effect,
causing dramatic concentration of wealth.
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Fig. 1. Fractional stake distribution of a
party that starts with 1/3 of the stake in a
system initialized with Bitcoin’s financial
parameters. Results of geometric reward
PoS and constant reward PoW are shown
after T = 1, 000 blocks.

To see this, consider what would
happen if Bitcoin were a PoS sys-
tem. Bitcoin started with an initial
stake pool of 50 BTC, and the block
reward was fixed at 50 BTC/block for
several years. Under these conditions,
suppose a party A starts with 1

3 of
the stake. Using a basic PoS model
described in Sect. 2, A’s stake would
evolve according to a standard Pólya
urn process [14], converging almost
surely to a random variable with dis-
tribution Beta(13 , 2

3 ) [16], (black solid
line in Fig. 1). In this example, com-
pounding gives A a high probabil-
ity of accumulating a stake fraction
near 0 or 1. This is highly undesirable
because the proposal incentive mech-
anism should not unduly amplify or
shrink one party’s fraction of stake.

Notice that this is not caused by an adversarial or strategic behavior, but by the
randomness in the PoS protocol, combined with compounding.

In PoW, on the other hand, the analogue would be for party A to hold 1/3
of the computational power. In that case, A’s stake after T blocks would be



44 G. Fanti et al.

instead binomially distributed with mean 50T/3 (black dashed line in Fig. 1).
Notice that the binomial (PoW) stake distribution concentrates around 1/3 as
T → ∞, so if A contributes 1/3 of stake at the beginning, she also reaps 1/3
of the rewards in the long term.1 Among randomized protocols that choose
proposers independently at each time slot, the binomial distribution is the best
we can hope for; it represents the setting where party A wins each block with
probability equal to its initial stake. A natural question is whether we can achieve
this PoW baseline distribution in a PoS system with compounding.

We study this question from the perspective of the block reward function.
Most cryptocurrencies today use a constant block reward function like Bitcoin’s,
which remains fixed over a long timespan (e.g., years). We ask how a PoS system’s
choice of block reward function can affect concentration of wealth, and whether
one can achieve the PoW baseline stake distribution simply by changing the
block reward function. This paper has five main contributions:

(1) We define the equitability of a block reward function, which intuitively cap-
tures how much the fraction of total stake belonging to a node can grow or
shrink (under that block reward function), compared to the node’s initial
investment.

(2) We introduce an alternative block reward function called the geometric
reward function, whose rewards increase geometrically over time. We show
that it is the most equitable PoS block reward function, by showing that it
is the unique solution to an optimization problem on the second moment of
a time-varying urn process; this optimization may be of independent inter-
est. We note that despite optimizing equitability, geometric rewards do not
achieve the PoW baseline stake distribution—this is the inherent price we
pay for the efficiency of PoS compared to PoW. The green histogram in
Fig. 1 illustrates the empirical, simulated stake distribution when geometric
rewards are used for 1 000 blocks, with total rewards as in the PoW example
(50 × 1 000 units).

(3) Borrowing ideas from mining pools in PoW systems, a natural strategy
is for participants in a PoS system to form stake pools. We quantify the
exact gains of stake pool formation in terms of equitability, which proves
that participating in a stake pool can significantly reduce the compounding
effect of a PoS system.

(4) We study the effects of strategic behavior (e.g. selfish mining) on the rich-
get-richer phenomenon. We find that in general, compounding can exacer-
bate the efficacy of strategic behavior compared to PoW systems. However,
these effects can be partially mitigated by carefully choosing the amount of
block reward dispensed over some time period relative to the initial stake
pool size.

(5) Our analyses of the equitability of various reward functions provide guide-
lines for choosing system parameters—including the initial token pool size

1 Compounding can also happen in PoW if miners use their profits to purchase more
mining equipment. However, this feedback loop is much slower and less direct than
PoS compounding, so we approximate PoW by a system with no compounding.
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and the total rewards to dispense in a given time interval—to ensure equi-
tability. We show that cryptocurrencies that start with large initial stake
pools (relative to the block rewards being disseminated) can mitigate the
concentration of wealth, both for constant and geometric reward schemes.

The remainder of this paper is organized as follows. In Sect. 2, we present our
model. In Sect. 3, we study equitability under honest behavior. We use Sect. 4
to study the effects of strategic behavior on equitability.

1.1 Related Work

The compounding of wealth in PoS systems has been widely discussed in forum
and blog posts [17,22,27], with recent work on stake-bleeding attacks exploiting
exactly this property [11]. In this work, we quantify concentration of wealth
through a new metric called equitability, which enables us to mathematically
compare PoS to PoW, and different block reward schemes. As we discuss in
Sect. 2, equitability is closely tied to the variance of a block reward scheme.
Thus far, researchers and practitioners have reduced variance in block rewards
through two main approaches: pooling resources (e.g., mining or stake pools)
and proposing new protocols for disseminating block rewards.

Resource pooling is common in cryptocurrencies, e.g. in mining pools [9,25].
In PoS systems, the analogous concept is stake pooling, where nodes aggregate
their stake under a single node; block rewards are shared across the pool. In
Sect. 3, we show that the proposed geometric reward function is still the most
equitable even if some parties are forming stake pools. Recent work by Brunjes
et al. also studies stake pools and how to incentivize their formation through the
design of reward mechanisms [6]. Our work differs in that we aim to optimize
equitability, whereas [6] aims to incentivize the formation of a target number of
mining pools. Also, [6] does not consider the effects of compounding in PoS.

A second variance reduction approach changes the block reward allocation
protocol; our work falls in this category. Two examples are Fruitchains [20], which
spread block rewards evenly across a sequence of block proposers, and Ouroboros
[15], which rewards nodes for being part of a block formation committee, even
if they do not contribute to block proposal. Both of these approaches were pro-
posed in order to provide incentive-compatibility for block proposers; they do
not explicitly aim to reduce the variance of rewards. However, they implicitly
reduce variance by spreading rewards across multiple nodes, thereby preventing
the randomized accumulation of wealth. In our work, instead of changing how
block rewards are disseminated, we change the block reward function itself.

2 Models and Notation

We provide a probabilistic model for the evolution of the stakes under a PoS
system, and introduce a measure of fairness, we call equitability. We begin with a
model of a chain-based proof-of-stake system with m parties: A = {A1, . . . , Am}.
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We assume that all parties keep all of their stake in the proposal stake pool,
which is a pool of tokens that is used to choose the next proposer. We consider
a discrete-time system, n = 1, 2, . . . , T , where each time slot corresponds to the
addition of one block to the blockchain. In reality, new blocks may not arrive at
perfectly-synchronized time intervals, but we index the system by block arrivals.
For any integer x, we use the notation [x] := {1, 2, . . . , x}. For all i ∈ [m], let
SAi

(n) denote the total stake held by party Ai in the proposal stake pool at
time n. We let S(n) =

∑m
i=1 SAi

(n) denote the total stake in the proposer stake
pool at time n, and vAi

(n) denotes the fractional stake of node Ai at time n:

vAi
(n) =

SAi
(n)

S(n)
.

For simplicity, we normalize the initial stake pool size to S(0) = 1; this is without
loss of generality as the random process is homogeneous in scaling both the
rewards and the initial stake by a constant. Each party starts with SAi

(0) =
vAi

(0) fraction of the original stake. At each time n ∈ [T ], the system chooses a
proposer node W (n) ∈ A so that

W (n) =

⎧
⎪⎨

⎪⎩

A1 w.p. vA1(n)
. . .

Am w.p. vAm
(n).

(1)

Upon being selected as a proposer, W (n) appends a block, or set of transactions,
to the blockchain, which is a sequential list of blocks held by all nodes in the
system. As compensation for this service, W (n) receives a block reward of r(n)
stake, which is immediately added to its allocation in the proposer pool. I.e.,

SW (n)(n + 1) = SW (n)(n) + r(n).

The reward r(n) is freshly-minted, so it increases the total token pool size.
We assume the total reward dispensed in time period T is fixed, such that∑T

n=1 r(n) = R.

Modeling Assumptions. Our model implicitly makes several assumptions,
such as a single proposer per time slot. Many cryptocurrencies have proposer
election protocols that allow more than one proposer to be chosen per time
slot (Bitcoin [18], PoSv3 [8], Snow White [5]). If two proposers are elected at
time n, for example, then each can append its block to one block at height
n− 1; here the height of a block is its index in the blockchain. However, in these
systems, only one leader can win the block reward since only one fork of the
blockchain is ultimately adopted. Assuming the winner is chosen uniformly at
random from the set of selected proposers, the dynamics of our Markov process
remain unchanged.

Some cryptocurrencies (e.g., Qtum, Particl) choose proposer(s) as a function
of the time slot and the preceding block. This does not affect our results in the
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honest setting (for the same reason as above), but it does increase the efficacy
of strategic behavior like grinding [29] and selfish mining [9]. We discuss these
implications in Sect. 4. Although we do not consider BFT-based PoS protocols
in this paper [12,28], such protocols provide robustness to strategic behavior by
forcing consensus on each block. Such protocols may also provide robustness to
compounding, since block rewards can be shared among many nodes.

We have also assumed in this work that users instantly re-invest rewards into
the proposer stake pool, for two reasons. (1) In PoS systems where users explic-
itly deposit stake, existing implementations automatically deposit rewards back
into the stake pool. For example, the reference implementation of Casper the
Friendly Finality Gadget (a PoS finalization mechanism proposed for Ethereum)
automatically re-allocates all rewards back into the deposited stake pool [23]. (2)
In other PoS systems, the stake pool is simply the set of all stake in the system,
and is not separate from the pool of tokens used for transactions [8]. Hence as
soon as a proposer earns a reward, that reward is used to calculate the next pro-
poser (modulo some maturity period); the user is not actively re-investing block
rewards—it just happens naturally. In practice, there may be a delay (maturity
period) before the reward is counted; we do not model this effect.

Block Reward Choices. Many cryptocurrencies use Bitcoin’s block reward
schedule, which fixes the total supply of coins at about 21 million coins, and
halves the reward every 210,000 blocks (≈ 4 years) [2]. Figure 2 illustrates this;
if we let Ti and Ri denote the ith block interval and total reward, respectively,
we can take Ti = 210, 000 blocks, and Ri = 50 · 1

2i−1 · 210, 000. Several systems
have adopted similar block rewards that are constant over long periods of time
(e.g., Ethereum [3], ZCash [13], Dash [7], Particl).
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In this paper, we revisit the question of how to choose r(n). A key observation
is that r(n) must compensate nodes for the cost of proposing blocks. Many
cryptocurrencies implicitly adopt the following maxim:

On short timescales, each block should yield the same block reward.

Notice that this maxim does not specify whether the value of a block reward is
measured in tokens or in fiat. As illustrated earlier, most cryptocurrencies today
measure value in tokens. We call this approach the constant block reward :

rc(n) :=
R

T
. (2)

A natural alternative is to measure the block reward’s value in fiat currency.
This depends on the cryptocurrency’s valuation over time interval [T ]; if we
assume it to be constant, then the resulting reward function should give a con-
stant fraction of the total stake at each time slot. We call this the geometric
reward:

rg(n) := (1 + R)
n
T − (1 + R)

n−1
T . (3)

Figure 3 shows geometric block rewards as a function of time if we use the same
Ti’s and Ri’s as in Fig. 2, reflecting Bitcoin’s block reward schedule.

Equitability. To compare reward functions, we define a metric called equitabil-
ity. Consider the stochastic dynamic of the fractional stake of a party A that
starts with vA(0) fraction of the initial total stake of S(0) = 1. We denote the
fractional stake at time n by vA,r(n), to make the dependence on the reward
function explicit. A straw-man metric for measuring fairness is the expected
fractional stake at time T : i.e., if A contributes 10% of the proposal stake pool
at the beginning of the time, then A should reap 10% of the total disseminated
rewards on average. This metric is poor because PoS systems elect a proposer (in
Eq. (1)) with probability proportional to the fractional stake; this ensures that
each party’s expected fractional reward is equal to its initial stake fraction, for
any block reward function. That is, ∀n ∈ [T ], E[vA,r(n)] = vA(0). This follows
from the law of total expectation and the fact that

E[vA,r(n) | vA,r(n − 1) = v]

= v
v S(n − 1) + r(n − 1)

S(n)
+

(
1 − v

)v S(n − 1)
S(n)

= v.

Although all reward functions yield the same expected fractional stake, the
choice of reward function can nonetheless dramatically change the distribution of
the final stake, as seen in Fig. 1. We therefore instead propose using the variance
of the final fractional stake, Var(vA,r(T )), as an equitability metric. Intuitively,
smaller variance implies less uncertainty and higher equitability:
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Definition 1. For a positive vector ε ∈ R
m, we say a reward function r : [T ] →

R
+ over T time steps is ε-equitable for ε = [ε1, . . . , εm] where εi > 0, if

Var(vAi,r(T ))
vAi

(0)(1 − vAi
(0))

≤ εi (4)

for all i ∈ [m]. For two reward functions r1 : [T ] → R
+ and r2 : [T ] → R

+ with
the same total reward,

∑T
n=1 r1(n) =

∑T
n=1 r2(n), we say r1 is more equitable

than r2 for player i ∈ [m] if

Var
(
vAi,r1(T )

) ≤ Var
(
vAi,r2(T )

)
, (5)

when both random processes start with the same initial fraction of vAi
(0).

The normalization in Eq. (4) ensures the left-hand side is at most one, as
we show in Remark 1. It also cancels out the dependence on the initial fraction
vA(0) such that the left-hand side only depends on the reward function r and
the time T , as shown in Lemma 1.

Remark 1. When starting with an initial fractional stake vA(0), the maximum
achievable variance is

sup
T∈Z+

sup
r

Var(vA,r(T )) = vA(0)(1 − vA(0)) , (6)

where the supremum is taken over all positive integers T and reward function
r : [T ] → R

+ (a proof is provided in a longer version of this paper [10]).

From the analysis of a time-dependent Pólya’s urn model, we know the vari-
ance satisfies the following formula (a proof is provided in a longer version of
this paper [10] and also [21]).

Lemma 1. Let eθn � S(n)/S(n − 1), then

Var(vA,r(T )) =
(
vA,r(0) − vA,r(0)2

)(
1 − S(0)2

S(T )2

T∏

n=1

(2eθn − 1)
)

. (7)

(a proof is provided in a longer version of this paper [10])

Although Definition 1 applies to an arbitrary number of parties, Lemma 1
implies that it is sufficient to consider a single party’s stake. More precisely:

Remark 2. If reward function r : [T ] → R
+ over T time steps is ε-equitable for

vector ε = [ε1, . . . , εm] where εi > 0, then r is also ε̃-equitable, where

ε̃ � 1 · min
i∈[m]

εi,

with 1 denoting the vector of all ones.
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As such, the remainder of this paper will study equitability from the per-
spective of a single (arbitrary) party A. We will also describe reward functions
as ε-equitable as shorthand for ε-equitable, where ε = 1 · ε. Note that even
if the total reward R is fixed, equitability can differ dramatically across reward
functions. In the example of Fig. 1, the constant reward function is 0.5-equitable.
On the other hand, the geometric rewards of (3) have a smaller chance of los-
ing all its fractional stake (i.e. vA,rg

(T ) ≈ 0) or taking over the whole stake
(i.e. vA,rg

(T ) ≈ 1). It is 0.05-equitable in this example.

3 Equitability Under Honest Behavior

In this section, we analyze the equitability of different block reward functions,
assuming that every party is honest, i.e. follows protocol, and the PoS system is
closed, so no stake is removed or added to the proposal stake pool over a fixed
time period T . Each party’s stake changes only because of the block rewards it
earns and compounding effects. We discuss the effects of strategic behavior in
Sect. 4, and open systems in a longer version of this paper [10].

The metric of equitability leads to a core optimization problem for PoS sys-
tem designers: given a fixed total reward R to be dispensed, how do we distribute
it over the time T to achieve the highest equitability? Perhaps surprisingly, we
show that this optimization has a simple, closed-form solution.

Theorem 1. For all R ∈ R
+ and T ∈ Z

+, the geometric reward rg defined in
(3) is the most equitable among functions that dispense R tokens over time T ,
jointly over all parties Ai, for i ∈ [m].

A proof is provided in a longer version of this paper [10]. Intuitively, geometric
rewards optimize equitability because they dispense small rewards in the begin-
ning when the stake pool is small, so a single block reward cannot substantially
change the stake distribution. The rewards subsequently grow proportionally to
the size of the total stake pool, so the effect of a single block remains bounded
throughout the time period. We emphasize that the geometric reward function
does not depend on the initial stake of the party A, and hence is universally
most equitable for all parties in the system simultaneously.

Composition. The geometric reward function does not only optimize equi-
tability for a single time interval. Consider a sequence (T1, R1), . . . , (Tk, Rk) of
checkpoints, where Ti is increasing in i, and Ri denotes the amount of reward to
be disbursed between time Ti−1 + 1 and Ti (inclusive). These checkpoints could
represent target inflation rates on a monthly or yearly basis, for instance. A natu-
ral question is how to choose a block reward function that optimizes equitability
over all the checkpoints jointly. The solution is to iteratively and independently
apply geometric rewards over each time interval, giving a block reward function
like the one shown in Fig. 3.
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Theorem 2. Consider a sequence of checkpoints {(Ti, Ri)}i∈[k]. Let R̃j :=
∑j

i=1 Ri. The most equitable reward function is

r(n) = (1 + R̃i−1)

⎛

⎜
⎝

(
1 + R̃i

1 + R̃i−1

) n−Ti−1
Ti−Ti−1

−
(

1 + R̃i

1 + R̃i−1

)n−1−Ti−1
Ti−Ti−1

⎞

⎟
⎠ (8)

for n ∈ [Ti−1 + 1, Ti].

A proof is provided in a longer version of this paper [10]. When there is only
one checkpoint, Theorem 2 simplifies to Theorem 1. This implies that check-
points can be chosen adaptively, i.e., they do not need to be fixed upfront to
optimize equitability. Because of composition, we assume a single checkpoint for
the remainder of this paper. In practice, the abrupt change in geometric block
rewards at a checkpoint (Fig. 3) may lead to miner/validator attrition [4]. Liq-
uidity limits may slow down this attrition, but cannot stop it [5]. One option is
that a PoS system need not choose its block reward function based on equitabil-
ity alone; it could also consider smoothness and/or monotonicity constraints.
Another is that PoS blockchains could use geometric rewards only for the first
epoch (when compounding poses the greatest risk), and then transition to a
smoother block reward schedule of their choosing. We leave such exploration to
future work.

Stake Pools. Participants also have the freedom to form stake pools, as
explored in [6,9,25]. We show that stake pools reduce the variances of the frac-
tional stake of all pool members, and quantify this gain. Consider a single party
that owns vA(0) fraction of the stake at time t = 0. We know from Lemma 1 that
the variance at time T is Var(vA,r(T )) =

(
vA(0)−vA(0)2

)(
1− S(0)2

S(T )2

∏T
n=1(2eθn−

1)
)

. Consider a case where the same party now participates in a stake pool,
where the pool P has vP (0) of the initial stake (including the contribution from
party A), and every time the stake pool is awarded a reward for block proposal,
the reward is evenly shared among the participants of the pool according to
their stakes. The stake of party A under this pooling is denoted by vÃ(T ), and
it follows from Lemma 1 immediately that

Var(vÃ,r(T )) =
(vA(0)

vP (0)

)2(
vP (0) − vP (0)2

)(
1 − S(0)2

S(T )2

T∏

n=1

(2eθn − 1)
)

=
1 − vP (0)

vP (0)
vA(0)

1 − vA(0)
Var(vA,r(T )) . (9)

Thus party A’s variance reduces by a factor of (vP (0)/vA(0))((1 − vA(0))/(1 −
vP (0))) by joining a stake pool of size vP (0). Note that the variance is monotoni-
cally decreasing under stake pooling. In practice, stake pools can organically form
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as long as this gain in equitability exceeds the cost of pool formation. Apply-
ing the Definition 1 to a single party A, an ε-equitable party A will achieve
ε vA(0)(1−vP (0))

vP (0)(1−vA(0)) -equitability by forming a stake pool. Further, geometric rewards
are still the most equitable reward function in the presence of stake pools. This
follows from the fact that the effect of pooling is isolated from the effect of the
choice of the reward function in Eq. (9),

Practical Parameter Selection. The equitability of a system is determined
by four factors: the number of block proposals T , choice of reward function r,
initial stake of a party vA(0), and the total reward R. We saw that geometric
rewards optimize equitability; in this section, we study its dependence on T ,
S(0), and R. Recall that without loss of generality, we normalized the initial
stake S(0) to be one. For general choices of S(0), the total reward R should be
rescaled by 1/S(0). The evolution of the fractional stakes is exactly the same for
one system with S(0) = 2 and R = 200 and another with S(0) = 1 and R = 100.
We assume here that the system designer can choose the total reward R, either
by setting the initial stake size S(0) and/or the total reward during T . We study
how equitability trades off with the total reward R for different choices of the
reward function.

Geometric Rewards. For rg(n), we have eθn = (1 + R)1/T . It follows from
Lemma 1 that

Var(vA,rg
(T ))

vA(0) − vA(0)2
= 1 − (2(1 + R)1/T − 1)T

(1 + R)2
, (10)

When R is fixed and we increase T , we can distribute small amounts of rewards
across T and achieve vanishing variance. On the other hand, if R increases much
faster than T , then we are giving out increasing amounts of rewards per time
slot and the uncertainty grows. This follows from the above variance formula,
which we make precise in the following.

Remark 3. For a closed PoS system with a total reward R(T ) chosen as a func-
tion of T and a geometric reward function rg(n) = (1 + R(T ))n/T − (1 +
R(T ))(n−1)/T , it is sufficient and necessary to set

R(T ) =

⎛

⎜
⎝

⎛

⎝ 1

1 −
√

log(1/(1−ε))
T

⎞

⎠

T

− 1

⎞

⎟
⎠

(
1 + o(1)

)
, (11)

in order to ensure ε-equitability asymptotically, i.e. limT→∞
V ar(vA,rg (T ))

vA(0)(1−vA(0)) = ε .

Remark 3 follows from substituting the choice of R(T ) in the variance in
Eq. (10), which gives

lim
T→∞

Var(vA,rg
(T ))

vA(0) − vA(0)2
= lim

T→∞
1 −

(
1 − log(1/(1 − ε))

T

)T

(1 + o(1)).

= ε , (12)
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The limiting variance is monotonically non-decreasing in R and non-increasing
in T , as expected from our intuition. For example, if R is fixed, one can have
the initial stake S(0) as small as exp(−√

T/(log T )) and still achieve a vanish-
ing variance. As the geometric reward function achieves the smallest variance
(Theorem 1), the above R(T ) is the largest reward that can be dispensed while
achieving a desired normalized variance of ε in time T (with initial stake of one).
This scales as R(T ) 	 (1 + 1/

√
T )T 	 e

√
T . We need more initial stake or less

total reward, if we choose to use other reward functions.

Constant Rewards. In comparison, consider the constant reward function of
Eq. (2). As eθn = (1 + nR/T )/(1 + (n − 1)R/T ), it follows from Lemma 1 that

Var(vA,rc
(T ))

vA(0) − vA(0)2
= 1 − 1 + R + R

T

1 + R + R
T + R2

T

=
R2

(T + R)(1 + R)
. (13)

Again, this is monotonically non-decreasing in R and non-increasing in T , as
expected. The following condition immediately follows from Eq. (13).

Remark 4. For a closed PoS system with a total reward R(T ) chosen as a func-
tion of T and a constant reward function rc(n) = R(T )/T , it is sufficient and
necessary to set

R(T ) =
ε T

1 − ε
(1 + o(1)) , (14)

in order to ensure ε-equitability asymptotically as T grows.

By choosing a constant reward function, the cost we pay is in the size of the
total reward, which can now only increase as O(T ). Compared to R(T ) 	 e

√
T

of the geometric reward, there is a significant gap. Similarly, in terms of how
small initial stake can be with fixed total reward R, constant reward requires at
least S(0) 	 R/T . This trend gets even more extreme for a decreasing reward
function, which we discuss in a longer version of this paper [10].

Comparison of Rewards. For S(0) = 1 and R = 10, Fig. 4 illustrates the normal-
ized variance of the three reward functions as a function of T , the total number
of blocks. As expected, variance decays with T and geometric rewards exhibit
the lowest normalized variance. Similarly, for a fixed desired (normalized) vari-
ance level of ε = 0.1, Fig. 5 shows how the total reward grows as a function of
time T . Notice that under constant rewards, the reward allocation grows linearly
in T , whereas geometric rewards grow subexponentially while still satisfying the
same equitability constraint. These observations add nuance to the ongoing con-
versation about how to initialize PoS cryptocurrencies. A recent lawsuit against
Ripple highlighted that the large initial stake pool could put disproportionate
power in the hands of the system designers [26]. While Ripple itself is not PoS,
our results suggest that in standard PoS systems, a large initial stake pool can
actually help to ensure equitability.
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4 Strategic Behavior

In practice, proposers can behave strategically to maximize their rewards (e.g.,
selfish mining [9,19,24]). In selfish mining, miners who discover blocks do not
immediately publish them, but build a private withheld fork of blocks. By even-
tually releasing a private chain that is longer than the main chain, the adversary
can invalidate honest blocks. This gives the adversary a greater fraction of main
chain blocks and wastes honest parties’ effort. In this section, we show that
such strategic attacks are exacerbated by the compounding effects of PoS, and
geometric rewards do not provide adequate protection.

Modeling the space of strategic behaviors in PoS requires more nuance than
the corresponding problem in PoW [24]. We include a full model in Appendix A,
which includes all the notation required to prove the theorems in this section.
Due to space limitations, we summarize the model here. We consider two parties:
A, which is adversarial, and H, which is honest. At any time, both parties can see
the main chain, which is built upon by the honest party. We denote the length of
this chain at time t by �t. In parallel, A can maintain as many private withheld
forks as it wants, as long as the sequence of block proposers in each side chain
respects the global leader election sequence. Since each block is associated with
a time slot, A must have been the elected leader for each block in a withheld
fork. I.e., if a withheld fork block is associated with time slot n, then W (n) = A.

At each time slot, the adversary has three options: (1) It can wait, or con-
tinue to build upon its withheld forks without releasing them. (2) It can match
the main chain by releasing enough blocks from a single withheld fork to equal
the height of the main chain, �t. After a match, there will be two publicly-
visible chains of length �t in the system; we assume the honest party adopts the
adversarial fork with probability γ, a parameter that captures the adversary’s
connectivity. (3) The adversary can override the main chain by releasing a with-
held fork up of length �t + 1. If the withheld fork is longer than �t + 1, it only
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releases the first �t + 1 blocks. Since the released fork is longer than the main
chain, it is always adopted by the honest party. Given this action space, the
adversary’s goal is to maximize the fraction of main chain blocks that belong to
the adversary.

4.1 Strategic Selfish Mining

We show that adversarial gains from strategic behavior are exacerbated by com-
pounding. In practice, the adversary needs a strategy that balances the gains of
keeping a long side chain to potentially overtake a long main chain, with the loss
in intermediate leader elections due to withheld rewards. We propose a family
of schemes called Match-Override-k (MO-k). Under MO-k, the adversary only
keeps side chains whose tip is at most k blocks ahead of the main chain. The
strategy is as follows: Every time a new honest block is generated, it is appended
to the main chain. Next, if there is a side chain that (a) is longer than �t, and (b)
does not already include the entire honest chain, the adversary matches the main
chain. Now there are two chains of equal length in the system; with probability
γ, the newly-released side chain becomes the new main chain. Otherwise, the
previous honest main chain continues to be the main chain, and the failed side
chain is discarded. If there is no such side chain to match, then the adversary
waits. Any side chains shorter than �t are discarded.

Every time a new adversarial block is generated, the adversary appends it
to every side chain she is managing currently. She also starts a new side chain
branching from the tip of the main chain, if there is not a side chain there already.
The adversary now checks every side chain. If there is a side chain that branches
at the tip of the main chain and is at least k blocks ahead of the main chain, the
adversary overrides with this side chain, thereby incrementing the main chain
length by one. Otherwise, the main chain remains as is, and the adversary waits.
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Fig. 6. Average fractional stake of an adversary can increase significantly as the total
reward R increases. We fix initial fraction vA(0) = 1/3, S(0) = 1, and T = 10, 000 time
steps, and show for two values of network connectivity of the adversary γ ∈ {0.5, 1.0}
and varying total reward R.
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Figure 6 simulates how much the adversary can gain in average fractional
stake by using MO-k strategies. As the total reward R increases, the relative
fractional stake approaches 3, which is the maximum achievable value, since the
expected fractional stake is normalized by vA(0) = 1/3. The simulations were
run for T = 10, 000 time steps, with S(0) = 1. When the adversary is well-
connected, i.e., γ = 1.0, such attacks are effective even with short side chains,
such as k = 3 or 4. Further, there is no distinguishable difference in the reward
function used. On the other hand, when the adversary has 0.5 probability of
matching honest chains, γ = 0.5, it is more effective to keep longer side chains.
Figure 6 demonstrates dramatic gains in fractional stake due to strategic behav-
ior. A natural question is how large these gains can be. The following theorem
gives an upper bound on stake amplification due to strategic behavior. Given the
time-varying nature of the underlying random process and the optimization over
a large space of strategic actions, the proof is mathematically sophisticated. This
proof, discussed in a longer version of this paper [10], involves stochastic dom-
inance results of time-varying Pólya urn processes, and may be of independent
interest.

Theorem 3. Let vA(t) denote the fractional stake of the adversary under selfish
mining (mathematically defined in Appendix A), when the total initial stake is
S(0), initial fractional stake of the adversary is vA(0), and the total reward
dispensed over time T is R = cT . If R ≤ S(0)(1 − vA(0)), then

E[vA(T )] = (1 + η) vA(0) , (15)

where η � R/(S(0) + c).

A proof is provided in a longer version of this paper [10]. We find empirically
in [10] that this upper bound is tight when S(0)+R

S(0) is small. Under the assumption
that R is less than the stake of the honest party, the gain of strategic behavior
over honest behavior is bounded by E[vA(T )] − E[vA(0)] ≤ η vA(0), since under
honest behavior the mean fractional stake is vA(0) for all t. This implies that
having a small initial stake S(0) relative to the total reward R makes the system
vulnerable to strategic behavior. This justifies the common practice of starting
a PoS system with large initial stake.

5 Conclusion

This work measures the concentration of wealth in PoS systems, showing that
existing block reward functions (e.g., constant, decreasing rewards) have poor
equitability. We introduce a maximally-equitable geometric reward function. The
negative effects of compounding can be further mitigated by choosing the total
block rewards for each epoch to be small compared to the initial stake pool size.

Several open questions remain. First, our results do not account for pro-
posers add or removing stake during an epoch. Another challenge, discussed in
[10], is that geometric rewards may not be desirable in practice because of the
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sharp changes in block rewards between epochs. A natural solution is to impose
smoothness constraints on the class of reward functions—an interesting direc-
tion for future work. Finally, although strategic players are not specific to PoS
systems, we show that geometric rewards alone do not protect against them.
Designing incentive-compatible consensus protocols is a major open question.

Appendix

A Strategic Behavior

We restrict ourselves in this section to two parties: A, which is adversarial, and
H, which is honest. Note that this is without loss of generality, as H represent
the collective set of multiple honest parties as their behavior is independent of
how many parties are involved in H. The adversarial party A can also represent
the collective set of multiple adversarial parties, as having a single adversary A
is the worst case when all adversaries are colluding. Throughout this section, we
use the terms adversarial and strategic interchangeably.

Since A does not always publish its blocks on schedule, we distinguish the
notion of a block slot (indexed by n ∈ [T ]) and wall-clock time (indexed by
t ∈ [T ]). It will still be the case that each block slot n has a single leader W (n)—
in practice, this is determined by a distributed protocol—and a new block slot
leader is elected at every tick of the wall clock (i.e., at a given time t, W (n) is
only defined for n ≤ t). However, due to strategic behavior (i.e., the adversary
can withhold its own blocks and override honest ones), it can happen that no
block occupies slot n, even at time t ≥ n; moreover, the occupancy of block
slot n can change over time. Thus, unlike our previous setting, if we wait T
time slots, the resulting chain may have fewer than T blocks. This is consistent
with the adversarial model considered in PoS systems (e.g., Ouroboros [15]) that
elect a single leader per block slot. Other PoS systems, like PoSv3 [8], choose an
independent leader to succeed each block; such a PoS model can lead to even
worse attacks, which we do not consider in this work.

The honest party and the adversary have two different views of the
blockchain, illustrated in Fig. 7. Both honest and adversarial parties see the main
chain Bt; we let Bt(n) denote the block (i.e., leader) of the nth slot, as perceived
by the honest nodes at time t. If a block slot n does not have an associated block
at time t (either because the nth block was withheld or overridden, or because
n > t), we say that Bt(n) = ∅. Notice that due to adversarial manipulations, it
is possible for Bt(n) = ∅ and Bt−1(n) �= ∅, and vice versa.

In addition to the main chain, the adversary maintains arbitrarily many
private side chains, B̃1

t , . . . , B̃s
t , where s denotes the number of side chains. The

blocks in each side chain must respect the global leader sequence W (n). An
adversary can choose at any time to publish a side chain, but we also assume
that the adversary’s attacks are covert : it never publishes a side chain that
conclusively proves that it is keeping side chains. For example, if the main chain
contains a block B created by the adversary for block slot n, the adversary will
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never publish a side chain containing block B̃ �= B, where B̃ is also associated
with block slot n.

Each side chain B̃i
t with i ∈ [s] overlaps with the honest chain in at least

one block (the genesis block), and may diverge from the main chain after some
f i

t ∈ N+ (Fig. 7). That is,

f i
t := max{n ∈ N+ : Bt(n) = B̃i

t(n)}.

Different side chains can also share blocks; in reality, the union of side chains is a
tree. However, for simplicity of notation, we consider each path from the genesis
block to a leaf of this forest as a separate side chain, instead of considering side
trees. We use �t and �̃i

t to denote the chain length of Bt and B̃i
t, respectively, at

time t:

�t = |{n ∈ [T ] : Bt(n) �= ∅}| , and �̃i
t = |{n ∈ [T ] : B̃i

t(n) �= ∅}|,
and we use the heights ht and h̃i

t to denote the block indices of the �tth and �̃i
tth

blocks, respectively:

ht = max{n ∈ [T ] : Bt(n) �= ∅} , and h̃i
t = max{n ∈ [T ] : B̃i

t(n) �= ∅}.
If f i

t = ht, then the adversary is building its ith side chain from the tip of the
current main chain.

Fig. 7. In PoS, the adversary can keep arbi-
trarily many side chains at negligible cost,
and release (part of) a side chain whenever
it chooses.

State Space. The state space for
the system consists of three pieces
of data: (1) The current time t ∈
[T ]; (2) The main chain Bt; and (3)
The set of all side chains {B̃i

t}i∈[s].
Notice in particular that the set of
side chains grows exponentially in
t. In practice, most systems prevent
the main chain from being overtaken
by a longer side chain that branches
more than Δ blocks prior to ht; this
is called a long-range attack. Hence
we can upper bound the size of the
side chain set by imposing the con-
dition that for all i ∈ [s], ht − f i

t ≤
Δ. Regardless, the size of the state

space is considerably larger than it is in prior work on selfish mining in PoW
[24], where the computational cost of creating a block forces the adversary to
keep a single side chain.

Objective. The adversary A’s goal is to maximize its fraction of the total stake
in the main chain by the end of the experiment,

vA(t) =
|{n ∈ [T ] : (W (n) = A) ∧ (BT (n) �= ∅)}|

�T
.
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This objective is closely related to the metric of prior work [24], except for the
finite time duration.

Strategy Space. The adversary has two primary mechanisms for achieving its
objective: choosing where to append its blocks, and choosing when to release a
side chain. If the honest party H is elected at time t, by the protocol, it always
builds on the longest chain visible to it; since we assume small enough network
latency, H appends to block Bt−1(ht−1). However, if A is elected at time t, A
can append to any known block in Bt−1 ∪ {B̃i

t−1}i∈[s]. The system must allow
such a behavior for robustness reasons: even an honest proposer may not have
received a block Bt−1(ht−1) or its predecessors due to network latency.

The adversary can also choose when to release blocks. In our model, H always
releases its block immediately when elected. However, an adversarial proposer
elected at time t can choose to release its block at any time ≥ t; it can also
choose not to release a given block. Late block announcements are also tolerated
because of network latency; it is impossible to distinguish between a node that
releases their blocks late and a node whose blocks arrive late because of a poor
network connection.

Notice that if A is elected at time t and chooses to withhold its block, the
system advances to time t + 1 without appending A’s block to the main chain.
This means that the next proposer W (t+1) is selected based on the stake ratios
at time t − 1. So the adversary may have incurred a selfish mining gain from
withholding its block, but it lost the opportunity to compound the tth block
reward. This tradeoff is the main difference between our analysis and prior work
on selfish mining attacks in PoW systems.

Drawing from [9,24], at each time slot t, the adversary has three classes of
actions available to it: match, override, and wait.

(1) The adversary matches by choosing a side chain B̃i
t and releasing the first

ht blocks. This means the released chain has the same height as the honest
chain. In accordance with [9,24], we assume that after a match, the honest
chain will choose to build on the adversarial chain with probability γ, which
captures how connected the adversarial party is to the rest of the nodes.

(2) The adversary overrides by choosing a side chain B̃i
t and releasing the first

h = ht + 1 blocks. The released chain becomes the new honest chain.
(3) If the adversary chooses to wait, it does not publish anything, and continues

to build on all of its side chains.

Unlike [9,24], we do not explicitly include an action wherein the adversary
adopts the main chain. Because our model allows the adversary to keep an
unbounded number of side chains, adopting the main chain is always a subopti-
mal strategy; it forces the adversary to throw away chains that could eventually
overtake the main chain. The primary nuance in the adversary’s strategy is
choosing when to match or override (rather than waiting), and which side chain
to choose. Identifying an optimal mining strategy through MDP solvers as in
[24] is computationally intractable due to the substantially larger state space in
this PoS problem.
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Abstract. We present a new resource exhaustion attack affecting sev-
eral chain-based proof-of-stake cryptocurrencies, and in particular Qtum,
a top 30 cryptocurrency by market capitalization ($300M as of Sep ’18).
In brief, these cryptocurrencies do not adequately validate the proof-of-
stake before allocating resources to data received from peers. An attacker
can exploit this vulnerability, even without any stake at all, simply by
connecting to a victim and sending malformed blocks, which the victim
stores on disk or in RAM, eventually leading to a crash. We demonstrate
and benchmark the attack through experiments attacking our own node
on the Qtum main network; in our experiment we are able to fill the
victim’s RAM at a rate of 2MB per second, or the disk at a rate of 6MB
per second. We have begun a responsible disclosure of this vulnerability
to appropriate development teams. Our disclosure includes a Docker-
based reproducibility kit using the Python-based test framework. This
problem has gone unnoticed for several years. Although the attack can
be mitigated, this appears to require giving up optimizations enjoyed
by proof-of-work cryptocurrencies, underscoring the difficulty in imple-
menting and deploying chain-based proof-of-stake.

1 Introduction

Bitcoin mining is expensive, with power consumption estimates ranging from
hundreds of megawatts [3,8] to gigawatts [9]. Naturally, there has been signifi-
cant interest in reducing this cost. The main idea behind Proof-of-stake (PoS)
is to move the mining competition from the physical realm to the financial
realm, replacing computational mining with a random lottery based on held
coins. Chain-based PoS is a minimal modification of the Bitcoin protocol with
this insight. Instead of computing hash functions over an arbitrary space, we
compute hash functions of each of the transaction outputs, and compare it
against a difficulty threshold, weighted by the coin amount. This approach is
employed by Peercoin, the first PoS currency, as well as scores of others cur-
rently in production, and is also the basis for several protocols from the research
community [2,4,6,11]. Because of the similarities to Bitcoin, chain-based PoS
cryptocurrencies typically fork the Bitcoin codebase or some descendent thereof.
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Most analysis of chain-based PoS has focused on consensus, aiming to show
that properties like chain quality and chain growth are ensured in the same way
as in Bitcoin (i.e., they hold when 51% of the stakeholders follow the protocol).
However, proof-of-work in Bitcoin serves a second purpose, which is to guard
access to limited resources, such as its disk, bandwidth, memory, CPU. Proof-
of-work is easy to check, but expensive to create, and so Bitcoin uses this as
the first line of defense against junk data sent from untrusted network peers:
First check the proof of work, then check everything else. This is similar to
earlier (pre-Bitcoin) uses of proof-of-work, such as preventing spam and guarding
access to server resources [5,7,10]. Recent versions of Bitcoin build further on
this approach, transmitting separate data structures containing just the proofs-
of-work (“headers”) ahead of the actual payload (“blocks”).

Unfortunately this idea from Bitcoin does not carry over properly into Proof-
of-Stake. In particular, since the stake in a PoS block is found in the second
transaction (the “coinstake” transaction) rather than in the header, headers-
first processing is prone to attack. To explore the consequences of this insight,
we examined the leading chain-based proof-of-stake cryptocurrencies, and found
that five are vulnerable to a resource exhaustion attack. Roughly the attack
involves sending malformed chains of invalid blocks or headers that are stored in
RAM or on disk without being properly validated. We implemented and bench-
marked these attacks and have begun a responsible disclosure of this issue.

2 Background

2.1 Proof of Stake

Chain-based proof-of-stake protocols can be defined in terms of two functions, a
mining function M and a validation function V [4]. The validation function V
takes as input a chain of blocks, and outputs 1 if and only if the chain is valid
according to the application-specific rules of the cryptocurrency (i.e., all of the
transaction semantics and valid proofs-of-stake). The mining function M takes
as input a previous block B to build on, a coin C, and timestamp t and outputs
a new block B′ if it is indeed possible to mine a block, otherwise it outputs
nothing. Similar to Bitcoin, nodes following the protocol attempt to extend the
longest valid chain they know of.

As in Proof of Work, the mining function M involves comparing a hash of
block data to a difficulty target. Instead of hashing the entire block, PoS intro-
duces the notion of kernel hash, which depends mainly on the first transaction in
the block, called the coinstake transaction. In more detail, the coin C spent by
the coinstake transaction is hashed alongside the block’s timestamp, the kernel
hash of the previous block, and a few other metadata. Finally, the difficulty is
weighted against the quantity of coins in C. Roughly speaking, those with more
coins are proportionally more likely to be eligible to mine the next block.
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2.2 Validating PoS Blockchains

To mine on the largest valid block chain, as described above, a node must deter-
mine whether blocks received from peers are valid according to V . This can be
expensive—in particular, it requires checking every transaction comes with cor-
rect signatures and does not double-spend any coins. Bitcoin, as well as Qtum
and other PoS cryptocurrencies derived from it, have fairly complex machinery
to perform this task efficiently. We give a bit more detail on how this works,
focusing on the details relevant to our attack.

First of all, the node keeps track of the state of the current best chain, as
well as a lookup table pcoinsTip of the Unspent Transaction Outputs (UTXOs)
available in this chain. The ConnectBlock() method appends a block to the
current main chain, validating each new transaction with the help of pcoinsTip.

The node maintains an in-RAM data structure mapBlockIndex, which rep-
resents a tree of every (valid) block header received, including the current longest
chain as well as any forks. The AcceptBlockHeader() method performs simple
checks before storing an entry in mapBlockIndex. We note here that in Bitcoin,
this method checks the Proof-of-Work contained in the header, but since the
coinstake transaction is not contained in the header, the analogous checking of
Proof-of-Stake does not occur.

Blocks are stored on disk in append-only block files. Before storing on
disk, the AcceptBlock() method first invokes AcceptBlockHeader(), and then
hashes the transactions to check they match the hashMerkleRoot of the header.
However, the transactions themselves are not checked until later.

If a chain of accepted blocks grows longer than the current main chain, then
it is necessary to perform a “reorg” (Fig. 1A). This method unwinds the pcoin-
sTip, disconnecting the blocks one at a time down to the fork point, and finally
connecting (and validating) the blocks in the new chain one at a time.

3 Explanation of the Attack

We describe our attack scenarios from the viewpoint of an attacker node that
has already formed a connection to the victim node.

Attack on RAM. We first describe the variation of our attack targeting RAM.
The goal is to create fake block headers that pass AcceptBlockHeaders() so that
the victim stores them in mapBlockIndex. The attack begins by picking an arbi-
trary fork point in the blockchain, and constructing a header that extends this
block, as illustrated in Fig. 1B. Each header’s nTime field must be strictly greater
than its parent. The hashMerkleRoot, which ordinarily would commit to a batch
of new transactions, is instead set to a garbage value. To optimize the attack, a
single headers message contains a chain of the maximum number of 500 headers.
To avoid being disconnected, the attacker ensures that the chain of bogus head-
ers is strictly shorter than the current main chain; otherwise, the victim would
request the corresponding blocks, disconnecting the peer after a timeout if they
are not received. Detailed pseudocode is given in Algorithm 1.
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Attack on Disk. Next we describe a variation of the attack that targets disk.
The goal is to create a chain of fake blocks that pass AcceptBlock() so that the
victim stores them in mapBlockIndex and in the blocks database. The attacker
first creates a chain of blocks, starting from an arbitrary fork point in history,
and reaching exactly up to the length of the main chain. Each block is filled to the
maximum size with dummy transactions. The transactions have arbitrary values
for their signatures and references to input transactions, as neither of these are
checked during AcceptBlock(). Before broadcasting the blocks, the attacker first
broadcasts just the headers. The reason for this is that AcceptBlock() discards
a block unless it has been explicitly requested; by sending the headers first,
once the headers chain in mapBlockIndex reaches the same height as the main
chain, the victim requests all the blocks. Notice that full block validation is
only triggered in case of reorg as shown in Fig. 1. Since the attacker only sends
blocks that do not exceed the length of the current chain, the victim never
reorgs or validates the block. The pseudo-code for attack on disk is described in
Algorithm 2.

b) Header attacka) Reorg c) Disk fill attack
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Fig. 1. Resource exhaustion attack

4 Evaluating the Attack

4.1 Analysis of Affected Cryptocurrencies

To determine the impact of this vulnerability on the ecosystem, we collected a list
of known cryptocurrencies from coinmarketcap.com (on Aug. 9th 2018), sorted
by market cap, and filtered by chain-based PoS consensus type. We only looked
at cryptocurrencies whose codebase was forked from (a descendent of) Bitcoin,
i.e. in C++. We also omitted cryptocurrencies with smaller than $10M market-
cap. In total we examined 26 cryptocurrencies. Next we inspected the source code
and determined whether each had support for headers-based block downloads

http://coinmarketcap.com/
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Algorithm 1. RAM attack nothing at stake
1: procedure RAM attack(target peer)

2: block ← empty

3: blockcount ← getblockcount()

4: depth ← rand(1, MAX HEADERS DEPTH)

5: pastblock header ← getblockheader(blockcount - depth)

6: nTime ← pastblock header.nTime

7: while target peers.alive() do:

8: prevhash ← pastblock header.hash

9: for d in depth do:

10: nTime ← nTime + block interval*d

11: nVersion ← CURRENT BLOCK VERSION

12: nBits ← get next difficulty bits()

13: merklehash, nonce ← rand32 bytes(), rand4 bytes()

14: block header ← block header(nVersion, prevhash, merkleroot, nTime, nBits, nonce)

15: send msg header(target peer, block header)

16: prevhash ← block header.hash

Algorithm 2. Disk attack nothing at stake
1: procedure Disk attack(target peer)
2: block ← empty
3: blockcount ← getblockcount()

4: depth ← rand(1, MAX HEADERS DEPTH)

5: pastblock header ← getblockheader(blockcount - depth)
6: nTime ← pastblock header.nTime

7: while target peer.alive() do:

8: prevhash ← pastblock header.hash
9: headers, blocks ← [],[]
10: for d in range(depth) do:

11: nTime ← nTime + block interval*d
12: nVersion ← CURRENT BLOCK VERSION

13: nBits ← get next difficulty bits()
14: merklehash, nonce ← rand32 bytes(), rand4 bytes()
15: block ← block header(nVersion, prevhash, merkleroot, nTime, nBits, nonce)

16: for j in range(MAX TX) do:
17: prev tx, prev index ← rand32 bytes(), 0

18: scriptPubKey, amount ← b” ”, rand amount
19: tx ← create transaction(prev tx, prev index, scriptPubKey, amount)
20: block.append(tx)

21: block.rehash()

22: prevhash ← block.hash
23: headers.append(block.header)
24: blocks.append(block)
25: send msg headers(target peer, headers) � Wait for peer to request blocks

26: send msg blocks(target peer, blocks[-1])

(i.e., if the AcceptBlockHeaders() method was present). By inspection, we esti-
mated that the first 5 coins in Table 1 would be vulnerable to these attacks.

The second-from-bottom row of Table 1 is an aggregate (combined market
cap) of 7 cryptocurrencies that include AcceptBlockHeader() but have disabled
its functionality (i.e., do not process “headers” network messages). Likewise the
bottom row is an aggregate of 14 cryptocurrencies that do not implement Accept-
BlockHeader() at all.
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Table 1. Vulnerability analysis of chain-based PoS cryptocurrencies

Name Market cap
(USD)

Vulnerable
to RAM
attack

Vulnerable
to disk
attack

Check
TxDB for
coinstake

Coordinated
disclosure

Security
process

Qtum
(QTUM)

952,265,768
√ √ × √ ×

Emercoin
(EMC)

110,386,208
√ √ × √ ×

Particl
(PART)

47,065,433
√ √ × √ ×

NavCoin
(NAV)

39,029,633
√ √ × √ √

HTMLCOIN
(HTML)

25,447,981
√ √ × √ ×

Header
disabled
(PIVX etc.)

239,172,527 × × √
N/A N/A

No header
(PPC etc.)

736,472,358 × × √
N/A N/A

To confirm the vulnerability, we next implemented the attacks in each of the
codebases. We made use of existing test suites in Bitcoin software, specifically the
“regtest” mode, which enables simulated timestamps and easy-to-create blocks,
and a Python-based test node that can be extended with attacker behavior.
We used Docker containers to package these tests, their dependencies, and the
specific commit hash affected, into a reproducibility kit that we could easily
share with developer teams as part of a vulnerability disclosure.

4.2 Benchmarking the Attack

To verify that the attack works in a live network setting (and not only in the
regtest mode), we conducted an attack against our own node running on Qtum’s
live network. We optimized our attack to benchmark how effectively it could be
carried out in practice, including forming up to 10 multiple connections to the
victim, and by generating the block/header payloads in a pipelined fashion while
transmitting them over the connections. Our victim node had a download speed
of 1825.35 Mbit/s while our attacker node had an upload speed of 49.27 Mbit/s.
We were able to fill the victim’s disk at a rate of 6.05 MB/s, or the victim’s
RAM at 2.52 MB/s. For the disk attack, the main bottleneck in our testing
was the amount of bandwidth between the attacker and victim. However for the
headers attack, we reached a bottleneck of computational overhead as the victim
processes the headers message.
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5 Coordinated Vulnerability Disclosure

Resource exhaustion attacks in cryptocurrencies are considered critical vulner-
abilities.1 Because of the ease of exploiting this, we initiated a coordinated dis-
closure process to give developers of all the affected codebases an opportunity
to deploy mitigations.

As highlighted by a recent vulnerability affecting Bitcoin and their rival
Bitcoin Cash,2 there are not yet clearly established guidelines for disclosures
involving multiple cryptocurrencies. Cryptocurrencies are decentralized, and in
principle may have no one officially recognized development team [1]. However,
in this instance, all five of the affected projects are clearly associated with an
official website and have publicly listed contact information. We note that only
one of the projects (NavCoin) has a published vulnerability disclosure process
and dedicated security contact.

Cryptocurrency communities have at times been embroiled in bitter disputes.
We considered that disclosing the vulnerability too widely could increase the
risk that one may leak it or attack another. We note that Qtum’s market cap
is around 5x larger than the rest combined. However, as all five responded to
our initial email, and all codebases had active development (commits on GitHub
within the past week), we decided to communicate simultaneously to them all.

6 Mitigations

We propose some easy to implement mitigations for the affected currencies. We
can Checkpoint every K blocks so that the node does not accept forking blocks
more than K blocks deep. Another such mitigation might include Disabling
headers support and use TxDb check to determine if they have seen the coinstake
transaction. This mitigation, although not perfect atleast requires the adversary
to have some stake in the past. Lastly, we propose to UTXO snapshot every K
blocks and perform validation of all blocks by rolling the pcoinsTip struct from
the closest snaphot to the fork point.

7 Discussion and Conclusion

We show a resource exhaustion attack that can be carried out by a malicious peer
without any stake in the currency and without any privileged network position.
We found only a small number of the seventy chain-based PoS cryptocurrencies
we considered to be vulnerable; however, weighted by market cap, this is more
than half. The affected projects were all forked from a relatively recent Bitcoin
version (version 0.10.0 or later, released February 2015) that incorporates the
“headers first” feature, while those based on earlier versions of Bitcoin code are

1 https://en.bitcoin.it/wiki/Common Vulnerabilities and Exposures.
2 https://bitcoincore.org/en/2018/09/20/notice/.

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://bitcoincore.org/en/2018/09/20/notice/
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not vulnerable. We suspect the most likely outcome of our report is that the
affected cryptocurrencies will downgrade to adopt behavior like the others.

However, we observe that even the non-vulnerable cryptocurrencies do not
correctly implement the idealized protocol described in the research literature [2,
4,6,11]. In particular, the coinstake transactions in accepted blocks are validated
against the coins database associated with the current main chain—even if the
new block in question is on a fork from the main chain. In other words, the
validation function Vp is not applied deterministically, but instead approximated.
We plan to explore the consequences of this in future work.

The insights behind our attack are related to, but distinct from, the “nothing-
at-stake” problem. This refers to the observation that in chain-based PoS, stake-
holders are not penalized for mining on blocks on a conflicting fork. Our resource
exhaustion attack is different in that the attacker need not have ever been a stake-
holder at all. However, both cases highlight the difficulties in adapting designs
ideas from proof-of-work into the proof-of-stake setting.
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Abstract. Interest in cryptocurrencies has skyrocketed since their intro-
duction a decade ago, with hundreds of billions of dollars now invested
across a landscape of thousands of different cryptocurrencies. While there
is significant diversity, there is also a significant number of scams as
people seek to exploit the current popularity. In this paper, we seek to
identify the extent of innovation in the cryptocurrency landscape using
the open-source repositories associated with each one. Among other find-
ings, we observe that while many cryptocurrencies are largely unchanged
copies of Bitcoin, the use of Ethereum as a platform has enabled the
deployment of cryptocurrencies with more diverse functionalities.

1 Introduction

Since the introduction of Bitcoin in 2008 [23] and its deployment in January 2009,
cryptocurrencies have become increasingly popular and subject to increasing
amounts of hype and speculation. Initially, the promise behind cryptocurrencies
like Bitcoin was the ability to send frictionless global payments: anyone in the
world could act as a peer in Bitcoin’s peer-to-peer network and broadcast a
transaction that—without having to pay exorbitant fees—would send money
to anyone else in the world, regardless of their location, citizenship, or what
bank they used. This is achieved by the decentralization inherent in the open
consensus protocol, known as proof-of-work, that allows any peer to not only
broadcast transactions but also act to seal them into the official ledger.

While the realities of Bitcoin have shifted in the ensuing years, the land-
scape of cryptocurrencies has also shifted considerably. There are now thousands
of alternative cryptocurrencies, supporting more exotic functionalities than the
simple atomic transfer of money supported by Bitcoin. Ethereum, for exam-
ple, promises to act as a distributed consensus computer (the Ethereum Vir-
tual Machine, or EVM for short) by enabling arbitrary stateful programs to be
executed by transactions, while Monero and Zcash promise to improve on the
anonymity achieved by Bitcoin transactions. Others don’t promise new func-
tionalities but instead aim to support the same functionality as Bitcoin in more
cost-effective ways; e.g., Zilliqa [9,16,17,19,28] and Cardano [7,15] incorporate
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respective ideas from the academic literature about achieving consensus without
relying entirely on proof-of-work.

Alongside this rapid expansion in the functionality of cryptocurrencies (or
indeed the general applicability of the underlying concept of a blockchain), there
has also been a genuine explosion of investment into these technologies. In July
2013, for example, there were 42 cryptocurrencies listed on the popular data
tracker CoinMarketCap,1 and the collective market capitalization was just over 1
billion USD. In July 2018, in contrast, there were 1664 cryptocurrencies, and the
collective market capitalization was close to 1 trillion USD. While comprehensive
in terms of deployed cryptocurrencies, this list does not even include many of
the recent “initial coin offerings” (ICOs) that have similarly attracted millions in
investment despite there having been many documented scams.2,3 Against this
backdrop of hype and investment, it is thus crucial to gain some insight into the
different types of functionalities offered by these many different cryptocurrencies,
to understand which coins offer truly novel features and are backed by genuine
development efforts, and which ones are merely hoping to cash in on the hype.

This paper takes a first step in this direction, by examining the entire land-
scape of cryptocurrencies in terms of the publicly available source code used to
support each one. While source code may not be the most accurate representa-
tion of a cryptocurrency (as, for example, the actual client may use a different
codebase), it does reflect the best practices of the open-source software commu-
nity, so we believe it to be a reasonable proxy for how a cryptocurrency does (or
should) represent itself.

2 Related Work

We treat as related research that measures either general properties of open-
source software, or research that measures properties of cryptocurrencies. In
terms of the former, there have been numerous papers measuring GitHub repos-
itories. For example, Hu et al. [12] and Thung et al. [29] measured the influence
of software projects according to their position of their repositories and develop-
ers in the GitHub social graph, and others have taken advantage of the volume
of source code available on GitHub to analyze common coding practices [34] or
how bugs vary across different programming languages [24].

In terms of the latter, there are by now many papers that have focused on mea-
suring properties of both the peer-to-peer networks [1,4,8,18] and the blockchain
data associated with cryptocurrencies [3,5,6,14,20,22,25–27,30], as well as their
broader ecosystem of participants [21,31–33]. Given the volume of research, we
focus only on those papers most related to our own, in that they analyze prop-
erties across multiple cryptocurrencies, rather than within a single one like Bit-
coin. In terms of comparing Bitcoin and Ethereum, Gencer et al. [10] compared

1 https://coinmarketcap.com/historical/20130721/.
2 https://deadcoins.com/.
3 https://magoo.github.io/Blockchain-Graveyard/.
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the level of decentralization in their peer-to-peer networks and found, for exam-
ple, that Ethereum mining was more centralized than it was in Bitcoin, but that
Bitcoin nodes formed more geographic clusters. Azouvi et al. [2] also compared
their level of decentralization, in terms of the discussions on and contributions to
their GitHub repositories, and found that Ethereum was more centralized in terms
of code contribution and both were fairly centralized in terms of the discussions.
Gervais et al. [11] introduced a framework for identifying the tradeoff between
security and performance in any cryptocurrency based on proof-of-work, and
found that the same level of resilience to double-spending attacks was achieved
by 37 blocks in Ethereum as by 6 blocks in Bitcoin. Finally, Huang et al. [13]
compared the effectiveness of different mining and speculation activities for 18
cryptocurrencies, and found that the profitability of both was affected by when a
cryptocurrency was listed on an exchange.

3 Data Collection

In order to collect the source code associated with each cryptocurrency, we
started with the list maintained at CoinMarketCap, which is generally regarded
as one of the most comprehensive resources for cryptocurrency market data.
The site maintains not only market data for each cryptocurrency (its market
capitalization, price, circulating supply, etc.), however, but also links to any
websites, blockchain explorers, or—crucially for us—source code repositories.
We last scraped the site on July 24 2018, at which point there were 1664 cryp-
tocurrencies listed, with a cumulative market capitalization of 293B USD.

3.1 Source Code Repositories

Of the listed cryptocurrencies, 1123 had a link available on CoinMarketCap to
some source code repository. We examined a random sample of 10% of these
links (and all the links for the top 20 cryptocurrencies) to ensure that they were
legitimate, and in some cases replaced links where the information was inaccu-
rate (for Bitcoin Cash, for example, the provided link was for the repositories
backing bitcoincash.org rather than the actual software code). Of these links,
1108 (98.7%) pointed to GitHub.

As should be expected, many of the cryptocurrencies had multiple software
repositories available; indeed, the links provided on CoinMarketCap were to the
lists of repositories for a given GitHub organization, and in total there were
13,694 individual repositories available. The vast majority of these repositories
had been created after October 2014, with a notable rise in frequency starting in
April 2017. These repositories typically fell into one of three categories: (1) inte-
gral to the cryptocurrency itself, such as implementations of the reference client
or supporting libraries; (2) irrelevant, such as a different project by the same
organization; or (3) unchanged forks or mirrors of popular software projects,
such as llvm. Given our goal of differentiating between the various cryptocur-
rencies, we did not want to clone every available repository but instead sought
to isolate the first category of “meaningful” code.

http://bitcoincash.org/
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To do this we assigned a rating to each repository for a given cryptocurrency
according to: (1) the gap between its last update and the current date, to capture
activity (where this was subtracted from the rating, as a longer gap indicates
less activity); (2) its number of forks, to capture popularity and reuse; and (3)
information about the name of the repository, to capture relevance. (For example,
repositories with names including ‘website’ were excluded and ones with names
including ‘core’ or ‘token’ were given a higher rating.) For each cryptocurrency,
we then cloned the top 20% of the list of repositories, sorted from high to low by
these ratings (or cloned one repository, whichever was larger). We then manually
examined the repositories (both selected and unselected) for a random sample of
10% of the cryptocurrencies in order to ensure that we had selected the “right”
repositories, although without ground truth data it was of course impossible
to guarantee this for all cryptocurrencies. A full list of the 13,694 available
repositories, along with our ratings and our decision of whether to clone them or
not, is available online.4 We cloned 2354 repositories in total, which comprised
roughly 100 GB of data.

3.2 Deployed Source Code

As evidenced by the 866 (52%) listed cryptocurrencies that were categorized as
tokens (and the fact that 74 of these even had ‘token’ in their name), it is popular
to launch new cryptocurrencies not as standalone coins, but as tokens that are
supported by existing cryptocurrencies. Of these, by far the most popular type
is an ERC20 token, supported by Ethereum. Of these listed tokens, 406 did not
have any source code link available. For ERC20 tokens that have been deployed,
however, it is often possible to obtain the contract code from another source: the
version deployed on the Ethereum blockchain itself is compiled bytecode, but it
is common practice to provide the Solidity code and display it on blockchain
explorers such as Etherscan.5

For these tokens, we thus chose to use Etherscan as a data source (in addition
to any provided repositories), in order to aid our Ethereum-based analysis in
Sect. 5. At the time that we scraped Etherscan, there were 612 ERC20 tokens
listed, identified by a name and a currency symbol (e.g., OmiseGO and OMG).
Of these, we found 438 with a match on CoinMarketCap, where we defined a
match as having (1) identical currency symbols, and (2) closely matching names.
(We couldn’t also require the name to be identical because in some cases the
name of the contract was somewhat altered from the name of the cryptocurrency;
e.g., SPANK instead of SpankChain.) We scraped the available contract code for
each of these tokens, which in all but 9 cases was Solidity code rather than just
on-chain bytecode. We thus ended up with 429 deployed ERC20 contracts.

4 https://github.com/manganese/alteramentum-repo-data.
5 https://etherscan.io/.
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4 Bitcoin Code Reuse

In this section, we attempt to identify the extent to which cryptocurrencies reuse
the codebases of others, and in particular of Bitcoin. We do this by looking, very
simply, at taking files from other repositories and using them without any modi-
fication. To identify this, we computed and stored the hash of every source code
file in our cloned repositories; we identified source code file extensions using the
CLOC library.6 We then computed a similarity score Shash between a repository
A and another one B by counting the number of files in A with an identical file
in B (meaning the hash was the same), and then dividing by the total number
of files in A. To elevate this to the level of cryptocurrencies C1 and C2, we then
computed Shash(C1, C2) as

Shash(C1, C2) =

∑
A∈C1

Shash(A,∪B∈C2B)
∑

A∈C1
# files in A

;

i.e., for each repository A contributing to C1 we counted the number of files that
were identical to a file in any repository contributing to C2, and then divided
this by the total number of files across all repositories contributing to C1.

We ran this for every pair of cryptocurrencies A and B (for both Shash(A,B)
and Shash(B,A), since they are not symmetric), and used the results to create
a graph in which nodes represent cryptocurrencies and there is a directed edge
from A to B if Shash(A,B) > 0.7. This resulted in a graph with 445 nodes
and 1854 edges, the largest connected component of which can be seen in Fig. 1
(consisting of 302 nodes and 1599 edges).

Most of this component consists of Bitcoin forks. The exception is clus-
ter 9, which consists of one cryptocurrency (Zeepin) that is 100% similar to
16 other cryptocurrencies. The reason is simple: its repository consisted solely
of an LGPL-3.0 license, so it matched other repositories with the same version
of this license. At the time we scraped CoinMarketCap, Zeepin had a market
capitalization of 23 million USD. We can briefly explain clusters 1–8 as follows:

– 1. The node at the center of this cluster, Akuya Coin, has a directory structure
similar (63%) to a version of the Bitcoin codebase from 2013, but many (32%)
of its files are empty and thus have the same hash, which makes it appear
similar to 76 other Bitcoin forks.

– 2 and 3. Both of these clusters also have a directory structure similar to older
versions of the Bitcoin codebase (the average directory similarity was 89% for
cluster 2 and 82% for cluster 3), and are similar to the same cryptocurrency
(BumbaCoin). Many also incorporate the Zerocoin code:7 84% of the nodes
in cluster 2 and 65% of the nodes in cluster 3. This is notable given that this
code comes with the emphatic warning “THIS CODE IS UNMAINTAINED
AND HAS KNOWN EXPLOITS. DO NOT USE IT.” In total it is included
in repositories for 97 different cryptocurrencies.

6 https://github.com/AlDanial/cloc.
7 https://github.com/Zerocoin/libzerocoin.

https://github.com/AlDanial/cloc
https://github.com/Zerocoin/libzerocoin


78 P. Reibel et al.

Fig. 1. The largest connected component of the graph formed by creating an edge from
A to B if Shash(A,B) > 0.7, along with labels for the most prominent clusters.

– 4 and 5. These clusters were the ones most similar to Bitcoin: on average we
had Shash = 0.51 and Sdir = 0.80 for cluster 4 and Shash = 0.37 and Sdir = 0.96
for cluster 5. For cluster 4, the matching versions were also in quite a tight
range from September 2013 to September 2014 (our versions 9 to 11), whereas
most other clusters ranged more evenly across all 18 versions.

– 6 and 7. These clusters consisted largely of forks from Litecoin: 100% of
cluster 6 had the file scrypt.c, which is unique to Litecoin. 64% of cluster 7
had files with scrypt in the name, although only 21% identified as copyright
derivatives of anything other than Bitcoin.

– 8. The nodes in this cluster were on average newer than the others (with the
first repository created in June 2015), and indeed their directory structure is
more consistent with newer versions of the Bitcoin codebase.

5 Ethereum as a Platform

As discussed in Sect. 3.2, it is increasingly popular to deploy cryptocurrencies
as tokens on the Ethereum blockchain; indeed, over half of the cryptocurrencies
listed on CoinMarketCap fell into this category. This section thus explores this
type of cryptocurrency deployment, focusing again on the extent to which ERC20
tokens are similar to or different from each other. As an ERC20 token consists
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of just a single file, our methods from the previous sections do not apply here so
we develop new methods for identifying similarities.

The basic functionality of an ERC20 token—allowing the transfer of
tokens from one holder to another—defines a contract type called Basic (or
BasicToken) or—with one slight functional difference—ERC20. There are, how-
ever, many additional types that ERC20 tokens can have. For example, if they
want to allow for the creation of new tokens they can be Mintable and if they
want to allow for the destruction of existing tokens they can be Destructible
or Burnable. These types are not standardized, and in fact new types can be
defined and used within the Solidity code for a contract.

(a) Types (b) Solidity version (c) SafeMath version

Fig. 2. When ranked from most to least popular, the cumulative percentage of contracts
matching three different features, for both the set of deployed contracts and the ones
found in repositories.

To identify the types of a given token, we identified all lines in its con-
tract of the form contract X is Y { , where X is the name of the contract
and Y is its type. Some intermediate types themselves appear as names (e.g.,
contract Mintable is Ownable), which we exclude from our final results but
carry over transitively to the higher-level contract names; e.g., if X is Mintable
and Mintable is Ownable then X is both Mintable and Ownable. This resulted
in a map from the higher-level token names to a list of all of their types.

Beyond these types, we also looked at the version the contract used of Solid-
ity and of the SafeMath library, which provides safe arithmetic operations.For
the version of Solidity, we looked for lines starting with pragma solidity and
extracted the version from what followed (typically of the form 0.4.X). To deter-
mine the version of SafeMath, we first used CLOC to strip the comments from the
.sol file. We then identified the lines of code that defined the SafeMath library
(starting with either contract SafeMath { or library SafeMath { and end-
ing with }), and hashed this substring to form a succinct representation.

We extracted this information from all Solidity files, whether deployed on the
Ethereum blockchain (and thus scraped from Etherscan, as described in Sect. 3.2)
or contained in a repository.8 For the types, Solidity and SafeMath versions, we
8 Interestingly, these sets were non-intersecting; i.e., there was no contract in a repos-

itory that was identical to a deployed one.
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ordered them from most to least popular and plotted this as a CDF, as seen in
Fig. 2; i.e., we plotted the percentage y of all contracts that had one of the top
x attributes.

The relatively long tails in all of the figures indicate a relatively high level of
diversity among these features in both deployed contracts and those still under
development. For example, the Solidity version most popular among deployed
contracts (version 18) was still used in only 23% of them. Whereas Fig. 2b and c
show similar curves for both sets of contracts, Fig. 2a shows a much longer tail
for contracts contained in repositories, with 246 distinct types in deployed con-
tracts and 1002 in ones in repositories. This indicates—as should perhaps be
expected—that (1) there are just many more possibilities for contract types
than for versions, and (2) there is greater experimentation with types in con-
tracts still under development. Even among deployed contracts, 129 out of 429
had a type that did not appear in any other deployed contracts, and 148 of the
246 distinct types appeared in only a single contract.

Finally, we view the points of similarity that did exist as operating primarily
in support of the safety of deployed contracts. For example, among the 20 most
popular types across both deployed and repository contracts, five of them defined
the basic ERC20 functionality, and six of them were related to safety in terms
of either including a standard library or in defining an owner who could take
action if something went wrong. The same is true of the usage of FirstBlood’s
StandardToken, which was the first safe implementation of this type, or of the
SafeMath library. We thus view these similarities as a sign of good development
practices, rather than the copying of ideas.

6 Conclusions

This paper considered diversity in the cryptocurrency landscape, according to
the source code available for each one, in order to identify the extent to which new
cryptocurrencies provide meaningful innovation. This was done by examining the
source code for over a thousand cryptocurrencies, and—in the case of ERC20
tokens—the deployed code of hundreds more. While more sophisticated static
analysis of the source code would likely yield further insights, even our relatively
coarse methods clearly indicated the dominance of Bitcoin and Ethereum, as well
as the extent to which creating a standalone platform is a significantly greater
undertaking (leading to the reuse of much of the Bitcoin codebase) than defining
just the transaction semantics of an Ethereum-based token.
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Abstract. Temporary blockchain forks are part of the regular con-
sensus process in permissionless blockchains such as Bitcoin. As forks
can be caused by numerous factors such as latency and miner behav-
ior, their analysis provides insights into these factors, which are oth-
erwise unknown. In this paper we provide an empirical analysis of the
announcement and propagation of blocks that led to forks of the Bitcoin
blockchain. By analyzing the time differences in the publication of com-
peting blocks, we show that the block propagation delay between miners
can be of similar order as the block propagation delay of the average
Bitcoin peer. Furthermore, we show that the probability of a block to
become part of the main chain increases roughly linearly in the time
the block has been published before the competing block. Additionally,
we show that the observed frequency of short block intervals between
two consecutive blocks mined by the same miner after a fork is conspic-
uously large. While selfish mining can be a cause for this observation,
other causes are also possible. Finally, we show that not only the time dif-
ference of the publication of competing blocks but also their propagation
speeds vary greatly.

1 Introduction

Blockchain forks, which occur when two miners independently find and publish
a new block referencing the same previous block, occur regularly in permission-
less blockchains such as Bitcoin [7]. As subsequent blocks resolve the temporary
inconsistency, forks are part of a blockchain’s normal operation. While the exis-
tence of delay between miners inevitably leads to blockchain forks, deviating
mining strategies such as selfish mining [3] can also lead to forks. Recent dis-
cussions on block size, the feasibility of selfish mining (negative gamma), and
speculations on the network topology between miners are all related to factors
affecting the security of permissionless blockchains [5]. As forks are affected by
many of these factors, the analysis of forks that actually took place may help to
improve the understanding of these factors.

Based on measurements of the Bitcoin peer-to-peer (P2P) network since 2015
we analyze the announcement and propagation of blocks that led to blockchain
forks. Specifically, we compare the time differences between the first announce-
ment of competing blocks to the average block propagation delay. Furthermore,
c© International Financial Cryptography Association 2019
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we analyze the effect of a headstart of one block over competing blocks (i.e., how
much earlier a block was published) on the block’s probability to become part
of the main chain. In order to assess whether deviating mining strategies were
performed, we analyze the block intervals immediately after blockchain forks.
Finally, we study the differences in the propagation of blocks of four selected
forks through the Bitcoin P2P network.

2 Fundamentals and Related Work

We will now briefly sketch the relevant aspects of mining and block propagation
in Bitcoin. A thorough introduction can be found in, e.g., [8]. Bitcoin blocks are
generated in the process of mining by aggregating a set of previously published
transactions into a block and solving a proof-of-work puzzle for that block. Each
block contains the hash value of the previous block, which creates a chain of
blocks. Miners are expected to work on top of the longest valid blockchain known
to them, i.e., when a miner receives a new block extending the current blockchain,
the miner should update the block she is working on by changing the reference
to the newly received block.

A blockchain fork occurs if two new blocks that reference the same previous
block are independently found at the same time by different miners. Because solv-
ing the proof-of-work puzzle is a random process and block propagation between
miners is subject to network and processing delays, such forks occur regularly.
However, forks can also be the result of selfish mining [3], a mining strategy in
which a miner withholds new blocks instead of immediately publishing them in
order to gain an advantage in finding the next block. Another strategy that can
create blockchain forks is the fork after withholding attack [6].

Propagation of new blocks and transactions is performed by flooding via
the Bitcoin peer-to-peer network, and by transmission via additional, possibly
private networks (e.g., the Fibre network) [2]. Several characterizations of the
Bitcoin P2P network have been published in the past [1,4]. Furthermore, there
are several websites that publish statistics such as block propagation delays, i.e.,
the time it takes blocks to propagate through a certain share of the network.1

3 Measurement and Analysis Method

Since 2015 we have operated two monitor nodes that establish connections to
all reachable peers of the Bitcoin P2P network. The number of connections
varied between around 6,000 and 14,000 in the considered period. The monitor
nodes stay mostly passive (except for establishing connections and sending and
answering PING messages) and log the announcement of new transactions and
blocks via inventory messages (INV ) by remote peers. Therefore, our dataset
contains tuples consisting of (time, hash value, IP address). From this data the

1 E.g., https://blockchain.info, https://bitnodes.earn.com, http://bitcoinstats.com/
network/propagation, https://dsn.tm.kit.edu/bitcoin.
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http://bitcoinstats.com/network/propagation
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timestamp of the first announcement of a block can be derived. Furthermore,
the propagation speed of a block (i.e., how many announcements were received
within a certain time) can be derived.

As our monitor nodes do not actually request blocks from remote peers,
our dataset does not contain the block headers and does not indicate whether
forks happened. Therefore, we combine our data with data published by
blockchain.info that contains further information on each block hash, such as
the reference to the previous block, whether the block became part of the main
chain, and the miner as indicated in the coinbase transaction (set by the miner).
All data used in this paper can be accessed at https://dsn.tm.kit.edu/bitcoin/
forks.
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Fig. 1. Time difference between the first announcement of forking blocks. A green
cross (positive Diff ) indicates that the block that was announced first became part of
the main chain, a red cross (negative Diff ) indicates that the later announced block
became part of the main chain. Boxes around blocks indicate that the subsequent block
has been mined by the same miner; additional circles around blocks indicate that the
subsequent block has been mined by the same miner within less than 100 s. Finally,
the average 50% block propagation percentile is shown. (Color figure online)

4 Analysis of Bitcoin Blockchain Forks

As a first step, we analyze the time differences between the first announcements
of the competing blocks that cause a fork. If all miners follow the protocol and
immediately start working on top of any new valid block they receive, these
time differences should not be larger than the block propagation delay between
miners. Figure 1 shows all forks between October 2015 and March 2018 that we
have data on, and the time difference between the first announcements of both
blocks of each fork: every cross indicates one fork, i.e., one blockchain height
at which two blocks have been announced. A green cross indicates that the
block that has been announced first became part of the main chain, a red cross
indicates that the later announced block became part of the main chain.

https://dsn.tm.kit.edu/bitcoin/forks
https://dsn.tm.kit.edu/bitcoin/forks
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The data confirms that the fork rate decreased substantially in the past
years. Additionally, the observed announcement time differences decreased from
several seconds in late 2015 to less then two seconds since mid 2017. Figure 1
also shows the measured average 50% block propagation percentile, i.e., the time
difference between the first announcement of a block and the time the block has
been announced by 50% of all peers. While we expect mining pools to be better
connected to the Bitcoin P2P network than the average peer, the 50% block prop-
agation percentile gives an idea of the latency between peers. The decreased block
propagation delay also reflects the improvements made to the block propagation
mechanism of Bitcoin. The comparison of the announcement time difference to
the block propagation delay shows that the announcement time difference of
almost all forks is smaller than the 50% block propagation percentile. However,
some announcement time differences are still strikingly large, and a few are even
larger than the 50% block propagation percentile.

Assuming that all miners always mine on top of the longest blockchain they
received, the data indicates that the block propagation delay between miners
that caused forks was not substantially lower than the block propagation delay
of average Bitcoin peers. While this might be surprising, we emphasize that the
observed announcement delays might be caused by single miners that temporar-
ily suffer from a high link latency, i.e., they represent worst cases, whereas the
shown 50% block propagation percentile represents an average case.

Several questions arise from the discussion of the data shown in Fig. 1. First,
while the block that is announced first is regularly included in the main chain,
the effect of the headstart of one block over another block on the probability to
become included in the main chain is unclear. Secondly, the data is not sufficient
to assess whether miners deviate from the mining strategy, e.g., by selfish min-
ing. Finally, the effect of the P2P propagation speed of forking blocks remains
unclear. We will address all three questions in the remainder of this section.
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of the main chain depending on the headstart over the competing block.
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4.1 Effect of Headstart on Probability of Main Chain Inclusion

In order to analyze the relationship between the headstart of a block (i.e., the
time difference the block has been announced before the competing block) and
the probability that this block becomes part of the main chain, we look at the
block that was announced first and check whether this block became part of
the main chain. Hence, each fork can be represented by a tuple (headstart,
i ∈ {1, 0}). By sorting all tuples by the headstart, a moving average of the
probability of main chain inclusion can be calculated. Figure 2 shows the moving
average of the probability of a block becoming part of the main chain depending
on the headstart over the competing block. At the borders of the plot, the
moving average window is reduced symmetrically, hence, the variance of the
plot increases in these areas. Although the sample size of the data is small, a
general trend can be seen, especially between 100 ms and 10 s. For this interval,
Fig. 2 also shows a linear trend line (y = 3.07 · 10−5x + 0.63).
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The data shows that a headstart of 100 ms results in a probability of main
chain inclusion of around 70%. After a short drop at a headstart of around
500 ms, the probability increases to more than 80% for a headstart of 10 s. We
emphasize that the data is dominated by the large number of forks until around
mid 2017. It is likely that due to the reduced block propagation delay, today a
smaller headstart leads to a much larger probability of main chain inclusion.
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4.2 Deviating Mining Strategy

Consider a miner following the selfish mining strategy that withholds two blocks
and receives a competing block for her first block withheld. In that case the
selfish miner would publish both withheld blocks within a short period of time
in order to prevent the competing block from becoming included in the main
chain, rendering the withheld blocks useless. Hence, very small block intervals
after the occurrence of a fork can be caused by selfish mining. We will now
analyze the block intervals after forks.

For all forks, we calculate the block interval between the first announcement
of the block that got included in the main chain and the first announcement
of the subsequent block (i.e., the block at the next height). We split all forks
we have data about into two groups: Group Same Miner contains all 37 forks
where the block that got included in the main chain and the subsequent block
has both been mined by the same miner (also shown in Fig. 1 as rectangles).
Group Different Miner contains all 194 forks where both blocks were mined
by different miners. Please note that the miner attribution is done based on
information embedded by the miner in the block, which can be freely set by the
miner. For comparison, we also calculate all block intervals since block 350,000.

Figure 3 shows histograms of the block interval for the groups Same Miner
and Different Miner along with all block intervals and an idealized block interval
distribution modeled by an exponential distribution. While the relative frequen-
cies of all groups correspond well for larger block intervals, major differences can
be observed for the smallest interval (<100 s): Out of the 37 forks with the same
miner, 11 forks (30%) had a block interval of less than 100 s between the fork
and the subsequent block. Contrary, only 23 forks of the 194 forks with differ-
ent miners had a block interval of less than 100 s (12%). The expected relative
frequency is in the order of 14% (measured) or 15% (idealized).

We will now discuss possible reasons for the observed deviation. First,
although a validation of our measurements with other data shows a high cor-
respondence, we cannot completely rule out measurement errors. Secondly, the
probability that 11 or more samples out of 37 samples of the idealized block
interval distribution are smaller than 100 s is around 2%. Therefore, while the
observation seems unlikely, there is a substantial probability that the observation
is simply the result of the random mining process and the small sample size.

Thirdly, the presence of block propagation delays makes the considered events
statistically dependent. For instance, if a block interval is smaller than the block
propagation delay, the subsequent block is definitely mined by the same miner,
as other miners did not receive the previous block yet. However, the peculiar
relative frequency shown in Fig. 3 corresponds to the conditional probability of
observing a small block interval given that a fork occurred and both blocks were
mined by the same miner. The existence of a fork is independent of the next
block interval, as the mining power remains constant (although split). However,
the block propagation delay gives the miner of the last block an advantage
in finding the subsequent block, until other miners have received the block.
Therefore, during block propagation, the overall mining power is reduced to
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the mining power of the miners that have already received the block. Hence,
the overall block interval should actually increase (minimally) compared to the
idealized block interval as modeled by an exponential distribution. Furthermore,
all observed block intervals in the Same Miner group are at least 40 s, hence
block propagation delay should not affect the interval, as the advantage of the
miner vanishes as soon as other miners receive a block.

Finally, selfish mining could be the cause for the observed block intervals.
Blocks of 9 of the 11 forks with block intervals below 100 s were mined by only
two different mining pools, which had a share of the network hash rate of around
20% and 10%, respectively, at the time. Hence a single mining pool following the
selfish mining strategy could have caused the observed deviations. However, the
fact that all observed block intervals were at least 40 s raises doubts that selfish
mining was actually performed, because one would expect miners to immediately
publish the subsequent block. Furthermore, one would not expect a selfish miner
to voluntarily include information about its identity in a mined block. Finally,
the mining power shares of the pools render selfish mining only lucrative when
assuming a significant network advantage γ [3].

Although all discussed possible causes for the observed block intervals seem
unlikely, the presented data provides insights into a specific aspect of the mining
process and can serve as a starting point for further research.
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4.3 Peer-to-Peer Propagation Comparison

The differences in the time a block has been announced shown in Fig. 1 only show
that a block has not been received by a miner within this time difference, but
do not give reasons for why the block has not reached the other miner. Figure 4
shows the P2P propagation of the blocks that caused four different selected forks.
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The fork at height 497373 (top left) shows the standard case: The main chain
block is propagated slightly before the orphaned block, which is announced only
by those peers that have not already received the main chain block. In contrast,
in the fork at height 472040 (top right) the orphaned block is propagated first,
however, it propagates very slowly. More than one second later, the included
block is propagated at a similar propagation speed. In the fork at height 473586
(bottom left) the main chain block is propagated first, but is only announced by
less than 100 peers within 10 s. Contrary, the orphaned block is published one
second later, but propagates very fast through the network. Finally, the main
chain block at height 473064 (bottom right) is published more than a second
after the well propagated orphaned block, but still it became part of the main
chain.

The examples show that not only the first announcement of a block plays a
role in which block becomes part of the main chain, but also the propagation
speed of each block. However, as all combinations of headstart (positive vs. neg-
ative) and propagation speed (slow vs. fast) could be observed, P2P propagation
of blocks does not seem to be the main decisive factor in which block becomes
part of the main chain. A possible reason for slow propagation speeds could be
extremely long validation times for these blocks. For instance, if a block contains
a transaction on which other transactions that are contained in a peer’s mempool
depend, the peer also has to validate and order these transactions. Additionally,
the examples show that the propagation of each block can differ drastically,
hence a purely statistical model of block propagation can be insufficient.

5 Conclusions and Future Work

We provided an empirical analysis of the announcement and propagation of
Bitcoin blocks that caused blockchain forks. The large differences in the first
announcements of competing blocks indicate that the block propagation delay
between miners can be of similar order as the observed 50% block propagation
percentile. The probability of a block to become part of the main chain increases
linearly in the headstart (i.e., the time the block has been published before the
competing block) between 100 ms and 10 s (from less than 70% to more than
80%). The observed frequency of block intervals between two consecutive blocks
mined by the same miner to be less than 100 s is conspicuously large. While
selfish mining can be a cause for this observation, other causes are also possible.

A better understanding of the factors influencing the propagation speed of
specific blocks might be gained by an in-depth analysis of (orphaned) blocks and
client implementations. Furthermore, our analysis might profit from more data,
especially on recent forks. While the reduced frequency of forks is generally good
for the system, it is unfortunate for empirical research.
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5. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (2016)

6. Kwon, Y., Kim, D., Son, Y., Vasserman, E., Kim, Y.: Be selfish and avoid dilemmas:
fork after withholding (faw) attacks on bitcoin. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM (2017)

7. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
8. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, Princeton (2016). http://bitcoinbook.cs.princeton.edu/

https://doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/abs/1801.03998
http://bitcoinbook.cs.princeton.edu/


Detecting Token Systems on Ethereum
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Abstract. We propose and compare two approaches to identify smart
contracts as token systems by analyzing their public bytecode. The first
approach symbolically executes the code in order to detect token sys-
tems by their characteristic behavior of updating internal accounts. The
second approach serves as a comparison base and exploits the common
interface of ERC-20 , the most popular token standard. We present quan-
titative results for the Ethereum blockchain, and validate the effective-
ness of both approaches using a set of curated token systems as ground
truth. We observe 100% recall for the second approach. Recall rates
of 89% (with well explainable missed detections) indicate that the first
approach may also be able to identify “hidden” or undocumented token
systems that intentionally do not implement the standard. One possible
application of the proposed methods is to facilitate regulators’ tasks of
monitoring and policing the use of token systems and their underlying
platforms.

Keywords: Smart contract · Symbolic execution · ERC-20 · Token
systems · Ethereum

1 Introduction

Arguably, it has been easier to create a virtual asset on Ethereum in 2017 than a
website on the Internet in 1997. In September 2018, the market valuation of the
well observable virtual assets (“tokens”) on the Ethereum platform amounts to
US$ 35 billion, not counting the US$ 17.6 billion of ether, the platform’s hard-
wired cryptocurrency.1 These figures are the result of the 2017 boom of initial
coin offerings (ICOs), enabled by a combination of a hype around blockchain
technology, lack of attractive conventional investment alternatives, and greed.

The sheer amount of money involved calls for regulators to take note and,
where necessary, step in. While governments’ concerns with cryptocurrencies,
such as Bitcoin, were mainly focused on tracking payment flows of criminal origin
(e. g., from trade with illegal goods, ransomware, money laundering, terrorism
financing), the vast growth of an investment universe in virtual assets poses new
1 Sources: Etherscan.io and Coinmarketcap.com on 12 September 2018, own calcula-
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challenges. These include enforcement of security laws [10], consumer protection
[28], and prudential monitoring in the interest of financial stability [11]. These
tasks require proven methods and adequate tools to detect, classify, and monitor
virtual assets on platforms that can in principle host any kind of decentralized
application. Therefore, in this work we set out to offer a scientific approach for
the relevant case of token detection on Ethereum.

In jargon, token is a shorthand for a transferable virtual good. The com-
munity distinguishes fungible from non-fungible tokens. Although the notion of
fungibility is not precisely defined for all corner cases, a token is said to be fungi-
ble if all units are alike, i. e., each unit is interchangeable with every other unit.
By contrast, a non-fungible token has an identifying feature, such as a serial
number, color, etc.

Typical token systems on Ethereum are computer programs that allow its
users to exchange tokens with each other in a decentralized, secure, and atomic
way, up to the extent enforceable by the underlying blockchain-based system.
Such tokens can be useful in many scenarios. For instance, fungible tokens can
serve as means of payment (e. g., sub-currencies), securitized rights (e. g., to vote
or claim profit), or store of value. Non-fungible tokens are virtual collectibles.

Our approach is novel in that we detect fungible token systems by the
characteristic program behavior, which is related to the secure exchange func-
tionality. The behavior is detected by combining symbolic execution and taint
analysis, two established static code analysis techniques, which were adapted to
the application. As a comparison base, we also propose a signature-based detec-
tion method that searches for instances of standard interfaces for token systems .
We compare the effectiveness of both methods on a curated ground truth dataset
before we generalize and present results for the entire Ethereum blockchain.

The paper is organized as follows. The next Sect. 2 introduces necessary
background. Sections 3 and 4 present our behavior-based and signature-based
methods, respectively. Performance measurements are reported and discussed in
Sect. 5. Section 6 connects to relevant related work, before Sect. 7 concludes with
a discussion and an outlook to future applications and research directions.

2 Background and Principles

This section recalls relevant properties of the Ethereum platform, specifically its
virtual machine and calling conventions. It further sets up the static analysis
techniques: symbolic execution, taint analysis, and the Ethereum call graph.

2.1 Ethereum Virtual Machine (EVM)

Ethereum is a decentralized system that updates a global state in a public,
append-only data structure called blockchain [29]. At every point in time, the
global state is an injective mapping from addresses to account states. Account
states include the balance in ether, permanent storage, and optionally code
controlling the account. By convention, accounts with code are called smart
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contracts, whereas accounts without code are called externally owned accounts.
Transactions sent to the Ethereum network update the global state. A trans-
action can (1) transfer ether between accounts, (2) create new accounts, (3)
invoke code of any smart contract of the current state, or combinations thereof.
Arguments can be passed to code by supplying input data in the transaction.

The Ethereum Virtual Machine (EVM) is a stack-based virtual machine that
executes the bytecode in account states. Single-byte opcodes are followed by an
optional immediate argument of length between 1 and 32 bytes. To prevent
long-running or infinite computations, Ethereum charges a fee for every instruc-
tion executed, accounted in units of gas. Most developers program the EVM in
Solidity, a high-level imperative programming language.

2.2 Ethereum Application Binary Interface (ABI)

The Application Binary Interface (ABI) specifies the calling conventions between
smart contracts. Since the EVM has no native concept of functions, every transac-
tion sent to a contract starts the execution at the same entry point. Function-like
behavior is implemented by a function dispatching mechanism, which evaluates
the leading 4 bytes of the input data. Specifically, every function is identified
by a 4-byte function selector, which is deterministically derived from the hash
value of the function signature. A function signature is a concatenation of the
function name and a list of argument types as defined in Solidity. For exam-
ple, transfer(address,uint256) is a signature for a function called “transfer”
accepting two arguments of type “address” and unsigned 32-byte integer, respec-
tively.

Listing 1 illustrates the function dispatching mechanism in EVM bytecode as
generated by the Solidity compiler. The full ABI definition can be found at [1].

4 : PUSH1 0x4 // Push constant 4 on stack
5 : CALLDATALOAD // Load first 4 bytes from input data
6 : PUSH4 0xa9059cbb // Function selector transfer(address ,uint256)
7 : EQ // Check equality
8 : PUSH1 0x20 // Push jump target 0x20 = 32
9 : JUMPI // Jump if true (cf. line 7)
10: PUSH1 0x4 // If not equal , continue with this instruction
...
32: JUMPDEST // Implementation of transfer(address ,uint256)
33: ...

Listing 1. EVM bytecode illustrating the ABI function dispatching.

The ABI specification is not part of the Ethereum protocol. Anyone is free
to define their own calling conventions. However, to our knowledge, all popular
compilers targeting the EVM produce ABI-compliant bytecode.

2.3 Symbolic Execution and Taint Analysis

Symbolic execution is a program analysis technique [17]. In contrast to concrete
execution, symbolic execution does not only explore one execution path through
a program by using concrete inputs, but tries to explore all paths in a systematic
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manner. Program inputs are therefore represented as symbols. The symbolic
execution engine executes instructions akin the actual runtime environment as
long as no symbolic values are involved. When an instruction depends on at least
one symbolic value, the symbolic execution engine cannot execute the instruction
directly, but builds a symbolic expression that describes the execution result.

Special consideration is needed when it comes to control flow. Whenever a
conditional branch is reached that depends on a symbolic branch condition c
within path πn, the engine cannot decide which path to follow. Consequently,
it follows both (πn|true ← πn ∧ c, πn|false ← πn ∧ c) execution paths using
backtracking. To avoid the exploration of impossible paths, typical engines use
an SMT solver to find a satisfying assignment for the path condition in question.
If a suitable assignment is found the path is further explored.

For example, when the code in Listing 1 is symbolically executed with initial
path constraint π ← true, the symbolic execution engine generates a path con-
straint πtrue ← δ = 0xa9059cbb for the path 〈..., 4, 5, 6, 7, 8, 9, 32, ...〉, where
δ is a symbolic variable representing the first four bytes of the input data.
When the symbolic execution of the path corresponding to πtrue completes,
the symbolic execution engine performs backtracking, generates a constraint
πfalse ← δ �= 0xa9059cbb, and continues on the path 〈..., 4, 5, 6, 7, 8, 9, 10, ...〉.

In this work we mainly exploit two properties of symbolic execution. First,
we use the explored paths as input to static taint analysis [25]. Taint analysis is
a technique to trace data flows of interest through a program execution. More
concretely, we label user inputs with markers (“taint”) and track which storage
locations are affected by it. Our second use of symbolic execution is to access
the structure of symbolic expressions generated by the engine.

Symbolic execution faces many limitations in practice [12]: path explosion,
unbounded loops, and the NP-hardness of the SMT problem all require tradeoffs,
such as imposing timeouts and skipping paths. The success of symbolic execu-
tion can be measured in terms of code coverage. Gladly, most smart contracts
on Ethereum are very short programs, gas makes unbounded loops expensive,
and therefore Ethereum is more amenable to symbolic execution than other
platforms.

2.4 Ethereum Call Graph

Both detection methods introduced in this work operate locally. This means
we only analyze code of one address at a time. Consequently, the methods are
blind to behavior or signatures located outside the smart contract under analysis.
Recall from Sect. 2.1 that transactions can invoke code of any smart contract
active in the current state. Smart contracts can create transactions using the
call family2 of instructions. Such calls are used in smart contracts to (1) interact
with other parties (smart contracts), and (2) reuse code already deployed.

A useful tool to look beyond the local address is the Ethereum call graph [16].
It holds information on relationships between contracts obtained by parsing

2 CALL , DELEGATECALL , CALLCODE , STATICCALL .
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all bytecode on the Ethereum blockchain and extracting all statically encoded
addresses used in instructions of the call family. Nodes in the graph are addresses
with code. Directed edges denote static calls from caller to callee.

The so-constructed call graph captures only statically encoded references.
References to other contracts set on construction, calculated at runtime, or pro-
vided as user input are missed. The only practical way to work around this
limitation is dynamic analysis, which makes a different trade-off as it limits the
analysis to actually executed rather than all possible paths.

3 Behavior-Based Token Detection

Now we describe our behavior-based heuristic detection method for fungible
token systems on the Ethereum platform. We first justify the behavioral pattern,
then present our detection method, and finally discuss known limitations.

3.1 Pattern

Fungiblity means that all tokens in a given token system are alike. As a result,
token systems do not need to store which specific token belongs to which party.
The only relevant information is who owns how many tokens. A straightforward
(and gas-efficient) way to implement the state of a token system is storing a
mapping of owners (identified by addresses) to a non-negative number of tokens.

An important property of token systems is the ability to transfer tokens.
We assume that a token system wants to preserve the total amount of tokens
in circulation as they are transferred. In order to detect smart contracts that
behave like token systems we define:

Definition 1. A token system according to its behavior, is a smart contract that
(1) stores users’ balances as integers in permanent storage, and (2) provides a
function to transfer tokens between users while keeping the total balance constant,
where (3) the transferred value is controlled by user input.

Fixing the data type to integers in (1) is reasonable as the EVM does not
natively support floating point or rational numbers.
1 contract FungibleTokenPattern {
2 mapping(address => uint) balance;
3
4 function sendToken(address to, uint value) public {
5 require(balance[msg.sender] >= value);
6 balance[msg.sender] = balance[msg.sender] - value;
7 balance[to] = balance[to] + value;
8 }
9 }

Listing 2. Transfer pattern in Solidity, typical for fungible tokens.

Listing 2 shows a Solidity implementation of a minimalistic token system
that complies with Definition 1.
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3.2 Detection Method

We propose an approach that analyzes the behavior of potential token systems
based on symbolic execution and static taint analysis.

Our approach works as follows. We look for a possible execution path that
updates two integers in storage, one for the sender and recipient, by a value
defined as parameter. For (1) and (3) of Definition 1, we use taint analysis
to find storage write states (sws), where the value stored can be influenced
by user input. For each of those stores of input data sws0, we try to find a
matching store sws1 that follows our tainted store on some possible execution
path. Furthermore, we look for constraints in the path condition that check if
the value in some storage field is larger than or equal to some user input field
(cge). This captures the check that the sender’s balance cannot be negative. We
organize our stores and path constraint in triplets of the form (sws0, sws1, cge),
meaning we found a storage write sws0 with its value influenced by user input.
sws0 is followed by sws1 on some viable execution path. Additionally, we have a
constraint cge on this path that checks if some storage field is larger than a user
input field. We call such a triplet transfer candidate. What remains to verify is
(2), i. e., whether the operations on sws0 and sws1 are really transferring value
and if cge is a constraint on one of the fields written to. Here we apply a heuristic
that looks at the term structure of transfer candidates.

Algorithm 1 shows the analysis done for every possible transfer candidate
triplet. We use � and � to denote the proper subterm and subterm relation.

Algorithm 1. Analyzing transfer candidates.
function IsTokensym(S) � a set S of triplets (sws0, sws1, cge)

sops ← {+,−}
for (sws0, sws1, cge) ∈ S do

brss, sopsLeft, busedC ← CheckStoreTerm(sws0, sops, true)
if brss ∧ |sopsLeft| = |sops| − 1 then

brss, sopsLeft, busedC ← CheckStoreTerm(sws1, sopsLeft,¬busedC)
if brss ∧ sopsLeft = ∅ ∧ buseC then

return true � Found a token-like behavior.
return false � None of the candidates indicates a tokens system.

function CheckStoreTerm(swsn, cge, sops, bcToEqC)
bselfRef , bcallData, btoEqC ← false
tto, tval ← swsn.to, swsn.value � Store has an address and a value.
sopFirst ← FindFirstOpBFS(tval, sops) � Get first matching function symbol.
bselfRef ← tto � tval � Store updates itself?
bcallData ← cge.smallerTerm � tval � Term contains input from constraint?
btoEqC ← tto � cge.largerTerm � Is constraint on assignment?
return (tselfRef ∧ tcalldata, sops \ sopFirst, (bcToEqC ∧ btoEqC) ∨ ¬bcToEqC)

Example: We use the example contract in Listing 2 to illustrate how the algo-
rithm works. We refer to source code when possible, although the actual analysis
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is done on bytecode. First we perform taint analysis to find storage writes influ-
enced by user input. We find stores in lines 6 and 7. Then we look for followup
stores along a viable execution path. Only for the store in line 6 we find a fol-
lowing store, namely in line 7. Furthermore, we look at path conditions at the
program state of the first store in line 6. We find one suitable condition that
matches our restrictions that the condition checks if a storage field is larger than
(or equal to) some user input in line 5. This means we found one transfer can-
didate to check (line 6, line 7, line 5). First we execute CheckStoreTerm

on balance[msg.sender] = balance[msg.sender] - value with balance[msg.sender]

>= value as a constraint and {+,−} as possible operations, and bcToEqC = true.
Then we check if the right hand side (RHS) of the store term contains itself,
which it does. It follows a check if the RHS of the constraint value is a subterm
of our store term, meaning that the constraint and store refer to the same user
input. If that is the case, we check if we can either find an addition or subtrac-
tion in our term. FindFirstOpBFS checks all function applications in the term
against a list of operations (starting with {+,−}) and returns a set with the first
operation to occur, or an empty set if the operations are not found. Finally, we
check if the storage field used in the constraint is the target of the store, which is
true in our case. The function then returns a tuple with (true, {+}, true), since
the terms of our transfer candidate fulfill all conditions. We found that minus
is the root operation on the term and already found the constraint value to be
written on. We then continue with calling CheckStoreTerm again for the sec-
ond term, with a reduced list of operations, only looking for plus and no longer
looking for writes on our constraint values. This call returns (true, ∅, true), thus
we found token-like behavior according to our definition.

3.3 Known Limitations

We inherit the limitations from symbolic execution (cf. Sect. 2.3). We use
mythril [6], a tool designed for security analyses that is known to reach high
accuracy [22] despite using heuristics. For our experiments, we run mythril
with a timeout of 60 s and a maximum path length of 58. Furthermore, mythril
is under active development and has a couple of limitations that may influence
our results and their replicability. For example in taint analysis, the current
version of mythril (0.18.11) cannot spread taint over storage or memory fields.
This can cause problems when function parameters are passed by reference.

The locality is dealt with in the following way: whenever the symbolic execu-
tion reaches a call, we consider it as communication with the unknown environ-
ment. Hence, the engine introduces a fresh unrestricted symbol for the return
value and carries on. That means the analysis is blind to everything that hap-
pens outside of the code of the current address. We evaluate the impact of this
limitation empirically with the call graph in Sect. 5.3.

Another limitation lies in the definition of the pattern. It is not straightfor-
ward to find the best approximation for the behavior we search for, since the
same behavior can be implemented in various ways that may result in vastly
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different bytecode. What eases this problem somewhat is that much of the byte-
code currently deployed on Ethereum is produced by a pretty homogeneous
toolchain (Solidity and solc). Moreover, gas favors simple programs, often ren-
dering abstractions that would complicate the underlying bytecode uneconomic.

4 Signature-Based Token Detection

Now we present a simple signature-based heuristic to detect token systems . It
evaluates if the bytecode implements the ABI standard for the ERC-20 interface.
We need this method as a benchmark to evaluate the behavior-based approach.

4.1 Pattern

To improve the interoperability of tokens in the Ethereum ecosystem, the com-
munity has established a set of standards for token systems . ERC-20 [3] is the
most popular standard for fungible tokens. It also serves as basis for extensions,
such as ERC-223 and ERC-621. Even ERC-777, while still at draft stage at the
time of writing, is backward compatible: a token can implement both standards
to interact with older systems that require the ERC-20 interface [2]. Given the
vast dominance of ERC-20 today, we restrict our analysis to this standard.

The standard defines six functions and two events that must be implemented
to be fully compliant. (Listing 3 in Appendix B shows the ERC-20 interface
skeleton in Solidity.) Since the applications of tradable tokens are diverse, the
standard does not define how tokens are created, initially distributed, or how
data storage should be organized. It only defines that ERC-20 tokens must
have functions to securely transfer tokens, and some helper functions to check
balances.

4.2 Detection Method

A näıve way to detect tokens is to check if the code implements the methods
defined by the ERC-20 standard. From the ABI definition (see Sect. 2.2) we
know how function calls are encoded and how functions are dispatched.

In order to detect token systems based on a signature we define:

Definition 2. A token system according to its signature is a smart contract that
introduces at least 5 of the 6 function selectors defined by the ERC-20 standard.

We used five as a threshold to account for incomplete implementations of
ERC-20 .

We use Definition 2 and the fact that the only way to introduce constants in
the EVM are PUSH instructions. Since function selectors are 4 bytes long accord-
ing to the ABI, the detection method looks for PUSH4 instructions. Algorithm 2
takes as input a list of EVM instructions, inspects all 4-byte constants intro-
duced, and checks membership in the pre-determined set of ERC-20 function
selectors (variable ssignatures).
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Algorithm 2. Detection method based on disassembly and signatures.
ssignatures ← {18160ddd, 70a08231, dd62ed3e, a9059cbb, 095ea7b3, 23b872dd}
function IsTokenSig(I) � I is a list of instruction tuples t ∈ (opcode × arg)

sconstants ← ∅
for (iopcode, iargument) ∈ I do

if iopcode = PUSH4 then
sconstants ← sconstants ∪ {iargument}

return |sconstants ∩ ssignatures| ≥ 5

4.3 Known Limitations

This method is obviously prone to false positives if a contract pushes all required
constants to the stack but never uses them. This may even happen in dead code.
Hence, we also get false positives if we analyze so-called factory contracts that
create new token systems when called [4]. The code of the factory includes the
code of the token system to create, and thus contains push instructions of the
required constants.3 The common cause for these weaknesses is that the method
considers neither data nor control flow.

Similar to the behavior-based method, the signature-based method is a local
heuristic. This can result in false negatives. For example, if the smart contract
does not implement the ERC-20 interface, but delegates calls to a suitable
implementation. This form of delegation is common practice on the Ethereum
platform because it makes deployments cheaper. Furthermore, it enables code
updates by swapping the reference to the actual implementation [7,8].

5 Measurements

5.1 Data and Procedure

To evaluate our two detection methods we study the Ethereum main chain from
the day of its inception until 30 May 2018.4 We extract all unique runtime byte-
code instances and the addresses they are deployed on. With runtime bytecode
we denote code that is executed when a transaction is sent to the contract after
its deployment. This means we do not analyze initialization code.

In total we found 6 684 316 addresses that hosted bytecode at one point in
time. From these addresses we extract 111 882 unique runtime bytecode instances,
henceforth referred to as bytecode instances for brevity, unless stated otherwise.
Observe that we do not double-count bytecode instances unlike it is often the case
in headline statistics on smart contracts. We do not exclude contracts that were
disabled by selfdestruct, i. e., we analyze all code ever deployed. Consequently,
we also analyze bytecode instances that are barely used.

To evaluate that our detection results are not biased towards barely used
or test code, we also define a subset of active instances. We define a bytecode
3 One such instance can be found at 0xbf209cd9f641363931f65c0e8ef44c79ca379301.
4 Block number: 5 700 000.
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Table 1. Recall of signature- and behavior-based detection methods against our GTD.

instance as active if all hosting addresses combined handled a volume of at least
1000 transactions until 30 May 2018.

To build a ground truth dataset (GTD) for the evaluation, we downloaded
612 Top ERC-20 tokens5 from Etherscan. Etherscan, a popular Ethereum block
explorer, curates its top list of ERC-20 tokens by only including systems that
are popular, supported by at least one major exchange, compliant with ERC-20 ,
and have a visible website. We exclude all token systems that were created after
30 May 2018, leaving us with a curated list of 595 ground truth token systems ,
of which we extract 578 bytecode instances.

We run both of detection methods over all bytecode instances and evaluate
the results. The signature-based method (Sig) is able to process all of the input
contracts. The behavior-based method (Behav) fails to analyze 1373 (1.23% of
the total) instances. Failures occur if, for example, the bytecode contains syn-
tactic errors not handled in the engine. We consider those 1373 instances as
negative detection results. On the remaining 110509 instances, our behavior-
based method reaches a mean (median) code coverage of 71,9% (82,2%). Over
70% of the instances reach a coverage above 50%, supporting the claim that
smart contracts are a very suitable for symbolic execution techniques.6

To confirm our restriction to the ERC-20 interface in the signature-based
method, we adapted our method to count the number of ERC-777 tokens. We
encounter only four systems implementing at least 4 of the 13 functions required
by ERC-777. All of them also implement ERC-20 for backward compatibility.

5.2 Validation on Ground Truth Data and Error Analysis

Table 1 presents the detection results of both methods evaluated against our
curated GTD. Observe that the signature-based method alone is pretty good at
detecting tokens, reaching 99.13% recall. The behavior-based method performs
visibly worse with a recall of 88.75% on our curated GTD. Since no token sys-
tems remained undetected by both methods, the combination of both (Behav
∨ Sig) gives us perfect 100% recall. Our GTD does not allow us to calculate the
precision.
5 Ranked by market cap, retrieved on 23 Aug. 18 from https://etherscan.io/tokens.
6 100% - #16056, ≤ 75% - #50874, ≤ 50% - #31298, ≤ 25% - #5165, ≤ 10% - #1031.

https://etherscan.io/tokens
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The behavior-based method is able to detect the exact five contracts that are
missed by the signature-based approach (Behav∧Sig). Further manual investiga-
tion of these contracts shows that all of them do not implement ERC-20 up to
our threshold. Fortunately, all of the five contracts published Solidity source code.
Thus, we could confirm that they are missed by the signature-method because
they implement only three of the six ERC-20 functions, namely totalSupply (),
balanceOf(address), and transfer(address ,uint256). This suggests that our initial
threshold is too high, or in other words that even major token systems handle
standards laxer than expected. Table 8 in Appendix C lists those five contracts.

The signature-based method identified 65 token systems that were not found
by the behavior-based method (Behav ∧ Sig). We conjecture that either those
tokens implement their internal state differently or they use libraries that imple-
ment the bookkeeping of storage values, thereby escaping our local behavior-
based analysis. We try to answer why those tokens are not detected by manually
inspecting a random sample of 20 (out of 65) bytecode instances (listed in Table 9
in Appendix C). We find that all of them are large and reasonably complex con-
tracts.7 We encountered three main causes for missed detection:

Delegation of Bookkeeping (6): We found 6 bytecode instances in our sample
that do not implement any asset management logic in the contract itself. It is
delegated to another contract. The front-end contract implements the ERC-20
interface, but many back-end bookkeeping contracts do not, e. g., the Digix Gold
Token. Delegation patterns (or “hooks”) like this one are often used to allow
updates (by reference substitution) of the asset management logic.

Violation of Definition 1 (10): The second reason concerns mainly tokens
that are derived from the popular MiniMeToken [5]. We found 9 of those in our
sample. MiniMe uses a different storage layout. Instead of a plain integer that
is updated over time, it writes a new checkpoint for every transfer into an array.
This violates our detection assumption (1) in Definition 1, or, more specifically,
fails our check that the field gets updated (self reference). Even though this
already defeats our detection method, we find that mythril was not able to
inspect the relevant paths in the transfer function. The average code coverage is
as low as 34.8% on the 9 MiniMe-based tokens in our sample.

Also the MakerDAO instance is not detected for a violation of Definition 1,
although it is not derived from MiniMe and reached high coverage (94.3%). It
does not implement a balance check before the actual transfer as required in
Definition 1. This can be fixed with an ad-hoc adjustment of the method, but
we are concerned about the (not observable) false positive risk of a relaxed
behavioral pattern.

Litations of Symbolic Execution and Taint Analysis (4): Four contracts
in our sample neither delegate the bookkeeping work nor are derived from the
MiniMeToken. All of them use a simple integer value to store the balance of the
participants. Storiqua (42.9%), LocalCoinSwap (34.82%), and LOCIcoin (18.5%)

7 Mean (median) code size: all instances 3315.0 (2541), Behav ∧ Sig 8153.86 (7828)
Code coverage: 41.75% (40.25%).



104 M. Fröwis et al.

suffer from low coverage. In the Storiqua instance, our method finds the relevant
paths in the transfer function but does not find a matching store. In the case
of LocalCoinSwap, we do not find a suitable constraint although the symbolic
execution engine explores the relevant paths in transfer. LOCIcoin has the lowest
coverage. The engine does not discover the relevant paths in the transfer method.
Finally, TrueUSD reaches high coverage (72.9%), but the behavior-based method
did not find a suitable constraint in the transfer function. All of those cases are
examples for known limitations of symbolic execution (reaching low coverage,
missing relevant paths), taint analysis (failing to find matching stores), as well
as our detection approach (missed constraints).

5.3 Generalization to All Smart Contracts on Ethereum

Table 2 reports detection statistics over all bytecode instances. We find that
33.17% of the bytecode instances on the Ethereum platform can be said to be
token systems with high confidence because they are detected by both methods
(Sig ∧ Behav). The interesting part is where both methods disagree.

Recall from our manual ground truth analysis that all instances missed by the
signature-based method but detected by the behavior-based method (Behav ∧
Sig) are caused by our high threshold. So we re-run the analysis with a lower
threshold of 3, as our manual inspection suggested. Tables 4 and 5 (both in
Appendix A) show the updated results of Tables 1 and 2, respectively. With
the lower threshold, the signature-based method detects 7193 more bytecode
instances as tokens. 3232 of those newly detected token systems were already
identified by the behavior-based method. The remaining tokens would have been
missed otherwise. We conjecture that the 1772 bytecode instances only detected
by the behavior-based method (Behav∧Sig) are either non-ERC-20 bookkeeping
contracts, as found in the Digix Gold Token, or token systems that do not
implement ERC-20 for other reasons, such as obscuring their nature.

In the case of token systems detected by the signature-based but not by the
behavior-based method (Behav∧Sig), we found mixed reasons in our GTD. First,
we saw systems that implement the ERC-20 interface but delegate all bookkeep-
ing tasks to other contracts. In order to study if this pattern generalizes to the
whole dataset, we extract bytecode metrics, such as the number of call instruc-
tions. We find that contracts that are detected by the signature-based method
contain an above-average number of call instructions. Table 7 (in Appendix A)
presents the mean and median values of call-family instructions for different sub-
sets of bytecode instances. The highlighted row stands out: Behav∧Sig instances
have on average 2.2 times as many calls as the average bytecode instance. This
indicates the use of delegation patterns as found in the Digix Gold Token. To fur-
ther strengthen this interpretation, we us the Ethereum call graph (cf. Sect. 2.4)
to find out if those instances have calls to other instances that are otherwise
classified as token systems. For 920 of 10472 instances (Behav ∧ Sig) we find
static references. 563 have direct hardcoded calls to another instance classified
as token system, suggesting that the detectable behavior is implemented in the
callee. The second and third reason for missing tokens were inherent limitations
of symbolic execution, which we could not further evaluate on the entire dataset.
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Table 3 shows detection results for all active bytecode instances. The results
are pretty comparable to Table 5. Note that the behavior-based method misses
relatively more instances detected via signature than on the complete dataset.
One interpretation is that high-profile tokens implement more complex logic,
therefore evading detection by symbolic execution. This conjecture is supported
by the observed bytecode sizes as well as code coverage reached: active byte-
code instances are on average around 1.6 times as large as the average bytecode
instance. Average code coverage also drops from 71.9 (82.2%) to 66.2 (69.6%).

Table 2. Comparison of signature- and behavior-based detection methods on all byte-
code instances. (Note that this is not a performance measurement. We cannot expect
100%.)

Table 3. Comparison of signature- and behavior-based detection methods on all active
bytecode instances (with signature threshold ≥3).

5.4 Insights into the Token Ecosystem

The automatic detection of token systems allows us to shed more light into
the token ecosystem. Looking at bytecode reuse, for instance, puts the headline
numbers into perspective and informs us about the actual amount of innovation
happening in the ICO community. To this end, Fig. 1 connects our technical level
of analysis (bytecode instances) to the publicly visible level of addresses hosting
token systems. The most frequently deployed bytecode instance of a token system
is a standard template by ConsenSys.8 It has been deployed 8729 times to the
8 https://github.com/ConsenSys/Token-Factory/blob/master/contracts/

HumanStandardToken.sol.

https://github.com/ConsenSys/Token-Factory/blob/master/contracts/HumanStandardToken.sol
https://github.com/ConsenSys/Token-Factory/blob/master/contracts/HumanStandardToken.sol
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Fig. 1. Bytecode reuse of Ethereum token systems: number of addresses hosting a
unique bytecode instance detected as token system. Top-20 ranked by total addresses
(left) and “busy” addresses handling more than 100 transactions (right). Note the log
scale.

Ethereum blockchain. 298 of these deployments have processed more than 100
transactions. Altogether 49 bytecode instances have been deployed more than
100 times, and 16 bytecode instances have 10 or more “busy” deployments.9

These figures give some early intuition, but likely underestimate the extent of
code reuse as trivial modifications of template code (or the output of token
factories that deploy polymorphic code) are not consolidated.

6 Related Work

As we are not the first to systematically analyze smart contracts on Ethereum or
to study tokens on the Ethereum platform, we summarize prior art by topic area.

Mapping the Smart Contract Ecosystem: Using source code provided by
Etherscan, Bartoletti and Pompianu [13] manually classify 811 smart contracts
by application domain (e. g., financial, gaming, notary) and identify typical
design patterns. Norvill et al. [21] propose unsupervised clustering to group 936
smart contracts on the Ethereum blockchain. Zhou et al. [30] develop Erays a
Ethereum reverse engineering tool that lifts EVM bytecode to a human readable
pseudocode representation, for futher inspection. They conduct four case studies
to show the effectiveness of the approach.

Vulnerability Detection in Smart Contracts: Luu et al. [19] execute 19366
smart contracts symbolically with the intention to uncover security vulnerabili-
ties, which they find in 8833 cases. Tsankov et al. [27] build Securify, a symbolic
execution framework to uncover security problems in smart contracts. Security
patterns are specified in a domain-specific language based on Datalog. Nikolic
et al. [20] study so-called trace vulnerabilities that manifest after multiple runs

9 Note that “busy” is similar to our notion of active, however on the level of addresses
rather than bytecode instances.
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of a program. Introducing Maian, a symbolic execution framework to reason
about trace properties, they identify 3686 vulnerable smart contracts. Brent
et al. [14] present Vandal, a smart contract security analysis framework. It uses
a Datalog-based language tailored to describe static analysis checks.

Token Systems: Somin et al. [26] study network properties of token trades and
show that the degree distribution has power-law properties. They use a simple
token detection method based on ERC-20 events generated at runtime, therefore
relying on the standard compliance of the contracts. Etherscan identifies token
systems using a signature-based approach [9]. However, the details of the method
are proprietary and thus not available for replicable science. Etherscan’s headline
numbers count addresses with code, not bytecode instances.

Symbolic Execution: Symbolic execution is a very mature discipline as wit-
nessed by the number of literature surveys published. For instance, Baloni et al.
[12] provide an overview of the main ideas and challenges in symbolic execution.
Păsăreanu et al. [23] offer a survey of trends in symbolic execution research and
applications with special focus on test generation and program analysis. Per-
son et al. [24] introduce differential symbolic execution to calculate behavioral
differences between versions of programs or methods.

Malware Detection: The prime application of symbolic execution in systems
security is malware analysis. Luo et al. [18] use symbolic execution compare code
based on behavior. Christodorescu et al. [15] have developed a semantics-aware
malware detection framework that uses templates to specify malicious patterns.

Financial Regulation: We are not aware of symbolic execution in tools that
support financial authorities in their monitoring and supervision tasks, although
some applications stand to reason given the prevalence of algorithmic trading.

In contrast to the above-mentioned work on smart contracts and symbolic
execution, we do not aim at generating test cases or show the absence of certain
conditions in programs, e. g., integer overflows. We apply symbolic execution to
explore all paths through a program and analyze whether that program can be
classified based on a given structure, or the presence of certain behavior.

7 Conclusion and Future Work

The idea of this work is to detect Ethereum token systems based on behavioral
patterns. We have presented a method and evaluated it as effective using curated
ground truth data and a reference method based on signatures.

Both methods have specific advantages. The signature-based approach is sim-
ple, but limited to standard-compliant token systems. It is easy to defeat detec-
tion by slightly deviating from the standard. The method bears a false positive
risk in case of factory contracts or dead code. Quantifying this risk is left as
future work. The method can be improved by taking data flow into account.

The behavior-based method does not depend on standard-compliance. It is
robust against reordering of parameters or renaming of functions. To which
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extent it can deal with sophisticated obfuscation is left for future work. The
effectiveness of this method demonstrates that symbolic execution is practical
on Ethereum.

Both methods fail if the detectable pattern spans over more than one address. If
this limitation becomes problematic in practice, the use of concolic execution [12]
in conjunction with the current blockchain state is a way to overcome the locality.

In particular the behavior-based method is hand-crafted to the application
of token detection. A direction of future work is to generalize the approach by
building a domain-specific language in which behavioral patterns can be speci-
fied on a high level of abstraction. This would facilitate extensions of our app-
roach to detect other kinds of behavior, such as smart contracts implementing
non-fungible tokens, decentralized exchanges, or gambling services. Evaluating
the transactions between the so-identified services would provide the necessary
information to draw a map of the Ethereum ecosystem.

Acknowledgments. We like to thank ConsenSys for the work on mythril. This work
has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 740558.

A Supplemental Result Tables

Table 6 presents the same detection results as Table 5 but unitl block 7000000.

Table 4. Recall of signature- and behavior-based detection methods against our GTD
with lower signature threshold (≥3).

Table 5. Comparison of signature- and behavior-based detection methods on all byte-
code instances with lower signature threshold (≥3).
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Table 6. Comparison of signature- and behavior-based detection methods on all byte-
code instances with lower signature threshold (≥3). Update until block 7000000.

Table 7. Call instructions statistics for different bytecode subsets (mean/median).

B ERC-20 Interface Specification

1 contract ERC20Interface {
2 // Function Signatures
3 function totalSupply () public constant returns (uint);
4 function balanceOf(address tokenOwner)
5 public constant returns (uint balance);
6 function allowance(address tokenOwner , address spender)
7 public constant returns (uint remaining);
8 function transfer(address to, uint tokens)
9 public returns (bool success);

10 function approve(address spender , uint tokens)
11 public returns (bool success);
12 function transferFrom(address from , address to, uint tokens)
13 public returns (bool success);
14 // Events
15 event Transfer(address indexed from ,
16 address indexed to,
17 uint tokens);
18 event Approval(address indexed tokenOwner ,
19 address indexed spender ,
20 uint tokens);
21 }

Listing 3. ERC-20 interface in Solidity.
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C Documentation of Manual Inspections

Table 8. Five smart contracts of the GTD missed by the signature-based but found
by the behavior-based method.

Name Address Code Hash # ERC-20
Functions

LatiumX 0x2f85e502a98af76f7ee6d... 0xf30b6028435e... 3

Pylon 0x7703c35cffdc5cda8d27aa... 0x96858625adfa... 3

Minereum 0xla95b271b0535dl5fa499... 0x65d59c447f7c... 3

All Sports Coin 0x2d0e95bd4795d7ace0da... 0x1c57e11bbd6e7... 3

Golem 0xa74476443119a942de498... 0x35e72568bdaa... 3

Table 9. Random sample of 20 smart contracts in the GTD missed by the behavior-
based but found by signature-based method.

Address Code Hash

Delegation of Bookkeeping

EmphyCoin 0x50ee674689d75c0f88e8f... 0x19780d1f0151fc...

Digix Gold Token 0x4f3afec4e5a3f2a6ala411d... 0x941fab0f7c206...

FunFair 0x419d0d8bdd9af5e606ae2... 0xe29653f94e73...

Education 0x5b26c5d0772e5bbac8b31... 0xe359bf40848d...

Devery.io 0x923108a439c4e8c2315c4... 0x6b8bff0af6051...

UniBright 0x8400d94a5cb0fa0d041a3... 0x3058c20470fb...

Violation of Definition 1

Ethbits 0x1b9743f556d65e757c4c6... 0xd3f516225294...

Aston X 0x1a0f2ab46ec630f9fd6380... 0xc2b817789336...

Sharpe Platform Token 0xef2463099360a085f1f10b... 0xe0e29e2655db...

FundRequest 0x4df47b4969b2911c96650... 0x519dc5c0384b...

SwarmCity 0xb9e7f8568e08d5659f5d2... 0x88b20869ae32...

Mothership 0x68aa3f232dabdc23434... 0x63e44909ce93...

Ethfinex Nectar Token 0xcc80c051057b774cd7506... 0x5c7c39e24430...

DaTa eXchange Token 0x765f0c16d1ddc279295cla... 0xc4bdfc9026f14...

Swarm Fund 0x9e88613418cf03dca54d6... 0x56dd7cb818b4...

MakerDAO 0x9f8f72aa9304c8b593d55... 0xe69355035f77...

Limitations of Symbolic Execution and Taint Analysis

Storiqa 0x5c3a228510d246b78a37... 0x93be59026507...

LocalCoinSwap Cr. 0xaa19961b6b858d9f18a115... 0x8/8b9c793a727...

LOCIcoin 0x9c23d67aea7b95d80942e... 0x9488b89a5ee6...

TrueUSD 0x8dd5fbce2f6a956c3022b... 0xf447f893b44fd...
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112 M. Fröwis et al.

21. Norvill, R., Awan, I.U., Pontiveros, B., Cullen, A.J., et al.: Automated labeling of
unknown contracts in Ethereum (2017)

22. Parizi, R.M., Dehghantanha, A., Choo, K.K.R., Singh, A.: Empirical Vulnerability
Analysis of Automated Smart Contracts Security Testing on Blockchains. arXiv
preprint arXiv:1809.02702 (2018)
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cution. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pp. 226–237. ACM (2008)

25. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE symposium on Security and privacy (SP), pp. 317–331. IEEE
(2010)

26. Somin, S., Gordon, G., Altshuler, Y.: Social Signals in the Ethereum Trading Net-
work. arXiv preprint arXiv:1805.12097 (2018)

27. Tsankov, P., Dan, A., Cohen, D.D., Gervais, A., Buenzli, F., Vechev, M.: Securify:
Practical Security Analysis of Smart Contracts, August 2018. https://arxiv.org/
pdf/1806.01143.pdf. Accessed 5 Sept 2018

28. Underwood, B.: Virtual Markets Integrity Initiative. Office of the New York State
Attorney General, September 2018

29. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (EIP-
150 revision) (2017). http://gavwood.com/paper.pdf. Accessed 18 June 2017

30. Zhou, Y., Kumar, D., Bakshi, S., Mason, J., Miller, A., Bailey, M.: Erays: reverse
engineering ethereum’s opaque smart contracts. In: USENIX Security

http://arxiv.org/abs/1809.02702
http://arxiv.org/abs/1805.12097
https://arxiv.org/pdf/1806.01143.pdf
https://arxiv.org/pdf/1806.01143.pdf
http://gavwood.com/paper.pdf


Measuring Ethereum-Based ERC20
Token Networks

Friedhelm Victor(B) and Bianca Katharina Lüders
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Abstract. The blockchain and cryptocurrency space has experienced
tremendous growth in the past few years. Covered by popular media,
the phenomenon of startups launching Initial Coin Offerings (ICOs) to
raise funds led to hundreds of virtual tokens being distributed and traded
on blockchains and exchanges. The trade of tokens among participants
of the network yields token networks, whose structure provides valuable
insights into the current state and usage of blockchain-based decentral-
ized trading systems. In this paper, we present a descriptive measurement
study to quantitatively characterize those networks. Based on the first
6.3 million blocks of the Ethereum blockchain, we provide an overview
on more than 64,000 ERC20 token networks and analyze the top 1,000
from a graph perspective. Our results show that even though the entire
network of token transfers has been claimed to follow a power-law in
its degree distribution, many individual token networks do not: they
are frequently dominated by a single hub and spoke pattern. Further-
more, we generally observe very small clustering coefficients and mostly
disassortative networks. When considering initial token recipients and
path distances to exchanges, we see that a large part of the activity is
directed towards these central instances, but many owners never transfer
their tokens at all. In conclusion, we believe that our findings about the
structure of token distributions on the Ethereum platform may benefit
the design of future decentralized asset trade systems and can support
and influence regulatory measures.

Keywords: Blockchain · Ethereum · Tokens · Network analysis

1 Introduction

In the past years, blockchains and in particular ICOs have seen increased atten-
tion, with startups frequently selling tokens to obtain seed funding. Such tokens
may represent both digital and physical assets or utilities as entries on the dis-
tributed ledger, similar to native digital currencies such as Bitcoin or Ether.
They are commonly enabled by ERC20-compliant smart contracts implemented
on the Ethereum blockchain. To date, their sale and trade are unregulated in
most countries. A lot of research was already dedicated to the analysis of con-
tent and communication graphs on different blockchains. In contrast to these,
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which focused on the trade of native currencies, we investigate the trade of
tokens. We define the network between addresses that reflects the distribution
and trade of each token as its token network, in which each edge represents the
transfer of a specified amount of the respective token between two addresses.
To the best of our knowledge, no large-scale study of individual token networks
on the Ethereum blockchain has been provided to date. We advance approaches
developed in the area of network analysis to this new domain and analyze token
networks quantitatively from a graph perspective to capture their structure and
topology. This allows us to obtain a sound overview of the token landscape. An
in-depth understanding of graph structures and usage patterns in the decen-
tralized and unsupervised domain of cryptocurrencies and tokens is necessary to
evaluate current token trading systems and serves as a basis for further research.

The remainder of this paper is structured as follows: In Sects. 2 and 3, we
provide an overview of the theoretical background, current research results and
related work on cryptocurrencies, blockchains and smart contracts. In Sect. 4,
we describe our data collection methodology and provide a set of high-level
statistics of our data set, followed by an analysis of the token networks based
on graph theoretic measures in Sect. 5. Finally, we summarize our paper and
provide approaches for future work in Sect. 6.

2 Background

In recent years, the popularity of blockchain-based cryptocurrencies has grown
significantly. As of 2018, hundreds of different coins are in circulation, with a
large portion of them developed on top of the Ethereum blockchain in the form
of tokens, that have recently been the basis for many crowdfunded ventures. A
new type of token can be created by implementing a smart contract. While their
implementation often follows a standard, their behavior can be implemented
arbitrarily. With regulation currently still under development, questions have
been raised whether a certain token constitutes a security or a utility, and how
they should be treated.

2.1 Ethereum, the EVM and Smart Contracts

Similar to Bitcoin, Ethereum is an open-source, public, distributed, blockchain-
based platform with a Proof of Work-based consensus algorithm coupled with
rewards, which absolves the need for trusted intermediaries [6]. If popularity
were measured by market capitalization, it would be the second most popular
blockchain as of September 2018. Ethereum’s most significant feature is the
Ethereum Virtual Machine (EVM) - a stack-based runtime environment that
can execute programs known as smart contracts. They can be developed in high-
level languages such as Solidity and deployed on the blockchain as bytecode by
any participant of the network. The immutable code is reachable through the
address of the smart contract account and stored on the ledger, along with all
historic state changes. By sending transactions from externally owned accounts
(EOA), users can interact with smart contracts and call their functions [27].
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2.2 Tokens

The resilience of smart contracts to tampering makes them appealing for many
application scenarios - financial, notary, game, wallet, and library contracts were
identified by Bartoletti and Pompianu [4]. The authors further analyzed smart
contract design patterns and showed that many of the contracts in the financial
category use the token pattern for the representation of fungible assets. In con-
trast to the native coins that typically represent a digital currency, tokens may
represent a variety of transferable and countable goods such as digital and phys-
ical assets, shares, votes, memberships, or loyalty points. Any third party can
create smart contracts and develop, define and distribute their own named asset.
A frequent approach to distribute tokens and raise funds is an initial coin offer-
ing (ICO). The term leans on Initial Public Offering, the stock market launch
in the traditional economy. Another distribution mode, the so-called Airdrop,
is designed to distribute tokens without requiring prior investment. Once they
have value, the founders can sell additional tokens.

2.3 The ERC20 Token Standard

To establish a common interface for fungible tokens, the ERC201 standard was
proposed in late 2015. To be compatible, a smart contract needs to implement a
set of functions, of which only the signatures, but not the implementations are
specified. Within a smart contract’s bytecode, these signatures can be identified
by their entrypoints, marked by the first 4-bytes of the Keccak hashes of the
high level function signature (Table 1). Thus, ERC20-compatible contracts can
be identified by means of the corresponding entrypoint hashes in the deployed
contract bytecodes.

Table 1. ERC20 signatures and hashes

Classification Signature First 4-byte Keccak hash

ERC20 Required Method totalSupply() 18160ddd

balanceOf(address) 70a08231

transfer(address,uint256) a9059cbb

transferFrom(address,address,uint256) 23b872dd

approve(address,uint256) 095ea7b3

allowance(address,address) dd62ed3e

Event Transfer(address,address,uint256) ddf252ad

Approval(address,address,uint256) 8c5be1e5

Optional Method name() 06fdde03

symbol() 95d89b41

decimals() 313ce567

1 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
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Fig. 1. Transactions to a token contract and corresponding graph perspectives

To send tokens from address A to address B, the owner of address A sends
a transaction to a token contract X, calling its transfer function. If successful,
the balance of both addresses will be updated within the contract, constituting
a state change. As balances may also be affected by other functions included
by the smart contract developer, the ERC20 standard recommends to emit a
Transfer event whenever a token transfer has occurred. Figure 1 illustrates the
relationship between transactions that call functions and the emitted transfers.

These token transfers yield a graph, in which the nodes are addresses con-
nected by transfers. This graph may also contain addresses that never interacted
with the token contract: during deployment or with a specific function, a com-
mon way to associate tokens with particular addresses are initial balances, which
the contract creator allocates to certain addresses upon creating the contract.
Some developers have chosen to emit these allocations as transfer events, where
the source address is for example set to 0x0, but mostly, these balance allo-
cations are not emitted as transfer events. Later standard proposals such as
ERC621 additionally introduced Mint and Burn events to increase or decrease
balances without requiring a transfer at all. These events change the total sup-
ply of the respective token. Although not used widely yet, shortcomings of the
ERC20 design that are beyond the scope of this paper are tackled with proposals
ERC223, ERC667 and ERC777.

3 Related Work

Several seminal works and studies in the area of graph theory and network anal-
ysis, also including the analysis of social networks, as well as in digital currencies
and Ethereum smart contracts form the basis of our research.

3.1 Cryptocurrencies and Smart Contracts

The literature on Bitcoin and other cryptocurrencies covers not only the under-
lying distributed ledger and consensus technologies and protocols, but also the
publicly available transactional data, which provides a unique opportunity to
analyze real, large-scale financial networks. Various aspects of Bitcoin have been
discussed, such as by Barber et al. [3], who investigated the design, success fac-
tors, history, strengths and weaknesses. Tschorsch and Scheuermann [24] pro-
vided a comprehensive survey on the technical aspects of decentralized digital



Measuring Ethereum-Based ERC20 Token Networks 117

currencies. Furthermore, Akcora et al. [1] presented a holistic view on distributed
ledgers with a focus on graph theoretical aspects.

Going beyond Bitcoin, Bonneau et al. [6] provided the first systematic exposi-
tion of the second generation of cryptocurrencies and analyzed altcoins that have
been implemented as alternate protocols. Similarly, Anderson et al. [2] explored
three representative blockchains - Ethereum, Namecoin and Peercoin - which
have extended Bitcoin’s original mechanism and focused on the features that
distinguish them from the pure currency use case. Research on smart contracts
frequently focuses on design patterns, applications and security issues [23]. In
the first methodic survey and quantitative investigation on their usage and pro-
gramming, Bartoletti and Pompianu [4] proposed a taxonomy of smart contract
application domain categories and identified common programming and design
patterns. With a focus on security, Nikolic et al. [20] presented a novel char-
acterization of trace vulnerabilities, which allow to identify contracts as greedy,
prodigal or suicidal.

3.2 Blockchain Graph Analysis

Each blockchain can be analyzed from a graph-centric perspective on two layers:
as communication graphs, which reflect the underlying peer-to-peer communica-
tion on the network layer, and as content graphs, which reflect transfers of assets
on the application layer [1]. For example, Miller et al. [17] investigated the public
topology of the Bitcoin peer-to-peer network in a quantitative measurement and
analyzed how nodes participate and collaborate in mining pools.

In the analysis of content graphs, techniques from the area of social network
analysis are commonly used. For a general overview of social network analy-
sis, the reader is referred to fundamental works such as Newman [19]. Mislove
et al. [18] proposed a detailed comparison of the characteristics of multiple online
social network graphs at large scale and confirmed the power-law, small-world
and scale-free properties of these social networks. A commonly used methodology
to detect and validate power laws was presented by Clauset et al. [8].

Content graphs can be modelled on different levels. First, in transaction
graphs, the nodes represent transactions that happen on the distributed ledger
and the edges represent the flow of transferred assets. These graphs start from
the genesis block, each transaction can have incoming edges only and a DAG
(directed acyclic graph) emerges [1,12,21]. In address graphs, the nodes denote
addresses, and each edge represents a particular transaction between two of
them. Address graphs provide a useful abstraction for exploring and tracing
flows through the system and identifying recurrent patterns in transactions [12].
A recent approach to investigate the whole address graph spanned up by the
trade of all ERC20-compliant tokens on the Ethereum blockchain was presented
by Somin, Gordon and Altshuler [23]. The authors consider all trading wal-
lets as the nodes of the network, construct the edges based on buy-sell trades
and demonstrate that the degree distribution of the resulting network displays
strong power-law properties. Finally, user or entity graphs reflect the flow of
value between real-world entities. In these graphs, each node represents a user
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or an entity, and each edge represents a transaction between source and tar-
get entity [1]. Building these graphs requires to identify and associate public
addresses that possibly belong to the same real-world entity. Many approaches
to cluster addresses on the Bitcoin blockchain have been presented to date, along
with discussions of connected anonymity issues [10,16,21,22]. To the best of our
knowledge, no such heuristics exist for Ethereum’s account model yet.

Many of the approaches to analyze content graphs arising through the usage
of cryptocurrencies rely on methods and assumptions known from the area of
social network analysis. Yet, the network generation mechanisms are different.
Since the Ethereum network combines aspects of social and financial transaction
networks, we also consider analysis approaches that focus on the latter. In this
area, Inaoka et al. [13] investigated the network structure of financial transactions
on the basis of the logged data of the BOJ-Net. Similarly, Kyriakopoulos et al.
[15] analyzed the network of financial transactions of major financial players
within Austria and reported the characteristic network parameters. Some of their
many empirical findings include the dependency of the network topology on the
time scales of observation and the existence of power laws in the cumulative
degree distributions.

3.3 Contribution

In summary, these different graph-theoretical approaches provide an intuition
for the flow and spread of assets on different blockchains. While previous anal-
yses took either the entire blockchain or the whole network of token trades into
consideration, we center our attention on a new type of address graphs: token
networks, which we define as the network of addresses (nodes) that have owned
a specific type of token at any point in time, connected by the transfers of the
respective token. Since the tokens are not comparable, neither in their value,
which heavily fluctuates over time, nor in their respective total supply, which
may further be influenced by Mint and Burn events, we omit the weight of the
transfers, such that we obtain a directed, unweighted graph. Further, due to
a lack of approaches for address clustering on Ethereum, we define nodes as
addresses in these token networks and assume that they represent different enti-
ties, which may be either a user, an exchange, a miner, or another smart contract.
A new token network emerges for each newly published ERC20-compliant token
contract. Each address may be part of several token networks, and each analyzed
token network is essentially an overlay graph of the entire network of Ethereum
addresses. To the best of our knowledge, these individual token networks have
not been studied yet, and we hope that our measurement and evaluation inspires
further research in this area.

4 Data

In this chapter, we describe how we identified ERC20-compatible smart con-
tracts, how we extracted and filtered the transfer events, and provide an overview
of the token network landscape in the form of summary statistics.
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4.1 Data Collection

The basis for generating token networks are token transfers emitted by ERC20-
compatible smart contracts. We used the Parity client2 for the set-up of a fully
synchronized Ethereum node and extracted all transactions, contract addresses
and the corresponding smart contract bytecodes from the first 6,300,000 blocks,
covering the period from July 30th, 2015 until September 9th, 2018. We identified
7,323,377 smart contract creations, including those that were created by other
contracts, of which 75,514 fulfill the criteria introduced in Sect. 2.3 and are thus
labeled as ERC20-compatible.

Next, we retrieved the token transfer events emitted by those ERC20-compat-
ible smart contracts. These events can be identified by the corresponding event
type and contain information about the source, the target and the amount
of tokens that were passed in the respective transfer. In total, we extracted
97,671,089 transfer events. It is noteworthy that the transfer events are only
related to 46,970 of the ERC20-compatible smart contracts (62.2%), such that
28,544 of the token contracts have never emitted any transfer events. This does
not necessarily imply that the tokens have never been traded on the Ethereum
blockchain, but there are no events that document their transfers.

Since it is up to the developer of the smart contract to decide when a transfer
event is emitted, not all actual token transfers are logged as such. To account
for initial balance allocations, which are only rarely emitted as transfer events
(Sect. 2), we added the initial balances as synthetic transfers to our dataset,
where the source address is the artificial address 0x0 and the target address
corresponds to the address mentioned in the contract bytecode. We could identify
the allocation of initial balances in 52,554 ERC20-compatible smart contracts,
where each smart contract that uses this method distributes the assets to 2.96
entities on average (median 1). These numbers are comprehensible, since the
smart contract developer has an interest so assign a certain amount of tokens to
himself and/or his team, which is usually a rather small set of users. These initial
balances add 142,673 new token transfers to our dataset, such that we capture
a total of 97,813,762 token transfers related to 64,393 ERC20 token contracts.

Figure 2 compares the amount of transactions that were initiated by exter-
nally owned accounts (EOAs) to ERC20-compatible smart contracts (white) with
the corresponding amount of transactions to all other, non-ERC20-compatible
contracts (gray) and the resulting token transfers (black dots) emitted by the
ERC20-compatible contracts. All three numbers exhibit a significant increase
starting in the beginning of 2017, and the growth indicates an increasing pop-
ularity of ERC20-compatible token contracts in terms of contract interactions
initiated by EOAs. Since a single interaction with a token contract may yield
multiple transfer events, we observe in total more transfer events than ERC20
contract transactions.

2 https://www.parity.io/.

https://www.parity.io/
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Fig. 2. From March 2018, more than half
of transactions are to ERC20 token con-
tracts. One transaction can lead to multi-
ple transfer events – common in Airdops.

Fig. 3. CDF of transfers and unique
edges related to token contracts. Almost
90% of all transfers/edges belong to the
top 1,000 token contracts.

4.2 Summary Statistics

The entire set of 64,393 ERC20 token networks captures 19,45 million unique
addresses, which corresponds to nearly 45, 9% of all addresses on the Ethereum
blockchain as of September 9, 2018.

The smallest 599 networks consist of only one node, which may have up to 5
self-edges associated to itself. In general, the size distribution is skewed towards
smaller values - while the median is 3 (mean 890), some of the networks capture
up to 1.52 million nodes (Tronix and An Etheal Promo). Other popular token
networks which stand out due to their size are VIU, Bitcoin EOS, and the Basic
Attention Token. On the other hand, 80.38% of the token networks consist of
only 10 nodes or less.

In terms of edges per token network, we differentiate between simple, multiple
and self-edges, such that nsimple + nmulti + nself = nedges. Besides the networks
that consist of only one node, there are five others that have only self-edges –
the largest of them (Explore Coin) has 46 nodes which are only connected to
themselves. Similar to the size in terms of the amount of nodes, 80.33% of the
networks have 10 unique edges or less. On average, the networks contain 1519
edges (median 2), the largest network has 3,17 million edges in total (EOS Token
Contract). The five networks with the largest amount of edges further include
Tronix, OMG Token, An Etheal Promo, BeautyChain, and these are also the
networks with most unique edges, i.e. those with the most connections between
different addresses. Still, even in these networks, each node has on average two
adjacent edges, which might correspond to obtaining tokens from the contract
and then transferring them to an exchange.

In total, the ratio of total edges per node varies from 0.5 to 2631, where the
highest ratio is in the Ether Token. Removing self-edges and multiple edges, this
value drops to at most 8.69 (Consumer Activity Token), with a mean of 0.7315,
such that we have relatively sparse networks.
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5 Analysis

In this section, we present our data selection steps and analyze the structure of
the token networks with respect to distributions of degree, density, components,
clustering coefficients and assortativity. We then focus on how tokens are received
and transferred, with an emphasis on the role of exchanges – providing insight
into the activity within token trading networks.

5.1 Data Selection

As discussed in Sect. 4, the majority of token networks consists of only a few
transfers and nodes. To remove those from the analysis, since they may not
exhibit a concise graph structure comparable to the larger networks and might
bias the results, we assess the amount of transfers per token network. Figure 3
shows the cumulative distribution function (CDF) of all transfers, respectively
connections between nodes, that the networks add to the total amount. We
observe that the top 1000 token networks capture more than 85% of both mea-
sures, such that we limit our analysis to these, which account for 86,54 million
transfers in total (88.48% of the original amount).

5.2 Degree Distributions

A fundamental property of nodes in a directed graph are their in- and out-
degrees. The frequency distribution of degrees, where pk is the fraction of nodes
with degree k, can provide an insight into the network’s structure. Many real-
world networks exhibit highly right-skewed degree distributions with a heavy
tail, which indicates that a significant portion of observations is in the tail and
demonstrates the existence of high-degree hubs. Several real-world networks have
been confirmed to follow power laws in their degree distribution [7,14,18,19].
Power laws are distributions of the form pk = Ck−α, in which the dependent
variable, the probability that a node has degree k, varies inversely as a power
of the independent variable, the degree k. pk decreases monotonically [18,19]
and decays significantly slower than exponential decays in normal distributions.
While the non-negative constant C is fixed by normalization, the parameter α
is called the coefficient of the power law [9,19] and typically is in the range
2 ≤ α ≤ 3.

Using the poweRlaw package in R [11], we estimate parameters for each token
network, using maximum likelihood estimation and the Kolmogorov-Smirnov
statistic to quantify the distance between the observed degree distribution and
the estimated power law. We perform goodness-of-fit tests via a bootstrapping
to obtain a p value, following the approach of Clauset et al. [8].

Whereas Somin et al. [23] have shown that the full transfer graph consisting
of all token networks combined appears to follow a power-law in both in- and
outdegree, Figs. 4 and 5 illustrate a different result for the individual token net-
works. While we can fit a power law model to all of the networks, most of the
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Fig. 4. Estimated indegree power-law
coefficients. In most cases, the hypoth-
esis can be rejected.

Fig. 5. Estimated outdegree power-law
coefficients. The hypothesis can be rejected
in fewer cases than for the indegree.

p values obtained via bootstrapping have returned a value of 0, indicating that
they likely do not follow a power law.

For those where we cannot reject the power law hypothesis, we suppose that
if a network contains multiple exchanges, multiple high indegree addresses are
likely to be present. These same addresses frequently also have a high outdegree.
Considering that many networks additionally contain a large initial distribution
in the form of a star-shaped subgraph, one further address with high outdegree
is likely to exist. This may explain why about 10% of token networks appear to
follow a power law in their outdegree distribution.

Generally, the fitted power law exponents are very high, indicating quickly
decaying degree distributions. This is contraindicative to the power law hypoth-
esis, but adequate for the use case: in token networks, as opposed to social
networks, the amount of hubs, i.e. exchanges, is limited institutionally. While
social networks allow for an organic growth of “popular” nodes, only a limited
number of exchanges are known for securely handling token trades. This reflects
an issue of trust - while any user can open an exchange on the basis of pre-defined
protocols, most users only trust and trade their tokens on a few well-known ones.

Another aspect that might differentiate the full transfer graph from the indi-
vidual token networks in terms of power laws in their degree distributions, is that
initial token distributions, especially airdrops, frequently choose existing, active
addresses. This process, which follows the logic of preferential attachment, leads
to these nodes becoming connectors between individual token networks, which
adds smaller hubs to the full transfer graph.

5.3 Density and Components

The density d represents the fraction of existent to theoretically possible edges
in a network. In general, we observe that a larger number of nodes in a token
network leads to a lower graph density (Fig. 6). The network with the highest
density, also related to the number of nodes, is the NPXS Smart Token Relay.
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Further, we investigate the number of weakly connected components, discon-
nected portions of the token networks. Given common token distribution modes
(Sect. 2.2), we expect the tokens to be distributed starting from the addresses
with the initial balances, and assume that each network consists of a single,
large, weakly connected component. We observe that this holds for 75% of the
observed token networks when we take the initial balances into account (Sect. 4).
Several components indicate that the tokens were not distributed in an ICO, but
based on another logic, such as minting, which credits an arbitrary amount of
tokens to a specified address and typically emits a Mint event (Sect. 2.3). We
also find that 29 token networks have more than 100 components, and three
consist of more than 3,000 components (blockwell.ai KYC Casper Token, San-
DianZhong and VGAMES ). This might indicate that many of the nodes in the
network received their tokens in a non-standard process, yielding an anomalous
graph structure.

5.4 Clustering Coefficients

To measure the clustering coefficient, which indicates the strength of local com-
munity structure, two measures are common: (1) the global clustering coefficient
Cg, which measures the fraction of paths of length two in the network that
are closed, and (2) the average of the local clustering coefficients, Cavgl

, which
define for each individual node the share of possible connections among the
node’s neighbors that actually exist in the network. In either case, the cluster-
ing coefficient indicates how much more likely it is to connect to a neighbor’s
neighbor than to a randomly chosen node [19], and a large clustering coeffi-
cient is regarded as an indicator for small-world networks. Values of Cg = 0.20
(film actor collaborations), Cg = 0.09 (biologist collaborations) and Cg = 0.16
(university email communication) are high compared to estimates based on ran-
dom connections, but typical values for social networks [19]. Similarly, Baumann
et al. [5] found that the average local clustering coefficient (Cavgl

) in the Bitcoin
address graph is fluctuating around 0.1 and thus rather high over time, also
indicating a small world network.

For the token networks, we need to take into account that there is, as dis-
cussed in Sect. 4.2, a large fraction of nodes with degree one, for which the local
clustering coefficient should be set to Ci = 0 [19]. If there is a significant number
of such nodes, Cavgl

would be dominated by these minimum-degree nodes, yield-
ing a poor picture of the overall network properties. Additionally, vertices with
a low degree of which 2 or 3 neighbors are connected raises Cavgl

disproportion-
ately high. Thus, we rely on Cg, which measures the global cliquishness of the
network and provides evidence for a small-world network [26]. For the entire net-
work of token transfers, we observe Cg = 0.00001062 and Cavgl

= 0.3042, which
is higher than the known measure for the entire network of Bitcoin addresses [5].

This might indicate that the network of token trades has a higher tendency
to form communities, maybe based on users who recommend or send tokens to
each other. Similarly, airdrops tend to focus on existing active users, which could
further lead to the forming of communities.
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Fig. 6. Distribution of density values
and global clustering coefficients vs. net-
work size.

Fig. 7. Distribution of degree assortativ-
ity coefficients. All but one token net-
work are disassortative.

For the individual token networks, we observe a mean global clustering coef-
ficient of 0.0008831 and a maximum value of 0.0941 for the NPXS Smart Token
Relay. This network is rather small, with only 24 nodes. Figure 6 illustrates
Cg related to the size of the network, showing a general decrease, and exhibits
another outstanding token: TEST POGO 1 (circled), which has the highest Cg

(0.0324) relative to its size. Further, we observe that 707 of the networks in the
sample have a higher Cg than the network that connects them. Thus, related to
their size, it is more likely that two neighboring nodes are connected to the same
third node. On the opposite side, we identify 7 networks with Cg = 0, among
them the Funkey Coin and the NucleusVisionCore. Their ratio of simple edges
to nodes indicates that they are either very similar or correspond exactly to star
schemas - for example, the FunkeyCoin has 18106 nodes and 18105 simple edges.

5.5 Degree Assortativity

The assortativity indicates how nodes are connected with respect to a given
property, such as the degree. If the degree correlation rdeg [25] of a network is
positive, nodes tend to connect to other nodes with a similar degree - a network
is said to be disassortative if this relationship is inverted, such that high degree
nodes tend to be connected to low degree nodes. We calculate the degree assorta-
tivity for the simplified, undirected token networks (Fig. 7) and find that almost
all of them are disassortative. Those networks that exhibit a degree assortativity
of close to rdeg = −1 resemble star shapes, where most nodes have a connec-
tion to only one or a few high degree nodes. The only network with rdeg > 0 is
the blockwell.ai KYC Casper Token, potentially due to its high number of small
components.

5.6 Network Activity

To further quantify the activity inside a token network, we examine the initial
token recipients and determine whether they send their tokens onward. As many
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tokens are listed on exchanges, and speculating with tokens is a common use case,
we also examine whether a token network contains an address that is known to
belong to an exchange. For this purpose we manually collected 113 exchange
addresses from discussion forums and blockchain explorers such as Etherscan3.

Fig. 8. SoftChainCoin Token Network
with distributors (stars), initial recipi-
ents (black) and exchange (square).

Fig. 9. SoftChainCoin Token Network
with distribution and exchange addresses
removed.

To illustrate our approach, Fig. 8 shows the small network of a token named
SoftChainCoin4. The star-shaped nodes on the left distributed tokens to the
black nodes - the initial recipients (Ri). Some of these, the active initial recipients
(Rai), have transferred tokens to other addresses. The active recipients (Ra),
including both initial and secondary recipients, then transferred them to an
exchange (square-shaped) or to other nodes. We define for each token network:

(a) The fraction of Ri (colored black in Fig. 8) relative to all addresses (R)
(b) The fraction of Rai (that have sent tokens) relative to Ri

(c) The fraction of Rai where there exists a path to an exchange
(d) The fraction of edges remaining, if distribution and exchange addresses are

removed (Fig. 9), relative to the number of edges in the original network
(e) The mean minimum path length of those in c to an exchange.

We obtain the set of initial distributing nodes by determining the two nodes
with the highest outdegree within the first 10% of transfers seen. We choose
two, because manual inspection shows that sometimes tokens are not distributed
from the first address itself, as can be seen in Fig. 8. We find that in about 25%
of the token networks, the Ri account for 90–100% of all addresses (Fig. 10).
These are likely airdrops that did not attract further users. On the other end,
also in about 25% of the networks, the Ri account for less than 10% of all
addresses, indicating that there are many addresses that joined the network after
3 https://etherscan.io/.
4 Token address: 0x86696431d6aca9bae5ce6536ecf5d437f2e6dba2.

https://etherscan.io/
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Fig. 10. In ≈25% of the networks (right
bar), almost 100% of all nodes are ini-
tial recipients. Similarly, in ≈25% of the
networks (left bar), nearly all addresses
received tokens by other means.

Fig. 11. In more than 25% of the net-
works (left bar), ≤10% of token recipients
transferred their tokens. Conversely, in
≈8% of the networks (right bar), almost
every address has issued a transfer.

the initial distribution, or that there has never been a large initial distribution
at all. Figure 11 illustrates how many of these Ri have ever sent tokens onward
– showed signs of activity (Rai). Here we observe that in more than 25% of the
networks, less than 10% of the initial recipients ever transferred their tokens.
While it could be argued that these are users simply holding their tokens, another
possibility is that these tokens are not wanted, and can be seen as a type of spam.
In ≈8% of the networks, this activity percentage is near 100%, indicating that
there exist strong incentives to transfer the corresponding token, such as the
opportunity to sell the tokens at an exchange.

Figure 12 displays a scatter plot, where each cross represents one token net-
work, positioned by the fraction of Rai (b)), and the fraction of how many of
these have an outgoing path to an identified exchange (c)). This fraction is not
constant: as more initial recipients are active, more of them tend to send their
tokens to an exchange. However, it is worth noting that the mere fact that
an exchange offers to trade a certain token may also lead to increased activity
directed towards exchanges. Nevertheless, very few token networks show active
initial recipients without paths to exchanges, indicating that the main utility of
most tokens is their trade on exchanges. If we remove distributing and exchange
addresses from the graph, the median fraction of edges remaining (d)) is 42%,
indicating that large parts of the networks only exist for that purpose.

For those Rai with paths to exchanges, we determine for each network the
shortest path to any identified exchange and compute the average shortest path
length between active initial recipients and exchanges. Figure 13 shows that
about half of the networks have a mean distance of two transfers. Given that
exchanges often create artificial addresses for each customer, this implies that
tokens are often sent directly to an exchange, indicating that trading is a main
use case.
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Fig. 12. When more initial recipients are
active, more of them have a path to an
exchange.

Fig. 13. In more than 50% of networks,
those addresses that have a path to an
exchange, their mean shortest path is ≤2.

6 Conclusion and Future Work

In this paper, we present a measurement study to analyze token networks,
enabled through smart contracts on the Ethereum blockchain, from a graph
perspective. We find that many follow either a star or a hub-and-spoke pattern.
The heavy tails in the degree distributions are not as pronounced as in social
networks - the networks tend to contain less and smaller hubs, such that they are
mostly dominated by emitting addresses with a large out-degree and exchanges
with a large in-degree. The number of exchanges is limited, only a few succeeded
to gain the trust of the users. Small values for density and clustering coefficient
embody the anonymity prevalent in these networks, as users mostly don’t know
each other and it’s not very common yet to transfer tokens to acquaintances.
A main use case of many tokens appears to be their sale, rather than their
circulation, and some token networks barely show any activity after the initial
distribution. The presented approach is part of our ongoing work on blockchain
graph analysis, and our results help to understand current usage patterns and
to design future systems.

Further research may refine the common understanding of token networks.
While the presented approach observes the token network at the moment of data
collection, observing the development of the networks over time might be even
more insightful. Similarly, the presented approach is based on the assumption
that each Ethereum address represents a single entity - we have not yet taken into
consideration that an entity might be represented by several addresses. Further-
more, the forming of communities in the graph could be investigated, and not yet
quantitatively available features such as the completeness and trustworthiness of
ICO whitepapers could be included. Bitcoin and other cryptocurrencies offer a
large field for criminals, while users show a large trust in ICOs even though faced
with a total lack of a central contact address in case of a loss - knowledge about
typical structures might lead to a differentiation between normal structures and
anomalies, which may help to identify potentially fraudulent systems.
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Abstract. The cascade effect attacks (PETS’ 18) on the untraceabil-
ity of Monero are circumvented by two approaches. The first one is to
increase the minimum ring size of each input, from 3 (version 0.9.0) to 7
in the latest update (version 0.12.0). The second approach is introduc-
ing the ring confidential transactions with enhanced privacy guarantee.
However, so far, no formal analysis has been conducted on the level of
anonymity provided by the new countermeasures in Monero. In addition,
since Monero is only an example of leading CryptoNote-style blockchains,
the actual privacy guarantee provided by other similar blockchains in the
wild remains unknown.

In this paper, we propose a more sophisticated statistical analysis
on CryptoNote-style cryptocurrencies. In particular, we introduce a new
attack on the transaction untraceability called closed set attack. We
prove that our attack is optimal assuming that no additional informa-
tion is given. In other words, in terms of the result, closed set attack is
equivalent to brute-force attack, which exhausts all possible input choices
and removes those that are impossible given the constraints imposed by
the mixins of each transaction.

To verify the impact of our attack in reality, we conduct experiments
on the top 3 CryptoNote-style cryptocurrencies, namely, Monero, Byte-
coin and DigitalNote, according to their market capitalization. Since
the computational cost of performing closed set attack is prohibitively
expensive, we propose an efficient algorithm, called clustering algorithm,
to (approximately) implement our attack. By combining our clustering
method with the cascade attack, we are able to identify the real coin
being spent in 70.52% Monero inputs, 74.25% Bytecoin inputs, and in
91.56% DigitalNote inputs.

In addition, we provide a theoretical analysis on the identified
closed set attack, i.e., if every input in a CryptoNote-style blockchain
has 3 mixins, and all mixins are sampled uniformly from all exist-
ing coins, the success rate of this attack is very small (about 2−19).
Given that closed set attack is equivalent to the best possible statistical
attack, our findings provide two key insights. First, the current system
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configuration of Monero is secure against statistical attacks, as the mini-
mum number of mixin is 6. Second, we identify a new factor in improving
anonymity, that is, the number of unspent keys. Our analysis indicates
that the number of mixins in an input does not need to be very large, if
the percentage of unspent keys is high.

1 Introduction

Since the introduction of Bitcoin in 2009 [10], numerous distributed cryp-
tocurrencies have been proposed. Nonetheless, most of existing cryptocurren-
cies are not designed to provide strong privacy protection. For instance, several
works [7,11,13] showed Bitcoin, currently the most popular and largest cryp-
tocurrency, is vulnerable to de-anonymization attacks.

To address this problem, privacy-preserving cryptocurrencies with stronger
privacy guarantees are attracting increasing attentions. Among them, Crypt-
oNote-style cryptocurrencies are one of the noteworthy efforts. The CryptoNote
protocol was first introduced in [14], with a focus on protecting the privacy and
anonymity of the electronic cash. Since its introduction, many variations utiliz-
ing this protocol have been proposed, including Bytecoin, Boolberry, Dashcoin,
DigitalNote, Monero, etc. Similar to many other distributed cryptocurrencies,
CryptoNote also adopts the notion of transaction to represent the process of
spending coins. Each transaction contains several inputs and outputs, where
inputs consume coins from the sender, outputs transfer coins to the receiver.
The total amount of coins consumed in the inputs and the total amount of coins
transferred to the outputs should be equal. Besides, each transaction should be
signed by the sender to authorize the transfer, by using the private key associ-
ated to the public-key (address)1 of a to-be-spent coin. Moreover, a ring signa-
ture [6,12] scheme is adopted to guarantee the privacy of the real-spend of each
input, which is a cryptographic primitive that allows a user to anonymously sign
a message on behalf of a group of users. Therefore, the identity of the real-spend
is hidden. All other decoy coins in the input are called mixins.

However, in practice, CryptoNote-style cryptocurrencies fall short from
realizing their claimed anonymity. Recently, two independent and concurrent
works [5,8]2 demonstrate that Monero transactions may be de-anonymized via
statistical analysis. Specifically, they found that most inputs in Monero have very
small number of mixins and more than half inputs are paid without having any
mixin. Those inputs without mixins can be trivially de-anonymized. Even worse,
once a coin payed without mixin is chosen as a mixin in another transaction,
the input of this transaction also faces a danger of being de-anonymized. Based
on this simple yet vital observation, these two works adopt similar strategies to

1 Throughout this paper, we interchangeably use the term coin, output and the public-
key.

2 An updated version [9] of [8] also appears recently, but both the method and the
result for the traceability analysis are similar in these two works, thus we focus on
the initial version.
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conduct empirical evaluations, which are based on the so-called “chain-reaction”
analysis [8] or cascade effect [5]. Roughly speaking, the attacker first identifies all
inputs with zero-mixin. As each located input is payed by merely one public-key,
the public-key must be the real payer of the input. Since each public-key can
only be used once in Monero, it is safe to delete these de-anonymized public-keys
in mixins of the remaining inputs. This will lead to new zero-mixin inputs and
the attack could be conducted repeatedly. According to the experiment results
of [5,8], by Feb 2017, nearly 65% of transaction inputs are with zero-mixin, and
the cascade effect can render another 22% of inputs traceable, i.e., nearly 87%
of all Monero inputs are insecure when considering users’ anonymity.

Having witnessed (and predicted) this type of attacks, Monero has proposed
a few countermeasures. First, at version 0.9.0 (January 1, 2016), it releases a
mandatory requirement that each transaction input should include at least 2
mixins. Subsequently, at version 0.10.0 (September 19, 2016), ring confidential
transaction (RingCT), which aims at further enhancing privacy of users via
hiding the transaction amount, is introduced. An added advantage of employing
RingCTs is that all RingCT input must use outputs of RingCTs as its mixins,
i.e., no public-key used before version 0.10.0 will be chosen as mixin for a RingCT
input. Therefore, neither the chain-reaction attack nor the cascade attack works
for RingCTs. Besides, after realizing the effect of the number of mixins, the
minimum number of mixins is further increased from 2 to 6 in version 0.12.0
(March 29, 2018).

There is no doubt that known attacks are circumvented by Monero, but
more fundamental problem remains, and it still threatens all CryptoNote-style
currencies. That is, can anonymity of users be well-protected with the current
ring size, i.e., the countermeasures for known attacks? A related question is how
to theoretically analyze the security level achieved by those cryptocurrencies
adopting ring signature for untraceability. Besides, how about the anonymity
achieved in practice by other CryptoNote-style currencies?

Our Contributions. In this paper, we give answers to the above questions.
First, we show that the current countermeasures to resist known attacks make
Monero a good system to provide anonymity. However, on the negative side, we
show other CryptoNote-style protocols are still suffering from the same type of
attacks. In fact, our combined attacks are much more effective on Bytecoin and
DigitalNote, as we can de-anonymize up to 91.56% transactions in the chain of
DigitalNote.

We introduce a new attack on the untraceability of CryptoNote-style curren-
cies called closed set attack. This attack is based on the fact that n transaction
inputs will and must use n distinct public-keys as real-spend, since each public-
key can only be redeemed once. A set of inputs is called a closed set if the number
of inputs equals to the number of distinct public-keys included. Hence, we can
deduce that all public-keys included in a closed set must be mixins in other inputs
outside of this closed set. In this way, the searching for closed sets will be helpful
to trace the real-spend of some other inputs. Different from cascade effect attack
which relies on the “chain-reaction analysis” due to zero-mixin inputs, closed set
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attack conducts further traceability without relying on any previous traceable
inputs.

The contributions of this work can be divided into the following aspects:

1. We introduce closed set attack on the untraceability of CryptoNote-style
blockchains, and prove that closed set attack is optimal. In particular, it
could get the minimal mixin for every input, i.e., it deletes all public-keys
payed elsewhere in a mixin, identical to the results of brute-force attack.

2. We verify the impact of our attack via performing experiments on actual
blockchain data, where we pick the top 3 CryptoNote-style currencies by
market capitalization, i.e., Monero, Bytecoin and DigitalNote. As the pro-
posed attack is too expensive to run due to its high complexity, we propose an
efficient algorithm, namely, clustering algorithm, to (approximately) imple-
ment closed set attack. We give a lower bound of our clustering algorithm in
implementing the closed set attack. Specifically, we prove that our algorithm
can find all closed set of size less than or equal to 5. The experiment results
of these three currencies are given in Table 1.

Table 1. Experiment Results. All inputs considered in this paper are non-coinbase
transaction unless specific stated. The items under column “Cas.” (resp. “Clu.”) denote
the total number and percentage of inputs traced by cascade attack (resp. clustering
attack). “No. of C.S.” denotes the total number of closed sets found by the clustering
algorithm.

Coin Total blocks Total inputsDeducible
(%)

Cas. (%) Clu. (%) No. of C.S.

Monero 1541236 (30
March 2018)

23164745 16334967
(70.516%)

16329215
(99.96%)

5752
(0.04%)

3017

Bytecoin 1586652 (3
August 2018)

45663011 33902808
(74.25 %)

33822593
(99.763%)

80215
(0.237%)

5912

DigitalNote 699748 (13
August 2018)

8110602 7426036
(91.56%)

7425987
(99.9993%)

49
(0.0007%)

38

3. In addition, we also provide a theoretical analysis on the existence of closed
set. We find that if all inputs have 3 mixins and all mixins are uniformly
distributed, with all but a very small probability (about 2−19), there will not
exist any closed set. Our analysis suggests that the usage rate of outputs is
closely related to the anonymity of Monero. Moreover, if we can guarantee
that the probability of choosing an unspent key as mixin is 25%, then the
number of mixins of each input could be as small as 3 to render brute-force
attack ineffective.

Related Works. Yu et al. [15] first identified that transaction untraceability
could be compromised by merely observing how mix-ins are selected. They called
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this new class of attacks by “inference attacks”. They initiated a theoretical
study on inference attacks, and develop models to formally capture attacks of
this class. However, no concrete attack algorithm nor experimental analysis is
given. Cascade effect attacks [5,8] can be seen as special cases of the passive
“inference attacks”. The closed set attack proposed in this work provides the
first algorithm to implement an efficient and generic passive inference attacks
with experimental analysis.

Communication with the Community. We have fully disclosed our results to
the related research communities, including CryptoNote, Monero, Bytecoin, and
DigitalNote. We learnt that Monero researchers have concurrently and indepen-
dently observed similar attacks [3], and the blackball tool developed by Monero
is able to identify a part of the closed sets we identified in this work. Considering
Monero, no RingCT transactions are affected under their blackball tool and our
current analysis. We will release our code as an open-source repository, and work
with Monero to help improving its tool set to enhance user privacy.

2 Preliminary

CryptoNote Protocol. CryptoNote protocol [14] aims at providing a privacy
enhanced cryptocurrency, with the following two properties:

– Untraceability: for any transaction, the real-spend should be anonymous
among all the sets of outputs in an input;

– Unlinkability: for any two transactions, it is impossible to prove that they
were sent to a same user.

To guarantee unlinkability, for each output in a transaction, CryptoNote
uses a one-time random public-key as the destination, which is derived from
receiver’s public-key and sender’s random data. In this way, only the receiver who
holds the permanent secret key can redeem that output. For the untraceability,
CryptoNote adopts ring signature, which is a primitive that allows a user to
anonymously sign a transaction on behalf of a group of users, which is usually
referred as a ring. Therefore, the real-spend will be hidden via the help of other
outputs, which are called mixins. Obviously, for an input with n public-keys, the
number of mixin is n-1.

Notation. We use [m] to denote the integer set {1, 2, . . . ,m}. For any set S, we
use |S| to denote its size. For a transaction tx, we use tx.in to denote an input of
this transaction, which is a set of public-keys {pk1, pk2, . . . , pk�} used to create
a ring signature. We also interchangeably call each input tx.in of a transaction
as a ring R throughout this paper. Specifically, we use R = {pk1, pk2, . . . , pkn}
to denote the transaction input including public-keys pk1, pk2, . . . , pkn.

We also need the Chernoff bound in our analysis. There are various forms of
the Chernoff bound, here we use the one from [4].
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Lemma 1 (Chernoff Bounds). Let X =
∑n

i=1 Xi, where Xi = 1 with prob-
ability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
μ = E(X) =

∑n
i=1 pi. Then

Pr[X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ for all δ > 0;

Pr[X ≤ (1 − δ)μ] ≤ e− δ2
2 μ for all 0 < δ < 1.

3 Closed Set Attack

In this section, we introduce our closed set attack. All attacks considered in this
section only assume access to the transactions in the blockchain of a CryptoNote-
style currency, without any further active ability. This assumption is valid since
all transactions on the blockchains are publicly accessible.

We prove that our proposed closed set attack is optimal, i.e., brute-force
attack. Looking ahead, brute-force attack will traverse all possible assignments
of payers of all inputs and delete those with conflict data. Both our attack and
brute-force attack return the minimum set of candidates for the real payer of
each input.

3.1 Brute-Force Attack

Brute-force attack is an attack that tries all possible sequence of distinct public-
keys to test whether it is valid for the assignments of the real-spends for all
transaction inputs. While a sequence of public-keys is valid if it satisfies require-
ments: (1) the size of the sequence equals to the number of total transaction
inputs in the dataset; (2) all public-keys included in the sequence are distinct;
(3) for all index i of that sequence, the i-th public-key in the sequence belongs to
the corresponding i-th input in the dataset. In other words, brute-force attack
is the process of searching for all valid sequences among the permutations of all
public-keys with specific length according to the above requirements. We call
all elements included in index i (i ≤ no. of all inputs) of all valid sequences as
the candidates for the real-spend of the i-th transaction input. Therefore, the
resulting valid sequences are the combinations of the possible real-spend of each
transaction input. Besides, if a transaction input only has one candidate for the
real payer, then the candidate must be its payer.

It is not hard to see that brute-force attack is a perfect attack which can
find out all possible real-spends for each transaction input. Assume that there
are n distinct keys and m transaction inputs in our dataset, and without loss of
generality, n is larger than m. Let A

m
n denote the number of permutations of m

elements among n elements. The number of valid sequences after the execution of
brute-force attack is (Am

n −|Conflicts|), where Conflicts denotes the set of deleted
permutations which fail to the above requirements.
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3.2 Our Attack

Although the aforementioned brute-force attack is perfect, the complexity is
prohibitively high in practice, which is O(n!). Considering the inefficiency and
impracticability of brute-force attack, we propose a new attack called closed set,
which is more efficient while providing the same result.

The proposed closed set attack is based on the observation that if the number
of distinct public-keys included in a set of transaction inputs equals to the num-
ber of the inputs of the set, then we can deduce that each public-key included
must be a real-spend of a certain input in this set, and be mixin in other outside
inputs. In this way, the finding of a closed set has at least two significant impacts.
Firstly, it will render other inputs become traceable after removing public-keys
of a closed set. Secondly, the average size of the inputs will decrease, which is
helpful for further operation.

The closed set attack is an iteration process that finds out all possible closed
sets from the transaction inputs, removes public-keys included, and finds those
traceable inputs. Compared with the previous cascade effect attack presented
by [5] or “chain-reaction” analysis by [8], the closed set attack can render more
inputs traceable. More precisely, cascade effect attack utilizes the fact that the
zero-mixins inputs will affect the traceability of other inputs who pick those
public-keys of them as mixins. In other words, this attack bases on the set of
previous traceable inputs to track the remaining anonymous ones, while our
attack can start from any anonymous input.

To better explain our attack, we give a brief example below. Here we consider
four inputs included in transactions {txi}i∈[4] and assume that there are four
distinct public-keys {pkj}j∈[4] included in the input sets of them, i.e.,

tx1.in = {pk1, pk2, pk3};
tx2.in = {pk2, pk3};
tx3.in = {pk1, pk3};
tx4.in = {pk1, pk2, pk3, pk4}.

Note that, there must exist no other transaction input who is only composed
of public-keys among {pkj}j∈[4]. Otherwise, the design principle of Monero that
one output can only be redeemed once will be broken. While the original cascade
attack [5,8] does not work here, since there exists no 0-mixin input.

Although we can not make all aforementioned inputs traceable, but we
can trace the real-spend of one of them. Specifically, consider the set S =
{txi.in}i∈[3]. Among that, the union set of all distinct public-keys included is
{pk1, pk2, pk3}. Clearly, the size of S equals to the number of distinct public-keys
included in it such that it is a closed set. Since each output can be spent once
only, then the output pkj (j ∈ [3]) must be a real-spend in a certain txj(j ∈ [3]).
In this way, we can deduce that the real-spend of tx4 must be pk4.

A Naive Implementation. A naive method to find all closed sets is to visit all
possible subsets of transaction inputs. For each visited subset, we check whether
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it is a closed set by comparing the number of inputs and the number of distinct
public-keys included in it. If yes, we further conduct the removing and tracing
operations triggered by this closed set. Otherwise, continue the process until all
subsets have been visited. Due to space limitation, we give this algorithm in
AppendixA.

Theoretically, this algorithm can find all closed set included in all transaction
inputs. However, it is expensive to implement in reality, since the complexity of
traversing all subsets of inputs is θ(2m), where m is the total number of all
transaction inputs included in the blockchain. For instance, up to block 1541236
of Monero, the number of untraceable inputs remained is 6835530 after the exe-
cution of the cascade attack. Starting from these inputs, at the step of searching
subsets of size 5, the complexity of the algorithm will become O(2100).

Analysis of Closed Set Attack. We prove that our closed set attack is opti-
mal. In other words, our closed set attack is equivalent to brute-force attack.
Specifically, we prove that after the execution of our closed set attack, each trans-
action input is the set of candidates of the real-spend of it found by brute-force
attack. The analysis is concluded by the following theorem.

Theorem 1. The aforementioned closed set attack is equivalent to brute-force
attack. In other words, for any set of transactions, the impact of our attack on
it is identical to the impact of brute-force attack.

Due to space limitation, we refer readers to the full version of this paper for the
proof of this theorem.

3.3 On the Existence of Closed Set: A Theoretical Perspective

As mentioned before, the closed set attack is optimal. This is to say, we can
conclude that anonymity of inputs cannot be reduced if no closed set exists. In
this section, we estimate the probability that there exists at least one closed set
in an ideal scenario, namely, all inputs have a (small) constant number of mixins
and all mixins are selected uniformly from all keys.

More concretely, we consider a scenario that

– There are 6 · 220 inputs, with 6 · 220 real-spend public-keys;
– There are also additional 25% (i.e. 2 · 220) unspent public-keys;
– Each input has 3 mixins;
– Each mixin is sampled uniformly from all 8 · 220 keys;

where the first two conditions come from the real data of Monero after cascade
attack, and the third condition is based on the fact that the average ring size
after the cascade attack is 4.62.

Lemma 2. With all but a small probability 2−19, there does not exist any closed
set in the above dataset if all inputs have 3 mixins and all mixins are sampled
uniformly from all keys.

The proof of this lemma is given in the full version of this paper.
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4 Our Clustering Algorithm

Considering the impracticability of subset-based algorithm mentioned above,
here we introduce an approximate but efficient algorithm for searching
closed sets, which is named as clustering algorithm. Looking ahead, although the
clustering algorithm is just an approximate algorithm, we show that the lower
bound of the size of closed set found by it is 5. In other words, all closed set
with size less than or equal to 5 can be found. Besides, we conduct experiments
and find that our clustering algorithm achieves a better result during the actual
execution.

Intuition of Our Clustering Algorithm. Recall that, the main feature of a
closed set is that it embraces the same number of transaction inputs and distinct
public-keys. Hence, our target should be finding a set of inputs with the above
characteristics. To do so, one intuitive way is forming a set from a certain input,
then absorb other input which is helpful to achieve a closed set. A key challenge
is how to select other rings?

We observe that since the ultimate target is to make two numbers about this
set equal, it is possible to select rings based on the consequence of adding an
input into a set. For instance, assuming the set being considered now is called
S, which is initialized by input R. Whenever an input R′ is added into S, the
possible consequences can be divided into the following three cases:

– Case 1. If all public-keys included in R′ are a subset of all public-keys con-
tained in S, then for set S, the number of included transaction inputs is
increased by one, and the number of distinct public-keys remains the same.
Thus, the insertion of R′ will certainly increase the possibility of S becoming
a closed set. We call such kind of input as useful input.

– Case 2. If the insertion of R′ will only introduce one distinct public-key to
S, then the insertion of this input will not change the current relationship
between the number of distinct public-keys and the number of inputs included
in S. This kind of input extends the public-key set of S, which maybe helpful
for absorbing other inputs. We call such kind of input as uncertain input.

– Case 3. If the insertion of R′ will introduce two or more distinct public-keys to
S, then the number of inputs will only be increased by one, but the number of
public-keys will be increased by 2 or more. As this does not help our analysis
at all, we call such kind of input as bad input.

Above all, if we only pick the relatively useful and uncertain inputs to a set,
then we can find a closed set faster with high probability.

Definition of Cluster. A cluster Clus is defined as a set of inputs, namely,
Clus = {R1, R2, . . ., Rn}. Each cluster represents a set PK Clus, which is
defined as PK Clus =

⋃
R∈Clus R. In other words, PK Clus is the set used to

collect all distinct public-keys included in the inputs of Clus.
The distance from an input to a cluster is defined as the number of public-

keys included in the input but not in the cluster. The formal definition of it is
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given below:

Dist(R,Clus) = Dist(R,PK Clus) = |R| − |PK Clus ∩ R|,

where R is the input considered to be added, and Clus is a cluster with public-
keys set PK Clus. Notably, this definition is not symmetric. According to our
definition, the distance from an input to a cluster, i.e., Dist(R,Clus), is different
with the distance from a cluster to an input, i.e., Dist(Clus,R).

For instance, consider the cluster Clus and the input R composed as follows:

Clus = {{pk1, pk2}, {pk1, pk3}, {pk2, pk4}},

R = {pk1, pk3, pk5}.

Obviously, the public-key set of Clus is PK Clus = {pk1, pk2, pk3, pk4}. The
size of R is 3, and number of common public-keys are 2. Hence, according to our
definition, the distance from R to Clus is Dist(R,Clus) = Dist(R,PK Clus) =
3−2 = 1. So, if we add R into Clus, then only one new public-key, i.e., pk5, will
be introduced in Clus.

Starting from a specific input, the construction of a cluster is a dynamic
process of searching for other qualified inputs. To clarify which kind of inputs
can be absorbed into a cluster, we associate each cluster with a distance. More
precisely, we say a cluster Clus with distance 1, if only those inputs satisfying
Dist(R,Clus) ≤ 1 can be added into it. As the insertion operation may cause
changes to a cluster, we should always adopt the present cluster to calculate
the distance from an input to it. The construction algorithm of a cluster from a
certain input is given in Algorithm1.

Algorithm 1. Cluster Form(R)
1: Start with an input R, and define the cluster as Clus = {R}
2: Let DataSet be all transaction inputs in the blockchain
3: for each R′(�= R) ∈ DataSet do
4: if Dist(R′, Clus) ≤ 1 then
5: Clus = Clus ∪ {R′}
6: return Clus

For each cluster, we use two additional parameters to check whether it is a
closed set. One is the number of inputs included in it, the other one is the number
of distinct public-keys included. Formally, if the number of inputs equals to the
number of distinct public-keys included in a cluster, we say that this cluster is a
closed set. Besides, in some cases, a closed set may contain other sub-closed set.
To find all closed sets, whenever we get a closed set via this algorithm, we further
conduct a sub-closed set searching operation. An important observation is that if
a public-key only appears once in a closed set, then it must be the real spend of
the input including it. For simplicity, we utilize this method to test whether there
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exists sub-closed set inside a closed set, since the complexity of brute-forcing all
subsets of this closed set is quite large.

Next we introduce the clustering algorithm for all clusters with distance 1.
The main idea is that we repeatedly pass over all the transaction inputs via

numerous iterations. In each iteration, the algorithm picks an input and uses
it to initialize a cluster Clus. Then we run the constructing cluster algorithm
(Algorithm 1) to add proper inputs into Clus. We continue the next iteration
if the resulted cluster is not a closed set. Otherwise, before starting with the
next iteration, the algorithm should finish the following operations. Remove all
public-keys contained in this cluster from the remaining inputs, and find the
traceable ones. Afterwards, we check whether the current closed set includes a
public-key such that it only appears in one input. If yes, we further de-anonymize
inputs inside a closed set.

The algorithm of searching for all clusters with distance 1 from all transaction
inputs in the blockchain is given in Algorithm2. Notably, all rings considered
in our algorithm are anonymous. Once finding the real-spend of an input, we
will not do any operation on that input. Besides, our algorithm concentrates on
resulting data after the execution of cascade effect attack. Hence, in Algorithm 2,
we abuse the concept, where a cascade effect algorithm is first invoked.

Algorithm 2. Clustering Algorithm
1: Let DataSet be all transaction inputs in the blockchain.
2: Cascade-Effect(Dataset)
3: Flag = true
4: while Flag == true do
5: Flag = false
6: for each R ∈ DataSet do
7: Clus Form(R) → Clus
8: if Clus is a closed set then
9: Remove(Clus) → Flag

10: if Flag == true then
11: find traceable inputs
12: check whether rings inside Clus are traceable

Analysis of Accuracy. The accuracy of the clustering algorithm is analyzed
through the following theorem, which gives a lower bound of the clustering algo-
rithm. This is to say that all closed sets with size less than or equal to 5 can be
found after the execution of the clustering algorithm.

Theorem 2. After the execution of our clustering algorithm with searching dis-
tance 1, all indivisible closed sets with size less than or equal to 5 can be returned
by our algorithm.

We refer readers to the full version of this paper for the proof of this theorem.
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Analysis of Complexity. Assume the total number of transaction inputs
included in the blockchain is N . The number of iterations in our algorithm
is θ(N). Suppose the average length of an input is �. While in each iteration, in
the worst case, we calculate O(�N) times distance between all inputs and the
current clusters. Therefore, in the worst case, the complexity is θ(�N2).

5 Experiment Result

To evaluate the level of anonymity achieved by the CryptoNote-style currencies,
as well as the estimation of the probability of the existence of closed sets in
reality, we implement our clustering algorithm in C++, and the program is
executed on a computer with 3.1 GHz Intel Core i5 Processor, 16 GB RAM
and 256 GB SSD storage disk. Notably, here we only analyze the top three
CryptoNote-style currencies according to their market capitalizations [1], i.e.,
Monero, Bytecoin and DigitalNote. For all these three currencies, we export all
related data directly from the corresponding blockchain database via modifying
its source codes.

5.1 Analysis of Monero

As there are two pioneering works [5,8] considering cascade effect attacks on the
untraceability of Monero transactions, we mainly concentrate on the analysis of
the anonymity of those data after the known attacks.

Dataset Collection. We collect all blocks in the Monero blockchain from the
first block (18th April 2014) up to block 1541236 (30th March 2018). Addi-
tionally, all related data is directly exported from the blockchain database via
modifying the source code of Monero [2]. Our dataset in total contains 4153307
transactions. Among them, 2612070 are non-coinbase transactions, which are
composed of 23164745 transaction inputs in total, and 25126033 distinct public-
keys are involved. Notably, throughout this paper, we only consider those non-
coinbase transactions unless otherwise stated.

Experiment Results. In Table 2, we give the result of the clustering algorithm
on the aforementioned dataset. As it turns out, a total of 16334967 inputs become
traceable. Specifically, 16329215 inputs are traceable due to the cascade effect
attack, and the remaining inputs, i.e., 5752 in total, are traced by the finding
of closed set. Total of 70.52% of Monero transaction inputs are traceable. While
for the dataset after the cascade effect attack, only 0.084% inputs can be further
traced.

Besides, a total of 6829778 transaction inputs are still untraceable. For all
these remaining inputs, we give the frequency of number of mixins before and
after the execution of clustering algorithm in Fig. 1.

The clustering algorithm also finds 3017 distinct closed sets, whose size vary
from 2 to 55, and include a total of 7478 distinct public-keys. As we mentioned
before, these 7478 public-keys must be the real-spend of a certain input contained
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Table 2. The traceability of Monero.

No. of mixins Total Deducible Cascade effect Clustering algorithm (%)

0 12209675 12209675 12209675 0 100

1 707786 625641 625264 377 88.39

2 4496490 1779134 1776192 2942 39.57

3 1486593 952855 951984 871 64.10

4 3242625 451959 451230 729 13.94

5 319352 74186 73980 206 23.23

6 432875 202360 202100 260 46.75

7 21528 4296 4282 14 19.96

8 30067 3506 3490 16 11.66

9 17724 2178 2162 16 12.29

≥10 200030 29177 28856 321 14.59

Total 23164745 16334967 16329215 5752 70.52
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Fig. 1. Frequency of number of mixins of those anonymous inputs before and after the
execution of clustering algorithm.

in these closed set. In other words, we can deduce that they are spent although
we do not know which concrete transaction they are used. However, it is useless
for the anonymity if any other new input picking public-keys from them.

One may wonder there is a discrepancy between probability of 2−19 for finding
closed set and the existence of 3017 closed sets found during the experiment.
This is due to the fact that our analysis assumes mixins are chosen uniformly
and that each input has 3 mixins. However, in practice, sampling distributions
and number of mixins of all inputs are not uniform. This will increase slightly
the probability of finding closed set.
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5.2 Analysis of Bytecoin

We provide analysis on the untraceability of Bytecoin via cascade effect attack
and clustering attack.

Dataset Collection. We collect all blocks in the Bytecoin blockchain from
block 1 (4 July 2012) to block 1586652 (3 August 2018). A total of 3782566 non-
coin based transactions is contained in this dataset, and there are altogether
45663011 transaction inputs included. Additionally, a total of 48613764 distinct
public-keys are involved.

Experiment Results. The experiment result on Bytecoin dataset is summa-
rized in Table 3. More specifically, a total of 33902808 Bytecoin transaction
inputs become traceable, counting for 74.25% of all inputs considered in our
dataset. Among them, 28591486 inputs are zero-mixin inputs, and the cascade
effect caused by them further makes 5231107 inputs become traceable, which
covers 99.763% of the total traceable inputs. Besides, our clustering algorithm
traces another 80215 transaction inputs from the remaining ones, which count
to 0.68% of those untraceable inputs after the cascade effect attacks. There are
a total of 5912 closed sets found, whose size vary from 2 to 55.

Table 3. The traceability of Bytecoin.

No. of mixins Total Deducible Cascade effect Clustering algorithm (%)

0 28591486 28591486 28591486 0 100

1 5751268 3281500 3240142 41358 57.06

2 2840745 1133602 1112648 20954 39.91

3 1442133 261197 260298 899 18.11

4 2516851 276237 275172 1065 10.98

5 617041 59922 59493 429 9.71

6 3145092 270355 255156 15199 8.60

7 388759 26434 26160 274 6.80

8 81504 1231 1220 11 1.51

9 65379 397 389 8 0.61

≥10 222753 447 429 18 0.2

Total 45663011 33902808 33822593 80215 74.25

5.3 Analysis of DigitalNote

We also provide the first work on analyzing the untraceability of DigitalNote.

Dataset Collection. We collect all 633548 non-coin based transactions included
in the block 1 (31 May 2014) up to block 699748 (13 August 2018) in the Digital-
Note blockchain. A total of 8110602 inputs are included in the aforementioned
transactions, and 8396472 distinct public-keys are involved.
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Experiment Results. The experiment result of DigitalNote is given in Table 4.
Specifically, 91.56% of all transaction inputs in our dataset is traceable, while
60.39% of them is without any mixin. Besides, the cascade attack further con-
tributes 39.60% of those traceable inputs. Our clustering algorithm makes 49
additional inputs traceable, which covers 0.007% of the untraceable inputs after
the cascade effect attacks, with the help of 38 closed sets.

Table 4. The traceability of DigitalNote.

No. of mixins Total Deducible Cascade effect Clustering algorithm (%)

0 4484726 4484726 4484726 0 100

1 2087295 1847151 1847132 19 88.49

2 1194410 895480 895472 8 74.97

3 129700 101872 101872 0 78.54

4 6225 4362 4358 4 70.07

5 193669 85941 85939 2 44.38

6 3071 1840 1837 3 59.92

7 844 442 440 2 52.38

8 1686 856 853 3 50.77

9 1288 682 681 1 52.95

≥10 7688 2684 2677 7 34.91

Total 8110602 7426036 7425987 49 91.56

6 Observations and Recommendations

In this section, we give our observations and recommendations according to the
experiment results.

– Observation 1: The usage rate of outputs is an important factor for the
anonymity of CryptoNote-style currencies. The usage rate of outputs refers
to the percentage of public-keys that have been spent, which can be easily
calculated by using the total amount of inputs in the dataset over the total
number of distinct outputs (i.e., public-keys), as each output can only be
redeemed once. As mentioned in Sect. 3.3, those unspent public-keys play an
important role in preventing the formation of a closed set. Hence, it is fair to
say that, to some degree, decreasing the usage rate will improve anonymity.

– Observation 2: Closed sets are closely related to the anonymity of inputs.
In this work, we have shown that finding closed sets could help identify real-
spends or decrease the ring size (so the level of anonymity) of those inputs.
Although the probability of the existence of a closed set is not high, but
closed sets do exist and threaten the anonymity of inputs.
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– Recommendation 1: Decreasing the usage rate of outputs by generating
more outputs. Recall that a lower usage rate of outputs is beneficial to the
anonymity of Monero inputs. Hence, to decrease the usage rate of outputs,
we recommend users to additionally generate some outputs with 0 amount,
which can make the unspent output set larger.

– Recommendation 2: Do not pick the useless mixin. Take the Monero as an
example, our clustering algorithm has found 3017 distinct closed sets, which
contain 7478 distinct public-keys. These 7478 public-keys must be the real-
spend of a certain input contained in these closed sets. Hence, for any newly
generated input, picking these keys as mixin will not improve anonymity.
So, we recommend users not to pick these useless mixins. However, for an
ordinary user, it is difficult to determine whether an output is contained in
closed sets or not. Thus, we will release our code that implements the attack.
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Research Grants Council of Hong Kong (Grant No. 25206317), and the Fonds National
de la Recherche Luxembourg (FNR) through PEARL grant FNR/P14/8149128.

A Subset-Based Algorithm

Here we give a naive algorithm to search for all closed sets through finding all
subsets of transaction inputs. Looking head, we use Cascade-Effect(inputs) to
denote the function which implements the cascade effect attack. Assume Remove
(closed set CS)→ flag is a functionwill remove all public-keys contained closed set
CS from other inputs outsideCS, and outputs a variable flag = true if any remov-
ing operation happens. The algorithm is given in Algorithm 3 below.

Algorithm 3. Subset-Searching Algorithm
1: Let DataSet be the set of all transaction inputs in the blockchain.
2: Let � be the size of current subset, and � ≥ 2.
3: Cascade-Effect(Dataset).
4: while � ≤ |DataSet| do
5: Let Set� ⊆ DataSet be the set of all inputs, s.t., the size of each input is equal

or smaller than �.
6: Let {Subset�,j} be all subsets of Set� with size �, where j ∈ C�

|Set�|, and each
Subset�,j = {R1, R2, . . . , R�| ∀i ∈ [�], Ri ∈ Set�}

7: for j = 1 to C�
|Set�| do

8: if Subset�,j is a closed set then
9: Remove(Subset�,j) → flag

10: if flag == true then
11: find traceable inputs

12: goto while with �++
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Abstract. Monero is a privacy-centric cryptocurrency that makes pay-
ments untraceable by adding decoys to every real input spent in a trans-
action. Two studies from 2017 found methods to distinguish decoys from
real inputs, which enabled traceability for a majority of transactions.
Since then, a number protocol changes have been introduced, but their
effectiveness has not yet been reassessed. Furthermore, little is known
about traceability of Monero transactions across hard fork chains. We
formalize a new method for tracing Monero transactions, which is based
on analyzing currency hard forks. We use that method to perform a (pas-
sive) traceability analysis on data from the Monero, MoneroV and Mon-
ero Original blockchains and find that only a small amount of inputs are
traceable. We then use the results to estimate the effectiveness of known
heuristics for recent transactions and find that they do not significantly
outperform random guessing. Our findings suggest that Monero is cur-
rently mostly immune to known passive attack vectors and resistant to
tracking and tracing methods applied to other cryptocurrencies.

1 Introduction

Monero is a privacy-enhancing cryptocurrency that exceeds others (Zcash, Dash)
in terms of market capitalization and promises privacy and anonymity through
unlinkable and untraceable transactions. It thereby addresses a central shortcom-
ing of well-established currencies such as Bitcoin, which cannot offer a meaningful
level of anonymity because transactions sent to addresses are linkable and pay-
ments among pseudonymous addresses are traceable. There are now a number
of commercial (e.g., Chainalysis) and non-commercial tools [1,2] that implement
well-known analytics techniques (c.f., [4]) and provide cryptocurrency analytics
features, including tracking and tracing of payments made in cryptocurrencies.

Technically, Monero is based on the CryptoNote protocol and aims to address
Bitcoin’s privacy issues using three central methods: Stealth addresses, which
are one-time keys that are generated from the recipient’s address and a random
value, should prevent the identification of transactions sent to a given address
and provide unlinkability. The use of Ring Signatures in Monero transactions,
which mixes an output that is spent (real input) with other decoy outputs
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(mixin input), obscures the path of a given coin and provide untraceability of
payments. Finally, Confidential Transactions hide the value of non-mining trans-
actions and should prevent tracing by value and guessing of change addresses,
which are used to send excess input funds back to the issuer of the transaction,
based on values.

Nevertheless, in 2017, two concurrent studies [3,5] have shown that untrace-
ability can be compromised by applying heuristics that can identify mixins. They
were able to trace the majority of transactions up to the introduction of RingCTs
(confidential transactions) in Jan. 2017. In the following releases (Sep. 2017 and
Mar. 2018), additional improvements such as a higher mandatory minimal ring-
size and an improved sampling technique for decoys were rolled out. The 2017
studies already showed that the share of traceable transactions plummeted after
the introduction of RingCTs, but a more up-to-date picture on the effectiveness
of those improvements is still missing.

Furthermore, another traceability method that exploits information leaked
by currency hard forks (a split of the currency with a shared history; unspent
pre-fork TXOs can be spent on both post-fork branches) has been discussed
in the community for some time. The general idea of the attack vector is to
exploit differences between rings spending the same output on the two post-fork
branches. However, we are not aware of a formal description, nor of an evaluation
of its effectiveness.

The contributions of this work are twofold: first, in Sect. 3, we propose and
formalize a new Monero cross-chain analysis method, which exploits informa-
tion leaked by currency hard forks. Second, in Sect. 4, we empirically analyze
Monero cross-chain traceability by combining known heuristics with our new
method. Our analysis, which considers Monero blocks 0 to 1 651 346 (2018-08-
31), also provides an up-to-date assessment on the effectiveness of the previously
mentioned countermeasures by evaluating the accuracy of known heuristics on
recent transactions.

Our findings suggest that Monero is currently mostly immune to known pas-
sive attack vectors and resistant to established tracking and tracing methods
applied to other cryptocurrencies. They also confirm that the changes to the
protocol, which were introduced as countermeasures to the heuristics proposed
by Kumar et al. [3] and Möser et al. [5], were effective. Consequently, this implies
that currently available cryptocurrency analytics tools that work for Bitcoin and
its derivatives cannot be applied for tracking and tracing of Monero payments.

All the analysis done in this work can be reproduced by using the MONitERO
toolchain, which can be found on GitHub1.

2 Known Monero Traceability Methods

Currently we are not aware of any known method to compromise confidential
transactions and stealth addresses. Untraceability has been successfully dimin-
ished by Kumar et al. and Möser et al. with the following approaches:
1 https://github.com/oerpli/MONitERO

https://github.com/oerpli/MONitERO
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Zero Mixin Removal (ZMR) [3,5]. As each ring has exactly one real member, all
rings with only one (non-mixin) member can be traced, just like in Bitcoin. As
the referenced outputs can only be spent once, occurrences of these outputs in
other rings can be marked as mixins. Repeated applications of this rule is called
Zero Mixin Removal (ZMR). If the average ringsize is small enough, repeated
applications of this rule can result in a chain reaction. To prevent this, the manda-
tory minimum ringsize has been increased several times (0 → 3 in 2016, 3 → 5
in 2017 and 5 → 7 in 2018). In October 2018 (after the cutoff of our dataset)
the ringsize has been increased (from 7 → 11) and removed as parameter, i.e.
all transactions issued since v0.13 have a fixed ringsize of 11. This removes a
possible attack vector, based on the assumption that transaction with certain
nonstandard ringsizes are issued by the same (set of) users. In our analysis we
did not find a method to exploit this.

Intersection Removal (IR) [5]. This heuristic is a generalization of ZMR: If N
rings contain the same N (non-mixin) members, it is (usually) impossible to
determine, which output has been spent in which ring, but as all of them are
spent in one of the rings, we mark them as spent and other references to these
outputs as mixin. If N = 1, this method is identical to ZMR. This can be
generalized even further: Instead of N identical rings with N members we look
for sets S of rings (where each ring is a set of transaction outputs, abbreviated
as TXOs) with the property: |S| =

∣
∣
⋃

r∈S r
∣
∣ (if there are n sets in S, the union of

those sets contain n elements). This maps to the matching problem for bipartite
graphs G = (V1, V2, E), where the property |S| ≤ |N(S)| (where N(x) is the set
of neighbors of x) holds ∀S : S ⊆ V1 iff there is a perfect matching.

Guess Newest Heuristic [3,5]. While the outputs spent in a transaction are
(mostly) fixed, the choice of decoys is somewhat arbitrary. Most Monero TXOs
are spent a few days after they’ve been received (resulting in an age distribution
of the real inputs that is heavily left-skewed). The mixins on the other hand were
initially (until v0.9 in 2016) sampled uniformly from all eligible existing outputs.
Starting from January 2016, a triangular distribution was used (according to
Möser et al. [5], which still wasn’t sufficiently left-skewed and did not match real
spending behavior), from December 2016 on, ≈25% of the inputs where sampled
from the recent zone (outputs less than 5 days old). In September 2017, two
changes have been made to the sampling from the recent zone. The recent zone
has been reduced to outputs less than 1.8 days old and the number of decoys
sampled from the recent zone has been increased to 50%2. The two publications
from April 2017 (shortly after the introduction of the recent zone sampling), pro-
posed a simple yet highly effective heuristic, which guessed that the real input
is the most recent one.

Output Merging Heuristic [3]. If multiple inputs of a transaction reference distinct
outputs from the same transaction, this heuristic assumes that these outputs are
the real inputs. Before the introduction of confidential transactions this arose
naturally, as outputs where split up into denominations (e.g. an output of 8XMR
2 https://github.com/monero-project/monero/pull/1996/files.

https://github.com/monero-project/monero/pull/1996/files
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would have been split up into three outputs with denominations 1,2 and 5 XMR).
If the recipient wants to spend his funds, he would have to merge these outputs.
While this heuristic also works for confidential transactions, these TXs tend to
have fewer outputs (mostly 2 outputs, one of which is the change output), which
results in fewer “merging-transactions”.

3 Hard Forks and Cross Chain Analysis

Fig. 1. Illustration of a currency hard fork. The blocks between the genesis block (0)
and the fork height (n) are shared. Unspent outputs from pre-fork TXs can be spent
on both branches.

Like software projects, cryptocurrencies and their blockchains can be forked,
resulting in two currencies with a partly shared transaction history. There are
different forking mechanisms, though for this work only hard forks (see Fig. 1) are
relevant. The important aspect for our method is that unspent pre-fork TXOs
can be spent on both branches. To prevent double spending, each (input) ring is
published with a key image, which is uniquely determined by the spent output
(the ring signature is used to verify that this is the case). If a coin is spent in
multiple (one per branch) rings after a fork, the real input has to be in the
intersection of the rings and the remaining members, i.e. the pairwise symmetric
differences, can be marked as mixins, as illustrated in Fig. 2.

4 Results

We used the methods from Kumar et al. and Möser et al. that do not produce
false positives (Zero Mixin Removal & Intersection Removal) as well as our new
method (Cross Chain Analysis) to deduce mixins and real inputs for Monero
transactions. We focus on nontrivial rings, i.e. rings that have at least one mixin
(ringsize > 1). If some of the ring members are identified as mixin, we refer to
the remaining number of possible real inputs as effective ringsize. A ring with
an effective ringsize of 1 is traced. Statistics from our dataset can be found in
Table 1.

Overall, were able to trace 4 212 422 nontrivial rings. As can be seen in Fig. 3,
in the first years of Monero’s existence most nontrivial rings where traceable (as
most mixins were spent in trivial rings). To prevent this, mandatory minimum
ringsizes have been introduced, though the sampling of older, provably spent
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Fig. 2. An illustration of the Monero blockchain ( ) and a fork of it ( ), two
blocks before and the first two blocks after a fork. Each block contains one ring (format:
“〈KeyImg (0–9)〉{〈ring members (a–z)〉}”). The first two rings (0, 1) have the same
two members, i.e. intersection removal can be applied to mark these inputs (b, c) as
mixin (black) in ring 2, leaving only input a, which is therefore the real (green) input.
From the two rings with KeyImg 3, input a can be therefore removed as it is spent.
Additionally, d and g can also be ruled out as they are not part of the intersection
{a, d, e, f}∩{a, e, f, g}. The intersection of the two rings with KeyImg 4 consists of only
one element, x, which must therefore be the real input. (Color figure online)

outputs as mixins remained a problem. Starting from 2017, the introduction
of RingCT mostly eliminates this threat, as RingCT transactions only sample
outputs from other RingCT transactions, all of which were issued after the intro-
duction of mandatory minimum ringsizes.

In the weeks following the MoneroV and Monero Original hard forks, the frac-
tion of traceable rings increases. This is due to our newly proposed method, which
allows us to identify the real spent output of 73 321 (improved from 25 256) out
of 1 565 858 transaction inputs in the 685 608 (non-coinbase) transactions that
have been issued between 2018-04-01 and 2018-08-31. The number of identified
mixins in this time span has also more than doubled, from 203 251 to 544 131.
Taken together, the status (real or mixin) of 617 452 out of 11 826 525 ring mem-
bers in this time frame has been identified, which amounts to 5.22% (compared
to 228 507 and 1.93% without cross-chain analysis). Results from our traceability
analysis can be found in Table 2.

Using the results from our traceability analysis, we also investigated the
accuracy of the guess newest heuristic (GNH) and the output merging heuristic
(OMH) for recent transactions (see Table 3). We find that the performance of the
GNH (see Fig. 4) is not better than random guessing for recent transactions. For
the OMH (see Fig. 5) we used two different methods to aggregate the data by
months, once considering the time where the outputs were created (“Out”) and
when they where spent (“In”). Overall, the number of true and false positives
is identical, though the distributions over time differ somewhat. A problem of
the OMH is the fact that RingCT transactions have fewer inputs and outputs,
resulting in less transactions that merge outputs from previous transactions and
thus less possible applications of the OMH.
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Fig. 3. Bar chart of monthly number of nontrivial rings (NTR, >1 member). Shaded
bars represent traced rings. Traceability plummets after introduction of RingCT, small
peak after hard forks in Spring 2018 due to cross-chain analysis.

Fig. 4. Performance of GNH over time: After January 2017 the number of iden-
tified mixins and real inputs plummet and the accuracy is estimated based on a small
sample. (Estimated) accuracy plummets for recent transactions.

Fig. 5. Performance of OMH over time: Outputs are created at time out and spent
at time in. Left bar for each month uses out-time for aggregation, right bar uses in.



156 A. Hinteregger and B. Haslhofer

Table 1. Dataset statistics: As the Monero (XMR), MoneroV (XMV) and Monero
Original (XMO) blockchains share some parts, the values from the two forks (XMV
& XMO) only refer to data unique to their blockchain. “Last block” refers to the last
block used for the analysis in this work.

XMR XMO XMV
First TX date 2014-04-18 2018-04-06 2018-05-03
Last TX date 2018-08-31 2018-08-31 2018-08-31
First block 1 1 546 600 1 564 966
Last block 1 651 346 1 651 728 1 647 778
# Transactions 4 955 908 146 475 146 215
# Coinbase TXs 1 651 347 105 729 82 814
# TX outputs 28 878 846 198 618 450 773
# Rings (TX inputs) 24 760 168 244 965 212 919
# Nontrivial rings 12 538 632 241 464 212 919
# Ring members 70 767 723 1 243 479 1 701 036

Table 2. Traceability results: Overall results for Monero and its two forks as well
as results for recent Monero TXs. Ringmembers are spent if they have been found in
an intersection set (i.e. spent but it is not known in which TX)

XMR XMO XMV
# Nontrivial rings 12 538 632 241 464 212 919
# Ring members 70 767 723 1 243 479 1 701 036
# Traced nontrivial rings 4 212 422 50 861 7 671
# Identified mixin ringmembers 16 270 257 230 128 49 035
# Identified real ringmembers 16 433 958 54 362 7 671
# Identified spent ringmembers 13 240 0 0

Table 3. XMR Traceability results for recent TXs: Subset of the XMR dataset
from Table 2 restricted to TXs between 2018-04-01 and 2018-08-31.

XMR
# Nontrivial rings 1 565 858
# Identified real rm. w/o new method 25 256
# Identified real rm. with new method 73 321
# Identified mixin rm. w/o new method 203 251
# Identified mixin rm. with new method 544 131
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5 Discussion

Before mandatory minimum ringsizes were introduced, most rings were trace-
able. With increasing mandatory minimum ringsizes (2016/09) the percentage
of traceable NTR dropped and since the introduction of RingCT (2017) only
a small fraction of all transactions can be traced with blockchain analysis tech-
niques. While our newly proposed method enables the tracing of some additional
transaction inputs, the overall impact from this attack vector seems to be small
so far. This could change when a Monero fork with considerably higher traction
is launched, which would presumably result in more redeemed outputs. Using
the traced rings we looked at the accuracy of the GNH & OMH and found that
their performance suffered from the recent changes to the transaction protocol.
Though it may be the case that our analysis underestimates the accuracy of the
GNH, as most of the traced rings in recent months were traced with our new
method, which identifies the real spent pre-fork output in post-fork transactions.
This skews the age of the spent outputs compared to regular usage. Overall,
the fraction of traceable rings remains low and we believe that unless additional
attack vectors emerge, Monero remains resistant to analysis methods which have
been applied to other cryptocurrencies.
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Abstract. Fiat currency implemented as a blockchain can enable multi-
ple benefits such as reduced cost compared to expensive handling of cash
and better transparency for increased public trust. However, such deploy-
ments have conflicting requirements including fast payments, strong user
privacy and regulatory oversight. None of the existing blockchain trans-
action techniques supports all of these three requirements. In this paper
we design a new blockchain currency, called PRCash, that addresses the
above challenge. The primary technical contribution of our work is a
novel regulation mechanism for transactions that use cryptographic com-
mitments. We enable regulation of spending limits using zero-knowledge
proofs. PRCash is the first blockchain currency that provides fast pay-
ments, good level of user privacy and regulatory control at the same
time.

1 Introduction

Over the last years, decentralized cryptocurrencies based on blockchains have
gained significant attention. The primary technical primitives of blockchains are
consensus and transactions. Currencies like Bitcoin [1] leverage permissionless
consensus schemes and therefore operate without any trusted authority. The
main drawback of permissionless consensus is low performance. Permissioned
blockchains, e.g. based on Byzantine agreement, achieve better performance, but
require pre-assigned validators. Regardless of the chosen consensus model, most
blockchains use transactions that offer some level of anonymity. Additionally,
blockchains provide transparency of money creation and transaction correctness.

While blockchains were originally envisioned to operate without any trusted
parties, recently the idea of central banks issuing a fiat currency on a blockchain
has gained popularity [2–9]. A fiat currency on a blockchain could provide mul-
tiple benefits to the society, including reduced cost compared to expensive han-
dling of cash, improved privacy over current non-anonymous digital payments
like credit card payments, and transparency for increased public trust.

Fiat currencies have critical requirements. The first is high performance, as
the such systems must be able to handle high transactions loads fast (e.g., process
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thousands of payment transactions per second overall and confirm individual
payments within seconds). The second requirement is user privacy. The third
is regulation, as without any regulatory oversight, criminal activities such as
money laundering are difficult to prevent. The lack of regulatory support is a
major obstacle for the adoption of cryptocurrencies as fiat money.

High performance, strong anonymity and regulatory oversight are conflicting
requirements and current blockchain transaction techniques provide only some
of them. For example, transactions that use plaintext identities and amounts are
fast to process and easy to regulate but provide no privacy. Usage of pseudonyms,
similar to Bitcoin transactions, improves user privacy, but makes regulation
ineffective. Novel transaction techniques like Confidential Transactions [10] and
Mimblewimble [11] leverage cryptographic commitments for increased privacy
protection. Such transaction enable hidden payment identities and values and
easy transaction mixing but no regulation. More sophisticated cryptographic
schemes like Zerocash [12] provide full transaction unlinkability which is often
considered the strongest notion of privacy for blockchain currencies. Recent
research has also shown how regulatory oversight can be added to such pay-
ments [13]. However, such techniques suffer from poor performance. For example,
creation of Zerocash transactions takes up to minutes and requires downloading
the entire ledger which may be infeasible on resource-constrained mobile devices.
Therefore, such solutions cannot easily replace cash or card payments.

In this paper, we design a new blockchain currency, called PRCash, that
addresses the above conflict between performance, privacy and regulation. The
main use case for our solution is to enable deployment of fiat money on a
blockchain by a trusted authority like a central bank. We focus on the permis-
sioned blockchain model where transactions are confirmed by a set of appointed
validators, because permissioned consensus provides significantly better perfor-
mance. We assume that money is issued by a central authority. However, we
emphasize that our solution is orthogonal to how consensus is achieved or how
money is issued.

The primary technical contribution of our work is a novel regulation mecha-
nism. We use commitment-based Mimblewimble transactions [11] as a starting
point for our solution, because such transactions provide attractive hiding prop-
erties and sufficient performance. We add regulatory support to such transac-
tions using a novel zero-knowledge proof construction and improve the privacy
of Mimblewimble with small modifications to the transaction creation protocol.

In our regulation scheme, we limit the total amount of money that any user can
receive anonymously within an epoch. Such limits are implemented using verifi-
able pseudorandom identifiers and range proofs. We choose to control receiving
of money, to mimic existing laws in many countries (e.g., in the US, received cash
transactions exceeding $10,000 must be reported to the IRS), but our solution
can be easily modified to limit spending as well. The user can choose for each pay-
ment if it should be made anonymous as long as he stays within the allowed limit,
chosen by a regulatory authority. Anonymous transactions preserve the privacy
properties of Mimblewimble, i.e. they hide payer identity, recipient identity and
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the transaction value. While validators of the blockchain system have limited abil-
ity to link transactions with the same recipient issued within a short period of time,
privacy towards third parties is even improved compared to Mimblewimble due to
validators mixing transactions which removes the link between transaction inputs
and outputs.

We implemented a prototype of PRCash and evaluated its performance.
Transaction creation and verification is fast. For example, creation of a typi-
cal transaction and associated proofs takes less than 0.1 s and verification of
1000 transactions per second is possible with modest computing infrastructure
(e.g., 4 validators with 25 quad-core servers each). When standard Byzantine
agreement is used for consensus, transactions can also be confirmed quickly (e.g.
within a second), which makes PRCash suitable for real-time payments.

Our regulation mechanism maintains the core privacy properties of Mim-
blewimble transactions, namely hidden sender and recipient identities and trans-
action amounts and easy mixing. Similar to Mimblewimble, our solution does
provide full unlinkability of transactions. To the best of our knowledge, PRCash
is the first blockchain currency that provides high performance, significantly
improved privacy and regulation support at the same time.

Regulation based on zero-knowledge proofs has been previously proposed
for coin-based currencies by Camenisch et al. [14]. In contrast to our solution,
coin-based currencies used in [14] do not hide the recipient identity or provide
transparency. Regulation extensions have also been designed for Zerocash [13].
While such schemes provide stronger anonymity guarantees and more expressive
regulatory policies than our solution, their performance is significantly inferior
which prevents usage in many practical scenarios. Finally, centrally-issued cryp-
tocurrencies, like RSCoin [7], have been proposed prior to us. The main focus of
such works is on consensus performance while our work focuses on transaction
privacy and regulation.

To summarize, in this paper we make the following contributions:

– Novel regulation mechanism. We propose PRCash, a new blockchain currency.
The primary technical contribution of this solution is a novel regulation mech-
anism that leverages zero-knowledge proofs for commitment-based transac-
tions.

– Implementation and evaluation. We show that our transactions and regulation
mechanism enable fast, fault-tolerant, large-scale deployments.

The rest of this paper is organized as follows. Section 2 gives an overview of
our solution. Section 3 describes our currency in detail. We analyze the security
in Sect. 4 and explain our implementation and evaluation in Sect. 5. Section 6
reviews related work and Sect. 7 concludes the paper.

2 PRCash Overview

Our goal in this paper is to design a new blockchain currency that enables fast
payments at large scale, strong user privacy and regulatory support. The primary
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deployment model we consider is one where our solution is used by a central bank
to implement fiat money on a blockchain. In this section we give an overview of
our solution, PRCash.

2.1 System and Trust Model

Figure 1 shows our system model. We consider a standard permissioned
blockchain model that is complemented with a regulatory authority and a central
issuer of money. Here, we describe the involved entities:

Issuer. In our currency new money is created by a central entity called the
issuer. For simplicity the primary model we consider in this paper is one
where the issuer is a single entity like a central bank. In Appendix A.4 we
explain how this role can be distributed if needed.

Users. Users in our system can act in two roles: as payers and as payment
recipients. Users of the currency can be private individuals or organizations.

Validators. We assume a set of permissioned validators that maintain the
ledger. The role of the validators could be taken, e.g., by commercial banks
or other institutions appointed by the central bank.

Regulator. The flow of money is regulated by a central entity called the reg-
ulator. For simplicity, we assume that the role of the regulator is taken by
a single entity, e.g., by a public authority like the IRS. In Appendix A.5 we
explain how this role can be distributed among multiple parties.

If PRCash is used for a privately-issued currency, these roles can be assigned
differently.

We consider an adversary that controls all networking between the users and
from users to validators. The validators and the regulator are connected with
secure links. Users are in possession of the public keys of the validators and
the regulator and can establish secure connections to them. We otherwise rely
on the standard assumptions of permissioned consensus (i.e., honest two-thirds
majority of validators).

2.2 High-Level Operation and Regulation Main Idea

In many countries, the law requires reporting of large financial transactions.
For example, in the US companies and individuals are mandated to report any
received cash transaction that exceeds $10,000 [15]. To enable enforcement of
such laws, we design a regulation mechanism that limits the total amount of
anonymous payments any user can receive within a time period (epoch). By
adjusting the amount and the period, authorities can control the flow of anony-
mous money, e.g., reception of anonymous payments up to $10,000 could be
allowed within a month. With small changes, limits can also be put on spending
instead of receiving.

Figure 1 illustrates the high-level operation of PRCash. To supply new money,
the issuer creates signed issuance transactions that it sends to the validators, who
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Fig. 1. System model and operation. In PRCash, new money is created centrally
by the issuer. Users enroll in the system by obtaining certificates from the regulator.
In each payment, the payer (Alice) and the recipient (Bob) prepare a transaction that
is sent to permissioned validators who verify its correctness and add it to the next
block in the public ledger. If the transaction exceeds the allowed amount of anonymous
payments for Bob, he has to reveal his identity to the regulator by encrypting it with
the regulator’s public key.

verify them and publish them to the ledger. Each user enrolls in the system by
obtaining a payment credential (certificate) from the regulator. As the user may
lose his certificate, or the corresponding private key, we limit their validity to
IΔ epochs.

Payments involve two parties: the payer (Alice) and the recipient (Bob). To
initiate a payment, Alice and Bob first agree on the transaction value. Each pay-
ment transaction consists of inputs and outputs (where the inputs are outputs
from previous transactions) that are cryptographic commitments that hide payer
and recipient identities and transferred amounts, similar to Mimblewimble [11].
The blinding factors for the output commitments are chosen such that the sum
of the input commitments is equal to the sum of the output commitments, if the
sum of the input values is equal to the sum of the output values. This allows
verifying the correctness of a transaction without knowledge of the transferred
values. One of the outputs is a special non-spendable output to which no value
is attached. This allows the recipient of a transaction to create output commit-
ments without the payer knowing the blinding factor, i.e., the blinding factor of
the commitment is only known to the recipient of a payment, and can thus be
used to authenticate a following payment.
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To realize regulation for such transactions, for each payment the user has
two choices. First, if the user wants that the transaction remains anonymous, he
must prove without disclosing his identity that he does not exceed the limit va in
the current epoch e. Second, if the user wants to exceed his anonymous receiving
limit, he must connect his identity encrypted with the regulator’s public key to
the transaction.

For anonymous transactions within the limit, each user computes a pseudo-
random ID per epoch (PIDe) that he attaches to his transaction outputs. He
additionally attaches a zero-knowledge proof that the ID was computed cor-
rectly and a range proof over the sum of all transaction outputs from this PID.
These values are sent together with the transaction outputs to the validators.
The proofs are checked by the validators and after verifying their correctness,
the PIDs and the corresponding proofs are not published with the transactions
for efficiency and to preserve unlinkability towards third parties.

Note that, if they choose to use non-anonymous outputs, the attached proof
contains their identity encrypted with the regulator’s public key, i.e. towards any
other entity, they remain anonymous. Bob prepares his part of the transaction
(that includes value outputs and proofs) and sends it to Alice, who completes
the transaction (by adding inputs, change outputs, proofs, and an encrypted
identifier in case of a non-anonymous transaction). Alice sends the complete
transaction to the validators.

The validators work in rounds. In each round, the validators collect incoming
transactions, verify their correctness, mix the order of transaction inputs and
outputs for increased privacy, and agree on the set of transaction that should be
published. Consensus among validators is achieved through standard (Byzantine
fault tolerant) protocols. At the end of the round, the validators publish a set
of verified transactions as a new block on the ledger. Once the recipient (Bob)
verifies the presence of the transaction in the ledger, he considers the payment
confirmed. Bob can then use the value outputs from this transaction as inputs
in the next payment.

If a transaction does not pass the verification (e.g., Alice or Bob attempts
to create a transaction that exceeds the allowed anonymity limit, transaction
inputs and outputs do not match, or one of the attached proofs is invalid), the
transaction is rejected by the validators and not included in the next block. If
the transaction contains any non-anonymous outputs, the validators first verify
its correctness, and then forward the encrypted identifier to the regulator, who
can recover the identity of Alice or Bob, depending on which transaction output
was made non-anonymous.

Since anonymous change outputs are indistinguishable from anonymous value
transferring outputs, they count towards the receiving limit. However, as users
are in control of the size of the outputs they receive, they can mitigate this issue
by using smaller received outputs, by splitting larger outputs in non-anonymous
transactions, or by creating large change outputs non-anonymously.
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3 PRCash Details

In this section, we describe PRCash in further detail. Our solution uses a number
of cryptographic techniques as building blocks. We provide background on them
in the Appendix in the full online version of the paper.

3.1 System Initialization

Our system uses two groups G = 〈g〉 and G = 〈g1〉 = 〈g2〉 = 〈h〉 of the same
order, where the discrete logarithms of g1, g2, and h with respect to each other
are unknown. The involved entities perform the following initialization steps:

Regulator. The regulator generates a keypair (pkR,S , skR,S) for randomiz-
able signatures (cf. full online version of the paper), an encryption keypair
(pkR,E , skR,E) for Elgamal encryption, and publishes the public keys as part
of the setup.

Validators. Each validator creates a keypair and publishes the public key as
part of the system setup. Validators can use the private keys for signing new
blocks. Users use the validator public keys to send transactions securely to
the validators. We assume the typical permissioned blockchain model where
a trusted authority dynamically assigns a set of validators, i.e. the set of
validators can be updated.

Issuer. The issuer also creates a keypair that he uses for transactions that create
and delete money. The issuer publishes his public key as part of the system
setup.

3.2 User Enrollment

Every new user obtains the system setup that includes the public keys of the
regulator, issuer, and validators. To enroll in the system, the user generates a
keypair (pkU , skU ) = (g1

skU , skU ) for regulation proofs and sends the public
key to the regulator while proving knowledge of the secret key. To ensure that
a user cannot enroll multiple identities, and thus circumvent the regulation, the
regulator has to verify the identity of the user. If a PKI is already in place, this
can be used for identification, otherwise users could, e.g., be required to visit a
registration office in person.

The regulator then creates a certificate consisting of a randomizable signature
σ on (skU , IV ) based on the user’s public key pkU and IV , the index of the
first epoch in which the certificate is valid, and sends the signature σ to the
user. Recall that a randomizable signature is a signature on a list of committed
values. Using values pkU and IV , the regulator creates and signs the commitment
pkU · g2

IV hr = g1
skUg2

IV hr where r is chosen at random.
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3.3 Transaction Creation

Blockchain transactions based on cryptographic commitments, such as Confi-
dential Transactions [10] and MimbleWimble [11], have attractive features. They
hide payer and recipient identities and transaction amounts, provide public ver-
ifiability and easy mixing. However, such transaction have also the undesirable
property that the payment recipient necessarily sees the change outputs cre-
ated by the payer. This means that, e.g., a merchant can link two independent
sales if a client uses a change output from a previous transaction with the same
merchant. For these reasons, we use MimbleWimble as our starting point, but
modify transaction creation slightly for improved privacy.

Similar to [10,11], our transactions are based on a group G in which the
discrete logarithm problem is hard, with generators g and h for which the discrete
logarithm to each others base is unknown. These generators are used to represent
transaction inputs and outputs as homomorphic commitments to the associated
value (we use Pedersen commitments [16]), thereby hiding their values from other
parties. The homomorphic commitments have the property that one can easily
add and subtract committed values without opening the commitments, e.g. for
two output commitments Out1 = gr1hv1 and Out2 = gr2hv2 to the values v1 and
v2, one can easily compute a commitment to their sum v1+v2 by multiplying the
commitments: gr1hv1 · gr2hv2 = gr1+r2hv1+v2 . If the blinding factors are chosen
such that the sum of the blinding factors of the inputs is equal to the sum of the
blinding factors of the outputs, this property can be used to check that the sum
of the input values of a transaction is equal to the sum of the output values, and
the knowledge of the blinding factors can be used to authenticate and authorize
payments [11] by creating an additional excess output Ex0 = gr0 such that the
product of the output commitments (including Ex0) is equal to the product of
all input commitments.

In our modified version, the exponent in Ex0 is simply another random value,
but we add an additional output value rΔ which facilitates mixing transactions
and which has to be chosen such that the product of all output commitments
and grΔ is equal to the product of the inputs. We provide the details of our
modified Mimblewimble construction in Appendix A and show in the Appendix
in the full online version of the paper that the knowledge of the blinding factor
of an output is a secure method for payment authorization.

3.4 Regulation Proof Creation

In each epoch e, the user computes a pseudorandom ID as PIDe = fskU
(e) (cf.

Appendix in the full online version of the paper) and initializes the value of
anonymously spent transaction outputs to ve = 0. Regulation proofs are created
either when Bob creates value outputs during transaction preparation or when
Alice creates change outputs during transaction completion. For each output,
the user can choose if it should be made anonymous or non-anonymous. For
each new output, the user creates a regulation proof. Depending on whether the
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output should be anonymous or not, he does one of the following to construct
the proof:

Anonymous Output. If the user wants to create an output anonymously and
the value vo of the transaction output plus the previously (in epoch e) received
amount ve is below the limit va, the user adds PIDe and a zero-knowledge proof
of knowledge of (skU , IV , σ) to the transaction such that:

(i) The certificate is valid in the current epoch, i.e., a range proof that
Icurrent − IΔ < IV ≤ Icurrent.

(ii) The value PIDe is equal to the output of the pseudorandom function based
on the secret key skU on input e, i.e., PIDe = fskU

(e).
(iii) The certificate is valid, i.e. verify(pkR,S , (skU , IV ), σ) = true

In detail, the regulation proof consists of the following steps:

(i) The user creates two commitments A = g1
skuhr1 and B = g2

IV hr2 with
two fresh random values r1 and r2 and proves knowledge of a signature on
the openings of these commitments.

(ii) Prove that B is a commitment to an integer in the range
[Icurrent − IΔ + 1, Icurrent].

(iii) Given the commitment A to the value skU , prove that

PIDe = fskU
(e) = g1/(e+skU )

i.e., this is the following proof of knowledge:

PK{(α, γ) : A = g1
αhγ ∧ g · PID−e

e = PIDα
e }

We use the common notation where greek letters correspond to values of
which knowledge is being proven. In the proof above, α corresponds to skU

and γ corresponds to the blinding value of the commitment. The second
term proves that the ID was computed correctly since

g · PID−e
e = PIDα

e

⇒ g = PIDe+α
e

⇒ g
1

e+skU =
(
PIDe+α

e

) 1
e+α = PIDe

The interactive protocol can be easily converted to a non-interactive signa-
ture on the message M = H(o) using the Fiat-Shamir heuristic [17], where
o is the transaction output. Including this message in the zero-knowledge
proof binds the proof to the transaction output.

(iv) The user additionally creates a range proof over the product of all anony-
mous outputs that share the same identifier PIDe, proving that their com-
bined value ve + v0 is below the allowed limit va.
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The user then updates ve := ve + vo after completing the transaction.

Non-anonymous Output. If the user does not want to create the output
anonymously or the value vo of the output plus ve is above the transaction
amount limit va, the user adds his public key encrypted with the public key of
the regulator to the transaction, together with a proof that the encryption was
created correctly. The user completes the following steps to create the regulation
proof:

(i) The user creates two commitments A = g1
skuhr1 and B = g2

IV hr2 with
two fresh random values r1 and r2 and proves knowledge of a signature on
the openings of these commitments.

(ii) Prove that B is a commitment to an integer in the range
[Icurrent − IΔ + 1, Icurrent].

(iii) Compute C = ENC(pkU , pkR,E) =
(
gy1 , pky1

R,E · pkU

)

(iv) Given the commitment A to the value skU , prove that

C = ENC(pkU , pkR,E) =
(
gy1 , pky1

R,E · pkU

)

i.e., this is the following proof of knowledge:

PK{(α, γ1, γ2) : A = g1
αhγ1 ∧ C[0] = gγ2 ∧ C[1] = pkγ2

R,Egα}
Here, α again corresponds to skU and γ1 corresponds to the blinding value
of the commitment, while γ2 corresponds to the random value used for
the Elgamal encryption of the users public key. The interactive proto-
col can again be converted to a non-interactive signature on the message
M = H(o) using the Fiat-Shamir heuristic [17], where o is the transaction
output, to bind the proof to the transaction output.

3.5 Transaction Verification

The validators work in rounds and verify every received transaction. A transac-
tion is correct, if

(i) all inputs are unspent outputs of previous transactions,
(ii) the range proofs for all outputs are correct,
(iii) the zero-knowledge proof for excess outputs is correct, and
(iv) the total amount of transaction inputs matches the outputs: Πn

i=1Ini =
grΔ · Ex0 · Πk+m

i=1 Outi

In addition to verifying the correctness of the transaction itself, the validators
verify the regulation proofs. First, the validators verify the randomized certifi-
cate, i.e., they verify the signature on the provided commitments and check if the
range proof for IV is correct. If the verification fails, the transaction is discarded.

Otherwise, for anonymous transaction outputs, the validators verify that
PIDe has been computed correctly and that the proof is bound to the associated
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output. If this check succeeds, they compute the product of all outputs from
epoch e that share the pseudorandom identifier PIDe and check if the provided
range proof holds for this product. If this is the case, the total associated value
is below the allowed limit and the transaction can be included in the next block.
Otherwise, the transaction is discarded.

For non-anonymous transaction outputs, the validators verify the correspond-
ing regulation proof, i.e., that the public key of the user has been encrypted
correctly with the public encryption key of the regulator and that this proof is
bound to the associated transaction output. If these verifications are successful,
the validators include the transaction in the next block and forward the output
and the proof to the regulator, otherwise the transaction is discarded.

When the regulator receives transaction outputs with their corresponding
proofs, he can decrypt the encrypted public key which serves as identifier for the
user. The regulator also checks the proofs to ensure that the output was indeed
created by the owner of the corresponding public key. Since the regulator knows
the real-world identities associated with each public key, he can then take action
as required.

In Appendix A, we provide details on how transactions in a block can be
mixed by the validators, how blocks can be structured and on how the issuer
can create and destroy currency.

4 Security Analysis

In this section, we provide an informal security analysis of PRCash. We first
discuss the integrity guarantees of the system. Then we discuss the provided
privacy properties, in particular, how our modifications of Mimblewimble [11]
(which provides value and identity hiding, but not full unlinkability) and the
added regulation impact privacy.

Payment Authorization. We first consider an attacker that tries to spend an
output belonging to another user without the knowledge of the corresponding
blinding factor. If an adversary capable of such an attack exists, our assump-
tions are violated, namely either the discrete logarithm problem can be solved
efficiently in the used group or the adversary knows the discrete logarithm of h
to base g, where g and h are the generators used for the commitments (see full
online version of the paper). The intuition behind this is that, to create a valid
transaction, the outputs require range proofs for which knowledge of the blind-
ing factor is needed and the outputs have to be chosen such that their product
is equal to that of the inputs.

Double-Spending Protection. During each round, each non-compromised
validator discards transactions with previously used or otherwise invalid inputs
(cf. Sect. 3.5), and then all validators run a Byzantine fault tolerant consen-
sus protocol. Thus, compromised validators cannot produce a block that would
contain conflicting transactions and will be accepted by the network.
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Creation of Money. Only the issuer can create new money. Creation of money
using normal transactions is prevented as the validators verify (i) the range
proofs of all outputs for overflow and (ii) that the sum of inputs values matches
the sum of output values, and only include compliant transactions in the next
block. The underlying consensus protocol guarantees that each block contains
only compliant transactions.

Regulation Enforcement. The security of our regulation system relies on the
security of the underlying zero-knowledge proofs and the pseudorandom func-
tion. The pseudorandom function is secure under the decisional Diffie-Hellman
inversion assumption (DDHI). The zero-knowledge proofs rely on the hardness of
the discrete logarithm problem (which is implied by DDHI) and they are secure
as non-interactive proofs in the random oracle model using the Fiat-Shamir
heuristic [17,18].

Privacy Towards Third Parties. Transaction values are completely hidden
and can therefore not leak any information about a transaction. Additionally,
all transactions are mixed by the validators, and since the delta outputs of all
transactions are summed up (cf. Sect. 3.3) and not published individually, it
becomes impossible for third parties examining the ledger to determine which
outputs belong to which inputs, even for a merchant receiving a transaction.
PRCash therefore provides k-anonymity [19] against third parties, where k is the
number of transactions in a block. For example, even if an adversary knows that
Alice payed Bob in a transaction with output Out1 contained in a block with 500
transaction inputs, he can only guess Alice’ input with probability of at most
1

500 . If more privacy is desired, blocks can be made larger and validators could
even add dummy transactions (with a tradeoff in efficiency).

Privacy Between Users. As the payer finalizes the transaction, the recipient
only sees his own outputs, i.e. he is in the same position as the third party entity
with partial information as described above. The payer additionally sees output
commitments from the recipient which allows him to see when the output is
spent. However, once the output has been used, no more information is leaked
to the user.

Privacy Towards Validators. Recall that we assume the standard trust model
for permissioned consensus where up to one third of the validators may be mali-
cious or get compromised by the adversary. Malicious validators do not learn
transaction amounts or user identities, as our transactions are based on cryp-
tographic commitments. Malicious validators can link transaction inputs to the
corresponding outputs for all the transactions that they receive, but they cannot
link inputs to their outputs for transactions that are mixed by other validators.
Additionally, malicious validators are able to link multiple outputs from the same
epoch that share the same pseudorandom ID. Therefore our solution does not
provide full unlinkability towards validators. If combined with additional out-of-
band information, this could potentially lead to some loss of privacy towards val-
idators. The expected number of outputs sharing the same PID can be controlled
by adjusting the length of the epoch (shorter epochs means fewer transactions
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with the same PID). Transaction linking can be addressed by using third party
mixing services.

5 Evaluation

We implemented a prototype of PRCash to evaluate its performance. In this
section, we describe our implementation, transaction verification models, veri-
fication overhead, and overall performance in terms of throughput and latency.
We concentrate on performance in terms of verification time as opposed to proof
generation time here, since verification is the limiting factor in our system.
Note, however, that proof generations times are similar to verification times
for all proofs, i.e. transactions can be created efficiently, even on devices with
restricted performance such as mobile phones. On a standard PC, creation of a
typical transaction takes less than 0.1 s.

5.1 Implementation

We implemented a prototype that covers the generation and verification of trans-
actions, including regulation proofs. Our implementation uses the randomizable
signature from Pointcheval and Sanders [20] for the generation of certificates.
Other signatures with efficient protocols, such as CL-Signatures [21,22], could
be used as well. We use the RELIC toolkit [23] for the elliptic curve and bilin-
ear map operations. Our implementation makes use of the 256-bit elliptic curve
BN-P256 as the base curve of a type-3 pairing that we use for the randomizable
signatures. Our range proofs use commitments to digits in base 4 as this is in
practice the most efficient base for the size and computation of bit-commitment
based proofs. Size and computation required for the proofs could be optimized
using bulletproofs from Bünz et al. [24].

5.2 Verification Models

The throughput and latency of PRCash depends on the used transaction verifica-
tion model. For our evaluation, we consider the following two verification models,
to give examples of performance under different assumptions and requirements.

VM1: Full replication. In this model, all validators verify all transactions,
including the regulation proofs, and consensus is needed on the validity of
all transactions and proofs. This model guarantees transaction correctness,
double-spending protection, and enforcement regulation at all times, assum-
ing our standard permissioned consensus trust model (at most one third mali-
cious or compromised validators).

VM2: Partitioned regulation, replicated verification. In this model, all
validators verify correctness of all transactions including their range proofs,
but excluding the regulation proofs. Verification of regulation proofs is instead
partitioned evenly among the validators. If one validator attests to the valid-
ity of a regulation proof, it is accepted by the other validators. If a validator
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gets compromised, users can transact anonymously above the regulatory limit.
This model may be used, if it is acceptable to lose the ability to enforce regula-
tion momentarily. Transaction correctness (i.e., no new money is created and
no double-spending occurs) is guaranteed regardless of the compromise. This
model may be suitable, if e.g. regulation is delegated to commercial banks
that act as validators and check the regulation proofs for their customers.

5.3 Transaction Verification Overhead

We measured the verification overhead (shown in Table 1), averaged over 1000
runs on a single core of an Intel Core i7-4770 CPU, for the following proof types:

ZKPoK of discrete log. This is a zero-knowledge proof of knowledge (ZKPoK)
of the discrete logarithm and is required to verify that an excess output has
no value attached.

PIDProof. This is the proof that the pseudo-random ID was constructed cor-
rectly, i.e., the user who created the proof is in possession of a valid certificate
on his key and that the PID was derived correctly from this key. Depending
on the number of epochs for which the signature is valid, the computation
time differs, due to the included range proof. In Table 1, the measurements
for epoch ranges between 26 and 210 are shown.

EncIDProof. This is the proof that the user who created the proof is in posses-
sion of a valid certificate on his key and that his corresponding public key was
correctly encrypted with the public key of the regulator. Again, the verifica-
tion time differs depending on the number of epochs for which the certificate
is valid.

RangeProof. The range proof by itself is used to show that an output is in
the correct range, which is necessary to show that no overflow occurs, and to
prove that the sum of anonymous outputs with the same PID are below the
allowed threshold. The size and verification time of the range proof depend
on the size of the range. For example, with a granularity of cents, a range of
232 would allow transaction outputs of up to 43 million dollars.

Most commonly, transactions will have one value-transferring output, one
change output, one or more inputs, plus an excess and a delta output. Since
inputs do not require range proofs, and the time required to compute the com-
mitment to the sum of their values is negligible compared to the proof verifica-
tion time, we can estimate the time required to validate a standard transaction
independently of the number of inputs. In the case of a transaction with two
anonymous outputs (different PIDs each), a full verification of the transaction
requires verifying one ZKPoK of a discrete logarithm, two PID proofs, and four
range proofs (one for each individual output and one per PID).

Since the maximum amount for anonymous transactions is limited, one can
use a smaller range proof than for non-anonymous transactions. For example,
the US requires reporting for transactions above $10,000 [15]. An equivalent
regulatory rule with a granularity of cents would approximately correspond to a



172 K. Wüst et al.

Table 1. The average time for proof verification for different proof types and their
sizes.

Proof type Time [s] Size [bytes]

ZKPoK of discrete log (DLProof) 0.00038 64

PIDProof (epoch range = 26) 0.01067 1033

PIDProof (epoch range = 28) 0.01235 1226

PIDProof (epoch range = 210) 0.01404 1419

EncIDProof (epoch range = 26) 0.01115 968

EncIDProof (epoch range = 28) 0.01284 1161

EncIDProof (epoch range = 210) 0.01452 1354

RangeProof (range = 28) 0.00665 722

RangeProof (range = 216) 0.01345 1544

RangeProof (range = 220) 0.01678 1930

RangeProof (range = 232) 0.02722 3088

range of 220. Assuming a certificate validity of 210 epochs, this leads to a total
verification time of 0.096 s.

For transactions with non-anonymous outputs, we can allow a much larger
range (e.g., 232), since in this case the goal is not to limit transaction size but
to prevent overflows. Such a transaction requires two range proofs, giving, in
the same setting as before, a verification time of 0.084 s. Combinations, where
one output is anonymous and one is not, are, of course, also possible. Given this
transaction verification overhead, within one second, roughly ten transactions
can be fully verified on a single core. From this value we can in turn estimate
the required computing resources to handle the expected transaction load.

In verification model VM1, each validator checks all transactions and proofs.
To verify 1000 tps, each validator would require approximately 25 quad-core
servers. In VM2, transactions and range proofs are verified by all validators to
protect against overflows in outputs, but verification of regulation proofs can be
partitioned across the validators. Assuming 16 validators, each of them would
require 15 quad-core servers to process 1000 tps.

Based on measurements from Croman et al. [26], we can estimate figures for
latency and throughput (see full online version of the paper) given a standard
consensus protocol (PBFT [25]) showing that using 16 validators, a throughput
of 480 transactions per second can be achieved. Since the nodes in the experiment
by Croman et al. were globally distributed and only had limited bandwidth, it
is reasonable to assume that higher throughputs can be achieved in the setting
we consider, if validators are geographically close and may even be connected
through dedicated lines.
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6 Related Work

Regulation inCoin-BasedCurrencies.Camenisch et al. introduced an e-cash
system where a trusted authority can control the total amount of anonymously
spent money [14]. We use similar zero-knowledge proof techniques for PRCash.
However, these two solutions have noteworthy differences. In their scheme, it suf-
fices to limit the number of transactions, since the system is coin-based, i.e., the
number of spent coins is equal to the amount. In our solution, we also need to
take into account the values of the transactions, while keeping them secret. In a
coin-based scheme, the size of the transaction and the computation required to
verify the proofs grows with the transaction value. Additionally, such a system is
not transferable and thus leaks the total amount received by the merchant to the
bank once it is deposited. Partial value secrecy is possible when offline payments
are allowed, but this option ensures only double-spending detection (no preven-
tion). In comparison,PRCash provides better privacy, constant payment overhead,
and more transparency.

Regulation in Blockchain Currencies. Zerocash [12] is a sophisticated
decentralized anonymous payment scheme that leverages a blockchain. Zerocash
provides what is commonly considered the strongest level of anonymity, i.e., it
hides transaction identities and values and makes transactions unlinkable. Gar-
man et al. [13] have proposed a solution for regulation for Zerocash payments.
However, as with regular Zerocash transactions, while verification is efficient,
transaction creation is prohibitively expensive in terms of computation, which
makes it unusable for replacement of cash or card payments, where transac-
tion should be finalized within seconds. Additionally, Zerocash-style transactions
requires full nodes, as a client has to download the entire ledger and decrypt
every transaction to determine whether it is the recipient of the transaction.
These requirements make anonymous transactions unpractical for resource con-
strained devices and causes most participants to use unshielded transactions in
practice (i.e. in Zcash [27]), which decreases anonymity overall [28].

Centrally-Issued Currencies. RSCoin [7] is a centrally-issued cryptocurrency
solution. The main technical contribution of their work is scalability of consensus,
while the primary contribution of our work is a novel regulation mechanism that
address the conflict between performance, privacy and regulation.

7 Conclusion

Despite more than three decades of research on digital currencies, their adoption
as fiat money issued by a central bank has not become a reality. While the
reasons for this may be numerous, and not always purely technical, a major
obstacle for their adoption is the fact that such deployments have conflicting
technical requirements. In this paper, we have presented PRCash that is the first
blockchain currency with transactions that are fast, private and regulated at the
same time.
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A Transaction Details and Block Creation

In this Appendix, we provide the details of the modifications made to Mim-
blewimble [11] transactions, prove that knowledge of the blinding factors can be
used for payment authorization, and we give an overview of how transactions
can be mixed and blocks can be created.

A.1 Transaction Creation

To prevent the transaction tracking of Mimblewimble [11] transactions, men-
tioned in Sect. 3, we modify the transaction creation such that the payer final-
izes the transaction. To increase payment anonymity further, we also include
another output (rΔ) that does not have a value attached. This additional out-
put is submitted to the validators as a scalar such that multiple transactions
can be merged. Inclusion of such additional output makes it impossible to later
match transaction inputs to corresponding outputs.1

Our transaction creation protocol, that includes the regulation proofs
explained above, works as follows:

(i) The recipient, Bob, creates k value outputs Outi = gr′
ihv′

i (1 ≤ i ≤ k), for
the payment value vT =

∑k
i=1 v′

i. For each of the value outputs, he also
creates a range proof to prove that the value is in a valid range (i.e., that
no overflow occurs where money is created out of nothing). He additionally
attaches a regulation proof to each output as described above in Sect. 3.4.
He then creates an excess output Ex0 = gr′

0 that has no value attached,
proves knowledge of r′

0 by proving knowledge of the discrete log of Ex0
to base g (DLProof(Ex0)) and sends his outputs (including range proofs,
proof of knowledge of r′

0 and regulation proofs), vT and r′ = r′
0 +

∑k
i=1 r′

i

to Alice. The additional excess output Ex0 is required to ensure that only
Bob can spend his newly created outputs. Otherwise Alice would know the
sum of the blinding factors of his outputs and could thus spend them.

(ii) If Alice agrees with the transaction value vT , with her inputs Ini = grihvi

(1 ≤ i ≤ n), s.t. v =
∑n

i=1 vi and r =
∑n

i=1 ri, she creates m change
outputs Outi = gr′

ihv′
i (k < i ≤ k + m), s.t. v − ∑k+m

i=k+1 v′
i = vT and range

proofs and regulation proofs for these outputs. She then computes a delta
output rΔ = r−∑k+m

i=k+1 r′
i−r′ and combines all of her inputs, Bob’s and her

outputs (including all proofs) and rΔ into a complete transaction. Alice’
inputs are outputs of previous transactions that can be money issuing
transactions as described in Appendix A.4.

(iii) Finally, Alice sends the complete transaction to one or more validators,
encrypted under their public keys. The number of validators depends on
the used transaction validation strategy (see Sect. 5).

1 Matching transaction inputs to outputs after reordering is in general already an NP-
complete problem (subset sum). However, most transactions will only have few inputs
and outputs, which can make linking feasible in practice without this additional
measure.
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The validators then verify the transaction as described in Sect. 3.5.

A.2 Mixing and Consensus

The validators collect a set of verified transactions and in the end of the round
mix them by using two merging properties of our transactions. The first merging
option is to combine two valid transactions together which creates another valid
transaction. Combining several transactions into one large transaction breaks the
direct correlation between inputs and outputs in the original transactions. The
more transactions are combined in one round, the harder it is for third parties
to link inputs and outputs based on published, combined transactions. Since the
order of inputs and outputs is irrelevant for the correctness of a transaction,
they can be reordered arbitrarily (e.g. ordered in binary order). Additionally, by
only publishing the sum of the delta outputs instead of the individual values,
deciding which set of transaction outputs belong to which set of inputs becomes
impossible.

The second merging option is compacting. If an output of one transaction
appears as an input in another transaction, the matching input-output pair can
be simply be removed, resulting in a smaller but still valid transaction. Com-
pacting makes transaction linking more difficult and improves storage efficiency.
Once the validator has verified and merged (mixed) all received transactions in
the current round, the remaining inputs and outputs can be simply sorted as a
list for publishing.

The validators then need to achieve consensus over the content of the next
block depending and we assume that they run a Byzantine fault tolerant consen-
sus protocol to protect against double spending. Validators can cache unspent
transaction outputs from all previous blocks to speed up verification of new
transactions (needed for double-spending protection). After achieving consensus
over a block, validators can remove all inputs of the block from their cached set
and add all new outputs to it.

A.3 Block Structure

Each block consists of a first part signed by the validators and a second part
containing auxiliary information. The first signed part contains the sum of all
delta outputs, all excess outputs including the zero-knowledge proofs of their
exponents, and the hash of the previous block. Additionally, if the block contains
an issuance or a deletion transaction, the signed part also contains the explicit
amounts of money that are added or removed. As auxiliary information, the
block contains a list of inputs and a list of outputs including their range proofs.

The signed part of the block only contains the excess outputs and the sum
of the delta outputs of all transactions (Ex0, Ex1 and rΔ + r′

Δ in the example).
The transaction inputs and transaction outputs with a value do not need to be
included in the signed part, but they still need to be published including the
range proofs of the outputs, so that other parties can verify the correctness of
the blockchain.



176 K. Wüst et al.

This block structure allows compression of the blockchain by compacting
transactions across blocks. Outputs of previous transactions that are used as
inputs in the new block can be removed from storage without losing the ability
to verify the complete chain. All that is required for the verification is the set
of unspent transaction outputs, excess and delta outputs of all blocks, and the
values of issuance and deletion transactions. All of this combined can be inter-
preted as one large transaction that, if valid, implies the validity of the whole
blockchain. This makes the storage required to verify the full chain very small
and slowly growing for third parties that do not want to store all transactions.

A.4 Issuance

Our currency provides an explicit mechanism for the issuer to increase, or
decrease, the amount of currency in circulation. This can be done with a special
transaction type that requires a signature from the issuer.

Specifically, the issuer can publish an issuance transaction with an explicitly
stated amount v. The issuer creates k transaction outputs Outi = gr′

ihv′
i (1 ≤

i ≤ k), such that v =
∑k

i=1 v′
i, and which all have a range proof attached. The

issuer then additionally creates an excess output Ex0 = gr′
0 , s.t. r′

0 +
∑k

i=1 r′
i = 0

and proves knowledge of r′
0. The transaction is valid, if hv is equal to the sum

of the outputs. The outputs created by such an issuing transaction could, e.g.,
be transferred to commercial banks who can then further distribute the newly
created money. The issued amount v is published in plaintext to the next block
with the issuance transaction.

The role of the issuer can easily be distributed among multiple parties by
requiring signatures from multiple parties for issuance transactions. This may
be particularly interesting for private deployments, where there is no central
bank that can be assumed to be trusted.

A.5 Distributing Regulation

The role of the regulator can be distributed between multiple parties without
changes to the rest of the system by using a threshold cryptosystem. In such a
scheme, a set of n parties would be responsible for regulation, of which at least
a threshold number k must cooperate to decrypt an encrypted identity. To set
up the system, the regulator parties would run a key generation protocol that
creates a public key and distributes shares of the corresponding secret key to
the parties. The created public key is then used as the regulator public key in
our system.

Since we use Elgamal encryption in our system, which can be used for thresh-
old encryption (e.g. [29]), the process of encrypting identities and creating proofs
does not differ from the system described in Sect. 3.4. In order to decrypt the
ciphertexts without reconstructing the shared secret key, the regulator parties
then again need to run a decryption protocol (e.g. [30]).
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Abstract. Cryptocurrencies record transactions between parties in a
blockchain maintained by a peer-to-peer network. In most cryptocurren-
cies, transactions explicitly identify the previous transaction providing
the funds they are spending, revealing the amount and sender/recipient
pseudonyms. This is a considerable privacy issue. Zerocash resolves this
by using zero-knowledge proofs to hide both the source, destination and
amount of the transacted funds. To receive payments in Zerocash, how-
ever, the recipient must scan the blockchain, testing if each transaction is
destined for them. This is not practical for mobile and other bandwidth
constrained devices. In this paper, we build ZLiTE, a system that can
support the so called “light clients”, which can receive transactions aided
by a server equipped with a Trusted Execution Environment. Even with
the use of a TEE, this is not a trivial problem. First, we must ensure
that server processing the blockchain does not leak sensitive information
via side channels. Second, we need to design a bandwidth efficient mech-
anism for the client to keep an up-to-date version of the witness needed
in order to spend the funds they previously received.

1 Introduction

Decentralized cryptocurrencies offer the potential to revolutionize payments. By
providing transparent means to audit transactions, they reduce the need to rely
on trusted incumbents and allow new innovation on financial applications. But
this same transparency renders nearly all cryptocurrencies completely unsuited
for wide-scale adoption: all transaction are broadcast publicly in a manner that
can be readily linked to real world identities [4,26], raising issues with govern-
ment surveillance, harassment and stalking, and the viability of business com-
petition when competitors can see all cash flow.
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A variety of protocols have been proposed, such as Solidus [2,9], Cryptonote
[37], Zerocoin [27] and Zerocash [5], that, with varying effectiveness [21,22,29],
alleviate these issues. For example, in Cryptonote the destination address is
always a newly generated one-time public key derived from the receiver’s public
key and some randomness from the sender. Zerocoin functions as an overlay
on Bitcoin, where users mint a zerocoin and issue a transaction to transfer the
funds to its commitment. The coin can be further spent by using zero-knowledge
proofs. The most promising of these protocols, Zerocash, removes all information,
such as sender/recipient identity, value, and linkability through the use of a zero-
knowledge proof that there exists some past transaction which gave the user the
funds they are spending. Zerocash is deployed in the cryptocurrency Zcash.

Payment Notification. Unlike in traditional means of payment, like credit cards
and cash payments, in nearly all cryptocurrencies, including Bitcoin, Ethereum,
and Zcash, it is possible to send money to a recipient’s address without direct
interaction or communication with the recipient. The recipient is paid, but only
learns this next time when she is online. This raises the problem of payment
notification, that is, the recipient must find out they were paid. Some cryptocur-
rencies, like Ethereum, use an account model where there is a single, well-defined
location for payments. As a result, the recipient and, more significantly, anyone
else, can see when and for how much someone is paid. Other cryptocurrencies,
including Bitcoin and Zerocash, eschew this approach for improved privacy, stor-
ing payments individually as unspent transaction outputs (UTXOs) in unpre-
dictable locations. In such systems, there must be some mechanism for users to
discover a UTXO belongs to them. The simplest way to do this is to scan the
blockchain and check each transaction.

Payment notification is a particular problem for privacy-preserving systems
like Zcash. Transactions in Zcash, consist of an opaque commitment, a cipher-
text, a serial number to prevent double spending, and a zero-knowledge proof
of the transaction’s correctness and the existence of funds to spend. In partic-
ular, there is no metadata to identify the sender or recipient. The only way for
a client to identify if a payment is directed to them is by trial decryption of
the ciphertext associated with a transaction: each transaction contains a cipher-
text under the recipient’s public key. To monitor for payments, clients must,
therefore, conduct a trial decryption for every transaction on the blockchain.
While this is completely feasible for well-resourced clients, running on platforms
like standard desktop PCs, it is not desirable, nor often feasible, for resource-
constrained clients like mobile devices where both power and bandwidth are
major constraints. In this paper, we focus on such resource-constrained clients.

Light Client Model. Several cryptocurrencies address this problem with a model,
exemplified by Bitcoin’s Simplified Payment Verification (SPV) scheme [30],
where “light clients” entrust a server (full node) to respond to queries about
payments to a given address. The SPV protocol reveals to the server which
(pseudonymous) addresses belong to a client and thus links multiple addresses
together and potentially to real world identities, reducing user privacy. Directly



ZLiTE: Lightweight Clients for Shielded Zcash Transactions 181

applying the same model to Zcash is not possible without revealing the client’s
decryption key to the server so that it can perform the trial decryption for
transactions, and thus completely breaking the privacy properties of Zcash.

Another challenge for resource-constrained clients is that simply notifying
users that they received funds is not sufficient to use them for new payments
in Zcash. To spend funds sent to them in a previous transaction tx in block n,
users must prove that there exists a path (called witness) w from the root of a
Merkle tree (called note commitment tree) to tx. Moreover, this information is
not static and it needs to be updated as new transactions are added to the tree.

Our Contribution. In this paper, we introduce ZLiTE, a system that enables
efficient privacy-preserving light clients for Zcash. Our approach follows the com-
mon “light client and server” model, thus minimizing the client bandwidth and
computation requirements by offloading processing to the server. To tackle the
privacy problem of client queries, we leverage trusted execution, namely Intel
SGX [19], on the server. This approach allows the server to perform the trial
decryption for transactions without learning the client’s key.

Although this approach is conceptually simple, realizing it securely requires
overcoming technical challenges. First, external reads and writes from the SGX
enclave to the blocks stored on the server or to response buffers can leak which
transactions belong to the client. Second, SGX enclaves are susceptible to side-
channel attacks [7,8,15,28,34,39] that can leak their internal memory access pat-
terns. Secret-dependent code and data accesses can enable a malicious server to
infer the used client’s key. Third, our system also needs to ensure that the residing
platform cannot mount a combination of eclipse attacks [18,38] on the blockchain
and replay client messages to identify queried transactions. And fourth, we need
to efficiently provide the client with up-to-date Merkle tree witnesses needed to
spend funds from a given transaction without leaking any private information.

To address these challenges, ZLiTE combines, in a novel way, a number of
known techniques from private information retrieval and side-channel resilient
trusted execution, making the processing of client queries oblivious towards a
powerful adversary controlling the supporting server. We also design a new com-
mitment tree update mechanism that allows the client to obtain efficiently from
the server all the needed information to spend the received funds.

Parallel Work. Finally, we note that, in parallel work, a similar solution has been
suggested for privacy protection in Bitcoin [25]. While our overall approach is
similar, the technical challenges that we address are specific to Zcash, and thus
different. We review such parallel work in more detail in Sect. 7.

2 Background

Transactions in Cryptocurrencies. Many cryptocurrencies operate in the so
called Unspent Transaction Output (UTXO) model. In this model, a transac-
tion consists of a set of outputs, each with a numerical amount of money and
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an address, and a set of inputs each of which references the output of a previous
transaction. For a transaction to be valid, the following conditions have to be
met: (1) referenced outputs must exist, (2) inputs must be signed by the key
specified in the referenced output address, (3) the

∑
(output amounts) must be

≤ to the
∑

(input amounts), and (4) referenced outputs must not be spent by a
previous transaction.

In Bitcoin, this is accomplished by directly identifying the referenced out-
puts, checking that they are not referenced by any other transactions, and then
checking the sum inputs and outputs. If a transaction validates, then the out-
puts it references are removed from the UTXO set and the outputs it generates
added. Transactions in Bitcoin and most cryptocurrencies are validated via a
peer-to-peer network and assembled into blocks (e.g., every 10min), that are
broadcast to the network.

In Zcash there are two types of transactions: transparent and shielded trans-
actions. The transparent kind is directly derived from Bitcoin and will not be
considered for the rest of this paper.

Shielded transactions also take some inputs and create new outputs, but
the similarities end there. Outputs, also called notes, are created by so called
joinsplits and are a commitment to an amount and the address it belongs to. A
joinsplit takes a transparent input and up to two notes as input and creates one
transparent output and up to two notes as output. However this information is
encrypted and can only be inspected by the receiver. Additionally a Merkle tree
is constructed over all notes on the blockchain forming the note commitment
tree. A zero-knowledge proof forms the second part of the transaction and shows
that conditions (1)–(3) hold with respect to that Merkle tree root. Because the
“outputs” that a shielded transaction spends are not revealed, they cannot be
removed from the UTXO set. Instead, a unique serial number, sometimes called
a nullifier, is produced by the transaction that ensures the referenced outputs
cannot be used again. This prevents double spending.

To perform operations in Zcash, each user has two keys associated to his
shielded address. First, the spending key that is used during the creation of a
zero-knowledge proof allowing the users to prove ownership of the received funds.
Second, the viewing key that is used to decrypt the shielded transaction in the
blocks and verify if each transaction belongs to the user.

Full Nodes and Light Clients. To interact with a cryptocurrency, one must have a
client. In both Bitcoin and Zcash, the default client is a full node, which receives
and validates every block, and contains the full state of the blockchain. Full nodes
do not need to trust other entities, provided the system functions as assumed,
e.g., for Proof-of-Work systems the majority of the network’s computational
power is honest and messages disseminate without problems. While full nodes
offer the best security and privacy, they entail considerable resource usage. The
computation and network resources necessary to maintain a full node are a major
impediment and in some cases, e.g. mobile devices, simply prohibitive.

In contrast, lightweight clients are nodes that have smaller resource foot-
print. They were originally proposed for Bitcoin [30] as the Simplified Payment
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Verifications (SPV) scheme. In this proposal, clients store only the header of
each block instead of the entire blockchain. This is sufficient to check the Proof-
of-Work on each block and verify the presence of transactions by checking their
inclusion in the Merkle tree whose root is contained in the block header: clients
must merely request both a transaction and the witness to its inclusion in the
Merkle tree from a full node.

The reduced resource usage of SPV clients comes at a major cost: privacy. As
the light client must request individual transactions from a full node, it reveals
which transactions and addresses belong to the requesting client. In Bitcoin, this
allows multiple addresses to be linked together. In Zcash, this effect is far more
pronounced since the client completely loses privacy: without such queries, no
shielded transaction can be linked together, i.e., an adversary learns nothing.

ORAM. Encryption provides data confidentiality but access patterns can leak
information possibly leading to reconstruction of the content itself. Oblivious
RAM (ORAM) [14] is a popular scheme that hides access patterns and achieves
fully oblivious data accesses. Most ORAM algorithms use randomized encryption
and shuffling techniques to build a fully oblivious database. Intuitively ORAM
hides the address, access patterns, whether the same data access is repeated and
the type of operation, i.e. read or write. Note that ORAM operations still leak
timing information related to the frequency of access operations themselves.

3 Our Approach

3.1 Requirements

The main goal of this paper is to design a solution that enables privacy-preserving
light clients assisted by full-node servers for Zcash. More precisely, we specify
the following requirements for our solution:

R1 Privacy. ZCash light clients should be able to privately retrieve all transac-
tion related data without revealing sensitive information (e.g., viewing key,
transaction count, blocks containing transactions) to the server.

R2 Integrity. The server that is assisting the light client should not be able to
steal funds or make a client falsely accept a payment.

R3 Completeness. The retrieval of transactions should guarantee that the
light client receives all data necessary for spending the funds they received.

R4 Performance. The solution should have minimal bandwidth and processing
requirement for the client. The server’s processing should be in the same
order of magnitude as the normal full node operation.

3.2 Main Idea

Our main idea is to leverage commonly-available Trusted Execution Environ-
ments (TEEs) and apply them to full nodes (servers) to enable privacy-preserving
light clients for Zcash. In particular, we use Intel’s SGX [19] which provides
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isolated execution of security-critical application code, called enclaves, such
that enclave data confidentiality and execution integrity remains protected from
untrusted software such as other applications, the OS, hypervisor. In SGX, the
CPU enforces that untrusted software cannot access enclave memory. For space
reasons we omit details regarding Intel SGX. We refer readers unfamiliar with
the technology to a more detailed SGX introduction [12,20].

Similar to SPV in Bitcoin, we assume deployments where the light Zcash
clients may be assisted by any number of servers (full nodes) that support TEEs.
Some of the servers could be run by well-known companies as commercial services
where light clients may have to pay a small fee for the service. Other servers could
be run by private individuals, like members of the cryptocurrency community,
as a free service. As in SPV, the light clients are free to choose which servers to
use, if any. In this regard, our solution retains the decentralized nature of Zcash.

3.3 Controversy and Challenges

The use of TEEs is often controversial. TEEs rely on a trusted authority to
design a secure processor and issue some form of certification for it. Attestations
from the TEE can be forged either via exploiting design flaws or by corrupting
the provider and falsely claiming that an attestation came from a genuine piece
of hardware. The hardware and software are frequently closed source and the
manufacturers opaque. These kind of trust assumptions are frequently an anath-
ema, especially for cryptocurrencies. Moreover, usage of TEEs often seems like
lazy systems design choice, since, if one assumes fully trusted TEEs (e.g., none
of the enclaves can be compromised, no side-channel leakage, full resilience on
physical attacks etc.), solving many problems becomes relatively easy.

However, current TEEs including SGX enclaves have noteworthy limitations
such as side-channel attacks that leak information and no resilience to physical
attacks. We argue that the real research challenge is to leverage TEEs such
that one can enable improved performance and privacy, but at the same time
address the limitations of TEEs such as side-channel leakage. In the (unlikely)
case that TEEs are fully broken (e.g., a new severe processor vulnerability is
discovered), the system should fail gracefully. One example of graceful failure is
that the affected clients’ privacy may be reduced, but integrity of the system is
preserved, i.e., in a cryptocurrency, no money is lost or stolen.

3.4 Adversary Model

In this paper, we consider the standard SGX adversary model where the attacker
controls the OS and all other system software in the supporting server. In prac-
tice, the adversary could be a malicious administrator in a company that provides
the full node service, an external attacker that has compromised the OS on the
full node server, or a malicious individual operating a free server.

The adversary is able to perform digital side-channel attacks [7,8,15]. We
assume that he is able to perfectly observe the enclave’s control flow with
instruction-level granularity and its data accesses with byte-level granularity
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(best known attacks are cache-line granularity). We overestimate the attacker
capabilities, as all current side-channel attacks suffer from significant noise and
cannot extract perfect traces in pratcice. By assuming such an adversary, we
design our solution for future attacks that may be able to mount more precise
side-channels. Additionally, the adversary has full control over the communica-
tion and can thus read, modify, block or delay all messages sent by the enclave.

The adversary cannot break the hardware protections of SGX along with
cryptographic primitives such as encryption schemes and signatures. More
specifically, the adversary cannot access SGX’s processor-specific keys and the
enclave’s encrypted runtime memory protected by the CPU.

Finally, even if full compromise of SGX is outside our adversary model, we
consider this possibility in our system design and discuss how our solution han-
dles such worst case scenario in Sect. 5.3.

3.5 Strawman Solutions

We propose to leverage TEEs to protect the privacy of Zcash light clients. If client
privacy relies on TEEs, it becomes natural to ask if one needs a complicated
solution like Zcash and if anonymous payments can be realized through a much
simpler solution using TEEs. To answer this question, we consider the limitations
of a few strawman solutions.

Our first strawman solution is that clients send all transactions in an
encrypted format to a set of authorized TEEs that process them privately. Such
a solution would protect user privacy, but in case the enclaves get broken, the
adversary can perform unlimited double spending on all users. Additionally, such
a solution would not be decentralized.

Our second strawman solution is to use pseudonymous transactions that are
published to a permissionless ledger, similar to Bitcoin, and mix them in one or
more TEEs for improved privacy. Such a solution would prevent double spending,
ensuring security for all users, even in the event that TEEs are broken. However,
such a solution does not provide the same strong privacy protection, namely
unlinkability, as Zcash, since the anonymity set for a transaction output only
consists of the inputs of the mixed transaction. An adversary controlling the
OS on the mixing service can further reduce anonymity by blocking incoming
transactions or injecting his own.

Our third strawman solution is to use the Zcash system, due to its strong pri-
vacy properties, but allow light clients to offload their complete wallets to TEEs
that perform new payments and notification of received payments for them. The
main drawback of this approach is that if the TEE would be compromised, it
would incur direct monetary loss for a high number of clients.

Our goal is to design a solution that enables light clients for Zcash, and
thus benefits from its sophisticated privacy protections, but avoids the above
discussed limitations of simple TEE-based solutions.
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3.6 Solution Overview

In our solution, when a light clients wants to be notified about received funds or
make new payments, she connects to one of the TEE-enabled full node servers,
performs remote attestation of the server’s SGX enclave, and establishes a secure
channel to it.

To enable payment notification, the client sends its viewing keys for the
addresses that she owns to the enclave and indicates from which point on (e.g.,
the latest known block to the client) she wishes to update the light client’s state.
The enclave obtains the data and information from the locally stored blockchain
and processes it in a side-channel oblivious manner based on the client request
and sends back the response to the client.

To enable new payments by the client, the server also prepares a witness for
each new transaction of the client, as well as the note commitment tree update
and sends them to the client. Given this information, the client can efficiently
create new transactions, and the associated zero-knowledge proofs, using the
received funds, without revealing his spending key to the enclave.

Fig. 1. System model. Lightweight clients request transaction verification and pay-
ment issuing service from enclaves hosted on full Zcash nodes.

4 ZLiTE System Design

4.1 System Model and Operation Overview

Figure 1 presents our system model. The main stakeholders in the system are
Zcash Lightweight Clients ZLC1...ZLCn and Zcash Full Nodes ZFN1...ZFNm.
A lightweight client ZLCa connects to any full node ZFNb that supports our
service by hosting an enclave E when she wants to acquire information regarding
transactions and addresses that belong to the client or to issue new transactions
towards another Zcash client. ZLCa can own one or more addresses in her wallet
that are also characterized by the SpendingKeya,1...c and the V iewingKeya,1...c.

Full nodes maintain the local version of the blockchain (BC) as usual,
appending each new confirmed block to the longest chain they have. The
blockchain is maintained outside the secure environment, either on the disk or
memory of the platform where the node resides. SGX enclave memory is lim-
ited (128MB) and is only suitable for smaller storage related to the currently
executed task.
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A client that wants to retrieve transactions, performs remote attestation
for the ZLiTE enclave and then establishes a secure connection (TLS), through
which she sends her viewing key and the height h of the last known block Bh. The
enclave then scans the blockchain for transactions for this viewing key starting
from Bh and obliviously moves them to a temporary response ORAM (rORAM)
to hide which transactions are of the client’s interest. Additionally, the ORAM
structure is obliviously serialized in the response buffer sent to the client.

Oblivious Scanning. All processes that rely on secret data, i.e. the clients viewing
key, must be performed in an oblivious fashion to prohibit any leakage of sensitive
information (see Sect. 5). Finding the transactions that match the clients viewing
key clearly depends on the client’s secrets. To make block scanning oblivious to
a side-channel observer (see the adversary model in Sect. 3.4), processing of each
transaction should produce the same side-channel trace. A naive way to solve
this is to do a fake copy of each non-matching transaction (viewing key does
not result in a valid decryption) to the response buffer as well. However, in
that case the response buffer is as big as the scanned blocks (no performance
improvement). To improve the performance we use a response ORAM to hold
all relevant transactions of the current client. The rORAM allows us to perform
one ORAM operation per transaction while still hiding if this operation is a
write (relevant transaction) or a read (irrelevant transaction). This is achieved
by constant-time branchless code using the cmov instruction [32]. In conclusion,
the enclave performs the following operations for each transaction:

(1) check if the viewing key manages to decrypt the transaction
(2) calculate the Merkle tree
(3) perform an ORAM operation (write or read transaction into the rORAM

depending on the outcome of (1))

Together with the transactions stored in the rORAM, ZLiTE delivers the
corresponding Merkle paths, all block headers since Bh, and the note commit-
ment tree update for the requested interval (see Sect. 4.3). Below we first describe
the details of the ZLiTE operation and the retrieval of transactions and then
describe how a lightweight client using our system can create new shielded trans-
action.

4.2 Transaction Retrieval

The operation of the synchronization protocol (see Fig. 2) works as follows:

Initialization and Continuous Operation.

(a) On initialization the Full Node ZFNj connects to the P2P network (a-
1) and downloads the full ZCash blockchain (a-2). This locally stored
blockchain is continuously updated as new blocks are received from the
network.
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(b) When the lightweight client is installed, it contains a checkpoint block
header (this can be from a recent date or the genesis block). The client
then downloads all newer block headers from the P2P network and verifies
them (i.e. the client checks the PoW and that their hash chain leads to the
checkpoint). All but a small number of the most recent block headers (to
handle shallow forks) can be deleted afterwards. This state is later updated
during the synchronization process that the client performs with a ZLiTE
node in order to check for received transactions or before sending transac-
tions (see below). This is similar to the operation of existing lightweight
clients for other blockchains (e.g. Bitcoin).

Synchronization of Transactions. Clients synchronize with a ZLiTE enclave
as follows:

(1) The ZCash Lightweight Client ZLCi performs attestation with the secure
Enclave Ej residing on the full node ZFNj .

(2) If the attestation was successful, the ZCash Lightweight Client ZLCi estab-
lishes a secure communication channel to the Enclave Ej using TLS.

(3) The Lightweight Client ZLCi sends a request containing its viewing key
and the number of the latest known block.

Fig. 2. Synchronization. The lightweight client establishes a secure connection to an
enclave on a full node and sends a request that contains its viewing key and latest
known block to perform the retrieval of all of her transaction information.
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(4) The Enclave Ej creates a temporary in-memory response ORAM (rORAM)
to store the transactions that will be sent to the client. Ej then scans its
locally stored copy of the blockchain (BC) starting at the block number
specified by the client and decrypts the transactions with the specified view-
ing key. The decryption will either result in garbage or in a valid plaintext
transaction. If the decryption is successful, Ej moves the transaction and
the corresponding Merkle paths (for the transaction and for the note com-
mitments) to the response ORAM, and if it is not successful, Ej performs
a read operation, thereby performing the move obliviously using the cmov
technique mentioned in Sect. 4.1 to replace conditional statements.

(5) After the scanning operation has finished, the rORAM is serialized by mov-
ing the entries to a fixed-size (dependent on the request, i.e., number of
requested blocks for update) response array that is then sent to the client.
In addition, the response contains all of the block headers and the note
commitment tree updates (see Sect. 4.3 for details).

(6) The ZCash Lightweight Client ZLCi verifies that the received block headers
have a valid proof of work, create a chain to its latest known header and
that the chain is the heaviest chain advertised in the P2P network. For every
received transaction, it checks whether the recomputed Merkle root, given
the received path, matches the corresponding block header. The client then
updates the witnesses for all transactions with the received note commit-
ment tree update and finally deletes old block headers that no longer need
to be stored.

4.3 Transaction Creation

The lightweight client receives all information necessary to create shielded Zcash
transactions from our system. Namely, for every output he wants to spend, he
requires the witness (at the time of creating the new transaction) of the corre-
sponding note commitment (i.e., its Merkle path in the note commitment tree).

These witnesses could be retrieved from a ZLiTE node at the time of spend-
ing. However, this would require the node to retrieve the witness in an oblivious
fashion on request, which becomes computationally expensive as the commit-
ment tree gets larger. Instead, when scanning the chain for a client, we addi-
tionally supply the witness of a note at the block height where it was created
(see Sect. 4.2). When synchronizing, the client then also receives commitment
tree updates, which allow him to update witnesses for any previous note commit-
ment. In this case, there is no need for oblivious computation since the update
only depends on the block height and not on the transaction relevant to the
client.

Given a note commitment tree at time t1 and a note commitment tree at
time t2, to compute the commitment tree update, the enclave starts with an
empty list Uct to store the update. Let cmi be the latest note commitment in
the tree at time t1, i.e., it is the rightmost non-empty leaf. Then, in the tree at
time t2, for every node on the path from cmi to the root of the tree, add the
right child to Uct. A client in the possession of a witness at time t1 for some
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note, can then apply the update by replacing any node on the witness with the
corresponding node from Uct, if these two nodes have the same location in the
Merkle tree. We present a proof in Appendix A that this construction results in
a correct witness for the note commitment tree at time t2.

5 Security Analysis

In this Section, we provide an informal security analysis of ZLiTE. We first
discuss protection against information leakage, then discuss the completeness of
responses, and finally consider the worst-case scenario, i.e. a full break of SGX.

5.1 Protection Against Information Leakage

Since ORAM reads and writes are indistinguishable, an adversary observing
memory access patterns is not able to determine which transactions were written.
For ORAM accesses, when accessing the stash, indexes or the position map, every
location is accessed to hide memory access patterns.

To protect against side channels (e.g. [8,15,28,34]), conditional statements
that depend on transactions (e.g. during the process of moving transactions to
the response ORAM) are replaced using the cmov instruction. Since this results
in the same control flow independent of the transaction, protection against leak-
age even against an adversary that can observe the control flow with instruction
level granularity is guaranteed. The cmov instruction has been previously used
to protect against side channels by Raccoon [32], Zerotrace [33] and also Oblivi-
ate [3] in the context of providing secure ORAM access using SGX. This prior
research shows that cmov can effectively protect against digital side channels.

Finally, the response size only depends on the number of scanned blocks, i.e.
it is independent of how many (or if any) transactions are in the response, and
thus does not leak any information about a client’s viewing key or transactions.

5.2 Integrity and Completeness

The ZLiTE node delivers the requested information along with all block infor-
mation needed for simple payment verification. The client herself then verifies
the block headers using the Merkle paths for her transactions. Similar to SPV
in Bitcoin lightweight clients [30], this ensures that the server cannot make a
client falsely accept payments for which the transactions are not included in the
chain. As the client can also check the proof of work and gossips with the P2P
network to receive block headers, she can ensure that she receives information
from the longest chain. Thus, the server does not have stronger capabilities to
eclipse a lightweight client than against a full node.

In contrast to standard SPV (as e.g. in Bitcoin [30]), where the client cannot
be sure to have received all of her transactions, the usage of a TEE makes sure
that the received response contains all of her transactions for the scanned interval
given the ZLiTE node’s view of the blockchain.
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5.3 Impact of Full SGX Compromise

While our adversary model considers side-channel attacks, we do not consider a
full compromise of SGX, i.e., forged attestations, arbitrary control flow change or
enclave secrets reading. However, recent research has shown that secrets can be
read even from the quoting enclave allowing an adversary to extract attestation
keys [10,36] which makes it necessary to discuss such a worst-case scenario.

While it is obvious that the privacy provided by ZLiTE can no longer hold,
if the adversary can read all secrets, or a client connects to a server that uses a
forged attestation to impersonate an SGX enclave, such a breach cannot lead to
loss of funds. In addition to the loss of privacy, a client also loses completeness,
since a node may omit payments. However, because the client’s spending key is
never sent to a ZLiTE node and the client performs Simple Payment Verification
for all of his transactions, a node is not able to steal coins from the client or
make him falsely accept a payment.

5.4 Trust Assumptions Comparison

In terms of security properties like double-spending protection, Zcash relies on
the following two trust assumptions: First, there must be an honest majority of
mining power. Second, the dissemination of messages broadcast to the peer-to-
peer network must be sufficiently good, i.e., no eclipse attacks. ZLiTE relies on
the same trust assumptions as Zcash for its security properties.

For privacy, Zcash relies on securely-generated public parameters and hard-
ness of numeric cryptographic assumptions. ZLiTE requires the same assump-
tions and additional trust in TEEs.

6 Performance Evaluation

6.1 Implementation Details

Our implementation of ZLiTE is based on the protocol specification of Zcash.
It consists of a blockchain parser, an oblivious Path ORAM implementation [35]
and it makes use of some bundled cryptographic libraries. We support the current
Zcash protocol specification including the’overwinter’ protocol update.

The Trusted Computing Base (TCB) of our implementation can be split
up into a network part that is responsible for the communication with a client
(around 1.5k LoC) and the blockchain relevant part (around 3.7k LoC). Addi-
tionally we use well reviewed crypto libraries like mbedTLS (53k LoC) and
small libraries that provide crypto primitives: sha256, blake2b, ripemd160,
ChaCha20Poly1305 and ed25519 totaling to around 2.2k LoC. All of the included
crypto primitives come from well reviewed sources. We will not go into details
on the TLS library mbedTLS [23] and refer the interested reader to [24,40] for
implementation details and performance results.
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6.2 Performance

ZLiTE measurements were done on an i7-8700k processor with an SSD. Note
that all the reported timing results are without the additional TLS latency. All
measurements are according to the blockchain activity as of August 2018.

Lower Bound. Any node that wants to check for new transactions needs to parse
the new blocks and test its viewing keys against all transaction in the blocks.
This is part of the Zcash specification and implies a lower bound for any full
node. Testing viewing keys is computationally intensive because it involves a
key exchange based on an elliptic curve for each transaction and viewing key.
Our implementation manages to parse blocks of an entire day and test a single
viewing key against the transactions within 1.24s compared to fully oblivious
operation of ZLiTE which takes around 5s. We have to retrieve the Merkle
paths and perform at least one ORAM operation per shielded transaction while
non oblivious solutions can skip this for all non-relevant transactions.

Average Transaction Size. We measured the average number of joinsplits in a
shielded transaction and show a histogram in Fig. 3a. Around 95% of all shielded
transactions only contain one joinsplit, thus they have at most 2 shielded inputs
and 2 shielded outputs. Every joinsplit occupies around 2KB of data. We also
have to store the commitment tree update (see Appendix A) which is around 1KB
in size. The average shielded transaction thus requires an ORAM operation for
around 3KB of data. These measurements allow us to chose optimal ORAM
block size for our response ORAM of 3KB.

Latency. We measured the time required to fetch various amounts of blocks and
show a comparison between different expected client data per hour in Table 1.
Note that the time per block rises when a client requests a longer time period
because the response ORAM is chosen accordingly and a big ORAM database
leads to slower accesses. Additionally, slower responses are observed when the
client expects a lot of activity and requests a lot of client data.
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(a) Joinsplit distribution in all shielded
transactions up until block 350000.
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Fig. 3. Performance measurements.
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Table 1. Total time for various request and response sizes. (100 runs)

Time Blocks Client data per hour
6144B 12288B 24576B

24 h 576 4187 ms± 504 ms 4382 ms± 510 ms 4967 ms± 617 ms
12 h 288 1875 ms± 315 ms 2122 ms± 364 ms 2317 ms± 397 ms
4 h 96 541 ms± 75 ms 583 ms± 92 ms 631 ms± 104 ms
1 h 24 123 ms± 21 ms 129 ms± 21 ms 130 ms± 21 ms

Figure 3b shows the latency for a request with 24576B of client data per hour
and various requested time spans. The latency is further divided in the four main
contributors to the total: parsing the block, proof of work verification, ORAM
operations and generating the merkle tree. Note that the ORAM operations start
to take the lions share of the latency as soon as longer time spans are requested.

Bandwidth. The required bandwidth can be split into a static part (not depen-
dent on the number of blocks requested) and a dynamic part. The dynamic part
is composed of the blockheader (1487B) and the private data per block that is
used to return transactions to the client. For reasonable usage we estimate a
lightweight client to have (at most) one transaction every hour occupying 12kB.
This results in 1024B of private data per block and the total dynamic bandwidth
accumulates to 2511B per block. The static part only consists of the commitment
tree update and is therefore 29 ∗ 32B = 928B large. A client that requests one
day of blocks from our system gets a response of 1.38MB.

Increased Blockchain Activity. As of August 2018 shielded transactions are not
very common on the Zcash blockchain (only 1.5 shielded txs/block). With single
steps measurements we estimated ZLiTE performance with increased future
activity. For 100 shielded transactions per block, a daily request would take
112 s, while with an hourly one the latency would shrink to around 750ms.

7 Related Work

Privacy for Lightweight Clients. Nakamoto introduced SPV in [30] in order to
enable light clients for Bitcoin. The straight forward application of SPV trivially
sacrifices client privacy, which is why BIP 37 [17] introduced Bloom filters [6]
to somewhat hide the client’s addresses in requests. Gervais et al. showed that
this only marginally improves privacy [13]. Recently, Bitcoin protocol changes
were proposed where full nodes publish a filter for all transactions in a block
and clients download the block if the filter matches one of his addresses [31].

Most closely related to our work, Matetic et al. recently used SGX to provide
privacy to Bitcoin lightweight clients in a system called Bite [25]. While the main
challenge was to efficiently protect privacy in a system that already provides
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light clients, we tackle the problem of enabling light clients in a system that
provides privacy, but until now does not support operation of light clients. One
notable difference between [25] and our work is that in Zcash spending previously
received funds requires the witness to the transaction’s inclusion in the Merkle
tree of all transactions, and therefore client must obtain, in efficient manner, an
up-to-date version of this witness to spend the funds.

Zcash Scalable Clients. Several proposals aim to lower the resource requirements
for clients in Zcash. While protocol upgrades [1] have reduced the computational
resources required to generate a transaction, they have not substantially changed
the bandwidth or verification requirements.

Bolt [16] proposes privacy preserving payment channels in which clients con-
duct most transactions off chain in a fully private manner. However, the current
version requires clients to either monitor the blockchain for channel closure using
a full-node, or entrust a third party to do so. While this does not violate privacy,
failures by the third party can result in monetary loss. No such risk of theft exists
with ZLiTE even if TEE integrity is violated. Moreover, Bolt requires payers
to have an existing relationship with the recipient or an intermediate payment
hub. While promising, Bolt is not a full solution for bandwidth limited clients.

In [11], Chiesa et al. explore the use of probabilistic micro-payments as a way
of increasing throughput. In this setting, a sequence of, e.g., 100 micro-payments
for one cent, is approximated by paying $1 with probability 1

100 . Thus only 1
100

of transactions are actually issued. However, this is only suitable for small and
frequently repeated payments. Moreover, it is unclear if it will reduce the total
volume of transactions or simple free up capacity for even more transactions.

8 Conclusion

Zcash provides strong privacy for its users. Shielded transactions, however,
require clients to download and process every block which is impractical for
devices like smartphones, and consequently no mobile client that supports
shielded transactions exists in the market. In this paper we have developed a
new solution that enables light clients to create and receive shielded payments by
leveraging a supporting server and a commonly available TEE. Usage of trusted
execution, obviously, changes the original trust model of Zcash, but we argue
that such a solution strikes a balance between the best possible privacy and the
range of scenarios where Zcash can be used in practice. Thanks to our solution,
development of mobile clients that support shielded transactions becomes pos-
sible and more users can benefit from the sophisticated privacy protections of
Zcash.

A Commitment Tree Updates

As described in Sect. 4.3, the commitment tree update Uct for the interval
between time t1 and t2 consists of the right child of the path from cmi to the
root at time t2, where cmi is the rightmost non-empty leaf at time t1.
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Fig. 4. At a time t1 the note commitments Merkle tree is fully updated up to the latest
block. A specific client holds a transaction with a note commitment c and knows the
witness (i.e. the Merkle path) for it (d, N8, N5, and N3 nodes). After some time the
blockchain is updated and new transactions added, thus, the Merkle Tree is updated
accordingly (t2). In order for the client to update the witness of her commitment c, she
only needs the updated information from nodes (N11, N5, N3).

In Fig. 4, we show an example for the commitment tree update. In this exam-
ple, the leaf f is the rightmost non-empty leaf at t1, i.e. it corresponds to cmi,
which means that the commitment tree update consists of the values of the nodes
N11, N5, N3 at time t2. In the example, the update is applied to the witness of
the leaf c (consisting of the nodes d, N8, N5, and N3). In this case, the values of
the leaf d and node N8 do not change between time t1 and t2, the values of N5
and N3 do, however, and thus the values are contained in the commitment tree
update and updated from there.

We now show that given a witness at time t1 for a commitment cmj (where
j < i, i.e. cmj was added to the tree before cmi) and the commitment tree
update Uct, a client can compute the witness for cmj at time t2.

Let Aji be the lowest common ancestor node of cmj and cmi in the commit-
ment tree, i.e. cmj is in the left subtree of Aji and cmi is in the right subtree. Any
node in the left subtree of Aji remains unchanged between t1 and t2, i.e. any node
from that subtree which is part of the witness for cmj also remains unchanged.
Since none of these nodes changes through the update process, updating the
witness with Uct results in the correct values.

Similarly, any node of the witness for cmj that is a left child of a node on the
path from Aji to the root remains unchanged in the Merkle tree at time t2, since
all leafs in any left subtree are already fixed at time t1 and thus all node values
are already final. Since our update process does not change any left children in
the tree, it also leaves these values unchanged and thus results in the correct
values.
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Finally, any node of the witness for cmj that is a left child of a node on the
path from Aji to the root may change in the Merkle tree at time t2. Since Aji

is an ancestor of cmi, any such node is included in Uct, i.e. these nodes on the
witness are updated in our update process. These values are therefore changed
to the correct values from the note commitment tree at time t2.

It follows that the witness at time t2 for cmj can be constructed correctly
given the witness at time t1 and the commitment tree update Uct.
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Abstract. 3 Domain Secure 2.0 (3DS 2.0) is the most prominent user
authentication protocol for credit card based online payment. 3DS 2.0
relies on risk assessment to decide whether to challenge the payment
initiator for second factor authentication information (e.g., through a
passcode). The 3DS 2.0 standard itself does not specify how to imple-
ment transaction risk assessment. The research questions addressed in
this paper therefore are: how is transaction risk assessment implemented
for current credit cards and are there practical exploits against the 3DS
2.0 risk assessment approach? We conduct a detailed reverse engineering
study of 3DS 2.0 for payment using a browser, the first study of this
kind. Through experiments with different cards, from different countries
and for varying amounts, we deduct the data and decision making pro-
cess that card issuers use in transaction risk assessment. We will see that
card issuers differ considerable in terms of their risk appetite. We also
demonstrate a practical impersonation attack against 3DS 2.0 that avoids
being challenged for second factor authentication information, requiring
no more data than obtained with the reverse engineering approach pre-
sented in this paper.

Keywords: Payment systems · Credit card security · Reverse
engineering · User authentication · Impersonation attack · EMV
Protocol

1 Introduction

In 2001, payment networks (Visa, MasterCard and Amex) introduced the 3
Domain Secure 1.0 (3DS 1.0) protocol [35]. 3DS 1.0 introduced user authentica-
tion, requiring payment initiators (customers) to prove their identity with static
passwords. For instance, ‘Verified by Visa’ asked three characters of a registered
password. 3DS 1.0 received criticisms for both security and usability reasons.
Security was impaired because registering the password could not be guaranteed
to have been done by the card owner, and phishing attacks on card data and
passwords could not be ruled out. However, the deciding drawback of 3DS 1.0
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for merchants was ‘lost sales’, that is, customers who failed to complete the pur-
chase because they cannot recall or refuse to go through the trouble of finding
and entering the password [3,16,20,23].

The European Commission proposed in 2015 the Payment Services Directive
2015/2366 (PSD II), a regulatory standard that asks card issuers within Europe
to provide Strong Customer Authentication for each online payment transaction
[13], very much like 3DS 1.0 would provide. The industry (card issuing banks,
payment processors and online merchants) expressed concerns that the meth-
ods proposed in PSD II ignored the objectives of user-friendliness and argued
that Strong Customer Authentication should be applied only to transactions
deemed ‘high risk’ in a Transaction Risk Assessment (TRA). After a six-month
negotiation including over 200 payment industry stakeholders, Strong Customer
Authentication in PSD II was augmented with Transaction Risk Assessment.

In October 2016, EMVCo (a consortium of card payment networks), revised
3DS 1.0 to include TRA, resulting in the current 3D Secure 2.0 protocol suite
[10]. 3DS 2.0 provides two options: challenged and frictionless authentication.
Challenged authentication is for purchases with a high risk and prompts an
authentication challenge to the payment initiator. Frictionless authentication
requires no additional authentication information and is meant for low-risk trans-
actions. TRA sacrifices strict security requirements for usability–from a security
perspective, it is ‘designed to be broken’.

The 3DS 2.0 protocol does not specify how TRA should be implemented,
apart from some generic guidance. Therefore, we present in this paper an in-
depth investigation in existing 3DS 2.0 implementations, the first of its kind. We
show that transaction risk is determined from data collected at the payment ini-
tiator’s browser, combined with transaction or network information (such as the
transaction amount or IP address). The browser data acts as a ‘fingerprint’ of
the user (see Sect. 2). In Sect. 4 we conduct an additional set of experiments with
different transactions from different locations to learn when the authenticator
allows frictionless authentication. We will see that different card issuers imple-
ment TRA differently, with different issuers exhibiting considerably different risk
appetite as summarized in the flow diagrams of Figs. 3 and 4.

Our reverse engineering exercise uses five credit cards, from Visa as well
as Mastercard, used at a number of different web sites. Experimental research
with credit cards is challenging, for instance because of the possibility of blocked
cards. It is therefore probably not surprising that the experimental research
literature for online payment is relatively light, and that no studies on the scale
of this paper exist. The five cards are representative for cards in general, in
that the experiments generated similar fingerprint information. We note that all
cards belonged to the authors, and ethics approval was obtained through regular
processes of the authors’ institution. Responsible disclosure through informing
selected partners has taken place through our network of partners.

The design of 3DS 2.0 also suggests an obvious vulnerability, in that the
authentication service may decide incorrectly not to challenge a payment. We
will demonstrate an impersonation attack, in which a perpetrator impersonates
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Fig. 1. Reverse engineering set-up, intercepting 3DS 2.0 transactions through a proxy.

a payment initiator, thus ‘tricking’ the authentication service into allowing a
transaction to complete without being challenged for second factor authentica-
tion information, even for high transaction amounts. We will demonstrate two
versions, one copying the fingerprint info to another machine that is configured
arbitrarily, and one creating the same fingerprint on another machine with an
identical configuration as the original machine. The impersonation exploit can
be made into a practical attack if one manages to install malware that transports
the fingerprint to the attacker, who can use it for a purchase impersonating the
card holder (see Sect. 3 for details). This paper shows that such exploits can be
conducted by anyone who reverse engineers TRA in the manner of this paper,
without requiring any additional knowledge about TRA.

2 Reverse Engineering Transaction Risk Assessment:
Fingerprinting

3DS 2.0 specifies very little about how card issuers should implement Transaction
Risk Assessment. To understand how merchants and card issuers assess the risk
of consumer payments we therefore reverse engineer existing implementations.

2.1 Reverse Engineering System Set-Up

Figure 1 shows the reverse engineering set-up. Within 3DS 2.0, a number of
services and stakeholders are involved: the payment initiator using a browser, the
merchant providing the check-out page at every purchase, and a set of services
and servers for the authentication, termed the Access Control Server (ACS). The
ACS maintains payment initiator’s data which can be used to authenticate the
cardholder during a purchase.

To intercept communication, we use the Fiddler proxy, which is available as
open-source [32]. The proxy runs on the machine of the payment initiator (i.e., our
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own machine). We configure the machine’s web browser (WB) to send HTTP(S)
requests to Fiddler, which then forwards the traffic to the merchant or ACS. The
responses are returned to Fiddler, which passes the traffic back to WB. When
HTTPS decryption is enabled, the Fiddler proxy generates a self-signed root cer-
tificate and a matching private key. The root certificate is used to generate HTTPS
server certificates for each secure site that is visited from WB.

Apart from intercepting the browser communication, we use two other tech-
niques. First, using Fiddler, we challenge WB as if we were the merchant or the
card issuer. Secondly, from Fiddler, we challenge the merchant as if the challenge
was originating from WB. To handle (‘tamper’ in Fiddler terminology) a chal-
lenge, Fiddler provides a breakpoint function, which invokes a pause to the com-
munication. Once paused, we can tamper or edit the changes to the communica-
tion data.

In total, we used five test cards for our experiments, three Visa cards (C1-C3)
and two MasterCard cards (C4, C5). To make sure that 3DS 2.0 does not have
any machine identifiers pre-installed on the machine, we had a fresh installation
of Windows 10 operating system and Chrome 59.x web browser.

The merchant web sites we used were all enabled with 3DS 2.0 checkout and
were selected from the Alexa list of merchant web sites [2]. The ‘Verified by
(payment-network)’ icon on the merchant web site indicates that it is 3D Secure
enabled. To ensure that we have a representative sample of merchant web sites,
we kept track of the ACS URL’s to which our transaction were redirected. All
‘Verified by (payment-network)’ websites redirected us to the same ACS URL
indicating that the implementation of 3DS is issuer based. For each test card, we
made several legitimate transactions and recorded the complete checkout session
for each transaction with Fiddler. We decided to stop making further transac-
tions once authenticated by ACS using frictionless authentication. This ensures
that the ACS trusts WB enough for frictionless authentication. We decoded the
3DS 2.0 transaction data as necessary and analysed the outcomes in detail.

2.2 3DS 2.0 Authentication Protocol

Figure 2 shows the transaction sequence for frictionless authentication over 3DS
2.0, collating 3DS 2.0 specification with transaction information extracted from
Fiddler. The box labelled ‘Tunnel (Customer,ACS)’ represents the reverse engi-
neered part of transaction visible from WB, while the transaction sequence steps
for the rest of the parties are derived from 3DS 2.0 specifications.

In Fig. 2 the customer initiates the payment in step 1 and in step 2 the
merchant decides to trigger user authentication through 3DS 2.0. Step 3 and 4
set up the connection between payment initiator and ACS.

Message 5 through 11 detail the interaction between browser and ACS, where
the ACS retrieves the data from the browser used to assess the transaction risk.
In step 6, the ACS sends JavaScript dfp.js to the browser and posts the results
back in step 8. Note that dfp stands for device finger print, it aims at identifying
the device by fingerprinting it, so that subsequent payment can be traced back
to the same machine (and, therefore, more likely to the same payment initiator).
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If this is the first time the browser uploads the JavaScript, the ACS repeats the
process in steps 9–11 to install persistent cookies (IDCookie) at the browser.

Hereafter, the transaction is processed according to the rules specified in EMV
3DS 2.0 specifications that states the 3DS Server to submit an Authentication
Request (AReq) to the ACS. Transaction Risk Assessment is then completed in
step 13, here resulting in frictionless authorization as indicated by No Challenge.
The merchant can now submit an Authorization request (message 15).

:Payment Initiator :Merchant :3DS Server :ACS :Authorization

1. Pay / https

2. Enable 3DS 2.0

activate3ds()
3. Request (Tr.Num,3DS URL)
4. Response (Tr.Num, 3DS URL)

4. Connect ACS+POST[Tr.Num]

5. Connect ACS+POST[Transaction Number]
6. Load dfp.js+add(SessionCookie)

7. dfp.js

8. POST[3DS Server Transaction ID, dfp.js (data)+SessionCookie]
9.Load [dfp.js,SessionCookie]+add(IDCookie)

10. dfp.js

11. POST[3DS Server Transaction ID, dfp.js (data)+SessionCookie+IDCookie]

Tunnel(Customer,ACS)Tunnel(Customer,ACS) Frictionless Authentication Method

12(a). AReq
12(b).AReq

13. No Challenge

14(a). AResp
14(b). AResp

15. Authorization
...X. Accept

Fig. 2. Frictionless transaction sequence diagram.

2.3 3DS 2.0 Transaction Risk Assessment Data

The reverse engineering exercise shows how the ACS builds up a fingerprint of
the payment initiator’s machine. The ACS uses three pieces of information to
establish a fingerprint, as discussed in this section:

1. the fingerprint information extracted from the browser using JavaScript
2. the 3DS 2.0 ID cookies fetched from the browser
3. the HTTP headers from payment initiator’s browser forwarded by the mer-

chant to the ACS
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Fingerprint Data Using JavaScript. The JavaScript fingerprinting scripts
that we analysed contain functions to (i) collect browser-supplied information
from the end-user device, and (ii) forward the collected data to the 3DS 2.0 server
as a single Base-64 encoded string (the 3DS 2.0 specifications [10] requires all
the data messages to be in Base-64 format). Table 2 in Appendix A shows an
exhaustive list of device attributes from card C1 to C5 that are passed from WB
to the ACS. The loading and execution of dfp.js by the ACS as a part of the
checkout process is similar for all test cards that we used.

The data obtained is quite diverse, from browser and operating system infor-
mation, to display, time, geo-location and some plug-in software information. The
fingerprinting script obtains information that is part of HTTP headers through
the nav.userAgent() and test() methods (see Table 2). The main method is
deviceprint browser(), which gathers information about the browser and the
operating system. With respect to geolocation, to the best of our knowledge,
ACSs only use whether geolocation is enabled and the time zone of the machine
(through deviceprint timez()). It is likely that the ACS also uses URL
and/or IP information as an indicator of location, but this is captured differ-
ently. Information about the hardware is obtained from deviceprint display()
and window information(). Browser settings about tracking and advertise-
ment preferences are provided by DoNotTrack and Useofadblock. Finally,
deviceprint software() and flashscript() provide information about spe-
cific hardware. In our experiments, only one ACS requested Flash information
using flashscript().

To exchange the fingerprint information, dfp.js provides two more methods:

– encode deviceprint() combines the collected data into a single string. It
formats the string by removing whitespace, add delimiters and other charac-
ters as requires by the ACS.

– asyncpost deviceprint(url) posts the data to the ACS URL. The data is
converted to base-64 before being sent as a form element to the ACS.

An example of resulting encoded device fingerprint is displayed in Fig. 5 of
Appendix A.

Cookies. We found three types of cookies installed by the ACS on our machines.
These are also described in Table 2, bottom rows. Full cookies are displayed in
Fig. 6 of Appendix A.

– Session cookie. Session cookie. The cookie is deleted after a user closes the
session.

– Test cookie. A test cookie with a name TESTCOOKIE and a value of Y
was observed in exchanges during the transaction. This is set by the ACS
server to determine if the user browser settings allowed cookies to be set.

– IDcookie. When the cardholder first enrolls into the 3DS 2.0 system, a token
in the form of ID Cookie(s) is placed on the cardholder browser. The num-
ber of cookies installed varied from one to three. In all instances we found
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that these cookies have a validity of three years from the date of installation
and also have an HTTP-only security tag. The HTTP-only tag on a cookie
protects it from being accessed by cross-domain websites.

Data Passed from Merchant to ACS. Data passed by the merchant in AReq
message (step 12 of Fig. 2) contains elements that identify payment initiator
browser configuration. For instance, Table A.1 in the EMV 3DS 2.0 specifications
[10], suggests merchants to pass browser accept headers, language, screen details
and user agent in the AReq message. The browser configuration helps the ACS
to render a correct iframe for the cardholder device and may be used by the
ACS to compare the information passed with dfp.js. To inspect the methods by
which the merchant collects data to frame the AReq message, we referred to the
merchant developer guides from payment networks Visa [36] and MasterCard
[22] and payment service providers like PayPal [26], which suggest to use the
HTTP headers passed on by the merchants during checkout as a part of WB’s
authentication data.

2.4 Discussion of 3DS 2.0 Implementations

There exist a number of notable differences between different implementations
of 3DS 2.0. These differences can be categorized as follows:

1. difference in the use of 3DS protocol version
2. difference in transporting the device fingerprint: obfuscated versus plain-text
3. difference in amount of data collected as a fingerprint: JavaScript based versus

HTTP headers and cookies only.

Difference in the Use of 3DS Protocol Version. We observed that the
ACS associated with card C2 adds a layer of frictionless authentication over the
3DS 1.0 protocol. As opposed to 3DS 2.0, the browser collects and submits the
AReq message with the transaction identifier, following the 3DS 1.0 specification.
The ACS installs and collects the fingerprint data from the browser. Similar
to 3DS 2.0 frictionless authentication, if this is the first 3DS 1.0 transaction
from the machine, the ACS repeats messages to install IDCookie. Hereafter the
transaction is processed according to the 3DS 1.0 specification. The ACS decision
(to not challenge) is added to the ARes which is then forwarded to the merchant
via the browser. Comparing the frictionless authentication of 3DS 1.0 and 3DS
2.0, both of these protocols capture static fingerprint data in base-64 encoded
format and use HTTP-only IDCookies for TRA.

Difference in Device Fingerprint Implementation. In two cases (C2 and
C5) we noticed that code obfuscation techniques were applied to make the
JavaScript difficult to read and analyse. However, obfuscated codes has certain
general limitations, in that, it is an encoding technique (not encryption) and
needs to make sure that the code does not loose its functionality when executed
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over the system. The 3DS 2.0 device fingerprint JavaScript can still be run to
obtain base-64 device fingerprint values.

Additionally, code obfuscation is a technique that has long been used by
malware writers to hide their malicious code. Therefore there are plethora of
security tutorials and freely available security tools designed to de-obfuscate
JavaScript. The most reliable de-obfuscater that we discovered for our research
is available as open source from Intelligent Systems Lab, Zurich [18].

Difference in Amount of Machine Data Collected. Although Table 2
shows an exhaustive list of all the data elements collected by the fingerprinting
scripts and HTTP headers, the amount of data collected by each implementation
of the JavaScript varies substantially. Some of the card issuers have no device
fingerprinting JavaScript implemented at all. For example the card issuer of C3
implements frictionless authentication over 3DS 1.0 and only relies on the data
received in the AReq message.

As a final note, the 3DS 2.0 protocol also defines an enrolment phase during
which the card issuer collects the fingerprints from the card issuer computer
and signs the fingerprint data to create ID cookies. The card holder computer is
then ‘tagged’ through the usual cookie mechanism with these ID cookies. This
enrolment phase is imperfect, in that it cannot be determined if the payment
initiator who enrols a certain card is a legitimate user of the card.

3 Impersonation Attack

In this section we device a realistic impersonation attack, where an attacker
uses obtained data described in the previous section and avoids being challenged
for a second factor of authentication information. We first describe the precise
attack model in Sect. 3.1, and then explain in Sect. 3.2 how the attack can be
implemented, particularly related to obtaining the data. We carried out a number
of experiments with different machines to demonstrate that the impersonation
attack indeed succeeds, as we will describe in Sect. 3.3.

3.1 Attack Model

The objective of the attack is to use the credit card of another party to suc-
cessfully complete an online purchase, despite the fact that the merchant uses
3DS 2.0. We assume that the attacker has no manner in which it could respond
successfully to a challenge for a second factor of authentication information.
Therefore, the objective of the attacker is to avoid a challenge and be allowed
to complete a frictionless transaction. We consider the attack successful if an
attacker avoids being challenged in situations the ACS actually should challenge.

To succeed, the attacker needs to obtain the credit card details, the cookies
and the fingerprint data used for Transaction Risk Assessment, as described
in the previous section. We do not assume any insider administrative access
privileges of the attacker, neither at the payment initiator’s machine nor at any
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of the 3DS 2.0 services. The attack assumes a perpetrator manages to install
malware or plug-in that collects the necessary data from the payment initiator’s
machine, which includes running the JavaScript fingerprinting scripts–we will
argue in the next section that that is not far-fetched. Shipping this data to the
attacker allows the attacker to impersonate the cardholder’s identity by crafting
its 3DS 2.0 authentication data to be identical to that of the payment initiator.

3.2 Attack Implementation

The attack implementation needs to complete two stages: (1) obtaining the card
and transaction risk assessment data, and (2) using the card and transaction
risk assessment data.

Obtaining Card and Transaction Risk Assessment Data. In this stage,
the attacker needs to obtain credit card details and machine fingerprint data
(including cookies). There is a variety of reasons why this can only be done
through a Man in the Browser.

A challenge is that the ID cookies (see Sect. 2.3) are http-only protected, that
is, they cannot be read by any cross-domain web pages or through JavaScript.
Browsers allow access to http-only cookies to extensions (including malware)
because extensions are considered “trusted” once installed, whereas regular
JavaScript is not. Cross-site scripting (XSS) [4,5,33], in which a script from
a web site different than the merchant or 3DS 2.0 server attempts to access
information such as cookies, is therefore not possible.

The most basic approach to obtain the required data is a browser plug-in that
can sniff the browser communication to steal http-only cookies, record keystrokes
to steal user payment data and execute device fingerprint JavaScript to capture
the device fingerprints. More advanced malwares have such features, and are
commonly available at [21,38], see for instance the ZeUS, SpyEye, Dridex and
Tinba malwares. Once such malware is installed, it has an ability to obtain card
transaction data for a purchase, the associated transaction risk assessment data
described in the previous section, as well as the http-only cookies [12,19,34].
Malware SpyEye, for example, gets into a browser by prompting them to install
a pdf reader or a flash player plug-in. Once into the browser, it updates itself
as needed to configure fake entity certificates into the browser storage, record
keystrokes, sniff the browser communication, records browser sessions and even
capture screen shots [15,31].

Using the Obtained Card and Transaction Risk Assessment Data. The
task in exploiting the obtained data is to impersonate the card holder in the
attacker’s browser. The attacker copies the cookies to their own browser, and
initiates a transaction with the merchant of choice, even if the merchant uses
3DS 2.0. It also receives credit card details and machine fingerprint data, per the
above. At payment, the attacker creates or replays the correct responses in the
protocol of Fig. 2. Since there is no randomness in the fingerprint data, the same
string of dfp.js data and HTTP headers obtained from the payment initiator’s
machine can be replayed on the attacker’s machine using Fiddler (if required).
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To tamper the data, fiddler breakpoints are added whenever the merchant and
the ACS connect to the attacker’s browser.

3.3 Attack Demonstration

The demonstration of the attack aims to identify if it indeed is possible to imper-
sonate from a different machine a legitimate payment initiator. In this demon-
stration we use the data obtained from machine M1, using the experiment set-up
from Fig. 1. We randomly selected a merchant with 3DS 2.0 enabled checkout and
repeated transactions using all test cards C1 to C5 until M1 was trusted enough for
frictionless authentication. The payment sessions made from M1 were recorded
by the Fiddler proxy and were reused on a differently configured machine M2.
We also show how a different machine M3 that is identically configured generates
the same fingerprint. We note that M2 and M3 were on networks different from
M1, so that the IP source address is different.

The approach behind our experiments is as follows. We conduct the experi-
ment for the five credit cards mentioned. First, we ran an experiment to verify
that transactions from the differently configured machine M2 are indeed chal-
lenged if one only enters card information (and does not impersonate the card
holder with the risk assessment data). This verification was successful in all of the
cases except for card C1 where lower value transactions below £10 were approved
(we will get back to this in the next section). Then, we ran an experiment in
which we used the obtained transaction risk assessment data to impersonate the
card holder, to see if we were allowed to complete the purchase unchallenged,
i.e., in frictionless mode. We initiated transactions where we selected products
with values ranging between a £1 to £300, on an online merchant that uses 3D
Secure 2.0 at checkout.

We were successfully able to execute the attack for all our test cards (C1-C5),
in that the transactions were approved without any challenge by the card issuing
bank’s ACS. Interestingly, only for test card C5, the card issuer ACS issued chal-
lenges when the value of transaction reached above £200 (a typical transaction
threshold set for frictionless authentication).

We ran a second experiment, using a different but identically configured
machine M3, with the same hardware and software as M1. In so doing, we wanted
to see if different machines that are configured identically generate identical
Fingerprint data. This is to simulate a scenario where an attacker is unable to
obtain the device fingerprint data but was able to get the ID cookies. In all
cases, the transactions were allowed to go on without being challenged. Close
inspection of the data that M3 sent to the merchant and ACS revealed that the
transaction risk data was essentially identical for M1 and M3.

Reflection. For consumers it would be important to know how merchants and
card issuers respond if the above attack took place. To that end, we communi-
cated with the card issuing banks to understand how it would react if we were to
report the fraudulent transactions that were made from the attacker machine.
The card issuer for C3 asks cardholders to identify some previous transactions
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made from the victim’s machine and would not register the transactions made
from attacker machine as fraud. The card issuer for C3 also blocks and re-issues a
new payment card to the card holder. However, in two cases (C4 and C5), the card
issuer argued that the transactions must have originated from the actual card
holder’s machine. They argued the card holder is trying to perform a ‘friendly
fraud’, and so is denied a refund of any reported losses. This paper shows that
this conclusion is not necessarily correct.

4 Reverse Engineering Transaction Risk Assessment:
Decision-Making

Section 2 established which data 3DS 2.0 implementations used in their transac-
tion risk assessment, and we showed that with that data alone, one can execute
an impersonation attack. However, this does not yet provide us with full under-
standing of the way risks are being assessed by the ACS. First, the ACS may
use additional sources of data, for example, it may use header info from the
protocol stack such as the IP source address or some other data about the card
holder available from the card issuer. Secondly, the ACS will set certain rules
about when to invoke a challenge. These rules will stipulate which fingerprint
data to consider, and specifies bounds on data outside which the transaction will
be challenged (e.g., a limit for the transaction amount).

There are number of questions of interest motivating further re-engineering of
the risk assessment approach. First, it provides information about which variants
of the impersonation attack would succeed and thus allows us to assess the
security and risks behind online payment. Secondly, it serves as a suggestion
for a possible methodology to assess consumer implications of Transaction Risk
Assessment. TRA shifts liability to the card issuer but nevertheless still exposes
consumers to possible distress when an impersonation attack is carried out.
Arguably, it would be in the interest of the public if there is visibility in the
implementation of Transaction Risk Assessment. The re-engineering experiments
in this section demonstrates how to provide such visibility.

The experiments in this section obtain responses from the ACS for trans-
actions in 8 different scenarios. These scenarios provide all combinations of the
following three features:

1. submitting the machine data and IDCookie or not (from Sects. 2.3)
2. submitting different transaction values
3. submitting transactions from different regions

Table 1 shows selected results from our experiments on two test cards C1 and
C2. Our set-up was identical to Sect. 3, with data obtained from machine M1 used
on an alternative machine M2. Payments were initiated on two merchant websites
(W1 and W2) that enforce 3DS user authentication. W1 is a web merchant local to
the country where the victim card is issued and W2 is an overseas merchant for
a victim’s card.
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Table 1. Experiments with and results for cards C1 and C2

Transaction

number

Scenario Machine

data

Cookie

ID

Value

(£)

Region Website Card Challenged? Transaction

status

Blocked

T1 S1 � � 10 � W1 C1 ✕ Approved ✕

T2 C2 ✕ Approved ✕

T3 W2 C1 ✕ Approved ✕

T4 C2 ✕ Approved ✕

T5 S2 � � 309 � W1 C1 ✕ Approved ✕

T6 C2 ✕ Approved ✕

T7 W2 C1 ✕ Approved ✕

T8 C2 ✕ Approved ✕

T9 S3 � � 10 ✕ W1 C1 ✕ Approved ✕

T10 C2 � Declined ✕

T11 W2 C1 ✕ Approved ✕

T12 C2 ✕ Approved ✕

T13 S4 � � 309 ✕ W1 C1 ✕ Approved ✕

T14 C2 � Declined �
T15 W2 C1 ✕ Declined ✕

T16 C2 � Declined �
T17 S5 ✕ ✕ 10 � W1 C1 ✕ Approved ✕

T18 C2 ✕ Approved ✕

T19 W2 C1 ✕ Approved ✕

T20 C2 � Declined ✕

T21 S6 ✕ ✕ 309 � W1 C1 � Declined ✕

T22 C2 � Declined �
T23 W2 C1 � Declined ✕

T24 C2 � Declined �
T25 S7 ✕ ✕ 10 ✕ W1 C1 ✕ Approved ✕

T26 C2 � Declined ✕

T27 W2 C1 ✕ Approved ✕

T28 C2 � Declined ✕

T29 S8 ✕ ✕ 309 ✕ W1 C1 � Declined ✕

T30 C2 � Declined �
T31 W2 C1 ✕ Declined �
T32 C2 � Declined �

The rows give the various scenarios. For instance, Scenario S1 copies the
machine data and the ID Cookie, for a low value transaction, within the region.
With respect to the region, experiments for C1 and C2 were made from UK and
Germany. Region (�) indicates the transaction attempts were made from same
country.

We see from Table 1 that different card issuers make different risk trade-
offs. In particular, the card issuer of C1 allows more frictionless authentication,
whereas the card issuing bank for C2 challenges the payment initiator more
often. Comparing transaction T4 and T10 for C2 we see that C2’s card issuer
challenges every transaction if the web merchant is in a different country. Table 1
also shows that cards are generally treated more harshly, when transactions
are made from different regions. For instance, when transactions were made
from different country and machine data is corrupted there is more likelihood
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of being challenged and transaction being declined (as opposed to transactions
when initiated from the country local to the card issuer).

(a) C1 on W1 (b) C1 on W2

Fig. 3. Summarising C1’s risk assessment outcomes over merchants W1 and W2

(a) C2 on w1 (b) C2 on W2

Fig. 4. Summarising C2’s risk assessment outcomes over merchants W1 and W2

Figures 3 and 4 summarize the findings of Table 1. The ‘states’ are phases
in the 3DS 2.0 transaction, where Pay indicates initiating payment, while the
other refer to possible outcomes, either approved, challenged/declined or blocked.
Note that for our purposes we do not have to differentiate between challenge
and declined, they both imply that the transaction has not gone through as
frictionless. The arcs are labelled with the scenario given in the second column
of Table 1. CAC stands for challenge limit counter, which counts down from the
limit to zero. Here, the limit is 4, and at the fifth attempt the card is blocked.
For an impersonator, Figs. 3 and 4 serves as a reference map in case where more
card details are stolen belonging to C1 and C2 card issuer.

5 Discussion of Card Payment Systems Security

The problem of authenticating cardholders in the online payment system is exac-
erbated by the desire to cause minimal friction during the checkout. The intro-
duction of 3DS 2.0 addresses this security/usability challenge through the use of
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Transaction Risk Assessment, and it is clear that the industry strongly favours
such risk based approaches, given that in the US about 75% of the card issuers
have adopted risk-based authentication [7]. However, as we have seen in this
paper, the remaining security bottleneck is the secure storage and transfer of
machine authentication data and http-only cookies from the customer machine
to the authentication service.

Once 3DS 2.0 is common and authorization-only transactions can no longer
be exploited, the impersonation attack presented in this paper is potentially
attractive for perpetrators. Its net effect would be that perpetrators can use
stolen 3DS 2.0 frictionless authentication data in online shops without the card-
holder being negligent, exactly as was the case with authorization-only systems
before the introduction of 3D Secure. The attack does not require to synchro-
nize fraudulent purchase with that of an unwitting customer (as a relay attack
would). Malware could easily be designed to sniff the 3DS 2.0 transaction data
and later forward it to the attacker server. In fact, there are a number of such
open source browser extension available and installed be thousands of browsers,
e.g., HTTPWatch [17] and LiveHTTPHeaders [11]. Other developments, such as
FraudFox [37], are also cause of concern. FraudFox aims to make it faster and
easier to change a browser’s fingerprint to one that matches that of a victim, for
instance through profile generator scripts.

Attempts to complicate executing the attack through JavaScript obfuscation,
as some implementations do, cannot be expected to be of much help. There exist
several tools and tutorials on the Internet which can be useful to re-establish the
original data and script obfuscation is therefore far from sufficient. More help-
ful is the manner in which cookies are stored in the observed implementations.
All ID cookies we discovered were secure enabled, which means the cookies are
only passed on secure connections (HTTPS). Secondly, the cookies were tagged
http-only, which implies that the cookie is not readable to JavaScript. This
prevents the cookies from being accessed by the cross-domain websites, i.e., pre-
vents cross-site scripting attacks (XSS). Nevertheless, cookie storage in browsers
remains non-secure unless the machine uses secure storage.

Technologically, an obvious solution for secure transfer would be to use pri-
vate/public key approaches to encrypt and sign messages between the payment
initiator and the 3DS Server. However, for such a solution to gain acceptance
would require a separate trusted secure storage environment for cryptographic
keys and certificates. The payment industry standards [27,28] require payment
credentials, including keys and certificates to be stored in ‘Tamper-Resistant
Security Module,’ which is defined as the set of hardware, software, firmware,
or some combination thereof that implements cryptographic logic or process
(including cryptographic algorithms and key generation) and is contained within
the cryptographic boundary. Today’s computer systems and their software sys-
tems are not provably secure enough. This issue has come up before, when Google
first introduced Android pay with the concept of Host Card Emulation with
Android KitKat 4.4 [14] in 2014. The key storage security model for Host Card
Emulation was software controlled and contained the threat that an attacker may
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compromise the mobile OS to steal the credentials. This approach was therefore
not found suitable to host EMV payment applications [1].

6 Related Work

This section details the comparison of card payment protocols and the security
technologies they utilize. The section also highlights reported attacks on card
payments that are made possible when any security feature is not included in
the protocol. It would go too far to discuss the technologies and protocols in all
detail, but we provide a summary discussion of the salient points.

Solutions for Card Present. This category corresponds to payments when
the card is physically present. With magnetic stripe cards, data integrity and
card authentication (confirming the identity of the card) features were not placed
on the actual card itself. The data stored in a magnetic stripe is static and is
kept in plain text which made magnetic stripe cards vulnerable to identity theft
attacks [23], cardholder impersonation attacks [24] and card cloning attacks [6].

EMV extended the features of smart cards which provided a secure, “tamper
proof”, storage for the card’s private cryptographic keys. The Chip and Pin
protocol defined by EMV makes use of RSA public key infrastructure in three
variants. The Static Data Authentication (SDA) card has a static signature
which is generated by the issuer signed by using the issuer’s private key, and
written to the SDA card during manufacture. However, static signatures are
used to approve every transaction, which makes SDA cards vulnerable to cloning
attacks [6,25]. Dynamic Data Authentication (DDA) payments on the other
hand generate a unique ‘challenge-response’ RSA signature (SDAD) for each
transaction, including a nonce. Combined Data Authenitcation (CDA) improves
upon DDA by encoding the Application Cryptogram into the signature rather
than the transaction data. This makes DDA and especially CDA highly robust
against any form of attack.

EMV contactless provides convenience to the customer by authenticating the
card instead of actually prompting the cardholder to approve the transactions
[9]. Fast DDA (fDDA) and CDA (fCDA) are enhanced versions of DDA and
CDA of EMV chip and PIN, excluding the cardholder authentication methods
from the protocol. Both DDA and SDA offer protection against known attacks on
the payment system, however, each DDA and SDA enabled transactions would
require the cardholders to prove their identity, thus adversely affecting usability.
This was further addressed with an enhanced versions of fDDA and fCDA in
EMV contactless [8].

Solutions for Card Not Present. If the card is not present, the situation is
very challenging, as we have seen in this paper. As discussed in the introduction,
the complications associated with the implementation of the 3DS 1.0 protocol
made it possible for attackers to bypass its security features and perform identity
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theft attacks [16,23]. Chip Authentication Programme (CAP) and Transaction
Authentication Numbers (TAN) [29,30] are two token generation technologies
that consumers use to produce the answer to a challenge from the authorization
system. Typically, this is done with a little machine that reads a credit card
and/or uses a PIN to generate a response to a challenge. These are increasingly
commonly provided by banks, but in many cases are limited to payments through
banking transactions.

In conclusion, different payment protocols have been developed for different
purposes. Satisfactory solutions find a successful combination of usability and
security, and also manage the exposure to risk were something to go wrong. For
instance, transaction limits on contactless cards as well as the frictionless 3DS
2.0 payment limit both manage the risk by limiting loss exposure of consumers.
Not surprisingly, sound approaches challenge for a second factor information,
through a PIN such as in Chip & PIN as well as Challenged Authentication in
3DS 2.0 or using token generators such as in CAP and TAN. However, these
do not satisfy the usability wishes of merchants, leaving consumer with systems
such as 3DS 2.0 that are designed to allow less secure payments and therefore
inherently (and by design) expose consumers and card issuers to fraud.

7 Conclusion

This paper presents the first sizeable experimental study of real-life implementa-
tions of 3DS 2.0. Through a reverse engineering study, we map out the transac-
tion sequences for frictionless transactions. In most implementations we encoun-
tered, the payment initiator’s machine is fingerprinted through JavaScripts,
except for the implementation based on 3DS 1.0. In our experiments we obtained
further insights in the decision making of the authorization service, experiment-
ing with transaction amounts and the region from which payment was initiated.
We found that card issuers differ in terms of their risk appetite, with some issuers
considerable more liberal in allowing transaction to proceed unchallenged.

We also demonstrated an impersonation attack against 3DS 2.0, using only
data that is available from a reverse engineering exercise such as described in
this paper. This impersonation attack is practically feasible and exploits that
fingerprinting information from the payment initiator’s machine can be recreated
by malware or plug-ins, if installed on that machine. This exploit demonstrates
the vulnerability of credit card based payment using browsers, compared to the
more sophisticated security of mobile payment solutions.

A key question for the regulator is whether it was justified to allow risk
assessment based approach to online payment security as result of the PSD II
negotiations. A complete answer to that question would require insight in a
variety of factors, including technological feasibility and acceptance, ease-of-use,
liability, as well as vulnerabilities and threats. In addition, one would need deeper
insight into the specifics of the risk assessment carried out by the card issuer.
However, the reverse engineering approach introduced in this paper provides
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encode deviceprint()
version%3D2%26pm%5Ffpua%3Dmozilla%2F5%2E0%20%28windows%20nt%2010%2E0%3B%20win64%3B%20x64%29%20applewebkit/537%2E36%20%28kht

ml%2C%20like%20gecko%29%20chrome62%2E0%2E3202%2E94%20safari/537%2E36%7C5%2E0%20%28Windows%20NT%2010%2E0%3B%20Win64%3B%20x64

%29%20AppleWebKit/537%2E36%20%28KHTML%2C%20like%20Gecko%29%20Chrome/62%2E0%2E3202%2E94%20Safari/537%2E36%7CWin32%7Cen%2DUS%

26pm%5Ffpsc%3D24%7C1280%7C720%7C680%26pm%5Ffpsw%3D%26pm%5Ffptz%3D5%2E5%26pm%5Ffpln%3Dlang%3Den%2DUS%7Csyslang%3D%7Cuserlang

%3D%26pm%5Ffpjv%3D0%26pm%5Ffpco%3D2

asyncpost deviceprint(url)
dmVyc2lvbiUzRDElMjZwbSU1RmZwdWElM0Rtb3ppbGxhJTJGNSUyRTAlMjAlMjh3aW5kb3dzJTIwbnQlMjAxMCUyRTAlM0IlMjB3aW42NCUzQiUyMHg2NCUyO

SUyMGFwcGxld2Via2l0LzUzNyUyRTM2JTIwJTI4a2h0bWwlMkMlMjBsaWtlJTIwZ2Vja28lMjklMjBjaHJvbWUvNjUlMkUwJTJFMzMyNSUyRTE4MSUyMHNhZm

FyaS81MzclMkUzNiU3QzUlMkUwJTIwJTI4V2luZG93cyUyME5UJTIwMTAlMkUwJTNCJTIwV2luNjQlM0IlMjB4NjQlMjklMjBBcHBsZVdlYktpdC81MzclMkU

zNiUyMCUyOEtIVE1MJTJDJTIwbGlrZSUyMEdlY2tvJTI5JTIwQ2hyb21lLzY1JTJFMCUyRTMzMjUlMkUxODElMjBTYWZhcmkvNTM3JTJFMzYlN0NXaW4zMiU3

Q2VuJTJER0IlMjZwbSU1RmZwc2MlM0QyNCU3QzEzNjAlN0M3NjglN0M3MjglMjZwbSU1RmZwc3clM0QlMjZwbSU1RmZwdHolM0QxJTI2cG0lNUZmcGxuJTNEb

GFuZyUzRGVuJTJER0IlN0NzeXNsYW5nJTNEJTdDdXNlcmxhbmclM0QlMjZwbSU1RmZwanYlM0QwJTI2cG0lNUZmcGNvJTNEMQ==

Fig. 5. Device fingerprint information encoded and sent to ACS.

3DS 2.0 Cookies
TESTCOOKIE=Y

ID Cookies
DMC=AiZVNMlzeO1ukqlXqlc7y%2BkM5Vi%2FGf%2Fa1DlCXYyox7%2F
XIr4kfbIlX04cU%2Bc%2BgWifX5WmJxQFY%2Fl8fH2ysgUzk3FUyhV
jlih3wcIxlG17uFJgBtWgMiZNjoRU6zut3NLLmlXPYLocrIlecsFsRW w%2B6D6JRuya4fb
Hmsww1DOogjzLL4ltobs%3D
cy track user=C.28474910.1603347569
3DSSTBIP=yHWvyRz68jCQRAI7zSC3a5YqJJYDrgbtKRs50bDYIkJTU
Xik3MMi6BYEz5zbiX0awTcVFYARXRLY

Fig. 6. Device fingerprint information encoded and sent to ACS.

an interesting set of tools to find out how risk assessment is implemented and
for the regulator to assess whether the resulting decisions are in the interest of
customers.

A Data Used for Transaction Risk Assessment

Table 2 shows an exhaustive list of device attributes from card C1 to C5 that are
passed from WB to the ACS. The loading and execution of dfp.js by the ACS
as a part of the checkout process is similar for all our test cards that we used.
The ‘Method’ column indicates the functions implemented in the dfp.js that
extract information from WB (for readability, in some cases we have simplified
the method name). The details that are fetched in each function are shown in
‘Attribute description’ column of the table. The ‘Source’ column marks the origin
of each attribute (JavaScript or HTTP). Finally, the rightmost column shows an
example output value of each function.

Figures 5 and 6 show the encoded devide fingerprint and the full cookie con-
tent, respectively.
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Table 2. Data used for transaction risk assessment extracted by javascript file dfp.js.

Method Attribute description Source Example values

nav.userAgent() User agent(UA), OS JavaScript Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/60.0.3112.113 Safari/537.36

test() Accepted MIME

types/ Documents

HTTP

header

text/html, application/xhtml+xml, application/xml;

q=0.9, image/webp, image/apng, */*q=0.8

Accepted charsets HTTP

header

utf-8, iso-8859-1; q= 0.5

Accepted encodings HTTP

header

gzip deflate

Accepted languages HTTP

header

en-US, en; q= 0.8

ActiveX,

GeckoActiveX

HTTP

header

?1:0

Adobe reader and

components

HTTP

header

?1:0

XMLHttpReqest,

Serializer, Parser

support

HTTP

header

Yes/No

deviceprint

browser()

UA(Version,

cpuClass, language)

JavaScript 5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/60.0.3112.113 Safari/537.36; Win32; en-US

navigator.appName JavaScript Netscape

navigator.appCode

Name

JavaScript Mozilla

navigator.appVersion JavaScript 5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/61.0.3163.100 Safari/537.36

navigator.appMinor

Version

JavaScript 5.0

navigator.vendor JavaScript GoogleInc

navigator.userAgent JavaScript Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/65.0.3325.181 Safari/537.36

navigator.oscpu JavaScript Windows NT 10.0

navigator.platform JavaScript Win32

navigator.security

Policy

JavaScript US & CA domestic policy or Export Policy

navigator.onLine JavaScript True

info browser.name JavaScript Chrome

info browser.version JavaScript 61.0.3163.100

info layout.name JavaScript Webkit

info layout.version JavaScript 536.36

info os.name JavaScript win

navigator.geoLocation JavaScript ?1:0

deviceprint

display()

Screen’s (colorDepth,

width, height,

availHeight,

availWidth, HDPI,

VDPI, Pixel Depth,

ColorDepth,

bufferDepth,

FontSmoothing,

Update interval)

JavaScript 2560*1440; 2560*1400; 24; 24

(continued)
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Table 2. (continued)

Method Attribute description Source Example values

window

information()

innerWidth,

innerHeight,

outerWidth,

outerHeight, length

JavaScript 675,473,1392,760,3

DoNotTrack navigator.doNot

Track

JavaScript ?1:0

Useofadblock alert test javaScript ?1:0

deviceprint

software()

Plugins installed JavaScript Adobe Acrobat, Macromedia Flash, Java, MS office,

Cortana...

deviceprint

time()

TimeZone JavaScript -60

deviceprint

java()

Java enabled JavaScript ?1:0

Java Supported JavaScript ?1:0

Java Version JavaScript 1.6. 1.8

javaScript cookies

support

JavaScript ?1:0

Server cookies

support

JavaScript ?1:0

HTTP only support JavaScript ?1:0

flashscript Flash Version FlashScript WIN 28,0,0,126

Flash Version JavaScript 28,0,0

Flash Details FlashScript Platform, Major Version, Minor Version, Capabilities

(Audio, Accessibility, Audio support, MP3 support,

Language, Manufacturer, OS, Pixel aspect, Color

support, Dot per inch, Horizontal size, Vertical size,

Video

Number of Fonts FlashScript 226

List of Fonts FlashScript List of Fonts

deviceprint

cookie()

Cookie enabled JavaScript ?1:0

Session cookie HTTP

header

!yEpKXp9eMDojNcc7zSC3a5YqJJYDrqVB23

H1Cy/yThmhX+omXVM933/...AIr8S7ldvbA==

Test cookie HTTP

header

TESTCOOKIE=Y

IDCookie HTTP

header

35BWzcxFkUu1aDdY%2B%2FxvL3VrDuvgoXau%2FAgU
%2BJqzYvZZoWiGPKKeYruvsGaPTeecduMcSLa%2FU
lf1QGU07S89bddR3dVSFT2dwVeUOd%2FkXvaw7JknH
xjFlk4...GY4I7drTK0nT CNJ%2BhHYW8Y5Wis%3D
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Abstract. It is possible to relay signals between a contactless EMV
card and a shop’s EMV reader and so make a fraudulent payment with-
out the card-owner’s knowledge. Existing countermeasures rely on prox-
imity checking : the reader will measure round trip times in message-
exchanges, and will reject replies that take longer than expected (which
suggests they have been relayed). However, it is the reader that would
receive the illicit payment from any relayed transaction, so a rogue reader
has little incentive to enforce the required checks. Furthermore, cases of
malware targeting point-of-sales systems are common. We propose three
novel proximity-checking protocols that use a trusted platform module
(TPM) to ensure that the reader performs the time-measurements cor-
rectly. After running one of our proposed protocols, the bank can be sure
that the card and reader were in close proximity, even if the reader tries
to subvert the protocol. Our first protocol makes changes to the cards and
readers, our second modifies the readers and the banking backend, and
our third allows the detection of relay attacks, after they have happened,
with only changes to the readers.

1 Introduction

Wireless and particularly contactless systems, such as the EMV (Europay, Mas-
tercard and Visa) contactless-payment protocols, are vulnerable to relay attacks.
That is, an adversary can stand near a victim (e.g., a bankcard) and relay
signals from that device to a second attacker found near the authentication-
verifying party (e.g., a payment terminal). This type of attack has already been
used to steal cars1. As relayed messages take longer to travel then direct mes-
sages, proximity-checking or distance-bounding (DB) protocols [1] measure the
round trip time (RTT) it takes for some authenticating party, called prover, to
answer challenges sent by an authentication-verifying party, called verifier. If the
1 See e.g. http://www.bbc.com/news/av/uk-42132804/relay-crime-theft-caught-on-
camera.
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RTT is within a given bound, then there is a low likelihood that a relay attack
occurred. As such, the contactless version of the EMV protocol has recently been
enhanced with such a relay-counteraction mechanism [5] (see Fig. 2), in the style
of a previously proposed DB protocol [4]. As with other DB protocols, these
newly proposed EMV protocols assume that the reader is honest. However, this
threat-model conflicts with the setting of EMV. I.e, in the current EMV proto-
cols, the entity tasked with enforcing the proximity checks is also the one that
stands to benefit if these checks are ignored: an EMV reader has an incentive
to be dishonest as it will receive the payments from any (relayed) transaction.
EMV readers have also been the target of malware (see e.g. [7]), which could
also override the RTT-measuring software.

Prevents
collusive

relay attacks

Provides
audit-able
evidence

Reader
may be
offline

Changes
to card

Changes
to EMV
reader

Changes to
bank system
backend

Checks
carried
out by

Protocol Yes Yes No card
Protocol × No Yes Yes bank

Protocol × No Yes No auditor

Fig. 1. A summary of the protocols presented in this paper

The above suggests that one should assume that the EMV reader could
collude with relay attackers in mounting fraudulent payments. Moreover, the
current relay-counteracting EMV protocols [4,5] do not provide any evidence
that the protocols were run correctly. So even if a complaint by a card-holder is
made, it would not be possible to audit the EMV reader and see whether the
distance-bounding checks had been performed. In this paper, we address these
shortcomings. Concretely, our contributions are as follows:

I. We define the notion of collusive relay attacks to mean relay attacks in
which the authentication-verifying party (EMV reader) can collude with a MiM
relayer to mount a relay attack against an authentication and payment scheme;
we define an attacker model and security definition for this new type of attack.

II. We present three new EMV protocols that defend against such a mali-
cious reader. A summary of these protocols is given in Fig. 1. A complicating
factor is that bank cards have no accurate clock. Therefore, the card cannot
distance-bound the reader. The complex EMV infrastructure also makes dis-
tance bounding between the bank and the card impractical. Our solutions show
how adding a TPM as a hardware root of trust on-board the reader can solve
these issues.

III. We discuss our design choices, and provide a high-level argument w.r.t.
the resistance to collusive relaying of the EMV protocols we propose.
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2 Background and Foundational Aspects

Contactless EMV. Past work [4] has showed an effective relay attack against
contactless EMV protocols, and suggested a version of contactless EMV called
PaySafe that deters relay attacks. Following this, the main idea of the PaySafe
protocol was added to the MasterCard specification (EMV contactless specifica-
tions v3.1 [5]) and yielded MasterCard’s Relay Resistant Protocol (RRP). Part
of this protocol is shown in Fig. 2.

As with all EMV protocols, the card includes: (1) a private key PvC ; (2)
a symmetric key KM that it shares with the bank; (3) a certificate chain
CertPvCA

(PubC) for the card’s public key PubC . The reader has the public
key PubCA of the Certificate Authority, and so can extract and verify the card’s
public key. RRP starts with a setup phase (not shown in Fig. 2), in which the
reader asks the card what protocols it supports and selects one to run. The card
and reader then generate single-use random numbers NC and UN , respectively.
The reader then sends an “EXCHANGE RELAY RESISTANCE DATA” com-
mand to the card, which contains the nonce UN . The card immediately replies
with its own nonce NC , and the reader times this round trip time. The card
also provides timing information, which tells the reader how long this exchange
should take. The reader compares the time taken with the timing information
on the card. If the time taken was too long, the reader stops the transaction
as a suspected relay attack. Otherwise, the reader requests that the card gen-
erates a “cryptogram” (a.k.a. AC ). The card uses the unique key KM , which it
shares with the bank, to encrypt its application transaction counter ATC (which
equals the number of times the card has been used). This encryption equates
to a session-key denoted KS . The cryptogram AC is a MAC keyed with KS

of data including the ATC , the nonce UN , and the transaction information.
As the reader cannot check the AC , the card generates the “Signed Dynamic
Application Data (SDAD)”: the card’s signature on a message including UN ,
amount, currency, ATC , NC . The reader checks the SDAD before accepting the
payment.

Reader Card
PubCA,UN ∈R {0, 1}32 KM , NC ∈R {0, 1}32

PvC,CertPvCA(PubC)
RELAY DATA UN

T imed
NC ,Timing information(ti)

READRECORD

CertPvB(PubC),...

GENERATE AC,Data
KS=EncKM

(ATC),
AC=MACKs

(ATC ,Data,UN ,..),
SDAD,AC

SDAD=SignPrivC (AC ,NC,ti,... )

Fig. 2. MasterCard’s relay-protected EMV
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On TPMs. The Trusted Platform Module (TPM 2.0) is a hardware root of
trust (see https://trustedcomputinggroup.org). It provides two measures of time:
one is “Clock” (see page 205 of [8]) and the other is “Time” (see page 176 of
[8]). Time is a 64-bitms count from when the TPM was powered up. Clock
shows the real time; this is set when the TPM is created and must be “accurate
even if there is no reliable external clock” [8]. The TPM2_GetTime() command
takes the handle for a signature scheme and some input, and it returns a sig-
nature over TPM-AttestedTime=(Clock, Time) and the input. As such, TPM2_

GetTime() can produce a signed version of a timestamped nonce, with attested
time-information.

Attacks onto TPM-AttestedTime are mainly relevant w.r.t. the TPM Clock
(see 36.3 and 36.6 [8]), as this has a non-volatile dimension, unlike Time. Notably,
if the TPM is powered down, the Clock value is correct when the TPM reboots.
The threats w.r.t. Clock documented by TCG, are as follows: (a) if adversaries
can manipulate external software and local clocks like the CMOS clock on PC
platforms, but if the TPM is not physically attacked, then the Clock’s accuracy
(w.r.t. a small deviation from real time) is assumed to remain within “acceptable
tolerance” (see page 206 of [8]); (b) the Clock value can only be deviated forward,
i.e., it cannot be rewound.

3 System Setup, Threat Model and Security
Requirements

Protocol Entities. Past distance-bounding work has involved a “prover ” who
demonstrates to a “verifier ” that it is close (and possibly authenticates too). Our
framework is different to this past work on DB. Rather than the two entities of
the classic DB model, we have four entities in our setting: a “card ” that interacts
with an “EMV reader ” in a DB-fashion, the EMV reader will have an onboard
hardware root of trust (a “TPM ”), and the reader will send evidence for the
transaction to the “bank system backend ”.

General Infrastructure and PKI. Our protocols use EMV’s existing Pub-
lic Key Infrastructure (PKI), augmented to support TPMs inside the readers.
We assume that Certificate Authorities (CAs) have issued certificates on the
TPMs’ endorsement keys, that the banks, cards and EMV-related authorities
have access to the right key-chains/certificate-chains to verify all certificates
and, notably, first extract the TPMs endorsement keys. These endorsement keys
are then use to verify other certificates sent by the TPM, e.g., certificating the
public counterpart of a TPM’s signing key. In this way, the bank and cards can,
for instance, verify signatures issued by the TPM via a full chain-of-trust, up to
the CAs.

Our Participants’ and Communication Model. Between any card and any
reader, we assume that all messages (irrespective of their bit-length) travel at
an a-priori fixed constant speed, which is also the maximum speed of these radio
interfaces. We assume that communication between the reader’s software and the

https://trustedcomputinggroup.org
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onboard TPM happens also at the maximum speed of the link between the two.
We also assume that cards and readers can run several concurrent executions of
the protocols. Such honest communication is possible if the card and the reader
are no further than an a-priori fixed distance from one another.

Computation Model. Previous DB models have assumed a single, static RTT
bound for all devices. However, our protocols (and MasterCard’s RRP) use a
card specific time bound. To help us formalise this we make the following two
definitions:

Definition 1 (Proximity-Checking Phase). The proximity-checking phase
of a protocol is an exchange of challenges and responses, which is timed by the
challenger.

Definition 2 (Card Time-Bounding Functions td(cardID) and
t(cardID)). We call t(cardID) a time-bounding function; it maps a card iden-
tified by cardID to the time, in time units, taken for that card to perform the
computational part of the timed phase.

We call td(cardID) a d-time-bounding function; it defines the duration of
the proximity-checking phase when executed by a card identified by cardID and
physically found at a distance no larger than d from the reader. We write just
td, when cardID is implicit.

Typically, td(cardID) = tcardID + “time for all messages of the proximity-
checking phase to travel distance (2×d)”. We now define DB protocols with vari-
able time limits.

Definition 3 (Contactless EMV Protocol with Proximity-checking
Phase of Distance-Bound d). A contactless EMV protocol with proximity-
checking phase of distance-bound d (or, for short, contactless EMV protocol
with distance-bound d) is a protocol between the EMV entities card, EMV reader
and bank system backend, that has a proximity-checking phase. The protocol has
additional parameters defined by the time-bounding function t(cardID) and the
d-time-bounding function td(cardID), for each cardID. The reader side of the
protocol may make use of a TPM. One of the EMV entities checks that the time
recorded for the proximity-checking phase is inline with td(cardID). If this is not
the case, then the protocol finishes unsuccessfully.

Definition 4 (Correct Execution). Consider a contactless EMV protocol
with proximity-checking phase of distance-bound d. If all entities in the system
follow the protocol and the distance between the card and the EMV reader is
no larger than d, then the protocol finishes successfully and a correct cryptogram
AC for a payment will be issued by the card, and it will be eventually accepted
by the bank.

Our Attacker Model. Combining DB [3,6] and EMV models [2], we assume an
attacker that also completely controls a number of cards, including all their key
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material. The attacker can act and use the corrupted card’s keys at any location.
Unlike in previous DB models [6], the attacker can know the readers’ key/secret
material and can control the software on the readers to make it perform arbitrary
actions.

We assume that the TPM is as secure as is claimed in its specification, see
page 3, Sect. 2. That is, 1. our attacker cannot tamper with the initial setup
of the TPM’s Clock; 2. our attacker cannot mount any physical attack on the
TPM’s time-reporting TPM-AttestedTime=(Clock, Time); 3. our attacker can
deviate the TPM’s Clock only by making it go forward w.r.t. to the real time
by a negligible fraction.

We assume the attacker cannot make the messages travel faster between the
card and the reader, nor on the link between the reader and the TPM; recall
from the communication model that both these interfaces are respectively set at
their the maximum communication speeds (which is also constant).

We assume all cryptographic primitives used in the EMV protocol are secure
w.r.t. their respective threat-models, e.g., signatures are unforgeable etc.

Our Security Requirements. The main aim of our attacker is to trick the
bank system backend to accept an AC generated by a card that was not in close
proximity with a reader. We formalise this as:

Definition 5 (Resistance to Collusive Relaying). A contactless EMV pro-
tocol of distance-bound d is resistant to collusive-relaying if, for any attacker in
the threat and communication model above, for any payment AC that the bank
system backend accepts from a card that is not controlled by the attacker, the
card must have been within distance d of the reader for the time bounding phase
that lead to the generation of the AC .

4 EMV Protocols Resistant to Collusive-Relaying

4.1 PayCCR: A Protocol Compatible with the Current Banking
Backend

Our first protocol, PayCCR, is shown in Fig. 3. It modifies the EMV protocol
on the card and the EMV reader’s side, yet the bank system backend remains
unchanged from the current standard. As with MasterCard’s RRP protocol,
the time bound td(cardID) to be enforced for the proximity-checking phase is
embedded in each card. Below, we write this bound as td. This time bound is
chosen when the card is created, based on its processing speed, to ensure that
the card and EMV reader are less than d distance from each other. The full
protocol starts off with a standard EMV set up phase, in which the payment
app is selected. The reader starts the proximity-checking stage of the protocol by
sending the card a certificate chain for the TPM’s public part of the signing key.

The EMV reader will then send a nonce NR to the TPM to be timestamped.
The TPM receives this bitstring NR passed to the TPM2_GetT ime command,
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TPM Reader Card

td, KM , PrivC , CertB(PubC)
Cert(PubSignTPM ),
NC ∈R {0, 1}32

PubCA

NR ∈R {0, 1}32
PrivSignTPM ,. . .

TPM2 GetTime(NR)

t1 :=
σ1 = SignTPM (t1,NR)

t1, σ1 σ1

NCTPM2 GetTime(NC )timed

t2 :=
σ2 = SignTPM (t2, NC)

t2, σ2 t2,σ2 ,t1,NR

Cert(PubSignTPM )

Certs

GEN AC, data, . . .

Check signatures & values in σ1 & σ2 ,
Check t2 − t1 < td and check Certs
KS = EncKM

(ATC )
AC=MACKs (ATC ,data,σ1,..)
SDAD= SignPrivC (AC, NR, td, NC ,..)

SDAD ,AC

CheckSDAD
To Bank: AC ,. . .

Fig. 3. PayCCR: protection against collusive-relay and no changes to the bank’s
backend

the TPM timestamps it with TPM-AttestedTime, and using the randomised sign-
ing algorithm ECDSA produces the signature σ1. Then, the EMV reader for-
wards σ1 to the card. This should be done by the reader at the maximum speed
of the interface, i.e., as each bit is received from the TPM it should be forwarded
to the NFC interface. We allow the nonces to be split into bytes and the time
stamping and nonce exchange to be repeated four times, once per byte. The
average of the four time differences would be compared with td.

The nonce NC is pre-generated, thus making the reply time fast. The TPM
timestamps NC (producing σ2), and the reader sends the signature σ2 to the
card. The card sends its certificates to the EMV reader, which then asks the
card to generate the AC to complete a payment. Before generating the AC
the card checks the TPM certificate provided by the EMV reader, verifies the
signatures on the timestamps σ1 & σ2, and ascertains that the time bound is less
than its allowed maximum value td. If these checks pass, then the card generates
an AC and SDAD , which are sent to bank via the reader, and checked by the
bank as normal. If any of the card’s checks fail, then the card sends a declined
message to the reader and aborts.
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Bank TPM Reader Card

td, KM , PrivC
CertPrivCA(PubB)
CertPrivB(PubC)
NC ∈R {0, 1}32

PubCA, NR ∈R {0, 1}32PrivSignTPMCert(PubSignTPM ),
KM

TPM2 GetTime(NR)

t1 := ;
σ1 = SignTPM (t1,NR)

t1, σ1 σ1

NC , tdTPM2 GetTime(NC )timed

t2 := ;
σ2 = SignTPM (t2, NC)

t2, σ2 READ RECORD

Certs

GEN AC, data, . . .

KS = EncKM
(ATC)

AC=MACKs (ATC,data,σ1,..)
SDAD= SignPrivC (AC, NC ,
td, σ1 ,. . . )

SDAD , AC

CheckSDAD
AC, t1 , t2, σ1 , σ2 , td, SDAD , Certs,. . .

Check t1 in σ1, t2 in σ2
Check σ1, σ2 & NC , NR, td in SDAD
Check AC, Check t2 − t1 ≤ td

Fig. 4. PayBCR: Contactless EMV protection with no changes to the card

Discussion. This protocol, and the others herein, make two main assumptions:

1. that a time bound td for each card can be apriori set;
2. dishonest reader cannot receive and/or send proximity-checking-phase mes-

sages faster than an honest reader, except for an insignificant amount.

We detail on the second assumption above. The assumption, present in our
threat model in the previous section, implies that the TPM and NFC APIs used
must run at their maximum speeds. Even so, a dishonest reader may gain some
advantage by running at a faster clock speed than an honest reader. However,
as the only effective timed action undertaken by the reader is forwarding bits
from the TPM interface to the NFC interface, an overclocked reader can only
gain an advantage in the order of nanoseconds (referred to in assumption 2 as
an “insignificant amount”). Such an advantage would translate into a theoretical
relay attack (including w.r.t. our definition), however –in practice– it would be
a relay over a distance larger than the bound only by a few centimetres. We
could tighten Def. 5 to exclude such practically irrelevant attacks. Instead, we
choose to just discard it out right, on grounds of it being insignificant. In the
conclusions, we discuss other ways of deterring/detecting readers running in an
overclocked mode in the proximity-checking phase.
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4.2 PayBCR: A Collusive-Relay Resistant Protocol Compatible
with RRP Cards

Our second protocol, PayBCR, does not modify the card’s side w.r.t. the current
RRP protocol [5]. PayBCR achieves this in three steps: (1) it uses a timestamped
signature from the TPM instead of what is now the reader’s nonce in the EMV
protocol v3.1; (2) the TPM timestamps the card nonce; (3) both timestamps are
passed to the bank along with the AC, and the bank can check the difference
between the timestamps to ensure the card and EMV reader where close. Addi-
tionally, the timing information ti on the current RRP cards is used as our time
bound td. As with RRP, storing the time bound on the card and signing it avoids
the bank having to maintain a look up table of all card’s time bounds. The full
protocol is shown in Fig. 4. The EMV reader sends its nonce NR to the TPM to
be time stamped. The signature σ1 from the TPM is sent to the card instead of
the first nonce UN in the current RRP. To keep the protocol compliant with the
current contactless EMV protocol in Fig. 2, this bitstring we send to the card
should be shorter, this is achieved by truncating σ1; this truncation we denote
as σ′

1.
Like in the current relay-protecting EMV protocol, the card replies with its

nonce NC . The card’s nonce is immediately sent to the TPM to be timestamped.
The protocol continues in nearly the same way as the current relay-protecting
EMV protocol. The SDAD now signs the AC , the timing information and σ′

1

(in place of UN ), this along with the card’s time-bound td, σ1, σ2, t1 and t2
and the AC are sent to the bank. The bank will check that the TPM’s signed
timestamps match the nonce values used in the AC, the timing information is
correctly signed, and the time difference between the nonces is less than this
time bound. Other details, not in Fig. 4, are either as in protocol PayCCR or are
self-explanatory.

PayBCRv2: As a variant of our PayBCR, we can have the EMV readers store the
TPM’s signed timestamps σ1 & σ2, and the time values t1 & t2, the SDAD
and card certificates, and not send them to the bank system backend, i.e., the
protocol would be backwards compatible with both the current standards for the
bank system backend and cards; only changes to the EMV readers are required.

Such a variant would entail that a collusive-relay attack could not be stopped
in real time. Rather this version of the protocol would be suited for when a card
owner raises a complaint, or for the bank to detect possible fraud a-posteriori.
At such a point, the EMV reader would be audited and all of the transactions
would be checked.

Discussion. This protocol variant would be much easier to deploy than those dis-
cussed above, EMV reader manufacturers could add this protection unilaterally,
without needing to make any changes to the current EMV specifications or the
bank system backend. Making changes to the specifications for cards would be a
slow process requiring input from many stakeholders, and making changes to the
bank system backend would be expensive, due to the dedicated hardware banks
generally use. Therefore, this protocol variant has a clear advantage over the
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others. The disadvantage of this protocol variant is that collusive-relay attacks
could still be carried out and only detected during an audit. However, this is in
keeping with much of the rest of the EMV security model that allows some fraud
and aims to detect, roll back or refund it after the event. Our protocol would
make any malicious interference by the EMV reader in the proximity-checking
phase detectable, meaning that the bank could refuse payments to the reader, if
the audit information was missing or did not check out, so removing all motiva-
tion for this attack. Therefore, while the protections provided by the PayBCRv2
protocol are the weakest, it is perhaps the most practical to introduce.

Lastly, whilst our protocols implicitly timestamp payments, in this work we
do not investigate links between correct/secure payments and their associated
transaction time.

5 High-Level Security Assessment

Our protocols do not alter any security property of the current contactless EMV;
the authentication properties of our protocols follow from the basic EMV proto-
col. As in EMV, the freshness from the card and the reader stop replay attacks.
The AC is generated based on a key shared only between the card and the bank,
so the bank can be sure that this came from a card; the reader gets similar guar-
antees from the signed SDAD .

Assume protocol PayCCR is run in the presence of an arbitrary attacker in
our model, and an AC is sent out by a card not controlled by the attacker. In
PayCCR if the bank system backend accepted an AC then:

1. The backend checks the AC based on the card key. So, the AC must have
come from that card (which is not controlled by the attacker), therefore this
card will have executed its algorithm, i.e., performed the required checks.

2. The card checks the certificate for the TPM’s signing key. Therefore, the card
can be sure of the timestamps signed by the TPM.

3. Since the card checks that σ1 includes the timestamp t1, the card can be sure
that the σ1 message originated at the EMV reader’s TPM at time t1.

4. The card will only broadcast NC after it has received σ1.
5. The card checks that σ2 includes its nonce NC and the time t2, therefore it

can be sure that the reader received the nonce NC before time t2.
6. Together (3), (4) and (5) ensure that the RTT of the messages σ1 and NC

was at least t2 − t1 and that these messages went between the card and the
TPM.

7. The card knows its time-bound td. So, checking that t2 − t1 < td ensures
that the card was within distance d of the reader, which gives us resistance
to collusive-relaying (Definition 5).

We now place ourselves in the setting where the protocol PayBCR is run in
the presence of an arbitrary attacker in our model and an AC is sent out by a
card not controlled by the attacker. For our second protocol, PayBCR, recall that
the checks are carried out by the bank system backend, therefore the following
reasoning applies:
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1. Checking that σ′
1 and NC are in the SDAD ensures that the reader/attacker

sent σ′
1 to the card, and that the card thereafter used the nonce NC .

2. As σ1 is a high-entropy, randomised signature, checking that σ1 signs t1 means
that σ1 was generated at time t1 and cannot have been sent to the card before
this.

3. By looking at the timestamps in σ1 and in σ2, and at the fact that σ2 also
signs NC , the bank system backend will know that NC was only broadcast by
the card after t1 (and in fact after σ1 was received) and before t2. The bank
system backend also checks this against SDAD , which signs NC , σ1.

4. Together (2), (3) and (4) guarantee that the round trip time between the card
and the EMV reader’s TPM was less than t2 − t1.

5. Checking that td is in the SDAD ensures that the correct time-bound for the
specific card is used in the checks.

6. Checking that t2− t1 < td together with (5) and (6) ensures that the distance
between the card and the reader was within distance d of each other.

6 Conclusions

In this paper, we presented three protocols that show how –by using a TPM–
rogue readers can be stopped from subverting the relay-detecting checks in con-
tactless EMV. The three protocols with different levels of compatibility with the
current EMV framework. We also put forward an attacker model (in line with
using TPMs as roots of trust, considering dishonest EMV readers, etc.) and a
new security definition that protects against reader-assisted relaying in EMV
protocols.

In one line of future work, we wish to develop a new, fully-fledged symbolic
formalism and a provably-secure models that can be used to prove the correctness
and security w.r.t. collusive relaying.

Moreover, we plan to implement our protocols to show that our proposed use
of the TPM can lead to a workable EMV protocol with such protections against
strong relaying. For PayCCR, we will measure the time it takes for ubiquitous
smart-cards to verify different randomised signatures.

We will investigate the second assumption of our designs, i.e., that reader’s
computations in the proximity-checking phase being kept at a constant amount.
A step further to investigate is to certify the read/write speed of the readers
via a TPM (i.e., using TPM_GetQuote or other host-attestation methods); this
type of method can add security guarantees but it would clearly require further
checks by the bank.
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Abstract. Internet banking security is set to take a major step for-
ward: On September 14, 2019, the Regulatory Technical Standards of
the Revised Payment Service Directive (PSD2) are going to be effec-
tive within the European Union and the European Economic Area. This
regulation makes two widely demanded transaction security properties
mandatory: two-factor authentication, and the dynamic linking of the
authentication code to the transaction’s beneficiary and amount (full
transaction authentication). Even though the regulation is undoubtedly
a positive development from a security perspective, it does not account
for all the technical and human weak points involved in the transaction
process. In this paper, we look at a series of attacks targeting online and
mobile banking that are possible even in a post-PSD2 era. Despite the
regulatory motivation of this work, the presented issues and suggestions
to address them are likely to be universal for internet banking in general.

Keywords: Online banking · PSD2 · RTS · SCA · Attacks

1 Introduction

At FC 2013, Adham et al. presented a work entitled “How to Attack Two-Factor
Authentication Internet Banking” [1]. They outlined the current state of online
banking transaction security in the United Kingdom (UK) and pointed out how
it might be attacked. Although they appreciated the increasing adoption of a
second factor for transaction authentication, they argued that an additional one-
time password (OTP) alone would not sufficiently protect a customer from falling
prey to malware. Their primary concern was that the to date employed trans-
action authentication methods did not provide full transaction authentication.
That means, that the resulting OTP as generated by the respective two-factor
authentication (2FA) method did not allow for an independent verification of
the transaction’s integrity. As a consequence, 2FA did only stop adversaries from
performing arbitrary transactions at any time, but did not prevent a real-time
transaction manipulation attack.

In March 2018, the Regulatory Technical Standards (RTS) came into force
and are going to apply from September 2019 [8]. The RTS are part of the Revised
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Payment Service Directive (PSD2) which replaced its predecessor PSD that ini-
tially introduced the Single European Payment Area (SEPA). A primary goal of
the RTS is to make payment services more secure and to foster the population’s
trust in online banking as it is still on a steady rise [9]. To achieve this, the RTS
stipulate strong customer authentication (SCA) that requires remote payments
to make use of at least two independent and mutually exclusive elements of the
categories knowledge, possession and inherence. Additionally, the payment ser-
vice provider must issue a single-use authentication code that is dynamically
linked to the transaction’s beneficiary and amount, with both being displayed
to the customer for verification. The latter makes full transaction authentica-
tion mandatory. This enables a customer to reliably detect fraud even if the
transfer-issuing device is compromised by malware.

Even though undoubtedly a positive development, the RTS are not going
to rule out all of the attack vectors. In the spirit of Adham et al., we aim at
identifying weak points that neither full transaction authentication nor the new
regulation addresses. To that end, we include attacks that leverage technical as
well as social engineering aspects.

2 Background and Related Work

Carrying out a credit transfer consists of two steps: issuing and confirming. At
first, customers need to log in to their online banking. This process is usually
secured through a knowledge authentication element, i.e., a password. After suc-
cessful login, the customer issues a transfer to a desired beneficiary by specifying
the account number and the amount. To make the transfer effective, the bank
additionally requires the transaction’s confirmation, usually by asking for an
OTP which is frequently referred to as TAN (transaction authentication num-
ber) in the context of online banking. The method that dynamically links the
transaction and yields the TAN is hence called TAN method.

In the following, we outline related works for three popular TAN methods.
All of these methods offer a 2FA as well as full transaction authentication and,
hence, display the transfer details—i.e., the beneficiary’s account number and
the amount—on a second device. It is the responsibility of the customer to verify
that the displayed transfer details match the desired ones [19]. If they do not
match, the customer must abort the transaction (“What You See Is What You
Sign”, WYSIWYS).

SMS Authentication. The SMS-based authentication procedure (smsTAN)
relies on the short message service (SMS) to transmit a text message with the
transfer details and the TAN from the bank to the customer. In 2008 and 2014,
Engel discovered several vulnerabilities in the Signalling System No. 7 (SS7)
protocol that forms the foundation SMS messages are built on [21]. Also Long-
Term Evolution (LTE)—the to date latest mobile communication standard—is
prone to attacks [22]. Mulliner et al. also addressed the security of the SMS [18]
and showed how to abuse flaws to attack the smsTAN method [17].
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Smartcard Authentication. Particularly European banks rely on the Chip
and PIN (EMV) standard to create a TAN using the customer’s bank card.
This method requires a dedicated reader device that also displays the transfer
details to the customer. In 2009, Drimer et al. uncovered various design and
protocol flaws in the respective implementation of banks in the UK. A year later,
Murdoch et al. successfully launched an attack against the EMV protocol that
allowed for using a stolen card without knowing the PIN [20]. In 2011, the attack
of Murdoch et al. even appeared in the wild, when about 40 sophisticated card
forgeries surfaced in France, causing an estimated net loss below e600,000 [12].
In 2014, Bond et al. discovered another flaw in the EMV protocol that enabled
an adversary to de facto clone a card using a rogue point-of-sale terminal [3].

Smartphone Authentication. With the advent of smartphones, banks also
started to leverage their high availability and cost effectiveness by implementing
app-based TAN methods. These procedures work similar to the smsTAN method
but deliver the data over the internet using a dedicated app developed by the
bank. In 2014, Dmitrienko et al. identified various weaknesses in app-based 2FA
solutions [5]. They successfully infected both authentication devices—personal
computers and mobile phones—with a self-implemented cross-platform malware.
Similarly, Konoth et al. presented an attack against smsTAN that only required
the infection of the user’s computer due to the high integration smartphones and
PCs offer today [15]. Haupert et al. have contributed to the field of attacks that
target one-device mobile banking, a transaction authentication scheme that is
becoming increasingly popular [2]. They argue that core requirements of a secure
2FA are violated if both authentication elements are operated by the same multi-
purpose device without providing a trusted path [13,14].

3 Threat Model

We suppose that a customer ordered a product online and pays by bank wire
transfer through her online banking. This customer uses 2FA with a TAN method
that provides full transaction authentication. To that end, the TAN method
displays the transfer details on a second, independent device for verification.

An attacker targets at redirecting the customer’s transfer order to another
account. The adversary only replaces the beneficiary’s account number and leaves
the amount unchanged. This happens due to the following reason: when paying
an invoice, the customer is usually aware of the amount but frequently unaware of
the beneficiary’s account number. For the purpose of manipulating a transaction,
we assume that the adversary can completely compromise the transfer-issuing
channel, which enables her to observe or tamper all the details the customer
receives, sees, enters or sends. The attacker cannot, however, control the vic-
tim’s TAN method. Instead, the attacker attempts to discourage the victim from
performing a correct verification of the account number during confirmation.

The assumed threat model is rather weak as it does not require infection of
both devices that are involved in the transaction authentication process. Owing
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to the success of banking malware families like ZeuS [7], it even became a best
practice for banks to regard the customer’s computer as malware-infected [10].

4 Attacks and Challenges

4.1 Clipboard Hijacking

On desktop and mobile operating systems, the clipboard is a shared resource
that every application can read and write. This allows for stealing [11] and
manipulating [26] the data by monitoring the contents of the system clipboard.

The international banking account number (IBAN)—the default within the
SEPA—adheres to a well-defined ISO standard. According to that standard,
an IBAN can consist of up to 34 alphanumeric characters. In the case that a
customer receives a digital invoice, e.g., a PDF, a customer is likely going to use
the copy and paste method to avoid entering the IBAN manually.

Attack. As the IBAN also contains two check digits, it is easy to validate
the correctness of a given candidate. Consequently, an attacker monitoring the
clipboard can also detect an IBAN in the system clipboard and replace it with
the IBAN of an attacker-controlled account. As a customer pasted the IBAN,
she might assume it must be correct—ignoring a potentially infected computer—
and, hence, skips the account number verification. As the customer did not enter
the IBAN manually, recalling the original IBAN is less likely.

Defense. To mitigate this attack, a bank should disable the possibility to paste
clipboard data into a form element. Developers can prevent this within web and
mobile applications by installing a custom listener for paste events.

4.2 SMS Autofill on iOS and MacOS

In 2016, Konoth et al. already criticized the synchronisation of SMS from iOS to
macOS, as this allows for an attacker to only infect the transfer-issuing channel
to control both authentication elements [15]. With the release of iOS 12 and
macOS 10.14 (Mojave) in September 2018, this integration became even closer:
if a customer visits a webpage that asks for an OTP sent by SMS, Safari on
macOS 10.14 offers automatic insertion of the OTP in a predefined field [16].
This feature is also available for text fields in apps running on iOS 12.

Attack. Autofilling an OTP is only meaningful and without security implica-
tions if the authentication happens without context. This is true for user but
not for transaction authentication: the essential security task during transaction
confirmation is the verification of the transfer details contained within the SMS.
Autofilling the TAN encourages the customer to omit this verification step. An
attacker who compromised the device and manipulated a transfer could trigger
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the autofill. Consequently, the victim might not verify the transfer for integrity
as the TAN gets filled in automatically. Instead, she might just proceed making
the transfer effective.

Defense. Our tests show that the keyword “code” is necessary within the SMS
to trigger this feature. As a consequence, banks should avoid this word within
their SMS text message. In our tests, the words “OTP” or “TAN” did not trigger
the autofill feature, but Apple might change this behavior at any time.

4.3 Stealthy Transaction Manipulation

In the course of our research, we noticed that many important and large German
banks—for example, Sparkassen as well as Volksbanken und Raiffeisenbanken—
also show a transaction’s details on the confirmation webpage that asks the
customer for a TAN. This behavior has a counter-productive effect, as it sug-
gests that the transfer-issuing channel is trustworthy. To make things worse, it
might even habituate a user to perform a faulty transaction verification: instead
of comparing the details shown on the customer’s TAN device to the original
invoice, she might compare them to the details shown within the transfer-issuing
channel, e.g., the web browser.

Attack. An adversary can leverage this potential habituation: a customer who
compares the information within the TAN device to the details shown within
the transfer-issuing channel, is not going to spot a deviation. One might argue
that a customer might recall the account number she originally entered. This
is, of course, possible. In the case of an IBAN, however, this scenario is at least
debatable because of the cumbersome format with up to 34 digits.

Defense. This is an issue of usable security [24]. From a technical point of
view, banks should stop displaying transaction details within the transfer-issuing
channel, as this behavior is plain unconducive.

4.4 Digital Invoice Manipulation

After purchase, online shops send out an e-mail to their customers that contains
a PDF invoice or a link that displays the invoice and payment details within
the browser. Even if a customer pays on account, they frequently do no longer
receive a paper invoice along with the ordered item.

Attack. Instead of tampering with the transfer order, a malware might as well
directly modify the invoice. Due to the IBAN’s well-defined format, it is easy to
detect and replace occurrences within a PDF or HTML page. Hence, an attacker
could manipulate the invoiced account number directly. Even in the case that a
customer correctly verifies the transaction, she has no chance to spot the fraud.
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Defense. Online shops could send out the payment details by postal mail only.
Particularly for payments in advance, however, this is probably not an option.
Signing PDF invoices is not going to help either as the majority of users would
not deem an unsigned PDF suspicious.

4.5 Transfer Templates

To avoid having the customer enter the account number for recurring recipients,
many banks offer explicit and implicit transfer templates. For explicit transfer
templates, a customer has to actively create a new entry within the online bank-
ing that contains the beneficiary’s name and account number. When a customer
wants to perform a credit transfer to one of her contacts saved as transfer tem-
plate, she can just select this contact from a list. Implicit transfer templates
work similarly but do not require the customer to actively create entries: when
a customer types the beneficiary’s name into the transfer order form, the online
banking automatically searches the past transactions and suggests filling in the
corresponding account number.

Attack. Transfer templates operate on the client side. That means, that they
help to fill in a form only but the data sent to the bank is the same as filling in
that information manually. As a consequence, an attacker can fill in an arbitrary
account number when a customer makes use of a transfer template. During
transaction confirmation, the customer does likely not have an invoice or another
channel to verify the displayed transaction details; that is likely the reason why
the customer made use of a transfer template in the first place.

Defense. Transfer templates are difficult to reconcile with the principle of
WYSIWYS. Therefore, it is hard to create a solution that offers the comfort
of transfer templates on the one hand, but also encourages a customer to verify
a transaction’s account number on the other hand. Masking a small part of the
account numbers for transfer templates and past transactions helps addressing
this issue: it spares most typing but makes sure that the customer has the ben-
eficiary’s account number available through a source different from the online
banking.

5 Conclusion

In this paper, we presented five different attacks which target the way online
banking credit transfers work and how the customer uses them. Most of the
attacks have in common that the customer is not aware of the payee’s account
number. Moreover, account number formats like the IBAN make transaction
verification a cumbersome task. In addition, the currently used TAN methods
only display the IBAN but not the name of the recipient.
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This, however, could make transaction verification an easier task: Apart from
the beneficiary’s account number and the amount of the transfer, the TAN
method should also display the beneficiary’s name. For that purpose, a TAN
method could perform a lookup in the customer’s transaction history. If a cus-
tomer never used the given account number before, a bank could at least use
their global transaction history to show a confidence level for the that account
number. A similar service was already introduced by Dutch banks in 2017, with
a system which ensures that the beneficiary’s name belongs to the specified
IBAN [6].

As our threat model assumes full control over the transfer-issuing channel,
our proposed defenses are not going to fully eliminate but rather complicate a
successful attack. To mitigate attacks, it is essential that a customer is aware
of the untrustworthiness of the transfer-issuing channel. The user, however, fre-
quently lacks this awareness [4,23,25]. To eliminate this attack vector, banks
need to come up with procedures that guarantee integrity as soon as the cus-
tomer enters the payment details. This, however, remains a medium-term task.
Nevertheless, the PSD2 is a step into the right direction and will make payments
more secure.
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Abstract. EMV, also known as Chip and PIN, is the world-wide stan-
dard for card-based electronic payment. Its security wavers: over the past
years, researchers have demonstrated various practical attacks, ranging
from using stolen cards by disabling PIN verification to cloning cards by
pre-computing transaction data. Most of these attacks rely on violating
certain unjustified and not explicitly stated core assumptions upon which
EMV is built, namely that the input device (e.g. the ATM) is trusted
and all communication channels are non-interceptable. In addition, EMV
lacks a comprehensive formal description of its security.

In this work we give a formal model for the security of electronic
payment protocols in the Universal Composability (UC) framework. A
particular challenge for electronic payment is that one participant of a
transaction is a human who cannot perform cryptographic operations.
Our goal is twofold. First, we want to enable a transition from the itera-
tive engineering of such protocols to using cryptographic security models
to argue about a protocol’s security. Second, we establish a more realis-
tic adversarial model for payment protocols in the presence of insecure
devices and channels.

We prove a set of necessary requirements for secure electronic pay-
ment with regards to our model. We then discuss the security of current
payment protocols based on these results and find that most are insecure
or require unrealistically strong assumptions. Finally, we give a simple
payment protocol inspired by chipTAN and photoTAN and prove its
security.

Our model captures the security properties of electronic payment pro-
tocols with human interaction. We show how to use this to reason about
necessary requirements for secure electronic payment and how to develop
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a protocol based on the resulting guidelines. We hope that this will facil-
itate the development of new protocols with well-understood security
properties.

Keywords: EMV · Universal Composability · Security models ·
Human-server-interaction · Electronic payment

1 Introduction

“Your money, or your life!”—surrender your belongings or face death. This threat
was used by bandits in England until the 19th century [25]. As people often
needed to carry all their valuables with them when traveling, banditry was a
lucrative (albeit dangerous) endeavor. Today, electronic money transfer (EMT)
systems alleviate the need to have one’s valuables at hand, but introduce new
threats as well. Instead of resorting to violence, modern thieves may compro-
mise their victim’s bank account. Once they are widely deployed, insecure EMT
systems are notoriously difficult to transition away from—magnetic stripes are
still in use today. The current state-of-the-art payment standard EMV (short for
Europay International, MasterCard and VISA, also known as “Chip and PIN”)
improves on this, but falls short of providing a secure solution to payment (or
money withdrawal), as shown by its many weaknesses described in literature.

Among these are practical attacks, such as (i) “cloning” chip cards by pre-
computing transaction messages (so-called “pre-play attacks”) [4], (ii) disabling
the personal identification number (PIN) verification of stolen cards by inter-
cepting the communication between chip card and point of sale (POS) device
[24], (iii) tricking an innocent customer into accepting fraudulent transactions
by relaying transaction data from a different POS (so-called “relay attacks”)
[17].

Upon close examination of these attacks one finds that these issues mainly
stem from two major false assumptions which are baked into the design of the
EMV protocol: (i) that the communication between all protocol participants
(e.g. between the chip card and the POS) cannot be intercepted and (ii) that
the POS (or the automated teller machine (ATM)) itself is trustworthy. Even
though these assumptions are critical for the security of EMV, they are not
explicitly stated in the standardization documents [19–21]. We suggest that this
is mainly because EMV has been created by a functionality-focused engineering
process in which problems are fixed as they occur and features are added when
necessary, rather than a design process that uses formal models and techniques.
Modern cryptographic protocols in contrast are designed by first providing a
formal description of the protocol, explicitly stating all necessary assumptions
and then giving a proof of security. This does not make cryptographic protocols
unbreakable, but it does make their potential breaking points explicit. Therefore,
we argue that it is necessary to start developing electronic payment protocols
by using the same methodology of rigorous formal modeling as has already been
established in cryptography.
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1.1 Our Contribution

In this work, we give a novel formal model for electronic payment based on the
Universal Composability (UC) framework by Canetti [6], which incorporates a
stronger, but also more realistic adversarial model than has been used for the
design of EMV. We first give a formal description of electronic payment which
works for both payment at a POS and for the withdrawal of cash at an ATM.
Second, we provide an ideal functionality for electronic payment, which captures
the desired security guarantees for such protocols. Our model can also be used
in the case where one participant is human.

We then prove a set of general requirements for designing such protocols.
These requirements can act as a guideline for future protocol designers. Based
on these results, we argue that a number of current payment systems are insecure
already on a conceptual level. Inspired by this analysis, we propose a simple elec-
tronic payment protocol which mainly requires secure communication between
the bank and the initiator of a transaction. We propose to realize this with a
smartphone, as is common in many modern payment protocols. However, unlike
these protocols, our protocol can be proven secure if either the smartphone or
the ATM/POS device behaves honestly, whereas all other protocols we analyzed
need to trust at least one of them exclusively.

1.2 Related Work

Secure Human-Server Communication. Basin, Radomirovic, and Schläpfer
[3] give an enumeration of minimal topologies of channels between a human
(restricted in its abilities), a trusted server, a possibly corrupted intermediary
and a trusted device, that realize an authenticated channel between the human
and the server. Our work differs in two main aspects: Their model uses either
fully secure or untrusted channels only and cannot account for just authenticated
or just confidential communication, which is important in our setting due to the
presence of CCTV cameras or shoulder-surfing. For example, we assume that
everything displayed at the ATM or a user’s smartphone is not confidential,
while entering a PIN at the PIN pad can be done in a confidential way, by
suitably covering the pad in the process. Second, our model is given in the UC
framework, which gives stronger guarantees and composability, as well as security
for concurrent and interleaved execution, compared to the stand-alone setting
they consider.

Alternative Hardware Assumptions. As we will see later in Sect. 2.2, the
confirmation of payment information by the user is an important sub-problem
we aim to solve for achieving secure payment. A possible solution is “Dis-
play TAN” [5] providing a smartcard with a display to show the transaction
data. Smart-Guard [15] uses such smartcards with a display together with an
encrypting keyboard fixed to the card to achieve a functionality which may
be used for payment. These strong hardware assumptions allow for flexible trust
assumptions, accounting for several combinations of trusted/hacked status of the
involved devices. Their protocol comes with a formally verified security proof,
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albeit not in the UC framework. For our construction we do not propose a new
kind of hardware device, but rely on the user’s smartphone.

Ecash and Cryptocurrencies. Besides human-server payment protocols, there
is also electronic cash, first invented by [9], and modern decentralized cryptocur-
rencies, such as Bitcoin [22], which can be used to transfer money. In general,
these have very different design goals, as they care to establish an electronic
money system with certain anonymity/pseudonymity properties, without the
possibility to double-spend and in particular, without a trusted bank. In con-
trast, we are concerned with the authenticated transmission of the transaction
data from a human user to the bank. To the best of our knowledge, there is no
UC-based model of electronic payment as presented in our work.

EMV. EMV is not only a single payment protocol, but a complete protocol suite
for electronic payment (cf. [19–21]). Protocols that are EMV-compliant might
just implement the EMV interface while using another secure protocol. This
means that, while there are multiple attacks against the EMV payment protocol,
not every protocol with EMV in its name is automatically insecure. In addition
to the attacks mentioned previously, there are other attacks as described by
Chothia et al. [10] and Emms et al. [18].

Anderson et al. [2] discuss whether EMV is a monolithic system reducing
the possibilities for innovation. Since we use the UC framework for our model,
we inherently support non-monolithic, modular systems. Sub-protocols that UC-
realize each other can be exchanged for one another. Furthermore, [2] explore the
possibility to use smartcards (as used by EMV) for other applications. Following
a similar goal, we give a formalization of signature cards within our model in
the full version [1] and show limits to using such cards.

Degabriele et al. [14] investigate the joint security of encryption and signa-
tures in EMV using the same key-pair. A scheme based on elliptic curves (as it is
used in EMV) is proven secure in their model. However, as they conclude, their
proof does not eliminate certain kinds of protocol-level attacks. Cortier et al.
[13] present an EMV-compliant protocol using trusted enclaves and prove the
security of their protocol using TAMARIN [29]. Both approaches lack the mod-
ularity, composability and concurrent security provided by the UC framework.

1.3 The (Generalized) Universal Composability Framework

The Universal Composability (UC) framework, introduced by Canetti in 2001 [6],
is a widely established tool for proving the security of cryptographic protocols
based on the real-world–ideal-world paradigm. The desired security properties of
a protocol are described in terms of a so-called ideal functionality, which can be
seen as an incorruptible third party carrying out the desired task by definition.
The ideal functionality explicitly captures the allowed influence an adversary
can have and the knowledge he can gain during an execution of the protocol.
Informally, a protocol π is said to UC-realize an ideal functionality F if there is
no interactive distinguisher Z (the so-called environment) that can distinguish
between the execution of π and the execution of (the ideal protocol of) F .
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The framework is specifically well-suited for our case, as it already incor-
porates an adversary that can control all communication between the protocol
parties. If one wants to deviate from this (e.g. when secure communication is
available) one must explicitly add new functionalities for communication to the
model (so-called hybrid functionalities), making the security assumptions of the
protocol explicit.

The UC framework’s security definition does not capture shared state
between several protocol instances. Canetti et al. [7] proposed an extension—the
so-called Generalized Universal Composability (GUC) framework—which intro-
duces globally shared functionalities. They can be used by multiple protocols,
allowing to share state between different executions of protocols. This extension
can be used to model smartcards as used in EMV, allowing us to capture e.g.
pre-play attacks in our model. One of the main advantages of the (G)UC frame-
work is that it, unlike stand-alone security models, brings a strong composition
theorem. This allows for breaking protocols into smaller components and proving
their security individually. A comprehensive description of the framework and
its extension can be found in the full version [1].

2 A Formal Model for Electronic Payment

As a basis for our model, observe the process of withdrawing cash at an auto-
mated teller machine (ATM). First, there is the bank and its customer, Alice.
Second, there is the money dispensing unit inside the ATM. Assuming authen-
ticated communication from Alice to the bank and from the bank to the money
dispensing unit, secure payment is easy: Alice communicates the amount of cash
she needs and the identity of the money dispensing unit she expects to receive
the cash from. The bank then instructs the money dispensing unit to dispense
the money. However, Alice is a human and therefore cannot perform crypto-
graphic operations required for a classical channel establishment protocol. Thus,
Alice needs another party which offers a user interface to her and communicates
with the bank, namely an ATM.

This does not only apply to cash withdrawal but can be extended to electronic
money transfer (EMT) in general. To this end, think of Alice as the initiator
of a transaction and the money dispensing unit as the receiver. The process
of money withdrawal can now be framed as a payment of money from Alice’s
account to the account of the money dispensing unit (which, upon receiving
money, promptly outputs cash) using the ATM as an (input) device. The same
works for the point of sale: here, the device’s owner (e.g. the supermarket) is the
receiver.

Regarding our adversarial model, as discussed earlier, we make no assump-
tion about the trustworthiness of the ATM whatsoever and do assume that the
adversary has control over all communication. We do make certain assumptions
regarding the trustworthiness of different protocol participants. First, we assume
the money dispensing unit (or receiver in general) to be trusted. If it is under
adversarial control, the adversary could simply dispense money at will. Second,
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since our work focuses on the challenges that arise from the interaction of humans
with untrustworthy devices over insecure communication, we do not model the
bank’s book-keeping and therefore assume the bank to be incorruptible. Third,
for reasons of simplicity, our model only considers a single bank, even though in
practice most transactions involve at least two banks. This is justified, however,
as banks in general can communicate securely with each other.

2.1 Modeling Electronic Payment in the UC Framework

In the following, to simplify the model, we consider the case of static corruption,
where parties may only be corrupted prior to protocol execution. Extending our
work to adaptive corruption is left for future work.

We denote the set of initiators as SI, the set of receivers as SR, the set of
devices as SD and the bank as B. We also define a mapping D : SR → SD of
receivers to single devices (D(R)) to explicitly name which device belongs to
which receiver.

In order to model the adversary’s probability of successfully attacking cre-
dentials like PINs, we introduce a parametrized distribution D. Let X denote
the event of a successful attack. Then D : A → FX maps a value d (e.g. the
amount) from a domain A (e.g. Q) to a probability mass function fd,X ∈ FX

over {confirm, reject}. An adversary’s success probability of correctly guess-
ing a four-digit PIN chosen uniformly at random with one try could be mod-
eled as follows: D(m$) = fX for all m$ ∈ Q with fX(confirm) = 1

10000 ,
fX(reject) = 9999

10000 . D could also map different d ∈ A to different fX,d, mod-
eling that transactions with small amounts require less protection than ones
with bigger amounts. FD is the ideal functionality F parametrized with D. Ideal
functionalities may have additional parameters, either implicit or explicit ones
passed as arguments, e.g. FD(A,B).

In the best possible scenario, ideal payment would work as follows: the ini-
tiator submits his desired transaction data to an ideal functionality, which then
notifies the bank and the receiver about who paid which amount of money
to whom without involvement of the adversary whatsoever. In our adversarial
model, no payment protocol realizes this strong ideal functionality: an attacker
who controls all communication will at least be able to observe that a transac-
tion takes place, even if he cannot see or change its contents. What is more, such
a strict security definition would ignore the fact that in all payment protocols
which rely on the initiator being protected by a short secret (like a PIN), an
attacker always has a small chance of success by guessing the secret correctly.

Our ideal functionality for electronic payment is thus designed with regards to
the following principles: (i) The adversary always gains access to all transaction
data. An electronic payment operation can be secure (that is all participants of
the transaction get notified about the correct and non-manipulated transaction
data) without the transaction data being secret. (ii) The adversary can always
successfully change the transaction data at will with a small probability (e.g. if
he guesses the PIN correctly). (iii) The payment operation occurs in three stages.
In the first stage, the initiator inputs his intended transaction data which the



Your Money or Your Life 249

adversary can change at will. This models that a corrupted input device will
always be able to change the human initiator’s transaction data, even if it will
be detected at a later stage. In the second and third stage, the receiver and
the bank are notified about the transaction data. The resulting functionality is
depicted in Fig. 1.

2.2 Confirmation Is Key

Since the human initiator of a transaction cannot be sure that an untrusted input
device correctly processes his transaction data, he needs a way of confirming the
transaction data with the bank before the transaction is processed. We formalize
this confirmation mechanism within the ideal functionality FCONF (specified in
Fig. 2). FCONF is a two-party functionality which allows a sender to transmit a
message and the receiver of the message to confirm or reject it. As with the ideal
payment functionality, the adversary gets the chance to force a confirmation with
a certain probability, modeling the insecurity inherent to real-world protocols
which use short secrets. Note that he can always force the confirmation to be
rejected.

Fig. 1. The ideal functionality FPAY for electronic payment.

To realize FPAY, we need authenticated communication from the bank to the
receiver, so that the receiver can be notified of the transaction. For most real-
world payment protocols, this authenticated communication is easy to estab-
lish, since receivers are electronic devices and not humans. In the case of cash
withdrawal, the bank owns the money dispensing unit and can pre-distribute
cryptographic keys to establish authenticated communication.
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Using FCONF and FAUTH [6, Sect. 6.3], we propose a protocol πPAY which
realizes FPAY. This protocol is informally depicted in Fig. 3.

The comprehensive formal description of the protocol can be found in the
full version [1].

Having defined all required protocols and functionalities, we are now ready
to state our theorem.

Theorem 1. Let I, B, R, and D(R) ITMs, where I is human, and B and R are
honest. Then, πPAY, informally depicted in Fig. 3, UC-realizes FPAY,D(I,B,R)
in the FAUTH(B,R),FAUTH(R,B),FCONF,D(B, I)-hybrid model.

For the proof, see the full version [1].
Even though this might seem unsurprising at first, this allows us to break

down the complexity of realizing FPAY into two easier problems: realizing a con-
firmation mechanism between the initiator and the bank and realizing authen-
ticated communication between the receiver and the bank.

Fig. 2. The ideal functionality for confirmation of messages.

2.3 How Our Model Captures Existing Attacks

One of our main motivations for establishing a new formal model for electronic
payment is to make trust assumptions explicit in order to detect unrealistic ones
which enable practical attacks like [4,24] and [17]. Thus, our model needs to be
able to capture these kinds of attacks. Protocols analyzed within our framework
must be insecure if they allow for these attacks. In the following, we explain how
this is achieved.

Changing Transaction Data. An adversary controlling all communication or
the input device can easily change transaction data. Protocols which allow this
unconditionally are insecure in our model, since FPAY only allows to change the
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transaction data successfully if the adversary mounts a successful attack (i.e.
guesses the initiator’s PIN in the real world) or the (possibly changed) initiator
is corrupted.

Relay Attacks. The aim of a relay attack [17] is to get Alice to authorize
an unintended transaction, which benefits the attacker, by relaying legitimate
protocol messages between the point of sale (POS) device she uses to pay for
goods to another POS device which Alice uses at the same time. If Alice’s input
device is corrupted, she cannot know with certainty which transaction data she
authorizes. Depending on the point of view, this amounts to either changing
the receiver of a transaction initiated by Alice or changing the initiator of a
transaction initiated by a third party Carol. Thus, in our model, this attack is
just a special case of changing transaction data.

Fig. 3. The protocol πPAY realizing FPAY,D(I, B, R) using FCONF,D(B, I),
FAUTH(B, R) and FAUTH(R, B), the latter two depicted as . The use of an imper-
fect FCONF,D is depicted via . The protocol is between the human initiator I, the
ATM D(R), the bank B and the money dispenser R. The protocol proceeds in three
phases, namely (1) the information collection phase, (2) the confirmation and execution
phase and (3) the phase which ensures a consistent view on what happened.

Pre-play Attacks. Pre-play attacks [4] basically rely on two facts: (i) once
unlocked, smartcards, as used in the EMV protocol, can be coerced into gener-
ating message authentication codes (MACs) for arbitrary transaction messages
and (ii) that even honest ATMs use predictable “unpredictable numbers”. Cards
interacting with a corrupted ATM can be used to easily generate additional
MAC tags. This attack can be modeled by using a global smartcard function-
ality (which we present in the full version [1]) within the Generalized Univer-
sal Composability (GUC) extension of the basic Universal Composability (UC)
framework. In the GUC framework, the environment (and thus indirectly the
adversary) can even access the smartcard in the name of honest parties in pro-
tocol sessions different from the challenge session. Thus, a payment protocol that
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GUC-realizes FPAY must in particular be secure against all kinds of attacks that
result from injecting pre-calculated (sensitive) data into other sessions. Proto-
cols which do not prevent these kinds of attacks (e.g. by enforcing some sort of
freshness on the protocol messages) cannot be secure in our model.

3 Towards Realizing Secure Electronic Payment

The core challenge when realizing FPAY is the authenticated transmission of
transaction data from the (human) initiator to the bank. This can also be
captured formally: the functionality FPAY can be used to implement the ideal
authenticated communication functionality FAUTH between initiator and bank
(up to the attack success probability captured by the distribution D) by encod-
ing the message as an amount to be transmitted. We use this insight to establish
several guidelines for the design of secure payment protocols: First, we state a
necessary condition for protocols that realize FPAY: they must use setups that
are strong enough to realize authenticated communication between the (human)
initiator and the bank. Protocol designers can use this condition as an easily
checkable criterion for the insecurity of payment protocols. Second, we state
several setups that are sufficient for realizing FPAY.

For the proofs, we define an ideal functionality FAUTH,D, analogous to FCONF

and FPAY, that allows the adversary to change the message to be sent with a
certain probability parametrized by D. For a formal description, see the full
version [1]. For the sake of an easier exposition, we consider ideal functionalities
like FAUTH,D that model the transmission of only one message. This is in line
with the protocols we consider. If multiple messages have to be transmitted
over the same “channel”, this model does not adequately capture reality, as an
adversary would be able to attack each transmission independently. In this case,
ideal functionalities for channels like FSC (cf. [8]) can be adapted the same way.

3.1 Requirements for Secure Electronic Payment

In this section, we establish necessary and sufficient criteria for secure electronic
payment. Let FAUTH,D(I,R) denote the imperfect ideal authenticated communi-
cation functionality between parties I and R, and FSMT,D(I,R) the correspond-
ing ideal secure message transfer functionality (where successful attacks relative
to D results in loss of secrecy and authenticity). For a formal description, see
the full version [1]. Throughout this section, let I, B, R be ITMs, where I is
human1, B is honest and D a parametrized distribution. We obtain the following
theorem:

Theorem 2. There exists a protocol π that UC-realizes FAUTH,D(I,R) in the
FPAY,D(I, �,R)-hybrid model, where � is an arbitrary protocol party.

In particular, Theorem2 implies that protocols without any authenticated
communication or only between the bank and the receiver cannot realize FPAY:
1 Note that our results hold for arbitrary I.
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Corollary 1. Let π be a protocol that is in the FAUTH(B,R), FAUTH(R,B)-
hybrid model only (in particular, there is no authenticated communication
between I and B). Then there is no protocol ρ in the bare model such that ρπ

UC-realizes FPAY,D(I,B,R) if D admits the adversary at least a non-negligible
successful attack probability.

This insight can be generalized and gives a necessary condition: A protocol
π that realizes FPAY,D(I,B,R) must use setups that can be used to realize
FAUTH,D(I,B).

Theorem 3 (Necessary Requirements for Setups). Let F be a set of ideal
functionalities. Let Π be the set of all subroutine-respecting protocols with the
set of protocol parties P ⊆ {I,R,B} that use only ideal functionalities in F . If
there is no protocol π ∈ Π such that πF realizes FAUTH,D(I,B), then there is
no protocol ρ ∈ Π such that ρF realizes FPAY,D(I,B,R).

Conversely, it is easy to see that FPAY,D can be realized by (also) using
e.g. FAUTH,D(I,B). Several sufficient requirements are stated in the following
theorem:

Theorem 4 (Sufficient Requirements). Let π be a protocol that UC-realizes
(i) FAUTH,D(I,B), or (ii) FSMT,D(B, I), or (iii) FCONF,D(B, I). Then, there
exists a protocol ρ such that ρπ UC-realizes FPAY,D(I,B,R) in the FAUTH(B,R),
FAUTH(R,B)-hybrid model.

The proofs of Theorems 2–4 and Corollary 1 are in the full version [1].

3.2 No Authentication Using Smartcards Without Additional Trust

By default, EMV uses smartcards containing shared secrets with the bank in
order to authenticate transactions. However, this only works if the input device
which accesses the smartcard (e.g. the automated teller machine (ATM)) can
be trusted. Otherwise, after the initiator enters his personal identification num-
ber (PIN) to authorize a seemingly legitimate transaction, the input device can
present false (transaction) data to the smartcard (cf. e.g. [4]). We can prove the
intuition that smartcards are not sufficient for realizing FPAY. In the full ver-
sion [1], we give a global signature card functionality GSigCard, closely modeled
after similar functionalities in the literature. We then prove that no protocol
which uses only this functionality (and authenticated communication between
the bank and the receiver) can realize (transferrable) authenticated communi-
cation between the initiator and the bank. Using Theorem3, we can conclude
that GSigCard is insufficient to realize FPAY even in the presence of bidirectional
authenticated communication between the bank and the receiver:

Theorem 5 (informal). There exists no protocol π in the GSigCard,
FAUTH(B,R), FAUTH(R,B)-hybrid model that GUC-realizes FAUTH,D(I,B) if
I is human and has no trusted interface to the card and D does not admit an
overwhelming attack probability for all amounts.

The proof of Theorem5 is in the full version [1].
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3.3 Realistic Assumptions

Protocols build on assumptions to achieve security. However, there often is a
huge discrepancy regarding to how realistic these assumptions are. EMV relies
on the security of the ATM which is often publicly accessible and offers a large
attack surface. Unpatched operating systems and exposed Universal Serial Bus
interfaces are only two examples for vulnerabilities that have been exploited
successfully. As explained in Sect. 2.2, a secure protocol can be constructed by
establishing a confirmation mechanism. However, if the input device is corrupted,
an additional device is required.

Such additional devices could for example be transaction authentication num-
ber (TAN) generators or smartphones. In principle these allow for the creation
of protocols that are secure in our model. However, smartphones, which are
increasingly used to replace smartcards, regularly call attention because of vul-
nerabilities. They are complex systems connected to the Internet and are thus
more vulnerable to attacks—especially if they are operated by people without
expertise in IT security. However, this dilemma can be resolved by requiring
trust in only one of the two devices. We call this property 1-of-2 (one-out-of-
two) security (which is, in the case of authentication, also known as multi-factor
authentication). This means that a protocol is still secure if one of the two
devices is corrupted, no matter which one of them. We argue that, in addition
to realizing FPAY, payment protocols should support this property in order to
further reduce the attack surface.

4 On the Security of Current Payment Protocols

In this chapter, we use our acquired insights to analyze current protocols for
withdrawing cash, paying at the point of sale (POS), and online banking. Table 1
summarizes our findings. Our model allows for a structured and fast categoriza-
tion of payment protocols on a conceptual level, even without a detailed protocol
description. Even though EMV is the most widely used standard for payments,
we do not elaborate on its security in this chapter. As mentioned before, its
design incorporates at least two assumptions that do not hold, as several attacks
have been demonstrated. Current payment protocols such as Google Pay, Apple
Pay, Samsung Pay, Microsoft Pay and Garmin Pay provide an app that uses
the EMV contactless standard to communicate with existing POS devices via
nearfield communication [28,30]. Since they rely on Consumer Device Cardholder
Verification Method, the user is authenticated by the mobile device exclusively.
Currently, these apps use a personal identification number (PIN), a fingerprint
or face recognition and thus do not incorporate a second device such as the POS
device for authentication. Therefore the security of the protocol is solely based
on the mobile device.

The protocols discussed in this section make additional implicit assumptions,
which we believe to be plausible, but want to make explicit. These include the
following: (i) An additional trusted device beside the input device. This is a
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plausible assumption if the device is simple, less so if it is a smartphone. How-
ever, using an additional device could enable protocols to be 1-of-2-secure. (ii)
Authenticated communication between the initiator of a transaction and an addi-
tional personal device. This is a realistic assumption, since the initiator owns the
device. Likewise the initiator can authenticate themselves to the device, e.g. by
unlocking the screen of a mobile device. (iii) Confidential communication from
the initiator to the automated teller machine (ATM), which can be realized by
covering the PIN pad with one’s hand if the ATM is not compromised. (iv) Con-
fidential communication from the ATM to the bank. This can be realized using
public-key cryptography.

In the following, we examine multiple protocols for cash withdrawal and
online banking.

Cardless Cash. Cardless Cash [12] is an app-based protocol for cash withdrawal
offered by numerous banks in Australia. In its most simple variant, it works
as follows: After registration, the app can be used to create a “cash code” by
entering the desired amount and a phone number. The phone number is used
to send a PIN via SMS and allows to permit someone else to withdraw cash.
To dispense the cash, the PIN has to be entered at the ATM alongside the
cash code. The security of the protocol is solely based on the ATM, since all
relevant information is entered there and no additional confirmation mechanism
is established.

VR-mobileCash. VR-mobileCash [31] is another app-based protocol for cash
withdrawal offered by Volks- und Raiffeisenbanken, a German association of
banks. Upon registration, the user receives the mobile personal identification
number (mPIN), which has to be entered on the ATM later on to confirm a
transaction. To withdraw cash, the user has to enter the desired amount in the
app. After selecting mobile payment at the ATM, the ATM shows a mobile
transaction identification number (mTIN) which has to be entered in the app.
The ATM then shows the requested amount and asks the user to enter the mPIN.
If the mPIN is correct the ATM dispenses the requested amount of cash.

Although not stated explicitly in the public documentation, the mobile device
has to be online during the transaction, as the ATM is informed about the
transaction data. If the mobile device is corrupted but the ATM is honest, a
user can detect an attack because he has to confirm the transaction by entering
the mPIN at the ATM and thus verifies the location of the ATM. However, a
corrupted ATM can employ a relay attack by displaying the mTIN of another
corrupted ATM and forwarding the entered mPIN to it thus allowing the second
corrupted ATM to dispense the cash. This could be fixed by adding a serial
number imprinted on the ATM which is also displayed in the app after entering
the mTIN. Thereby VR-mobileCash could potentially realize FPAY and even be
1-of-2-secure.

chipTAN Comfort. ChipTAN comfort [26] is a protocol for online banking
widely used in Germany. Here, the initiator uses a computer as an input device
and possesses two additional personal devices: a transaction authentication num-
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ber (TAN) generator and a smartcard. The TAN generator is used to confirm
transactions and thus realizes a confirmation mechanism. This works as follows:
First, a transaction has to be requested in the browser. Then, the banking web-
site shows a flickering code. The user puts the smartcard into the TAN generator
and scans the flickering code. After reviewing the transaction data presented on
the personal device, he presses a button which reveals a TAN that has to be
entered into the website.

This protocol satisfies all requirements for a secure realization of FPAY by
establishing a confirmation channel that allows a user to detect tampering of
the transaction data. What is more, the protocol potentially provides a form
of 1-of-2 security, since as long as either the input device or alternatively the
TAN generator together with the smartcard are uncorrupted, there exists a
confirmation mechanism from the bank to the initiator. This is only true for
single transactions, however (see [27] for details).

Table 1. Comparison of different payment protocols. A protocol is marked as offline,
if the additional device does not require an Internet connection during the payment
process. The security of a protocol is put in parentheses if it meets our requirements
for a secure protocol but has not been proven secure.

Protocol Offline Secure Applicable for

Cardless Cash � × Withdrawal

VR-mobileCash × × Withdrawal

chipTAN comfort � (�: 1-of-2) Online banking

photoTAN � (�: 1-of-2) Online banking

L-Pay (our scheme) � �: 1-of-2 Withdrawal, PoS

photoTAN. photoTAN (or QR-TAN) is a variant of chipTAN comfort, where
the code to transmit data to the TAN generator is encrypted by the bank. Fur-
thermore, a smartphone can be used as an alternative to a special-purpose TAN
generator. In our model, this encryption does not have an impact on security,
since the transaction data is not confidential and is displayed on the smartphone
nonetheless. However, some banking apps for photoTAN [11,16] show the TAN
immediately after scanning the code and before the transaction data have been
confirmed by the user. Thus, in the scenario of cash withdrawal, an attacker that
corrupted an ATM and deploys a camera monitoring the ATM could change the
submitted transaction data at the ATM, read the TAN from the victim’s display
and confirm the transaction without the initiator’s consent.

5 Realizing Secure Electronic Payment

In Sect. 2.2, we gave a protocol πPAY that realizes FPAY,D(I,R,B) in the
FAUTH(B,R), FAUTH(R,B), FCONF,D(B, I)-hybrid model. While realizing
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FAUTH between the bank and the receiver is simple, realizing FCONF,D(B, I)
in a way suitable for humans is a challenge under realistic trust assumptions.

The protocols in Sect. 4 use one or more additional devices, such as smart-
phones, smartcards or transaction authentication number (TAN) generator to
give the initiator a confirmation capability. Yet all cash withdrawal protocols still
need a trusted automated teller machine (ATM). In the following, we improve on
this by presenting a simple offline protocol called L-Conf (informally described
by πL-Conf in Fig. 4). It is inspired by chipTAN and photoTAN which use similar
mechanisms. Our protocol is secure even if either the additional device A, such
as the initiator’s smartphone, or the input device is compromised. We call this
property one-out-of-two security, formally defined as follows:

Definition 1 (One-out-of-two security). Let X1,X2 be Boolean variables, π
a protocol and F an ideal functionality. We say that π UC-realizes F with one-
out-of-two security relative to X1 and X2, if X1 ∨X2 implies that π UC-realizes
F .

πL-Conf can be used with πPAY to realize FPAY. We call the resulting protocol
L-Pay. The protocol starts with a setup phase: The bank B and the initiator I
agree on a personal identification number (PIN) and the initiator’s smartphone
shares keys with the bank for an authenticated secret-key encryption scheme.

The main part, depicted in Fig. 4, consists of the execution of two protocols π1

and π2, each realizing FCONF(B, I) under different assumptions. By combining
their results, the composed protocol πL-Conf realizes FCONF(B, I) even if either
the input device or the additional device is compromised.

In π1, the bank first encrypts the transaction data together with a fresh one-
time TAN. The ciphertext is then transmitted to the initiator’s input device,
displayed appropriately, transferred to the smartphone (e.g. by scanning a QR
code) and is decrypted. The TAN is only shown after the transaction data has
been checked and explicitly confirmed by the initiator. Afterwards, the initiator
enters the TAN into the input device.

In order to achieve security even if the initiator’s smartphone is corrupted,
π2 requires the initiator to also check and confirm the transaction by entering
his PIN into the input device (confidentially over FConfid), which is then sent
to the bank confidentially. Only if the bank receives both the correct TAN and
PIN, it considers the transaction to be confirmed. Now, if only the initiator’s
smartphone is corrupted, the adversary is able to present false transaction data
to them or even to perform the confirmation himself. However, this would be
noticed immediately, since the transaction data shown on the input device would
be wrong and the initiator would not enter his PIN. Conversely, if only the input
device is malicious and displays wrong transaction data, the initiator will notice
this using their smartphone.

Theorem 6. Let I, B, D(R) and A be ITMs, where I is human. Let S
be the domain of D1,D2, let π1 UC-realize FCONF,D1(B, I) if A is hon-
est and let π2 UC-realize FCONF,D2(B, I) if D(R) is honest. Then, πL-Conf



258 D. Achenbach et al.

UC-realizes FCONF,D3(B, I) in the FAUTH(A, I), FAUTH(I,A),
FAUTH(D(R), I), FConfid(I,D(R)), FConfid(D(R), B)-hybrid model

where for all x ∈ S:

D3(m$)(x) :=

{
max (D1(m$)(confirm),D2(m$)(confirm)) x = confirm

1 − max(D1(m$)(confirm),D2(m$)(confirm)) x = reject

Proof (Sketch). The protocol πL-Conf (Fig. 4) can be interpreted as the com-
position of two confirmation protocols π1 (Part 1) and π2 (Part 2) UC-
realizing FCONF,D1(B, I) if A is honest resp. realizing FCONF,D2(B, I) if
D(R) is honest (omitting the initial message from B to D(R) to initiate
Part 2). Let b ∈ {confirm, reject} denote the initiator’s input and let
b1, b2 ∈ {confirm, reject} denote the outputs of π1 and π2 as received
by B, respectively. After having received b1 and b2, B outputs b′, which
is confirm if b1 = b2 = confirm, and reject otherwise. By definition,
b′ = confirm while b = reject holds with probability upper-bounded by
max (D1(m$)(confirm),D2(m$)(confirm)).

Fig. 4. Main phase of πL-Conf realizing FCONF,D(B, I) using authenticated and con-
fidential channels drawn as and , resp. The protocol is between the human
initiator I, his personal device A, the ATM D(R) and the bank B. The bit b ∈ {0, 1}
indicates, whether I wants to confirm, hence (nonce) and (PIN ) are only sent in this
case.

Thus, πL-Conf UC-realizes FCONF,D3(B, I) with one-out-of-two security rela-
tive to the assumptions that A or D(R) is honest, respectively. ��
For the complete construction and proof, see the full version [1].

6 Conclusion and Future Work

Designing secure payment protocols poses a particular challenge. They typically
involve a human user who is not capable of performing cryptographic operations
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and therefore needs an intermediate device (e.g. an automated teller machine
(ATM)) to interface with the protocol, which cannot always be trusted. In this
work we introduce a formal model for the security of such protocols. In particular,
we do not assume all intermediate devices as trusted. We use the Universal
Composability (UC) framework, guaranteeing strong security and composability
even in concurrent and interleaved executions.

With our model, we develop a set of basic requirements for electronic payment
protocols without which no protocol can be considered secure. Based on these
results, we discuss different current payment protocols and find that most do not
realize these requirements. We then specify a protocol called L-Pay (based upon
chipTAN and photoTAN), which uses an additional smartphone and which is
secure in our model even if either the ATM or the smartphone is malicious.

One important security mechanism missing in our model is time (e.g. for
arguing about the security of timestamps), which is impossible to model in
the standard (G)UC framework however. Extensions exist that model time [23]
which could be incorporated in our model in the future. Since we assume the
bank to be trusted, we limited our model to a single bank and disregarded the
problem of book-keeping. Future work could expand our model to include these
features.
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Abstract. Trick-Taking Games (TTGs) are card games in which each
player plays one of his cards in turn according to a given rule. The player
with the highest card then wins the trick, i.e., he gets all the cards that
have been played during the round. For instance, Spades is a famous
TTG proposed by online casinos, where each player must play a card
that follows the leading suit when it is possible. Otherwise, he can play
any of his cards. In such a game, a dishonest user can play a wrong
card even if he has cards of the leading suit. Since his other cards are
hidden, there is no way to detect the cheat. Hence, the other players
realize the problem later, i.e., when the cheater plays a card that he is
not supposed to have. In this case, the game is biased and is canceled.
Our goal is to design protocols that prevent such a cheat for TTGs. We
give a security model for secure Spades protocols, and we design a scheme
called SecureSpades. This scheme is secure under the Decisional Diffie-
Hellman assumption in the random oracle model. Our model and our
scheme can be extended to several other TTGs, such as Belotte, Whist,
Bridge, etc.

1 Introduction

The first card games originate around the 9th century, during the Tang dynasty.
Today, they are played all around the world, and a multitude of different games
exist. For instance, Poker is probably the most famous gambling card game.
Thanks to the Internet, many web sites implement online card game applications,
where players meet other players. Cards games websites require some security
guarantees, such as secure access for payment, robust software, trusted servers,
and cheating detection protocols. These guarantees are crucial for the reputation
of the web site in the card game community.

Spades is a famous online gambling card game. It is a trick-taking game: at
each round, players take turns playing, then the player that plays the highest
card wins the trick, i.e., all cards that have been played this round. Moreover,
if it is possible, then players must play a card that follows the suit of the first
card played in the round, otherwise they can play any other card. However, if
a player cheats by playing a card of another suit while he has some cards of
the leading suit, there is no way to detect it immediately. The other players will
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detect the cheat later, if the cheater plays a card of the leading suit. As a result,
the game is biased, because players revealed some of their cards, hence players
cannot replay the game, which must be canceled. Cheaters often get a penalty,
but Spades is a team game, hence the cheater’s partner is also punished, even if
he is not an accomplice. It is even more unfair if the partners do not know each
other and/or do not trust each other, which is the case in online games, where
teams are chosen by the server.

To avoid this problem, online Spades web sites use a trusted server that man-
ages the game. This server deals the cards, and prevents players from cheating,
which means it knows all the cards of each player. However, having a trusted
server is a strong security hypothesis, because if some players corrupt the server,
then the security properties do not longer hold.

Our motivation is to design a cryptographic scheme, called SecureSpades, that
allows the players to check that the other players do not cheat, whithout revealing
any information about the cards of each player, and without any trusted server.

Contributions: In this paper, we focus on Trick-Taking Games (TTGs), which
are card games where each player plays one of his cards in turn, and where the
player with the highest card wins the trick. For the sake of clarity, we focus our
work on Spades, because it is the most played online TTG for real money, and
its rules are simple. However, our protocol can be extended to other TTGs, such
as Whist or Bridge.

We propose a scheme for Spades that has the following security properties:

– The game server is not trusted.
– The players are convinced that nobody cheats. It means that:

1. Theft-resistance: a player cannot play a card that is not in his hand, nor
can a player play cards from the hand of his partner.

2. Cheating-resistance: a player cannot play a card that does not follow the
rules of the game (in Spades, if a player has a card of the leading suit, he
must play it).

– Unpredictability : the cards are dealt at random.
– Hand-privacy : the players do not know the hidden cards of the other players.
– Game-privacy : at each round, the protocol does not leak any information

except for the played cards.

We propose a formal definition of a Spades scheme, then we give a formal
definition of the security properties described above. We also design SecureS-
pades, a protocol based on the Decisional Diffie-Hellman (DDH) assumption,
and zero-knowledge proofs. Finally, we prove the security of SecureSpades in the
random oracle model.

Our protocol not only ensures all the security properties of the real card
games, it also provides additional security features. In real card games, it is
not possible to detect cheating exactly when the wrong card is played. In fact,
our protocol also allows players to detect cheats that are undetectable with real
cards, hence it can be used to create new TTGs, for instance a Spades variant
where the game is stopped after 5 rounds. In this variant, if the players do not
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have to reveal the cards they did not play, then there is no way to prevent
them from cheating. However, with our approach, such a game can be securely
implemented.

Related Work: In 1982, Goldwasser and Micali introduced the Mental Poker
problem [10]: it asks whether it is possible to play a fair game of poker without
physical cards and without a trusted dealer, i.e., by phone or over the Internet.
Since then, several works have focused on this primitive, such as [1,13,15]. In [12],
the author brings together references to scientific papers related to this problem.

Most of mental poker protocols are based on the following paradigm. The
players encrypt the cards together and shuffle them, then ciphertexts are assigned
to each player, and each player receives information from the other players in
order to decrypt their own cards. At the end of the game, the players reveal
their encryption keys, which reveals the hand of all the players. In trick-taking
games, each time a player plays a card, he must prove that the card is in his
hand and that he has no high-priority card that he should play instead of this
card. To achieve this property, we model the deck in a different way: each card is
associated to a commitment of the secret key of a player. The player plays a card
by proving that the committed secret key matches one of its public keys. This
allows the player to prove that he cannot play high-priority cards by proving
that none of his public keys match possible high-priority cards.

David et al. [8] introduced protocols for secure multi-party computation with
penalties and secure cash distribution, which can be used for online poker. Ben-
tov et al. [2] give a poker protocol in a stronger security model, which is more
efficient than [8]. More recently, David et al. [9] proposed Royale, a univer-
sally composable protocol for securely playing any card games with financial
rewards/penalties enforcement.

All of these works focus on mental card game protocols with secure payment
distributions, but they cannot prevent players from cheating by playing illegal
cards. Indeed, these protocols allow the users to play cards digitally with the
same security level as if they play with real cards. Our goal is not only to imple-
ment a secure trick-taking game, but also to increase its security, in comparison
with its physical version.

Finally, an other line of research is to detect collusion frauds in online card
games, as done for instance in [14]. Players may exchange information about
their cards using some side channels. The goal of [14] is to detect such a collusion
attack via the users’ behavior. This work is complementary to ours, because these
collusion detection processes can also be used with our protocol.

Outline: In Sect. 2, we describe the rules of Spades. In Sect. 3, we give an informal
overview of our scheme. In Sect. 4, we present the cryptographic tools used in the
paper. In Sect. 5, we model Spades schemes. In Sect. 6, we define the security
properties. In Sect. 7, we describe SecureSpades before concluding in the last
section.
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2 Spades Rules

Spades was created in the United States in the 1930s. Since the mid-1990s it has
become very popular thanks to its accessibility in online card gaming rooms on
the Internet. This game uses a standard deck of 52 cards and allows between
two and five players. The most famous version requires four players, which are
splitted in two teams of two. As indicated by the name of the game, spades are
always trump. We give the rules of Spades for the four players version:

1. All 52 cards are distributed one by one to each player, meaning each player
has 13 cards at the beginning of the game.

2. There are 13 successive rounds. In the first round, the first player is chosen
at random, and subsequently the player that won the previous round begins.
Players then each play a card in turn.

3. At each round, the player who plays the highest card wins the trick (i.e., he
takes the four cards played this round, but he cannot replay these cards). The
rank of the cards is the following, form highest to lowest: Ace, King, Queen,
Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. Trumps are higher than cards of the suit of the
first card of the round, which are higher than all other cards.

4. Each player has to follow the suit of the first card of the round. If a player
has no card that follows the suit, then he can play any other cards.

5. The game is finished once all players have played all of their cards.

Before playing the cards, each player bids the number of tricks he expects to
perform. The sum of all the propositions for all players should be different from
the number of cards per player. At the end of the game, each player calculates
his score according to his bid and the number of tricks he has won.

3 An Overview of Our Protocol

We now give an informal overview of our Spades protocol. The idea is that the
players must prove that each card they play follows the rule of the game. More
precisely, the player first proves that he has the played card. If this card does
not follow the suit, then he proves that none of his other cards are of the leading
suit.

1. Dealing cards: We need to model the cards in such a way that these
proofs are feasible. Each player i generates 13 pairs of public/private keys
(pki,j , ski,j) (for 1 ≤ j ≤ 13). To deal the cards, the players run a proto-
col that privately assigns each key to each card with the following steps: (i)
each player generates commitments on his 13 secret keys, (ii) the players
group all the 13 · 4 = 52 commitments together, (iii) each player shuffles and
randomizes the commitments in turn, (iv) the players jointly associate each
commitment to each card of the deck at random. The hand of a player is the
set of the 13 cards that match the commitments of his secret keys. Figure 1
illustrates our dealing cards protocol, where c(sk) denotes the commitment of
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a secret key sk, and c′(sk) denotes the randomization of c(sk). In this exam-
ple, the 1st card of player 1 is A♣, his 2nd card is 2♥, and his 13th card is
A♠. Note that the commitments and the public keys must be unlinkable for
anyone who does not know the corresponding secret keys.

2. Play a card: To play a card, the player proves that this card matches the
commitment of one of his secret keys. If the player does not follow the suit,
then he proves that none of his other cards are of the leading suit. To do so,
he proves that each commitment that matches a card of a non-leading suit
commits one of his (not yet used) keys.

Shuffle
commitments:

Deal cards:

c(sk1,1) c(sk1,2) . . . c(sk1,13) c(sk2,1) . . . c(sk4,13)

c′(sk4,13) c′(sk1,13) . . . c′(sk2,1) c′(sk1,1) . . . c′(sk1,2)

2♠ 3♠ . . . A♠ 2♥ . . . A♣

Fig. 1. Dealing cards in our Spades protocol.

4 Cryptographic Tools

We present the cryptographic tools used throughout this paper.

Definition 1 (DDH [4]). Let G be a prime order group. The DDH assumption
states that given (g, ga, gb, gz) ∈ G

4, it is hard to decide whether z = a · b or not.

A n-party random generator is a protocol that allows n users to generate a
random number, even if n − 1 users are dishonest.

Definition 2 (Multi-party random generator [3]). A n-party S-random
generator RGP1,...,Pn

is a protocol where n parties (P1, . . . , Pn) interact, and
return s ∈ S. Such a protocol is said to be secure when for any polynomial time
distinguisher D, any polynomial time adversary A, there exists a negligible func-
tion ε such that: |Pr[1 ← D(s) : s

$← S] − Pr[1 ← D(s) : s ← RGC,A(k)]| ≤ ε(k)
where s

$← RGC,A denotes the output of C at the end of the protocol RG where
C plays the role of a honest user, and A plays the role of the n − 1 other users.

Inspired by [3], we propose the following multi-party random generator pro-
tocol based on the random oracle model (ROM).
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Definition 3. Let S be a set and n be an integer, and let H : {0, 1}∗ → {0, 1}k

and H ′ : {0, 1}∗ → S be two hash functions simulated by random oracles. The
protocol RandGenS

P1,...,Pn
(k) is a n-party S-random generator defined as follows.

Each player Pi (where 1 ≤ i ≤ n) chooses ri
$← {0, 1}k at random, com-

putes H(ri), and broadcasts it, then each player reveals ri. Each player returns
H ′(r0|| . . . ||rn).

Lemma 1. For any set S and any integer n, RandGenS
P1,...,Pn

(k) is secure in
the random oracle model.

The proof of this lemma is given in the full version of this paper [6]. The idea is
that dishonest parties cannot guess the ri of the honest parties before revealing
their commitments, hence they cannot predict H(r0|| . . . ||rn).

A (non-interactive) Zero-Knowledge Proof of Knowledge (ZKP) [11] for a
binary relation R allows a prover knowing a witness w to convince a verifier that a
statement s verifies (s, w) ∈ R without leaking any information. Throughout this
paper, we use the Camenisch and Stadler notation [7], i.e.,ZK{(w) : (w, s) ∈ R}
denotes the proof of knowledge of w for the statement s and the relation R. Such
a proof is said to be extractable when given an algorithm that generates valid
proofs with some probability, there exists an algorithm that returns the corre-
sponding witness in a similar running time with at least the same probability.
Such a proof is said to be zero-knowledge when there exists a polynomial time
simulator that follows the same probability distribution as an honest prover.

5 Formal Definitions

We formalize Spades schemes and the corresponding security requirements. We
model a 52 cards deck by a tuple D = (id1, . . . , id52) such that ∀ i ∈ �1, 52�,
idi = (idi.suit, idi.val) ∈ {♥,♠,♦,♣} × {1, . . . , 10, J,Q,K} is called a card, where
∀ (i, j) ∈ �1, 52�2 such that i �= j, idi �= idj . The set of all possible decks is
denoted by Decks.

We first define Spades schemes, which are tuples that contain all the algo-
rithms that are used by the players. KeyGen allows each player to generate its
public/secret key. GKeyGen allows the players to generate a public game key.
DeckGen is a protocol that generates a random deck. GetHand determines the
hand of a given player from his secret key and the game key. Play allows a player
to play a card, and to prove that it is a legal play. Verif allows the other players
to check this proof. Finally, GetSuit returns the leading suit of the current round
(in Spades, the suit of the first card played during this round).

Definition 4. A Spade scheme is a tuple of eight algorithms W = (Init, KeyGen,
GKeyGen,DeckGen,GetHand,Play,Verif,GetSuit) defined as follows:

Init(k): It returns a setup setup.
KeyGen(setup): It returns a key pair (pk, sk).
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GKeyGen: It is a 4-party protocol, where for all j ∈ �1, 4� the jth party is denoted
Pj and takes as input (skj , {pki}1≤i≤4). This protocol returns a game public
key PK, or the bottom symbol ⊥.

DeckGen: It is a 4-party Decks-random generator.
GetHand(sk, pk,PK,D): It returns a set of 13 different cards H called a hand

(where D ∈ Decks).
Play(n, id, sk, pk, st,PK,D): It takes as input a player index n ∈ �1, 4�, a card id,

a pair of secret/public key, a global state st that stores the relevent information
about the previous plays, the game public key PK and the deck D, and returns
a proof Π, and the updated global state st′.

Verif(n, id,Π, pk, st, st′,PK,D): It takes as input a player index n ∈ �1, 4�, a card
identity id, a proof Π generated by the algorithm Verif, the global state st and
the updated global state st′, the game public key PK and the deck D, and
returns a bit b. If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ {♥,♠,♦,♣} from the current global state of
the game st, where suit is the leading suit for the current turn.

We then define the Spades protocol, which allows four players to play Spades
using the algorithms of the Spades scheme. It is divided in four phases:

Initialisation phase: One player generates and broadcasts the public setup.
Keys generation phase: After they have generated their public/private keys,

the players run GKeyGen to generate the game key together.
Shuffle phase: The players choose a deck using DeckGen, then they compute

their own hand using GetHand.
Game phase: Finally, they play in turn using the algorithms Play and Verif to

prove the validity of the cards they play. If some verification fails, the player
has to cancel only the last card he has played, and to simply play another
card.

Definition 5. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand,Play,Verif,
GetSuit) be a Spades scheme and k ∈ N be a security parameter. Let Player1,
Player2, Player3, Player4 be four polynomial time algorithms. The Spades proto-
col instantiated by W and the setup setup between Player1,Player2, Player3 and
Player4 is the following protocol:

Initialisation phase: Player1 runs setup ← Init(k) and broadcasts setup.
Keys generation phase: The players set st = ⊥. Each player Playeri runs

(pki, ski) ← KeyGen(setup) and broadcasts pki, then the players generate PK
by running the protocol GKeyGen together.

Shuffle phase: The players generate a deck D ∈ Decks by running DeckGen
together. For all i ∈ �1, 4�, Playeri runs Hi ← GetHand(ski, pki, PK,D).

Game phase: This phase is composed of 52 (sequential) steps (corresponding
to the 52 cards played in a game). The players initialize the current player
index p = 1. At each turn, Playerp designates the player who plays. Each step
proceeds as follows:
– Playerp chooses id ∈ Hp, then runs (Π, st′) ← Play(p, id, skp, pkp, st,

PK,D).
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– For all i ∈ �1, 4�\ {p}, Playerp sends (id,Π, st′) to Playeri.
– Each Playeri then checks that Verif(p, id,Π, pkp, st, st

′,PK,D) = 1, other-
wise, Playeri sends error to Playerp, who repeats this step and plays a
valid card.

– If Verif(p, id,Π, pkp, st, st
′,PK,D) = 1, all players update the state st :=

st′, and update the index p that points the next player according to the
rule of the game.

6 Security Properties

We first define Spades strategies. In a card game, each player chooses what card
he wants to play depending on his hand and the previously played cards of the
other players. In order to formalize the security of our protocol, we need to model
honest players who choose the cards they play themselves. A Spades strategy is
an algorithm that decides which card to play using all known information by a
given player. We define security experiments where the choices of each honest
player is simulated by a Spades strategy. The idea is that a Spades scheme
is secure if for any polynomial time adversary, the probability of winning the
experiment is negligible, whatever the Spades strategies used by the experiment.

Definition 6. A Spades strategy is a polynomial time algorithm Strat that takes
as input a tuple of cards played (which represents all cards played at some point
in a Spades game) and a set of cards hand (which represents all cards of a player
at the same point), a first player index p∗, a player index p, and that returns a
card id ∈ Hand which is valid according to the rules of Spades (i.e., that follows
the suit of the first card of the current round).

We define an experiment where a challenger simulates the Spades protocol to
an adversary. We use this experiment to define Spades’ security properties. The
adversary first chooses the index of the player he wants to corrupt. The challenger
generates the public/secret keys of the three other users, then the adversary sends
his public key together with the index of an accomplice. The accomplice allows
the experiment to capture the attacks where a dishonest player and his game
partner collude. The adversary has access to the private key of all players. The
adversary and the challenger then run the game key and the deck generation
protocol, such that the adversary plays the role of the corrupted player and the
accomplice. The challenger generates the hand of each player. Note that the
challenger cannot use the hand generation algorithm for the corrupted player,
because he does not know his secret key; however, the challenger can deduce
this hand because it contains the 13 cards that are not in the hand of the three
other users. Finally, the challenger and the adversary run the game phase, such
that the adversary plays the role of the corrupted user and his accomplice.

Definition 7. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand, Play, Verif,
GetSuit) be a Spades scheme, S = (Strat1,Strat2,Strat3,Strat4) be a tuple of
strategies, and k ∈ N be a security parameter. Let A and C be two polynomial
time algorithms. The Spades experiment ExpSpadesW,S,A(k) instantiated by W and S
between the adversary A and the challenger C is defined as follows:
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Keys generation phase: C runs setup ← Init(k), sets st =⊥, and sends the
pair (setup, st) to A, who returns a corrupted user index ic ∈ �1, 4�. For all
i ∈ �1, 4�\ {ic}, C runs (pki, ski) ← KeyGen(setup) and sends (pki, ski) to A,
who returns the public key pkic and an accomplice index ia.

Game key generation phase: C and A generate PK by running the algorithm
GKeyGen together, such that A plays the role of the players Pic and Pia , and
C plays the role of the other players. If PK =⊥, then C aborts and returns 0.

Shuffle phase: C and A generate D by running the algorithm DeckGen together,
such that A plays the role of the players Pic and Pia , and C plays the role
of the two other players. C sets p = 1 and parses D as (id1, . . . , id52). For
all i ∈ �1, 4�\ {ic}, C runs Hi ← GetHand(ski, pki,PK,D), and sets Hic =
{idi}1≤i≤52 \(∪4

i=1;i�=ic
Hi).

Game phase: C initializes the current player index p = 1 and the corrupted
play index γ = 0, and played =⊥. For i ∈ �1, 52�:
If p �= ic and p �= ia: C runs id ← Stratp(played,Hp, p∗, p), then C runs

(Π, st′) ← Play(p, id, skp, pkp, st,PK,D). C sends (id,Π, st′) to A and
updates st := st′.

If p = ia: C receives (id,Π, st′) from A. If Verif(ia, id,Π, pkia , st, st′,PK,D)
= 0, then C aborts and the experiment returns 0. Else, C updates st := st′.

If p = ic: C increments γ := γ + 1, then receives (id,Π, st′) from A and
sets (idic,γ ,Πic,γ) = (id,Π). C sets stγ = st and st′

γ = st′. C sets
suitic,γ = GetSuit(st). If Verif(ic, idic,γ ,Πic,γ , pkic , stγ , st′

γ ,PK,D) = 0,
then C aborts and the experiment returns 0. Else, C updates st := st′.

C then updates the index p that points to the next player according to the rule
of Spades, parses played as (pl1, . . . , pln) (where n = |played|) and updates
played := (pl1, . . . , pln, id).

Final phase: The experiment returns 1.

The first security property of a Spades scheme is the theft-resistance, which
ensures that no adversary is able to play a card that is not in his hand, even if
the card is in the hand of his accomplice. On the other words, two partners are
not able to exchange their cards.

Definition 8. A Spades scheme W is said to be theft-resistant if for any tuple of
strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time adversary
A who plays the Spade experiment instantiated by W and S, the probability that
there exists γ ∈ �1, 13� such that:

– Verif(ic, idic,γ ,Πic,γ , pkic , stγ , st′
γ ,PK,D) = 1, i.e., the γth play of the adver-

sary is accepted for the card idic,γ ; and
– ∀ id ∈ Hic , idic,γ �= id, i.e., the card idic,γ is not in the adversary hand;

is negligible.

We then define the cheating-resistance property, which ensures that no adver-
sary is able to play a card if he should play another valid one.
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Definition 9. A Spades scheme W is said to be cheating-resistant if for any
tuple of strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time
adversary A who plays the Spade experiment instantiated by W and S, the prob-
ability that there exists γ ∈ �1, 13� such that:

– Verif(icidic,γ ,Πic,γ , pkic , stγ , st′
γ ,PK,D) = 1, i.e., the γth play of the adver-

sary is accepted for the card idic,γ ; and
– idic,γ .suit �= suitic,γ and suitic,γ �=⊥ i.e., the suit of the card idic,γ is not the

leading suit; and
– ∃ īd ∈ Hic such that: ∀ l ≤ γ, idic,l �= īd and īd.suit = suitic,γ . i.e., the

adversary has a card of the leading suit in his hand that was not already
played before the γth play;

is negligible.

We define the unpredictability, which ensures that no adversary can influence
the card dealing, i.e.,A cannot predict which card will be in which hand.

Definition 10. A Spades scheme W is said to be unpredictable if for any tuple
of strategies S = (Strat1,Strat2,Strat3,Strat4), any polynomial time adversary A
who plays the Spades experiment instantiated by W and S, for all i ∈ �1, 52� the
probability that idi ∈ Hic is negligibly close to 1/4.

We introduce a new experiment that is called the hand Spades experiment,
where the challenger simulates the key generation phase of the Spades protocol
(but not the game phase). In this experiment the adversary does not know the
private keys of the other players and has no accomplice. This experiment will
be used to model the attacks where an adversary tries to guess the cards of the
other players, including his partner.

Definition 11. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand,Play,Verif,
GetSuit) be a Spades scheme and k ∈ N be a security parameter. Let A and C
be two polynomial time algorithms. The hand Spades experiment ExpHSpadesW,A (k)
instantiated by W between the adversary A and the challenger C is defined by:

Key generation phase: C runs setup ← Init(k). It sets st = ⊥. It sends the
pair (setup, st) to A, who returns ic ∈ �1, 4�. For all i ∈ �1, 4�\ {ic}, C runs
(pki, ski) ← KeyGen(setup) and sends pki to A, who returns pkic .

Game key generation phase: C and A generate PK by running the algorithm
GKeyGen together, such that A plays the role of Pic , and C plays the role of
the three other players. If PK =⊥, then C aborts and returns 0.

Shuffle phase: A sends a deck D ∈ Decks to C. C parses D as (id1, . . . , id52).
For all i ∈ �1, 4�\ {ic}, C runs Hi ← GetHand(ski, pki,PK,D), and sets Hic =
{idi}1≤i≤52 \(∪4

i=1;i�=ic
Hi).

Challenge phase: C picks (θ0, θ1) in (�1, 4�\ {ic})2 such that θ0 �= θ1. C picks
b

$← {0, 1} and īd
$← Hθb

, and sends (īd, θ0, θ1) to A, who returns b∗.
Final phase: If b = b∗, then C returns 1, else it returns 0.
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We then define the hand-privacy. This property ensures that an adversary
has no information about the hand of the other players before the game phase
is run.

Definition 12. A Spades scheme W is said to be hand-private if for any tuple of
strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time adversary
A who plays the hand-Spades experiment instantiated by W and S, the probability
that the experiment returns 1 is negligibly closed to 1/2.

The last property is the game-privacy. The idea is that, at each step of
the game phase, the players learn nothing else than the cards that have been
previously played. We show that, after the game key is generated, each player
is able to simulate all the protocol interactions knowing the players’ strategies.
More formally, there exists a simulator that takes as input values known by the
player such that the player cannot distinguish whether he plays the real game
experiment or he interacts with the simulator.

Definition 13. For any k ∈ N, any Spades scheme W , any quadruplet of strate-
gies S, any adversary D and any K = (setup, pkic , {(pki, ski)}1≤i≤4;i�=ic

,PK),
ExpSpadesW,S,K,D(k) denotes the same experiment as ExpSpadesW,S,D(k) except:

1. The challenger and the adversary use the setup and the keys in K instead of
generating fresh setup and keys during the experiment.

2. The challenger does not send ski for all 1 ≤ i ≤ 4 such that i �= ic to A, and
A has no accomplice.

A Spades scheme W is said to be game-private if there exists a polynomial time
simulator Sim such that for any tuple of strategies S and any polynomial time 5-
party algorithm D = (D1,D2,D3,D4,D5), |Preal(D, k) − Psim(D, k)| is negligible,
where

Preal(k) =

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ← D5(vw) :

setup ← Init(k); ic ← D1(setup);
∀i ∈ �1, 4�,
If i �= ic, (pki, ski) ← KeyGen(setup);
Else pkic ← D2(setup, {pki}1≤j≤i , vw);

PK ← GKeyGenP1,P2,P3,P4
where Pic = D3;

K := (setup, pkic , {(pki, ski)}1≤i≤4;i�=ic
,PK);

If PK =⊥, vwr :=⊥;

Else b ← ExpSpadesW,S,K,D4(vw)
(k);

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Psim(k) =

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ← D5(vw) :

setup ← Init(k); ic ← D1(setup);
∀i ∈ �1, 4�,
If i �= ic, (pki, ski) ← KeyGen(setup);
Else pkic ← D2(setup, {pki}1≤j≤i , vw);

PK ← GKeyGenP1,P2,P3,P4
where Pic = D3;

If PK =⊥, vwr :=⊥;

Else b ← SimSpades
W,S,D4(vw)

(k, setup, ic, {pki}1≤i≤4 ,PK, vw);

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and where vw denotes the view of D, i.e., all the values sent and received by each
algorithm of D during his interaction with the experiment.

Note that if a scheme is both hand-private and private-game, then players
have no information about the other players’ hands except for all the cards they
have already played.

7 Schemes

We first informally show how our protocol, SecureSpades, works, then we give
its formal definition.

Keys generation. Each player i generates 13 key pairs (pki,j , ski,j) for 1 ≤ j ≤
13 such that pki,j = gski,j . The players then generate a game key PK together,
which is made of 52 pairs (hl,PKl) such that hl

ski,j = PKl. The keys PKl are
shuffled, meaning each player does not know which PKl corresponds to which
pki,j , except for his own public keys. To build PK, for all l ∈ �1, 52� the
players set h0,l = g and PK0,l = pki,j such that (i, j) is in �1, 4� × �1, 13�

and is different for each l. Note that it holds that h0,l
ski,j = PK0,l. The first

player then randomizes and shuffles all pairs (h0,l,PK0,l), i.e., he chooses a
random vector r and a random permutation δ and computes h1,l = (h0,δ(i))ri

and PK1,l = (PK0,δ(i))ri . The three other players randomize and shuffle the
pairs (hn,l,PKn,l) in order to obtain the pairs (hn+1,l,PKn+1,l) for 1 ≤ n ≤ 3
in turn in the same way, then they set (hl,PKl) = (h4,l,PK4,l) for all l. If the
shuffles are correctly built, then it holds that for each l there exists a different
pair (i, j) such that hl

ski,j = PKl. After each shuffle, the player proves that
each (hi,l,PKi,l) is a correct randomization of one (hi−1,l′ ,PKi−1,l′) where
1 ≤ l′ ≤ 52. Each player then checks that each of his secret keys match
one PKl, otherwise he aborts the protocol. Since each player shuffles the keys
using a secret permutation, they do not know which PKl matches which pki,j ,
except for their own public keys.

Hand generation. Players generate a random deck D = (id1, . . . , id52) using
the RandGenDeck protocol, then for all 1 ≤ l ≤ 52, the key PKl corresponds to
the card idl. The hand of the player i is the set of all cards idl such that there
exists 1 ≤ j ≤ 13 such that hl

ski,j = PKl. Since the player does not know the
keys ski′,j for i′ �= i, he does not know the cards of the other players.

Play a card. To play the card idl, the player i proves that the card idl matches
one of his key pki,j by showing that hl

ski,j = PKl. Note that since the player
does not reveal ski,j , he can use the same set of public keys for different
games. To prove that he cannot play any card of the leading suit, the player
i sets L such that l ∈ L if and only if idl is not of the leading suit, then the
player i proves in a zero-knowledge way that for all pki,j that correspond to
cards that are not already played, there exists an (unrevealed) l ∈ L such
that loghl

(PKl) = logg(pki,j). This implies that the player has no card of the
leading suit, hence he is not cheating.
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Definition 14. SecureSpades is a Spades scheme defined as follows:

Init(k): It generates a group G of prime order q, a generator g ∈ G and returns
(G, p, g).

KeyGen(setup): For all i ∈ �1, 13�, it picks ski
$← Z

∗
q and computes pki = gski . It

returns pk = (pk1, . . . , pk13) and sk = (sk1, . . . , sk13).
GKeyGen: It is a 4-party protocol, where for all i ∈ �1, 4� the ith party is denoted

Pi, and takes as input (ski, {pkj}1≤j≤4). This protocol returns a game public
key PK, or the bottom symbol ⊥. If there exist (i1, j1) and (i2, j2) such that
(i1, j1) �= (i2, j2) and pki1,j1 = pki2,j2 , then the players abort and return ⊥.
– For all i ∈ �1, 4�, each player parses pki as (pki,1, . . . , pki,13). For all

j ∈ �1, 13�, each player sets h0,(i−1)·13+j = g and PK0,(i−1)·13+j = pki,j.
– Each player Pi (for i ∈ �1, 4�) does the following step in turn: Pi picks

r = (r1, . . . , r52)
$← (Z∗

q)
52, and a permutation δ on the set �1, 52�. Pi

computes hi,l = hrl

i−1,δ(l) and PKi,l = (PKi−1,δ(l))rl for all l ∈ �1, 52�,

then runs Πi = ZK
{

(r, δ) :
∧52

l=1

(
hi,l = hrl

i−1,δ(l) ∧ PKi,l = PKrl

i−1,δ(l)

)}
.

This proof ensures that each (hi,l,PKi,l) is the randomization of one pair
(hi−1,l′ ,PKi−1,l′) for l′ ∈ �1, 52�. Pi broadcasts {(hi,l,PKi,l)}1≤l≤52 and
Πi, then each player verifies the proof Πi. If the verification fails, then
the player aborts and returns ⊥.

– If there exists j such that for all l, h
ski,j
4,l �= PK4,l, then Pi aborts the pro-

tocol and returns ⊥. For each i ∈ �1, 4�, Pi sets PK′
i = ((h4,1,PK4,1), . . . ,

(h4,52,PK4,52)) and broadcasts it. If there exists i1 and i2 such that
PK′

i1 �= PK′
i2 , then Pi aborts and returns ⊥, else Pi returns PK = PK′

i.
DeckGen: It is the 4-party Deck-random generator RandGenDeck protocol.
GetHand(sk, pk,PK,D): It parses sk as (sk1, . . . , sk13), PK as ((h1,PK1), . . . ,

(h52,PK52)) and D as (id1, . . . , id52). It returns the set H such that idi ∈ H

iff there exists j ∈ �1, 13� such that PKi = h
skj
i .

Play(n, id, sk, pk, st,PK,D): It parses D as (id1, . . . , id52), sk as (sk1, . . . , sk13), pk
as (pk1, . . . , pk13)), PK as ((h1,PK1), . . . , (h52,PK52)), and st as (α, suit, U1,
U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4. Let v ∈ �1, 52�
be the integer such that id = idv (i.e., v is the index of the played card id) and
t ∈ �1, 13� be the integer such that logg(pkt) = loghv

(PKv) (i.e., t is the index
of the public key that corresponds to the played card id). It sets U ′

n = Un ∪{t}.
Note that at each step of the game, the set Un contains the indexes of all the
public keys of the user n that have already been used to play a card. For all
i ∈ �1, 4�\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states
which suit is the leading suit of the round, given by the first card played in
the round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK{(skt) : pkt = gskt ∧ PKv = hskt
v }, which proves that the played card

idv matches one of the secret keys of the player. Let L ∈ �1, 52� be a set such
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that for all l ∈ L, suit′ �= idl.suit, i.e.,L is the set of the indexes of the cards
that are not of the leading suit this round. For all j ∈ �1, 13�
– If suit′ = id.suit, it sets Πj =⊥ (if the card id is of the leading suit, then

the player can play it in any case, so no additional proof is required).
– If j ∈ Un, it sets Πj =⊥ (We omit the keys that have already been used

in the previous rounds).
– If j �∈ Un it generates Πj = ZK

{
(skj) :

∨
l∈L(pkj = gskj ∧ PKl = h

skj
l )

}
.

This proof ensures that the card that corresponds to each public key pkj is
not of the leading suit, which proves that the player n cannot play a card
of the leading suit.

Finally, it returns the proof Π = (t,Π0, . . . , Π13), and the updated value st′.
Verif(n, id,Π, pk, st, st′,PK,D): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,

suit′, U ′
1, U

′
2, U

′
3, U

′
4), pk as (pk1, . . . , pk13), the key PK as ((h1,PK1), . . . ,

(h52,PK52)), D as (id1, . . . , id52) and Π as (t,Π0, . . . , Π13). If st = ⊥, it sets
four empty sets U1, U2, U3 and U4. Let v be the integer such that idv = id
(i.e., v is the index of the played card id). Let L ∈ �1, 52� be a set such that
for all l ∈ L, suit′ �= idl.suit, i.e.,L is the set of the indexes of the cards that
are not of the leading suit. This algorithm first verifies that the state st is
correctly updated in st′ according to the Play algorithm:
– If there exists i ∈ �1, 4�\ {n} such that U ′

i �= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} �= U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ �= 1 or suit′ �= id.suit, then it returns 0.
– If α �= 4 and suit �=⊥, and α′ �= α + 1 or suit′ �= suit, then it returns 0.

This algorithm then verifies the zero-knowledge proofs in order to check that
the player does not cheat by playing a card he has not, or by playing a card
that is not of the leading suit even though he could play a card of the leading
suit.
– If Π0 is not valid then it returns 0.
– If suit′ �= id.suit and there exists an integer j ∈ �1, n� such that j �∈ Un

and Πj is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

Instantiation. We show how to instantiate the two zero-knowledge proofs of
knowledge used in our protocol. The first one is a zero-knowledge OR-proof of the
equality of two discrete logarithms denoted ZK {(w) :

∨n
i=1 ai

w = ci ∧ bi
w = di}.

An efficient instantiation of such ZKPs in the random oracle model is given
in [5]. Our protocol also uses a proof of correctness of a randomization of a set
of shuffled commitments. This proof is denoted ZK{((r1, . . . , rn), δ) :

∧n
i=1 ci =

ari

δ(i) ∧ di = bri

δ(i)}, and can be instantiated using the previous one, since it
consists in proving the equality of two discrete logarithms for the statement
{(ai, bi, cj , dj)}1≤j≤n for each j in �1, 52�.
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Security. We prove the security of our scheme in Theorem 1, then we give the
intuition of the proof. The full proof is given in the full version of this paper [6].

Theorem 1. If the two proofs of knowledge are sound, extractable and zero-
knowledge, then SecureSpades is theft-resistant, cheating-resistant, hand-private,
unpredictable, and game-private under the DDH assumption in the ROM.

Theft-resistant. To play a card, the player i must prove that the discrete log-
arithm of one of his public keys pki,j is equal to the discrete logarithm of the
key PKl that corresponds to the card. If the card is not in his hand, then
none of the discrete logarithms of the public keys pki,j is equal to the discrete
logarithm of the key PKl. Hence, to play a card that is not in his hand, the
player should forge a proof of a false statement, which is not possible, since
the proof system is sound.

Cheating-resistant. To play a card that is not of the leading suit, the player
i must prove that the discrete logarithm of each public key pki,j is equal to
the discrete logarithm of one key PKl that corresponds to a card that is not
of the leading suit. Hence, assuming that the player has some cards of the
leading suit, in order to play another card, he should forge a proof of a false
statement. This is not possible, since the proof system is sound.

Unpredictable. Since the deck D is chosen at random thanks to the protocol
RandGen, players have no way of guessing which card matches which public
key during the keys generation phase.

Hand-private. Each player shuffles the keys PKl using a secret permutation
when he runs the GKeyRound algorithm. Moreover, the zero-knowledge proofs
ensure that for each PKl there exists a key pki,j such that loghl

(PKl) =
logg(pki,j). Guessing the hand of a player i is equivalent to guessing pairs
(j, l) such that the key PKl has the same discrete logarithm in basis hl as the
key pki,j , which is equivalent to guessing whether PKl is the Diffie-Hellman
of hl and pki,j .

Game-private. During the game, the players use nothing other than zero-know-
ledge proofs, which leak nothing about the secret values of the players.

Other TTGs. Our Spades security model and scheme can be generalized to
several trick-taking games. It works for any number of cards, of players, and
for any team configuration. Moreover, it can be generalized to any game where
players must play some kinds of cards according to a priority order, as long as
the players can establish the set of all the cards that should be played (when
it is possible) instead of the played one. This includes (but is not restricted to)
all variants of Spades, Whist, Bridge, Belotte, Napoleon or Boston. Moreover,
physical cards limit trick-taking games to games where players reveal all their
cards, because if they do not, cheating could not be detected, even later. Our
protocol allows the creation of new fair TTGs where players do not play all the
cards of their hand.
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8 Conclusion

In this paper, we have designed a secure protocol for trick-taking games. We
used Spades, a famous online gambling card game, to illustrate our approach.
Until now, such games required a trusted sever that ensures that players are
not cheating. Our protocol allows the players to manage the game and detect
cheating by themselves, without leaking any information about the hidden cards.
Hence, a player cannot play a card that he does not have or that does not
follow the rule of the game. Our construction is based on the discrete logarithm
assumption and zero knowledge proofs. We proposed a security model and prove
the security of our protocol.

In the future, we would like to implement a prototype, in order to evaluate
the practical efficiency of our solution. Moreover, we would like to add secure
payment distributions mechanism to our protocol. Another perspective is to try
to generalize this approach to other games.
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Abstract. While many tailor made card game protocols are known,
the vast majority of those lack three important features: mechanisms
for distributing financial rewards and punishing cheaters, composability
guarantees and flexibility, focusing on the specific game of poker. Even
though folklore holds that poker protocols can be used to play any card
game, this conjecture remains unproven and, in fact, does not hold for
a number of protocols (including recent results). We both tackle the
problem of constructing protocols for general card games and initiate a
treatment of such protocols in the Universal Composability (UC) frame-
work, introducing an ideal functionality that captures card games that
use a set of core card operations. Based on this formalism, we introduce
Royale, the first UC-secure general card games which supports finan-
cial rewards/penalties enforcement. We remark that Royale also yields
the first UC-secure poker protocol. Interestingly, Royale performs better
than most previous works (that do not have composability guarantees),
which we highlight through a detailed concrete complexity analysis and
benchmarks from a prototype implementation.

1 Introduction

Online card games have become highly popular with the advent of online casi-
nos, which act as trusted third parties performing the roles of both dealers and
cashiers. However, a malicious casino (potentially compromised by an insider
attacker) can easily subvert game outcomes [33]. Solving this issue has inspired
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a long line of research on mental poker, i.e. playing poker among distrustful
players without relying on a trusted third party [3,14,16,17,22,27,29–32,35,36].
Nevertheless, the aforementioned mental poker protocols did not provide formal
security definitions or proofs. In fact, concrete flaws in the protocols of [35,36]
(resp. [3,14]) have been identified in [29] (resp. [19]). Moreover, even if some of
these protocols can be proven secure, they do not ensure that aborting adver-
saries cannot prevent the game to reach an outcome or that honest players receive
the resulting financial rewards.

Techniques for ensuring that players receive their rewards according to game
outcomes were only developed recently by Andrychowicz et al. [1,2,6,23], build-
ing on decentralized cryptocurrencies. Their techniques also prevent misbehavior
(including aborts) by imposing financial penalties to adversaries who are caught
deviating from the protocol. Basically, they ensure that honest players either
receive the rewards determined by the game outcome or a share of the penalty
imposed to the adversary in case an outcome is not reached. These techniques
were subsequently improved by Kumaresan et al. [24], [7], who also applied them
to constructing protocols for secure card games with financial rewards/penalties.
However, neither of these works provided formal security definitions and proofs
for their card game protocols.

The first security definition and provably secure protocol for secure poker
with financial rewards/penalties enforcement were recently proposed by David
et al. [19], which still only captures the specific game of poker. Moreover, the
protocol of [19] lacks composability guarantees, meaning that it cannot be arbi-
trarily executed along with copies of itself and other protocols. In fact, none
of the previous mental poker protocols are composable and, consequently, re-
purposing them for playing other games would void their security guarantees,
contradicting the folklore belief that poker protocols yield protocols for any card
game. While the recent work of [18] constructs composable card game protocols,
it only captures games without secret state (i.e. it cannot be used to instantiate
games where bluffing is a key element, such as poker). Our work closes this gap
by proposing a protocol for playing general card games that use a set of core
card operations with security proven in the Universal Composability (UC) [11]
framework, also yielding the first UC-secure protocol for the specific case of
poker.

1.1 Our Contributions

We initiate a composable treatment of card game protocols, introducing both
the first ideal functionality for general card games and the first UC-secure tailor-
made protocol for general card games. Our functionality and matching protocol
support core operations that can be used to construct a large number of dif-
ferent card games, as opposed to previous protocols, which focus specifically on
the game of poker. Besides capturing a large number of card games, our proto-
col enforces financial rewards/penalties while achieving efficiency comparable to
previous works without UC-security. In fact, for practical parameters, a DDH-
based instantiation of our protocol is concretely more efficient than most previous
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works, most of which have no provable security guarantees. Our contributions
are summarized as follows:

– The first ideal functionality for general card games that can be expressed in
terms of a set of core card operations: FCG;

– Royale, the first provably secure protocol for general card games satisfying
FCG;

– Royale is proven to UC-realize our functionality in the restricted pro-
grammable and observable global random oracle model [9], being the first
universally composable card game protocol (also yielding the first UC-secure
poker protocol);

– An efficient mechanism for financial rewards/penalties enforcement in Royale,
and a detailed efficiency analysis showing it outperforms previous works for
practical parameters and benchmarks obtained from a prototype implemen-
tation.

As a first step in providing a composable treatment, we introduce an ideal
functionality that captures general card games. It is parameterized by a program
describing the flow of the game being modeled, differently from the ideal func-
tionality introduced in [19], which only captures the flow of a poker game. This
program determines the order in which the functionality carries out a number of
operations that are used throughout the game, as well as the conditions under
which a player wins or loses the game. Namely, the game rules can request a
number of core card operations: public shuffling of closed cards on the table, pri-
vate opening of cards (towards only one player, used for drawing cards), public
opening of cards and shuffling of cards in a player’s private hand (which can be
used to securely swap cards among players). Moreover we provide an interface
for the game rules to request public actions from the players (allowing players
to broadcast their course of action), such as placing a bet or choosing a card
from the table. We achieve financial rewards/penalties enforcement by following
the basic approach of [7] based on stateful contracts, which are modeled as a
separate ideal functionality in our construction. Each player deposits a collateral
that is forfeited (and distributed among the other players) in case he behaves
maliciously during protocol execution. If a player suspects that another player is
misbehaving (e.g. failing to send a message), a complaint is sent to the stateful
contract functionality, which mediates the protocol execution until the conflict
is resolved or a culprit is found, resulting in the termination of the protocol after
collateral deposit distribution. As pointed out in [7], such a stateful contract
functionality can be implemented based on smart contracts on blockchain-based
systems such as Ethereum [8].

Finally, we construct Royale, a protocol for general card games that is proven
to UC-realize our functionality with the help of a stateful contract. It is con-
structed in a modular fashion based on generic signature, threshold encryption
and non-interactive zero-knowledge (NIZK) proofs that can be efficiently instan-
tiated under standard computational assumptions (DDH) in the restricted pro-
grammable and observable global random oracle model of [9]. As the contract is
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ultimately implemented by a blockchain-based solution, one of the main bottle-
necks in such a protocol is the amount of on-chain storage required for executing
the stateful contract, which must analyze the protocol execution and determine
whether a player has correctly executed the protocol or not when a complaint
is issued. We achieve low on-chain storage complexity by providing compact
checkpoint witnesses that allow the players to prove that the protocol has been
correctly executed (or not), differently from [7], which requires large amounts of
the protocol transcript to be sent to the contract.

The individual card operations in our protocol are inspired by Kaleido-
scope [19], which achieves the desired efficiency for the specific case of poker.
However, Kaleidoscope is based specifically on the DDH assumption and does
not achieve UC-security, Kaleidoscope’s security proof involves a simulator that
makes heavy use of extraction of witnesses of NIZK proofs of knowledge based on
the Fiat-Shamir heuristic, which require rewinding the adversary in the security
proof, an operation that is not allowed in proofs in the UC framework. While
substituting such Fiat-Shamir NIZKs for UC-secure ZK proofs would solve this
issue, the efficiency of the resulting protocol would be greatly affected, since
current UC-secure constructions [10] are significantly less efficient than the sim-
ple NIZKs used in Kaleidoscope. We overcome this obstacle without sacrificing
efficiency through subtle modifications to the protocol itself, employing NIZK
proofs of membership and a novel proof strategy that only requires the simulator
to generate simulated proofs, eliminating the need for rewinding.

1.2 Related Works

Even though there is a large number of previous works on protocols for secure
card games, the problem of aborting adversaries and reward distribution for
poker games has only been (efficiently) addressed recently [7]. Moreover, as pre-
viously discussed, formal security definitions and proofs for secure card game
protocols were only recently introduced in Kaleidoscope [19]. Since we aim at
addressing both the issues of composability and financial penalties/rewards dis-
tribution, we center our discussion on the works of [7,19], which are more closely
related to this goal. See [19] for a comprehensive discussion of efficiency and con-
crete security issues of previous works.

Enforcing Financial Rewards and Penalties: Most games of poker are
played with money at stake, posing two central challenges that were overlooked
in the first poker protocols but need to be solved in order to allow for prac-
tical deployment: (1) protecting against potentially aborting cheaters and (2)
ensuring that winners receive their rewards. In the case of general secure com-
putation, these challenges were only recently addressed in an efficient way by
Bentov et al. [7] with further optimizations of an approach previously developed
and pursued in [1,2,6,23,24]. The central idea in the general purpose secure
computation protocol of [7] is to execute an unfair protocol without any interac-
tion with the cryptocurrency network, relying on a single stateful contract that
handles funds distribution and financially punishes misbehaving parties. Before
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the unfair protocol is executed, the stateful contract receives deposits of funds
that will be distributed according to the protocol output as well as of collateral
funds that will be used to punish misbehaving parties and compensate honest
parties. In case a party suspects cheating, it “complains” to the stateful con-
tract, which will mediate the protocol execution until a cheater is found or the
complaint is solved (so that execution can proceed off-chain). In case a party
is found to be cheating, its collateral funds are distributed among the honest
parties and the protocol execution ends. If the protocol reaches an output, the
stateful contract distributes the funds deposited at the onset of execution accord-
ing to the output. Bentov et al. [7] apply this general approach to tailor-made
poker protocols [31,32], aiming at implementing a secure poker protocol with
higher efficiency than their general purpose secure computation protocol. How-
ever, their tailor-made protocol is not formally proven secure and, even if found
to be secure, has efficiency issues, as discussed in the remainder of this section.

Formal Security Guarantees: The vast majority of poker protocols [3,7,14,
16,17,22,24,27,29–32,35,36] claim different levels of security but do not provide
formal securities. Besides making it hard to assess the exact security offered
by such protocols, the lack of clear security definitions and proofs has led to
concrete security flaws in many of these protocols [3,14,35,36], as pointed out
in [19,29]. While Bentov et al. [7] argue that their framework can be directly
applied to tailor-made poker protocols to provide financial rewards/penalties
enforcement with high efficiency, they do not provide a security proof for such a
direct application of their framework to tailor-made protocols nor describe the
properties the underlying poker protocol should satisfy. Their work specifically
mentions the protocols of [31,32] as potential building blocks. However, [31,32]
are not formally proven secure. Using such protocols as building blocks in a
black-box way without a clear security definition and proofs can lead to both
security and composition issues. Moreover, even if proven secure, [31,32] face
efficiency issues for practical parameters. In the poker case, the lack of formal
security definitions and proofs was only recently remedied by Kaleidoscope [19],
which introduced both the first security definition for poker functionalities and
a matching protocol, considering financial rewards/penalties enforcement.

Efficiency Issues: As Royale is the first work to consider general card games,
we compare the efficiency of each card operation provided by Royale to the sim-
ilar operations provided in previous works on poker protocols. The most costly
operation is the shuffling of cards. The protocol of Barnett and Smart [3] (that
serves as the basis for many subsequent protocols) and the protocol of Wei and
Wang [32] (cited as a potential building block in [7]) rely on a cut-and-choose
based ZK proof of shuffle correctness, incurring high computational and com-
munication overheads. A subsequent work by Wei [31] (also cited as a potential
building block in [7]) improves on the complexity of the shuffle procedure by elim-
inating the need for cut-and-choose but still requires a large number of rounds
(more than 4n rounds, where n is the number of players), which is also the case
of [32]. The Kaleidoscope [19] protocol employs a novel shuffling phase based on
efficient NIZK proofs of shuffle correctness, achieving better concrete efficiency
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both in terms of communication and computation than previous works for prac-
tical parameters, while only requiring n rounds (for n players). The shuffling pro-
cedure of a DDH-based instantiation of Royale (Sect. 3) inherits the same high
efficiency of the Kaleidoscope shuffle while achieving UC-security. The compu-
tational, communication and round complexities of opening cards in Royale are
very similar to those of previous works, which already achieved high efficiency
for these operations. For a more detailed discussion, we refer to Sect. 4.

Composability Issues: The need for arbitrary composability naturally arises in
poker and general card game protocols with financial rewards/penalties enforce-
ment, since those protocols need to use other cryptographic protocols, e.g. secure
channels and cryptocurrency protocols. This is specially critical in the case of
general card game protocols, where card operations are arbitrarily mixed and
matched in order to create different games, which can potentially cause serious
security issues in protocols without arbitrary composability guarantees. However,
none of the previous works on poker or card games protocols have considered this
issue, and Kaleidoscope [19], the only poker protocol with provable security guar-
antees, only achieves sequential composability. The UC framework [11] is widely
used to reason about arbitrary composability for cryptographic protocols. The
main obstacle to providing a proof of security for Kaleidoscope as well as other
previous poker protocols lies in their use of NIZK proofs of Knowledge obtained
from applying the Fiat-Shamir transformation to Sigma protocols, heavily rely-
ing on rewinding for extracting witnesses in their security proofs. In Royale,
this is solved by employing a proof strategy that only requires the simulator to
generate simulated NIZKs without sacrificing efficiency.

2 Preliminaries

We denote the security parameter by κ and sampling an element x uniformly at
random from a set X by x

$← X . See the full version [20] for complete notation.

Re-Randomizable Threshold PKE: A re-randomizable threshold public key
encryption (RTE [34]) scheme is a central in our protocols. Intuitively, we focus
of the (n, n)-Threshold case, where the n parties need to cooperate in the decryp-
tion. We present formal definitions in the full version [20]. A summary of the
main RTE algorithms used in our construction is given below:

– KeyGen(param) takes as input parameters param and outputs a public key pki
and a secret key ski.

– CombinePK(pk1, . . . , pkn) is a deterministic algorithm that takes as input a
set of public keys (pk1, . . . , pkn) and outputs a combined public key pk.

– Enc(pk,m) takes as input a public key pk and a plaintext message m, and
outputs a ciphertext ct.

– ReRand(pk, ct) is a re-randomization algorithm that takes as input a public
key pk and a ciphertext ct, and outputs a re-randomized ciphertext ct′.
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– ShareDec(ski, ct) is a deterministic algorithm that takes as input a secret key
share ski and a ciphertext ct, and outputs a decryption share di.

– ShareCombine(ct, d1, . . . , dn) is a deterministic decryption share combining
algorithm that takes as input a ciphertext ct and a set of decryption shares
(d1, . . . , dn), and outputs a plaintext message m.

NIZKs for Relations over RTE: We need a number of NIZKs for relations
over the RTE scheme we employ. Basically, a NIZK scheme NIZKR for relation R
and algorithm Prov that takes as input (x,w) ∈ R and outputs a proof π and an
algorithm Verify that takes as input (x, π) and outputs 1 if the proof is valid and
0 otherwise. For the sake of clarity, we define the following generic relations for
which we need to prove statements in zero-knowledge and describe our protocols
and simulators in terms of those: (1) R1 - Correctness of public key share: This
relation shows that the prover knows the randomness used for generating a
public/secret key pair (pki, ski) and the secret key ski; (2) R2 - Correctness
of decryption share: This relation shows that the prover used the secret key
ski corresponding to its public key pki for computing a decryption share di of
a ciphertext ct; (3) R3 - Correctness of shuffle: This relation shows that the
prover correctly shuffled a set of ciphertexts (ct1, . . . , ctm) by re-randomizing
them with randomness (r1, . . . , rm) and permuting them with a permutation Π.
Formal definitions for these NIZKs and an instantiation from sigma protocols in
the Global Random Oracle model are presented inthe full version [20].

Security Model: We prove our protocols secure in the UC framework [11].
UC-secure protocols retain their security even when used in parallel with other
cryptographic protocols or as building blocks of more complex applications. We
consider static malicious adversaries, who can arbitrarily deviate from the proto-
col but only corrupt parties before execution starts. It is known that UC-secure
two-party and multiparty protocols for non-trivial functionalities require a setup
assumption [13]. The main setup assumption for our work is the global random
oracle model [5] modelled as the GrpoRO-hybrid model [9], a digital signature func-
tionality FDSIG from [12], and a smart contract functionality (defined in Sect. 3).
See the full version [20] for details.

The Stateful Smart Contract Functionality FSC: We follow the approach
of Bentov et al. [7] in describing a functionality FSC that models a stateful con-
tract. Such a contract receives coins from the players in a check-in procedure
and, after that, is only activated in case a player wishes to report misbehavior or
wishes to leave the game, retrieving the coins that he owns at that point. While
Bentov et al. describe a stateful contract functionality that models execution of
general programs with secure cash distribution (i.e. the output of the computa-
tion determines how coins are distributed among honest players) and penalties
for misbehavior, we focus on the specific case of card games. That means that our
functionality only allows a program GR that specifies the game rules to execute
specific card operations instead of general computation. The card operations
supported by our protocol are the ones described in functionality FCG. However,
we can extend FCG by incorporating other functionalities for which UC protocols
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exist. In this case, GR is also allowed to specify the operations described in these
functionalities and the stateful contract modelled by GR is also responsible for
ensuring that the protocols realizing these functionalities are correctly executed.
We describe FSC in Fig. 1.

3 Secure Protocol for Playing Card Games

In this section we describe a protocol that realizes functionality FCG (defined
in the full version [20]). with the help of a smart contract. The role of the
smart contract is to make sure that all players are executing the card operations
(and other game actions) as specified by the game rules programmed in GR and
punish (resp. compensate) malicious (resp. honest) players in case of dispute. The
basic idea is to follow the secure computation with financial penalties framework
initiated by [1,2] and have each player send to the contract an amount of coins
that will be used for betting in the protocol and another amount of coins used
as collateral. If a player suspects that another player is cheating in the game
or misbehaving in protocol execution, it sends a request to the smart contract,
which verifies protocol execution and, in case a player was actually found to
be misbehaving, financially punishes the malicious player by distributing its
collateral coins among the honest players.

Protocol πCG: We construct a Protocol πCG that realizes FCG in a modular
fashion. The main building block of this protocol is a re-randomizable thresh-
old public key encryption (RTE) and associated non-interactive zero-knowledge
proofs (NIZK). Moreover, we will rely on a global random oracle functionality
GrpoRO to apply the Fiat-Shamir heuristic to sigma protocols used for instanti-
ating these NIZKs as described in the full version [20]. Additionally, a standard
digital signature functionality FDSIG will be used as building block in this pro-
tocol. Later on, we will describe a concrete instantiation of the protocol under
the DDH assumption.

In this protocol, the players start by jointly generating a public key for the
RTE scheme along with individual secret key shares. The main idea is to rep-
resent open cards as ciphertexts of the RTE scheme encrypting a card value
[1, . . . , 52] without any randomness (or randomness 0) while closed cards are
shuffled such that they are represented by a re-randomized ciphertext that is
permuted in way that cannot be reversed by any proper subset of the players
(so that no collusion of players can trace the shuffling back to the open cards).
The shuffle operation is done by having each player act in sequence, taking turns
in rerandomizing all ciphertexts representing cards and permuting the resulting
rerandomized ciphertexts, while proving in zero-knowledge that these operations
were executed correctly. When a closed (shuffled) card has to be revealed to a
player, all other players send decryption shares of the ciphertext representing
this card computed with their respective secret keys, along with proofs that
these decryption shares have been correctly computed.

Throughout the protocol, after the players perform a card operation or
answer an action request from GR, they jointly generate a checkpoint witness
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Fig. 1. Functionality FSC

proving that the operation has been completed successfully. These checkpoint
witnesses contain signatures by all users on the current state of the protocol,i.e.
ciphertexts representing cards and each player’s balance and current bets. If a
player suspects that any other player is cheating (or has aborted) during an
execution, it complains to the smart contract, providing its latest checkpoint.
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The execution is then mediated by the smart contract, which receives (and broad-
casts) all messages generated by the players. If the smart contract detects that a
player is cheating in this execution (by examining the transcript), it punishes the
misbehaving player by distributing its collateral coins among the honest players.
We describe Protocol πCG in Figs. 2, 3 and 4.

Security Analysis: Due to page limit the security analysis is given in the full
version [20].

A DDH-Based Instantiation: We now describe an instantiation of the Pro-
tocol πCG that is secure under the popular DDH assumption in the random ora-
cle model (i.e. substituting FRO for a cryptographic hash function). The main
components we need to construct in order to instantiate our protocol are the re-
randomizable threshold public-key encryption scheme RTE and the NIZKs Proof
of Membership schemes NIZKR1 ,NIZKR2 ,NIZKR3 for relations R1,R2,R3. It
was shown in [34, Appendix C.2], that the threshold version of the ElGamal
cryptosystem is a secure re-randomizable threshold public-key encryption scheme
under the DDH assumption. Moreover, it was also shown in [34, Appendix C.2]
that there exist NIZKs NIZKR1 ,NIZKR2 ,NIZKR3 for relations R1,R2,R3 secure
under the DDH assumption. NIZKR1 can be implemented by the sigma proto-
col of Schnorr [28], NIZKR2 can be implemented by the protocol of Chaum and
Pedersen [15] and NIZKR3 can be implemented by the protocol of Bayer and
Groth [4]. Notice that the zero-knowledge argument of shuffle correctness of
Bayer and Groth [4] requires a common reference string that consists of random
group elements such that the discrete logarithm of these elements in a given base
is unknown. We point out that such a common reference string can be trivially
constructed before πCG is run by coin tossing, which can be UC-realized based
on UC-secure commitments [11,13]. UC-secure commitments can be efficiently
constructed in the restricted programmable and observable global random oracle
model as proven in [9]. Even though these protocols are interactive, they can be
made non-interactive through the Fiat-Shamir heuristic [21,26]. Notice that their
simulators are straight-line since they only need to program the random oracle.
As for the digital signature functionality FDSIG, it is known that EUF-CMA sig-
nature schemes (e.g. DSA and ECDSA) realize FDSIG. If we use the resulting
DDH-based instantiation to implement poker, we obtain a protocol very simi-
lar to the Kaleidoscope [19], thus obtaining a universally composable protocol
for poker with rewards and penalties that matches the best current (but not
UC-secure) protocol.

4 Efficiency Analysis

Royale is both the first cryptographic protocol to support general card games
that use a set of core card operations and one of the very few based on generic
primitives, making it hard to compare its efficiency with previous works that
are based on specific computational assumptions and focused on poker. There-
fore, we estimate and compare the computational, communication and round
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Fig. 2. Protocol πCG (first part).
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Fig. 3. Protocol πCG (second part).
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Fig. 4. Protocol πCG (third part).
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complexities of each individual card operation in the works that introduce the
previously most efficient (but unproven) poker protocols with the card opera-
tions in the DDH-based instantiation of Royale (described in Sect. 3). For the
comparison, we consider the works of Barnett and Smart [3], and the protocols
proposed as a building block for the (unproven) tailor-made poker protocol of
Bentov et al. [7]: Wei and Wang [32] and Wei [31]. We remark that these previous
works have not been formally proven secure. Moreover, differently from Royale,
even if these previous works can be proven to implement a game of poker, using
their card operations arbitrarily might cause security issues, as they are not
composable.

Instantiating the Building Blocks: We consider the protocols of Barnett
and Smart [3], Wei and Wang [32] and Wei [31] to be instantiated with the
same random oracle-based commitments and NIZKs based on the Fiat-Shamir
heuristic used in our DDH-based instantiation of Royale. For the protocols of [3]
and [32] a cut-and-choose security parameter of s = 40 is considered, while for
the protocol of [31], we consider the parameter k = 4. In the NIZK of shuffle
correctness used by Royale (the construction of [4]), the total number of cards
is represented as m = m1m2 and the choice of m1 and m2 affects both the
computational and communication complexities. Even though the choice of m1

and m2 can be optimized to obtain either shorter or faster proofs, in our general
comparison we assume that m1 = m2 = �√m�.
Computational Complexity: The estimation is in terms of modular exponen-
tiations executed for each card operation, since these operations tend to domi-
nate the complexity. We present the amount of local computation performed on
Table 1. As previously observed, the Open Public Card and Open Private Card
of all protocols in our comparison have roughly the same concrete complexity,
while the Shuffle Cards phase is the main bottleneck. Notice that the two most
efficient protocols in our comparison are Royale and Wei’s protocol [31] (and
consequently the instantiation of Bentov et al. [7] based on it), which has better
asymptotic efficiency than Royale. However, we remark Royale achieves better
concrete efficiency for practical parameters. For example, in a 6-player game and
a standard deck of 52 cards (e.g. Poker), the Shuffle Cards phase of [31] requires
approximately 3 times more exponentiations than Royale. Further estimations
for practical parameters are in the full version [20].

Communication Complexity: We estimate the communication complexity in
terms of the number of elements of G and elements of Zp exchanged in each phase
of the protocols in Table 1. In contrast to the case of computational complexity,
we consider the total amount of data exchanged over the network by all players
during each phase of the analyzed protocols. As it is the case with computa-
tional complexity, the Shuffle Cards phase constitutes the main bottleneck and
dominates complexity. Notice that the most efficient protocols in our compari-
son are Royale and the protocol of Wei [31] (and consequently the instantiation
of Bentov et al. [7] based on it). However, in this case, Royale actually achieves
both better asymptotic communication complexity and better concrete efficiency
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than [31]. For example, in a 6-player game and a standard deck of 52 cards (e.g.
Poker), the Shuffle Cards phase of [31] exchanges approximately 8 times more
elements of G and twice more elements of Zp. Further estimations for practical
parameters are in given in the full version [20].

Round Complexity: As in the previous cases, the Shuffle Cards phase is the
main bottleneck. Royale’s Shuffle Card phase requires only n rounds (where n is
the number of players) while [32] and [31] require respectively 4n+1 and 4n+3
rounds. Hence, Royale has a clear advantage in round complexity, which results
in better performance in high latency networks such as the Internet.

Checkpoint and On-Chain Storage Complexity: When the smart contract
functionality FSC is implemented by a smart contract system running on top of
a blockchain, the information sent by the players to FSC has to be stored in
space-constrained blocks, raising a concern about on-chain storage complexity.
First, we remark that Royale is designed in such a way that only the Check-in,
Check-out and Recovery phases cause any information to be sent to FSC (and
consequently stored in the blockchain), with the Recovery phase only being acti-
vated if a player misbehaves. In the Check-in phase, signature verification keys
and public key shares (plus associated proofs of validity) for each players are
registered with the smart contract, amounting to storing (2 G + 2 Zp)n bits,
where n is the number of players. In the Check-out phase, the vector payout (of
size |payout|) along with signatures by each player are sent to the smart contract,
amounting to |payout|+2n Zp of storage. In the Recovery phase, the most up-to-
date checkpoint witness is sent to the smart contract, which subsequently regis-
ters all other player’s messages for the phase to be executed after this checkpoint
witness was generated. The worst case for checkpoint witness size is that where
all cards are still closed, resulting in size 2m G+ |id|m+ |balance|+ |bets|+2n Zp

bits, where n is the number of players, m is the number of cards and |id|, |balance|
and |bets| are the sizes of card identification string id, vector balance and vector
bets, respectively. The messages of the phase executed after the latest check-
point amount to extra on-chain storage equal to the communication complexity
of each phase (as estimated above). On the other hand, the protocol of Bentov
et al. [7] (based on [31] or [32]), does not specify checkpoint witnesses (seem-
ingly requiring the full transcript of the current poker game to be sent to the
smart contract) nor offers any complexity estimates for Check-in and Check-out
phases, making it hard to provide a meaningful comparison.

Benchmarks. We now present benchmarks of Royale obtained with a proto-
type implementation of the DDH-based instantiation, showcasing the efficiency
of our protocol for practical parameters. Our prototype implementation was done
in Haskell using NIST curve P-256. Experiments were conducted on a XPS 9370
with a i7 8550U CPU and 16 GB RAM running with Linux Fedora 28 (kernel
4.16). We analyze the network communication and execution time of Royale with
different numbers of cards (denoted by m in the tables) and players (denoted by
n in the tables). We focus on the following phases of Royale: Check-Out, Check-
Out, Shuffle Cards, Shuffle Private Cards. Moreover, we analyse on-chain storage
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Table 1. Complexities for each player in terms of modular exponentiations and group
and ring elements G and Zp, for n players and m cards.

Computational complexity Communication complexity

Shuffle Cards Open Private

Card (drawer;

others)

Open Public

Card

Shuffle Cards Open Private

Card (drawer;

others)

Open Public

Card

[3] 240m(n − 1)

+161m

4n − 3; 3 4n 164nm G,

122nm Zp

45nm G, (2n2+

80n + 2nm) Zp

n(17m + 5) G,

n(m + 18) Zp

[7,32] (44n + 1)m 4n − 3; 3 4n 3(n − 1) G,

2(n − 1) Zp

(n − 1) G,

2(n − 1) Zp

(n − 1) G,

2(n − 1) Zp

[7,31] 81m + 2n+25 4n − 3; 3 4n 3n G, 2n Zp n G, 2n Zp n G, 2n Zp

Royale (2 log(�√
m�)

+4n − 2)m

4n − 3; 3 4n n(2m +

�√
m�) G,

5n�√
m� Zp

(n − 1) G,

2(n − 1) Zp

n G, 2n Zp

requirements for the Checkpoint Witnesses used in the Recovery Phase consider-
ing an implementation of the smart contract functionality FSC based on a smart
contract that verifies individual steps of Royale (i.e. checking NIZK, signature
and encryption validity). We evaluate the execution time required by the afore-
mentioned phases of Royale in milliseconds (ms) and consider network delays in
terms of Round Trip Times (RTT). Our analysis shows that Royale achieves high
computational efficiency, with network delays representing the main bottleneck.
We analyze the on-chain storage required by Royale in terms of the size in kilo-
bytes (KB) of the data stored by the smart contract in each phase, which is zero
for all phases, except for Check-in, Check-out and Recovery. Our analysis shows
that the on-chain footprints of these three latter phases is reasonably small for
practical parameters. While the Recovery phase always requires storage of the
must up-to-date checkpoint witness, it also requires players’ messages for the
current phase to be stored (i.e. the network communication required for each
phase).

Table 2. On-chain storage
size (in KB).

n Check-In Check-Out

2 0.25 0.38

4 0.51 0.75

6 0.76 1.13

8 1.02 1.5

10 1.27 1.88

12 1.52 2.25

Table 3. Execution time in ms and Round-trip time
(RTT) for the Shuffle Card.

n m

52 104 208

2 200.64 + 1 RTT 387.67 + 1 RTT 886.32 + 1 RTT

4 401.28 + 2 RTT 775.33 + 2 RTT 1772.64 + 2 RTT

6 601.93 + 3 RTT 1163 + 3 RTT 2658.96 + 3 RTT

8 802.57 + 4 RTT 1550.66 + 4 RTT 3545.28 + 4 RTT

10 1003.21 + 5 RTT 1938.33 + 5 RTT 4431.6 + 5 RTT

12 1203.85 + 6 RTT 2326 + 6 RTT 5317.92 + 6 RTT

The on-chain storage requirements of the Check-in and Check-Out Phases
are presented in Table 2. Notice that all communication in these phases is done
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via the smart contract and does not depend on the number of cards. The execu-
tion time and network communication for the Shuffle Cards phase are presented
in Tables 3 and 4, respectively. The execution time is presented as the sum of
the local computation time required of each player and the network Round Trip
Times necessary for delivering this phase’s messages. Checkpoint witnesses size
for our implementation is presented in Table 5. As previously discussed, we con-
sider the size of checkpoint witnesses in the worst case, where all cards are closed
(which results in the largest representation). For the setting of a poker game with
52 cards and 6 players, we obtain a worst case checkpoint witness of less than 4
KB. In case the Recovery Phase is activated, the smart contract receives (and
stores on-chain) both the latest checkpoint witness and the next messages to be
generated in the protocol, corresponding to the network communication of the
current phase. Further benchmark data are presented in the full version [20].

Table 4. Network communication in
the Shuffle Cards phase in (KB).

n m

52 104 208

2 13.73 24.49 40.73

4 27.45 48.98 81.47

6 41.18 73.48 122.2

8 54.91 97.97 162.94

10 68.63 122.46 203.67

12 82.36 146.95 244.41

Table 5. Checkpoint witnesses on-chain
storage size (KB).

n m

52 104 208

2 3.61 7.06 13.97

4 3.77 7.22 14.13

6 3.92 7.38 14.28

8 4.08 7.53 14.44

10 4.23 7.69 14.59

12 4.39 7.84 14.75
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Abstract. We present a very simple universally verifiable MPC proto-
col. The first component is a threshold somewhat homomorphic cryp-
tosystem that permits an arbitrary number of additions (in the source
group), followed by a single multiplication, followed by an arbitrary num-
ber of additions in the target group. The second component is a black-
box construction of universally verifiable distributed encryption switch-
ing between any public key encryption schemes supporting shared setup
and key generation phases, as long as the schemes satisfy some natural
additive-homomorphic properties. This allows us to switch back from the
target group to the source group, and hence perform an arbitrary num-
ber of multiplications. The key generation algorithm of our prototypical
cryptosystem, which is based upon concurrent verifiable secret sharing,
permits robust re-construction of powers of a shared secret.

Keywords: Multiparty computation · Elections · Voting · Instant
runoff voting · Verifiable computation · Verifiability

1 Introduction

We explore the design of efficient universally verifiable MPC protocols, motivated
by applications to the counting of complex ballots in an election. Universal veri-
fiability means that the computation should be verifiably correct, even to people
who do not participate, and even if all parties involved in the computation are
misbehaving. Apart from verifiability, we also require privacy to be guaranteed
as long as the number of trustees behaving honestly is above a certain threshold.
As trustees must be able to compute the result of the computation, and there-
fore jointly have access to the inputs, this appears to be the best we can hope
for, at least in the absence of extra setup assumptions. (anonymous channel,
tamper-proof devices, etc.).

Achieving these goals is particularly important in elections: we need the
correctness of the tally to be guaranteed, even if all the people in charge of
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running the election are corrupted – or if all of their computing devices have been
hacked – and ballots need to remain secret. Of course, this setting is meaninful in
a lot of other contexts: secret bid auctions in which the winning bid is determined
by the organisers and, more generally, any cloud application in which a group
of users outsource their secret data to one or more cloud service providers, and
expect correct computation while maintaining the confidentiality of their data.

Homomorphic encryption lends itself naturally to universally verifiable com-
putation, because the computation itself can be performed by anyone. The pri-
vate key can be shared among several trustees, who need only prove that they
decrypted the final result correctly. For simple elections in which tallying consists
only of addition, efficient solutions exist based on additive-homomorphic encryp-
tion [1,5,14]. We are interested in complex election schemes in which more than a
simple sum is needed. Our particular application is Instant runoff voting (IRV),
also called alternative voting, which is used in verious places around the globe,
either in general public elections (e.g., Australia, Ireland, San Francisco), or in
internal consitutencies or political party elections (e.g., Canada, India, U.K.).
In IRV, each voter lists some or all the candidates in their order of preference.
At each iteration, each ballot is credited towards its highest uneliminated can-
didate. The candidate with the lowest tally is then eliminated (so each ballot
is then credited to its next uneliminated candidate). This terminates when one
candidate has a strict majority. This elimination process requires multiplications
on top of addition, which cannot be homomorphically achived with traditional
efficient schemes like ElGamal or Paillier. For this case, leveled homomorphic
encryption [9] would work, but would need to be parameterized in advance for
the maximum depth of multiplications that might possibly be needed, and pay
an efficiency cost on that basis. In our setting, that depth would be the total
number of candidates (minus 2), which might be a lot more than the actual
number of eliminations.

1.1 Summary of Our Contribution

We build a simple universally verifiable MPC protocol from two components.

1. A somewhat homomorphic encryption scheme with threshold key generation
in the malicious static adversary setting. It is similar to [11] in allowing
arbitrary additions in a source space, then one multiplication. Our threshold
key generation protocol allows efficient proofs of correct decryption.

2. A multiparty encryption switching protocol that transforms a ciphertext from
the target space, i.e., resulting from a homomorphic multiplication, into a
ciphertext in the source space, hence making it possible to perform more mul-
tiplications. This protocol is universally verifiable in the setting of [28].

Our scheme only requires computation in standard prime order groups and
relies on standard computational assumptions (e.g., SXDH). The availability
of addition and multiplication is sufficient to perform arbitrary computation
(Fig. 1). It supports threshold key generation in the malicious setting with static
corruption.
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Src Tgt

“+” “×” “+”

“Identity”

Fig. 1. Operations supported by our encryption scheme. Continuous (resp. dashed)
arrows refer to non-interactive (resp. interactive) operations.

As a demonstration for our example application, we present a privacy-
preserving universally verifiable implementation of the tallying phase of Instant
Runoff Voting, based on our universally verifiable computation protocol. Our
sample implementation was run on real-world data from public elections in Aus-
tralia, which shows that our protocol is efficient enough for tallying real-world
elections within a reasonable time frame, while leaving ample space for further
optimization.

1.2 Comparison with Related Work on MPC

Our approach bears some resemblance to the encryption-switching approach of
Couteau et al. [13], but has some significant differences. They switch between
additively and multiplicatively homomorphic encryption schemes, while we
switch between spaces in which we have additively homomorphic encryption,
with the possibility to perform a multiplication as part of a switch. They have
two switching protocols, between the additively and multiplicatively homomor-
phic ciphertext spaces, while we only need a protocol to switch from our target
space back to our source space. Their protocols for secure computation are 2-
party protocols and highly asymmetric (assigning specific roles to each party),
while our protocols are multi-party, perfectly symmetric and universally verifi-
able.

Catalano and Fiore [11] describe boosting linearly homomorphic encryption
to achieve server aided two-party secure function evaluation on parallel inputs in
the semi-honest setting. We do not know if this approach can be generalised to
the N -party setting. Like [8], their system allows evaluation of 2DNF formulae,
that is, an addition, followed by one multiplication, followed by more additions.
However, additions in the target space require ciphertext expansion, which is
not the case in our scheme.

Three recent works address universally verifiable MPC. Their main bottle-
neck is key generation. Baum et al. [3] add universally verifiable proofs of cor-
rectness to SPDZ [15], which uses a somewhat homomorphic encryption scheme
that has n-out-of-n key generation in the covert adversary model. The proto-
col therefore only offers confidentiality in that model. We have security in the
traditional malicious adversary setting. This approach naturally scales to arbi-
trary multiplications, with cost proportional to the total number actually done.
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However, the structure of the protocols, based on secret shared data, uses secure
bidirectional channels between the input parties (e.g., the voters) and the com-
puting parties (e.g., the election trustees), which is a challenging constraint for
large scale applications. Our focus is on single pass protocols [7], in which voters
can vote by submitting a single message built from a public election description,
and have a computational work independent of the number of trustees.

Schoenmakers and Veeningen [28] rely on Damgaard-Jurik encryption, which
supports efficient threshold key generation if an RSA modulus with unknown
factorization is available bringing us back to key generation difficulties.

The most closely related work comes from Castagnos et al. [10], who propose
new encryption schemes and switching protocols following [13], but working in
prime order groups (like we do), hence also supporting threshold operations.
They combine additively and multiplicatively homomorphic schemes (while we
use a somewhat homomorphic approach). Their encryption scheme however relies
on the hardness of DDH in very specific groups: subgroups of the class group
of an order of a quadratic field of discriminant −p3, which comes with effi-
ciency penalties. They also need to work in subgroups of unknown order, which
increases the cost of the ZK proofs needed for verifiability. Our protocol works
in a standard computational setting (traditional asymmetric pairings), with effi-
ciency and compatibility advantages (in particular, standard sigma protocols for
prime order groups can be used). The tradeoff between the two would depend on
the computation: in our IRV counting setting, we have many additions, followed
by a single multiplication, followed by many more additions, repeatedly. For this
kind of circuit our approach is more efficient than [10]. However, a computation
with unbounded successive multiplications would eventually be faster with their
method, despite the use of more expensive components.

In concurrent work, Attrapadung et al. [2] introduce a somewhat homomor-
phic encryption scheme that is a specific instance of our encryption scheme
family. However, they do not offer a threshold (or distributed) variant, or a
switching protocol, which are the key ingredients for our universally verifiable
MPC protocol, nor do they consider general computation or voting.

1.3 Counting IRV Ballots

Plaintext IRV tallying raises coercion issues. The number of possible votes is
more than c! (where c is the number of candidates), which may be much larger
than the number of votes actually cast. This introduces the possibility of an
attack often called the Italian attack: a coercer demands a certain pattern of
preferences, presumably with her favourite candidate first, and then checks to
see whether that pattern appears in the final tally. To thwart this attack, many
works describe universally verifiable IRV tallying without revealing individual
ballots [6,19,20,25–27].

However, these all use mix-nets [23], which count among the most complex
cryptographic protocols ever deployed. Besides, even when mixes use strong
zero knowledge-proof based verification, if a single mix misbehaves then the
entire mix-net halts until a replacement is found, leading to a protocol which is
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inherently non-robust. Ours is the first universally verifiable scheme for privacy-
preserving IRV tallying without mixnets.

For our example application we implemented the single-authority version of
our cryptosystem and switching protocol and used it to recount two real IRV
elections, using public data from the Australian state of New South Wales. Each
election included more than 40,000 ballots. The first, involving 5 candidates
and a single elimination round, completed in 2 h. The second, with 6 candidates
and 4 elimination rounds, took 15 h. This does not include the proofs of correct
switching, which would add a constant multiplicative factor. The details are in
Appendix J of the full version of this paper, at https://eprint.iacr.org/2018/246.

1.4 Structure of This Paper

The next section contains cryptographic background. In Sect. 2 we present a new
candidate cryptosystem with which to instantiate source and destination encryp-
tion schemes for the N -party encryption switching primitive. Next, in Sect. 3,
we tackle the problem of constructing a distributed key generation procedure
for this protocol. Then in Sect. 4 we describe the universally verifiable proto-
col for switching from target back to source encryption schemes. Our prototype
implementation for Instant Runoff Vote counting is in Sect. 5.

1.5 Background

We define a generic access structure for linear secret sharing schemes.

Definition 1 (Access Structure [22,30]). Let S be a set of parties. A collec-
tion A ⊂ 2S is monotone if ∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An
access structure, respectively monotone access structure, is a collection (respec-
tively monotone collection) A of non-empty subsets of 2S i.e., A ⊆ 2S\{∅}. The
sets in A are called the authorised sets; the sets not in A are called unauthorised
sets.

Definition 2 (Linear Secret-Sharing Scheme [4,30]). A secret-sharing
scheme Π over a set of parties P is called linear over field Zp if

1. The shares of the parties form a vector of dimension at most l over Zp.
2. There exists a matrix M with � rows and d columns called the share-

generating matrix for Π. There also exists a function ρ which maps each
row of the matrix to an associated party. That is for i = 1, . . . , �, the
value ρ(i) is the party associated with row i. When we consider the column
vector v = (s, r2, . . . , rd)T , where s ∈ Zp is the secret to be shared, and
r2, . . . , rd ∈ Zp are randomly chosen, then Mv is the vector of � shares of the
secret s according to Π. The share (Mv)i belongs to the party ρ(i).

It is proven in [4] that every every linear secret-sharing scheme (LSSS) sat-
isfies the following property, called linear-reconstruction in [30]. Suppose that
Π is an LSSS for the access structure A. Let V ∈ A be any authorised set, and

https://eprint.iacr.org/2018/246
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let I ⊆ {1, . . . , �} be defined as I = {i : ρ(i) ∈ V }. Then there exist constants
{Λi,V ∈ Zp : i ∈ I} such that, if {si} are valid shares of any secret s according
to Π, then

∑
i∈I Λi,V · si = s. Moreover these constants {Λi,V } can be found in

time polynomial in the dimensions of the share-generating matrix M .

Definition 3 (T -Threshold Access Structure). Of specific interest for our
purposes is the T -party threshold access structure, defined as AT -Th = {S : S ∈
2{P1,...,Pn}, |S| ≥ T}, where T < n/2. Let M be the linear secret-sharing scheme
matrix corresponding to AT -Th. In that case there exists M with row-dimension
l = n and column-dimension d = T .

Pairings on Prime-Order Groups. To build our one-time homomorphic
cryptosystem of Sect. 3, we require the notion of projecting bilinear group gen-
erators [17]. Our specific choice of generator will be a variant of the polynomial-
induced projecting generator introduced by Herold et al. [21], tailored for the
asymmetric pairing setting.

Definition 4 (Bilinear Group Generator [17]). A bilinear group generator
is an algorithm G that takes as input a security parameter λ and outputs a
description of five abelian groups G,G1,H,H1, Gt with G1 < G and H1 < H.
Assume that this description permits polynomial-time group operations and ran-
dom sampling in each group. The algorithm also outputs an efficiently computable
map e : G × H → Gt that satisfies:

Bilinearity. For all g1, g2 ∈ G and h1, h2 ∈ H,
e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2).

Non-degeneracy. e(g, h) = 1 ∀h ∈ H ⇐⇒ g = 1
and e(g, h) = 1 ∀g ∈ G ⇐⇒ h = 1.

A bilinear group generator G is prime-order if G,G1,H,H1, Gt all have prime
order p.

Definition 5 (Projecting Bilinear Group Generator [17]). Let G be a
bilinear group generator. Say that G is projecting if it also outputs a group
G′

t < Gt and three group homomorphisms π1, π2, πt mapping G,H,Gt to them-
selves such that

1. Subgroups G1,H1, G
′
t are contained in the kernels of π1, π2, πt respectively.

2. e(π1(g), π2(h)) = πt(e(g, h)) for all g ∈ G,h ∈ H.

We propose a projecting bilinear group operator induced by tensor prod-
uct, instead of relying on the polynomial product previously proposed [21]. The
polynomial solution was designed for the symmetric pairing setting, but raises
difficulties in the definition of the projecting operator when moving to the asym-
metric setting. Our tensor product based solution offers an efficient alternative
that makes it possible to have efficient ciphertext in the base groups, by relying
on the sXDH assumption.
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Definition 6 (l-Symmetric Cascade Assumption [16]). Let {Gλ}λ be an
ensemble of cyclic groups with prime-orders {Zp(λ)}λ where ∃c > 0 ∀λ |p(λ)| <
λc. For fixed λ, let Zp = Zp(λ) and define the distribution of matrices over
Z
(l+1)×l
p :

SCl =:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−s 0 . . . 0 0
1 −s . . . 0 0
0 1 0 0

. . . . . .
0 0 . . . 1 −s
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: s ∈R Zp.

Then ∀ PPT adversaries A, the difference below is a negligible function of λ.

|Pr[1 ← A(G, g, gA, gAw ) : g ∈R G, A ∈ SCl,w ∈R Z
l
p]−

Pr[1 ← A(G, g, gA, gu ) : g ∈R G, A ∈ SCl,u ∈R Z
l+1
p ]|.

Definition 7 (External l-Symmetric Cascade Assumption). Let D1, D2

and Dt be three ensembles of cyclic groups, such that for every λ ∈ N, if G1 =
G1λ ∈ D1, G2 = G2λ ∈ D2 and Gt = Gtλ ∈ Dt, there exists an efficiently
computable pairing e(·, ·), such that e : G1×G2 → Gt. The External l-Symmetric
Cascade assumption is that the l-Symmetric Cascade assumption holds in each
of the ensembles D1 and D2.

Proposition 1. The Symmetric External Diffie-Hellman Assumption [29] holds
with respect to group ensembles D1,D2, iff the External 1-Symmetric Cascade
Assumption holds with respect to D1,D2.

CF Encryption. Recently Catalano and Fiore [11] showed how to generalise
earlier work on 2DNF formulae [8] to transform virtually any linearly homomor-
phic cryptosystem into one permitting the computation of any degree-2 formula.
Multiplication transforms two input ciphertexts from a “level-1” space into an
encryption of the product in the “level-2” space. In this level-2 space, further
homomorphic additions remain possible, at the cost of ciphertext expansion at
each step. Still, it is not possible to perform any further multiplications.

For concreteness we will assume additive ElGamal encryption for the base
public key encryption scheme. Let (Keygen,Enc,Dec) be additive ElGamal on
message space (M,+). The Catalano-Fiore cryptosystem is as follows.

Keygen(1λ) Let (pk, sk) ← Keygen(1λ).
Set (pk, sk) ← (pk, sk).

Enc(pk,M) Choose b ∈R M.
Output C = (M − b,Enc(pk, b)).

Multiply(pk, C, C ′) Let C = (C0, C1) and C ′ = (C ′
0, C

′
1) be inputs. Let α =

Enc(pk, C0C
′
0) · (C1)C′

0 · (C ′
1)

C0 .
Output (α,C1, C

′
1).
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Dec(sk, C) Accept C = (α,C1, C
′
1) as input.

Let M ′ ← Dec(sk, α), b ← Dec(sk, C1) and
b′ ← Dec(sk, C ′

1) as input. Output M = M ′ + bb′.

Noninteractive Zero Knowledge Proofs. We use non-interactive zero
knowledge proofs of the following NP relations. Efficient constructions of these
can be found in Appendix D of the full version. Let Πrange = (Grange, Prange, Vrange)
be a non-interactive zero knowledge proof for the relation Rrange = {(c, y)|∃ a, r :
ci = Enc(y, a; r) ∧ a ∈ [0, 2λ − 1]}. Let Rbit ⊆ Rrange be the special case
λ = 1 and Πbit be the corresponding proof system. Let Πeq = (Geq, Peq, Veq)
be a non-interactive zero knowledge proof system for the relation Req =
{(c, c′, pk1, pk2)|∃m, r, r′ : c = Enc1(pk1,m; r) ∧ c′ = Enc2(pk2,m; r′)}. For
1 ≤ j ≤ N let σj be the common reference string belonging to Pj .

2 One-Time Multiplicatively Homomorphic
Cryptosystem

The basis of our universally verifiable MPC protocol is a homomorphic cryp-
tosystem that supports arbitrarily many additions, followed by one multiplica-
tion, followed by arbitrarily many additions.

Many such encryption schemes have been already proposed, starting with
the BGN pairing-based scheme [8]. However, threshold key generation for BGN
and similar schemes is challenging, as it would require the generation of RSA-
type moduli with unknown factorization, and computing in the resulting pairing
groups of composite order is also quite demanding. Unverifiable trust assump-
tions would undermine the main purpose of this work.

This motivates our construction of a pairing based homomorphic cryptosys-
tem on prime-order groups, for which a secure and robust key generation pro-
cedure can be derived. This has been explored by Freeman [17], who shows how
to build such schemes from projecting pairings and, more recently by Herold
et al. [21] who show how to build them from hidden matrix-rank based indistin-
guishability assumptions [16] on the source group of symmetric pairings.

As these symmetric pairings have also become extremely expensive from a
computational point of view due to the recent attacks on the discrete logarithm
in low characteristic, we aim for a more efficient scheme based an asymmet-
ric pairings, by extending their work to that setting. This requires performing
operations in parallel in the two source groups of the pairing, and designing a
tensor product-based projecting pairing as a replacement for their polynomial
product. The underlying indistinguishability problem induced by this pairing on
both source groups is a generalisation of the well-known XDH problem [29].

This section contains only the simplest instance of our encryption scheme,
based on the External 1-Symmetric Cascade Assumption. A general ver-
sion based on the External l-Symmetric Cascade Assumption is presented in
Appendix C of the full version. Here we construct a projecting bilinear group as
a special case with l = 1.
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Definition 8 (Projecting pairing construction). Take as input a prime-
order bilinear group (p,G1,G2,Gt, ê), elements g ∈ G1 and h ∈ G2, and secret
keys s and s′ in Zp.

Define G = G
2
1, H = G

2
2, Gt = G

4
t , and define the bilinear map e : G × H →

Gt as e((g0, g1), (h0, h1)) = (ê(g0, h0), ê(g0, h1), ê(g1, h0), ê(g1, h1)).
Define G1 (resp. H1) as the subgroup of G (resp. H) generated by g(−s,1) =

(g−s, g) (resp. h(−s′,1)).
Define the following projecting maps:

– π1 : G → G1 as π1(g1, g2) = g1g
s
2,

– π2 : H → G2 as π2(h1, h2) = h1h
s′
2 ,

– πt : Gt → Gt as πt(g1, g2, g3, g4) = g1g
s′
2 gs

3g
ss′
4 .

Output secret key sk = (π1, π2, πt) and public key pk = (G,G1,H,H1, Gt, e, g, h).

It is easy to see that G1 and H1 are the kernel of π1 and π2 and that these
operators essentially offer a decryption operation for ElGamal-like encryption
schemes that use s and s′ as secret keys.

Notation: v1 · v2 denotes elementwise multiplication; v2
n is elementwise expo-

nentiation.
Our encryption scheme is then defined as follows.

Setup(1λ): Let P be a prime-order bilinear group generator. Let M = Zp. Output
pp = (p,G1,G2,Gt, ê) ← P(1λ).

KeyGen(pp): Select s and s′ in Zp, set x = (−s, 1) and x′ = (−s′, 1). Choose g ∈R

G1, h ∈R G2, and define g = gx = (g−s, g) and h = hx′
= (h−s′

, h). Run the
Projecting Pairing construction on input pp, g, h, s, s′. Output the resulting
secret key sk = (π1, π2, πt) and the public key pk = (G,G1,H,H1, Gt, e, g, h).
Note that G1 and H1 are described by their generators g and h respectively.

Encsrc(pk,M): Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and
h1 = (h)b = (h−bs′

, hb). Let C0 = gM ·g1, C1 = hM ·h1. Output the ciphertext
(C0, C1) in G × H.

Enctgt(pk,M): Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and h1 =
(h)b = (h−bs′

, hb). Output the ciphertext C = e(g,h)M · e(g,h1) · e(g1,h) in
Gt.

Multiplysrc(pk, C, C ′): Take as input two ciphertexts C = (C0, C1) and C ′ =
(C ′

0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1, as in the above routine. Output

C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element of Gt.

Addsrc(pk, C, C ′): Take as input two ciphertexts C = (C0, C1) and C ′ = (C ′
0, C

′
1).

Choose g1 ∈R G1 and h1 ∈R H1. Let C ′′
0 = C0 ·C ′

0 ·g1. Let C ′′
1 = C1 ·C ′

1 ·h1.
Output C ′′ = (C ′′

0 , C ′′
1 ).

Addtgt(pk, C, C ′): Take as input two ciphertexts C and C ′ in Gt. Choose g1 ∈R

G1 and h1 ∈R H1.
Let C ′′ = C · C ′ · e(g,h1) · e(g1,h). Output C ′′.

Decsrc(sk, C): Take as input a ciphertext C = (C0, C1) in G × H. Compute
M ← logπ1(g)(π1(C0)) and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′ or
⊥ otherwise.
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Dectgt(sk, C): Take as input a ciphertext C in Gt. Output M ← logπt(e(g,h))

(πt(C)).

Lemma 1. Suppose that the External 1-Symmetric Cascade assumption, i.e.,
Symmetric External Diffie Hellman assumption, holds with respect to the groups
G1 and G2. Then the above cryptosystem is semantically secure.

Proof. See Appendix C of the full version.

3 Distributed Key Generation Protocol for One-Time
Multiplicative Homomorphic Cryptosystem

In this section we describe key generation for the one-time multiplicatively homo-
morphic cryptosystem of Sect. 2. Traditional protocols for threshold key genera-
tion [18,24] would be a natural choice, except that they fail for the Dectgt algo-
rithm, because the evaluation of πt requires the sharing of a quadratic secret ss′,
while the traditional protocols are defined for linear terms only.

To overcome this difficulty, our protocol requires each party in the qualified
set to split their individual secrets into chunks over a small interval. We construct
a blinded version, i.e, ss′ + b, in which the blinding factor b is distributed across
parties, in such a way that it can be cancelled out from shares submitted by a
qualified set. To perform the private construction of the blinded square, we use
the Catalano-Fiore transformation [11], which enables depth-one multiplications
on any linearly homomorphic cryptosystem. A problem arises with the natural
choice of additive El Gamal as the base scheme with which to bootstrap the
computation of the square. This cryptosystem mandates that only secrets from
a small space can be safely decrypted, while the space over which s and s′ are
derived is much larger. We solve this problem by splitting the individual secrets
of qualified players into chunks. Thus the private product of individual secrets
becomes equivalent to a private product of polynomials, crucially ones for which
the coefficient space is small and therefore amenable to the discrete log problem.

Another problem is how to construct the blinding factor so that no infor-
mation is leaked on ss′ in the construction of ss′ + b. We show that this is
possible via direct verifiable secret sharing of the chunks corresponding to b in
polynomial form. As long as the chunk-size used to derive b is sufficiently larger
than the chunk-size used to derive ss′, we may treat them as distinct secrets
to be jointly constructed by the qualified set. For this, and for constructing
the Catalano-Fiore encryption key, we may simply employ the key-generation
protocol of Pedersen [24] or the later protocol by Gennaro et al. [18].

Thus, after CF decryption, a blinding of the square of the secret is revealed
in the clear, while the blinding factor is a distributed secret. The blinding factor
can be cancelled out “on demand” by a threshold set of qualified players, leading
to a fully contained key generation protocol for our multiplicative cryptosystem.
Like the key generation protocols of [12,18,24], our protocol uses concurrent
verifiable secret sharing to build a secret key but assumes as input shares of a
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transport key under which the main key generation protocol runs. For the latter
purpose one may use any of those schemes.

Let [·]y denote a CF encryption under key y. Let g1, g2, gvss, gpke ∈ G1 and
h1, h2, hpke ∈ G2 be public. Let cA = 2λA and cB = 2λB be the chunk sizes of
individual secrets and individual blinding factors. One may set cA = p

1
4l · 2− λ

2

and cB = p
1
2l where l is chosen so that discrete logarithms are feasible in the

range [0, N · p
1
2l ]. Appropriate sizes are given in Lemma 3, Appendix F of the

full version.
Recall the security properites of a distributed key generation protocol [18].

Correctness: All subsets of T shares provided by honest players define the same
unique secret key sk; all honest parties have the same value of the public key
pk, which is correct wrt sk; sk is uniformly distributed among a range {0, 1}λ,
where λ is the security parameter.

Resilience: There is a procedure to reconstruct the secret key sk out of T or
more shares, which is resilient in the presence of malicious parties.

Security: No information can be learned on sk except for what is implied by
the public key pk.

The full protocol is given in Figs. 2 and 3. The NIZKs are described in
Appendix D of the full version.

3.1 Protocol Description and Security Properties

Theorem 2. Protocol 1 is a distributed key generation protocol for the cryp-
tosystem of Sect. 3 and that is correct, resilient and secure against an active
adversary corrupting fewer than T statically chosen players.

Proof. Proofs of this theorem and the following two propositions are in
Appendix K of the full version.

Proposition 3. The values x =
∑

i∈Q si, x′ =
∑

i∈Q s′
i and b =

∑
i∈Q ti are

distributed secrets according to the threshold access structure.

Proposition 4. The values γ, x, x′ and b computed in Step 6 satisfy the relation
γ = xx′ + b.

4 Distributed Encryption Switching

In this section we present universally verifiable switching between target and
source encryption schemes using only the additive homomorphism on the cipher-
text spaces. The protocol is in Fig. 4. The idea is for each party to contribute
an equivalent encryption of a blinding factor under both cryptosystems together
with a zero knowledge proof of plaintext equality. In the source space the blind-
ing factors are homomorphically added to the input ciphertext and the result
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Fig. 2. Key gen protocol for one-time homomorphic cryptosystem.

decrypted under a threshold decryption scheme. From this plaintext, the blind-
ing factors under the target encryption scheme are homomorphically subtracted,
producing an encryption of the input message under the target cryptosystem.

To blind the ciphertexts without increasing the size of the messages (remem-
ber that it requires a DL extraction), we apply the blinding using an xor-sum.
Specifically, we assume an ideal functionality for bit-wise sum, FSUM with the
following behaviour:

– On input (setup, 1λ) initialises D ← ∅, t ← 0.
– On input (send, C), if t < N , sets D ← D ∪ {C}, t ← t + 1, if t = N , output

Cs which is an encryption of the bit-wise sum of all decrypted ciphertexts
contained in D.

The details of the protocol realising this functionality are in Appendix E of the
full version.
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Fig. 3. Key gen protocol for one-time homomorphic cryptosystem, Part 2.

If the ciphertexts are known to be small, the xor-sum can be avoided and we
can just homomorphically add a blinding factor, like we did for key generation.
This blinding factor can be large enough to offer statistical blinding (e.g., 40 bits
more than an upper-bound on the plaintext size) and small enough to support
efficient decryption, possibly using a baby-step giant-step algorithm. This comes
with the benefit of being a completely non interactive process, and works fine
for our voting application.

Our definition of universally verifiable secure computation is derived from [28]
and given in Appendix H of the full version. It formalises the idea that either
a threshold of honest participants produces a true answer, or the output fails
verification.
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Theorem 5. Protocol πSWITCH securely computes universally verifiable encryp-
tion switching in the FSUM-hybrid model against statically chosen adversaries if
πCOM is a secure non-malleable commitment scheme and Peq is a secure NIZK
proof system.

Proof. See Appendix K of the full version.

Given that the switch is the only operation of our protocols that requires
the use of secret information (i.e., decryption keys), and that this operation is
verifiable, we obtain a universally verifiable MPC protocol: addition and multi-
plication are publicly performed using our encryption scheme, and the verifiable
switch offers the possibility to repeat these operations as often as needed. In
Appendix H.2 of the full version, we use this approach to evaluate any function
class representable by an arithmetic circuit of polynomial size over M.

Fig. 4. Protocol πSWITCH.

5 Tallying Instant Runoff Voting (IRV)

In this section we describe how to use the primitives described earlier to construct
a universally verifiable protocol for tallying encrypted ballots according to the
IRV algorithm. Ballots are input to the tallying protocol in encrypted form. We
reveal only the tallies of each candidate after each round of the IRV algorithm.
The main challenge is to ensure that the privacy of ballots is maintained between
tallying rounds. We use distributed encryption switching on the cryptosystems
Πsrc = (Setup,KeyGen,Encsrc,Decsrc) and Πtgt = (Setup,KeyGen,Enctgt,Dectgt)
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of Sect. 2. Suppose that Πtgt → Πsrc is a distributed encryption switching proto-
col, where Encsrc is used to encrypt votes. Recall that in an IRV election, after
each phase of tallying, if a candidate is not elected, then the candidate with
fewest votes is eliminated. Each ballot should count towards its most-preferred
uneliminated candidate. We can use the one-time multiplicative homomorphism
to compute the necessary product computations on ballots for the first two
rounds of tallying. This takes ballots from the ciphertext space of Πsrc to the
ciphertext space of Πtgt, for which addition, but not multiplication, is possible.
To compute the product computations corresponding to further rounds of tally-
ing, the election trustees will come together and perform a distributed switch on
the ballots, will take them back to the ciphertext space of Πsrc, and for which
multiplications are again possible. In this way, for every round of tallying after
the first, distributed encryption switching can be used to ensure that the trustees
can compute the tally for each uneliminated candidate.

5.1 Protocol Details

Ballot Representation. Assume c candidates and M voters. An IRV ballot
allows expression of up to k preferences, where k ≤ c is a constant specific to
the election. For the purpose of homomorphic tallying, we will use a special
“preference-order” ballot. Let μn : {1, . . . , k} → {1, . . . , c} be an (injective)
function representing the preferences of voter n. The ballot used for tallying, Bn,
will be an encryption of the indicator vectors eμn(1), . . . , eμn(k). The indicator
vector eμn(j) is encrypted as a tuple of c ciphertexts, vj . Thus Bn is simply a
list of k encrypted c-tuples Fig. 5 (left) shows an example.

Updating of Ballots. This ballot representation permits a convenient method
for eliminating candidates, by simply striking out the corresponding column
in Bn’s matrix of preferences. Since each elimination is a function of publicly
verifiable totals, there is no ambiguity as to the representation of any ballot
at any stage of tallying. An important feature of this is that the sequence of
accesses made by Protocol 2 is derivable from the sequence of intermediate tallies
it produces until termination. Input obliviousness follows. Figure 5 (right) shows
a preference-order ballot after a candidate has been eliminated.

preference\ candidate 1 2 3 4 5 6 1 2 3 4 5 6
1 0 0 1 0 0 0 0 0 × 0 0 0
2 0 0 0 0 1 0 0 0 × 0 1 0
3 1 0 0 0 0 0 1 0 × 0 0 0

Fig. 5. Preference-order ballot for c = 6 and k = 3, in its initial form (left) and after
elimination of candidate 3 (right), when it should count in candidate 5’s tally.
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Tallying Votes. Let Bn = (v1, . . . ,vk) be a ballot, SC be the set of uneliminated
candidates, and ΣSC(vi) be the homomorphic sum of the entries of the ith pref-
erence vector over uneliminated candidates. Clearly ΣSC(vi) is an encryption
of 1 iff the ith preference is for an uneliminated candidate, and an encryption
of 0 otherwise. Let C �src C ′ = Encsrc(pk,MM ′) : M = Decsrc(sk, C) and M ′ =
Decsrc(sk, C ′). After l ≤ k rounds of tallying, the product

π
(l)
j := �src

1≤j′≤j (Enc∗
1(1) − ΣSC(vj′)) : j ≤ l

is an encryption of 0 iff at least one of the first j preferences is for an uneliminated
candidate, and an encryption of 1 otherwise. After l−1 rounds of tallying, there
is at least one j ≤ l such that the jth preference is for a continuing candidate.1

Therefore after l rounds of tallying, the homomorphic dot product
∑l

j=1 vj �src

πj is an encryption of the indicator vector describing which candidate this vote
should count for in round l. The protocol is shown in Fig. 14, Appendix J of the
full version.

Implementation. We implemented the single-authority version of our system
and tested it using elections data for the districts of Albury and Auburn for
the 2015 New South Wales state election.2 The implementation encrypted each
of the entries in the ballot matrix prior to commencing the count, to simulate
the receipt of encrypted ballots. Ballots were represented as per Fig. 5. The
experiments were performed on an Intel i7-6770HQ with 4 cores (8 threads) and
32 GB RAM. The results are shown in Table 1.

We also ran experiments to time the main primitives, i.e. switching and
multiplication. We ran the multiply and switch functions 1000 times and took the
mean time. Multiplication in the source group averages 0.0671 s, while switching
averages 0.0971 s. The code is available at https://github.com/vteague/PPAT/
tree/chris-dev.

Table 1. Results for Sample IRV Counts. Timings in seconds.

District

Albury (5 candidates) Auburn (6 candidates)

No. ballots 46347 43738

Ballot encryption time 3069 s 3936 s

No. elimination rounds 1 4

Count time 6979 s 54637 s

1 For example, the use of a “stop” candidate by [20] remedies the case that a ballot is
exhausted prematurely.

2 From http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm.

https://github.com/vteague/PPAT/tree/chris-dev
https://github.com/vteague/PPAT/tree/chris-dev
http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm
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6 Conclusion

We have devised a very simple universally verifiable MPC protocol based on
combining an efficient distributed key generation, a somewhat homomorphic
cryptosystem in which one multiplication comes almost for free, and a switching
protocol that allows a return to the cryptosystem from which more multiplica-
tions can be performed.
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A Appendix

Appendices are in the full version of the paper on the IACR eprint archive at
https://eprint.iacr.org/2018/246.
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Abstract. We present new protocols for Byzantine agreement in the
synchronous and authenticated setting, tolerating the optimal number
of f faults among n = 2f + 1 parties. Our protocols achieve an expected
O(1) round complexity and an expected O(n2) communication complex-
ity. The exact round complexity in expectation is 10 for a static adver-
sary and 16 for a strongly rushing adaptive adversary. For comparison,
previous protocols in the same setting require expected 29 rounds.

1 Introduction

Byzantine agreement [24] is a fundamental problem in distributed computing
and cryptography. It has been used to build fault tolerant distributed sys-
tems [5,9,22,33], secure multi-party computation [7,17], and more recently cryp-
tocurrencies [4,21,28,29]. In Byzantine agreement, a group n parties, each hold-
ing an initial input value, hope to commit on a common value; up to f parties
can have Byzantine faults and deviate from the protocol arbitrarily. In a closely
related problem called Byzantine broadcast, instead of each party holding an
input value, there is one designated sender who tries to broadcast a value. To
rule out trivial solutions, both problems have additional validity requirements.

Byzantine agreement and Byzantine broadcast have been studied under vari-
ous combinations of assumptions, most notably timing assumptions – synchrony,
asynchrony or partial synchrony, and setup assumptions – cryptography and
public-key infrastructure (PKI). It is now well understood that these assump-
tions drastically affect the fault tolerance bounds. In particular, Byzantine broad-
cast and Byzantine agreement both require f < n/3 under partial synchrony or
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improves and subsumes the Byzantine agreement part of the preliminary draft.
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asynchrony. But under synchrony with digital signatures and PKI, Byzantine
agreement can be solved with f < n/2 while Byzantine broadcast can be solved
with f < n − 1.

In this paper, we consider Byzantine agreement in the synchronous and
authenticated (i.e., assuming digital signatures and PKI) setting. The efficiency
metrics we consider are (1) round complexity, i.e., the number of rounds of com-
munication before the protocol terminates, and (2) communication complexity,
i.e., the amount of information exchanged between parties during the proto-
col. For convenience, we measure communication complexity using the number
of signatures exchanged between parties. Assuming each signature has λ bits,
multiplying our communication complexity by λ yields the asymptotic commu-
nication complexity in bits.

In the synchronous and authenticated setting, Dolev and Strong gave a deter-
ministic Byzantine broadcast protocol for f < n−1 [12]. Their protocol achieves
f + 1 round complexity and O(n2f) communication complexity. The f + 1
round complexity matches the lower bound for deterministic protocols [12,15].
To further improve round complexity, randomized protocols have been intro-
duced [6,14,16,31]. The most efficient protocol to our knowledge is proposed by
Katz and Koo [19], which solves Byzantine agreement for f < n/2 in expected
29 rounds.1

In this work, we improve communication complexity to expected O(n2) and
round complexity to expected 16. Our protocols use threshold signatures [8,32]
to reduce communication complexity and a random leader election subroutine
to reduce round complexity. The random leader election subroutine can be con-
structed using common-coin protocols, and there exist constructions with a single
round and O(n2) communication in the literature [8,27]. The protocol by Cachin
et al. [8] is secure against a static adversary whereas the protocol by Loss and
Moran [27] is secure against an adaptive adversary. With these, we achieve the
following result.

Theorem 1. Synchronous authenticated Byzantine agreement can be solved for
f < n/2 with

– expected 10 rounds and expected O(n2) communication against a static adver-
sary assuming a single-round common-coin protocol,

– expected 16 rounds and expected O(n2) communication against a strongly
rushing adaptive adversary assuming an adaptively secure single-round
common-coin protocol.

It is worth noting that our protocols work even in the presence of a very
powerful adversary, which we call a strongly rushing adaptive adversary. The
adversary can adaptively decide which f parties to corrupt and when to corrupt
1 Katz and Koo [19] did not analyze communication complexity in their paper. Based

on our understanding, their unrolled protocol in the appendix can achieve O(n2)
communication complexity by similarly incorporating threshold signatures and a
quadratic common-coin protocol.
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them. And by “strongly rushing”, we mean that if the adversary decides to
corrupt a party h after observing messages sent from h to any other party in
round r, it can remove h’s round-r messages from the network before they reach
other honest parties. In comparison, a standard rushing adversary can decide its
own round-r messages after learning honest parties’ round-r messages, but if it
corrupts h in round r, it cannot “take back” or alter h’s round-r messages to
other parties. The Dolev-Strong and Katz-Koo protocols also work against such
a strongly rushing adaptive adversary.

The O(1) expected round complexity is clearly asymptotically optimal. A
natural question is whether or not the expected quadratic communication can
be further improved. In a follow-up work [1], building on a work by Dolev and
Reischuk [11], we show that Ω(f2) expected messages are necessary against a
strongly rushing adaptive adversary. King-Saia [20] and our follow-up work [1]
solve Byzantine agreement using sub-quadratic communication. Not surprisingly,
these protocols work against a standard rushing adaptive adversary but not a
strongly rushing adaptive one.

1.1 Technical Overview

We first describe our core protocol, which ensures agreement (referred to as
safety for the rest of the paper) and termination as required by Byzantine broad-
cast/agreement, but provides a weak notion of validity. Specifically, it achieves

– Termination: all honest parties eventually commit,
– Agreement/safety: all honest parties commit on the same value, and
– Validity: if all honest parties start with certificates for the same value v, and

no Byzantine party starts with a certificate for a contradictory value, then
all honest parties commit on v.

In Sect. 4 we will describe how to obtain these certificates to solve Byzantine
broadcast or Byzantine agreement.

The core protocol runs in iterations. In each iteration, a unique leader is
elected. Each new leader picks up the state left by previous leaders and proposes
a value in its iteration. Parties then cast votes on the leader’s value v. In more
detail, each iteration consists of 4 rounds. The first three rounds are conceptually
similar to Paxos and PBFT: (1) the leader learns the states of the system, (2)
the leader proposes a value, and (3) parties vote on the value. If a party receives
f+1 votes for the same value and does not detect leader equivocation, it commits
on that value. We then add another round: (4) if a party commits, it notifies
all other parties about the commit; upon receiving a notification, other parties
accept the committed value and will vouch for that value to future leaders.

Ideally, if the leader is honest, all honest parties commit v upon receiving
f +1 votes for v at the end of that iteration. A Byzantine leader can easily waste
its iteration by not proposing. But it can also perform the following more subtle
attacks: (1) send contradicting proposals to different honest parties, or (2) send
a proposal to some but not all honest parties. We must ensure these Byzantine
behaviors do not violate safety.
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The Need for Equivocation Checks. To ensure safety in the first attack,
parties engage in an all-to-all round of communication to forward the leader’s
proposal to each other for an equivocation check. If a party detects leader equiv-
ocation, i.e., sees two conflicting signed proposals from the leader, it does not
commit even if it receives f + 1 votes.

The Need for a notify Round. Using the second attack, a Byzantine leader
can make some, but not all, honest parties commit on a value v. If the other
honest parties do not know that v has been committed, they may commit v′ �= v
in a subsequent iteration. Therefore, whenever an honest party h commits on a
value v, h needs to notify all other honest parties of its commit. h can do this
by broadcasting the f +1 votes it received. When another party h′ receives such
a notification, it “accepts” the value v. If a party has accepted v and receives a
proposal v′ �= v in a later iteration, it will not vote for v′ unless it is shown a
proof that voting for v′ is safe. The details can be found in Sect. 3.

Safety, Termination, and Validity. Safety is preserved because when an
honest party commits, (1) no other party can commit a different value in the
same iteration (due to equivocation checks), and (2) no other value can gather
enough votes in subsequent iterations (due to notify by the honest party). Validity
follows from a similar argument: if all honest parties start the protocol with
the same certified (i.e., accepted) value v and Byzantine parties do not have a
different certified value, only v can gather enough votes. Termination is achieved
when some honest party h receives f + 1 notify messages. At this point, h sends
these f+1 notifications to all other parties and terminates. The f+1 notifications
h sends will ensure termination of all other parties in the next round. If an honest
leader emerges, all parties terminate in its iteration.

Round Complexity and Communication Complexity. Since there are f+1
honest out of 2f + 1 parties, by electing a random leader in every iteration, the
protocol terminates in 2 iterations in expectation. Depending on the adversarial
model, each iteration ranges from 4 to 7 rounds. Each round uses O(n2) messages
(all-to-all) and each message is either a single signature or a single (f + 1)-out-
of-n threshold signature. Thus, the protocol runs in expected O(1) rounds and
uses expected O(n2) communication.

Paxos, PBFT, XPaxos, and Our Protocol. Abstractly, this core protocol
resembles the synod algorithm in Paxos [23] but is adapted to the synchronous
and Byzantine setting. The main idea of the synod algorithm is to ensure quo-
rum intersection [23] at one honest party. The core idea of Paxos is to form a
quorum of size f + 1 before committing a value. With n = 2f + 1, two quorums
always intersect at one party, which is honest in Paxos. This honest party in the
intersection will force a future leader to respect the committed value. In order
to tolerate f Byzantine faults, PBFT [9] uses quorums of size 2f + 1 out of
n = 3f + 1, so that two quorums intersect at f + 1 parties, among which one
is guaranteed to be honest. Similar to PBFT, we also need to ensure quorum
intersection at f + 1 parties. But this requires new techniques with n = 2f + 1
parties in total. On the one hand, an intersection of size f + 1 seems to require
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quorums of size 1.5f + 1. (An subsequent work called Thunderella [30] uses this
quorums size to improve the optimistic case.) On the other hand, a quorum size
larger than f + 1 (the number of honest parties) seems to require participation
from Byzantine parties and thus loses liveness. As described in the core protocol,
our synchronous notify round forms a post-commit quorum of size 2f +1, which
intersects with any pre-commit quorum of size f +1 at f +1 parties. This satisfies
the requirement of one honest party in the intersection. Moreover, since parties
in the post-commit quorum only receive messages, liveness is not affected.

Our protocol also shares some similarity to XPaxos [26]. In XPaxos, a view-
change involves changing a set of f + 1 active replicas (instead of only changing
the leader). So far as all the active replicas in the old view notify all the active
replicas in the new view, there will be one honest replica in the new view that
can carry state across views. However, XPaxos makes progress only if all f + 1
active replicas are honest. In comparison, our protocol only requires the leader
to be honest to make progress.

Achieving Byzantine Broadcast and Byzantine Agreement. The core
protocol already ensures safety and termination, so we only need some technique
to boost its weaker validity to what Byzantine broadcast/agreement require.
Our protocol achieves this using a single round of all-to-all communication
before invoking the protocol. This allows us to avoid the standard transforma-
tion of composing n parallel Byzantine broadcasts to achieve Byzantine agree-
ment. As a result, our Byzantine agreement protocol has the same asymptotic
round/communication complexity as the core protocol.

2 Model

We assume synchrony. If an honest party i sends a message to another honest
party j at the beginning of a round, the message is guaranteed to reach by the
end of that round. We describe the protocol assuming lock-step execution, i.e.,
parties enter and exit each round simultaneously. Later in Sect. 5, we will present
a clock synchronization protocol to bootstrap lock-step execution from bounded
message delay.

We assume digital signatures and trusted setup. In the trusted setup phase, a
trusted dealer generates public/private key pairs for digital signatures and other
cryptographic primitives for each party, and certifies each party’s public keys.
We use 〈x〉i to denote a message x signed by party i, i.e., 〈x〉i = (x, σ) where
σ is a signature of message x produced by party i using its private signing key.
For efficiency, it is customary to sign the hash digest of a message. A message
can be signed by multiple parties (or the same party) in layers, i.e., 〈〈x〉i〉j =
〈x, σi〉j = (x, σi, σj) where σi is a signature of x and σj is a signature of x || σi

(|| denotes concatenation). When the context is clear, we omit the signer and
simply write 〈x〉 or 〈〈x〉〉.

We require a random leader election subroutine. As mentioned, this subrou-
tine can be instantiated using common-coin protocols [8,27] or verifiable random
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functions [28]. It may also be left to higher level protocols. For example, a cryp-
tocurrency may elect leaders based on proof of work.

We assume a strongly rushing adaptive adversary. After the trusted setup
phase, the adversary can adaptively decide which f parties to corrupt and when
to corrupt each of them as the protocol executes. Note, however, that the adver-
sary is not mobile: it cannot un-corrupt a Byzantine party to restore its corrup-
tion budget. The adversary is also strongly rushing. In each round, the adversary
observes any party i’s message to any other party j. If the adversary decides to
corrupt i at this point, it controls which other honest parties (if any) i sends
messages to and what messages i sends them in that round.

3 A Synchronous Byzantine Synod Protocol

3.1 Core Protocol

Our core protocol is a synchronous Byzantine synod protocol with n = 2f + 1
parties. The goal of the core synod protocol is to guarantee that all honest parties
eventually commit (termination) on the same value (agreement). In addition, it
achieves the following notion of validity: if (1) all honest parties start with the
same value and have a certificate for this value, and (2) the adversary does not
start with a certificate for a contradictory value, then all honest parties commit
on this value. In Sect. 4, we show how to obtain these certificates using a single
pre-round to achieve Byzantine broadcast and Byzantine agreement. For ease
of exposition, we will temporarily assume a static adversary in Sect. 3.1 while
presenting the core protocol. A static adversary has to decide which parties to
corrupt after the trusted setup phase and before the protocol starts.

We now describe the protocol in detail. When a leader proposes a value
v in iteration k, we say the proposal has rank k and write them as a tuple
(v, k). The first iteration has k = 1. Each party i internally maintains states
acceptedi = (vi, ki, Ci) across iterations to record its accepted proposal. Initially,
each party i initializes acceptedi := (⊥, 0,⊥). If party i later accepts (v, k),
it sets acceptedi := (v, k, C) such that C certifies that v is legally accepted in
iteration k. C consists of f+1 commit requests for proposal (v, k) (see the protocol
for details). We also say C certifies, or is a certificate for, (v, k). Proposals are
ranked by the iteration number in which they are made. Namely, (v, k) is ranked
higher than, lower than, or equal to (v′, k′) if k > k′, k < k′ and k = k′,
respectively. Certificates are ranked by the proposals they certify. When we say
a party “broadcasts” a message, we mean it sends the message to all parties
including itself.

Round 0 (elect). All parties participate in the threshold coin-tossing scheme
from [8]. Their scheme costs a single round and outputs a random string to
all parties. The random string modulo n defines a random leader Lk for the
current iteration k. We henceforth write Lk as L for simplicity.

Round 1 (status). Each party i sends a 〈k, status, vi, ki, Ci〉i message to L to
report its current accepted value.
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At the end of this round, if party i reports the highest certificate to L (i could
be L itself), L sets acceptedL = (vL, kL, CL) := (vi, ki, Ci). If no party reports
a certificate, L chooses vL freely and sets kL := 0 and CL := ⊥.

Round 2 (propose). L broadcasts a signed proposal 〈〈k, propose, vL〉L, kL, CL〉L.
At the end of this round, party i sets vL→i := vL if the certificate it receives
in the above leader proposal is no lower than what i reported to the leader,
i.e., if kL ≥ ki. Otherwise (leader is faulty), it sets vL→i := ⊥.

Round 3 (commit). If vL→i �= ⊥, then party i forwards the proposal
〈k, propose, vL→i〉L to all other parties and broadcasts a 〈k, commit, vL→i〉i
request.
At the end of this round, if party i is forwarded a properly signed proposal
〈k, propose, v′〉L in which v′ �= vL→i, it does not commit in this iteration
(leader has equivocated). Else, if party i receives f +1 〈k, commit, v〉j requests
in all of which v = vL→i, it commits on v and sets its internal state Ci to be
these f + 1 commit requests concatenated. In other words, party i commits
if and only if it receives f + 1 matching commit requests and does not detect
leader equivocation.

Round 4 (notify). If party i has committed on v at the end of the previous
round, it sends a notification 〈〈notify, v〉i, Ci〉i to every other party.
At the end of this round, if party i receives a 〈〈notify, v〉j , C〉j message, it
accepts v by setting acceptedi = (vi, ki, Ci) := (v, k, C). If party i receives
multiple valid notify messages with different values (how this can happen is
explained at the end of Sect. 3.2), it can accept an arbitrary one. Lastly, party
i increments the iteration counter k and enters the next iteration.

Early and Non-simultaneous Termination. At any point during the pro-
tocol, if a party gathers notification headers (excluding certificates) 〈notify, v〉
from f + 1 distinct parties, it sends these f + 1 notification headers to all other
parties and terminates. This ensures that when the first honest party terminates,
all other honest parties receive f + 1 notification headers and terminate in the
next round.

3.2 Safety, Termination, and Validity

In this section, we prove that the core protocol in Sect. 3.1 provides safety, ter-
mination and a weak notion of validity.

Safety. We first give some intuition to aid understanding. The scenario to con-
sider for safety is when an honest party h commits on a value v∗ in iteration k∗.
We first show that Byzantine parties cannot hold a certificate for a value other
than v∗ in iteration k∗. Thus, all other honest parties accept v∗ at the end of
iteration k∗ upon receiving notify from the honest party h. Thus, a value other
than v∗ cannot gather enough votes in iteration k∗ + 1, and hence cannot be
committed or accepted in iteration k∗ +1, and hence cannot gather enough votes
in iteration k∗ + 2, and so on. Safety then holds by induction (Fig. 1).
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Fig. 1. An example iteration of the core protocol. In this example, f = 2, n = 2f +1 =
5, parties 3 and 4 are Byzantine. 1. (status) Each party sends its current states to
L = 3. 2. (propose) No party has committed or accepted any value, so L can propose
any value of its choice. L equivocates and sends one proposal to party 4 (shown by
dashed red arrow) and a different proposal to honest parties. 3. (commit) Honest parties
forward L’s proposal and send commit requests to all parties. Party 4 only sends to
parties {3, 4, 5}. Parties 1 and 2 receive f + 1 commit requests for the blue value and
do not detect equivocation, so they commit. Party 5 detects leader equivocation and
does not commit despite also receiving f + 1 commit requests for the blue value. 4.
(notify) Parties 1 and 2 notify all other parties. On receiving a valid notification, party
5 accepts the blue value. 5. (status) The parties send status messages to the new leader
L′ = 1 for iteration k + 1. (Color figure online)

We now formalize the above intuition by proving the following lemma about
certificates: once an honest party commits, all certificates in that iteration and
future iterations can only certify its committed value.

Lemma 1. Suppose party h is the first honest party to commit and it commits
on v∗ in iteration k∗. If a certificate C for (v, k∗) exists, then v = v∗.

Proof. C must consist of f +1 commit requests for v. At least one of these comes
from an honest party (call it h1). Thus, h1 must have received a proposal for v
from the leader, and must have forwarded the proposal to all other parties. If v �=
v∗, h would have detected leader equivocation, and would not have committed
on v∗ in this iteration. So we have v = v∗.

Lemma 2. If at the start of iteration k, (1) every honest party i has a certificate
for (v, ki), and (2) all conflicting certificates are lower ranked, i.e, any certificate
for (v′, k′) where v �= v′ must have k′ < ki for all honest i, then the above two
conditions will hold at the end of iteration k.
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Proof. Suppose for contradiction that some party (honest or Byzantine) acquires
a higher certificate than what it had previously for v′ �= v. Then it must receive
from one honest party (call it h) a 〈k, commit, v′〉h request in iteration k. Note
that h has a certificate for (v, kh) at the start of iteration k. In order for h to
send a commit request for v′, the leader Lk must show a certificate for (v′, k′)
such that k′ ≥ kh, which contradicts condition (2).

A simple induction shows that the above two conditions, if true at the start
of an iteration, will hold true forever.

Theorem 2 (Safety). If two honest parties commit on v and v′ respectively,
then v = v′.

Proof. Suppose party h is the first honest party to commit, and it commits on
v∗ in iteration k∗. After the notify round of iteration k∗, every honest party
receives a certificate for (v∗, k∗) and accepts v∗. Furthermore, due to Lemma 1,
there cannot be a certificate for (v, k∗) in iteration k∗ for v �= v∗. Thus, the
two conditions in Lemma 2 hold at the end of iteration k∗. So no certificate
for a value other than v∗ can be formed from this point on. In order for an
honest party to commit on v, there must be a certificate for (v, k) where k ≥ k∗.
Therefore, v = v∗. Similarly, v′ = v∗, and we have v = v′.

Termination. We now show that an honest leader will guarantee all honest
parties terminate by the end of that iteration.

Theorem 3 (Termination). If the leader Lk in iteration k is honest, then
every honest party terminates one round after iteration k (or earlier).

Proof. The honest leader Lk will send a proposal to all parties. It will propose
a value reported by the highest certificate it collects in the status round. This
certificate will be no lower than any certificate held by honest parties. Addi-
tionally, the unforgeability of digital signatures prevents Byzantine parties from
falsely accusing L of equivocating. Therefore, all honest parties will send commit
requests for v, receive f + 1 commit requests for v, commits on v, send notifi-
cation headers for v, receive f + 1 notification headers for v (this is the end of
iteration k), and terminate in the next round. (It is possible that they receive
f + 1 notification headers and terminate at any earlier time.)

Validity. We now discuss the validity achieved by our core protocol. In the
theorem, we assume the existence of initial certificates for (v, 0) that are input
to our core protocol. These initial certificates will be provided by higher-level
protocols that invoke the core protocol (c.f. Sect. 4).

Theorem 4 (Validity). All honest parties will commit on v if (1) every honest
party starts with an initial certificate C certifying v, and (2) no Byzantine party
has a certificate C′ certifying v′ �= v.
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Proof. The proof is straightforward from Lemma 2 and Theorem 3. The input
constraints satisfy the two conditions for Lemma 2 with each ki = 0. Due to
Lemma 2, for all subsequent iterations, only v can have certificates and thus,
only v can be committed. By Theorem 3, when an honest leader emerges, all
honest parties will commit on v.

Finally, we mention an interesting scenario that does not have to be explicitly
addressed in the proofs. Before any honest party commits, Byzantine parties may
obtain certificates for multiple values in the same iteration. In particular, the
Byzantine leader proposes two values v and v′ to all the f Byzantine parties. (An
example with more than two values is similar.) Byzantine parties then exchange
f commit requests for both values among them. Additionally, the Byzantine
leader proposes v and v′ to different honest parties. Now with one more commit
request for each value from honest parties, Byzantine parties can obtain cer-
tificates for both v and v′, and can make honest parties accept different values
by showing them different certificates (notify messages). However, this will not
lead to a safety violation because no honest party would have committed in this
iteration: the leader has equivocated to honest parties, so all honest parties will
detect equivocation from forwarded proposals and thus refuse to commit. This
scenario showcases the necessity of both the synchrony assumption and the use
of digital signatures for our protocol. Lacking either one, equivocation cannot
be reliably detected and any protocol will be subject to the f < n/3 bound.
For completeness, we note that the above scenario will not lead to a violation of
the termination property, either. At the end of the iteration, honest parties may
accept either value. But in the next iteration, they can still vote for either value
despite having accepted the other, since the two values have the same rank.

3.3 Random Leader Election Against an Adaptive Adversary

The protocol presented so far does not achieve expected constant rounds against
an adaptive adversary. The adversary learns who the leader L is after the elect
round in an iteration. It can then immediately corrupt L and prevent it from
sending any proposal. This way, the adversary forces the protocol to run for f
iterations.

A first modification towards adaptive security is to move the elect round
after the propose round and before the commit round. The hope is that, by the
time L is corrupted, all honest parties have already received its proposal. This
means every party should act as a potential leader before Lk is revealed, i.e.,
in status and propose rounds to collect status and make a proposal. From the
commit round onward, only L’s proposal is relevant.

However, this idea alone is not sufficient. At the end of the elect round,
after learning the identity of L, the adversary corrupts L, signs an equivocating
proposal using L’s secret key and forwards it to all honest parties. Honest parties
will detect equivocation from L and will not commit in this iteration. We are
again forced to run the protocol for f iterations.
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To this end, we need to add a step for each party to “prepare” its proposal
before the leader is revealed. Afterwards, only “prepared” proposals are consid-
ered in equivocation checking. The prepare step should guarantee that, if a party
h is honest throughout the prepare process but becomes corrupted afterwards,
an adversary cannot construct a “prepared” equivocating proposal on h’s behalf.
We achieve the prepare step in two rounds as follows.

Round P1 (prepare1). Each party i broadcasts its proposal 〈vi, k〉i.
Round P2 (prepare2). If party j receives a proposal 〈vi, k〉i from party i in the

previous round, party j signs the proposal and sends 〈vi, k〉j back to party i.

We say a proposal (vi, k) is prepared if it carries f + 1 signatures from distinct
parties. Each honest party will be able to prepare its proposal. If party i is honest
in the two prepare rounds and becomes corrupted only afterwards, preparing a
conflicting proposal on party i’s behalf requires forging at least one honest party’s
signature, which a computationally bounded adversary cannot do.

The core protocol against a strongly rushing adaptive adversary now has 7
rounds: status, prepare1, prepare2, propose, elect, commit, and notify. Proofs for
safety and validity remain unchanged from the static case. Proof of termination
and round complexity analysis also hold once we observe that (1) there is a > 1/2
chance that each leader Lk is honest up to the point at which it is revealed, (2)
if Lk is still honest by the end of the propose round of iteration k, all honest
parties will consider its proposal valid and terminate one round after iteration
k.

We remark that leader election based on verifiable random function [28],
when combined with our prepare rounds, achieves expected 2 iterations against
a (normal) rushing adaptive adversary. But it will run into f iterations against a
strongly rushing adaptive adversary, who can prevent a leader from announcing
its rank after receiving it.

3.4 Round Complexity and Communication Complexity

The first honest leader will ensure termination. The random leader election sub-
routine ensures a (f + 1)/(2f + 1) > 1/2 probability that each leader is honest,
so the core protocol terminates in expected 2 iterations, plus one extra round to
forward f + 1 notify. Thus, if an iteration requires r rounds, our core protocol
requires 2r + 1 rounds to terminate in expectation. If the adversary is adaptive
and strongly rushing, each iteration requires r = 7 rounds. If the adversary is
adaptive and normal rushing, the elect round can happen in parallel to propose,
and each iteration has r = 6 rounds. If the adversary is static (rushing or other-
wise), we do not need the two prepare rounds, and the elect round can happen
in parallel to either status or propose, giving r = 4 rounds per iteration.

Next, we analyze the communication complexity. We will show that each
round consumes O(n2) communication. Hence, the core protocol requires
expected O(n2) communication (whether the adversary is adaptive or static,
rushing or not). First of all, note that although a certificate consists of f + 1
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signatures, its size can be reduced to a single signature using threshold signa-
tures [8,18,25,32].

1. In the status round, every party is reporting its currently accepted certificate
to every other party (every party can potentially be the leader since the leader
identity has not been revealed).

2. In prepare1, every party sends a signed proposal, which is O(1) in size, to
every other party.

3. In prepare2, every party sends back a doubly signed proposal, which is O(1)
in size, to every other party.

4. In the propose round, every party sends a proposal, which carries a certificate,
to every other party. (A proposal need not contain status messages, following
the suggestion of the HotStuff protocol [3]).

5. In the elect round, the common-coin protocol by Loss and Moran [27] requires
O(n2) communication.

6. In the commit round, every party sends an O(1)-sized commit message to
every other party.

7. In the notify round, every party sends a notify message, which carries a cer-
tificate, to every other party.

8. Lastly, before termination, every party sends f + 1 notification headers
〈notify, v〉, which can be reduced to a single threshold signature, to every
other party.

4 Byzantine Broadcast and Agreement

In this section, we describe how to use the core protocol to solve synchronous
authenticated Byzantine broadcast and agreement for the f < n/2 case. For both
problems, we design a “pre-round” to let honest parties obtain initial certificates
and then invoke the core protocol.

Byzantine Broadcast. In Byzantine broadcast, a designated sender tries to
broadcast a value to n parties. A solution needs to satisfy three requirements:

(termination) all honest parties eventually commit,
(agreement) all honest parties commit on the same value, and
(validity) if the sender is honest, then all honest parties commit on the value
it broadcasts.

Let Ls be the designated sender. In the pre-round, Ls broadcasts a signed
value 〈vs〉Ls

to every party. Such a signed value by the sender is an initial certifi-
cate certifying (vs, 0). We then invoke the core protocol. Safety and termination
are satisfied due to Theorems 2 and 3. If the designated sender is honest, each
honest party has a certificate for (vs, 0) and no conflicting initial certificate can
exist, satisfying the condition for Theorem 4. Thus, validity is satisfied.
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Byzantine Agreement. In Byzantine agreement, every party holds an initial
input value. A solution needs to satisfy the same termination and agreement
requirements as in Byzantine broadcast. There exist a few different validity
notions. We adopt a common one known as strong unanimity [13]:

(validity) if all honest parties hold the same input value v, then they all commit
on v.

In the pre-round, every party i broadcasts its value 〈vi〉i. f + 1 signatures
from distinct parties for the same value v form an initial certificate for (v, 0).
We then invoke the core protocol. Safety and termination are satisfied due to
Theorems 2 and 3. If all honest parties have the same input value, then they
will have an initial certificate for v and no conflicting initial certificate can exist,
satisfying the condition for Theorem 4. Thus, validity is satisfied.

The efficiency of the protocols is straightforward given the analysis of the
core protocol. Both protocols require one more round than the core protocol
and the same O(n2) communication complexity as the core protocol.

5 Clock Synchronization

An important question is how practical the synchrony assumption is, which will
be the topic of this section. The synchrony assumption essentially states that
all honest replicas’ messages arrive in time. This requires two properties: (i) a
bounded message delay and (ii) locked step execution, i.e., honest replicas enter
each round roughly at the same time. The second property is important because,
if replica i enters a round much earlier than replica j, then i may end up finishing
the round too soon without waiting for j’s message to arrive. In our protocol,
for example, this could prevent i from detecting leader equivocation and result
in a safety violation.

The XFT paper provided some justification for the bounded message delay
assumption in certain applications [26]. But we still need a mechanism to enforce
locked step execution. To this end, we will use the following clock synchronization
protocol, which may be interesting outside Byzantine agreement. It is a variation
of the clock synchronization protocol by Dolev et al. [10]. The key change is
to have parties sign independently in parallel (as opposed to sequentially) to
facilitate the use of threshold signatures.

The protocol will be executed at known time intervals. We call each interval
a “day”.

Round 0 (sync). When party i’s clock reaches the beginning of day X, it sends
a 〈sync,X〉i message to all parties including itself.

Round 1 (new-day). The first time a party j receives f + 1 〈sync,X〉 messages
from distinct parties (either as f +1 separate sync messages or within a single
new-day message), it

• sets its clock to the beginning of day X, and
• sends all other parties a new-day message, which is the concatenation of

f + 1 〈sync,X〉 messages from distinct parties.
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The above protocol bootstraps lock-step synchrony from the message delay
bound Δ and a clock drift bound. Each sync message is triggered by a party’s own
local clock, independent of when day X would start for other parties. The f + 1
sync messages can be replaced with a threshold signature for better efficiency.
The protocol refreshes honest parties’ clock difference to at most the message
delay bound Δ at the beginning of each day. The first honest party to start a
new day will broadcast a new-day message, which makes all other honest parties
start the new day within Δ time. Obtaining a new-day message also means at
least one honest party has sent a valid sync message, ensuring that roughly one
day has indeed passed since the previous day. We can then set the duration of
each round to 2Δ + φ where φ is the maximum clock drift between two honest
parties in a “day”.

Acknowledgments. We thank Dahlia Malkhi and Benjamin Chan for many useful
discussions.

References

1. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited.
arXiv preprint, arXiv:1805.03391 (2018)

2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzan-
tine agreement with expected O(1) rounds, expected O(n2) communication, and
optimal resilience. Cryptology ePrint Archive, Report 2018/1028 (2018). https://
eprint.iacr.org/2018/1028

3. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-
message BFT devil. arXiv preprint arXiv:1803.05069 (2018)

4. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: A blockchain protocol
based on reconfigurable byzantine consensus. In: OPODIS, Solida (2017)

5. Adya, A., et al.: FARSITE: federated, available, and reliable storage for an incom-
pletely trusted environment. ACM SIGOPS Oper. Syst. Rev. 36(SI), 1–14 (2002)

6. Ben-Or, M.: Another advantage of free choice (extended abstract): completely
asynchronous agreement protocols. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

8. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246
(2005)

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp.
173–186 (1999)

10. Dolev, D., Halpern, J., Simons, B., Strong, R.: Dynamic fault-tolerant clock syn-
chronization. J. ACM 42(1), 143–185 (1995)

11. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
J. ACM (JACM) 32(1), 191–204 (1985)

12. Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine agree-
ment. SIAM J. Comput. 12(4), 656–666 (1983)

http://arxiv.org/abs/1805.03391
https://eprint.iacr.org/2018/1028
https://eprint.iacr.org/2018/1028
http://arxiv.org/abs/1803.05069


334 I. Abraham et al.

13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

14. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

15. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

16. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: Proceedings of the Twenty-Second Annual Symposium on Principles
of Distributed Computing, pp. 211–220. ACM (2003)

17. Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with an honest majority. In: Proceedings of
the 19th Annual ACM STOC, vol. 87, pp. 218–229 (1987)

18. Gueta, G.G., et al.: SBFT: a scalable decentralized trust infrastructure for
blockchains. arXiv preprint arXiv:1804.01626 (2018)

19. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 27

20. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable Byzantine agreement
with an adaptive adversary. J. ACM 58(4), 18 (2011)

21. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th USENIX Security Symposium, pp. 279–296. USENIX Association (2016)

22. Kubiatowicz, J., et al.: OceanStore: an architecture for global-scale persistent stor-
age. ACM Sigplan Not. 35(11), 190–201 (2000)

23. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

24. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

25. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. Theoret.
Comput. Sci. 645, 1–24 (2016)
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Abstract. Ensuring secure deduplication of encrypted data is a very
active topic of research because deduplication is effective at reducing stor-
age costs. Schemes supporting deduplication of encrypted data that are not
vulnerable to content guessing attacks (such as Message Locked Encryp-
tion) have been proposed recently [Bellare et al. 2013, Li et al. 2015]. How-
ever in all these schemes, there is a key derivation phase that solely depends
on a short hash of the data and not the data itself. Therefore, a file specific
key can be obtained by anyone possessing the hash. Since hash values are
usually not meant to be secret, a desired solution will be a more robust
oblivious key generation protocol where file hashes need not be kept pri-
vate. Motivated by this use-case, we propose a new primitive for oblivi-
ous pseudorandom function (OPRF) on committed vector inputs in the
universal composable (UC) framework. We formalize this functionality as
FOOPRF, whereOOPRF stands for Ownership-based Oblivious PRF. FOOPRF

produces a unique random key on input a vector digest provided the client
proves knowledge of a (parametrisable) number of random positions of the
input vector.

To construct an efficient OOPRF protocol, we carefully combine a hid-
ing vector commitment scheme, a variant of the PRF scheme of Dodis-
Yampolskiy [Dodis et al. 2005] and a homomorphic encryption scheme
glued together with concrete, efficient instantiations of proofs of knowl-
edge. To the best of our knowledge, our work shows for the first time how
these primitives can be combined in a secure, efficient and useful way. We
also propose a new vector commitment scheme with constant sized public
parameters but (log n) size witnesses where n is the length of the commit-
ted vector. This can be of independent interest.

1 Introduction

Cloud storage systems are becoming increasingly popular as a way to reduce
costs while increasing availability and flexibility of storage. A promising tech-
nology that keeps the cost of cloud storage systems down is data deduplication,
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which can reduce up to 68% storage needs in standard file systems [24]. Data
deduplication avoids storing multiple copies of the same data at the cloud stor-
age. For example, if two clients upload the same file, the cloud server detects
that, stores a single copy of the file and gives access to it to both clients.

However, if two clients locally encrypt their files with their individual keys,
completely independent ciphertexts would result even if the underlying plaintext
file is the same, thereby making deduplication impossible. A fundamental chal-
lenge in deduplicating encrypted files is the following: how can two mistrusting
users obtain a common encryption key that depends on the content of a file
they both own, without revealing anything about this fact, or about the file’s
content? Schemes that address this problem and are not vulnerable to content
guessing or offline brute-force attacks have been proposed recently [22,23]. But
all these schemes rely on an oblivious key derivation phase, executed between a
key server KS and a client C, whose input solely depends on a short hash of the
file and not on the file itself. In these systems, a file-specific key will not only
be revealed to the legitimate owners of the file but, crucially, to anyone knowing
the hash of the file. This vulnerability will be particularly disastrous if a mali-
cious party (modeling insider threat in cloud storage systems, like a malicious
administrator) gets hold of a ciphertext and the hash of a file.

Hash values are usually not meant to be secret and are in fact openly used in
multiple contexts, e.g. for checksumming, in standard deduplication protocols,
in blockchain systems, and for authentication in Merkle trees. Note that the
fundamental issue here is that the key generation solely depends on a short
hash of the file, so getting this short hash is sufficient to get the key for the
file through the oblivious protocol. This concern remains unaddressed even if
domain separation [22] is used (i.e., domain specific salt is used for generating
hash for the key server), since the oblivious key generation will still depend on
the short hash. A desired solution will be a more robust oblivious key generation
protocol where file hashes need not be kept private. In other words, any small
leakage on a file, should not be sufficient to get the legitimate file specific key.

The obvious first attempt in achieving a robust oblivious key generation
protocol is to add a proof of knowledge step in the key generation phase. The
oblivious key generation phase is usually achieved using Oblivious Pseudoran-
dom Function (OPRF). An OPRF [18] is a two-party protocol between Alice
and Bob for securely computing a pseudorandom function fk(x) where Alice
holds the key k and Bob wants to evaluate the function on input x. Despite its
simplicity, OPRF has been shown to be a powerful primitive with application
in multiple contexts [18,20,21] and in particular for secure-deduplication [22,23]
in cloud storage systems. Security of OPRF requires that Bob learns only fk(x)
while Alice learns nothing from the interaction. However, the OPRF protocols
in the literature [20,21] can only handle large inputs with a considerable loss in
efficiency when Bob is malicious. In particular, none of the OPRF functionalities
in the literature can handle the following situation: Bob wants to evaluate the
function on a short representation of his large input, while Alice wants Bob to
prove knowledge of his large input, and not the short representation, efficiently,
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i.e., with communication complexity asymptotically smaller than the length of
his input. We address this precise question here. Notice that this is exactly the
question we are asking in the context of oblivious key generation for secure
deduplication.

Is it possible to construct an OPRF protocol that can handle large input
from a malicious party with communication complexity that is asymptoti-
cally strictly smaller than the size of the input?

In order to solve the conflict between the requirements expressed in the above
question, we envision a protocol where the output of the OPRF still depends
solely on the hash of the input, but that requires a user to prove knowledge of the
pre-image of that hash in an efficient way, while retaining privacy. This implies
that the system should enable efficient and compact proof of knowledge of the
preimage of a hash without revealing anything about the hash or the preimage.

These multi-fold requirements naturally suggest combining a Proof-of-
Ownership (PoW) [19] with an OPRF protocol. In a PoW protocol, ownership of
a file is ascertained probabilistically by challenging the user to prove knowledge
of certain blocks of the input file. However, by definition, a PoW scheme requires
a deterministic hash of the file to be maintained at the server, and therefore, is
stateful. Moreover, a PoW server, by definition, should be able to decide if two
users possess the same file or not. Therefore, any PoW scheme falls short of our
privacy goals where we do not want to reveal any information about the file in
the proof-of-knowledge phase.

1.1 Our Result

We answer the question in the previous section in the affirmative by proposing a
new OPRF primitive on committed vector inputs in the universal composablilty
(UC) framework. We formalize this functionality as FOOPRF where OOPRF stands
for Ownership-based Oblivious PRF. FOOPRF produces a unique random key on
an input vector digest, only if the client proves knowledge of a (parametrisable)
number of random positions of the input vector. By carefully tuning the number
of positions to challenge the client on, bandwidth consumption can be reduced
while ensuring that a malicious client can only cheat with negligible probability.
We discuss how this tunable parameter should be set and how it affects the
soundness error of the protocol. We further describe how to make our protocol
more efficient in the weaker stand-alone security model.

Threat Model. The general setting of secure deduplication consists of three par-
ties: a storage server (SS), a set of clients (Ci) who store their encrypted files
on SS and a key server (KS) who aids the deduplication process by assisting the
client to generate encryption keys that are unique for each file to be encrypted.
In the first phase, the clients interact with the KS to get a key which is used
to encrypt the input file such that the resulting ciphertext can be deduplicated.
This is obtained as a result of the fact that a file encrypted with the same key
will always produce the same ciphertext.
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We will focus on the key generation phase that is executed between the KS
and a client Ci. The clients are malicious and the KS is honest-but-curious in
our threat model (we discuss how to tolerate a malicious KS in Sect. 4). This is
a threat model that captures a wide range of realistic settings where a malicious
client is in possession of ciphertexts (modeling an attacker hacking into the
SS, or a malicious administrator of the SS with access to ciphertexts or an
intelligence agency coercing the SS into releasing ciphertexts) and hashes of the
files produced by an honest client. The malicious client can then try to obtain the
decryption key for the file by fooling the KS. The KS typically models a cloud
service provider that has no incentive in generating weak or incorrect keys for
the files. A more realistic scenario is where the KS may stealthily deviate from
the protocol to learn information about the client files. But we protect against
any such information leakage. In other words, we protect the input privacy of
the clients even against a malicious KS.

It is also easy to detect (with high probability) if KS is misbehaving in
generating the key by sending the same file twice and observing if the same key
is generated. Since KS generates the key obliviously, it will not be able to detect
that it has received the same file. So, if KS is not faithfully generating the keys,
with very high probability it will end up generating different keys and thus risk
detection.

UC Security. With the increasing popularity of cloud platforms, significant effort
went into developing customized solutions for various problems related to the
security and privacy of outsourced data and computations. These protocols are
not very modular by design and it is extremely challenging to compose them
to achieve multiple security goals at once. In this work, we take an important
step towards modular design by formalizing the security requirements in the
Universally Composable (UC) framework which provides composable security
guarantees.

Efficiency. Designing UC-secure protocols introduce some performance over-
heads. However, it is often trivial to optimize a UC-secure protocol (making it
only secure in weaker models), whereas it is often extremely complex (if not out-
right infeasible) to demonstrate UC-security for a protocol that is only secure
in weaker models. For achieving stand-alone security in our protocol, it is suffi-
cient to instantiate all the zero-knowledge proofs of knowledge in our protocol
with generalized Schnorr proofs using the Fiat-Shamir heuristic, which are very
efficient in practice.

Ideal Functionality. A naive attempt to define the ideal functionality, FOOPRF,
is the following. A (possibly malicious) client C hands in its entire input file
to the functionality. If FOOPRF has not seen this file before, it generates a fresh
random key, stores it with the file, and returns that key to the client. Otherwise,
FOOPRF just returns the key it has stored for that file. Any realization of such a
functionality would require communication between C and KS to be linear in
length of C’s input. This is because the simulator will need to extract on-line,
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the entire file from a malicious client, to be able to input it to the functionality.
This defeats the compactness requirement we are looking for. To avoid this,
we could let FOOPRF remember some succinct representation of each file and
then allow the simulator to input just that representation and get the key from
the functionality. However, this would let malicious clients get away safely with
knowing the succinct representation only rather than the full file. This is precisely
the security issue we are trying to overcome!

We envision a protocol where a client will just have to commit to the whole
file (e.g., with a vector commitment) and then to prove that it knows sufficiently
many blocks, it, can open sufficiently many random positions of the vector com-
mitment. Vector commitments [13] allow a party to commit to a vector of mes-
sages in such a way that it can later provide a witness that proves that x[i] is
indeed the i-th value in the committed vector x.

To allow for such communication-efficient protocol realizations, we need to
model inside the functionality, that a file is only provided partially. We do this
by allowing the simulator to obtain keys from FOOPRF on input a succinct repre-
sentation of a file together with sufficiently many blocks of the file, where “suffi-
ciently many” is defined in terms of a security parameter t. FOOPRF will choose a
fresh key for each representation of a file, store the key, the representation of the
file and the provided blocks. When FOOPRF sees the same representation again,
it will check whether the blocks on file for that representation are consistent
with the newly provided blocks. The representation and blocks provided by the
simulator will also have to be consistent with the full file input to FOOPRF by
honest clients. So, FOOPRF will have to compute its own representation for full
file input (it cannot ask the simulator as then the input of the honest client
would no longer remain secret as we require). Thus, we need to provide FOOPRF

with a function (vector commit) to compute this representation.
Notice that the guarantee that FOOPRF provides is that, when the input files

are same, the client will get the same key. But the client cannot get the key
by knowing a short representation for a large file; it has to show that it knows
“sufficiently many” blocks of the file. This is significantly different from Proof-
of-Retrievability [26] schemes where the guarantee is that the entire outsourced
file is saved at all times (at the server).

Protocol. To construct a protocol that securely realizes FOOPRF, we combine
hiding vector commitments [13], a hiding and binding commitment scheme [25], a
variant of the PRF scheme of Dodis-Yampolskiy [14,17,21], and a homomorphic
encryption scheme [9,16] together with concrete, efficient instantiations of proofs
of knowledge. At a high level, the construction is designed as follows.

The PRF is obliviously evaluated on a succinct deterministic commitment to
C’s input x, say s. We implement the oblivious PRF by leveraging the homo-
morphism of the encryption scheme. Now recall that C has to prove knowledge
of random positions in the preimage of s efficiently and wants to preserve the
confidentiality of its input. This can be addressed by using a randomized/hiding
vector commitment. Still, the PRF needs to be evaluated on s, to ensure that
the protocol always returns the same output given the same input. We provide
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an efficient proof of knowledge implementation that binds the randomized vector
commitment with a commitment to s. Our protocol ensures that all these compo-
nents can inter-operate efficiently. To the best of our knowledge, our work shows
for the first time how these primitives can be combined in a secure, efficient and
useful way.

As a subroutine of our protocol, we construct a new vector commitment (VC)
scheme with constant-sized public parameters and log n size witnesses where n
is the length of the committed vector. The scheme is based on the Merkle Hash
Tree (MHT) based accumulator construction presented in [4]. Very recently [3]
proposed a non-hiding MHT based VC with efficient batching of witnesses of
position binding in groups of unknown order. Their batch openings only saves
(asymptotically) when a few of the positions in the committed vector are set
and all this positions are opened in a batch. This is incompatible with our
requirement where a few positions are opened selectively. Moreover, their proofs
require very expensive group operations in groups of unknown order.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we describe the crypto-
graphic primitives. In Sect. 3 we describe the ideal functionality FOOPRF and in
Sect. 4 we give a secure realization of FOOPRF. One of the main building blocks
of the protocol is vector commitment. In Sect. 5, we give an instantiation of VC
and defer the second instantiation to the full version [6]. Throughout the pro-
tocol and the VC implementations we use abstract PoK notation for the proofs
of knowledge. In Sect. 6, we give the concrete implementations of all the PoK’s.
Finally, we conclude in Sect. 7.

2 Preliminaries

In this section we discuss the cryptographic primitives used in our protocol.

2.1 Proof Systems (PK)

ByPoK{(w) : statement(w)} we denote a generic interactive zero-knowledge proof
protocol of knowledge of a witness w such that the statement(w) is true. APoK sys-
tem must fulfil completeness, zero-knowledge and simulation-sound extractability.
A PoK system consists of the two protocols: PK.Setup,PK.Prove. On input a secu-
rity parameter 1λ, PK.Setup(1λ) outputs (parPK). PK.Prove(parPK, ·) is an interac-
tive protocol between prover and a verifier that statement(w) is true. The addi-
tional input the prover holds is the witness w for the statement. Simulation-sound
extractability for a PoK system requires the existence of an efficient algorithm SE
that outputs (parPK, tds, tde) such that parPK is identically distributed to the parPK
generated by PK.Setup (tde is the extraction trapdoor and tds is the simulation
trapdoor). When we need witnesses to be online-extractable, we make this explicit
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by writing PoK{(w1, w2) : statement(w1, w2)} the proof of witnesses w1 and w2,
where w1 can be extracted.

For concrete realizations of PoK’s, i.e., generalized Schnorr-signature
proofs [8], we will use notation [10] such as GSPK{(a, b, c) : y = gahb∧ ỹ = g̃ah̃c}.

Whenever a witness needs to be on-line extractable, we will use verifiable
encryption under a public key contained in the CRS. To allow for a proper assess-
ment of our protocols, we will always spell these encryptions out (so there will
not be any underlined witnesses in this notation). Finally, to make the 3-move
generalized Schnorr-signature proofs concurrent zero-knowledge and simulations
sound, one can use any of the standard generic techniques [15,27], typically
resulting in a 4-move protocol.

2.2 Commitment Scheme (CS)

We will instantiate CS with Pedersen commitment which satisfies correctness,
hiding and binding properties. In addition to that, Pedersen commitments are
homomorphic. We instantiate the commitment scheme in a composite order
group to be compatible with the other primitives that we will be using [4].
CS.Setup(1λ) : The setup algorithm picks two λ bit safe primes p, q such that
gcd(p− 1, q − 1, 7) = 1 and sets N = pq and sets message space and randomness
space respectively as: M = Z

∗
N ,R = Z

∗
N .

Then, the algorithm picks a prime ρ such that ρ = 2kN +1 where k is a small
prime. Let G = 〈G〉 = 〈H〉 be order-N subgroup of the group Z

∗
ρ and G and H

are two random generators of G, such that logH G is unknown. Note that G is
a cyclic subgroup of Z∗

ρ of order N and all the operations will happen modulo
ρ (i.e., reduced mod N in the exponent). Finally, the algorithm outputs public
parameters par := (ρ,N,G,G,H,M,R).
CS.Commit(par,m, r) : Compute com ← GmHr mod ρ. Output (com, open = r).
CS.Verify(par, com,m, open) : Output 1 if com ← GmHopen mod ρ, 0 otherwise.

Theorem 1 ([25]). The commitment scheme CS is information-theoretically
hiding and binding under the Discrete Log assumption.

2.3 Pseudorandom Function (PRF)

We will use the PRF scheme proposed in [14,21] which is a variant of the PRF
scheme of Dodis-Yampolskiy [17] based on the Boneh-Boyen unpredictable func-
tion [2], instantiated on a composite-order group instead of a prime-order group.
This PRF was proven to be secure for a domain of arbitrary size based solely on
subgroup hiding in [14]. The proof for the original PRF instantiated with prime-
order groups only allows for a domain which is polynomial-sized in the security
parameter. Notice that, for our application, it is crucial to have arbitrary size
domain in order to disallow offline brute-force attack by a honest-but-curious
KS. Here we recall the PRF definition and its security [14].
PRF.Setup(1λ) : On input the security parameter λ, the setup algorithm picks
two λ-bit safe primes p, q and sets N = pq. Then, it generates groups
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(N,G, (G1,G2)) ← G(1λ), where G1,G2 are subgroups of G.1 Reasonable can-
didates for group G are composite-order elliptic curve groups without efficient
pairings or the target group of a composite-order bilinear group. Finally, the
setup algorithm picks g ← G, sets the D = K ← Z

∗
N ,R ← G, and output

par = (N,G, g,D,K,R).
PRF.KeyGen(1λ, par) : On input the security and public parameters λ, par, the
key generation algorithm picks k ← K and output k.
PRF.Evaluate(par, k,m) : On input the public parameters par, key k ∈ K and
input m ∈ D, the evaluation algorithm does the following: If gcd((k+m), N) �= 1,
then output ⊥, else output g

1
(k+m) mod N ∈ R.

Theorem 2 ([14]). For all λ ∈ N, if subgroup hiding holds with respect to G for
its subgroups G1 and G2, if N = pq for distinct primes p, q ∈ Ω(2poly(λ), and if
G1 is a cyclic group of prime order, then the function family defined above is a
pseudorandom function family.

2.4 Homomorphic Encryption Scheme (HES)

Here we present the Projective Paillier Encryption scheme [9,16]. This scheme
preserves the homomorphic properties of Paillier encryption; however, unlike the
original Paillier scheme, the scheme has a dense set of public-keys.
HES.Setup(1λ) : On input the security parameter λ, the setup algorithm picks two
λ bit safe primes p, q and sets N = pq.2 Then, it generates a random element
g′ ∈ (ZN2) and sets g := g′2N and h := (1 + N mod N2) ∈ Z

∗
N2 , a special

element of order N . Finally, the algorithm outputs par := (N, g, h).
HES.KeyGen(par) : On input the public parameters par, the key generation algo-
rithm picks a random t ∈ [N/4] and computes epk ← gt mod N2. Finally, the
algorithm outputs (epk, esk := t).
HES.Enc(epk,m) : On input the public key epk and message m, the encryption
algorithm picks a random r ∈ [N/4] and computes u ← gr mod N2; v ← epkrhm

mod N2. Finally, the algorithm outputs ciphertext ct := (u, v). We will sometime
use the notation [[m]] to mean the encryption of m.
HES.Dec(esk, ct) : On input the secret key esk and ciphertext ct, the decryp-
tion algorithm computes m′ ← v/uesk mod N2. If m′ is of the form (1 + Nm
mod N2) for some n ∈ [N ], output m. Else output ⊥.

Theorem 3 ([16]). Under the Decision Composite Residuosity assumption, the
Projective Paillier encryption scheme is semantically secure.

1 Notice that G1,G2 are not explicitly used in the construction, but are required from
the security proof.

2 Algesheimer et al. describe how to generate such an N distributedly [1].
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2.5 Vector Commitments (VC)

Vector commitments (VC) [13] allow one to commit to a vector of messages in
such a way that it is later possible to open the commitment to one of the mes-
sages i.e, provide a witness that proves that xi is indeed the ith value in the
committed vector x. The size of the commitment and the opening are indepen-
dent of the length of the vector. We relax the efficiency requirement of VC in our
definition. Let n be the length of the committed vector. We require the size of
the commitment to be independent from n, but the size of the opening should
be asymptotically smaller than n. A VC can either be non-hiding/deterministic
(detVC) or hiding/randomized (randVC)3. For a detVC the only security require-
ment is binding. Informally, this property requires that once an adversary comes
up with a VC, it should not be able to prove two different values with respect to
the same position for that VC. For a randVC, the hiding is an additional security
requirement. Informally, this requirement states that the VC should conceal the
committed vector, i.e., an adversary should not be able to distinguish if a VC
was created for a vector x or a vector y, where x �= y. For the formal definition
of binding, refer to [13]. Hiding can be defined as for standard commitment.

Here we recall the primitives for a VC. Most of the inputs to the algorithms
are common for a randVC and a detVC. The inputs that are needed exclusively
for a randVC are highlighted.

VC.Setup(1λ, n) : On input security parameter 1λ and an upper bound n on the
size of the vector, generate the parameters of commitment scheme par, which
include a description of message space M and a description of randomness space
R.
VC.Commit(par,x, r) : On input public parameters par, a vector x ∈ Ml, (l ≤ n)
and r ∈ R, the algorithm outputs a commitment com to x.

VC.Prove(par, i,x, r) : On input public parameters par, position index i, vector
x, and r ∈ R, the algorithm generates a witness w for xi and outputs (w, xi).
VC.Verify(par, i, com, w, x) : On input public parameters par, position index i,
commitment com and witness w for x, the algorithm outputs 1 if w is a valid
witness for x being at position i and 0 otherwise.

Below we define two new algorithms (VC.RandCommitment,VC.RandWitness).
Informally, VC.RandCommitment allows to update a detVC to a randVC and
VC.RandWitness allows to update a detVC witness to a randVC witness.
VC.RandCommitment(par, com, r) : On input public parameters par, a non-hiding
commitment com and r ∈ R, outputs a randVC com′.
VC.RandWitness(par, com, i, r, w) : On input public parameters par, a detVC wit-
ness w, a non-hiding commitment com and r ∈ R, outputs a randVC witness
w′.

UC Security: In the full version [6] we give a brief overview of UC security and
direct the readers to [7,11,12] for more details.
3 We will use the following terms interchangeably in the context of VC: non-hiding

and deterministic, hiding and randomized.
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3 Ideal Functionality for Ownership-Based Oblivious
PRF (OOPRF)

In this section we describe the ideal functionality FOOPRF. As a warm-up, we
start from a bandwidth inefficient version of FOOPRF denoted as FBI−OOPRF.
The functionality is designed as follows:

1. FBI−OOPRF receives input x from client Ci.
2. FBI−OOPRF maintains a table to store the tuples (x, rx) where x is the input

from Ci and rx is the unique random key that the functionality picks for x.
3. For input x from Ci, if x is in the table, the functionality returns the corre-

sponding rx to Ci. Otherwise, it picks a fresh random key rx , stores (x, rx)
in its table and returns rx to Ci.

Since the client has to hand in the entire set of blocks of a file4 of length
n to the functionality, any protocol that will achieve this functionality will be
inefficient in terms of communication bandwidth. This is because the protocol
will have to ensure that the entire file can be on-line extracted from a malicious
client, which will amount to verifiably encrypting each file block. To overcome
this, we are interested in a protocol where a client will just have to commit to
the whole file (e.g., with a vector commitment) and then prove that it knows
sufficiently many blocks, i.e., can open sufficiently many random positions of the
vector commitment. To allow for such a construction, we need to model inside
the functionality, that a file is only provided partially. To this end, we will have to
allow the simulator to obtain keys from the functionality on input a representa-
tion of a file together with sufficiently many blocks of the file, where “sufficiently
many” is defined in terms of a security parameter t. The functionality will then
choose a fresh key for each representation of a file, store the key, the represen-
tation of the file and the provided blocks. Furthermore, when in the future, the
functionality sees the same representation again, it will check whether the blocks
on file for that representation are consistent with the newly provided blocks. Of
course, the representation and blocks provided by the simulator will also have
to be consistent with the full file input to the functionality by honest clients.
To this end, the functionality will have to compute its own representation (it
cannot ask the simulator as then the input of the client would no longer remain
secret as we require). Thus, we need to provide the functionality with a function
to compute this representation. This could either done by asking the simulator
for this function in the setup phase or by parameterizing the functionality with
this function. We chose the latter. Of course, the functionality will also have to
enforce consistency between the blocks for the representations it computes itself
and those it receives from the adversary/simulator.

Note that in FOOPRF, both honest and malicious clients invoke the function-
ality with file x. But, in case of malicious clients, the functionality generates
the random key based on the input from the simulator and its internal state.
The simulator’s input is checked only against the stored internal state of the
4 We use the word file and vector interchangeably.
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functionality, and not with respect to the input x with which a malicious client
invokes the functionality. Thus, FOOPRF does not require the entire file to be
on-line extracted from a malicious client.

Functionality FOOPRF (Parameterized with detVC.Commit(par))

Setup: Upon receiving (Setup, sid) from KS:
1. Send (Setup, sid) to Sim and wait for (Setup, sid, ok) from Sim.
2. Initialize an empty table Tsid.
3. Store (sid,Tsid).
4. Output (Setup, sid) to KS.

Evaluate: Upon receiving input (Evaluate, sid, qid, x) from Ci:
1. Proceed only if (sid,Tsid) is stored.

If Ci is honest: (a) Send (Evaluate, sid, qid, startEvaluate) to Sim and wait
for (Evaluate, sid, qid, startEvaluateok) from Sim.

(b) Compute s ← detVC.Commit(x).
(c) If (s, x′, r) ∈ Tsid, for some x′ and r, do the following:

i. If the row corresponding to s contains x′ �= x, set variable out ←
⊥. Otherwise, out ← r.

ii. Output (Evaluate, sid, qid, out) to Ci.
(d) Else, pick r ← R, insert (s, x, r) in Tsid and output

(Evaluate, sid, qid, r) to Ci.
If Ci is malicious: (a) Send (Evaluate, sid, qid, startEvaluate) to Sim and

wait for (Evaluate, sid, qid, startEvaluateok, s, x[i1], . . . , x[it]) from Sim.
(b) If (s, x′, r) ∈ Tsid, for some x′ and r, do the following:

i. If x′ contains x′[i1], . . . , x′[it] for which the received
x[i1], . . . , x[it] are unequal at least in one position, set out ← ⊥.

ii. Else, update x′ on positions i1 . . . , it with values x[i1], . . . , x[it],
respectively, and set out ← r.

iii. Output (Evaluate, sid, qid, out) to Ci.
(c) Else, pick r ← R, insert (s, (x[i1], . . . , x[it]), r) in Tsid.
(d) output (Evaluate, sid, qid, r) to Ci.

4 Secure Realization of FOOPRF

In this section we describe a protocol ΠOOPRF that securely realizes functionality
FOOPRF. We present the construction here and defer the proof of security to the
full version [6].

4.1 Protocol ΠOOPRF

First we give the high level intuition behind our construction. The protocol is
designed in the CRS model, so each party receives the public parameters of the
scheme from a trusted party. KS additionally picks a key for a PRF. The protocol
has two major building blocks, namely VC and PRF. Recall that the requirements
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for the key that KS will generate for Ci’s input file were (1) the key should be
random (2) it should be unique for a file and (3) the key should not be publicly
computable. All these properties are provided if the file key is a PRF evaluation
on a succinct deterministic and binding vector commitment to its input file x.
Let us denote this deterministic vector commitment as s.

The PRF evaluation has to be carried out obliviously as KS should learn
no information about Ci’s input. We implement the oblivious PRF evaluation
protocol between KS (holding k) and Ci (holding s) for the PRF described
in Sect. 2.3. To design this part of the protocol (Steps 7–13) we leverage the
homomorphic encryption scheme that we described in Sect. 2.4. In order to tol-
erate malicious Ci’s, we require that Ci commits to its input s, i.e., compute
com = CS.Commit(s, r) (where r is the randomness used to compute com using
a standard commitment scheme as described in Sect. 2.2) and proves knowledge
of its opening, r to KS before KS engages in computing the PRF (PoKπc2).

But committing to s is not sufficient; Ci has to prove knowledge of the
preimage of s efficiently. This is where the properties of VC can be leveraged.
A VC lets Ci prove knowledge of some random positions of the preimage. We
utilize this property as follows: we let KS challenge Ci to prove knowledge of t
random positions of its input, where t is much less than the length of x. Ci can
do this efficiently. The question of how to decide on the parameter t depends
on the soundness error the protocol is ready to accept. We discuss this in more
detail following the construction.

Notice however that Ci does not want to reveal any information about x to
KS. A hiding (or randomized) VC scheme tackles this issue but a hiding vector
commitment cannot be used directly as the PRF input. This is because, for
the same input x, if the PRF is computed on two randomized VC’s for x, then
it will generate different outputs. So we require that PRF is computed on a
deterministic vector commitment to the input vector. Let s′ be a randomized
vector commitment to Ci’s input x.

We solve problem above by having Ci send both com and s′ and a proof that
ensures that com and s′ are appropriately related, namely that they both refer
to the same deterministic vector commitment s.

Armed with this intuition, we are ready to give full construction of the pro-
tocol. In Sect. 6 we give the full implementations of the PoK’s used here5,6.

Setup: On input of (Setup, sid), the key server KS executes:
1. Receive (par) on the FPRF.Setup,VC.Setup,CS.Setup,PK.Setup,HES.Setup,sp

CRS interface.5

2. Run k ← PRF.KeyGen(1λ, par) and store k.

5 Note that par = (parPRF, parVC, parCS, parPK, parHES), but by the choice of our schemes,
they all work in the same setting with shared parameters. To simplify notation, when
the primitive used is clear from the context, we will just refer to par and not to the
specific parameters of that primitive.

6 It is clear that the randomness r3 cancels out only with algebraic PRF’s with appro-
priate codomains as the one chosen in our construction.
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3. Output (Setup, sid)
Evaluate: On input (Evaluate, sid, qid, x = (x1, . . . , xn) ∈ par.Mn) to client Ci,

the following protocol is executed between Ci and KS:
1. Receive (par) on the FPRF.Setup,VC.Setup,CS.Setup,PK.Setup,HES.Setup,sp

CRS interface.
2. Ci picks a random r1 ← par.R and computes s ← VC.Commit(par, x) and

s′ ← VC.RandCommitment(par, s, r1).
Additionally, Ci does the following:
(a) Pick a random r2 ← par.R
(b) Compute , ← CS.Commit(par, s, r2)
(c) Then, Ci generates the following proof of knowledge

πc00 := PoK{(s, r2) :, = CS.Commit(par, s, r2)}
(d) Additionally, Ci computes the following proof of knowledge

πc01 := PoK

{
(s, r1, r2) :, = CS.Commit(par, s, r2) ∧

s′ = VC.RandCommitment(par, s, r1)

}

and sends (s′, , , πc00, πc01) to KS.
3. KS verifies πc00, πc01 if the verifications pass through, then it proceeds to

the next step.
4. KS picks a set of indices I = {j1, . . . , jt} from [1, n] randomly and sends

them to Ci

5. For each challenged index j ∈ I, Ci computes

(w′
j , xj) ← VC.Prove(par, j, x) ,

(wj) ← VC.RandWitness(par, s, j, r1, w
′
j)

and generates the following proof of knowledge

πj = PoK
{

(wj , xj) : 1 = VC.Verify(par, j, s′, wj , xj)
}

Let πc1 = {πj |j ∈ I}. Ci sends πc1 back to KS.
6. KS verifies πc1 and if the verification passes, KS proceeds to the next step.
7. KS picks (epk, esk) ← HES.KeyGen(par), computes [k] ← HES.Enc(epk, k)

and sends epk, [k] to Ci.
8. Then Ci picks r3 ∈ par.R and computes

ct ← ([k][s])r3 ,

where [s] ← HES.Enc(epk, s)
9. Next, Ci generates the following proof of knowledge

πc2 = PoK

{
(s, r2, r3) :, = CS.Commit(par, s, r2) ∧

ct = ([k][s])r3

}

Ci sends ct, πc2 to KS.
10. KS verifies πc2 and if the verifications succeed, KS continues.
11. KS computes V ← HES.Dec(esk, ct)
12. Then KS computes K′ ← PRF.Evaluate(par, k, V ) and sends it to Ci.

13. If K′ = ⊥, output ⊥. Otherwise compute K ← K′(r3 mod par.N)
and

output K.6
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Choosing Parameter t: Parameter t is a tuning parameter that trades commu-
nication bandwidth for efficiency. In order to achieve high confidence that the
prover (i.e., the client) owns the entire file, t has to be adjusted accordingly.
Intuitively, for higher confidence that the prover possesses the entire file, the
verifier can set t to a large value. To minimize soundness error, a file can be
erasure coded first and then a VC commitment can be computed on the erasure
coded file. If the erasure code is resilient to erasures of up to α fraction of the
bits and ε is the desired soundness bound, then t should be picked as follows:
t should be the smallest integer such that (1 − α)t

< ε. [19] discusses in detail
how to tune t. Even though this scheme achieves a high level of soundness, good
erasure codes for very large files are expensive to compute. In [19], the authors
propose a pairwise hash function with public parameters that can be used to
hash the input file down to a constant size and then run VC on it. This scheme
achieves a weaker level of security than the erasure coded version.

Discussion on Tolerating Malicious KS. The functionality is independent of
whether or not KS is honest-but-curious or not. This only matters for the imple-
mentation and to what extent it realizes the functionality, i.e., our protocol
ΠOOPRF realizes the functionality under the assumption that KS is honest or
honest-but-curious. Notice that, in the functionality, the key server KS does not
learn any information about Ci’s input by design. So the functionality protects
the privacy of Ci’s input even from a malicious KS.

The choice of making KS honest-but-curious merits further discussion. In
ΠOOPRF, KS can be made to commit to its PRF key and to return a proof of
knowledge that it has computed the OPRF correctly as Jarecki and Liu do [21].
However, this does not guarantee that KS will pick a strong key or keep that key
secret both of which would defeat the purpose of the protocol. Thus, to address
a fully malicious KS, we need to ensure that KS has chosen its PRF key by
sampling randomly the desired key space. We notice that this is not addressed
by Jarecki et al. [21] either, even though they claim to handle fully malicious KS
(i.e., PRF evaluator). Handling this aspect is left as future work.

5 Merkle Tree-Based Vector Commitment

In this section we present a new VC construction scheme based on the Merkle
Hash Tree (MHT) based accumulator construction presented in [4]. Unlike [4],
we do not need to hide the index position of the leaf. This allows for some
efficiency enhancement since the prover does not need to hide if a node is the
left child or the right child of its parent. We first provide a detVC construction
and then describe algorithms RandCommitment,RandWitness to convert it to
randVC. Notice that in this VC construction, the public parameter is constant-
sized as opposed to the CDH and RSA based VC schemes proposed in [13]. The
drawback is that the proofs have length logarithmic in n as opposed to constant.
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5.1 detVC and randVC Constructions

VC.Setup(1λ, n) : On input security parameter 1λ and an upper bound n, the
algorithm invokes CS.Setup(1λ). Let CS.Setup(1λ) return (ρ,N,G,G,H,M,R).
This algorithm appends the tuple with the collision-resistant hash function H :
(ZN )2 → ZN defined as follows [4]: H(x, y) = x7 + 3y7 mod N and return it as
par. For further details on the hash function, see [4].
VC.Commit(par,x) : On input public parameters par and input x = x1, . . . , xn,
the algorithm, using H(·, ·), recursively builds a Merkle Hash Tree on x. (If n is
not a power of two, insert “dummy” elements into x until n is a perfect power
of 2.) Let MR be the root of the MHT. The algorithm outputs commitment
com = MR.
VC.Prove(par, i,x) : On input public parameters par, position i and input x =
x1, . . . , xn, the algorithm does the following: Let us denote the node values along
the path from the root node with value MR, to the leaf node, with value x[i],
in the MHT as: P = (p0, p1, . . . , pd). Note that p0 = MR and pd = x[i]. Let
PS = (p′

1, . . . , p
′
d) be the sibling path of P (note that p0 has no sibling). Then,

the algorithm computes PS and outputs witness (w = PS , xi).
VC.Verify(par, i, com, w, x) : On input public parameters par, position i, commit-
ment com = MR, witness (w, x), the algorithm parses w as PS = (p′

1, . . . , p
′
d)

and sets pd = x. For each j = d, . . . 1, the algorithm recursively computes the
internal nodes by hashing the left and right child. Let p0 = H(p1, p′

1) (if p1 is the
left sibling, H(p′

1, p1) otherwise.). This algorithm checks if MR = p0. It outputs
1 if the equality holds, 0 otherwise.
VC.RandCommitment(par, com, r) : On input public parameters par, non-hiding
vector commitment com = MR and randomness r ∈ R, the algorithm invokes
CS.Commit(par,MR, r). Let CS.Commit(par,MR, r) return (comMR, openMR).
Output com′ = comMR.
VC.RandWitness(par, com, i, r, w) : On input public parameters par, non-hiding
vector commitment com = MR, position i, randomness r ∈ R and a deterministic
witness w, the algorithm does the following: (1) parses w as PS = ((p′

1, . . . , p
′
d), v)

(2) computes (comMR, openMR) = CS.Commit(par,MR, r) (3) computes w′ =
(PS , v, comMR, openMR) and outputs w′.

VC.Verify for randomized witness: the only changes in the verification algo-
rithm are the following: (1) parse w as (PS = (p′

1, . . . , p
′
d), xi, comMR, openMR)

(2) in the last step instead of checking if MR = p0, check if
CS.Verify(par, comMR,MR, openMR) = 1. The algorithm will output 1 if the equal-
ity holds, 0 otherwise.

6 GSPK Proofs

In the following, we give the concrete implementations of our PoK protocols. To
this end we require the CRS to contain the public key of the CPA version of
the Camenisch-Shoup encryption scheme [9]. We already have the modulus N
in the CRS which we can use. Recall that N is a product of two safe primes
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which can be generated distributedly [1]. Furthermore, let g’ and y’ and be a
random elements of Z∗

N2 contained in the CRS and set g = g’2N , y = y’2N , and
h = 1 + N mod N2.

First we show how proof protocols πc00 and πc2 are realized. More specifically,
the proof protocol

πc00 = PoK{(s, r) : com = CS.Commit(par, s, r)}
is realized by first computing Es = (gr1 mod N2, hsyr1 mod N2), Er = (gr2 mod
N2, hryr2 mod N2), and with r1 and r2 being randomly drawn from [N/4], send-
ing these values to the verifier, and the executing the following proof protocol
with the verifier:

GSPK{(s, r, r1, r2) : com = GsHr ∧ Es = (gr1 , hsyr1) ∧ Er = (gr2 , hryr2)}
where we have dropped modρ and modN2 from the terms for brevity.

Notice that, VC.RandCommitment is the same as CS.Commit algorithm, which
computes a Pedersen commitment to the detVC, MR. So, πc01 will be just a
standard proof of equality [9]. In fact, the following optimization can be done:
use s′ as com throughout the protocol and skip πc01. The proof protocol

πc2 = PoK{(s, r2, r3) : com = CS.Commit(par, s; r2) ∧ ct = ([k][s])r3}
is realized as follows: Let us denote [k] = (e1, e2). The prover first computes
Er = (gur mod N2, hr3yur mod N2), where ur being randomly drawn from [N/4],
sends these values to the verifier, and executes the following proof protocol with
the verifier:

GSPK{(s, r2, r3, w, r) : com = GsHr2 ∧ 1 = com−r3GwHr′∧
ct = (er3

1 epkBhw, er3
2 gB) ∧ Er = (gur , hr3yur )}

Here, the term 1 = com−r3GwHr′
shows that w = sr3 and hence that

ct = ([k][s])r3 with B being the value that the prover used to randomize the
encryption.

For the proofs πj : PoK
{

(w, x) : 1 = randVC.Verify(par, j, com, w, x)
}

, prov-
ing these relations is a bit more involved and requires the following steps:

1. The algorithm parses w as (PS = (p′
1, . . . , p

′
d), comMR, openMR). Let us denote

the node values along the path from the root node with value MR, to the
leaf node, with value xi, in the MHT as: P = (p0, p1, . . . , pd). The algorithm
recovers this path recursively bottom up using H(·, ·) on PS . Note that the
index position j uniquely decides the left and the right child at each step.

2. Then, the algorithm commits to every value pj in this path and to the values
of the left and right children of pj in the MHT, i.e., if lj is the left child and
rj is the right child of pj , then the algorithm computes

(Pj , sj) ← CS.Commit(par, pj , sj), (Lj , s
′
j) ← CS.Commit(par, lj , s′

j),

(Rj , s
′′
j ) ← CS.Commit(par, rj , s

′′
j )
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3. Then, the algorithm generates a proof that P0 is indeed a commitment to the
root.7

PoKMR{(MR, r, s) : com = CS.Commit(par,MR, r) ∧ P0 = CS.Commit(par,MR, s)}

4. Next, for j = 0, . . . , d − 1, the following proof of knowledge that each triplet
(Pj , Lj , Rj) is well formed. Note that Lj (or Rj) is used as Pj+1.

PoKj{(l, r, s, s′, s′′) : Pj = CS.Commit(par, l7 + 3r7, s)∧
Lj = CS.Commit(par, l, s′) ∧ Rj = CS.Commit(par, r, s′′)}

This proof requires some sub steps which are the following:
(a) This proof uses the homomorphic property of Pedersen commitment

scheme and a subprotocol for PoKmult for multiplication of two values.
This protocol is instantiated using standard techniques [5,9].

PoKmult{(x, y, z, sx, sy, sz) : Cx = CS.Commit(par, x, sx)∧
Cy = CS.Commit(par, y, sy) ∧ Cz = CS.Commit(par, z, sz) ∧ z = x · y}

(b) The prover computes Cl, Cl2 , Cl4 , Cl6 , Cl7 and Cr, Cr2 , Cr4 , Cr6 , Cr7 and
invokes PoKmult on each of the following triplets to prove the correctness
of the commitments and sends them to the verifier.

(Cl, Cl, Cl2) (Cl2 , Cl2 , Cl4) (Cl2 , Cl4 , Cl6) (Cl, Cl6 , Cl7)
(Cr, Cr, Cr2) (Cr2 , Cr2 , Cr4) (Cr, Cr4 , Cr6) (Cr, Cr6 , Cr7)

Now we show how to realize proof protocols PoKMR and PoKmult for our
MHT-VC. In details, the proof protocol

PoKMR{(MR, r, s) : com = CS.Commit(par,MR, r)∧
P0 = CS.Commit(par,MR, s)}

is done as first computing EMR = (gr1 mod N2, hMRyr1 mod N2), Er = (gr2 mod
N2, hryr2 mod N2), and Es = (gr3 mod N2, hsyr3 mod N2), with r1, r2, and r3
being randomly drawn from [N/4], sending these values to the verifier, and then
executing the following proof protocol with the verifier

GSPK{(MR, r, s, r1, r2, r3) : com = GMRHr ∧ P0 = GMRHr ∧
EMR = (gr1 , hMRyr1) ∧ Er = (gr2 , hryr2) ∧ Es = (gr3 , hsyr3)} ,

where we have dropped modρ and modN2 from the terms for brevity.
7 We are going to abuse the notation a little and ignore the open in the output of
CS.Commit for notational convenience.
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On the other hand, proof protocol

PoKmult{(x, y, z, sx, sy, sz) : Cx = CS.Commit(par, x, sx)∧
Cy = CS.Commit(par, y, sy) ∧ Cz = CS.Commit(par, cz, sz) ∧ z = x · y}

is done by first computing Ex = (gu1 mod N2, hxyu1 mod N2) and Ey =
(gu2 mod N2, hyyu2 mod N2), with r1 and r2 being randomly drawn from [N/4],
sending these values to the verifier, and then executing the following proof pro-
tocol with the verifier:

GSPK{(x, y, z, sx, sy, sz, s
′, u1, u2) : Cx = GxHsx ∧ Cy = GyHsy∧

Cz = GzHsz ∧ Cz = Cx
yH

s′ ∧ Ex = (gu1 , hxyu1) ∧ Ey = (gu2 , hyyu2)} .

Notice that we do not need to verifiably encrypt the witness z as this one can
be computed from x and y. Similarly, a number of encryptions can be dropped
when combing these proofs into the bigger proof of the hash-tree path. We leave
these optimizations to the reader.

7 Conclusion

In this paper, we identified an important problem of secure data deduplication
that has been overlooked in the prior approaches. Motivated by this problem,
we propose a new primitive for oblivious pseudo-random function (OPRF) on
committed vector inputs in the universal composability (UC) framework and
give efficient constructions for OPRF. We believe this new primitive will find
applications beyond secure data-deduplication. Improving the concrete efficiency
of the OPRF protocol on committed vector inputs is an interesting direction to
explore.
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Abstract. A constrained pseudo random function (PRF) behaves like a
standard PRF, but with the added feature that the (master) secret key
holder, having secret key K, can produce a constrained key, Kf , that
allows for the evaluation of the PRF on a subset of the domain as deter-
mined by a predicate function f within some family F . While previous
constructions gave constrained PRFs for poly-sized circuits, all reduc-
tions for such functionality were based in the selective model of security
where an attacker declares which point he is attacking before seeing any
constrained keys.

In this paper we give new constrained PRF constructions for arbitrary
circuits in the random oracle model based on indistinguishability obfus-
cation. Our solution is constructed from two recently emerged primitives:
an adaptively secure Attribute-Based Encryption (ABE) for circuits and
a Universal Sampler Scheme as introduced by Hofheinz et al. Both prim-
itives are constructible from indistinguishability obfuscation (iO) (and
injective pseudorandom generators) with only polynomial loss.

1 Introduction

Constrained Pseudorandom Functions. The concept of constrained pseudoran-
dom functions (constrained PRFs) was proposed independently by Boneh and
Waters [5], Boyle, Goldwasser and Ivan [7] and Kiayias et al. [23]. A constrained
PRF behaves like a standard PRF [16], but with the added feature that the
(master) secret key holder, having secret key K, can produce a constrained key,
Kf , that allows for the evaluation of the PRF on a subset of the domain as deter-
mined by a predicate function f within some family F . The security definition
of a constrained PRF system allows for a poly-time attacker to query adaptively
on several functions f1, . . . , fQ and receive constrained keys Kf1 , . . . ,KfQ

. Later
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the attacker chooses a challenge point x∗ such that fi(x∗) = 0 ∀i. The attacker
should not be able to distinguish between the output of the PRF F (K,x∗) and
a randomly chosen value with better than negligible probability.

Constrained PRFs can hence be seen as PRFs in which the ability to evalu-
ate the PRF can be delegated, using a constrained key. This feature has proved
useful in various applications, e.g., broadcast encryption [5], multiparty key
exchange [6] and the development of “punctured programming” techniques using
obfuscation [28].

Ideally, we would like to have constrained PRFs that are as universally useful
as possible. In particular, they should support as expressive constraints, and thus
delegation capabilities, as possible. In their initial work, Boneh and Waters [5]
gave a construction for building constrained PRFs for polynomial sized circuits
(with a priori fixed depth) based on multilinear encodings [11,13]. Furthermore,
they demonstrated the power of constrained PRFs with several motivating appli-
cations.

For instance, one application (detailed in [5]) is a (secret encryption key)
broadcast key encapsulation mechanism with “optimal size ciphertexts”, where
the ciphertext consists solely of a header describing the recipient list S. The
main idea is that the key assigned to a set S is simply the PRF evaluated on S
as F (K,S). A user i in the system is assigned a key for a function fi(·), where
fi(S) = 1 if and only if i ∈ S. Other natural applications given include identity-
based key exchange and a form of non-interactive policy-based key distribution.
Later Sahai and Waters [28] showed the utility of (a limited form of) constrained
PRFs in building cryptography from indistinguishability obfuscation and Boneh
and Zhandry [6] used them (along with obfuscation) in constructing recipient
private broadcast encryption.

Focus: Adaptive Security. While the functionality of the Boneh-Waters construc-
tion was expressive, their proof reduction was limited to selective security where
the challenge point x∗ is declared by the attacker before it makes any queries. For
many applications of constrained PRFs, achieving adaptive security requires an
underlying adaptively secure constrained PRF. In particular, this applies to the
optimal size broadcast, policy-based encryption, non-interactive key exchange
and recipient-private broadcast constructions mentioned above.

In this work we are interested in exploring adaptive security in constrained
PRFs. Hence, we are interested in the question

Is there an adaptively secure constrained PRF for expressive families of
constraints? Specifically, is there an adaptively secure constrained PRF
for the family of poly-sized circuits?

Any selectively secure constrained PRF can be proven adaptively secure if one
is willing to use a technique called complexity leveraging (as used, e.g., in the
context of IBE schemes [4]). This technique, however, leads to a reduction with
superpolynomial loss (which leads to a significant quantitative loss in security),
and thus it can be desirable to look for alternative ways to achieve adaptive
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security. Hence, here we are interested in polynomial-time reductions, and thus
in avoiding complexity leveraging.

Up until now, constrained PRF constructions that achieve adaptive security
have relatively limited functionality. Hohenberger, Koppula, and Waters [21]
show how to build adaptive security from indistinguishability obfuscation for a
special type of constrained PRFs called puncturable PRF. In a puncturable PRF
system the attacker is allowed to make several point queries adaptively, before
choosing a challenge point x∗ and receiving a key that allows for evaluation
at all points x �= x∗. While their work presents progress in this area, there
is a large functionality gap between the family of all poly-sized circuits and
puncturing-type functions. Fuchsbauer et al. [12] give a subexponential reduction
to obfuscation for a larger class of “prefix-type” circuits, however, their reduction
is still super polynomial. In addition, they give evidence that the problem of
achieving full security with polynomial reductions might be difficult. They adapt
the proof of [24] to show a black box impossibility result for a certain class of
“fingerprinting” constructions that include the original Boneh-Waters [5] scheme.

The Difficulty of Achieving Adaptive Security (and Why We Utilize the Ran-
dom Oracle Model). In order to describe the technical problem that arises with
adaptively secure constrained PRFs, say that we want to construct a bit-fixing
constrained PRF F , i.e., one that allows for constrained keys Kfx for “bit-
matching” predicates of the form fx(x) = 1 ⇔ ∀i : xi = xi ∨ xi = ⊥ with
x = (xi)n

i=1 ∈ ({0, 1} ∪ {⊥})n. An adversary A on F may first ask for polyno-
mially many constrained keys Kfx , and then gets challenged on a preimage x∗.
The goal of a successful simulation is to be able to prepare all Kfx

, but not to
be able to compute F (K,x∗).

Now if x∗ = (x∗
i )

n
i=1 is known in advance, then the simulation can set up the

function F (K, ·) in an “all-but-one” way, such that all images except F (K,x∗)
can be computed. For instance, the selective-security simulation from [5] sets up

F (K,x) = e(g, . . . , g)
∏n

i=1 αi,xi (for K = (αi,b)i,b), (1)

where e is an (n − 1)-linear map, and the simulation knows all αi,1−x∗
i

(while
the αi,x∗

i
are only known “in the exponent,” as g

αi,x∗
i ). This setup not only

allows to compute F (K,x) as soon as there is an i with xi �= x∗
i (such that the

corresponding αi,xi
= αi,1−x∗

i
is known); also, assuming a graded multilinear

map, evaluation can be delegated. (For instance, a constrained key that allows
to evaluate all inputs with x1 = 1 would contain α1,1 and gαi,b for all other i, b.)

However, observe now what happens when A chooses the challenge preimage
x∗ only after asking for constrained keys. Then, the simulation may be forced
to commit to the full function F (K, ·) (information-theoretically) before even
knowing where “not to be able to evaluate.” For instance, for the constrained
PRF from [5] sketched above, already a few suitably chosen constrained keys
(for predicates fi) fully determine F (K, ·), while the corresponding predicates
fi leave exponentially many potential challenge preimages x∗ uncovered. If we
assume that the simulation either can or cannot evaluate F (K,x) on a given



360 D. Hofheinz et al.

preimage x (at least once F (K, ·) is fully determined), we have the following
dilemma. Let C be set of preimages that the simulation cannot evaluate. If C is
too small, then x∗ ∈ C will not happen sufficiently often, so that the simulation
cannot learn anything from A. But if C is too large, then the simulation will not
be able to construct “sufficiently general” constrained keys for A (because the
corresponding predicates f would evaluate to 1 on some elements of C).1

This argument eliminates not only guessing x∗ (at least when aiming at a
polynomial reduction), but also the popular class of “partitioning arguments”.
(Namely, while guessing x∗ corresponds to |C| = 1 above, partitioning arguments
consider larger sets C. However, the argument above excludes sets C of any size
for relevant classes of constraining predicates and superpolynomial preimage
space.) In particular, since the selectively-secure constrained PRFs from [5,7,23]
fulfill the assumptions of the argument, it seems hopeless to prove them fully
secure, at least for standard preimage sizes.

Hence, to obtain adaptively secure constrained PRFs, we feel that leaving
the standard model of computation is unavoidable, and so we utilize the random
oracle for our security analysis.

The Random Oracle Model Versus the Random Oracle Heuristic. When attempt-
ing to instantiate a scheme described and proven in the random oracle model
the most common method is to apply the heuristic [3] of replacing oracle calls
with an evaluation of a hash function such as SHA-256. This heuristic has been
(apparently) successful for a number of deployed cryptographic schemes (e.g.,
[22,29]), but on the other hand there are well documented [9] issues with this
heuristic.

While the random oracle heuristic is tightly associated with the random ora-
cle model, we wish to emphasize that there are potentially other avenues to
instantiate the model. In particular, one could try to realize a random oracle
like object via specialized and limited trusted hardware or a distributed con-
sensus protocol such as a blockchain. It could even be the case that an existing
blockchain could be obliviously leveraged for such a functionality in a similar
vein to the work Goyal and Goyal [18] for one time programs.

Our Contributions. In this paper, we give an affirmative answer to the question
above. That is, we present the first constrained PRF constructions for poly-sized
circuits2 that have polynomial reductions to indistinguishability obfuscation in
the random oracle model. While our construction does use heavy tools such
as indistinguishability obfuscation, and our proof involves the random oracle
heuristic, we wish to emphasize that our solution is currently the only known
one for this problem. Moreover, recent results [1] have shown that for certain

1 In fact, for many classes of allowed constraining predicates, A can easily ask for
constrained keys that, taken together, allow to evaluate F (K, ·) everywhere except
on x∗. For instance, in our case, A could ask for all keys Kfi with fi(x) = 1 ⇔ xi =
1 − x∗

i . Hence, in this case, the simulation must fail already whenever |C| ≥ 2.
2 More specifically, we present a construction for polynomial-sized circuits of any apri-

ori bounded depth.
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problems, it is impossible to get the desired security guarantees, even assuming
the existence of indistinguishability obfuscation and the random oracle heuristic.

Ingredients Used in Our Construction. Our solution is constructed from two
recently emerged primitives: an adaptively secure Attribute-Based Encryption
(ABE) [27] for circuits and Universal Samplers as introduced by Hofheinz
et al. [19]. Both primitives are constructible from indistinguishability obfusca-
tion (iO) (and injective pseudorandom generators) with only polynomial loss.
Waters [30] recently gave an adaptively secure construction of ABE3 based on
indistinguishability obfuscation and Hofheinz et al. [19] showed how to build
Universal Samplers from iO in the random oracle model—emphasizing that the
random oracle heuristic is applied outside the obfuscated program.

Before we describe our construction we briefly overview the two underlying
primitives. An ABE scheme (for circuits) has four algorithms. A setup algo-
rithm ABE.setup(1λ) that outputs public parameters pkABE, and a master secret
key mskABE. The encryption algorithm ABE.enc(pkABE, t, x) takes in the public
parameters, message t, and “attribute” string x and outputs a ciphertext c. A
key generation algorithm ABE.keygen(mskABE, C) outputs a secret key given a
boolean circuit C. Finally, the decryption algorithm ABE.dec(SK, c) will decrypt
an ABE ciphertext encrypted under attribute x iff C(x) = 1, where C is the cir-
cuit associated with the secret key.

The second primitive is a universal sampler scheme. Intuitively, a universal
sampler scheme behaves somewhat like a random oracle except it can sample
from arbitrary distributions as opposed to just uniformly random strings. More
concretely, a universal sampler scheme consists of two algorithms, US.setup and
US.sample. In a set-up phase, U ← US.setup(1λ) will take as input a security
parameter and output “sampler parameters” U . We can use these parameters to
“obliviously” sample from a distribution specified by a circuit d, in the following
sense. If we call US.sample(U, d) the scheme will output d(z) for hidden random
coins z that are pseudorandomly derived from U and d.

Security requires that in the random oracle model, US.setup outputs images
that look like independently and honestly generated d-samples, in the following
sense. We require that an efficient simulator can simulate U and the random
oracle such that the output of US.sample on arbitrarily many adversarially cho-
sen inputs di coincides with independently and honestly chosen images di(zi)
(for truly random zi that are hidden even from the simulator). Of course, the
simulated U and the programmed random oracle must be computationally indis-
tinguishable from the real setting.

Our Solution in a Nutshell. We now describe our construction that shows how
to build constrained PRFs from adaptively secure ABE and universal samplers.
One remarkable feature is the simplicity of our construction once the underlying
building blocks are in place.

The constrained PRF key is setup by first running U ← US.setup(1λ)
and (pkABE,mskABE) ← ABE.setup(1λ). The master PRF key K is

3 The construction is actually for Functional Encryption which implies ABE.
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(U, (pkABE,mskABE)). To define the PRF evaluation on input x we let dpkABE,x(z =
(t, r)) be a circuit in some canonical form that takes as input random z = (t, r)
and computes ABE.enc(pkABE, t, x; r). Here we view pkABE, x as constants hard-
wired into the circuit d and t, r as the inputs, where we make the random coins of
the encryption algorithm explicit. To evaluate the PRF F (K,x) we first compute
cx = US.sample(U, dpkABE,x). Then we compute and output ABE.dec(mskABE, cx)4.
Essentially, the evaluation function on input x first uses the universal sampler
to encrypt an ABE ciphertext under attribute x for a randomly chosen message
t. Then it uses the master secret key to decrypt the ciphertext which gives t as
the output.

To generate a constrained key for circuits C, the master key holder simply
runs the ABE key generation to compute skC = ABE.keygen(mskABE, C) and
sets the constrained key to be K{C} = (U, (pkABE, skC)). Evaluation can be
done using K{C} on input x where C(x) = 1. Simply compute cx from the
sampler parameters U as above, but then use skC to decrypt. The output will
be consistent with the master key evaluation.

The security argument is organized as follows. We first introduce a hybrid
game where the calls to the universal sampler scheme are answered by a sampling
oracle that generates a fresh sample every time it is called. The security defi-
nition of universal samplers schemes argues (in the random oracle model) that
the attacker’s advantage in this game must be negligibly close to the original
advantage. Furthermore, any polynomial time attacker will cause this samples
oracle to be called at most some polynomial Q number of times. One of these
calls must correspond to the eventual challenge input x∗.

We can now reduce to the security of the underlying ABE scheme. First the
reduction guesses with 1/Q success probability which samples oracle call will
correspond to x∗ and embed an ABE challenge ciphertext here. An attacker on
the constrained PRF scheme now maps straightforwardly to an ABE attacker.

Future Directions. A clear future direction is to attempt to achieve greater func-
tionality in the standard model. There is a significant gap between our random
oracle model results of constrained PRFs for all circuits and the standard model
results of Hohenberger, Koppula, and Waters for puncturable PRFs [21]. It would
be interesting to understand if there are fundamental limitations to achieving
such results. Fuchsbauer et al. [12] give some initial steps to negative results,
however, it is unclear if they generalize to larger classes of constructions.

Other Related Work. Attribute-Based Encryption for circuits was first achieved
independently by Garg, Gentry, Halevi, Sahai and Waters [14] from multilin-
ear maps and by Gorbunov, Vaikuntanathan and Wee [17] from the learning
with errors [26] assumption. Both works were proven selectively secure; requir-
ing complexity leveraging for adaptive security. In two recent works, Waters [30]
and Garg, Gentry, Halevi and Zhandry [15] achieve adaptively secure ABE for

4 We use the convention that the master secret key can decrypt all honestly generated
ABE ciphertexts. Alternatively, one could just generate a secret key for a circuit
that always outputs 1 and use this to decrypt.
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circuits under different cryptographic assumptions. We also note that Boneh
and Zhandry [6] show how to use indistinguishability obfuscation for circuits
and punctured PRFs to create constrained PRFs for circuits. This construction
is limited though to either selective security or utilizing complexity leveraging.

In a recent work, Brakerski and Vaikunthanathan [8] showed a constrained
PRF construction that is secure against single query attackers based on the
LWE assumption. However, our construction and motivating applications are
concerned with the case of multiple queries or collusions.

1.1 Discussion of Our Assumptions

Our construction uses “heavyweight” tools (i.e., indistinguishability obfuscation
and random oracles) for a problem that can also be solved in a much simpler way
with complexity leveraging. In this section, we would like to argue the benefits of
a “more structured” solution like ours. Specifically, while an ideal or “last word”
solution would be given under better assumptions, we feel that our work makes
interesting progress that sets a bar for the future work to try to overcome.

One obvious way to relax the required assumptions for our work would be to
only build on one heavyweight assumption (instead of two, as we do). In other
words, this would mean to remove the random oracle or work under standard
assumptions with a random oracle. While we definitely agree this would be an
improvement, either one of these appears to require completely new techniques.
For instance, consider the task of achieving expressive constrained PRFs from
standard assumptions (that is, assumptions not based on indistinguishability
obfuscation/multilinear maps). Currently, there are no known collusion-resistant
constrained PRFs from standard assumptions. Achieving such a constrained
PRF would be highly surprising even if it were selectively (not adaptively secure),
used subexponential assumptions and the random oracle model.

On the other hand, consider the problem of achieving adaptive security from
indistinguishability obfuscation alone, avoiding random oracles. The most simi-
lar problem to this is achieving adaptive security in Attribute-Based Encryption
schemes. All such solutions in this regime have used dual system encryption (or
similar) techniques. With those techniques, the simulation maintains and manip-
ulates a special relationship between the private keys and challenge ciphertext.
This lets one circumvent impossibilities and lower bounds such as the ones from
[10,20,24]. In constrained PRFs there are no challenge ciphertexts (only an input
point) so the only techniques we know do not apply. Indeed, our contribution,
which uses random oracles (in a rather nontrivial way), proposes some approach
to this problem. We think our work helps make the challenge clear to the com-
munity.

A fine point here is that known approaches to proving indistinguishability
obfuscation from non-interactive assumptions seem to already imply some form
of complexity leveraging or sub-exponential hardness. So given that we can get
adaptive security with sub-exponential hardness anyway, why should our app-
roach help? While we understand this argument, we think it can be misleading.
For example, [30] gave an adaptively secure functional encryption scheme from
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indistinguishability obfuscation where one could have given the exact same ratio-
nale. In fact, later [2] built upon these ideas to give a generic selective to adaptive
FE conversion where subexponential hardness is not inherent. For our case, we
currently do not have such a next step, but it is well possible some future work
could find it. As a starting point, [25, Section 1.5] provide an interesting dis-
cussion about how in the future one might avoid the subexponential barrier in
indistinguishability obfuscation for certain cases.

2 Preliminaries

2.1 Notations

Let x ← X denote a uniformly random element drawn from the set X . Given
integers �ckt, �inp, �out, let C[�ckt, �inp, �out] denote the set of circuits that can be
represented using �ckt bits, take �inp bits input and output �out bits.

2.2 Constrained Pseudorandom Functions

The notion of constrained pseudorandom functions was introduced in the con-
current works of [5,7,23]. Let K denote the key space, X the input domain and
Y the range space. A PRF F : K×X → Y is said to be constrained with respect
to a boolean circuit family F if there is an additional key space Kc, and three
algorithms F.setup, F.constrain and F.eval as follows:

– F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input
and outputs a key K ∈ K.

– F.constrain(K,C) is a PPT algorithm that takes as input a PRF key K ∈ K
and a circuit C ∈ F and outputs a constrained key K{C} ∈ Kc.

– F.eval(K{C}, x) is a deterministic polynomial time algorithm that takes as
input a constrained key K{C} ∈ Kc and x ∈ X and outputs an element
y ∈ Y. Let K{C} be the output of F.constrain(K,C). For correctness, we
require that for all security parameters λ ∈ N, keys K ← F.setup(1λ), circuit
C ∈ F , K{C} ← F.constrain(K,C) and x ∈ X ,

F.eval(K{C}, x) = F (K,x) if C(x) = 1.

Security of Constrained Pseudorandom Functions. Intuitively, we require
that even after obtaining several constrained keys, no polynomial time adversary
can distinguish a truly random string from the PRF evaluation at a point not
accepted by the queried circuits. This intuition can be formalized by the following
security game between a challenger and an adversary Att.

Let F : K × X → Y be a constrained PRF with respect to a circuit family F .
The security game consists of three phases.

Setup Phase. The challenger chooses a random key K ← K and a random bit
b ← {0, 1}.

Query Phase. In this phase, Att is allowed to ask for the following queries:
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– Evaluation Query. Att sends x ∈ X , and receives F (K,x).
– Key Query. Att sends a circuit C ∈ F , and receives F.constrain(K,C).
– Challenge Query. Att sends x ∈ X as a challenge query. If b = 0, the

challenger outputs F (K,x). Else, the challenger outputs a random element
y ← Y.

Guess. Att outputs a guess b′ of b.
Let E ⊂ X be the set of evaluation queries, L ⊂ F be the set of constrained

key queries and Z ⊂ X the set of challenge queries. The attacker Att wins if
b = b′ and E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage of Att
is defined to be AdvF

Att(λ) =
∣
∣
∣ Pr[Att wins] − 1/2

∣
∣
∣.

Definition 1. The PRF F is a secure constrained PRF with respect to F if for
all PPT adversaries Att, AdvF

Att(λ) is negligible in λ.

In the above definition the challenge query oracle may be queried multiple
times on different points, and either all the challenge responses are correct PRF
evaluations or they are all random points. As argued in [5], such a definition
is equivalent (via a hybrid argument) to a definition where the adversary may
only submit one challenge query. For our proofs, we will use the single challenge
point security definition.

Another simplification that we will use in our proofs is with respect to the
evaluation queries. Note that since we are considering constrained PRFs for
circuits, without loss of generality, we can assume that the attacker queries for
only constrained key queries. This is because any query for evaluation at input
x can be replaced by a constrained key query for a circuit Cx that accepts only
x.

2.3 Universal Samplers and Attribute Based Encryption

Due to space constraints, the definitions of universal samplers and attribute
based encryption are given in Appendix A.

3 Adaptively Secure Constrained PRF

In this section, we will describe our constrained pseudorandom function scheme
for circuit class F . Let n = n(λ), �rnd = �rnd(λ) be polynomials in λ, and let
�ckt be a polynomial (to be defined in the construction below). We will use
an adaptively secure ABE scheme (ABE.setup, ABE.keygen, ABE.enc, ABE.dec)
for a circuit family F with message and attribute space {0, 1}n. Let us assume
the encryption algorithm ABE.enc uses �rnd bits of randomness to compute the
ciphertext. We will also use an (�ckt, �inp = n + �rnd, �out = n) universal sampler
scheme U = (US.setup,US.sample).

The PRF F : K × {0, 1}n → {0, 1}n, along with algorithms F.setup,
F.constrain and F.eval are described as follows.
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F.setup(1λ). The setup algorithm computes the sampler parameters U ←
US.setup(1λ) and (pkABE,mskABE) ← ABE.setup(1λ). In order to define F , we
will first define a program Prog{pkABE, x} (see Fig. 1).

–

Prog

Input : t ∈ {0, 1}n, r ∈ {0, 1} rnd .

Constants : pkABE, x ∈ {0, 1}n.

Output ABE.enc(pkABE, t, x; r).

Fig. 1. Program used by setup algorithm: Prog

Let C-Prog{pkABE, x} be an �ckt = �ckt(λ) bit canonical description of
Prog{pkABE, x},5 where the last n bits of the representation are x, and let
C-Prog{pkABE} be C-Prog{pkABE, x} without the last n bits; that is, ∀x ∈ {0, 1}n,
C-Prog{pkABE}||x = C-Prog{pkABE, x}.

The PRF key K is set to be (U, (pkABE,mskABE), C-Prog{pkABE}). To
compute F (K,x), the setup algorithm first ‘samples’ a ciphertext c =
US.sample(U, C-Prog{pkABE}||x) and output ABE.dec(mskABE, c).

F.constrain(K = (U, (pkABE,mskABE), C-Prog{pkABE}), C): The constrain algo-
rithm first computes an ABE secret key corresponding to circuit C. It computes
an ABE secret key skC = ABE.keygen(mskABE, C) and sets the constrained key
to be K{C}= (U , (pkABE, skC), C-Prog{pkABE}).

F.eval(K{C} = (U, (pkABE, skC), C-Prog{pkABE}), x): The evaluation algorithm
first computes the canonical circuit C-Prog{pkABE, x} = C-Prog{pkABE}||x.
Next, it computes c = US.sample(U, C-Prog{pkABE, x}). Finally, it outputs
ABE.dec(skC , c).

Correctness. Consider any key K = (U, (pkABE,mskABE), C-Prog{pkABE}) output
by F.setup(1λ). Let C ∈ F be any circuit, and let skC ← ABE.keygen(mskABE, C),
K{C} = (U , (pkABE, skC), C-Prog{pkABE}). Letxbe any input such thatC(x) = 1.
We require that F.eval(K{C}, x) = F (K,x).6

F.eval(K{C}, x)
= ABE.dec(skC ,US.sample(U, C-Prog{pkABE, x}))
= ABE.dec(mskABE,US.sample(U, C-Prog{pkABE, x}))
= F (K,x)

5 Note that the value �ckt required by the universal sampler scheme is determined by
the ABE scheme. It depends on the size of the encryption circuit ABE.enc and the
length of pkABE.

6 Recall ABE.dec(mskABE,ABE.enc(pkABE, m, x)) outputs m, and so does
ABE.dec(skC ,ABE.enc(pkABE, m, x)) if C(x) = 1.
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4 Proof of Security

In this section, we will prove adaptive security for our constrained PRF in the
random oracle model. We assume the random oracle outputs �RO bit strings as
output. We will first define a sequence of hybrid experiments, and then show
that if any PPT adversary Att has non-negligible advantage in one experiment,
then it has non-negligible advantage in the next experiment. Game 0 is the
constrained PRF adaptive security game in the random oracle model. In Game 1,
the challenger simulates the sampler parameters and the random oracle queries.
It also implements a Samples Oracle O which is used for this simulation. Let
qpar denote the number of queries to O during the Setup, Pre-Challenge and
Challenge phases. In the next game, the challenger guesses which samples oracle
query corresponds to the challenge input. Finally, in the last game, it modifies
the output of the samples oracle on challenge input.

4.1 Sequence of Games

Game 0. In this experiment, the challenger chooses PRF key K. It receives
random oracle queries and constrained key queries from the adversary Att. On
receiving the challenge input x∗, it outputs either F (K,x∗) or a truly random
string. The adversary then sends post-challenge random oracle/constrained key
queries, and finally outputs a bit b′.

1. Setup Phase. Choose U ← US.setup(1λ), (pkABE,mskABE) ←
ABE.setup(1λ).
Let C-Prog{pkABE} be the canonical circuit as defined in the construction.

2. Pre Challenge Phase
– Constrained Key Queries: For every constrained key query C, compute
skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

– Random Oracle Queries: For each random oracle query yi, check if yi

has already been queried.
If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}�RO , send αi to Att and add (yi, αi) to table.

3. Challenge Phase. On receiving challenge input x∗, set d∗ =
C-Prog{pkABE}||x∗.
Compute c = US.sample(U, d∗), t0 = ABE.dec(mskABE, c).
Choose b ← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase. Respond to constrained key and random oracle
queries as in pre-challenge phase.

5. Guess. Att outputs a bit b′.

Game 1. This game is similar to the previous one, except that the sampler param-
eters U and responses to random oracle queries are simulated. The challenger
implements a Samples Oracle O, and O is used for simulating U and the random
oracle. Also, instead of using US.sample to compute F (K,x∗), the challenger



368 D. Hofheinz et al.

uses the samples oracle O. Please note that even though O is defined during the
Setup Phase, it is used in all the remaining phases.

1. Setup Phase. Choose (pkABE,mskABE) ← ABE.setup(1λ).
Let C-Prog{pkABE} be the canonical circuit as defined in the construction.
Implement the Samples Oracle O as follows:
– Implement a table T . Initially T is empty.
– For each query d ∈ C[�ckt, �inp, �out](recall C[�ckt, �inp, �out] is the family of

circuits whose bit representation is of length �ckt, takes input of length �inp
and provides output of length �out),

• If ∃ an entry of the form (d, α, β), output α.
• Else if d is of the form C-Prog{pkABE}||x,

choose t ← {0, 1}n, r ← {0, 1}�rnd .
Output c = ABE.enc(pkABE, t, x; r).
Add (d, c, t) to T .

• Else, choose t ← {0, 1}�inp , compute α = d(t).
Add (d, α,⊥) to T and output α.

Choose U ← SimUGen(1λ).
2. Pre Challenge Phase

– Constrained Key Queries: For every constrained key query C, compute
skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

– Random Oracle Queries: For each random oracle query yi,
output SimRO(yi) (recall SimRO can make polynomially many calls to
Samples Oracle O).

3. Challenge Phase. On receiving challenge input x∗, set d∗ =
C-Prog{pkABE}||x∗.
If T does not contain an entry of the form (d∗, α, β),
Query the Samples Oracle O with input d∗.
Let (d∗, α, β) be the entry in T corresponding to d∗.
Set t0 = ABE.dec(mskABE, O(d∗)) = β7.
Choose b ← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase. Respond to constrained key and random oracle
queries as in pre-challenge phase.

5. Guess. Att outputs a bit b′.

Game 2. In this game, the challenger ‘guesses’ the samples oracle query which
will correspond to the challenge input. The attacker wins if this guess is correct,
or if the challenge input has not been queried before. Recall qpar denotes the
number of calls to the Samples Oracle O during the Setup, Pre-Challenge and
Challenge phases.

7 Recall O(d∗) = α, and ABE.dec(mskABE, α) = β.
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1. Setup Phase. Choose i∗ ← [qpar]. Remaining experiment is same as in
Game 1.

Game 3. The only difference between this game and the previous one is in the
behavior of the Sample Oracle on the (i∗)th query. Suppose the (i∗)th input is
of the form d∗ = C-Prog{pkABE}||x∗. In the previous game, the entry in table T
corresponding to d∗ is of the form (d∗, α∗, β∗) where α∗ is an encryption of β∗

for attribute x∗ using public key pkABE. In this game, the entry corresponding to
d∗ is (d∗, α∗, β∗), where α∗ is the encryption of a random message for attribute
x∗ using pkABE.

1. Setup Phase. Choose i∗ ← [qpar].
Choose (pkABE,mskABE) ← ABE.setup(1λ). Let C-Prog{pkABE} be the canon-
ical circuit as defined in the construction. Implement the Samples Oracle O
as follows:
– Implement a table T . Initially T is empty.
– For each query d ∈ C[�ckt, �inp, �out],

• If there exists an entry of the form (d, α, β), output α.
• Else if d is of the form C-Prog{pkABE}||x for some x, choose t, t̃ ←

{0, 1}n, r ← {0, 1}�rnd .
If d is not the (i∗)th unique query,
output c ← ABE.enc(pkABE, t, x; r), add (d, c, t) to T .
Else set c ← ABE.enc(pkABE, t̃, x; r), add (d, c, t).

• Else, choose t ← {0, 1}�inp , compute α = d(t). Add (d, α,⊥) to T and
output α.

Choose U ← SimUGen(1λ).
2. Remaining experiment is same as in Game 2.

4.2 Analysis

For any PPT adversary Att, let Advi
Att denote the advantage of Att in Game i.

Claim 1. Assuming U = (US.setup,US.sample) is a secure (�ckt, �inp, �out) uni-
versal sampler scheme, for any PPT adversary Att,

∣
∣Adv0Att − Adv1Att

∣
∣ ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that
∣
∣Adv0Att − Adv1Att

∣
∣ = ε.

For any SimUGen, SimRO, we will construct a PPT algorithm B such that
∣
∣
∣Pr[RealB(1λ) = 1] − Pr[IdealBSimUGen,SimRO(1λ) = 1]

∣
∣
∣ = ε.

B interacts with Att and participates in either the Real or Ideal game. It
receives the sampler parameters U . It chooses (pkABE,mskABE) ← ABE.setup(1λ).
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During the pre-challenge phase, B receives either secret key queries or random
oracle queries. On receiving secret key query for circuit C, it computes skC ←
ABE.keygen(mskABE, C) and sends K{C} = (U, (pkABE, skC), C-Prog{pkABE}) to
Att. On receiving random oracle query y, it forwards it to the universal sampler
challenger. It receives response α, which it forwards to Att.

On receiving the challenge message x∗, it sets d∗ to be the circuit
C-Prog{pkABE}||x∗, computes c = US.sample(U, d∗), t0 = ABE.dec(mskABE, c).
It chooses b ← {0, 1}. If b = 0, it sends t0, else it sends t1 ← {0, 1}.

The post challenge queries are handled similar to the pre challenge queries.
Finally, Att outputs b′. If b = b′, B send 0 to the universal sampler challenger,
indicating Real experiment. Else it sends 1.

Note that due to the honest sample violation probability being 0, Att partic-
ipates in either Game 0 or Game 1. This concludes our proof.

Observation 1. For any adversary Att, Adv2Att ≥ Adv1Att
qpar

.

Proof. Since the challenger’s choice i∗ is independent of Att, if d =
C-Prog{pkABE}||x∗ was queried before the challenge phase, then the challenger’s
guess is correct with probability 1/qpar.

Claim 2. Assuming ABE = (ABE.setup, ABE.keygen, ABE.enc, ABE.dec) is an
adaptively secure attribute based encryption scheme, for any PPT adversary Att,

∣
∣Adv2Att − Adv3Att

∣
∣ ≤ negl(λ).

Proof. Note that the only difference between Game 2 and Game 3 is in the imple-
mentation of Samples Oracle O. Suppose there exists a PPT adversary Att such
that

∣
∣Adv2Att − Adv3Att

∣
∣ = ε. We will construct a PPT algorithm B that interacts

with Att and breaks the adaptive security of ABE scheme with advantage ε.

B receives pkABE from the ABE challenger. It chooses i∗ ← [qpar] and com-
putes U ← SimUGen(1λ).

Implementing the Samples Oracle O : B must implement the Samples Oracle.
It maintains a table T which is initially empty. On receiving a query d for O,
if there exists an entry of the form (d, α, β) in T , it outputs α. Else, if d is a
new query, and is not of the form C-Prog{pkABE}||x for some x, it chooses t ←
{0, 1}�inp , outputs d(t) and stores (d, d(t),⊥). Else, if d = C-Prog{pkABE}||x, and
d is not the (i∗)th query, it chooses t ∈ {0, 1}n, computes c = ABE.enc(pkABE, t, x)
and stores (d, c, t) in T . Else, if d∗ = C-Prog{pkABE}||x∗ is the (i∗)th query, B
chooses t, t̃ ← {0, 1}n, sends t, t̃ as the challenge messages and x∗ as the challenge
attribute to the ABE challenger. It receives c in response. B stores (d∗, c, t) in T
and outputs c.

The remaining parts are identical in both Game 2 and Game 3. During the
pre-challenge query phase, B receives either constrained key queries or ran-
dom oracle queries. On receiving constrained key query for circuit C, it sends
C to the ABE challenger as a secret key query, and receives skC . It sends
(U, (pk, skC), C-Prog{pkABE}) to Att. On receiving a random oracle query y,



Adaptively Secure Constrained Pseudorandom Functions 371

it computes SimRO(y), where SimRO is allowed to query the Samples Oracle
O. If B receives any constrained key query C such that C(x∗) = 1 (where
d∗ = C-Prog{pkABE}||x∗ was the (i∗)th unique query to O), then B aborts.

In the challenge phase, B receives input x∗. If d∗ = C-Prog{pkABE}||x∗ was
not the (i∗)th query to O, B aborts. Else, let (d∗, α∗, β∗) be the corresponding
entry in T . It chooses b ← {0, 1}. If b = 0, it outputs t0 = β∗, else it outputs
t1 ← {0, 1}n.

The post challenge phase is handled similar to the pre-challenge phase.
Finally, Att outputs b′. If b = b′, B outputs 0, indicating c is an encryption
of t. Else it outputs 1.

We will now analyse B’s winning probability. Let x∗ be the challenge input
sent by Att. Note that if B aborts, then the (i∗)th unique query to O was not
d∗ = C-Prog{pkABE}||x∗, in which case, Att wins with probability exactly 1/2.

If d∗ was the (i∗)th query and c is an encryption of t, then this corresponds
to Game 2. Else, it corresponds to Game 3. Note that Pr[B outputs 0 — c ←
ABE.enc(pkABE, t, x∗)] = Pr[Att wins in Game 2] and similarly, Pr[B outputs 0
— c ← ABE.enc(pkABE, t̃, x∗)] = Pr[Att wins in Game 3]. Therefore, AdvABEB = ε.

Observation 2. For any adversary Att, Adv3Att = 0.

Proof. Note that Att receives no information about t0 in the pre-challenge and
post challenge phases. As a result, t0 and t1 look identical to Att.

A Preliminaries Continued

A.1 Universal Samplers

In a recent work, Hofheinz et al. [19] introduced the notion of universal sam-
plers. Intuitively, a universal sampler scheme provides a concise way to sample
pseudorandomly from arbitrary distributions. More formally, a universal sampler
scheme U , parameterized by polynomials �ckt, �inp and �out, consists of algorithms
US.setup and US.sample defined below.

– US.setup(1λ) takes as input the security parameter λ and outputs the sampler
parameters U .

– US.sample(U, d) is a deterministic algorithm that takes as input the sampler
parameters U and a circuit d of size at most �ckt bits. The circuit d takes as
input �inp bits and outputs �out bits. The output of US.sample also consists
of �out bits.

Intuitively, US.sample is supposed to sample from d, in the sense that it outputs a
value d(z) for pseudorandom and hidden random coins z. However, it is nontrivial
to define what it means that the random coins z are hidden, and that even
multiple outputs (for adversarially and possibly even adaptively chosen circuits
d) look pseudorandom.
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Hofheinz et al. [19] formalize security by mandating that US.sample is pro-
grammable in the random oracle model. In particular, there should be an effi-
cient way to simulate U and the random oracle, such that US.sample outputs
an externally given value that is honestly sampled from d. This programming
should work even for arbitrarily many US.sample outputs for adversarially chosen
inputs d simultaneously, and it should be indistinguishable from a real execution
of US.setup and US.sample.

In this work, we will be using a universal sampler scheme that is even adap-
tively secure. In order to formally define adaptive security for universal samplers,
let us first define the notion of an admissible adversary A.

An admissible adversary A is defined to be an efficient interactive Turing
Machine that outputs one bit, with the following input/output behavior:

– A takes as input security parameter λ and sampler parameters U .
– A can send a random oracle query (RO, x), and receives the output of the

random oracle on input x.
– A can send a message of the form (params, d) where d ∈ C[�ckt, �inp, �out]. Upon

sending this message, A is required to honestly compute pd = US.sample(U, d),
making use of any additional random oracle queries, and A appends (d, pd)
to an auxiliary tape (this is required to check for Honest Sample Violation in
the Ideal experiment).

Let SimUGen and SimRO be PPT algorithms. Consider the following two
experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each
unique query made to RO.

2. U ← US.setupRO(1λ).
3. A(1λ, U) is executed, where every random oracle query, represented by a

message of the form (RO, x), receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of

the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps �ckt bits to �inp bits is implemented by
assigning random �inp-bit outputs to each unique query made to F . Through-
out this experiment, a Samples Oracle O is implemented as follows: On input
d, where d ∈ C[�ckt, �inp, �out], O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Samples Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution.
– Whenever A sends a message of the form (RO, x), this is forwarded to

SimRO, which produces a response to be sent back to A.
– SimRO can make any number of queries to the Samples Oracle O.
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– Finally, after A sends any message of the form (params, d), the auxiliary
tape of A is examined until an entry of the form (d, pd) is added to it. At
this point, if pd is not equal to d(F (d)), then experiment aborts, resulting
in an Honest Sample Violation.

4. Upon termination of A, the output of the experiment is the final output of
the execution of A.

Definition 2. A universal sampler scheme U = (US.setup, US.sample), param-
eterized by polynomials �ckt, �inp and �out, is said to be adaptively secure in the
random oracle model if there exist PPT algorithms SimUGen and SimRO such
that for all admissible PPT adversaries A, the following hold:8

Pr[IdealASimUGen,SimRO(1λ) aborts ] = 0,

and ∣
∣
∣Pr[RealA(1λ) = 1] − Pr[IdealASimUGen,SimRO(1λ) = 1]

∣
∣
∣ ≤ negl(λ)

Hofheinz et al. [19] construct a universal sampler scheme that is adaptively
secure in the random oracle model, assuming a secure indistinguishability obfus-
cator, a selectively secure puncturable PRF and an injective pseudorandom gen-
erator.

A.2 Attribute Based Encryption

An attribute based encryption scheme ABE for a circuit family F with message
space M and attribute space X consists of algorithms ABE.setup, ABE.keygen,
ABE.enc and ABE.dec defined below.

– ABE.setup(1λ) is a PPT algorithm that takes as input the security parameter
and outputs the public key pkABE and the master secret key mskABE.

– ABE.keygen(mskABE, C) is a PPT algorithm that takes as input the master
secret key mskABE, a circuit C ∈ F and outputs a secret key skC for circuit
C.

– ABE.enc(pkABE,m, x) takes as input a public key pkABE, message m ∈
M, an attribute x ∈ X and outputs a ciphertext c. We will assume
the encryption algorithm takes �rnd bits of randomness9. The notation
ABE.enc(pkABE,m, x; r) is used to represent the randomness r used by
ABE.enc.

– ABE.dec(skC , c) takes as input secret key skC , ciphertext c and outputs y ∈
M ∪ {⊥}.

8 The definition in [19] only requires this probability to be negligible in λ. However, the
construction actually achieves zero probability of Honest Sample Violation. Hence,
for the simplicity of our proof, we will use this definition.

9 This assumption can be justified by the use of an appropriate pseudorandom gener-
ator that maps �rnd bits to the required length.
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Correctness. For any circuit C ∈ F , (pkABE,mskABE) ← ABE.setup(1λ), message
m ∈ M, attribute x ∈ X such that C(x) = 1, we require the following:

ABE.dec(ABE.keygen(mskABE, C),ABE.enc(pkABE,m, x)) = m.

For simplicity of notation, we will assume ABE.dec(mskABE, ABE.enc(pkABE,
m, x )) = m for all messages m, attributes x10.

Security. Security for an ABE scheme is defined via the following adaptive
security game between a challenger and adversary Att.

1. Setup Phase. The challenger chooses (pkABE,mskABE) ← ABE.setup(1λ) and
sends pkABE to Att.

2. Pre-Challenge Phase. The challenger receives multiple secret key queries.
For each C ∈ F queried, it computes skC ← ABE.keygen(mskABE, C) and
sends skC to Att.

3. Challenge. Att sends messages m0,m1 ∈ M and attribute x ∈ X such
that C(x) = 0 for all circuits queried during the Pre-Challenge phase. The
challenger chooses b ← {0, 1}, computes c ← ABE.enc(pkABE, mb, x) and
sends c to Att.

4. Post-Challenge Phase. Att sends multiple secret key queries C ∈ F as in
the Pre-Challenge phase, but with the added restriction that C(x) = 0. It
receives skC ← ABE.keygen(mskABE, C).

5. Guess. Finally, Att outputs its guess b′.

Att wins the ABE security game for scheme ABE if b = b′. Let AdvABEAtt =
∣
∣
∣ Pr[Att wins] − 1/2

∣
∣
∣.

Definition 3. An ABE scheme ABE = (ABE.setup, ABE.keygen, ABE.enc,
ABE.dec) is said to be adaptively secure if for all PPT adversaries Att, AdvABEAtt ≤
negl(λ).

In a recent work, Waters [30] showed a construction for an adaptively secure
functional encryption scheme, using indistinguishability obfuscation. An adap-
tively secure functional encryption scheme implies an adaptively secure attribute
based encryption scheme. Garg, Gentry, Halevi and Zhandry [15] showed a
direct construction based on multilinear encodings. Ananth, Brakerski, Segev
and Vaikuntanathan [2] showed how to transform any selectively secure FE
scheme to achieve adaptive security.

10 We can assume this holds true, since given mskABE, one can compute a secret
key sk for circuit Call that accepts all inputs, and then use sk to decrypt
ABE.enc(pkABE, m, x).
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Abstract. Lattice-based encryption schemes still suffer from a low mes-
sage throughput per ciphertext and inefficient solutions towards realizing
enhanced security properties such as CCA1- or CCA2-security. This is
mainly due to the fact that the underlying schemes still follow a tradi-
tional design concept and do not tap the full potentials of LWE. Fur-
thermore, the desired security features are also often achieved by costly
approaches or less efficient generic transformations. Recently, a novel
encryption scheme based on the A-LWE assumption (relying on the hard-
ness of LWE) has been proposed, where data is embedded into the error
term without changing its target distributions. By this novelty it is pos-
sible to encrypt much more data as compared to the classical approach.
In this paper we revisit this approach and propose several techniques in
order to improve the message throughput per ciphertext. Furthermore,
we present a very efficient trapdoor construction of reduced storage size.
More precisely, the secret and public key sizes are reduced to just 1 poly-
nomial, as opposed to O(log q) polynomials following previous construc-
tions. Finally, we give an efficient implementation of the scheme instan-
tiated with the new trapdoor construction. In particular, we attest high
message throughputs and low ciphertext expansion factors at efficient
running times. Our scheme even ensures CCA (or RCCA) security, while
entailing a great deal of flexibility to encrypt arbitrary large messages or
signatures by use of the same secret key.

Keywords: Lattice-based encryption · Lattice-based assumptions

1 Introduction

In [EDB15], a novel lattice-based encryption scheme has been proposed that
encrypts data in a way that differs from previous constructions [Reg05,GPV08,
Pei09,Pei10,ABB10,LP11,SS11,MP12] following the one-time-pad approach. It
is equipped with many features such as a high message throughput per cipher-
text as compared to current state-of-the-art encryption schemes while simulta-
neously ensuring different security notions (e.g. CCA security) for many cryp-
tographic applications, for instance utilized for sign-then-encrypt scenarios or
to securely transmit bundles of keys as required for the provisioning of remote
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attestation keys during manufacturing. Public key encryption schemes also rep-
resent important building blocks of advanced primitives such as group signature
and ABS schemes. In many application scenarios it is also desired to ensure
CCA1- or CCA2-security. The Augmented Learning with Errors problem (A-
LWE) [EDB15], a modified LWE variant, has been introduced that allows to
inject auxiliary data into the error term without changing the target distribu-
tions. In fact, the A-LWE problem has been proven to be hard to solve in the
random oracle model assuming the hardness of LWE. Using a suitable trap-
door function as a black-box such as [EB14,MP12], the owner of the trapdoor is
empowered to recover the secret resp. error-term and hence reveal the injected
data. By this novelty, it is possible to exploit the error term as a container for
the message or further information such as lattice-based signatures following the
distributions of the error-term. It further encompasses a great deal of flexibility
and other important properties such as CCA-security.

1.1 Our Contributions

In this paper we revisit the A-LWE problem and the implied encryption schemes
from [EDB15]. In particular, we provide several theoretical improvements, intro-
duce new tools, and give an efficient software implementation of the scheme
testifying its conjectured efficiency. Below, we give an overview of features that
can be realized by our scheme LARA (LAttice-based encryption of data embed-
ded in RAndomness):

1. Flexibility. The encryptor of the scheme can increase the amount of encrypted
data without invoking the encryption engine several times. Since the message
is embedded into the error term, increasing the error size (to at most ‖ei‖2 <
q/4 depending on the parameters) results in a higher message throughput.
Thus, we achieve very low ciphertext expansion factors as compared to recent
schemes. Furthermore, using a trapdoor allows to retrieve the secret and error
polynomials for inspection. The retrieved secret polynomial could also play
the role of a uniform random key for a symmetric key cipher.

2. Signature embedding. Due to the coinciding distributions of the error term and
lattice-based signatures, the encryptor can exploit the signature as the error
term. For instance, (c2, c3) contains the signature on the error or message
encrypted in c1. This offers an CCA2 like flavour as the decryptor can verify
that the ciphertext has not been altered during transmission and the source
of the data is authenticated via the signature. In case the size of the signature
is too large, the encryptor can further exploit its flexibility.

3. Security. An increase of the error size already enhances the security of
the scheme. However, it is also possible to further lift the security from
CPA or CCA1 to RCCA or CCA2 almost for free via the transformations
from [EDB15].

4. Efficiency. Due to the resemblance of ciphertexts to plain LWE samples, the
efficiency of the scheme is very close to that required to generate ring-LWE
samples, which intuitively seems to be a lower bound for many encryption
schemes that are based on ring-LWE.
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Improved Message Throughput. We introduce new techniques in order to
increase the message throughput per ciphertext. In fact, we are able to exploit
almost the full min-entropy of the error term to embed arbitrary messages. Pre-
viously, only one bit of the message was injected into a coefficient of the error
term. By our new method, we are able to inject about log2(αq/ω(

√
log n)) bits

per entry for an error vector sampled according to the discrete Gaussian distri-
bution with parameter αq. Encoding and decoding of the message requires only
to reduce the coefficients modulo some integer.

m = c · nk̄ CCA CPA/CCA CPA/CCA CPA
k = log q [MP12] [EDB15] This work [LP11], others
Ciphertext size m · k m · k m · k m · k
Message size nk̄ c · nk̄ c log(αq/4.7)nk̄ cnk̄ − n
Message Exp. c · k k k

log(αq/4.7) k + k
ck̄−1

Following this approach we can revise the parameters from [EDB15] accord-
ing to the table above (for a fixed ciphertext size). When comparing our approach
with the CPA-secure encryption scheme from Lindner and Peikert [LP11] and
other recently proposed schemes, we attest an improvement factor of at least
O(log(αq)).

Improved Trapdoors, Scheme Instantiation and Security. We give
an improved construction of trapdoors in the random oracle model, which
allows to significantly reduce the number of ring elements in the public key
by a factor O(log q), hence moving trapdoor constructions towards practical-
ity. More precisely, we give an improved construction of trapdoor algorithms
(TrapGen, LWEGen, LWEInv), in case the secret vector is sampled uniformly at
random and can thus be selected s = F (r,H(r)) involving a deterministic func-
tion F and a cryptographic hash function H modeled as a (quantum-) random
oracle. This is a crucial ingredient of our construction and the resulting schemes.
In particular, we achieve public and secret keys each consisting only of 1 poly-
nomial. Hence, our construction improves upon previous proposals, where the
public key contains at least �log q� polynomials (matrix dimension in [MP12] is
n × n(1 + lg q), see also [LPR13]), and is thus comparable with the public key
size used in current state-of-the-art encryption schemes. This makes the usage
of trapdoor based constructions more attractive for practice as it provides direct
access to the secret and error vectors, which can be exploited in many different
ways and at least for inspection.

Implementation and Analysis. In order to attest the conjectured efficiency
of our scheme that we call LARACPA or LARACCA, we implement the (quantum-)
random oracle variants of our CPA- and CCA-secure schemes in software. This
implementation is optimized with respect to the underlying architecture. To this
end, we applied optimized techniques for discrete Gaussian sampling and FFT
multiplication, the core elements governing the efficiency of the scheme. In par-
ticular, we adopt several optimizations for the polynomial representation and
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polynomial multiplication by use of efficient FFT/NTT operations. We imple-
ment our scheme and compare it with various schemes. For our reference imple-
mentation and n = 1024 (conservative parameters), we attest running times of
418 000 cycles for encryption and about 289 000 cycles for decryption in the
CPA-secure setting. Thus, in comparison to the other schemes, we achieve by
our improved trapdoor construction high message throughputs at low cipher-
text expansion factors and at efficient running times and key sizes. The AVX-
implementation is about twice as fast.

1.2 Organization

This paper is structured as follows. Section 2 provides the relevant background of
our work. In Sect. 3 we introduce the A-LWE problem from [EDB15] and present
our improvements to enhance the message throughput. In Sect. 4 a description
of new trapdoor algorithms is proposed. The resulting encryption schemes are
detailed in Sect. 5. In Sect. 6 we present our software implementation and exper-
imental results.

2 Preliminaries

Notation. We will mainly focus on polynomial rings R = Z[X]/ 〈Xn + 1〉 and
Rq = Zq[X]/ 〈Xn + 1〉 for integers q > 0 and n being a power of two. We denote
ring elements by boldface lower-case letters e.g. p, whereas for vectors of ring
elements we use p̂ and upper-case bold letters for matrices (e.g., A). By ⊕ we
denote the XOR operator.

Discrete Gaussian Distribution. We define by ρ : Rn → (0, 1] the n-dimensional
Gaussian function

ρs,c(x) = e−π· ‖x−c‖2
2

s2 , ∀x, c ∈ R
n .

The discrete Gaussian distribution DΛ+c,s is defined to have support Λ + c,
where c ∈ R

n and Λ ⊂ R
n is a lattice. For x ∈ Λ + c, it basically assigns the

probability DΛ+c,s(x) = ρs(x)/ρs(Λ + c) .

Lattices. Throughout this paper we are mostly concerned with q-ary lattices
Λ⊥

q (A) and Λq(A), where q = poly(n) denotes a polynomially bounded modulus
and A ∈ Z

n×m
q is an arbitrary matrix. Λ⊥

q (A) resp. Λq(A) are defined by

Λ⊥
q (A) = {x ∈ Z

m | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Z

m | ∃s ∈ Z
m s.t. x = A�s mod q} .

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗\{0}) ≤ ε .
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Lemma 1 ([Ban95, Lemma 2.4]). For any real s > 0 and T > 0, and any
x ∈ R

n, we have

P [| 〈x,DZn,s〉 | ≥ T · s ‖x‖] < 2exp(−π · T 2) .

Lemma 2 ([GPV08, Theorem 3.1]). Let Λ ⊂ R
n be a lattice with basis S,

and let ε > 0. We have ηε(Λ) ≤‖ S̃ ‖ ·
√

ln
(
2n

(
1 + 1

ε

))
/π. In particular, for any

function ω(
√

log n), there is a negligible ε(n) for which ηε(Λ) ≤‖ S̃ ‖ ·ω(
√

log n).

Corollary 1 ([DM14, Corollary 4]). Let n ≥ 4 be a power of two, q ≥ 3 a
power of 3, and set Rq = Zq[x]/ 〈xn + 1〉, then any nonzero polynomial t ∈ Rq

of degree d < n/2 and coefficients in {0,±1} is invertible in Rq .

Definition 2 (LWE Distribution). Let n,m, q be integers and χe be distri-
bution over Z. By LLWE

n,m,αq we denote the LWE distribution over Z
n×m
q × Z

m
q ,

which draws A ←R Z
n×m
q uniformly at random, samples e ←R DZm,αq and

returns (A,b�) ∈ Z
n×m
q × Z

m
q for s ∈ Z

n
q and b� = s�A + e�.

Definition 3 (LWE Problem). Let u ∈ be uniformly sampled from Z
m
q .

– The decision problem of LWE asks to distinguish between (A,b�) ← LLWE
n,m,αq

and (A,u�) for a uniformly sampled secret s ←R Z
n
q .

– The search problem of LWE asks to return the secret vector s ∈ Z
n
q given an

LWE sample (A,b) ← LLWE
n,m,αq for a uniformly sampled secret s ←R Z

n
q .

3 Augmented Learning with Errors

In this section, we give a description of the message embedding approach as
proposed in [EDB15] and how it is used in order to inject auxiliary data into
the error term of LWE samples. This feature represents the main building block
of the generic encryption scheme from [EDB15], which allows to encrypt huge
amounts of data without increasing the ciphertext size. In fact, it is even possible
to combine this concept with the traditional one-time-pad approach in order to
take the best from both worlds and hence increase the message size per ciphertext
at almost no cost.

Lemma 3 ([EDB15, Statistical]). Let B ∈ Z
n×m
p be an arbitrary full-rank

matrix and ε = negl(n). The statistical distance Δ(DZm,r,DΛ⊥
v (B),r) for uniform

v ←R Z
n
p and r ≥ ηε(Λ⊥(B)) is negligible.

Lemma 4 ([EDB15, Computational]). Let B ∈ Z
n×m
p be an arbitrary full-

rank matrix. If the distribution of v ∈ Z
n
p is computationally indistinguishable

from the uniform distribution over Z
n
p , then DΛ⊥

v (B),r is computationally indis-
tinguishable from DZm,r for r ≥ ηε(Λ⊥(B)).
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3.1 Message Embedding

The proposed technique aims at embedding auxiliary data into the error term e
such that it still follows the required error distibution. In particular, Lemmas 3
and 4 are used, which essentially state that a discrete Gaussian over the integers
can be sampled by first picking a coset Λ⊥

c (B) = c + Λ⊥
p (B) uniformly at ran-

dom for any full-rank matrix B ∈ Z
n×m
p and then invoking a discrete Gaussian

sampler outputting a preimage x for c such that B · x ≡ c mod p However, this
requires the knowledge of a suitable basis for Λ⊥

q (B). In fact, the random coset
selection can be made deterministic by means of a random oracle H taking a
random seed with enough entropy as input.

The fact that xoring a message m to the output of H does not change the
distribution, allows to hide the message within the error vector without changing
its target distribution. As a result, we obtain e ← DΛ⊥

H(µ)⊕m
(B),r, which is indis-

tinguishable from DZm,r for a random seed μ and properly chosen parameters
(see Lemmas 3 and 4). Subsequently, based on the message embedding approach
the Augmented LWE problem (A-LWE) has been introduced, where A-LWE
samples resemble ordinary LWE instances except for the modified error vectors.
In particular, the A-LWE problem is specified with respect to a specific matrix
G, which allows to efficiently sample very short vectors according to the discrete
Gaussian distribution. We note that other choices are also possible as long as the
parameter of the error vectors exceed the smoothing parameter of the associated
lattice. We now give a generalized description of the A-LWE distribution using
any preimage sampleable public matrix B.

Definition 4 (Augmented LWE Distribution). Let n, n′,m,m1,m2, k, q, p
be integers with m = m1 + m2, where αq ≥ ηε(Λ⊥(B)). Let H : Zn

q × Z
m1 →

{0, 1}n′·log(p) be a cryptographic hash function modeled as random oracle. Let B ∈
Z

n′×m2
p be a preimage sampleable full-rank matrix (such as B = G from [MP12]).

For s ∈ Z
n
q , define the A-LWE distribution LA-LWE

n,m1,m2,αq(m) with m ∈ {0, 1}n′ log p

to be the distribution over Z
n×m
q × Z

m
q obtained as follows:

1. Sample A ←R Z
n×m
q and e1 ←R DZm1 ,αq .

2. Set v = encode(H(s, e1) ⊕ m) ∈ Z
n′
p .

3. Sample e2 ←R DΛ⊥
v (B),αq .

4. Return (A,b�) where b� = s�A + e� with e = (e1, e2) .

We note that the Step 3 returns a discrete Gaussian that is distributed as
DZm2 ,αq follwoing [EDB15, Computational]. In principal, for A-LWE one differ-
entiates the decision problem decision A-LWEn,m1,m2,αq from the corresponding
search problem search-s A-LWEn,m1,m2,αq, as known from LWE. Furthermore,
there exists a second search problem search-m A-LWEn,m1,m2,αq, where a chal-
lenger is asked upon polynomially many A-LWE samples to find in polynomial
time the message m injected into the error vector. Note that the error distribu-
tion could also differ from the discrete Gaussian distribution. For instance, one
could use the uniform distribution, for which one obtains similar results. All the
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proofs from [EDB15] go through without any modifications, since the security
proofs are not based on the choice of B.

Theorem 1 ( adapted [EDB15]). Let n, n′,m,m1,m2, q, p be integers with
m = m1 + m2. Let H be a random oracle. Let αq ≥ ηε(Λ⊥

q (B)) for a real
ε = negl(λ) > 0 and preimage sampleable public matrix B ∈ Z

n′×m2
p . Fur-

thermore, denote by χs and χe1 the distributions of the random vectors s and e1
involved in each A-LWE sample. If H∞(s, e1) > λ, then the following statements
hold.

1. If search LWEn,m,αq is hard, then search-s A-LWEn,m1,m2,αq is hard.
2. If decision LWEn,m,αq is hard, then decision A-LWEn,m1,m2,αq is hard.
3. If decision LWEn,m,αq is hard, then search-m A-LWEn,m1,m2,αq is hard.

One easily notes, that these hardness results also hold for the ring variant
(see [ABBK17]). We remark that for encryption schemes the secret s is always
resampled such that H(s) suffices to output a random vector and the complete
bandwidth of e is exploited for data to be encrypted.

3.2 Improved Message Embedding

For the sake of generality, we used in all our statements an abstract matrix
B ∈ Z

n′×m
p for integers p, n′, and m. This is used to embed a message into the

error term via e2 ←R DΛ⊥
v (B),αq, where v = encode(H(seed) ⊕ m) ∈ Z

n′
p is

uniform random. However, we can specify concrete matrices that optimize the
amount of information per entry with respect to the bound given in Lemma 2.
We propose several techniques in order to enhance the message throughput per
discrete Gaussian vector. These techniques could also be applied to the error vec-
tor involved in the A-LWE distribution. In other words, we aim at choosing an
appropriate preimage sampleable full-rank matrix B ∈ Z

n′×m
p such that n′ · log p

is maximized. For now, we will focus on how to apply this technique to the differ-
ent encryption schemes and omit the term e1 when invoking the random oracle,
since the secret s ∈ Z

n
q is always resampled in encryption schemes and hence

provides enough entropy for each fresh encryption query. The first approach is
based on a method used to construct homomorphic signatures in [BF11]. We also
propose a simpler approach that avoids such complex procedures while entailing
the same message throughput.

Intersection Method. The intersection method as proposed in [BF11] con-
siders two m-dimensional integer lattices Λ1 and Λ2 such that Λ1 + Λ2 = Z

m,
where addition is defined to be element-wise. Therefore, let m1 and m2 be two
messages, where m1 and m2 define a coset of Λ1 and Λ2 in Z

m, respectively. As a
result, the vector (m1,m2) defines a unique coset of the intersection set Λ1 ∩Λ2

in Z
m. By the Chinese Remainder theorem one can compute a short vector t

such that t = m1 mod Λ1 and t = m2 mod Λ2 using a short basis for Λ1 ∩ Λ2.
In fact, it is easy to compute any vector t that satisfies the congruence relations.
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Subsequently, by invoking a preimage sampler one obtains a short vector from
Λ1 ∩ Λ2 + t.

Lattices of the Form pZm. One realizes that for a given parameter αq for the
distribution of the error vector one can be much more efficient, if one considers
only the lattice Λ⊥

p (I) = pZm. In this case, the message space is simply defined
by the set M = Z

m/Λ⊥
p (I) ∼= Z

m
p . When comparing with the previous approach,

for instance, it is only required to increase p by a factor of 2 in order to obtain the
same message throughput m log 2p = m · (log p + 1). Furthermore the decoding
and encoding phase is much faster, since encoding requires only to sample e ←
Db+pZm,αq for b = H(r) ⊕ m using fast discrete Gaussian samplers such as
the Knuth-Yao algorithm or efficient lookup tables. Decoding is performed via
H(r)⊕(e mod p). Optimizing the message throughput requires to increase p such
that ηε(Λ) ≤ p ·const ≤ αq still holds for const =

√
ln(2(1 + 1/ε))/π. Doing this,

one can embed approximately m · log p bits of data, which almost coincides with
the min-entropy of a discrete Gaussian with parameter αq, since const ≈ 4.7.
Therefore, one prefers to choose a parameter αq = p · const with p = 2i and
integer i > 0 in order to embed i bits of data into the error term.

Uniform Error. For uniformly distributed errors one can directly employ the
output of the random function H(·) as the error term. More specifically, suppose
e ∈ ([−p, p]∩Z)m, then let H(·) : {0, 1}∗ → ([−p, p]∩Z)m be a random function
(e.g. RO) such that e ← encode(H(r) ⊕m) for m ∈ {0, 1}m log2(2p). As a result,
one can use the full bandwidth of the error term and inject m log2(2p) message
bits.

4 New Trapdoor Algorithms for Ideal-Lattices

In [EB14] a generic approach of how to instantiate the trapdoor construction
is given that allows to retrieve the error term and the secret vector from A-
LWE instances. However, the number of public key polynomials is with m̄ + k
polynomials where k = �log q� rather large and hence not suitable for practice.
In fact, the trapdoor constructions [EB14,MP12] require at least 2 public key
polynomials in order to generate signatures. For encryption, one requires even
more as the LWE inversion algorithm has to efficiently recover the correct secret.
Thus, a new approach is needed in order to tackle this issue.

In this section, we give new trapdoor algorithms and show how to reduce the
size of the public key to just 1 polynomial. This is due to the fact that we can
select the secret vector in A-LWE instances to be of the form s = F (r,H1(r))
for a deterministic function F (·), where r is a random bit string and H1 is a
cryptographic hash function modeled as RO. Remarkably, the secret key consists
only of 1 polynomial, which improves upon the construction from [MP12,EB14].
We start with a description of our new trapdoor algorithms in the ring setting
K = (TrapGen, LWEGen, LWEInv). Lemma 5 shows that TrapGen outputs a public
key that is computationally indistinguishable from uniform random. In order to
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use tags for CCA-secure constructions, we need to modify the way, in which tags
are applied.

4.1 Construction of Efficient Trapdoors for A-LWE

We present new trapdoor algorithms for public key generation (TrapGen), ring-
LWE generation (LWEGen) and inversion (LWEInv). These algorithms will serve
to instantiate our new encryption scheme from ring A-LWE. For the sake of
simplicity, we only consider the case where q = pk, where p is any positive
(prime) integer.

1. TrapGen(1n) : Let q = pk for a prime integer p > 0. Let further g = pk−1.
The system parameters are two uniform random polynomials a1,a2 ∈ Rq (e.g.
sampled from a seed). Sample 2 random polynomials ri according to DZn,rsec

for i ∈ {1, 2}. The public and secret keys are given by pk := a3, sk = [r1, r2]
with

A =

⎡
⎢⎣a1,a2,g − (a1 · r1 + a2 · r2)︸ ︷︷ ︸

a3

⎤
⎥⎦ ∈ R3

q.

If a tag tu is applied, we obtain Au via tu · g (see below).
2. LWEGen(1n) : In order to generate an (A-)LWE instance, we let H1 be a

cryptographic hash function modeled as a random oracle. For A we generate
ring-LWE instances

[b1, b2, b3] = [a1,a2,g − (a1 · r1 + a2 · r2)] · s + ê ∈ R3
q .

Each coefficient of s ∈ Rq is of the form

si = ci,0 + ci,1 · p + .... + ci,k−1 · pk−1

for ci,j ∈ {0, . . . , p − 1} and i ∈ {1, . . . , n}, where ci,0 ←R {0, . . . , p − 1} is
sampled uniformly at random. Then, invoke d = H(c1,0, . . . , cn,0) → Z

n
pk−1

and set si = ci,0 + p · di.
• For the special case q = 2k, the binary number ci,0 corresponds to the

least significant bit of the coefficient si. That is LSB(si) ←R {0, 1}, where
LSB denotes the least significant bit. Then, in order to set the remaining
bits of si invoke d = H1(LSB(s1), . . . , LSB(sn)) ∈ Z

n
2k−1 . Finally, deter-

mine si = LSB(si) + 2 · di ∈ Zq by appending the bit ci,0 to di.
The error polynomials ei can now be sampled from the discrete Gaussian
distribution DZn,αq, where 1 ≤ i ≤ 3 and αq > 0.

3. LWEInv(b̂, sk) : We first compute

v = g · s + t = b3 + b1 · r1 + b2 · r2,

where t is a some small error.
The closest integer ci,0 ·pk−1 to each coefficient vi is recovered. This is possible
if |ti| < pk−1/2. In particular, we recover ci,0 via

ci,0 = �vi/pk−1� mod p for 0 ≤ i < n
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• For q = 2k, we have ci,0 = LSB(si) = �vi/2k−1� mod 2 .
Once having recovered all ci,0, the hash function is invoked d =
H1(c1,0, . . . , cn−1,0) ∈ Z

n
pk−1 such that si = ci,0 + di · p. The error vector

is subsequently retrieved via ê = b̂ − A · s.

Remark 1. For odd q and small secrets, we can instead set g = (q − 1)/2 . The
most significant bits do not vanish but wrap around modulo q. We note, that
the case q = 2k is very efficient due to cheap sampling and modulo operations.

Lemma 5. Let a1,a2 ∈ Rq be uniform random polynomials and r1, r2 be sam-
pled according to DR,αq = DZn,αq (via the coefficient embedding) for αq > 2

√
n.

The public key
A = [a1,a2,a1 · r1 + a2 · r2]

is computationally indistinguishable from uniform.

Proof. For simplicity, we can assume that a1 is a unit in Rq, since the ring of
units R×

q represents a non-negligible subset of Rq for the rings in consideration.
Then

A = a1 · [1, ā, ā · r2 + r1] ,

where [ā, ā · r2 + r1] is a ring-LWE instance with a uniform random polynomial
ā = a−1

1 a2, since a2 is uniform random. As a result and due to the independence
of a1 from a2 the claim follows. ��

Lemma 6 (Correctness). For q = pk, error polynomials ei and secret key
polynomials rj, the algorithm LWEInv(b̂, sk) correctly inverts the (A-)LWE
instance, if

‖e3 + e1 · r1 + e2 · r2‖∞ < pk−1/2 .

Proof. The inversion algorithm computes

b3 + b1 · r1 + b2 · r2 mod q = g · s + e3 + e1 · r1 + e2 · r2 mod q

= pk−1 · s + e3 + e1 · r1 + e2 · r2 mod q

= pk−1 ·

⎡
⎢⎣

c1,0

...
cn,0

⎤
⎥⎦ + e3 + e1 · r1 + e2 · r2 mod q

So, if ‖e3+e1 ·r1+e2 ·r2‖∞ < pk−1/2, then we cleary can recover ci,0 of each
coefficient. From the coefficients we can recover s and ej and thus the message.��

Tagging the public key (in order to achieve CCA security) in the ring setting
is accomplished similar to [MP12,EDB15], but with some practical obstacles to
be solved for decryption. This is due to the random oracle instantiation, which
prevents from recovering the tag tu in a straightforward way, because the inver-
sion algorithm only recovers ci,0 (for q = pk) of the coefficients from tu · s.
However, via a trick we can circumvent this obstacle in a computationally indis-
tinguishable way. This is mainly possible, since tu is a unit and multiplication
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with a uniform random polynomial is again uniform. Thus, we can instead gen-
erate tu ·s := ci,0+p ·di in LWEGen and cancel out tu from it via its inverse when
s is required. Here, we denote Au = [a1,a2, tu · g− (a1r1 + a2r2)] in accordance
to Sect. 4.

5 Public Key Encryption

In order to build a public key encryption scheme we need to combine the trapdoor
construction described in Sect. 4 with the message embedding approach from
Sect. 3. The main idea is to inject data to be encrypted into the error polynomials
from LWEGen. To this end, we need the error terms to be partially deterministic
and simultaneously look random by use of a random oracle (Fig. 1).

Fig. 1. Description of the CPA-secure encryption scheme.

We now give a description of our new CPA-secure public key encryption
scheme. Thus, let s = w ·

√
ln

(
2n

(
1 + 1

ε

))
/π for an integer w > 2. Hence, we

embed the message into the cosets of the lattice w · Zn (see Sect. 3.2).
For key generation, the CPA-secure scheme just invokes TrapGen. For a com-

pact scheme, we let the uniform random polynomials a1,a2 be generated from a
large enough seed ∈ {0, 1}λ ensuring λ(n) classical bits. Here G is instantiated as
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a random oracle, which in practice can be replaced by pseudorandom generators
such as Shake .

The encryption function works similar to LWEGen with the main difference
that H outputs the additional random vectors vi used to mask the message
and to generate the error polynomials via Lemma 3. The Encode and Decode
routines are used to translate between bit strings and vectors/polynomials. The
decryption routine invokes LWEInv to recover the error polynomials and the
secret s . Finally, all steps from the encryption function are reversed such that
the message is unmasked again.

Remark 2. For q = 2k, ti = Encode(mi) + vi mod 2 is equivalent to ti =
Encode(mi ⊕ hi), where hi := Decode(vi) . This complies with the representa-
tion of Sect. 3, when defining the ALWE problem. We can also directly generate
vi as a bit string during encryption without the need for conversion. In the
standard IND-CPA security game the adversary is challenged to correctly guess
the bit b with non-negligible advantage given two distinct messages of his/her
choice.

Experiment Expind−CPA
E,A (n)

(pk, sk) ← KGen(1k)
(μ0, μ1) ← A(choose, pk)
cb ← Encpk(μb) for b ←R {0, 1}
b′ ← A(guess, cb)
Output 1 iff

1. b′ = b
2. |μ0| = |μ1|

We now state the main theorem of this section, which can easily be extended
to the quantum random oracle case (adjustment of the guessing probability). By
lb − RLWE we define the problem of finding low order bits in ring-LWE instances.

Theorem 2. Let lb − RLWE be defined as in Lemma 7. In the random oracle
model, assume that there exists a PPT-adversary A against the scheme with
s ≥ w ·

√
ln

(
2n

(
1 + 1

ε

))
/π, then there exists a reduction M that breaks ring-

LWE/ring-ALWE such that

AdvCPALARA(A) ≤ 3Advdec−RLWE
n,3 (M) + Advlb−RLWE

n,3 (M) + qH/pn .

Proof. We proceed via a sequence of hybrids and show that the ciphertext is
pseudorandom under any of the computational assumptions, namely ring-LWE
or ring-ALWE, where latter is itself based on ring-LWE. Let H0 be the real
IND − CPA game. In the first hybrid H1, we replace a3 by a uniform random
polynomial. If there exists a distinguisher that can distinguish H0 from H1, then
there exists a reduction M0 that breaks decision ring-LWE (dec − RLWE). Thus,
AdvH0,H1(A) ≤ Advdec−RLWE

n,1 (M0) . In the second hybrid H2, we change the ran-
dom oracle output (v1,v2,v3),d of H(c0) by uniform random values and thus
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also ti for 1 ≤ i ≤ 3 . A PPT adversary can only distinguish H1 from H2, if it
queries H on c0 (see below). But then, a reduction M1 exists (Lemma 7) that
breaks lb − RLWE. Thus, we have AdvH1,H2(A) ≤ Advlb−RLWE

n,3 (M1)+qH/pn . Lat-
ter term represents the probability of a correct guess with at most qH queries to
H. In the third hybrid H3, we replace ei ← Dti+pZn,s by ei ← DZn,s (coefficient
embedding) via Lemma 3. Here, ei is distributed statistically close to the discrete
Gaussian distribution. Thus, AdvH2,H3(A) ≤ Advdec−RLWE

n,3 (M2) for appropriate
parameters. Note that AdvH2,H3(A) is bounded by the statistical distance. We
note that samples from H2 are ring-LWE instances (except with negligible sta-
tistical distance). In the last hybrid H4, we let the ciphertexts bi for 1 ≤ i ≤ 3
be generated uniformly at random rather than as ring-LWE instances. Thus,
AdvH3,H4(A) ≤ Advdec−RLWE

n,3 (M3) . The claim follows from

AdvH0,H4(A) ≤ AdvH0,H1(A) + AdvH1,H2(A) + AdvH2,H3(A) + AdvH3,H4(A)

≤ 3Advdec−RLWE
n,3 (M) + Advlb−RLWE

n,3 (M) + qH/pn,

We stress that the adversary cannot tell apart samples from H1 and H2 unless
he queries the RO on c0, i.e., before querying the RO on c0 samples from H1 are
indistinguishable from ones in H2 (ring-LWE samples) in the adversary’s view.
Thus, with the same probability as in H1 the adversary queries the RO on c0
when he is only given ring-LWE samples from H2. In H2 the only information
the adversary gets about c0 is the ring-LWE instance with least significant bits
c0 of the secret. Thus, if it queries H on c0 with non-negligible probability, it
breaks ring-LWE as per Lemma 7. ��

Lemma 7. Let q = O(n) and � the error size. Suppose there exists a PPT
algorithm S that can output the low order bits of the secret in ring-LWE instances
(lb − RLWE problem), then there exists a PPT algorithm B that breaks the search
version of ring-LWE.

Proof. Suppose there exists such an algorithm. For simplicity, let p be coprime
to q. The ring-LWE samples {(ai,bi := ai · s + ei mod q)}i define the problem
instance. B is challenged to find s. With high probability, there exists an invert-
ible element aj ∈ Rq (see e.g. [Pei15]). Taking any other sample, e.g. (a1,b1 :=
a1 · s + e1 mod q), we can construct samples b(0)

i := (a−1
j ai) · (ej + d) + ei =

a−1
j ai · (bj + d) − bi mod q with ej + d as the secret and i �= j [ACPS09].

Here, the term d is filled with the tail bound at each coefficient such that
all coefficients of ej + d are positive. Finding s is equivalent to recovering
(ej + d) := e(0)j = c0 + p · c1 + . . . + p�−1c�−1 with ci ∈ Z

n
p for some small

� < k . The first input to S is therefore (a(0)i := a−1
j ai,b

(0)
i ) which outputs c0 in

polynomial time by assumption. In the second iteration the input is modified to
(a(1)i ,b(1)

i ) with a(1)i := p · a(0)i ,
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b(1)
i := b(0)

i − a(0)i · c(0) mod q = a(0)i · (p · c1 + . . . + p�−1c�−1) + ei mod q

= (p · a(0)i ) · (c1 + . . . + p�−2c�−1) + ei mod q = a(1)i · e(1)j + ei mod q

and secret e(1)j := (c1 + . . . + p�−2c�−1). Then, S outputs c1 by assumption.
Analogously, via (a(t)i := pt ·a(0)i ,b(t)

i := b(t−1)
i −a(t−1)

i ·c(t−1)) as input instances
to S the algorithm B obtains all ct for 0 ≤ t ≤ � − 1, recovers ej + d =
c0 + p · c1 + . . .+ p�−1c�−1 and thus s (after � iterations) solving search − RLWE.
Adding small errors to a(t)i generalizes the proof to all p, q.

5.1 CCA-secure Encryption

In order to obtain CCA-security, there exist 2 approaches. The first approach just
requires to turn a CPA-secure public key encryption scheme via the Fujisako-
Okamoto transform [FO99] into a CCA-secure hybrid encryption scheme. This
can indeed be made very efficiently, where the symmetric key cipher could be
instantiated by a random oracle or pseudorandom function (such as Shake). The
other approach is realized based on the so-called tag approach, where a random
tag [MP12,ABB10,PV08] is applied to the public key prior to encryption, i.e. we
have Au = [a1,a2, tu ·g− (a1r1 +a2r2)]. This has been realized in several works
such as [MP12,EDB15]. To this end, a large tag space T has to be defined, out
of which the tag is drawn uniformly at random. An element is called a tag, if it
is a unit in the ring and satisfies the unit difference property. That is, for two
units u,v ∈ T the difference u − v is again a unit. Beside of these properties, a
further objective is to specify efficient algorithms that allow to sample elements
from T uniformly at random. In fact, for q = 3k the tag space may be defined
to consist of binary polynomials of degree smaller than n/2 such that it satisfies
the unit difference property as per Corollary 2. Thus, it suffices to sample binary
strings of length n/2 bits and map them to the corresponding binary polynomial
of degree smaller than n/2. In Sect. 4.1 we explained how to generate tu · s such
that we can recover s . Using the framework from [EDB15] we give a CCA-secure
scheme in Appendix A.

Corollary 2 (Unit Difference Property). Let the tag space be defined as
T = {a0 +a1 ·x+ . . .+an/2−1 ·xn/2−1 | for ai ∈ {0, 1}}\0. Then, any tag u ∈ T
satisfies the unit difference property.

Proof. Any two elements u1,u2 ∈ T are invertible as per Corollary 1. Since both
tags of degree at most n/2 − 1 have coefficients in {0, 1}, the difference u1 − u2

has coefficients in {0,±1}; thus invertible as per Corollary 1. ��

6 Software Implementation and Performance Analysis

At the implementation front we consider several optimizations and present
an overview of the main ingredients. The error polynomials are generated as
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ei ← DpZn+vi,αq for uniform random cosets vi following Lemma 3. This is real-
ized with the aid of lookup tables, where almost 0.99 of the probability mass
is concentrated on the 10 mid elements. Furthermore, we can use buckets for
the 10 mid elements such that one call suffices to obtain a sample in 0.99 of all
cases. In general, we find the right element after around 2 table lookups. By this
technique we can build an efficient discrete Gaussian sampler. We instantiate
the random oracle H(·), when encrypting messages, by an efficient and secure
pseudo-random generator such as Salsa20 or Shake1. The secret key might con-
sist of uniform random elements deduced from a seed and pk. We refer to the
table below for a description parameters in use.

Parameter Description
n Dimension
q Modulus
λ Size of seed generating a1,a2

w Message range
s Error distribution DZn,s

rsec Distribution of secret keys: DZn,rsec or uniform
with integer coefficients from (−rsec, rsec]

Message size 3n log2 w
Ciphertext size 3n log2(q)
Public key size λ + n�log2(q)�
Secret key size 2λ + n�log2(q)�

6.1 Performance Analysis and Implementation Results

We implemented both our CPA/CCA secure schemes for n = 1024 on a machine
that is specified by an Intel Core i5-6200U processor operating at 2.3GHz
and 8GB of RAM. We used a gcc-5.4 compiler with compilation flags Ofast
(Fig. 2). Figure 2 compares different schemes at a security level of 256 bits,

Fig. 2. Experimental results from our reference implementation.

1 KeccakCodeProject: https://github.com/gvanas/KeccakCodePackage/.

https://github.com/gvanas/KeccakCodePackage/
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where spLWECCA provides only 128 bits of security. LARA has very small cipher-
text expansion factors represented by a very low ratio of the ciphertext size
per message bit. The number of cycles per encrypted message bit as well as its
absolute performance and key sizes are very competitive for the CPA and CCA
secure schemes. For instance, we are able to encrypt 2 bits per entry for q = 215

or q = 214 resulting in 414 586 cycles for encryption or 67 cycles per message
bit. In order to estimate the security we used the LWE estimator2.

Acknowledgements. The work presented in this paper was performed within the
context of the project P1 within the CRC 1119 CROSSING. We thank Douglas Stebila
for his useful comments.

A CCA-secure Encryption with Tags

Let q = 3k and T define the tag space containing binary polynomials of degree
less than n/2 .

Remark 3. We note that in the encryption routine we have (tu ·g−a3) ·s+e3 =
tus · g − a3 · s + e3 . Furthermore,the trapdoor inversion algorithm LWEInv′

computes the same quantities as LWEInv with the difference that it also deduces
tu from u via the coefficient embedding. Once tu ·s is recovered, one can compute
s and thus ê = b̂ − Au · s (see Sect. 4).

A.1 Chosen Ciphertext Security and Variants

We recall the definitions of (replayable) chosen ciphertext security of encryp-
tion schemes. Let E = (KGen,Enc,Dec) be a public key encryption scheme and
consider the following experiments for atk ∈ {cca1, cca2, rcca}:

Experiment Expind−atk
E,A (n)

(pk, sk) ← KGen(1k)
(μ0, μ1) ← ADec(·)(choose, pk)
cb ← Encpk(μb) for b ←R {0, 1}
b′ ← AO2(·)(guess, cb)
Output 1 iff

1. b′ = b
2. |μ0| = |μ1|
3. cb was not queried to O2

If A queries O2(c), and

- if atk = cca1, then return ⊥.
- if atk = cca2, then return Dec(sk, c).
- if atk = rcca and Dec(sk, c) /∈ {μ0, μ1},

then return Dec(sk, c).
- Otherwise, return ⊥.

The security of the scheme directly follows from the framework as described
in [EDB15] (Fig. 3).

2 https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator
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Fig. 3. Description of the CCA-secure encryption scheme.
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Abstract. We propose a proof of work protocol that computes the dis-
crete logarithm of an element in a cyclic group. Individual provers gener-
ating proofs of work perform a distributed version of the Pollard rho algo-
rithm. Such a protocol could capture the computational power expended
to construct proof-of-work-based blockchains for a more useful purpose,
as well as incentivize advances in hardware, software, or algorithms for
an important cryptographic problem. We describe our proposed construc-
tion and elaborate on challenges and potential trade-offs that arise in
designing a practical proof of work.

Keywords: Proofs of work · Discrete log · Pollard rho

1 Introduction

We propose a proof of work scheme that is useful for cryptanalysis, in particular,
solving discrete logarithms. The security of the ECDSA digital signature scheme
is based on the hardness of the elliptic curve discrete log problem. Despite the
problem’s cryptographic importance, the open research community is small and
has limited resources for the engineering and computation required to update
cryptanalytic records; recent group sizes for elliptic curve discrete log records
include 108 bits in 2002 [11], 112 bits in 2009 [10], and 113 bits in 2014 [30].

Our proposition aims to harness the gigawatts of energy spent on Bitcoin
mining [29] to advance the state of the art in discrete log cryptanalysis. Jakob-
sson and Juels [16] call this a bread pudding proof of work. Just as stale bread
becomes a delicious dessert, individual proofs of work combine to produce a
useful computation. While memory-hard functions aim to discourage specialized
hardware for cryptocurrency mining [21], we hope for the exact opposite effect.
Just as Bitcoin has prompted significant engineering effort to develop efficient
FPGAs and ASICs for SHA-256, we wish to use the lure of financial rewards
from cryptocurrency mining to incentivize special-purpose hardware for crypt-
analysis.

c© International Financial Cryptography Association 2019
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2 Background

Let G be a cyclic group with generator g of order q. We represent the group
operation as multiplication, but every algorithm in our paper applies to a generic
group. Every element h ∈ G can be represented as an integer power of g, ga = h,
0 ≤ a < q, and also has a unique representation as a sequence of bits. The
discrete logarithm logg(h) is a, 0 ≤ a < q satisfying ga = h. Computing discrete
logs is believed to be difficult for certain groups, including multiplicative groups
modulo primes and elliptic curve groups. The conjectured hardness of discrete log
underlies the security of multiple important cryptographic algorithms, including
the Diffie-Hellman key exchange [4,12] and the Digital Signature Algorithm [20].
Efficient computation of a discrete log for a group used for Diffie-Hellman key
exchange would allow an adversary to compute the private key from the public
key exchange messages; for DSA signatures, such an adversary could compute
the private signing key from the public key and forge arbitrary signatures.

2.1 Discrete Log Cryptanalysis

There are two main families of algorithms for solving the discrete log problem.
The first family works over any group, and includes Shanks’s baby step giant
step algorithm [24], and the Pollard rho and lambda algorithms [22]. These
algorithms run in time O(

√
q) for any group of order q. It is this family of

algorithms we target in this paper. A second family of algorithms is based on
index calculus [3,15]; these algorithms have sub-exponential running times only
over finite fields.

Current best practices for elliptic curves are to use 256-bit curves [4], although
160-bit curves remain supported in some implementations [27]. Bitcoin miners
currently perform around 290 hashes per year and consume 0.33% of the world’s
electricity [29]. If this effort were instead focused on discrete log, a 180-bit curve
could be broken in around a year1. Scaling this to discrete logs in 224-bit groups
would require all current electricity production on Earth for 10,000 years. Alter-
native cryptocurrencies such as Litecoin, Ethereum, and Dogecoin achieve lower
hash rates of about 272 hashes per year2.

2.2 Pollard Rho with Distinguished Points

The protocols we study in this paper compute the discrete log of an element h by
finding a collision gahb = ga′

hb′
with b �≡ b′ mod q. Given such an equivalence,

the discrete log of h can be computed as (a′ − a)/(b − b′) mod q.
Pollard’s rho algorithm for discrete logarithms [22] works for any cyclic group

G of order q. The main idea is to take a deterministic pseudorandom walk inside
of the group until the same element is encountered twice along the walk. By

1 Elliptic curve point multiplications take about 210 times longer than SHA-256 on
modern CPUs.

2 Extrapolated from peak daily hash rates at bitinfocharts.com.

http://www.bitinfocharts.com
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the birthday bound, such an element will be found with high probability after
Θ(

√
q) steps. The non-parallelized version of this algorithm uses a cycle-finding

algorithm to discover this collision, and computes the log as above.
We base our proof of work on Van Oorschot and Wiener’s [28] parallelized

Pollard rho algorithm using the method of distinguished points. A distinguished
point is an element whose bitwise representation matches some easily-identifiable
condition, such as having d leading zeros. Each individual process j indepen-
dently chooses a random starting point gajhbj and generates a psuedorandom
walk sequence from this starting element. When the walk reaches a distinguished
point, the point is saved to a central repository and the process starts over again
from a new random starting point until a collision is found.

The number of steps required to compute the discrete log is independent of
d, which we call the difficulty parameter below; d only determines the storage
required. We expect to find a collision after Θ(

√
q) steps by all processes. With

m processes running in parallel, the calendar running time is O(
√

q/m).
The pseudorandom walk produces a deterministic sequence within the group

from some starting value. Given a group generator g and a target h, the walk
generates a random starting point x0 = ga0hb0 by choosing random exponents
a0, b0. In practice, most implementations use the Teske pseudorandom walk [26]:
given a disjoint partition of G with 20 sets of equal size T1, . . . , T20 parameterized
by the bitwise representation of an element, choose ms, ns ∈ [1, q] at random
and define Ms = gmshns for s ∈ [1, 20]. Then we can define the walk W(x) =
Ms ∗x for x ∈ Ts. In general, an effective pseudorandom walk updates the group
representation of a point based on some property of the bitwise representation.

2.3 Proofs of Work

A proof of work [13,16] protocol allows a prover to demonstrate to a verifier
that they have executed an amount of work. We use the definition from [2].

Definition 1. A (t(n), δ(n))-Proof of Work (PoW) consists of three algorithms
(Gen,Solve,Verify) that satisfy the following properties:

– Efficiency:
• Gen(1n) runs in time Õ(n).
• For any c ← Gen(1n), Solve(c) runs in time Õ(t(n)).
• For any c ← Gen(1n) and any π, Verify(c, π) runs in time Õ(n).

– Completeness: For any c ← Gen(1n) and any π ← Solve(c),
Pr[Verify(c, π) = accept] = 1.

– Hardness: For any polynomial �, any constant ε > 0, and any algorithm
Solve∗

� that runs in time �(n)t(n)1−ε when given as input �(n) challenges
{ci ← Gen(1n)}i∈[�(n)],
Pr

[∀iVerify(ci, πi) = accept | (π1, . . . , π�(n)) ← Solve∗
� (c1, . . . , c�(n))

]
< δ(n)

We can describe the hash puzzle proof of work [1] used by Bitcoin [19] in
this framework as follows. The challenge generated by Gen is the hash of the
previous block. Solve is parameterized by a difficulty d; individual miners search



Short Paper: The Proof is in the Pudding 399

for a nonce n such that SHA-256(c, n) ≤ 2256−d when mapped to an integer.
Assuming that SHA-256 acts like a random function, miners must brute force
search random values of n; the probability that a random fixed-length integer is
below the difficulty threshold is 2−d, so the conjectured running time for Solve is
t(n) = O(2d). Verify runs in constant time and accepts if SHA-256(c, n) ≤ 2256−d.

Proposals for “Useful” Proofs of Work. Primecoin [17] proofs contain
prime chains, which may be of scientific interest. DDoSCoin [31] proofs can
cause a denial of service attack. TorPath [6] increases bandwidth on the Tor
network. Ball et al. [2] describe theoretical proof-of-work schemes based on worst-
case hardness assumptions from computational complexity theory. Lochter [18]
independently outlines a similar discrete log proof of work.

3 Proof of Work for Discrete Log

The goal of this thought experiment is to develop a proof of work scheme that,
if provided with mining power at Bitcoin’s annual hash rate, can solve a discrete
log in a 160-bit group. We outline our proposed scheme, explain limitations of
the simple model, and describe possible avenues to fix the gap.

3.1 Strawman Pollard Rho Proof of Work Proposal

In our rho-inspired proof of work scheme, workers compute a pseudorandom walk
from a starting point partially determined by the input challenge and produce
a distinguished point. The parameters defining the group G, group generator
g, discrete log target h, and deterministic pseudorandom walk function W, are
global for all workers and chosen prior to setup. A distinguished point x at
difficulty d is defined as having d leading zeros in the bitwise representation,
where d is a difficulty parameter provided by the challenge generator.

In the terminology of Definition 1, Gen produces a challenge bit string c;
when used in a blockchain, c can be the hash of the previous block.

To execute the Solve function, miners generate a starting point for their
walk, for example by generating a pair of integers (a0, b0) = H(c||n) where n is
a nonce chosen by a miner and H is a cryptographically secure hash function,
and computing the starting point P0 = ga0hb0 . Workers then iteratively com-
pute Pi = W(Pi−1) until they encounter a distinguished point PD = gaDhbD

of difficulty d, and output π = (n, aD, bD, PD). A single prover expects to take
O(2d) steps before a distinguished point is encountered.

The Verify function can check that PD = gaDhbD and has d leading zeros. This
confirms that PD is distinguished, but does not verify that PD lies on the random
walk of length � starting at the point determined by (a0, b0). Without this check,
a miner can pre-mine a distinguished point and lie about its relationship to the
starting point. A verifier can prevent this by verifying every step of the random
walk, but this does not satisfy the efficiency constraints of Definition 1.



400 M. Hastings et al.

A discrete log in a group of order q takes
√

q steps to compute (see Sect. 2.2).
A set of m honest miners working in parallel expect to perform O(2d) work per
proof. If all miners have equal computational power, the winning miner will find
a distinguished point after expected O(2d/m) individual work. This construction
expects to store

√
qm/2d distinguished points in a block chain before a collision

is found; the total amount of work performed by all miners for all blocks to
compute the discrete log is

√
qm. Each distinguished point wastes (m − 1)/m

work performed by miners who do not find the “winning” point.
We next examine several modified proof-of-work schemes based on this idea

that attempt to solve the problems of verification and wasted work.

3.2 Reducing the Cost of Wasted Work

To reduce wasted work, we can allow miners that do not achieve the first block
to announce their blocks and receive a partial block reward. One technique is to
use the Greedy Heaviest-Observed Sub-Tree method [25] to determine consensus,
which has been adopted by Ethereum in the form of Uncle block rewards [14].
In this consensus method, the main (heaviest) chain is defined as the sub-tree
of blocks containing the most work, rather than the longest chain. This allows
stale blocks to contribute to the security of a single chain, and allocates rewards
to their producers. In Ethereum, this supports faster block times and lowers
orphan rates but we could use it to incentivize miners to publish their useful
work rather than discard it when each new block is found.

3.3 Limiting the Length of the Pseudorandom Walk

We attempt to reduce the cost of the Verify function by limiting the length of
the random walk in a proof to at most 2� steps for some integer �. Individual
miners derive a starting point from the challenge c and a random nonce n. They
walk until they either find a distinguished point or pass 2� steps. In the latter
case, the miner chooses another random nonce n and restarts the walk.

Solve requires miners to produce a proof π = (n,L, aD, bD) satisfying four
criteria: (1) the walk begins at the point derived from a hash of the challenge
and nonce values ((a0, b0) = H(c||n)), (2) walking from this initial point for L
steps leads to the specified endpoint (WL(ga0hb0) = gaDhbD ), (3) the bitwise
representation of the endpoint gaDhbD is distinguished and (4) the walk does
not exceed the maximum walk length (L < 2�). Solve runs in expected time
O(2d).

Verify retraces the short walk and runs in O(2�) steps. Overall, fixing a max-
imum walk length forces more total work to be done, since walks over 2� steps
are never published. The probability that a length 2� random walk contains a
distinguished point of difficulty d is 2�−d, so a prover expects to perform 2d−�

random walks before finding a distinguished point. An individual prover in a
group of order q can expect to store O(

√
q/2�) distinguished points before a

collision is found. With 2d work performed per distinguished point stored, the
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total amount of work is O(2d−�√q). For m 
 2d−� miners working in parallel,
the work wasted by parallel mining is subsumed by that of discarded long walks.

To target a 160-bit group with mining power of around 290 hashes per year,
the total amount of work performed by miners should not exceed 290 ≥ 2d−�280,
or 10 ≥ d−�, with a total of 280−� distinguished points. If we allow 1 GB = 8·109

storage, this allows up to 225 160-bit distinguished points, so we have � = 55,
and thus we set the difficulty d = 65. This is feasible: as of Sep 2018, Bitcoin
miners produce nearly 275 hashes per block and the blockchain is ∼183 GB.

3.4 Efficiently Verifying Pseudorandom Walks

In theory, a SNARK [7] solves the efficient verification problem for the proof
of work. Provers compute the SNARK alongside the pseudorandom walk, and
include the result with the proof of work. Verification executes in constant time.
Unfortunately, generating a SNARK is thousands of times more expensive than
performing the original computation. A STARK [5] takes much less work to solve
but slightly longer to verify and comes with a non-negligible space trade-off. In
our framework, Solve finds a distinguished point and build a STARK: this takes
time O(d222d) and space O(d2d) group elements. Verify executes the STARK
verify function in time O(d). Verifiable delay functions [9] could also be used to
solve this problem, but existing solutions appear to take advantage of algebraic
structure that we do not have in our pseudorandom walk.

We attempted to emulate a verifiable delay function by defining an alternate
pseudorandom walk. We experimented with several possibilities, for example
a “rotating” walk that performs a set of multiplications and exponentiations
in sequence. A walk of this type has the convenient algebraic property that it
is simple to verify for a given start point, end point, and length L, that the
end point is L steps from the start. Unfortunately, it has terrible pseudorandom
properties: collisions are either trivial or occur after O(q) steps. There appears to
be a tension between the pseudorandomness properties required for the Pollard
rho algorithm to achieve O(

√
q) running time and an algebraic structure allowing

efficient verification of the walk. Effective random walks determine each step by
the bitwise representation of a given element—independent of its group element
representation gaihbi—but this independence makes it difficult to reconstruct or
efficiently summarize the group steps without repeating the entire computation.
We leave the discovery of such a pseudorandom walk to future work.

3.5 Distributed Verification

An alternate block chain formulation has miners accept blocks unless they see
a proof that it is invalid, and incentivizes other validators to produce such
proofs. This technique has been proposed for verifying off-chain transactions
in Ethereum Plasma [23]. We extend this idea to allow validators to prove a
miner has submitted an invalid block and offer rewards for such discoveries.

In this scheme, the Verify function accompanies a reject decision with a proof
of falsification f , and can take as long as mining: Õ(t(n)). We define a function
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Check(c, f) to check whether this proof of falsification is accurate, which runs in
time Õ(n). In a block chain, miners Solve proofs of work and dedicated verifiers
Verify. If a verifier produces a proof of falsification f (that is, finds an invalid
block) it broadcasts (c, f) to all participants, who must Check the falsification.

To increase verification cost, there must be a matching increase in incentive.
For example, a time-delayed bounty system requires a miner to provide a bounty
with each new block, which is either collected by the miner with the block reward
after a fixed amount of time, or partially poached by a verifier who produces a
valid falsification. Such a scheme aims to prevent collusion between miners and
verifiers to collect rewards and bounty for no useful work.

Walk Summaries. A first idea modifies the proof of work π to include inter-
mediate points s0, s1, . . . spaced at regular intervals along the walk. The Verify
function picks a random subset of the si and retraces the walks from si to si+1.
An invalid proof has the property that at least one interval does not have a
valid path between the endpoints. For a walk with I intervals of length �, a veri-
fier that checks k intervals has probability k/I of detecting an invalid proof with
work kI. However, checking a claimed falsification f requires � work. A malicious
verifier can report incorrect falsifications and force other participants to perform
arbitrary work. To fix this, we need more efficiently checkable falsifications.

Bloom Filters for Secondary Validation. One approach to efficiently check-
able proof falsifications uses Bloom filters [8], a probabilistic data structure that
tests set membership. It may return false positives, but never false negatives.
We modify our walk summary proof of work π above to also include a Bloom
filter containing every point on the walk. The Verify function chooses a random
interval si and takes � walk steps, which takes work �. If an element ei on the
walk is absent from the filter, the verifier broadcasts the sequence of points
f = (ei−k, . . . , ei). The Check function confirms that the points f are a cor-
rectly generated random walk and that all points except ei are contained in the
Bloom filter. This takes time k. The short sequence prevents a malicious verifier
from invalidating a correct block by taking advantage of false positives in Bloom
filters.

A Bloom filter containing every element in a random walk for a reasonable
difficulty value will be too large (we estimate at least 150 TB for a walk of length
260). To shrink the filter, we could store hashes of short sub-walks of length �′,
rather than every step. To Check, a participant must walk �′ steps for each of
the k broadcast sub-walks. This increases the work to k�′, but decreases Bloom
filter size by a factor of �′.
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Abstract. We introduce the notion of two-factor signatures (2FS), a
generalization of a two-out-of-two threshold signature scheme in which
one of the parties is a hardware token which can store a high-entropy
secret, and the other party is a human who knows a low-entropy pass-
word. The security (unforgeability) property of 2FS requires that an
external adversary corrupting either party (the token or the computer
the human is using) cannot forge a signature.

This primitive is useful in contexts like hardware cryptocurrency wal-
lets in which a signature conveys the authorization of a transaction. By
the above security property, a hardware wallet implementing a two-factor
signature scheme is secure against attacks mounted by a malicious hard-
ware vendor; in contrast, all currently used wallet systems break under
such an attack (and as such are not secure under our definition).

We construct efficient provably-secure 2FS schemes which produce
either Schnorr signature (assuming the DLOG assumption), or EC-DSA
signatures (assuming security of EC-DSA and the CDH assumption) in
the Random Oracle Model, and evaluate the performance of implemen-
tations of them. Our EC-DSA based 2FS scheme can directly replace
currently used hardware wallets for Bitcoin and other major cryptocur-
rencies to enable security against malicious hardware vendors.

1 Introduction

Cryptocurrency hardware wallets are increasingly popular among Bitcoin and
Ethereum users as they offer seemingly stronger security guarantees over their
software counterparts. A hardware wallet is typically a small electronic device
(such as a USB device with an input button) that holds the secret key(s) to one
or more cryptocurrency “accounts”. It provides a simple interface that can be
used by client software on a computer or smartphone to request a signature on
a particular transaction; the wallet returns a signature to the client if the user
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has authorized it by pressing the physical button1. Typically, the user also has
to enter a pin or password, either on the device itself or through the client. Some
hardware wallets like the Trezor include a screen that can be used by the user
to confirm the details of the transaction before authorizing it.

Ideally, a hardware wallet runs a firmware that is smaller and simpler than
the software running on a common laptop (and thus may be less vulnerable to
bugs and exploits), is built using tamper proof hardware that makes it difficult
to directly read its memory, and is designed to prevent the private keys it holds
from ever leaving the device. Thus, stealing funds from an address controlled by
a hardware wallet is considered to be harder than stealing from a software wallet
installed on the user’s laptop.

Can we trust the hardware manufacturer? However, most hardware wallets
suffer from a serious issue: since the wallet generates and holds the secret keys
for the user’s account, a compromised wallet might be used to steal the entirety
of the coins it controls. Consider, for instance, a malicious wallet manufacturer
who introduces a backdoored pseudorandom generator (to be used, for example,
to generate the signing keys) into a hardware wallet. Because of the tamperproof
properties of the hardware, such a backdoor might be extremely hard to detect
and go unnoticed even to a scrupulous user, especially if it only affects a small
portion of the company’s devices (perhaps those shipped to customers who hold
large coin balances). Yet, without the need of ever communicating with the
devices again, the manufacturer might suddenly steal all the money controlled
by those addresses before anyone has time to react! This is also true in the case
where the user picks a password to supplement the entropy generated by the
backdoored PRG, since passwords have limited entropy which can be bruteforced
and, as we detail later, the wallet can bias the randomness in the signatures to
leak information about such password.

Even if the company producing the wallet is reputable and trusted, supply
chain attacks by single employees or powerful adversaries are still hard to rule
out for customers. For example, the NSA reportedly intercepts shipments of
laptops purchased online in transit to install malware/backdoors [17]. Indeed,
trust in a wallet manufacturer, its supply chain, and the delivery chain are a
serious concern.

One possible solution is to store the funds in a multi-signature account con-
trolled by a combination of hardware (and possibly software) wallets from differ-
ent manufacturers. However, the above is inconvenient and limiting. It may also
be possible for a single supplier to corrupt multiple manufacturers of hardware
wallets.

A Formal Treatment of Hardware Wallets. In this paper, we initiate a
formal study of the security of hardware wallets. As discussed above, completely
relying on the token to perform key generation and signing operations requires a
strong trust assumption on the hardware manufacturer. To avoid this, we focus

1 The physical button prevents malware from abusing the wallet without cooperation
from the user.
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on a scenario in which the user has both a single hardware token and a (low-
entropy) password, and formally define appropriate an appropriate cryptographic
primitive, which we name two factor signature scheme (2FS).

Roughly speaking, a 2FS scheme can be thought of a special type of two-out-
of-two threshold signature scheme [4] but where one of the parties (the user) only
has a (potentially low-entropy) password, whereas the other party (the hardware
token) can generate and store high-entropy secrets. Even defining unforgeability
properties of such 2FS schemes turns out to be a non-trivial task; we provide
the first such definitions. Our notions of unforgeability consider both malicious
clients, malicious tokens, and attackers that may have selective access to honestly
implemented tokens.

As already mentioned, as far as we know, in all currently known/used
schemes, unforgeability does not hold when the hardware token can be mali-
ciously designed, and thus no currently known schemes satisfies even a subset
of our unforgeability definitions. Our main contribution is next the design of
2FS that satisfy them. In fact, we present a general transformation from any
two-out-of-two threshold signature scheme which satisfies some additional tech-
nical property—which we refer to as statistical Non-Signalling—into a 2FS in
the random oracle model, which produces public keys and signatures of the same
form as the underlying threshold signature scheme.

We note that it may be possible to generically modify any TS to become
Non-Signalling by having the parties perform coin-tossing to generate the ran-
domness, and then prove in zero knowledge that they executed the signing proto-
col consistently with the pre-determined (and uniform) randomness. Using such
a method, however, would result in a (polynomial-time but) practically ineffi-
cient scheme. In contrast, in the full version of this work [13], we show how
to adapt two existing threshold signature schemes to satisfy this new technical
property with very little overhead. Using our transformation, this gives secure
2FS schemes which efficiently generate Schnorr and ECDSA signatures.

Theorem (Informal). Assuming the discrete logarithm assumption, there
exists a secure 2FS scheme in the Random Oracle model which generates Schnorr
Signatures.

Theorem (Informal). Assuming the DDH assumption holds and that EC-
DSA is unforgeable, there exists a secure 2FS scheme in the Random Oracle
model that generates EC-DSA signatures.

The first construction is based on the Schnorr TS signature scheme of Nicolosi
et al. [15], while the second one is a slight modification of an EC-DSA threshold
scheme of Lee et al. [5]. As EC-DSA signature are currently used in Bitcoin,
Ethereum and most other major crypto currencies, our 2FS for EC-DSA can
be directly used for hardware wallets supporting those crypto currencies. To
demonstrate its practicality, we evaluate such scheme and estimate its perfor-
mance on hardware tokens that are much less powerful than the CPUs on which
we can benchmark the protocol. We confirm that running the protocol on two
server-class CPUs (Intel) requires roughly 3ms to sign a message. When one of
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the parties is run on a weak computer (e.g., a Raspberry Pi 3b) and the other is
run on a server, the protocol requires roughly 50 ms. Our estimates confirm that
the bottleneck in our scheme will be the processing capacity of the hardware
token. Using a very secure, but weak 8-bit 1Mhz ATECC family processor [14],
we estimate that ECDSA keys can be produced in under a minute and signa-
tures can be completed in 3 s. The entire signing process requires human input
to complete (button press), and thus is likely to take seconds overall anyway.

1.1 Technical Overview

The Definition. At a high level, in a Two Factor Signature scheme the
signatures are generated by two parties: a client C who receives a (typi-
cally low entropy) password as input from a user, and a token T , which
can store and generate secrets of arbitrary length, can produce signatures
for multiple public keys and as such keeps a state which can be modi-
fied to add the ability to sign for new public keys. It consists of a tuple
of algorithms (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver), where
KeyGenT(1κ, sT ) and KeyGenC(pwd) are an interactive protocol used by
the token and client respectively to produce a public key and to accordingly
update the token state sT by “adding a share of the corresponding secret key”;
PKC(pwd) and PKT(sT ) are two algorithms used by the client and the token
(on input the password and the current token state sT respectively) interacting
with each other to retrieve a public key pk which was previously generated using
the first two algorithms; SignC(pwd,m) and SignT(sT ,m) are similarly used
to produce signatures; Ver(pk,m, σ) is used to verify the signatures.

We proceed to outline the unforgeability properties we require from such
Two Factor Signature scheme. We consider 4 different attack scenarios, and
define “best-possible” unforgeability properties for each of them. The first two
are simply analogs of the standard unforgeability (for “party 1” and “party 2”)
properties of two-out-of-two threshold signatures.

1. For the Client : The simplest and most natural attack scenario is when the
user’s laptop is compromised (i.e. by malware), even before the key generation
phase. We require that, except with negligible probability, such an adversary
cannot forge signatures on a message m with respect to a public key which
the token outputs (and would typically show to the user on its local screen)
unless it asked the token to sign m. This notion mirrors the classic one of
unforgeability (for party 1) of threshold signature schemes.

2. For the Token: We next consider an attack scenario in which the adversary
can fully control the token T . We let it interact arbitrarily with an honest
client, and receive the signatures and public keys output by such client during
these interactions. We require that the probability that such an adversary can
produce a forgery on a message m that would verify with respect to one of
the public keys output by the client (during a KeyGen execution) without
asking the client to sign m, is bounded by the min-entropy of the user’s
password. Again, this notion mirrors the classic notion of unforgeability of
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threshold signatures (for party 2), except that since the user only has a
low-entropy password, we cannot require the probability of forging to be
negligible; instead, we bound it by q/2m where q is the number of random
oracle queries performed by the adversary, and m is the min-entropy of the
password distribution.

Note that the unforgeability for the token security bound is rather weak (when
the password has low entropy), but is necessarily so because the only secret
held by the client is the password, and thus an attacker that “fully controls the
token” (i.e., controls its input/outputs while at the same time participating in
other outside interaction) and gets to see public keys, can simply emulate the
client algorithm with a guessed password and attempt to create a forgery. Yet,
note that to carry out this type of attack (which leads to the “unavoidable”
security loss) and profit from it is quite non-trivial in practice as it requires the
token to be able to somehow communicate with an attacker in the outside world
(which is challenging given that a hardware wallet is a physically separate entity
without a direct network connection).

Consequently, we consider two alternative attack scenarios that leverage the
fact that often the token cannot communicate with the adversary and capture
more plausible (i.e weaker) attack models. Yet, in these weaker attack models,
we can now require the forging probability bounds to be significantly stronger.

3. For the Token Manufacturer : We consider an adversary who cannot fully con-
trol the T party, but can specify ahead of time a program Π which the T
party runs. For example, this models the case of a malicious token manufac-
turer who embeds a PRG with a backdoor. Program Π can behave arbitrarily,
but its answers to the interactions with any client have to satisfy the correct-
ness properties of the scheme with overwhelming probability (if the token
aborted or caused the client to return signatures which do not verify w.r.t.
the expected public keys, the user could easily identify such token as faulty or
malicious). The adversary can then have an honest client interact arbitrarily
with Π (A is given the resulting public keys and signatures), and should not
be able to produce a forgery on a message m that would verify with respect
to one of the public keys output by the client (during a KeyGen execution)
unless it received a signature on m as a result of such an interaction. We
require the forging probability to be negligible (as opposed to bounded by
q/2m).

4. With Access to the Token: An alternative scenario is one where the token is
not corrupted, but the attacker can get access to it (for example, in the case of
a lost/stolen token, or a token shared between multiple users). More precisely,
the adversary can interact with an honest T and may also interact with an
honest client C (which itself interacts with T ) and has to produce forgeries
on a message m (which C did not sign, but on which T can be queried)
w.r.t. a public key which C output during an interaction with T . Whereas
unforgeability for the token implies that the above-mentioned adversary’s
forging probability is bounded by q/2m where q is the number of random
oracle queries, we here sharpen the bound to q′/2m where q′ is the number
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of invocations of T . (As T could rate-limit its answers by e.g., 1 sec, q′ will
be significantly smaller than q in practice.)

As far as we know, no previously known scheme satisfies all of the the above
properties; in fact, none satisfy even just (1) and (2), or (1) and (3).2

The Construction. The high-level idea behind our construction is natural
(although the approach is very different from Trezor and other currently used
hardware wallets). We would like to employ a two-out-of-two threshold signature
(TS) scheme where the token is one of the parties and the client is the other.
The problem is that the client only has a low-entropy password and cannot
keep any persistent state. In fact, even if it had a high-entropy password, it
wouldn’t be clear how to directly use the threshold schemes as in general (and
in particular for EC-DSA), secret key shares for threshold schemes are generated
in a correlated way.

To overcome this issue, the key generation algorithm begins by running the
key generation procedure for the TS: the token and the client each get a secret
key share (which we denote skT and skC respectively), as well as the public
key pk. Next, since the client cannot remember pk, skC , it encrypts pk, skC

using a key that is derived—by using a random oracle (RO)—from its password;
additionally, the client generates (deterministically) a random “handle” as a
function of its password, again by applying the RO to the password. It then
sends both the handle and the (password-encrypted) ciphertext to the token for
storage.

Later on, when a client wants to get a signature on a message m, it first
asks the token to retrieve its password-encrypted ciphertext: the token will only
provide it if the client provides the correct handle (which the honest client having
the actual password can provide). Next, the client decrypts the ciphertext (again
using the password), and can recover its public and secret key. Finally, using its
secret key, and interacting with the token the client can engage in the threshold
signing process to obtain the desired signature on m.

The Analysis: Exploiting Non-Signalling and Exponential-Time Sim-
ulation. While we can show that the above construction satisfies properties 1,2
and 4 assuming the underlying threshold scheme is secure, demonstrating prop-
erty 3—that is, security against malicious token manufacturers, which in our
opinion is the most cruicial property—turns out to be non-trivial.

The issue is the following: as already mentioned, if the token is fully con-
trolled by the attacker (which participates in outside interactions), then we can
never hope to show that unforgeability happens with negligible probability as
the attacker can always perform a brute-force attack on the password. In partic-
ular, in our scheme, the attacker can simply brute-force password guesses against
the ciphertext c to recover the client’s threshold secret key share. However, a
malicious manufacturer which generates a malicious token but cannot directly
communicate with it, would have more trouble doing so. Even if the malicious
2 Although we are not aware of any formal analysis of Trezor, it would seem that it

satisfies (1) and (4), but there are concrete attacks against the other properties.
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token program can perform a brute-force attack, it cannot directly communicate
the correct password (or the client key share) to the manufacturer! If the token
could somehow signal these information to the manufacturer, then the manu-
facturer could again break the scheme. And in principle, with general threshold
signatures, there is nothing that prevents such signalling. For example, if the
token could cause the threshold signing algorithm to output signatures whose
low-order bits leak different bits of c, after sufficiently many transactions that
are posted on a blockchain, the adversary could recover c and brute force the
password himself.

Towards addressing this issue, we define a notion of Non-Signalling for TS:
roughly speaking, this notion says that even if one of the parties (the token)
is malicious, as long as they produce accepting signatures (with overwhelming
probability), they cannot bias the distribution of the signatures generated—i.e.,
such signatures will be indistinguishable from honestly generated ones. In fact,
to enable our proof of security—which proceeds using a rather complex sequence
of hybrid arguments relying on exponential-time simulation—we will require the
TS scheme to satisfy a statistical notion of Non-Signalling which requires that
the distribution of signatures generated interacting with the malicious party is
statistically close to the honest distribution.

We next show that if the underlying TS indeed satisfies statistical Non-
Signalling, then our 2FS also satisfies property 3. Towards doing this, we actu-
ally first show that our 2FS satisfies an analogous notion of Non-Signalling, and
then show how to leverage this property to prove unforgeability for the token
manufacturer. We mention that the notion of Non-Signalling for 2FS is inter-
esting in its own right: it guarantees that a maliciously implemented token Π
(whose answers are restricted to satisfy the correctness properties of the scheme
with overwhelming probability) cannot leak (through the public keys and the
signatures which it helps computing) to an attacker any information which an
honestly implemented token would not leak. In particular, if the honest token
algorithm generates independent public keys and uses stateless signing (as the
ones we consider do), even a malicious token cannot leak correlations between
which public keys it has been used to create, or what messages it has signed.

1.2 Related Work

Threshold Signatures. Threshold signatures [1,2,4,7,16] are signature
schemes distributing the ability to generate a signature among a set of parties, so
that cooperation among at least a threshold of them is required to produce a sig-
nature. Nicolosi et al. [15] present a threshold signature scheme for the Schnorr
signature scheme. Particularly relevant to the cryptocurrency application are the
works of Goldfeder et al. [6,8], Lindell [9,10], and Lee et al. [5] which propose
a threshold signature scheme to produce ECDSA signatures, which is already
compatible with Bitcoin and Ethereum.

Passwords + Threshold Signatures. MacKenzie and Reiter [11,12] and
Camenish et al. [3] consider notions somewhat similar to the one of a password-
based threshold signature scheme: as in our setting, signing requires knowledge
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of a password and access to an external party (in their case a server rather than
a hardware token), but in contrast to our setting the signer may additionally
hold some high-entropy secret state (and indeed, the schemes considered in those
papers require such secret state). This rules out the usage of such schemes in
our scenario, as we want the user to be able to operate his wallet from any client
without relying on any external state beyond its password.

1.3 Organization of the Paper

After introducing some notation in Sect. 2, we recall the definition of Threshold
Signature scheme and introduce the Non-Signalling property in Sect. 3. Section 4
defines Two Factor Signature schemes and Sect. 5 presents our main construction
and a sketch for some of the security proofs.

Due to lack of space, some of the security definitions (introduced earlier in
the introduction), the full proofs of security, as well as the two modified TS
schemes (based on Schnorr and EC-DSA) are deferred to the full version of this
paper [13]. There, we also discuss an additional useful Unlinkability property
satisfied by our construction.

2 Notation

If X is a probability distribution, we denote with x ← X the process of sam-
pling x according to X. When, in a probabilistic experiment, we say that an
adversary outputs a probability distribution, we mean that such a distribution
is given as a poly-time randomized program such that running the program
with no input (and uniform randomness) samples from such distribution. For
two-party (randomized) algorithms we denote with 〈α;β〉 ← 〈A(a);B(b)〉 the
process of running the algorithm A on input a (and uniform randomness as
needed) interacting with algorithm B on input b (and uniform randomness),
where α is the local output of A and β is the local output of B. Whenever an
algorithm has more than one output, but we are interested in only a subset of
such outputs, we will use · as a placeholder for the other outputs (for example
we could write (·, pk) ← KeyGen(1κ) to denote that pk is a public key output
by the KeyGen algorithm of a signature scheme in a context where we are not
interested in the corresponding secret key).

Token Oracles. In our definitions, we will often model a party/program imple-
menting party T . We say that a Token Oracle is a stateful oracle which can
answer KeyGen, PK, Sign queries. Initially, its state is set to ⊥. To answer
such queries, the oracle interacts with its caller by running the KeyGenT, PKT,
SignT algorithms respectively using its own inner state (and a message m sup-
plied by the caller for Sign queries). As a result of KeyGenT queries, its state is
also updated. Moreover, when explicitly specified, the oracle could also return to
the caller the public keys pk which are part of its local output during KeyGenT

and SignT queries.
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3 Threshold Signature Scheme

This section recalls the definition of a Threshold Signature scheme. The formal-
ization presented here is for a 2-party setting (C and T ) and the key shares
are computed by the parties using a distributed key generation algorithm (as
opposed to being provided by a trusted dealer).

Definition 1. A (2-out-of-2) Threshold Signature scheme consists of a tuple of
distributed PPT algorithms defined as follows:

– 〈TS.GC(1κ);TS.GT(1κ)〉 → 〈skC , pk; skT , pk〉 are two randomized algo-
rithms which take as input the security parameter and, after interacting with
each other, produce as output a public key pk (output by both parties) and a
secret key share for each of them. We use TS.Gen(1κ) → (skC , skT , pk) as
a compact expression for the above computation.

– 〈TS.SC(skC ,m);TS.ST(skT ,m)〉 → 〈σ;⊥〉 are two randomized algo-
rithms interacting to produce as output a signature3 σ. We use
TS.Sign(skC ,m, skT ) → σ as as a compact expression for the above com-
putation.

– TS.Ver(pk,m, σ) → 0 ∨ 1 is a deterministic algorithm. It takes as input a
public key, a message and a signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness property: for all
messages m

Pr
[

(skC , skT , pk) ← TS.Gen(1κ) :
TS.Ver(pk,m,TS.Sign(skC ,m, skT )) = 1

]
= 1

The definitions of Unforgeability for the two parties (T and C) we require are
quite standard and are deferred to the full version [13]. In the following, we intro-
duce a new security definition, which we call Non-Signalling. It consists of two
properties. First, we require that a malicious token cannot bias the distribution
of the public keys output by TS.Gen when interacting with an honest client (as
long as such token does not make the TS.Gen execution abort). More in detail,
we require that for any polynomial sized circuit Π (which does not make the
execution of TS.Gen abort with more than negligible probability), the distri-
bution of public keys output by an execution of the TS.GC interacting with Π
in the role of T is statistically indistinguishable from the distribution obtained
by running TS.Gen with both parties implemented honestly. This is formalized
as an experiment where an adversary A (not necessarily running in polynomial
time) outputs a PPT program Π and then has to distinguish whether it is given
a public key generated by an honest client interacting with Π or by an honest
client interacting with an honest token.

3 This definition states that party T does not output the signature. However, in our
construction we do not rely on σ being “hidden” from T , so threshold schemes where
both parties learn the signature can also be used in our construction.
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Analogously, the second property requires that a malicious token cannot bias
the distribution of signatures output by the TS.Sign algorithm. An adversary A
outputs a public key pk, a message m, a secret key for the client skC and a poly-
nomial sized circuit Π which can interact with a client running TS.SC(skC ,m),
such that (with all but negligible probability) the output for the client inter-
acting with Π is a valid signature on m w.r.t. pk. We require that A cannot
distinguish between the output of such an interaction and a valid signature on
m w.r.t. pk sampled uniformly at random.

Definition 2. Let TS = (TS.GC,TS.GT,TS.SC,TS.ST,TS.Ver) be a
Threshold Signature scheme. Consider the following two experiments between an
adversary A and a challenger, each parameterized by a bit b:
TS.NS12FS,b

A (1κ) :

1. A(1κ) outputs a polynomial size (in κ) circuit Π, such that Pr[〈·, pk; ·〉 ←
〈TS.GC(1κ);Π〉 : pk �=⊥] > 1 − μ(κ) (i.e. running the circuit interacting
with an honest TS.GC implementation results in such honest implementa-
tion outputting ⊥ with at most negligible probability).

2. If b = 0, the challenger computes 〈·, pk; ·〉 ← 〈TS.GC(1κ);Π〉; otherwise it
computes 〈·, pk; ·〉 ← 〈TS.GC(1κ);TS.GT(1κ)〉. Then it returns pk to A.

3. A outputs a bit b′, which defines the output of the experiment.

TS.NS22FS,b
A (1κ) :

1. A(1κ) outputs a polynomial size (in κ) circuit Π, a secret key share skC , a
message m and a public key pk, such that Pr[〈σ; ·〉 ← 〈TS.SC(skC ,m);Π〉 :
TS.Ver(pk,m, σ) = 1] > 1−μ(κ) (i.e. running the circuit interacting with an
honest TS.SC implementation on input skC ,m results in such honest imple-
mentation outputting a valid signature for m under pk with overwhelming
probability).

2. If b = 0, the challenger computes 〈σ; ·〉 ← 〈TS.SC(1κ);Π〉; otherwise it sam-
ples a valid signature at random, i.e. it samples σ ←R {σ : Ver(pk,m, σ) =
1}. Then it returns σ to A.

3. A outputs a bit b′, which defines the output of the experiment.

TS is said to be Non-Signalling if for all PPT adversaries A there exist a
negligible function μ such that

|Pr[TS.NS12FS,0
A (1κ) = 1] − Pr[TS.NS12FS,1

A (1κ) = 1]| < μ(κ)

|Pr[TS.NS22FS,0
A (1κ) = 1] − Pr[TS.NS22FS,1

A (1κ) = 1]| < μ(κ)

If the above equations hold even for adversaries A which are not bounded to be
PPT (but that output circuits Π which still have to be polynomially sized), the
TS is said to be Statistically Non-Signalling.
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4 Two Factor Signature Schemes

A Two Factor Signature scheme is similar to a 2-out-of-2 threshold signature
scheme, where signatures are generated by two parties: a client C whose only
long term state is a (typically low entropy and independently generated) pass-
word, and a token T , who can store and generate secrets of arbitrary length. We
envision the token party T to be implemented on a hardware token (which a
user would carry around) with a dedicated screen and button which would ask
the user for confirmation before producing signatures.

The semantics of the scheme are designed to capture the fact that a token
party T has a single state sT which can be used as input to produce signa-
tures according to different public keys (for which an initialization phase was
previously performed). This is useful, as typically a hardware wallet would offer
support for multiple cryptocurrency accounts, and therefore such semantics allow
us to design a scheme which natively supports multiple such accounts and reason
about the security of the whole system.

More specifically, one can think of each public key that the scheme can pro-
duce signatures for as being associated with both a password and a (not nec-
essarily private) mnemonic key identifier (or account identifier in the hardware
wallets application) chosen by the user (i.e.“savings” or “vacation fund”). In
order to generate a new public key the client executes the KeyGen algorithm
with a token T . The client’s inputs are the key identifier and its password pwd,
while the token updates its state sT as a result of running this algorithm. Later,
the client can produce signatures for that public key on a message m by run-
ning the Sign algorithm (interacting with the same token) on input m and the
same password and key identifier. Additionally, the PK algorithm can be used
to reconstruct a previously generated public key (both the password and the key
identifier are required in this case as well). In our formal description, for the
sake of simplicity and w.l.o.g., we consider such key identifier to be part of the
password itself.

Definition 3. A Two Factor Signature scheme (2FS) consists of a tuple of PPT
algorithms:

– 〈KeyGenC(pwd);KeyGenT(sT )〉 → 〈pk; pk, s′
T 〉 are two randomized algo-

rithms interacting with each other to produce as output a public key pk (output
by both parties). sT represents the state of party T before running the algo-
rithm (which would be ⊥ on the first invocation), and s′

T represents its new
updated state. We use KeyGen(pwd, sT ) → (pk, s′

T ) as a compact expression
for the above computation.

– 〈PKC(pwd);PKT(sT )〉 → 〈pk; pk〉 are two algorithms interacting with each
other to produce as output a public key. We use PK(pwd, sid, sT ) → pk as a
compact expression for the above computation.

– 〈SignC(pwd,m);SignT(sT ,m)〉 → 〈σ;⊥〉 are two randomized algorithms
interacting with each other to produce as output a signature σ, output by the
first party only. We use Sign(pwd,m, sT ) → σ as as a compact expression
for the above computation.
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– Ver(pk,m, σ) → 0 ∨ 1 is a deterministic algorithm. It takes as input a public
key, a message and a signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness properties. Let sT

be any valid token state (i.e. any state obtained by starting with ⊥ as the ini-
tial state and then updating it through several executions of KeyGen on input
arbitrary passwords), pwd be any password which was used in at least one such
execution of KeyGen, pk be the output of the KeyGenC algorithm in the most
recent of the executions of KeyGen on input pwd. We require that both

Pr[PK(pwd, sT ) = pk] = 1, Pr[Ver(pk,m,Sign(pwd,m, sT )) = 1] = 1

Security Notions. We define five notions of security for a 2FS, all introduced in
the introduction. Unforgeability for the Token, and Unforgeability with access to
the Token are formalized in the full version [13]. Here, we define Unforgeability
for the Client, Unforgeability for the Token Manufacturer and Non-Signalling.

Definition 4 (Unforgeability for the Client). Given a Two Factor Signa-
ture scheme 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver),
consider the following experiment between an adversary A and a challenger:
ExpForgeC2FS

A (1κ) :

1. The challenger runs the adversary A, giving it access to a token oracle T
(A is given the pk values output by such oracle during KeyGen and PK
queries). A can interact with the oracle arbitrarily. In addition, the challenger
records the pk values locally output by the token oracle for KeyGen queries
on an (initially empty) list g, and for PK queries on an (initially empty) list
p.

2. A halts and outputs a message m and a list of forgeries (pk1, σ1), . . . , (pkn, σn).
We define the output of the experiment as 1 if either there exists a pk that belongs
to p but not to g, or if for all i ∈ {1, . . . , n},Ver(pki,m, σi) = 1, all the pki are
distinct and are in g, and A made at most n−1 Sign queries to the oracleT on
input m.

2FS is said to be Unforgeable for the Client if for all PPT adversaries A
there exist a negligible function μ such that for all κ

Pr[ExpForgeC2FS
A (1κ) = 1] ≤ μ(κ).

The purpose of the two lists g and p in the experiment above is to ensure
that either the adversary can cause the honest token to output a public key pk
during a PK query which it did not output during a KeyGen query, or that all
the forgeries returned by the adversary are w.r.t. public keys which were output
by the honest token oracle, that the number of forgeries on m is greater than
the number of signing queries which the challenger answered for m.

The next definition, Unforgeability for the Token Manufacturer, is formalized
as an experiment where the adversary first outputs a stateful program Π, and
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then can ask an honest client (simulated by the challenger) to interact with such
program in arbitrary KeyGen, PK and Sign queries (where the adversary can
pick the pwd and m inputs for such client and receives its outputs). The definition
requires that (except with negligible probability) the adversary cannot produce
a forgery on a message m valid w.r.t. one of the public keys pk output by the
client, unless it previously received a valid signature on m w.r.t. pk as the output
of a Sign query.

We restrict such definition to adversaries which satisfy a compliance property.
Informally, an adversary is compliant if during any execution of the unforgeabil-
ity experiment, with overwhelming probability, it outputs programs Π such that
the outputs of the honest client (simulated by the challenger) on the adversary’s
queries respect the same correctness conditions as if the simulated client was
interacting with an honestly implemented token. In particular, running a PK
query on input some password pwd, the client should obtain the same pk which it
output during the most recent KeyGen query on input the same pwd; similarly,
the output of a Sign query on input m and pwd should be a valid signature w.r.t.
the public key pk which was output during the most recent KeyGen query for
pwd.

Remark 1. Restricting to compliant adversaries is a reasonable limitation: if a
user notices that her hardware token is not producing signatures or public keys
correctly, for example by selectively aborting during signature generation or by
returning invalid signatures or inconsistent public keys, such abnormal behavior
would be easy to detect or even impossible to go unnoticed. For example, if a 2FS
was used to sign a cryptocurrency transaction, but the client output an invalid
signature for the user’s expected public key/source address of the transaction,
then even if the client side software did not check the signature and it got
broadcasted to the network, the receiver of the funds would eventually complain
that the funds were never transferred.

Definition 5. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,
Ver) be a Two Factor Signature scheme. Consider the following experiment
between a PPT adversary A and a challenger, parameterized by a bit b:
ExpForgeTokMan2FS

A (1κ) :

1. A(1κ) outputs a polynomial size circuit Π, which implements the same inter-
face as a Token Oracle. We stress that this program is not bound to implement
the honest algorithms, but may deviate in arbitrary ways (subject to A being
compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to
the challenger. In each query, the challenger simulates an honest client C
interacting with Π in the role of T on input a pwd and possibly a message
m both arbitrarily chosen by the adversary (in the case of a Sign query, Π
is also given as input m), and gives A such client’s output.
In addition, for each KeyGen query, the challenger records the simulated
client’s output pk in an (initially empty) list g, and for each Sign query on
input some message m where the client’s output is σ, the challenger adds
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a record (pk,m) to an (initially empty) list s for any pk ∈ g such that
Ver(pk,m, σ) = 1 (if such a pk exists).

3. A halts and outputs a triple (pk′,m′, σ′). The output of the experiment is 1
if Ver(pk′,m′, σ′) = 1, pk′ ∈ g and (pk′,m′) �∈ s. Otherwise, the output is 0.

During an execution of ExpForgeTokMan2FS, we say that a query asked
by A (i.e. an execution of either KeyGen, PK or Sign where the challenger
executes the algorithm for C interacting with Π in the role of T ) is compli-
ant if the output of the challenger in this interaction satisfies the same cor-
rectness conditions that interacting with an honest token implementation would.
In more detail, the query is compliant (with respect to a specific execution of
ExpForgeTokMan) if:

– in the case of a KeyGen query, the output of the client (simulated by the
challenger) is a pk �=⊥ (which implies that Π did not abort or send an
otherwise invalid message)

– in the case of a PK query on input some password pwd, the simulated
client output the same pk which it output the most recent time it executed
a KeyGen query on input the same pwd (or ⊥ if the adversary never asked
any KeyGen query on input pwd)

– in the case of a Sign query on input m and pwd, the simulated client outputs
a valid signature w.r.t. the pk which was output during the most recently
executed KeyGen query on input pwd (or ⊥ if the adversary never asked
any KeyGen query on input pwd).

We say that an execution of ExpForgeTokMan2FS is compliant if all the queries
in that execution are compliant. We say that an adversary A is compliant if,
with all but negligible probability, any execution of ExpForgeTokMan2FS

A (1κ)
is compliant.

2FS is said to be Unforgeable for the Token Manufacturer if for all
PPT compliant adversaries A there exist a negligible function μ such that for all
κ

Pr[ExpForgeTokMan2FS
A (1κ) = 1] < μ(κ)

Towards proving unforgeability for the token manufacturer, it will be use-
ful to first show that our scheme satisfies a notion of Non-Signalling, which is
of independent interest. This property is formalized as an indistinguishability
definition: the adversary outputs a circuit Π, and then asks the challenger to
interact with such circuit on arbitrary KeyGen, PK and Sign queries. The
challenger either uses Π to answer all such queries, or an honest implementation
of the token algorithms; we require that no adversary can notice this difference
with better than negligible probability. As in the previous definition, we restrict
our attention to compliant adversaries.

Definition 6. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,
Ver) be a Two Factor Signature scheme. Consider the following experiment
between an adversary A and a challenger, parameterized by a bit b:
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ExpNonSignal2FS,bA (1κ) :

1. A(1κ) outputs a polynomial sized circuit Π, which implements the same inter-
face as a Token Oracle. We stress that this program is not bound to implement
the honest algorithms, but may deviate in arbitrary ways (subject to A being
compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to
the challenger. In each query, the adversary provides the inputs for C (i.e.
pwd and possibly m). If b = 0, the challenger interacts with program Π using
the appropriate algorithms for C and the inputs given by A (note that in
the case of a Sign query, Π is also given the message m supplied by the
adversary as an input), and gives A the local output of the C algorithm in
such computation. If b = 1, instead, the challenger answers the queries by
interacting with an honestly implemented Token Oracle.

3. A halts and outputs a bit b′, which defines the output of the experiment.

Note that in an execution of ExpNonSignal2FS,0, A’s view has exactly the
same distribution as in an execution of ExpForgeTokMan. Thus, we can define
a compliant query asked by A w.r.t. an ExpNonSignal2FS,0 execution, a com-
pliant execution of ExpNonSignal2FS,0 and a compliant adversary as in Defi-
nition 5.

2FS is said to be Non-Signalling if for all compliant PPT adversaries A
there exist a negligible function μ such that for all κ

|Pr[ExpNonSignal2FS,0A (1κ) = 1] − Pr[ExpNonSignal2FS,1A (1κ) = 1]| < μ(κ)

5 Constructing a Two Factor Signature Scheme

In this section, we show how to construct a secure Two Factor Signature scheme
(in the random oracle model), by combining any IND-CPA and INT-CTXT
secure Symmetric Encryption scheme, a hash function (modelled as a random
oracle) and any Unforgeable and Statistically Non-Signalling Threshold Signa-
ture scheme.

Let TS = (TS.GC,TS.GT,TS.SC,TS.ST,TS.Ver) be a Threshold Signa-
ture scheme, SE = (SE.G,SE.E,SE.D) be a Symmetric Encryption scheme, and
ROκ be hash function which maps strings of arbitrary length to {0, 1}κ×{0, 1}κ.
Our proposed construction depends on a security parameter κ, which is given as
implicit input to all algorithms.

The token state sT is structured as a key-value store (map), where the keys
are strings in {0, 1}κ called handles and the values are tuples of strings. Initially,
the KeyGenT algorithm can be supplied ⊥, which is treated as an empty store.
We define sT .Add(handle, y) as the map obtained from sT by additionally asso-
ciating the key handle with the value y (which overwrites any previous value
associated with handle), and sT .Find(handle) as the value associated to handle
by sT , or ⊥ if no such pair exists.

All algorithms will abort (i.e. return ⊥) if any of their sub-algorithms abort
(for example if decrypting a ciphertext fails or the store sT does not contain the
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expected value) or the other party aborts or sends a malformed message. Using
these conventions, we can define a Two Factor Signature scheme as follows (the
scheme is also illustrated in Fig. 1):

– KeyGenC(pwd) → pk: Run TS.GC(1κ) interacting with KeyGenT

and obtain (skC , pk) as the local output. Then, compute (ek, handle) ←
ROκ(pwd), c ← SE.E(ek, (skC , pk)) and send (handle, c) to T . Output pk.

– KeyGenT(sT ) → s′
T : Run TS.GT(1κ) interacting with KeyGenC and

obtain skT , pk as the local output. Then, receive (handle, c) from KeyGenC,
set s′

T ← sT .Add(handle, (c, skT , pk)) and output (s′
T , pk).

– PKC(pwd): Compute (ek, handle) ← ROκ(pwd), send handle to PKT. Upon
receiving c in response, compute (skC , pk) ← SE.D(ek, c) and output pk.

– PKT(sT ): Upon receiving handle from PKC, retrieve c and pk from the state
by computing (c, skC , pk) ← sT .Find(handle), send c to PKC and output pk.

– SignC(pwd,m): Compute (ek, handle) ← ROκ(pwd) and send handle to
SignT. Upon receiving c in response, compute (skC , pk) ← SE.D(ek, c), then
execute TS.SC(skC ,m) (interacting with SignT) and output the resulting σ.

– SignT(sT ,m): Upon receiving handle from PKC, compute (c, skC , pk) ←
sT .Find(handle), send c to SignC and run TS.ST(skT ,m).

– Ver(pk,m, σ): Output TS.Ver(pk,m, σ).

KeyGenC(pwd) : KeyGenT(sT ) :

(skC , pk) ← TS.GC(1κ) ↔ TS.GT(1κ) → (skT , pk)

(ek, handle) ← ROκ(pwd)

c ← SE.E(ek, (skC , pk))
handle,c−−−−−→ sT ← sT .Add(handle, (c, skT , pk))

Output pk Output (sT , pk)

PKC(pwd) : PKT(sT ) :

(ek, handle) ← ROκ(pwd) handle−−−−→ (c, skT , pk) ← sT .Find(handle)
(skC , pk) ← SE.D(ek, c) c←−
Output pk Output pk

SignC(pwd,m) : SignT(sT , m) :

(ek, handle) ← ROκ(pwd) handle−−−−→ (c, skT , pk) ← sT .Find(handle)
(skC , pk) ← SE.D(ek, c) c←−
σ ← TS.SC(skC , m) ↔ TS.ST(skT , m)

Output σ

Fig. 1. The Two Factor Signature scheme construction. The verification algorithm is
the one of the underlying TS.
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The security of the scheme is established by the following theorems. We
provide a proof sketch for some of them, and defer the details to the full version
[13].

Theorem 1. If the underlying Threshold Signature scheme is Unforgeable for
the Client, the Two Factor Signature scheme described above is Unforgeable for
the Client.

Proof Sketch. The proof of this theorem is essentially a reduction to the unforge-
ability for C of the Threshold Signature scheme. The adversary B (against
the TS) simulates for any adversary A (against the 2FS) an execution of
ExpForgeC; B guesses which of the KeyGen queries by A will produce a
public key pk such that A outputs a forgery on m w.r.t. pk but A does not
ask any Sign queries “with respect to pk” (see the full version for details). B
makes A interact with its challenger for such KeyGen query (and the related
Sign queries), so that if its guess is correct then the forgery produced by A can
directly be used as a forgery to win TS.ForgeC. ��
Theorem 2. If TS is Unforgeable for the Token, and SE is both IND-CCA and
INT-CTXT secure, the Two Factor Signature scheme described above is Unforge-
able for the Token.

Theorem 3. If the underlying Threshold Signature scheme is Unforgeable for
the Client, the Two Factor Signature scheme described above is Unforgeable with
Access to the Token.

Theorem 4. Assuming the underlying Threshold Signature scheme is Statisti-
cally Non-Signalling, the Two Factor Signature scheme described above is Non-
Signalling.

Proof Sketch. The proof is structured as an hybrid argument on the number of
queries made by the adversary. Starting from the experiment where the chal-
lenger always uses the circuit Π output by the adversary to answer all queries,
we progressively substitute such answers one at a time, starting from the last
query. Signing queries on a message m which should be produced w.r.t. a public
key that the adversary has already seen are substituted with a randomly sampled
signature on m with respect to the same public key, while queries for new pub-
lic keys are answered by running (skC , skT , pk) ← TS.Gen(1κ) (i.e. by running
the threshold key generation algorithm honestly and without interacting with Π)
and returning the resulting pk to A. We prove that an adversary who can distin-
guish between two adjacent hybrids can contradict one of the two Non-Signalling
property of the Threshold Signature scheme. Moreover, in the last hybrid the
view of the adversary does not depend on the circuit Π, and so we can switch
in an analogous way to an experiment where the challenger always uses an hon-
est token oracle. Note that sampling signatures at random without knowing the
corresponding secret key shares makes the reduction require exponential time,
but this is not a problem because the Non-Signalling properties of the Threshold
Signature scheme hold even against an exponential time adversary. ��
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Theorem 5. Assuming the underlying Threshold Signature scheme is Statisti-
cally Non-Signalling and Unforgeable for the Client, the TFS described above is
also Unforgeable for the Token Manufacturer.

Proof Sketch.The proof is structured as an hybrid argument. First, instead of using
the circuit Π output by the adversary, all queries by A are answered using an hon-
estly implemented token oracle. Due to the Non-Signalling property of the 2FS,
this cannot affect A’s view and therefore its success probability. Given that A is
now interacting with an honest token, we can prove that A cannot forge using a
similar argument as in the proof of Unforgeability for the Client. ��
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Abstract. Bitcoin, being the most successful cryptocurrency, has been
repeatedly attacked with many users losing their funds. The industry’s
response to securing the user’s assets is to offer tamper-resistant hard-
ware wallets. Although such wallets are considered to be the most secure
means for managing an account, no formal attempt has been previously
done to identify, model and formally verify their properties. This paper
provides the first formal model of the Bitcoin hardware wallet operations.
We identify the properties and security parameters of a Bitcoin wallet
and formally define them in the Universal Composition (UC) Frame-
work. We present a modular treatment of a hardware wallet ecosystem,
by realizing the wallet functionality in a hybrid setting defined by a set
of protocols. This approach allows us to capture in detail the wallet’s
components, their interaction and the potential threats. We deduce the
wallet’s security by proving that it is secure under common cryptographic
assumptions, provided that there is no deviation in the protocol execu-
tion. Finally, we define the attacks that are successful under a protocol
deviation, and analyze the security of commercially available wallets.

1 Introduction

Wallets are the only means to access and manage Bitcoin assets and, although
they exist since Bitcoin’s inception [19], little or no attention has been paid on
formally verifying them. Access to the Bitcoin network, key management, cryp-
tographic operations, and transaction processing are only a few cases of wallet
operations. Up until now, there does not exist a specific model of the wallet, nor
a thorough threat model, resulting in implementations based on common crite-
ria and security assumptions (e.g., secure key management, correct transaction
processing etc.) without a complete security treatment. As a result, industry
focuses more on securing the cryptographic primitives, and neglects the secure
operation of the system as a whole.

The current industry state of the art for managing cryptocurrency assets is
hardware wallets. They currently dominate the market as the most secure solu-
tion for account management. Although the demand, together with the number
of commercially available products, keeps growing, their specifications and secu-
rity goals remain unclear and understudied. Incorporating expensive hardware
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I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 426–445, 2019.
https://doi.org/10.1007/978-3-030-32101-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_26&domain=pdf
https://doi.org/10.1007/978-3-030-32101-7_26


A Formal Treatment of Hardware Wallets 427

as a wallet is bound to bring some security guarantees; however, proprietary
assumptions of the offered functionality and lack of a universal threat model fre-
quently lead to implementations prone to attacks. In this work we formally define
the characteristics, specifications and security requirements of hardware wallets
in the Universal Composable (UC) Framework [9]; we identify all the potential
attack vectors, and the conditions under which a wallet is secure. To that end,
we manually inspect the KeepKey, Ledger and Trezor wallets and extract the
implementations which we then map to our model. As we show, the wallets are
prone to a set of attacks and are secure only under specific assumption. There-
fore, our model not only proves the security of existing implementations, but
also acts as a reference guide for future implementations.

As wallets are the only way for a user to access her funds, they are repeat-
edly targeted for attacks that aim to access the account’s keys or redirect the
payments, ranging from clipboard hijacking [20] and malware [28] to implemen-
tation bugs, e.g., the Parity hack in Ethereum [4], and more specific attacks,
e.g., brain wallets [25]. In order to address such threats, different ways to harden
the wallet’s security have been proposed, with the most notable one being the
utilization of cryptographic hardware. The module known as a hardware wal-
let is responsible for the account’s key management and the execution of the
required cryptographic operations. The remaining operations are completed by
a dedicated software, either provided together with the hardware or by a third
party, with which the hardware communicates. Although hardware wallets are
becoming the de facto means of securely managing an account, they have not
been formally studied before. Currently, the security of commercially available
products can only be checked through manual inspection of their implementa-
tion; a process that requires a strong engineering and technical background, and
a significant effort and time commitment. Our work aims at bridging the gap
between formally modeling and verifying the wallet’s properties and claimed
specifications. We present a formal model of hardware wallets, which is built
using cryptographic primitives and is proven secure under common assumptions.
Instead of capturing a hardware wallet as a single module, we conceptualize it
as a system of different modules that communicate with each other in order to
complete the wallet’s operations. This approach allows us to identify a greater
set of potential attacks and the conditions for them to be successful. As we show,
perfect cryptographic components by themselves cannot guarantee security; any
module might be proved vulnerable, thus compromising the entire wallet.

Related Work. The importance of formal methods for the Bitcoin protocol is
well understood, with existing literature showcasing different approaches. Garay
et al. [12], after extracting and analyzing the core Bitcoin blockchain protocol,
presented a formal abstraction to prove that Bitcoin satisfies a set of security and
quality properties. Pass et al. [21] analyzed the consistency and liveness proper-
ties of the consensus protocol in an asynchronous setting, proving Bitcoin secure
assuming an upper bound on the network delay. Badertscher et al. [6] suggested
a universally composable treatment of the Bitcoin ledger, defining Bitcoin’s
goals and proving that their model is securely realized in the UC framework.
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Transactions, being a core part of Bitcoin, have also attracted attention. Atzei
et al. [5] proposed a formal model of Bitcoin transactions in order to prove secu-
rity e.g., against double-spending attacks, and other blockchain properties e.g.,
blockchain’s decreasing value.

Until now, Bitcoin wallets have only been empirically studied. Previous
research on the topic focused on the integrity of transactions and suggested ways
to enhance the security of the wallets. Gentilal et al. [13] stressed the necessity
of separating the wallet into two environments, the trusted and the non-trusted,
and proposed that a wallet remains secure against attacks by isolating the sensi-
tive operations in the trusted environment. Similarly, Lim et al. [18] and Bamert
et al. [7], argue that security in Bitcoin wallets equals with tamper-resistance
and propose the use of cryptographic hardware. Hardware wallets have not yet
been extensively studied, since no formal attempt to specify the functionalities
and the security properties of such wallets exists so far. As of September 2018,
research has only focused on attacking commercially available implementations.
Gkaniatsou et al. [14] showed that the low-level communication between the
hardware and its client is vulnerable to attacks which escalate to the account
management. Their research concluded to a set of attacks on the Ledger wallets,
which allowed to take control of the account’s funds. Hardware wallets have also
been studied against physical attacks. Volotikin [26] showed that specific parts
of the Ledger’s flash memory are accessible, exposing the private keys used for
the second factor verification mechanism. Datko et al. presented fault injection,
timing and power analysis attacks on KeepKey [1] and Trezor [3], which allowed
them to extract the private key.

Our Contributions and Roadmap. This work provides a holistic treatment of
hardware wallets: from identifying their core specifications and security proper-
ties to defining a formal model, which allows reasoning about the offered security
of existing wallets and acts as the foundation for designing and implementing
new ones. To the best of our knowledge our work is the first to (i) define the
properties and requirements of hardware wallets, (ii) provide a formal model and
security guarantees of such wallets, and (iii) evaluate the security of commercial
products under a formal model.

In Sect. 2 we define the hardware wallet properties and their security specifi-
cations. Section 3.3 presents a formal model for the wallet in the UC framework.
We define the ideal functionality of the wallet, which models the wallet’s oper-
ations and the adversary’s capabilities. Instead of conceptualizing the wallet as
a single entity, in Sect. 3.4 we adopt a modular treatment in which the wallet
becomes an ecosystem of different components, namely the human, the client
and the hardware. Each component runs a protocol, which defines the opera-
tions that it carries out, so the wallet functionality is realized as a composition
of these protocols. Section 4 addresses the wallet’s security. We present the set of
attacks that our ideal functionality identifies, including a novel family of attacks
that has not been previously discussed. We then prove that the hybrid setting
securely realizes the wallet ideal functionality, and showcase examples when per-
fect cryptography is inadequate for securing an account. Finally, we evaluate the
security of three commercially available wallets: KeepKey, Ledger, and Trezor.
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2 Hardware Wallets

Bitcoin relies on the Elliptic Curve Signature Scheme (ECDSA) for signing the
transactions and proving ownership of the assets. An account is defined by a key
pair (sk, vk): the public portion vk is hashed to create an address α for receiving
assets, and the private portion sk is used to sign transactions that spend the
assets that α received. Unauthorized access to sk results in loss of funds, thus
raising the issue of securing the account’s private keys. A wallet offers access
to the Bitcoin network and management of an account, and is either based on
software, i.e., is hosted online by a third party or run locally, or hardware.

Threat Model. The usage of a broken cryptographic primitive may lead to loss of
funds: a broken hash function means potential loss of the receiving funds, whereas
a broken signature scheme may result in loss of the spending funds. Protect-
ing against unauthorized access to the wallet’s operations has been previously
proven to be equally important as using secure cryptographic primitives [8,14].
Hardware wallets are tamper-resistant and offer an isolated environment for the
cryptographic primitives. However, if they connect to a compromised client, then
any inputs/outputs of the hardware can potentially be malicious. For example,
consider Bob, whose account is defined by the key pair (sk, vk), and an adver-
sary A, who is able to forge Bob’s signature. In this case any signature sA of a
message mA chosen by A can be verified by vk; hence the adversary can spend
all assets that Bob has previously received, i.e., the assets sent to the hash of
vk. Let us now assume that Bob’s signature is unforgeable but A controls the
signing algorithm inputs, such that for any message m that Bob wishes to sign,
A substitutes it with mA. Even though the signature is unforgeable, the adver-
sary can still spend Bob’s assets by tampering with the message. Our model
captures the family of such attacks, which result in loss of funds by tampering
the inputs/outputs of the wallet operations. Thus, the security of a Bitcoin wal-
let is reduced to the security of the underlying cryptographic primitives and the
honesty of the communicating parties.

The Wallet Setting. Software, not being tamper-resistant, cannot guarantee a
secure environment for the wallet’s operations. Instead, hardware wallets are
designed to offer such an environment by separating the wallet’s cryptographic
primitives from the other operations e.g., connection to the Bitcoin network.
These devices do not offer network connectivity; instead they operate in an offline
mode. Due to their limited memory capabilities and the absence of network
access, they cannot keep track of the account’s activities, e.g., past transactions.
Thus, they require connection with a dedicated software, the client, which keeps
records of the account’s actions and provides a usable interface with which the
user can interact. Hardware wallets operate under the assumption of a malicious
host, and they provide a trusted path with the user. Both the client and the
hardware display transaction related data, which the user compares to decide on
their validity. As such, the user becomes part of the system and is responsible
for identifying potentially malicious actions of the client.
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Fig. 1. Transaction issuing in the hardware wallet setting.

The wallet operations are initiated by the user, they are executed by the
client, the hardware, or both, and are: (i) Setup: the hardware generates the
master key pair (msk, mvk) and returns the private key msk, i.e., the wal-
let’s seed, to the user; currently all wallets are Hierarchical Deterministic, as
defined by the BIP32 standard [27], so the keys are derived from a master
key pair by the simplified functions ski = msk + hash(i, mvk)(mod n) and
vki = mvk + hash(i, mvk) × N , where i is the index of the key and n, N are
public parameters of the used Elliptic Curve; (ii) Session Initialization: the hard-
ware connects to the client and sends it the master public key mvk; (iii) Generate
Address: both the client and the hardware generate a new address and return it
to the user. The hardware derives from (msk, mvk) a new pair (ski, vki), gener-
ates a new address αi and returns it to the user. The client may either generate
vki using mvk or receive vki from the hardware, then generates and stores the
corresponding address, and finally returns it to the user; (iv) Calculate Balance:
given a list of the account’s addresses, the client iterates over the ledger’s trans-
actions, calculates the account’s available assets and returns this amount to the
user; (v) Transaction Issuing: the user provides the payment data to the client,
which then forwards them to the hardware together with the available inputs,
i.e., the account’s addresses and balances, and requests its signature. The hard-
ware checks whether the input addresses belong to the managed account and
generates a change address upon demand, i.e., if the balance is larger than the
payable amount plus transaction fees. Then, it requests the user’s approval of
the payment data. If the user confirms the payment, then the hardware signs
it and returns the signature together with the corresponding public key to the
client in order to publish it. Figure 1 presents an abstraction of the transaction
issuing process in the hardware-enhanced wallet setting.

In our model a wallet is not a single module, but rather an “ecosystem”, which
consists of different modules that communicate during an operation: the user,
the client and the hardware. In order to treat it under the UC framework, we
will describe an ideal functionality for it as well as its real world implementation.
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In the ideal world the wallet is a single component (functionality) responsible for
all the aforementioned operations while in reality the wallet is split into multiple
modules which communicate during the execution of each operation. In the real
world, the wallet emerges through the interaction of the human operator, the
client (which is a device like a desktop computer or tablet/smartphone) and a
tamper resistant hardware component.

Ideal World. The wallet functionality, Fw, is responsible for the wallet’s oper-
ations. Fw interacts with the global Bitcoin ledger functionality GLEDGER, as
defined in [6], in order to execute operations requiring access to the decentral-
ized system. GLEDGER is the ideal functionality that models the Bitcoin ledger
and allows a wallet to register itself, publish transactions and retrieve the state
of the ledger, i.e., all published transactions. Fw generates a unique address per
public key and also incorporates a signature functionality, FSIG as defined in [10]
(for convenience we will treat FSIG as a separate component in the ideal world).
The wallet registers itself with FSIG which creates fresh keys for the account upon
request, e.g., during address generation, and signs messages, e.g., transactions.
FSIG is also accessed by the validation predicate of GLEDGER in order to verify a
transaction’s signature during the validation stage.

Real World. The operations are executed by a set of communicating par-
ties: the hardware, the client and the user. Thus the protocols of the hard-
ware πhw, the client πclient, and the human πhuman define the actions of the
corresponding parties. The hardware protocol πhw, uses a signature scheme
Σ ≡ 〈KeyGen, Verify, Sign〉, a cryptographic hash function H and a pseudorandom
key generation function HierarchicalKeyGen(msk, i), in order to derive children
keys from the master key. A basic assumption of this setting is that πclient runs
in an untrusted environment, i.e., we do not consider the software to be secure.
Thus, connection to a malicious client, in our model, is equivalent to corruption
of the client by the adversary. The human communicates with the hardware and
the client via a secure channel, i.e., the user interacts directly with the device.

Figure 2 presents the ideal and the real world settings. In both worlds the
environment Z interacts with the adversary, i.e., in the ideal world it inter-
acts with the simulator S, and in the real world with the adversary A. In the
ideal world the wallet consists of the ideal wallet functionality Fw and the sig-
nature functionality FSIG; in the real world it consists of the combination of
the user, client and hardware wallet parties who execute the respective proto-
cols (πhuman, πclient, πhw). The communication between the human, the client
and the hardware is achieved over a UC-secure channel protocol as presented
by Canetti [11]: the adversary is able to observe the encrypted communication
between the honest parties and only retrieve the length of the exchanged mes-
sages. In practice, this can be achieved by establishing a secure channel between
the client and the hardware module using standard key exchange techniques,
while the human-hardware channel is assumed to be secure by default. In the
absence of a secure channel, the adversary may tamper with the communica-
tion thus, in our model, an insecure channel is equivalent to the client being
corrupted.
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Fig. 2. A high-level comparison of the ideal and the real worlds.

3 Formal Model

This section defines a formal model of the hardware wallet ecosystem in the
UC Framework, in which we compare the execution of a security definition, i.e.,
the ideal setting, with a concrete protocol setting, i.e., the real world. We first
define a wrapper for the validation predicate which is used by the Bitcoin ledger
functionality GLEDGER and is accessed in both the ideal and the real worlds upon
publishing a transaction. In the ideal world, a functionality defines the wallet
operations. In the real world, the hardware wallet is defined as a hybrid setting
which we prove to securely realize the ideal definition.

3.1 Notations

An address α is a unique string chosen from {0, 1}�, where � is the length of α in
bits, and is associated with a payment key pair (vk, sk), where vk is the public
and sk the private key. The wallet’s key pairs and, consequently, the addresses
are generated using the master key pair (msk, mvk), which is randomly selected
from the key domain K upon the wallet’s setup. A transaction is defined as
a tuple tx := (αs, αr, θpay, αc, θchange), where αs denotes the sender’s address,
αr the receiver’s address and αc the change address; θpay, θchange θfee are the
payment, change and fee funds respectively, where θchange equals to the account’s
balance minus the payment and the fee amounts, i.e., θchange := balanceOf(αs)−
θpay−θfee. A signed transaction is the tuple (tx, vk, σ), where σ is the signature of
tx under the public key vk. We note that, for ease of notation, this is a simplified
transaction model - adapting it for multiple inputs and outputs, e.g., to properly
model Bitcoin, should be straightforward though. The parties that execute an
operation are the user U i.e., the owner of the wallet, the client to which the
hardware connects C, and the hardware H. Each message is associated with a
session id sid′ = UCH, which defines the parties that the message is related with.
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3.2 Validation Predicate

The Bitcoin Ledger functionality GLEDGER, as defined in [6], is parameterized
with the validation predicate Validate. This predicate identifies whether a trans-
action can be added to the buffer, i.e., whether it is valid for publishing to the
ledger. Although a concrete instantiation is not provided, it is stated that it
takes as input the candidate transaction, the buffer and the current state. The
candidate transaction consists of the signed transaction stx = (tx, vk, σ) and
the ledger parameters, e.g., the transaction id, which is a unique identifier of
the transaction, and the timestamp, i.e., the time which is defined by a global
clock. Intuitively, in Bitcoin the state is the blockchain and the buffer is the
mempool which contains the transactions that have not yet been included in a
block. The validation predicate is used for the signature verification of a can-
didate transaction. This is formalized with a wrapper ValidateWrapper, which
wraps all instantiations of the validation predicate. In the ideal world the wrap-
per accesses the signature functionality FSIG to verify the transaction’s signature:
if the signature is not valid, then it directly outputs 0, otherwise it performs all
additional checks, such as verifying the funds which are consumed and checking
whether the amounts are valid. We refrain from constraining our setting to a
specific Validate predicate, but rather describe it for all generic ledger settings.
The ideal wrapper IdealValidateWrapper is described in Algorithm 1. The real
world wrapper RealValidateWrapper uses a signature scheme instead of FSIG and
behaves similarly to Algorithm 1, i.e., it first parses BTX and then performs the
same branch checks on Verify(tx, vk, σ) and returns the proper boolean value.

3.3 The Wallet Ideal Model

Fw incorporates FSIG and runs in the GLEDGER-setting, interacting with the adver-
sary A, a set of parties P and the environment Z, and keeps the initially empty
items: (i) A[]: a list of lists of addresses and the corresponding public keys,
(α, vk), (ii) B[]: a list of lists of the account’s addresses and their corresponding
balance, (α, θ), and (iii) K[]: a list of master key pairs (mvk, msk). Fw realizes
the following operations: (i) Wallet setup: Upon a setup request, it initializes the

Algorithm 1 The validation predicate wrapper, parameterized by Validate and
FSIG. The input is a transaction BTX, the buffer buffer and the state state.

function IdealValidateWrapper(BTX, buffer, state)
(tx, vk, σ, txid, τL, pi) := parse(BTX)
Send (Verify, sid, tx, σ, vk) to FSIG and receive (Verified, sid, tx, f)
if f = 0 then

return 0
else

return Validate(BTX, buffer, state)
end if

end function
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list of addresses, generates the account’s master key pair, registers to GLEDGER
and returns the master private key. (ii) Client Corruption: When A corrupts
a client C, Fw leaks the past public keys and addresses that C has obtained.
(iii) Client session initialization: In order to start a new session, it identifies the
C defined in sid′ and and returns a new assigned pass phrase “pass”; in the real
world, the pass phrase acts as the authentication mechanism between the par-
ties. (iv) Address generation: It requests a new public key from FSIG and picks an
associated address at random. It then stores the new address in the correspond-
ing list and also returns it to Z. If the connected client is corrupted, then the
functionality leaks the address and the public key to A. (v) Balance calculation:
If C is honest then it queries the ledger to retrieve the blockchain; if the con-
nected client is corrupted, then it requests from A to provide the chain. Then,
it calculates the amount of available assets and returns it to Z. iv) Transaction
issuing: Upon receiving a transaction request, if C is corrupted, then it leaks the
transaction information to the adversary and retrieves a new transaction object
from it. If U is also corrupted, then it discards the original request and keeps the
adversarial transaction, otherwise it ignores the adversary’s response. Finally,
it requests a signature from FSIG for the transaction which it then publishes to
GLEDGER.

Functionality Fw
All messages below contain a session id of the form sid = (P, sid′).

– Setup: Upon receiving (Setup, sid) from some party U ∈ P, forward it
to A. Then add the empty list AU to A[], register with GLEDGER, pick
the master key pair (mskU , mvkU ) $←− K and add it to K[] and return
(SetupOK, sid) to U .

– Client Corruption: When A corrupts a party C, for every U such that
a Setup session with C has been completed send (AddressList, sid, AU )
and (MasterPubKey, sid, mvkU ) to A.

– Initialize Client Session: Upon receiving (InitSession, sid) from
party U , pick passclient

$←− {0, 1}λ and send (InitSession, sid, passclient)
to C. If C is corrupted, then send (InitSession, sid, passclient) to A
and wait for a response (InitSessionOK, sid, passclient). Finally, send
(Session, sid, passclient) to U .

– Generate Address: Upon receiving (GenAddr, sid) from U , send
(KeyGen, sid) to FSIG. Upon receiving (Verification Key, sid, vk)
from FSIG, pick an address α

$←− {0, 1}� and add (α, vk) to AU . If C is
corrupted then send (Address, sid, (α, vk)) to A and wait for a response
(AddressOK, sid, α′). If U is corrupted then set a := α′, else set a := α.
Finally, return (Address, sid, a) to U .

– Calculate Balance: Upon receiving (GetBalance, sid) from U , send
(Read, sid) to GLEDGER and wait for the response (Read, sid, chain). If C
is corrupted, then send (Read, sid) to A and, upon receiving the response
(Read, sid, chain′), set chain := chain′. Then set balance := 0, initialize
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the list BU ∈ B[] which contains (a, 0) for every address (a, ·) in AU ,
and ∀tx ∈ chain, i.e., the ordered transactions in the ledger such that
tx = (αs, αr, θpay, αc, θchange), do:

• If ∃(αs, ·) ∈ AU , then update the entry (αs, θpast) ∈ BU to (αs, 0);
• If ∃(αr, ·) ∈ AU , then update the entry (αr, θpast) ∈ BU to (αr, θpast+

θpay);
• If ∃(αc, ·) ∈ AU , then update the entry (αc, θpast) ∈ BU to (αc, θpast+

θchange);
Finally, for every (·, θ) ∈ BU do balance := balance + θ and send
(Balance, sid, balance) to U .

– Issue Transaction: Upon receiving (IssueTX, sid, (αr, θpay, θfee)) from
U , if C is corrupted then forward the message to A and wait for a
response (IssueTx, sid, passclient, (α′

r, θ′
pay, θ′

fee)). If U is corrupted then
set (αr, θpay, θfee) := (α′

r, θ′
pay, θ′

fee). Then find (αin, θin) ∈ BU : θin ≥
θpay + θfee. If such entry exists then compute an address αc and its
public key vkc as per the Generate Address interface, set θchange :=
θin −θpay−θfee and tx := (αin, αout, θpay, αc, θchange), send (Sign, sid, tx)
to FSIG and wait for (Signature, sid, tx, σ). Then find (αin, vk) ∈ AU
and set stx := (tx, vk, σ). If C is corrupted, send (Address, sid, αc, vkc)
and (Submit, sid, stx) to A and wait for the response (SubmitOK, sid).
Finally, send (Submit, sid, stx) to GLEDGER.

3.4 The Hardware Wallet Hybrid Setting

The hybrid setting consists of the human πhuman, client πclient, and hardware
πhw protocols, which define the set of operations run by the parties.

Human Protocol. πhuman interacts with C, H, and the environment Z, and
defines the following, initially empty, items: (i) T : a list of transactions tx =
(αr, θpay, θfee), and (ii) S: a list of client sessions sid. The model assumes that a
session is initialized when U connects the hardware module to the client device and
assigns a pass phrase passclient ∈ {0, 1}λ to each client with which she interacts,
which is chosen at random upon session initialization. Although it is assumed that
the user samples an unguessable pass phrase, future work will explore functionali-
ties that allow a malicious client to perform (dictionary) password attacks against
it. Also U keeps track of the initiated sessions and pending transactions. The user
does not perform complex computations, e.g., verifying a signature, or maintain a
large state, like the entire list of generated addresses. It is only assumed to have a
memory T , only as large as the pending transactions it is processing, and also that
it is capable of performing equality checks between strings.

Protocol πhuman

– Setup: Upon receiving (Setup, sid) from Z, forward it to H, and initial-
ize T to empty. Then upon receiving (SetupOK, sid) from H forward it
to Z.
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– Initialize Client Session: Upon receiving (InitSession, sid) from Z,
pick passclient

$←− {0, 1}λ and send (InitSession, sid, passclient) to C.
Upon receiving (InitSession, sid, pass′

client) from H, if pass′
client =

passclient then add passclient to S and send (Session, sid, pass′
client)

to H and to Z.
– Generate Address: Upon receiving (GenAddr, sid) from Z, forward

it to C and wait for two messages, (Address, sid, αclient) from C and
(Address, sid, αhw) from H. Upon receiving them, if αclient = αhw then
send (Address, sid, αhw) to Z.

– Calculate Balance: Upon receiving (GetBalance, sid) from Z, for-
ward it to C. Then upon receiving (Balance, sid, balance) from C, for-
ward it to Z.

– Issue Transaction: Upon receiving (IssueTX, sid, tx) from Z, such
that tx = (αr, θpay, θfee), add tx to T and forward the message to
C. Upon receiving (CheckTx, sid, passclient, tx′, balance′) from H, if
passclient ∈ S, tx′ ∈ T and balance′ = balance − θpay − θfee then remove
tx′ from T and send (IssueTx, sid, passclient, tx) to H.

Client Protocol. The client C interacts with the user U , the hardware wallet H
and the environment Z. The protocol πclient defines the following items: (i) mvk:
the master public key of the wallet, (ii) i: the key derivation index, (iii) pass: the
pass phrase that the user assigns to the client, (iv) Aclient: a list of the account’s
addresses, and v) Tutxo: a list of unspent balances like tx = (αin, θin), where
αin ∈ Aclient and θin > 0. C acts a proxy between U and H, provides connectivity
to the ledger and executes blockchain-related operations, e.g., computing the
account’s balance. Although during the address generation, C retrieves the public
key from H, in practice this is optional and the client can generate the address
independently via the derivation process of the hierarchical deterministic wallets.

Protocol πclient

– Initialize Client Session: Upon receiving (InitSession, sid, passclient)
from U , forward it to H. Upon receiving (MasterPubKey, sid, mvk)
from H, set pass := passclient, mvk := mvk and i := 1.

– Generate Address: Upon receiving (GenAddr, sid) from U , forward
it to H. Then upon receiving (PubKey, sid, vki) from H, compute
αi := H(vki), set i := i + 1 and add αi to Aclient. Finally, send
(Address, sid, αi) to U .

– Calculate Balance: Upon receiving (GetBalance, sid) from U ,
send (Read, sid) to GLEDGER. Upon receiving (Read, sid, chain) from
GLEDGER, set balance := 0 and Tutxo to the empty list and ∀tx ∈
chain, i.e., the ordered transactions in the ledger such that tx =
(αs, αr, θpay, αc, θchange), do:

• If αs ∈ Aclient then update the entry (αs, θpast) ∈ Tutxo to (αs, 0);
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• If αr ∈ Aclient then update the entry (αr, θpast) ∈ Tutxo to
(αr, θpast + θpay);

• If αc ∈ Aclient then update the entry (αc, θpast) ∈ Tutxo to (αc, θpast+
θchange);

Finally, for every (·, θ) ∈ Tutxo do balance := balance + θ and send
(Balance, sid, balance) to U .

– Issue Transaction: Upon receiving (IssueTX, sid, tx) from U , such
that tx = (αr, θpay, θfee), send (SignTx, sid, pass, tx, Tutxo) to H. Upon
receiving (ChangeIndex, sid, idx), set i := idx and compute and store
the public key and the address for the change as in the Generate
Address interface. Then upon receiving (SignTx, sid, stx) from H, send
(Submit, sid, stx) to GLEDGER.

Hardware Wallet Protocol. The hardware H interacts with C and U and
runs the protocol πhw, which defines the following items: (i) i: the key derivation
index, (ii) S: a list of the active client sessions, (iii) (msk, mvk): the master key
pair of the wallet, and (iv) A: a list that contains tuples like (i, αi, ski, vki) where
i is an index, αi a generated address and (ski, vki) the corresponding key pair.

Protocol πhw

– Setup: Upon receiving (Setup, sid) from U , initialize S and A to empty
lists. Then compute (msk, mvk) ← KeyGen(1λ) and set i := 1. Finally,
return (Setup, sid, msk) to U .

– Initialize Client Session: Upon receiving (InitSession, sid, passclient)
from C, forward it to U . Upon receiving (Session, sid, pass′

client) from U
add pass′

client to S and send (MasterPubKey, sid, mvk) to C.
– Generate Address: Upon receiving (GenAddr, sid) from C, compute

(ski, vki) := HierarchicalKeyGen(msk, i) and αi := H(vki). Then store
(i, αi, ski, vki) to A, set i := i + 1, and return (Address, sid, αi) to U
and (PubKey, sid, vki) to C.

– Issue Transaction: Upon receiving (SignTx, sid, passclient, tx, Tutxo)
from C, where tx = (αr, θpay, θfee), find an entry (αin, θin) ∈ Tutxo :
θin ≥ θpay+θfee. If such entry exists, then: (i) find (·, αin, skin, vkin) ∈ A,
(ii) compute the remaining change θchange := θin − θpay − θfee, (iii)
create a change address αc as in the Generate Address interface, and
(iv) compute balance as the sum of θ for every (·, θ) ∈ Tutxo and set
balance′ := balance − θpay − θfee. Then send (ChangeIndex, sid, i)
to C and (CheckTx, sid, passclient, tx′, balance′) to U , where tx′ =
(αr, θpay, θ′

fee). Upon receiving (IssueTx, sid, passclient, tx) from U , set
tx := (αin, αr, θpay, αc, θchange), compute stx := (tx, vkin, Sign(tx, skin))
and send (SignTx, sid, stx) to C.
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4 Security in the Hybrid Setting

We now assess the security of our proposed model in order to prove the security
of the hybrid setting with respect to the wallet ideal functionality. The attacks
that our model considers are the following:

(1) Privacy loss: when the adversary corrupts a client, he accesses the account’s
public keys, addresses and their balance;

(2) Payment attack: during the transaction issuing operation, the adversary
may tamper with the inputs to alter the payment amount, the receiving
address, and/or the fee amount. This attack is successful if and only if the
client is corrupted and the user deviates from her expected behavior, i.e.,
does not reject the malicious transaction data;

(3) Address generation attack: the adversary may tamper with address gener-
ation on the client’s side, so that the user acquires an address which is
adversarially controlled. This attack will be successful if and only if the
client is corrupted and the user deviates from her expected behavior, i.e.,
does not cross-check the address that the client provides with the hardware
one;

(4) Chain attack: the adversary may tamper with the balance calculation by
providing to the wallet a malicious chain. This family of attacks is successful
only if the client is corrupted, regardless if the user follows the protocol.

Chain Attacks. The attacks 1, 2 and 3 have been previously identified by empir-
ical studies showcasing their applicability [2,14]. However, the chain attack has
not been previously discussed, and is more nuanced compared to the others.
Under our model, the client is the only party that connects to the network.
Therefore, a corrupted client can mount any type of eclipse attack [15], includ-
ing the chain attacks that we describe here. We showcase an example of these
attacks.

Assume the honest chain chainw, and a transaction tx, which transfers θin

funds to an address α and is published in the j-th block of chainw. Prior to block
j, i.e., blocks with indices in [0, j − 1], a number of transactions were published
that sent an aggregated amount of θpast funds to α. The adversary A substitutes
chainw with a chain chainA, which is the prefix chain up to, but not including,
the j-th block, i.e., it consists of the blocks with indices 0 . . . j −1. Hence, during
the balance calculation, the wallet assumes that α owns θpast funds. When the
user requests a transaction tx = (αr, θpay, θfee), where θpast = θpay + θfee (same
as θpast > θpay + θfee), the wallet computes the amount of change according
to θpast, and spends the rest as fees. The attack results in forcing the wallet to
spend more funds than it would in an honest setting.

The Hybrid Setting Security Theorem. In order to prove the security of our
model, we denote the hybrid setting described in Sect. 3.4 by πhybrid. We show
that πhybrid securely realizes the wallet ideal functionality Fw defined in Sect. 3.3.
In the ideal execution, GLEDGER uses the ideal wrapper IdealValidateWrapper
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defined in Sect. 3.2, whereas in the real world it utilizes RealValidateWrapper.
Theorem 1 restricts to environments that do not corrupt the hardware party H,
therefore it cannot cover attacks mounted by the hardware wallet’s manufacturer
or cases when the hardware wallet gets corrupted due to insecure hardware.

Theorem 1 (Hybrid Wallet). Let the hybrid setting πhybrid, which is parame-
terized by a signature scheme Σ and a hash function H and interacts with GLEDGER
parameterized by RealValidateWrapper. πhybrid securely realizes the ideal function-
ality Fw, which interacts with GLEDGER parameterized by IdealValidateWrapper, if
and only if Σ is EUF-CMA and H is an instantiation of the random oracle.

Proof. The “if” part For this part of the theorem we assume that the envi-
ronment Z can distinguish between the ideal and the real execution with non-
negligible probability. We then describe a “generic” simulator S for each adver-
sary A, which emulates the interfaces defined by the functionality. S also runs
an internal copy of A and forwards the outputs of its computations to A. We
then construct a forger G that runs an internal simulation of the environment Z.
Thus, for each property assumption, we show that there exists a “bad” event E
such that, as long as E does not occur, the two executions are statistically close.
However, when E occurs, the environment Z distinguishes between the execu-
tions. At this point, G uses Z and outputs the values that break the property
under question. Therefore since, by assumption, E occurs with non-negligible
probability, we show that G is also successful with non-negligible probability.

The Simulator. Let us now construct the generic simulator S. For every
interface defined by the ideal functionality, S completes the operations in the
manner defined by the protocols in the hybrid setting. It internally runs a copy
of the adversary A and forwards the necessary messages to it as defined in the
hybrid setting. So, the view of the A when it interacts with S is the same as in
the case it operates in the real world setting. S performs as follows:

– Any inputs received from the environment Z, forward them to the internal
copy of A. Moreover, forward any output from A to Z;

– Party Setup: For every party P for which Fw sends messages, spawn an
internal simulation of the parties for human U , client C and hardware wallet
H, which also interact with A as needed and run the protocols πhuman, πclient

and πhw respectively;
– Party Corruption: Whenever the adversary A corrupts a party, S corrupts

it in the ideal process and hands to A its internal state;
– (Setup, Initialize Session, Generate Address, Issue Transaction): For

any message for these interfaces, follow the protocols πhuman, πclient and πhw

for the human, client and hardware parties.

In order to prove the theorem regarding the properties of the signature
scheme we follow the reasoning of Canetti [10]. We will show the proof for the
unforgeability property of the signature scheme, as the proofs for the other prop-
erties are similar to it.
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Unforgeability: Assume that consistency and completeness hold for Σ and
H instantiates the random oracle. In this case, the Setup, Initialize Session and
Generate Address interfaces are the same in the both settings from the adver-
sary’s point of view. Since, by assumption, Z distinguishes between the two, this
occurs during the Issue Transaction phase, i.e., by observing a valid signature
of a transaction which has not been issued by the hardware wallet.

We now construct a forger G that runs a simulated copy of Z. G fol-
lows the generic simulator as above, except for the transaction issuing inter-
face. Upon receiving (Submit, sid, stx), where stx = (tx, vk, σ), it checks if
Verify(tx, vk, σ) = True. If so, it accesses the internal state of the hardware
H and checks whether it has issued stx. If so, then it continues the simula-
tion. Else G outputs stx as a forgery. Since, as long as this does not occur,
the two executions are statistically close and, by assumption, Z is successful
with non-negligible probability, then the probability that G is also successful is
non-negligible.

The “Only if” Direction. We show that if one property does not hold,
then the probability that the “bad” event E (as above) occurs is non-negligible,
so that the environment Z can distinguish between the real and ideal executions.

Again we prove the theorem for the unforgeability property - the proofs for
the other properties of Σ are constructed similarly.

Unforgeability: Assume that unforgeability does not hold for Σ, so there
exists a forger G for Σ. When G wishes to obtain a signature for some message m,
the environment sends the message (IssueTx, sid, m) and forwards the response
to G. When G outputs a forgery stx = (tx, vk, σ), if tx has been previously
signed then the environment halts. Else it sends stx to GLEDGER and observes
the ledger’s updates. In the ideal setting the transaction will be rejected by
the validation predicate and it will never be included in the ledger, whereas in
the real world the probability that the transaction is accepted and eventually
published in the ledger is non-negligible.

Finally, we show the proof for the address randomness property which accom-
panies the assumption that H instantiates a random oracle.

Address Randomness: Assume that all properties for Σ hold. Now the
Setup, Initialize Session and Issue Transaction interfaces are similar in both
settings. So if Z distinguishes between the two worlds, then this occurs during an
address generation interaction. Specifically, it should observe addresses which are
not uniformly distributed over the space of possible addresses. This is impossible
in the ideal world by construction. However, if this was true for the real world,
then H would not instantiate the random oracle, therefore by assumption it is
impossible for Z to distinguish between the two worlds. 
�

Theorem 1 can be used to prove the security of any wallet scheme that real-
izes the hybrid setting. To evaluate a wallet implementation, first it is identified
whether it realizes the human, client and hardware protocols. Under the premise
of a faithful realization of these protocols, i.e., in terms of exchanged messages
and internal operations, the security assumptions of its building components are
evaluated. More precisely, the signature algorithm that the wallet uses must be
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EUF-CMA, the hash function must act as a random oracle, and the communi-
cation channels between the parties must be secure. Typical examples of such
components are the ECDSA [17] signature algorithm and a SHA-2 [22] hash
function. If these assumptions hold, then the wallet is secure under our model.

The Negligent User. In Sect. 3.4 we presented a well-defined protocol that the
user should follow. As shown in Sect. 4, as long as the parties follow the defined
protocols faithfully - and the cryptographic primitives used are strong enough
- then the hardware wallet setting is secure. The integrity of the transaction
issuing and the address generation operations are entirely based on the premise
that the user will identify any malicious data, by comparing correctly the data
shown by the client with the data shown by the hardware. However, even though
this might be trivial for software, e.g., for the client and the hardware wallet,
people are prone to errors. Comparison of long hexadecimal strings has long
been proved a challenging procedure, with many research outcomes suggesting
that it is unrealistic to expect a perfect comparison of cryptographic hashes
e.g., [16,23,24], as humans find this process difficult and are prone to errors. In
real world scenarios, the user aims at performing any operation quickly and being
into a hurry often causes deviations from the expected behavior. Additionally,
expecting the user to manually copy a Bitcoin address shown on the hardware’s
screen, defeats the usability purposes of the wallets. Thus, it is more than possible
that the user will choose to simply copy the address directly from the client.
However, such usability difficulties of the compare-and-confirm process open an
attack vector for the payment and address generation attacks.

We model the probability of a user diverging from the human protocol πhuman

as a random variable Rh ∈ [0, 1], which equally denotes the probability of suc-
cessful payment and address attacks. The distribution of Rh varies, depending
both on the vigilance of the user and usability parameters. For example, a user
allowing all requests to be completed without checking, i.e., because the process
takes too long and the data is difficult to read, would be identified by Rh close to
1. A user who carefully checks the data, i.e., because there are no time restric-
tions or because the hardware presents it is such way that captures the user’s
attention, would be identified by Rh closer to 0. Another factor that may affect
Rh is the length of the addresses: the longer the address, the more difficult to
read and compare. However, the experimental evaluation of Rh through usabil-
ity studies of Bitcoin addresses and the user’s capability to compare-and-confirm
them correctly is out of the scope of this work and is left as future research.

5 Product Evaluation

As of September 2018, the hardware wallets suggested by bitcoin.org are Dig-
ital Bitbox, KeepKey, Ledger, and Trezor. All, except Digital Bitbox, have an
embedded screen to present information to the user, thus we focus on Keep-
Key, Trezor and Ledger. We manually inspected these wallets, extracted their
protocols, and mapped them to our model. Our results show that the imple-
mentations bare significant similarities. Although the wallets do have different

https://bitcoin.org/
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low-level implementations, the protocols that they execute are captured by the
hybrid setting presented in Sect. 3.4. Instantiating our model to the actual imple-
mentations indicates the correctness of previous empirical studies, which suggest
that the Ledger wallets are prone to the payment [14] and address generation [2]
attacks. The wallets are subject to these attacks when the client is dishonest and
are secure only if the cryptographic primitives are secure and the user does not
deviate from the defined protocol, i.e., successfully identifies any tampered data.
Moreover, the instantiation of our model to the three implementations suggests
that the wallets are prone to the chain attack, which has not been previously
discussed. In this case, the attack cannot be blocked by the user, thus the wal-
lets are secure against these attacks if and only if the underlying cryptographic
mechanisms are secure and the client is honest.

In this section we use the model of Sect. 3.4 to evaluate these products.
We identify whether such implementations are faithful to our protocols and, if
not, identify the possible attacks that can be mounted against them. We expect
this type of evaluation to become an industry standard for hardware wallets,
so that vendors can improve the security and performance of their products by
employing formal verification methods, instead of empirical techniques.

For each implementation we focus on the two core wallet operations: address
generation and transaction issuing. Since all implementations are susceptible to
chain attacks, we focus on the viability of payment and address attacks in each
case. We show that Trezor and KeepKey are secure against payment and address
attacks, as long as the user follows the protocol and verifies the data, whereas
Ledger wallets are prone to address attacks, due to divergence from our model.

Trezor and KeepKey. We investigate the implementation of the Trezor Model T
and KeepKey hardware wallets. Both products are implemented similarly, so we
will focus Trezor, since our findings also apply to KeepKey. Trezor provides a
touch screen for both displaying information and receiving input from the user.
Based on the developer’s guide1, which is publicly accessible, we describe an
abstraction of Trezor’s behavior under our model.

During address generation, Trezor requires that the user connects the token
to the client and unlocks it, i.e., the user initiates a session similar to our model
definition. The client then retrieves the address from the hardware token and
displays it to the user. The hardware also displays the address, as long as the
“Show on Trezor” option is enabled2. If this option is disabled, then the user
cannot verify the client’s address and is prone to an address attack, i.e., the
client might display a malicious address which the user cannot cross-check with
the hardware wallet. However, the user manual does urge the user to always
check the two addresses3, in order to avoid such attack scenarios.

During transaction issuing, the user again connects the device to the client
and unlocks it. Then she initiates a transaction by giving to the client the recip-

1 Trezor developer’s guide: https://wiki.trezor.io/Developers guide.
2 See: https://wiki.trezor.io/Developers guide:Trezor Connect API Methods.
3 See: https://wiki.trezor.io/User manual:Receiving payments.

https://wiki.trezor.io/Developers_guide
https://wiki.trezor.io/Developers_guide:Trezor_Connect_API_Methods
https://wiki.trezor.io/User_manual:Receiving_payments
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ient’s address, and the payment and fee amounts, similarly to our hybrid model
setting. The client initiates the transaction signing process with the hardware by
providing this data, which the token then displays to the user for verification4.
After the user has verified the transaction, the hardware communicates with the
client and signs the needed data5. Again, given our high level investigation, this
process matches the communication steps that our model describes.

Ledger. We investigate the implementation of Ledger Nano S according to the
user manual6 and our own analysis. Similarly to Trezor, before performing any
operation the user is required to initiate a session by connecting the hardware to
the client and unlocking it. The hardware provides a small screen for displaying
information and a pair of two buttons for receiving commands from the user.

During the address generation, the client displays the newly generated address
to the user. However, there is no option for the hardware wallet to also display
the address7, so that the user can cross-check and verify the two. This is a clear
divergence from our model and allows for address attacks, e.g., by a corrupted client
that displays a malicious address to the user.

The transaction issuing process is also similar to Trezor and captured by our
model: the user inputs to the client the transaction data, i.e., the recipient’s
address, and the payment and the fee amounts. The client forwards this data to
the hardware, which displays it to the user for verification. After receiving the
user’s confirmation, the hardware interacts with the client in order to sign and
publish the transaction.

6 Conclusion

The presented work is the first effort to formally describe Bitcoin wallets. We
focus on hardware wallets, as they are considered the most secure means of
account management, while also being the least studied part of cryptocurrency
ecosystems, and devise a model to formally prove their security specifications.
We prove that their security is not one-dimensional and entirely based on secure
primitives as expected; external factors such as the client to which the hardware
connects and the user who operates the wallet play a major role in the overall
wallet’s security. Our model provides a guide for implementing and verifying
existing or future wallets. Indeed, by evaluating the Keepkey, Ledger and Trezor
wallets we show that security can only be guaranteed if the cryptographic prim-
itives are secure and if each party executes their protocol correctly. However,
since a user’s deviation from the protocol is to be expected, due to human errors
and usability problems of hash comparison techniques, future work will focus on
evaluating this error probability and proposing techniques to reduce such risk.
4 See: https://wiki.trezor.io/User manual:Making payments.
5 See: https://wiki.trezor.io/Developers guide:API Workflows.
6 See: https://support.ledgerwallet.com/hc/en-us/articles/360009676633.
7 Ledger has issued firmware update to address this issue and allow both the client and

the hardware to generate and display the address. However, the firmware needs to be
updated manually, a process that is commonly neglected by common users.

https://wiki.trezor.io/User_manual:Making_payments
https://wiki.trezor.io/Developers_guide:API_Workflows
https://support.ledgerwallet.com/hc/en-us/articles/360009676633
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Abstract. The adoption of blockchain based distributed ledgers is grow-
ing fast due to their ability to provide reliability, integrity, and auditabil-
ity without trusted entities. One of the key capabilities of these emerging
platforms is the ability to create self-enforcing smart contracts. How-
ever, the development of smart contracts has proven to be error-prone
in practice, and as a result, contracts deployed on public platforms are
often riddled with security vulnerabilities. This issue is exacerbated by
the design of these platforms, which forbids updating contract code and
rolling back malicious transactions. In light of this, it is crucial to ensure
that a smart contract is secure before deploying it and trusting it with
significant amounts of cryptocurrency. To this end, we introduce the
VeriSolid framework for the formal verification of contracts that are
specified using a transition-system based model with rigorous operational
semantics. Our model-based approach allows developers to reason about
and verify contract behavior at a high level of abstraction. VeriSolid
allows the generation of Solidity code from the verified models, which
enables the correct-by-design development of smart contracts.

1 Introduction

The adoption of blockchain based platforms is rising rapidly. Their popularity
is explained by their ability to maintain a distributed public ledger, providing
reliability, integrity, and auditability without a trusted entity. Early blockchain
platforms, e.g., Bitcoin, focused solely on creating cryptocurrencies and payment
systems. However, more recent platforms, e.g., Ethereum, also act as distributed
computing platforms [43,45] and enable the creation of smart contracts, i.e., soft-
ware code that runs on the platform and automatically executes and enforces the
terms of a contract [10]. Since smart contracts can perform any computation1,
they allow the development of decentralized applications, whose execution is
safeguarded by the security properties of the underlying platform. Due to their

1 While the virtual machine executing a contract may be Turing-complete, the amount
of computation that it can perform is actually limited in practice.
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unique advantages, blockchain based platforms are envisioned to have a wide
range of applications, ranging from financial to the Internet-of-Things [9].

However, the trustworthiness of the platform guarantees only that a smart
contract is executed correctly, not that the code of the contract is correct. In
fact, a large number of contracts deployed in practice suffer from software vul-
nerabilities, which are often introduced due to the semantic gap between the
assumptions that contract writers make about the underlying execution seman-
tics and the actual semantics of smart contracts [25]. A recent automated anal-
ysis of 19,336 contracts deployed on the public Ethereum blockchain found that
8,333 contracts suffered from at least one security issue [25]. While not all of
these issues lead to security vulnerabilities, many of them enable stealing digital
assets, such as cryptocurrencies. Smart-contract vulnerabilities have resulted in
serious security incidents, such as the “DAO attack,” in which $50 million worth
of cryptocurrency was stolen [14], and the 2017 hack of the multisignature Parity
Wallet library [32], which lost $280 million worth of cryptocurrency.

The risk posed by smart-contract vulnerabilities is exacerbated by the typical
design of blockchain based platforms, which does not allow the code of a contract
to be updated (e.g., to fix a vulnerability) or a malicious transaction to be
reverted. Developers may circumvent the immutability of code by separating
the “backend” code of a contract into a library contract that is referenced and
used by a “frontend” contract, and updating the backend code by deploying a
new instance of the library and updating the reference held by the frontend.
However, the mutability of contract terms introduces security and trust issues
(e.g., there might be no guarantee that a mutable contract will enforce any
of its original terms). In extreme circumstances, it is also possible to revert a
transaction by performing a hard fork of the blockchain. However, a hard fork
requires consensus among the stakeholders of the entire platform, undermines
the trustworthiness of the entire platform, and may introduce security issues
(e.g., replay attacks between the original and forked chains).

In light of this, it is crucial to ensure that a smart contract is secure before
deploying it and trusting it with significant amounts of cryptocurrency. Three
main approaches have been considered for securing smart contracts, including
secure programming practices and patterns (e.g., Checks–Effects–Interactions
pattern [40]), automated vulnerability-discovery tools (e.g., Oyente [25,42]),
and formal verification of correctness (e.g., [17,21]). Following secure program-
ming practices and using common patterns can decrease the occurrence of vulner-
abilities. However, their effectiveness is limited for multiple reasons. First, they
rely on a programmer following and implementing them, which is error prone
due to human nature. Second, they can prevent a set of typical vulnerabilities,
but they are not effective against vulnerabilities that are atypical or belong
to types which have not been identified yet. Third, they cannot provide for-
mal security and safety guarantees. Similarly, automated vulnerability-discovery
tools consider generic properties that usually do not capture contract-specific
requirements and thus, are effective in detecting typical errors but ineffective in
detecting atypical vulnerabilities. These tools typically require security proper-
ties and patterns to be specified at a low level (usually bytecode) by security
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experts. Additionally, automated vulnerability-discovery tools are not precise;
they often produce false positives.

On the contrary, formal verification tools are based on formal operational
semantics and provide strong verification guarantees. They enable the formal
specification and verification of properties and can detect both typical and atyp-
ical vulnerabilities that could lead to the violation of some security property.
However, these tools are harder to automate.

Our approach falls in the category of formal verification tools, but it also pro-
vides an end-to-end design framework, which combined with a code generator,
allows the correctness-by-design development of Ethereum smart contracts. We
focus on providing usable tools for helping developers to eliminate errors early
at design time by raising the abstraction level and employing graphical repre-
sentations. Our approach does not produce false positives for safety properties
and deadlock-freedom.

In principle, a contract vulnerability is a programming error that enables an
attacker to use a contract in a way that was not intended by the developer. To
detect vulnerabilities that do not fall into common types, developers must spec-
ify the intended behavior of a contract. Our framework enables developers to
specify intended behavior in the form of liveness, deadlock-freedom, and safety
properties, which capture important security concerns and vulnerabilities. One
of the key advantages of our model-based verification approach is that it allows
developers to specify desired properties with respect to high-level models instead
of, e.g., bytecode. Our tool can then automatically verify whether the behavior
of the contract satisfies these properties. If a contract does not satisfy some
of these properties, our tool notifies the developers, explaining the execution
sequence that leads to the property violation. The sequence can help the devel-
oper to identify and correct the design errors that lead to the erroneous behavior.
Since the verification output provides guarantees to the developer regarding the
actual execution semantics of the contract, it helps eliminating the semantic
gap. Additionally, our verification and code generation approach fits smart con-
tracts well because contract code cannot be updated after deployment. Thus,
code generation needs to be performed only once before deployment.

Contributions. We build on the FSolidM [27,28] framework, which provides a
graphical editor for specifying Ethereum smart contracts as transitions systems
and a Solidity code generator.2 We present the VeriSolid framework, which
introduces formal verification capabilities, thereby providing an approach for
correct-by-design development of smart contracts. Our contributions are:

– We extend the syntax of FSolidM models (Definition 1), provide formal opera-
tional semantics (FSolidM has no formal operational semantics) for our model
(Sect. 3.3) and for supported Solidity statements ([29, Appendix A.3]), and
extend the Solidity code generator ([29, Appendix E]).

2 Solidity is the high-level language for developing Ethereum contracts. Solidity code
can be compiled into bytecode, which can be executed on the Ethereum platform.
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Fig. 1. Design and verification workflow.

– We design and implement developer-friendly natural-language like templates
for specifying safety and liveness properties (Sect. 3.4).

– The developer input of VeriSolid is a transition system, in which each tran-
sition action is specified using Solidity code. We provide an automatic trans-
formation from the initial system into an augmented transition system, which
extends the initial system with the control flow of the Solidity action of each
transition (Sect. 4). We prove that the initial and augmented transition sys-
tems are observationally equivalent (Sect. 4.1); thus, the verified properties of
the augmented model are also guaranteed in the initial model.

– We use an overapproximation approach for the meaningful and efficient verifi-
cation of smart-contract models (Sect. 5). We integrate verification tools (i.e.,
nuXmv and BIP) and present verification results.

2 VeriSolid: Design and Verification WorkFlow

VeriSolid is an open-source3 and web-based framework that is built on top of
WebGME [26] and FSolidM [27,28]. VeriSolid allows the collaborative develop-
ment of Ethereum contracts with built-in version control, which enables branch-
ing, merging, and history viewing. Figure 1 shows the steps of the VeriSolid
design flow. Mandatory steps are represented by solid arrows, while optional
steps are represented by dashed arrows. In step 1 , the developer input is given,
which consists of:

– A contract specification containing (1) a graphically specified transition sys-
tem and (2) variable declarations, actions, and guards specified in Solidity.

3 https://github.com/anmavrid/smart-contracts.

https://github.com/anmavrid/smart-contracts
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– A list of properties to be verified, which can be expressed using predefined
natural-language like templates.

The verification loop starts at the next step. Optionally, step 2 is automatically
executed if the verification of the specified properties requires the generation
of an augmented contract model4. Next, in step 3 , the Behavior-Interaction-
Priority (BIP) model of the contract (augmented or not) is automatically gener-
ated. Similarly, in step 4 , the specified properties are automatically translated
to Computational Tree Logic (CTL). The model can then be verified for deadlock
freedom or other properties using tools from the BIP tool-chain [5] or nuXmv [7]
(step 5 ). If the required properties are not satisfied by the model (depending
on the output of the verification tools), the specification can be refined by the
developer (step 6 ) and analyzed anew. Finally, when the developers are sat-
isfied with the design, i.e., all specified properties are satisfied, the equivalent
Solidity code of the contract is automatically generated in step 7 . The follow-
ing sections describe the steps from Fig. 1 in detail. Due to space limitations, we
present the Solidity code generation (step 7 ) in [29, Appendix E].

3 Developer Input: Transition Systems and Properties

3.1 Smart Contracts as Transition Systems

To illustrate how to represent smart contracts as transition systems, we use the
Blind Auction example from prior work [27], which is based on an example from
the Solidity documentation [38].

In a blind auction, each bidder first makes a deposit and submits a blinded
bid, which is a hash of its actual bid, and then reveals its actual bid after all
bidders have committed to their bids. After revealing, each bid is considered
valid if it is higher than the accompanying deposit, and the bidder with the
highest valid bid is declared winner. A blind auction contract has four main
states:

1. AcceptingBlindedBids: bidders submit blinded bids and make deposits;
2. RevealingBids: bidders reveal their actual bids by submitting them to the

contract, and the contract checks for each bid that its hash is equal to the
blinded bid and that it is less than or equal to the deposit made earlier;

3. Finished: winning bidder (i.e., the bidder with the highest valid bid) with-
draws the difference between her deposit and her bid; other bidders withdraw
their entire deposits;

4. Canceled: all bidders withdraw their deposits (without declaring a winner).

This example illustrates that smart contracts have states (e.g., Finished).
Further, contracts provide functions, which allow other entities (e.g., users or
contracts) to invoke actions and change the states of the contracts. Hence, we can
represent a smart contract naturally as a transition system [39], which comprises

4 We give the definition of an augmented smart contract in Sect. 4.
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a set of states and a set of transitions between those states. Invoking a transition
forces the contract to execute the action of the transition if the guard condition
of the transition is satisfied. Since such states and transitions have intuitive
meanings for developers, representing contracts as transition systems provides
an adequate level of abstraction for reasoning about their behavior.

Fig. 2. Blind auction example as a transition system.

Figure 2 shows the blind auction example in the form of a transition
system. For ease of presentation, we abbreviate AcceptingBlindedBids,
RevealingBids, Finished, and Canceled to ABB, RB, F, and C, respectively.
The initial state of the transition system is ABB. To differentiate between tran-
sition names and guards, we use square brackets for the latter. Each transition
(e.g., close, withdraw) corresponds to an action that a user may perform dur-
ing the auction. For example, a bidding user may execute transition reveal
in state RB to reveal its blinded bid. As another example, a user may exe-
cute transition finish in state RB, which ends the revealing phase and declares
the winner, if the guard condition now >= creationTime + 10 days is true.
A user can submit a blinded bid using transition bid, close the bidding phase
using transition close, and withdraw her deposit (minus her bid if she won)
using transitions unbid and withdraw. Finally, the user who created the auc-
tion may cancel it using transitions cancelABB and cancelRB. For clarity of
presentation, we omitted from Fig. 2 the specific actions that the transitions
take (e.g., transition bid executes—among others—the following statement:
pendingReturns[msg.sender] += msg.value;).

3.2 Formal Definition of a Smart Contract

We formally define a contract as a transition system. To do that, we consider a
subset of Solidity statements, which are described in detail in [29, Appendix A.1].
We chose this subset of Solidity statements because it includes all the essential
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control structures: loops, selection, and return statements. Thus, it is a Turing-
complete subset, and can be extended in a straightforward manner to capture all
other Solidity statements. Our Solidity code notation is summarized in Table 1.

Table 1. Summary of notation for Solidity code

Symbol Meaning

T Set of Solidity types

I Set of valid Solidity identifiers

D Set of Solidity event and custom-type definitions

E Set of Solidity expressions

C Set of Solidity expressions without side effects

S Set of supported Solidity statements

Definition 1. A transition-system initial smart contract is a tuple (D,S, SF ,
s0, a0, aF , V, T ), where

– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, a0 ∈ S are the initial state and action;
– aF ∈ S is the fallback action;
– V ⊂ I × T contract variables (i.e., variable names and types);
– T ⊂ I × S × 2I×T × C × (T ∪ ∅) × S × S is a transition relation, where each

transition ∈ T includes: transition name tname ∈ I; source state tfrom ∈ S;
parameter variables (i.e., arguments) tinput ⊆ I × T; transition guard gt ∈ C;
return type toutput ∈ (T ∪ ∅); action at ∈ S; destination state tto ∈ S.

The initial action a0 represents the constructor of the smart contract. A con-
tract can have at most one constructor. In the case that the initial action a0 is
empty (i.e., there is no constructor), a0 may be omitted from the transition sys-
tem. A constructor is graphically represented in VeriSolid as an incoming arrow
to the initial state. The fallback action aF represents the fallback function of the
contract. Similar to the constructor, a contract can have at most one fallback
function. Solidity fallback functions are further discussed in [29, Appendix C.1].

Lack of the Re-entrancy Vulnerability. VeriSolid allows specifying con-
tracts such that the re-entrancy vulnerability is prevented by design. In particu-
lar, after a transition begins but before the execution of the transition action, the
contract changes its state to a temporary one (see [29, Appendix E]). This pre-
vents re-entrancy since none of the contract functions5 can be called in this state.
5 Our framework implements transitions as functions, see [29, Appendix E].
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One might question this design decision since re-entrancy is not always harm-
ful. However, we consider that it can pose significant challenges for providing
security. First, supporting re-entrancy substantially increases the complexity of
verification. Our framework allows the efficient verification—within seconds—of
a broad range of properties, which is essential for iterative development. Second,
re-entrancy often leads to vulnerabilities since it significantly complicates con-
tract behavior. We believe that prohibiting re-entrancy is a small price to pay
for security.

3.3 Smart-Contract Operational Semantics

We define the operational semantics of our transition-system based smart con-
tracts in the form of Structural Operational Semantics (SOS) rules [37]. We let
Ψ denote the state of the ledger, which includes account balances, values of state
variables in all contracts, number and timestamp of the last block, etc. During
the execution of a transition, the execution state σ = {Ψ,M} also includes the
memory and stack state M . To handle return statements and exceptions, we also
introduce an execution status, which is E when an exception has been raised,
R[v] when a return statement has been executed with value v (i.e., return v),
and N otherwise. Finally, we let Eval(σ,Exp) → 〈(σ̂, x), v〉 signify that the eval-
uation of a Solidity expression Exp in execution state σ yields value v and—as
a side effect—changes the execution state to σ̂ and the execution status to x.6

A transition is triggered by providing a transition (i.e., function) name ∈ I

and a list of parameter values v1, v2, . . .. The normal execution of a transition
without returning any value, which takes the ledger from state Ψ to Ψ ′ and the
contract from state s ∈ S to s′ ∈ S, is captured by the TRANSITION rule:

t ∈ T,name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt) → 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, N), ·〉

σ̂′ = (Ψ ′,M ′), s′ = tto
TRANSITION 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s′, ·)〉

This rule is applied if there exists a transition t whose name tname is name and
whose source state tfrom is the current contract state s (first line). The execution
state σ is initialized by taking the parameter values Params(t, v1, v2, . . .) and
the current ledger state Ψ (second line). If the guard condition gt evaluates
Eval(σ, gt) in the current state σ to true (third line), then the action statement at

of the transition is executed (fourth line), which results in an updated execution
state σ̂′ (see statement rules in [29, Appendix A.3]). Finally, if the resulting
execution status is normal N (i.e., no exception was thrown), then the updated
ledger state Ψ ′ and updated contract state s′ (fifth line) are made permanent.

We also define SOS rules for all cases of erroneous transition execution
(e.g., exception is raised during guard evaluation, transition is reverted, etc.)
6 Note that the correctness of our transformations does not depend on the exact

semantics of Eval.
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and for returning values. Due to space limitations, we include these rules in
[29, Appendix A.2]. We also define SOS rules for supported statements in [29,
Appendix A.3].

3.4 Safety, Liveness, and Deadlock Freedom

A VeriSolid model is automatically verified for deadlock freedom. A developer
may additionally verify safety and liveness properties. To facilitate the specifica-
tion of properties, VeriSolid offers a set of predefined natural-language like tem-
plates, which correspond to properties in CTL. Alternatively, properties can be
specified directly in CTL. Let us go through some of these predefined templates.
Due to space limitations, the full template list, as well as the CTL property
correspondence is provided in [29, Appendix B].

uint amount = pendingReturns[msg.sender ];
if (amount > 0) {

if (msg.sender != highestBidder)
msg.sender.transfer(amount );

else
msg.sender.transfer(amount - highestBid );

pendingReturns[msg.sender] = 0;
}

Fig. 3. Action of transition withdraw in Blind Auction, specified using Solidity.

〈Transitions ∪ Statements〉 cannot happen after
〈Transitions ∪ Statements〉.

The above template expresses a safety property type. Transitions is a sub-
set of the transitions of the model (i.e., Transitions ⊆ T ). A statement from
Statements is a specific inner statement from the action of a specific transition
(i.e., Statements ⊆ T × S). For instance, we can specify the following safety
properties for the Blind Auction example:

– bid cannot happen after close.
– cancelABB; cancelRB cannot happen after finish,

where cancelABB; cancelRB means cancelABB ∪ cancelRB.

If 〈Transitions ∪ Statements〉 happens, 〈Transitions ∪ Statements〉 can
happen only after 〈Transitions ∪ Statements〉 happens.

The above template expresses a safety property type. A typical vulnerability
is that currency withdrawal functions, e.g., transfer, allow an attacker to with-
draw currency again before updating her balance (similar to “The DAO” attack).
To check this vulnerability type for the Blind Auction example, we can specify
the following property. The statements in the action of transition withdraw are
shown in Fig. 3.
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– if withdraw.msg.sender.transfer(amount); happens,
withdraw.msg.sender.transfer(amount); can happen only after
withdraw.pendingReturns[msg.sender]=0; happens.

As shown in the example above, a statement is written in the following form:
Transition.Statement to refer to a statement of a specific transition. If there
are multiple identical statements in the same transition, then all of them are
checked for the same property. To verify properties with statements, we need to
transform the input model into an augmented model, as presented in Sect. 4.

〈Transitions ∪ Statements〉 will eventually happen after
〈Transitions ∪ Statements〉.

Finally, the above template expresses a liveness property type. For instance,
with this template we can write the following liveness property for the Blind Auc-
tion example to check the Denial-of-Service vulnerability ([29, Appendix C.2]):

– withdraw.pendingReturns[msg.sender]=0; will eventually happen after
withdraw.msg.sender.transfer(amount);.

4 Augmented Transition System Transformation

To verify a model with Solidity actions, we transform it to a functionally equiv-
alent model that can be input into our verification tools. We perform two trans-
formations: First, we replace the initial action a0 and the fallback action aF

with transitions. Second, we replace transitions that have complex statements
as actions with a series of transitions that have only simple statements (i.e., vari-
able declaration and expression statements). After these two transformations, the
entire behavior of the contract is captured using only transitions. The transfor-
mation algorithms are discussed in detail in [29, Appendices D.1 and D.2]. The
input of the transformation is a smart contract defined as a transition system (see
Definition 1). The output of the transformation is an augmented smart contract :

Definition 2. An augmented contract is a tuple (D,S, SF , s0, V, T ), where

– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, is the initial state;
– V ⊂ I × T contract variables (i.e., variable names and types);
– T ⊂ I × S × 2I×T × C × (T ∪ ∅) × S × S is a transition relation (i.e., transi-

tion name, source state, parameter variables, guard, return type, action, and
destination state).

Figure 4 shows the augmented withdraw transition of the Blind Auction
model. We present the complete augmented model in [29, Appendix F]. The
action of the original withdraw transition is shown by Fig. 3. Notice the added
state withdraw, which avoids re-entrancy by design, as explained in Sect. 3.2.
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Fig. 4. Augmented model of transition withdraw.

4.1 Observational Equivalence

We study sufficient conditions for augmented models to be behaviorally equiv-
alent to initial models. To do that, we use observational equivalence [30] by
considering non-observable β−transitions. We denote by SI and SE the set of
states of the smart contract transition system and its augmented derivative,
respectively. We show that R = {(q, r) ∈ SI × SE} is a weak bi-simulation by
considering as observable transitions A, those that affect the ledger state, while
the remaining transitions B are considered non-observable transitions. Accord-
ing to this definition, the set of transitions in the smart contract system, which
represent the execution semantics of a Solidity named function or the fallback,
are all observable. On the other hand, the augmented system represents each
Solidity function using paths of multiple transitions. We assume that final tran-
sition of each such path is an α transition, while the rest are β transitions. Our
weak bi-simulation is based on the fact the effect of each α ∈ A on the ledger
state is equal for the states of SI and SE . Therefore, if σI = σE at the initial
state of α, then σ′

I = σ′
E at the resulting state.

A weak simulation over I and E is a relation R ⊆ SI ×SE such that we have:

Property 1. For all (q, r) ∈ R and for each α ∈ A, such that q
α→ q′, there is r′

such that r
β�αβ�

→ r′ where (q′, r′) ∈ R
For each observable transition α of a state in SI , it should be proved that (i)
a path that consists of α and other non-observable transitions exists in all its
equivalent states in SE , and (ii) the resulting states are equivalent.

Property 2. For all (q, r) ∈ R and α ∈ A, such that r
α→ r′, there is q′ such

that q
α→ q′ where (q′, r′) ∈ R.



VeriSolid: Correct-by-Design Smart Contracts for Ethereum 457

For each observable outgoing transition in a state in SE , it should be proved
that (i) there is an outgoing observable transition in all its equivalent states
in SI , and (ii) the resulting states are equivalent.

Property 3. For all (q, r) ∈ R and β ∈ B such that r
β→ r′, (q, r′) ∈ R

For each non observable transition, it should be proved that the the resulting
state is equivalent with all the states that are equivalent with the initial state.

Theorem 1. For each initial smart contract I and its corresponding augmented
smart contract E, it holds that I ∼ E.

The proof of Theorem 1 is presented in the [29, Appendix D.3].

5 Verification Process

Our verification approach checks whether contract behavior satisfies properties
that are required by the developer. To check this, we must take into account the
effect of data and time. However, smart contracts use environmental input as
control data, e.g., in guards. Such input data can be infinite, leading to infinitely
many possible contract states. Exploring every such state is highly inefficient [11]
and hence, appropriate data and time abstractions must be employed.

We apply data abstraction to ignore variables that depend on (e.g., are
updated by) environmental input. Thus, an overapproximation of the contract
behavior is caused by the fact that transition guards with such variables are
not evaluated; instead, both their values are assumed possible and state space
exploration includes execution traces with and without each guarded transition.
In essence, we analyze a more abstract model of the contract, with a set of reach-
able states and traces that is a superset of the set of states (respectively, traces)
of the actual contract. As an example, let us consider the function in Fig. 5.

void fn(int x) {
if (x < 0) {

... (1)
}
if (x > 0) {

... (2)
}

}

Fig. 5. Code example.

An overapproximation of the function’s execution includes traces where both
lines (1) and (2) are visited, even though they cannot both be satisfied by the
same values of x. Note that abstraction is not necessary for variables that are
independent of environment input (e.g. iteration counters of known range). These
are updated in the model as they are calculated by contract statements.
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We also apply abstraction to time variables (e.g. the now variable in the Blind
Auction) using a slightly different approach. Although we need to know which
transitions get invalidated as time increases, we do not represent the time spent
in each state, as this time can be arbitrarily high. Therefore, for a time-guarded
transition in the model, say from a state sx, one of the following applies:

– if the guard is of type t ≤ tmax, checking that a time variable does not exceed
a threshold, a loop transition is added to sx, with an action t = tmax + 1
that invalidates the guard. A deadlock may be found in traces where this
invalidating loop is executed (e.g., if no other transitions are offered in sx).

– if the guard is of type t > tmin, checking that a time variable exceeds a
threshold, an action t=tmin+1 is added to the guarded transition. This sets
the time to the earliest point that next state can be reached (e.g., useful for
checking bounded liveness properties.)

This overapproximation has the following implications.
Safety Properties: Safety properties that are fulfilled in the abstract model

are also guaranteed in the actual system. Each safety property checks the non-
reachability of a set of erroneous states. If these states are unreachable in the
abstract model, they will be unreachable in the concrete model, which contains
a subset of the abstract model’s states. This property type is useful for checking
vulnerabilities in currency withdrawal functions (e.g., the “DAO attack”).

Liveness Properties: Liveness properties that are violated in the abstract
model are also violated in the actual system. Each liveness property checks that
a set of states are reachable. If they are found unreachable (i.e., liveness vio-
lation) in the abstract model, they will also be unreachable in the concrete
model. This property type is useful for “Denial-of-Service” vulnerabilities ([29,
Appendix C.2]).

Deadlock Freedom: States without enabled outgoing transitions are identi-
fied as deadlock states. If no deadlock states are reachable in the abstract model,
they will not be reachable in the actual system.

5.1 VeriSolid-to-BIP Mapping

Since both VeriSolid and BIP model contract behavior as transition systems, the
transformation is a simple mapping between the transitions, states, guards, and
actions of VeriSolid to the transitions, states, guards, and actions of BIP (see [29,
Appendix C.3] for background on BIP). Because this is an one-to-one mapping,
we do not provide a proof. Our translation algorithm performs a single-pass
syntax-directed parsing of the user’s VeriSolid input and collects values that are
appended to the attributes list of the templates. Specifically, the following values
are collected:

– variables v ∈ V , where type(v) is the data type of v and name(v) is the
variable name (i.e., identifier);

– states s ∈ S;
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– transitions t ∈ T , where tname is the transition (and corresponding port)
name, tfrom and tto are the outgoing and incoming states, at and gt are
invocations to functions that implement the associated actions and guards.

Figure 6 shows the BIP code template. We use fixed-width font for the gen-
erated output, and italic font for elements that are replaced with input.

atom type Contract()

∀v ∈ V : data type(v) name(v)

∀t ∈ T : export port synPort tname
()

places s0, . . . , s|S|−1

initial to s0

∀t ∈ T : on tname
from tfrom to tto

provided (gt) do {at}
end

Fig. 6. BIP code generation template.

Table 2. Analyzed properties and verification results for the case study models.

Case Study Properties Type Result

BlindAuction
(initial) states: 54

(i) bid cannot happen after close:
AG

(
close → AG¬bid) Safety Verified

(ii) cancelABB or cancelRB cannot happen
after finish:
AG

(
finish → AG¬(

cancelRB ∨ cancelABB
))

Safety Verified

(iii) withdraw can happen only after finish:
A
[ ¬withdraw W finish

] Safety Verified

(iv) finish can happen only after close:
A
[ ¬finish W close

] Safety Verified

BlindAuction
(augmented)
states: 161

(v) 23 cannot happen after 18:
AG

(
18 → AG¬23) Safety Verified

(vi) if 21 happens, 21 can happen only after
24:
AG

(
21 → AX A

[¬21 W
(
24

) ])

Safety Verified

DAO attack
states: 9

if call happens, call can happen only after
subtract:
AG

(
call → AX A

[¬call W subtract
])

Safety Verified

King of Ether 1
states: 10

7 will eventually happen after 4:
AG

(
4 → AF 7

) Liveness Violated

King of Ether 2
states: 10

8 will eventually happen after fallback:
AG

(
fallback → AF 8

) Liveness Violated
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5.2 Verification Results

Table 2 summarizes the properties and verification results. For ease of presen-
tation, when properties include statements, we replace statements with the
augmented-transition numbers that we have added to [29, Figures 9, 10, and 12].
The number of states represents the reachable state space as evaluated by
nuXmv.

Blind Auction. We analyzed both the initial and augmented models of the
Blind Auction contract. On the initial model, we checked four safety properties
(see Properties (i)–(iv) in Table 2). On the augmented model, which allows for
more fine-grained analysis, we checked two additional safety properties. All prop-
erties were verified to hold. The models were found to be deadlock-free and their
state space was evaluated to 54 and 161 states, respectively. The augmented
model and generated code can be found in [29, Appendix F].

The DAO Attack. We modeled a simplified version of the DAO contract. Atzei
et al. [2] discuss two different vulnerabilities exploited on DAO and present dif-
ferent attack scenarios. Our verified safety property (Table 2) excludes the possi-
bility of both attacks. The augmented model can be found in [29, Appendix G.1].

King of the Ether Throne. For checking Denial-of-Service vulnerabilities, we
created models of two versions of the King of the Ether contract [2], which are
provided in [29, Appendix G.2]. On “King of Ether 1,” we checked a liveness
property stating that crowning (transition 7) will happen at some time after the
compensation calculation (transition 4). The property is violated by the following
counterexample: fallback → 4 → 5 . A second liveness property, which states that
the crowning will happen at some time after fallback fails in “King of Ether 2.”
A counterexample of the property violation is the following: fallback → 4 . Note
that usually many counterexamples may exist for the same violation.

Resource Allocation. We have additionally verified a larger smart contract
that acts as the core of a blockchain-based platform for transactive energy sys-
tems. The reachable state space, as evaluated by nuXmv, is 3, 487. Properties
were verified or shown to be violated within seconds. Due to space limitations,
we present the verification results in [29, Appendix G.3].

6 Related Work

Here, we present a brief overview of related work. We provide a more detailed
discussion in [29, Appendix H].

Motivated by the large number of smart-contract vulnerabilities in practice,
researchers have investigated and established taxonomies for common types of
contract vulnerabilities [2,25]. To find vulnerabilities in existing contracts, both
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verification and vulnerability discovery are considered in the literature [36]. In
comparison, the main advantage of our model-based approach is that it allows
developers to specify desired properties with respect to a high-level model instead
of, e.g., EVM bytecode, and also provides verification results and counterexam-
ples in a developer-friendly, easy to understand, high-level form. Further, our
approach allows verifying whether a contract satisfies all desired security prop-
erties instead of detecting certain types of vulnerabilities; hence, it can detect
atypical vulnerabilities.

Hirai performs a formal verification of a smart contract used by the Ethereum
Name Service [20] and defines the complete instruction set of the Ethereum Vir-
tual Machine (EVM) in Lem, a language that can be compiled for interactive
theorem provers, which enables proving certain safety properties for existing
contracts [21]. Bhargavan et al. outline a framework for verifying the safety
and correctness of Ethereum contracts based on translating Solidity and EVM
bytecode contracts into F ∗ [6]. Tsankov et al. introduce a security analyzer for
Ethereum contracts, called Securify, which symbolically encodes the depen-
dence graph of a contract in stratified Datalog [23] and then uses off-the-shelf
solvers to check the satisfaction of properties [42]. Atzei et al. prove the well-
formedness properties of the Bitcoin blockchain have also been proven using a
formal model [3]. Techniques from runtime verification are used to detect and
recover from violations at runtime [12,13].

Luu et al. provide a tool called Oyente, which can analyze contracts and
detect certain typical security vulnerabilities [25]. Building on Oyente, Albert
et al. introduce the EthIR framework, which can produce a rule-based repre-
sentation of bytecode, enabling the application of existing analysis to infer prop-
erties of the EVM code [1]. Nikolic et al. present the MAIAN tool for detecting
three types of vulnerable contracts, called prodigal, suicidal and greedy [33].
Fröwis and Böhme define a heuristic indicator of control flow immutability to
quantify the prevalence of contractual loopholes based on modifying the control
flow of Ethereum contracts [16]. Brent et al. introduce a security analysis frame-
work for Ethereum contracts, called Vandal, which converts EVM bytecode to
semantic relations, which are then analyzed to detect vulnerabilities described
in the Soufflé language [8]. Mueller presents Mythril, a security analysis tool
for Ethereum smart contracts with a symbolic execution backend [31]. Stortz
introduces Rattle, a static analysis framework for EVM bytecode [41].

Researchers also focus on providing formal operational semantics for EVM
bytecode and Solidity language [17–19,24,46]. Common design patterns in
Ethereum smart contracts are also identified and studied by multiple research
efforts [4,44]. Finally, to facilitate development, researchers have also introduced
a functional smart-contract language [35], an approach for semi-automated trans-
lation of human-readable contract representations into computational equiva-
lents [15], a logic-based smart-contract model [22].
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7 Conclusion

We presented an end-to-end framework that allows the generation of correct-by-
design contracts by performing a set of equivalent transformations. First, we gen-
erate an augmented transition system from an initial transition system, based on
the operational semantics of supported Solidity statements ([29, Appendix A.3]).
We have proven that the two transition systems are observationally equivalent
(Sect. 4.1). Second, we generate the BIP transition system from the augmented
transition system through a direct one-to-one mapping. Third, we generate the
NuSMV transition system from the BIP system (shown to be observationally
equivalent in [34]). Finally, we generate functionally equivalent Solidity code,
based on the operational semantics of the transition system ([29, Appendix A.2]).

To the best of our knowledge, VeriSolid is the first framework to promote
a model-based, correctness-by-design approach for blockchain-based smart con-
tracts. Properties established at any step of the VeriSolid design flow are pre-
served in the resulting smart contracts, guaranteeing their correctness. VeriSolid
fully automates the process of verification and code generation, while enhanc-
ing usability by providing easy-to-use graphical editors for the specification of
transition systems and natural-like language templates for the specification of
formal properties. By performing verification early at design time, we provide
a cost-effective approach; fixing bugs later in the development process can be
very expensive. Our verification approach can detect typical vulnerabilities, but
it may also detect any violation of required properties. Since our tool applies
verification at a high-level, it can provide meaningful feedback to the developer
when a property is not satisfied, which would be much harder to do at byte-
code level. Future work includes extending the approach to model and generate
correct-by-design systems of interacting smart contracts.
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Abstract. We prove Bitcoin is secure under temporary dishonest major-
ity. We assume the adversary can corrupt a specific fraction of parties
and also introduce crash failures, i.e., some honest participants are offline
during the execution of the protocol. We demand a majority of honest
online participants on expectation. We explore three different models and
present the requirements for proving Bitcoin’s security in all of them:
we first examine a synchronous model, then extend to a bounded delay
model and last we consider a synchronous model that allows message
losses.

Keywords: Bitcoin · Security · Dishonest majority · Offline players ·
Sleepy model

1 Introduction

Bitcoin [10] is the predominant cryptocurrency today. Nevertheless, our under-
standing of Bitcoin’ s correctness is limited. Only relatively recently, there have
been attempts to formally capture Bitcoin’ s security properties. In a seminal
work, Garay et al. [7] proposed a formal framework (the “backbone protocol”) to
describe the Bitcoin system. They defined security properties for the backbone
protocol and proved these both in the synchronous and bounded-delay model.

Our work extends the work of Garay et al. [7] in several dimensions. First,
in contrast to our model, [7] assumed a constant honest majority of the partici-
pants. However, the Bitcoin protocol has been proven to be more fault-tolerant
and able to allow for a majority of dishonest players, as long as this dishonest
majority is only temporary. Specifically, in 2014 there was a majority takeover
(approximately 54% of the network) by the mining pool GHash.io. The cost to
perform such attacks have been studied in [3] and https://www.crypto51.app/.
In this work, we extend the original work of Garay et al. [7] to capture these
attacks, by allowing a temporary dishonest majority. We provide a formal analy-
sis and investigate under which circumstances Bitcoin is secure when the honest
majority holds only on expectation.

Second, motivated by a model of Pass and Shi [12], we not only have honest
(“alert”) or dishonest (“corrupted”) nodes. Instead, there is a third group of
c© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 466–483, 2019.
https://doi.org/10.1007/978-3-030-32101-7_28
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nodes that are currently not able to follow the protocol. We call them “sleepy”,
which really is a euphemism for nodes that are basically offline, eclipsed from the
action, for instance by a denial of service attack. Understanding this trade-off
between corrupted and sleepy nodes gives us a hint whether a dishonest attacker
should rather invest in more mining power (to get more corrupted players) or in
a distributed denial of service architecture (to get more sleepy players).

Third, we introduce a parameter c that upper bounds the mining power of
the adversary over the mining power of “alert” nodes. This is not necessary for
the security analysis. However, as showed in [13], if the adversary follows a selfish
mining strategy, he can gain a higher fraction of blocks (rewards) compared to
his fraction of the mining power. Hence, parameter c allows us to clearly capture
the correlation between this parameter and the advantage of the adversary when
he deviates from the honest protocol execution.

Fourth, we study network delays since they significantly affect the perfor-
mance and security. By extending our synchronous model to the a semi-synchro-
nous model, we show that the upper bound on sleepy parties heavily depends
on the maximum allowed message delay.

Finally, we extend our analysis to a synchronous model, where we allow mes-
sage losses. This is inspired by an idea described in [8], where the adversary may
perform an eclipse attack [14,15] on some victims which enables the adversary
to control their view of the blockchain. We show security under the assumption
that the adversary can eclipse a certain number of players, depending on the
number of corrupted players.

The omitted theorems, lemmas and proofs can be found in the full version
of the paper [2].

2 The Model

We adapt the model originally introduced by Garay et al. [7] to prove the security
of the Backbone protocol. We initially present all the components of a general
model and then parametrize the model to capture the three different models
under which we later prove that the backbone protocol is secure.

2.1 The Execution

We assume a fixed set of n parties, executing the Bitcoin backbone protocol.
Each party can either be corrupted, sleepy or alert ; sleepy is an offline honest
node and alert an honest node that is actively participating in the protocol.

Involved Programs. All programs are modeled as polynomially-bounded inter-
active Turing machines (ITM) that have communication, input and output tapes.
An ITM instance (ITI) is an instance of an ITM running a certain program or pro-
tocol. Let the ITM Z denote the environment program that leads the execution of
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the Backbone protocol. Therefore Z can spawn multiple ITI’s running the proto-
col. These instances are a fixed set of n parties, denoted by P1, . . . , Pn. The con-
trol program C, which is also an ITM, controls the spawning of these new ITI’s
and the communication between them. Further, C forces the environment Z to
initially spawn an adversary A. The environment will then activate each party in
a round-robin way, starting with P1. This is done by writing to their input tape.
Each time, a corrupted party gets activated, A is activated instead. The adversary
may then send messages (Corrupt, Pi) to the control program and C will register
the party Pi as corrupted, as long as there are less than t < n parties corrupted.
Further, the adversary can set each party asleep by sending a message (sleep, Pi)
to the control program. The control program C will set the party Pi asleep for the
next round with probability s, without informing A if the instruction was success-
ful or not.

Each party Pi has access to two ideal functionalities, the “random oracle” and
the “diffusion channel”, which are also modelled as ITM’s. These functionalities,
defined below, are used as subroutines in the Backbone protocol.

Round. A round of the protocol execution is a sequence of actions, performed
by the different ITI’s. In our setting, a round starts with the activation of the
party P1, which then performs the protocol-specific steps. By calling the below
defined diffuse functionality, P1 has finished it’s actions for the current round
and Z will activate P2. If the party Pi is corrupted, A will be activated and if
Pi is asleep, Pi+1 gets activated instead. The round ends after Pn has finished.
Rounds are ordered and therefore enumerated, starting from 1.

Views. Let us formally define the view of a party P . The only “external”
input to the protocol is the security parameter κ. Therefore, we can consider
κ to be constant over all rounds of the execution and we can exclude it from
the random variable describing the view of a party. We denote by the random
variable V IEWP,t,n

A,Z the view of a party P after the execution of the Bitcoin
backbone protocol in an environment Z and with adversary A. The complete
view over all n parties is the concatenation of their views, denoted by the random
variable V IEW t,n

A,Z .

Communication and “Hashing Power”. The two ideal functionalities,
which are accessible by the parties, model the communication between them
and the way of calculating values of a hash function H(·) : {0, 1}∗ → {0, 1}κ

concurrently.

The Random Oracle Functionality. The random oracle (RO) provides two
functions, a calculation and a verification function. Each party is given a number
of q calculation queries and unlimited verification queries per round. Thus, an
adversary with t corrupted parties may query the random oracle for t · q calcula-
tion queries per round. Upon receiving a calculation query with some value x by a
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party Pi, the random oracle checks, whether x was already queried before. If not,
the RO selects randomly y ∈ {0, 1}κ and returns it. Further, the RO maintains
a table and adds the pair (x, y) into this table. If x was already queried before,
the RO searches in the table for the corresponding pair and returns the value y
from it. It’s easy to see that a verification query now only returns true/valid, if
such a pair exists in the table of the RO. Note that the RO can maintain tables
for different hash functions and can be used for all hash functions we need.

The Diffuse Functionality. The diffuse functionality models the communica-
tion between the parties and thus maintains a RECEIVE () string for each party
Pi. Note that this is not the same as the previously mentioned input tape. Each
party can read the content of its RECEIVE () string at any time. The message
delay is denoted by Δ, where Δ = 0 corresponds to a synchronous setting.

The diffuse functionality has a round variable, which is initially set to 1. Each
party Pi can send a message m, possibly empty, to the functionality, which then
marks Pi as complete for the current round. We allow A to read all the messages
that are sent by some Pi, without modifying, dropping or delaying it. When all
parties and the adversary are marked as complete, the functionality writes all
messages that are Δ rounds old to the RECEIVE () strings of either only the alert
or all parties. We denote by B a Boolean function that indicates exactly that; if
B = 0 the diffuse functionality writes all messages to the RECEIVE () strings of
the alert parties, while if B = 1 the diffuse functionality writes all messages to
the RECEIVE () strings of all parties. Each party can read the received messages
in the next round being alert. At the end, round is incremented.

Note that in the case where B = 1, if a party is asleep at a round, it auto-
matically gets marked as complete for this round. Further, upon waking up, it
can read all the messages that were written to its RECEIVE () string while it
was asleep.

Successful Queries. A query to the RO oracle is successful, if the returned
value y < T , where T is the difficulty parameter for the PoW function. The
party, which have issued the query will then create a new valid block and may
distribute it by the diffuse functionality. We denote the success probability of
a single query by p = Pr[y < T ] = T

2κ . Note that in Bitcoin, the difficulty
parameter is adjusted such that the block generation time is approximately ten
minutes.

2.2 Sleepy, Alert and Corrupted

For each round i, we have at most t corrupted and nhonest,i = n−t honest parties.
Furthermore, the number of honest parties are divided to alert and sleepy parties,
nhonest,i = nalert,i + nsleepy,i. We assume without loss of generality that no
corrupted party is asleep, since we only upper-bound the power of the adversary.
Since nalert,i and nsleepy,i are random variables, we can also use their expected
value. The expected value is constant over different rounds, thus we will refer to
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them as E[nalert] and E[nsleepy]. Since each honest party is independently set
to sleep with probability s and thus the random variable nsleepy,i is binomially
distributed with parameters (n−t) and s. Accordingly, nalert,i is also binomially
distributed with parameters (n − t) and (1 − s). Hence, E[nsleepy] = s · (n − t)
and E[nalert] = (1 − s) · (n − t).

2.3 Parametrized Model

Let M(q,Δ,B) be the model, defined in this section. In the following sections, we
will look at three instantiations of this model. First of all, we are going to analyze
the model M(q, 0, 1), which corresponds to a synchronous setting, in which each
party has the ability to make q queries to the random oracle and receives every
message, even if the party is asleep. Then, we extend these results to the bounded
delay model, which corresponds to M(1,Δ, 1). As before, every party will always
receive messages, but we restrict q to be 1. In the last section, we analyze the
model M(q, 0, 0), which corresponds to the synchronous model, but we do not
allow the diffuse functionality to write messages on the RECEIV E() tapes of
sleepy parties.

2.4 Properties

In order to prove the security of the Bitcoin backbone protocol, we are going to
analyze three different properties, following the analysis of [7]. These properties
are defined as predicates over V IEW t,n

A,Z , which will hold for all polynomially
bounded environments Z and adversaries A with high probability.

Definition 1. Given a predicate Q and a bound q, t, n ∈ N with t < n, we
say that the Bitcoin backbone protocol satisfies the property Q in the model
M(q,Δ,B) for n parties, assuming the number of corruptions is bounded by
t, provided that for all polynomial-time Z,A, the probability that Q(V IEW t,n

A,Z)
is false is negligible in κ.

The following two Definitions concern the liveness and eventual consistency
properties of the Backbone protocol. We are using the notation of [7]: We denote
a chain C, where the last k blocks are removed, by C�k. Further, C1 � C2 denotes
that C1 is a prefix of C2.

Definition 2. The chain growth property Qcg with parameters τ ∈ R and s ∈ N

states that for any honest party P with chain C in V IEW t,n
A,Z , it holds that for

any s + 1 rounds, there are at least τ · s blocks added to the chain of P .1

1 The Chain-Growth Property in [7] is defined slightly different: . . . it holds that for
any s rounds, there are at least τ · s blocks added to the chain of P . Considering the
proof for Theorem 1 (of [2]), one can see, why we use s + 1 instead of s. It follows
by the fact that the sum in Lemma 13 (of [2]) only goes from i = r to s− 1 and not
to s.
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Definition 3. The common-prefix property Qcp with parameter k ∈ N states
that for any pair of honest players P1, P2 adopting the chains C1, C2 at rounds
r1 ≤ r2 in V IEW t,n

A,Z respectively, it holds that C
�k
1 � C2.

In order to argue about the number of adversarial blocks in a chain, we will
use the chain quality property, as defined below:

Definition 4. The chain quality property Qcq with parameters μ ∈ R and l ∈ N

states that for any honest party P with chain C in V IEW t,n
A,Z , it holds that for

any � consecutive blocks of C the ratio of adversarial blocks is at most μ.

The following two definitions formalize typical executions of the Backbone
protocol. Both of them are related to the hash functions, used for implement-
ing the Backbone Protocol. Further, the parameters ε and η are introduced.
Throughout the paper, ε ∈ (0, 1) refers to the quality of concentration of random
variables in typical executions and η corresponds to the parameter, determining
block to round translation.

Definition 5 ([7], Definition 8). An insertion occurs when, given a chain C
with two consecutive blocks B and B′, a block B∗ is such that B,B∗, B′ form
three consecutive blocks of a valid chain. A copy occurs if the same block exists
in two different positions. A prediction occurs when a block extends one which
was computed at a later round.

Definition 6 ([7], Definition 9). (Typical execution). An execution is (ε, η)−
typical if, for any set S of consecutive rounds with |S| ≥ ηκ and any random
variable X(S), the following holds:

(a) (1 − ε)E[X(S)] < X(S) < (1 + ε)E[X(S)]
(b) No insertions, no copies and no predictions occurred.

Lemma 1. An execution is typical with probability 1 − e−Ω(κ).

Proof. To prove a), we can simply use a Chernoff bound by arguing that E[X(S)]
is in Ω(|S|). The proof for b) is equivalent to [7], by reducing these events to
a collision in one of the hash functions of the Bitcoin backbone protocol. Such
collisions only happen with probability e−Ω(κ). ��

3 The q-bounded Synchronous Model Without Message
Loss M(q, 0, 1)

In this section, we analyze the Bitcoin backbone protocol in the previously
defined model, instantiated as M(q, 0, 1). This corresponds to the q-bounded
synchronous setting in [7]. First, we define the success probabilities for the alert
and corrupted parties, which are used to prove the relations between them. At
the end, we use these results to show the properties of chain growth, common
prefix and chain quality.
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Following the definition in [7], let a successful round be a round in which at
least one honest party solves a PoW. The random variable Xi indicates successful
rounds i by setting Xi = 1 and Xi = 0 otherwise. Further, we denote for a set
of rounds S: X(S) =

∑
i∈S Xi. We note that if no party is asleep, we have

E[Xi] = Pr[Xi = 1] = 1 − (1 − p)q(n−t).

Lemma 2. It holds that pqE[nalert]
1+pqE[nalert]

≤ E[Xi] ≤ pqE[nalert].

Proof. By the definition of Xi, we know that E[Xi] = E[1 − (1 − p)qnalert,i ].
Thus, the second inequality can easily be derived using Bernoulli. And for the
first inequality holds:

E[Xi] =
n−t∑

k=0

E[Xi|nalert,i = k] · Pr[nalert,i = k]

=
n−t∑

k=0

(
1 − (1 − p)qk

)
·
(

n − t

k

)

(1 − s)ksn−t−k

= 1 −
(
s − (s − 1)(1 − p)q

)n−t

≥ 1 −
(
s − (s − 1)(1 − pq)

)n−t

≥ 1 − e−(1−s)(n−t)pq =
pqE[nalert]

1 + pqE[nalert]
��

We also adapt the notation of a unique successful round from [7]. A round
is called a unique successful round, if exactly one honest party obtains a PoW.
Accordingly to the successful rounds, let the random variable Yi indicates a
unique successful round i with Yi = 1 and Yi = 0 otherwise. And for a set of
rounds S, let Y (S) =

∑
i∈S Yi.

Lemma 3. It holds E[Yi] = E[pqnalert,i(1 − p)q(nalert,i−1)] ≥ E[Xi](1 − E[Xi]).

Proof. To prove the required bounds, we need a few intermediary steps. Using
Bernoulli, we can derive the following:

E[Yi] = E[pqnalert,i(1 − p)q(nalert,i−1)] ≥ E[pqnalert,i(1 − pq(nalert,i − 1))]

Then, we have to prove that pqE[nalert](1−pqE[nalert]) ≥ E[Xi](1−E[Xi]).
From the upper bound on E[Xi], we can derive E[Xi] = pqE[nalert] − b, for
b ≥ 0. Therefore:

E[Xi](1 − E[Xi]) = (pqE[nalert] − b)(1 − pqE[nalert] + b)

= pqE[nalert](1 − pqE[nalert]) − b2 − b + 2pqE[nalert]b

In order to prove the required bound, it must hold that 0 ≥ −b2 − b +
2pqE[nalert]b, which is equivalent to 1 ≥ E[Xi] + pqE[nalert] and holds by the
fact that 2E[Xi] ≤ 1. This is also required by the proof in [7], but not stated
explicitly. Since in Bitcoin, E[Xi] is between 2% − 3%, the inequality can be
justified.
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To conclude the proof, we just have to prove the following:

E[pqnalert,i(1 − pq(nalert,i − 1))] ≥ pqE[nalert] − (pq)2E[nalert]2

⇐E[nalert
2] − E[nalert] ≤ E[nalert]2

Which is equivalent to V ar[nalert] ≤ E[nalert] and holds for the binomial
distribution. ��

Let the random variable Zijk = 1 if the adversary obtains a PoW at round i
by the jth query of the kth corrupted party. Otherwise, we set Zijk = 0. Summing
up, gives us Zi =

∑t
k=1

∑q
j=1 Zijk and Z(S) =

∑
i∈S Zi. Then, the expected

number of blocks that the adversary can mine in one round i is:

E[Zi] = qpt =
t

E[nalert]
pqE[nalert] ≤ t

E[nalert]
· E[Xi]
1 − E[Xi]

3.1 Temporary Dishonest Majority Assumption

We assume the honest majority assumption holds on expectation. In particular,
for each round the following holds: t ≤ c ·(1−δ) ·E[nalert], where δ ≥ 2E[Xi]+2ε
and c ∈ [0, 1] is a constant. As in [7], δ refers to the advantage of the honest
parties and ε is defined in Definition 6.

From the expected honest majority assumption, we can derive a possible
upper bound for s, depending on t, δ and c. Formally,

s ≤
n − t − t

c(1−δ)

n − t
= 1 − 1

c(1 − δ)
t

n − t

3.2 Security Analysis

First of all, by Definition 6 the properties of the typical execution hold for the
random variables X(S), Y (S), Z(S), assuming |S| ≥ ηκ.

The following lemma shows the relations between the different expected val-
ues. The bounds are required in all proofs of the three properties and therefore
essential.2

Lemma 4. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

(a) (1 − ε)E[Xi]|S| < X(S) < (1 + ε)E[Xi]|S|
(b) (1 − ε)E[Xi](1 − E[Xi])|S| < Y (S)
(c) Z(S) < (1 + ε) t

E[nalert]
E[Xi]

1−E[Xi]
|S| ≤ c(1 + ε)(1 − δ) E[Xi]

1−E[Xi]
|S|

2 The statement (d) uses different factors as [7]. The problem is, that it’s even not
possible to prove the bounds from [7] with their theorems, lemmas and assumptions.
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(d) For σ = (1 − ε)(1 − E[Xi]):

Z(S) <
(
1 +

δ

σ

) t

E[nalert]
X(S) ≤ c

(
1 − δ2

2σ

)
X(S)

(e) Z(S) < Y (S)

Next, we prove Bitcoin is secure under temporary dishonest majority in the
q-bounded synchronous setting by proving the three properties defined in [7]:
chain growth, common prefix and chain quality. The proofs can be found in the
full version.

4 The Semi-synchronous Model Without Message Loss
M(1, Δ, 1)

In this section, we extend the previously seen results to the semi-synchronous
(bounded delay) model. This means, that we allow Δ3 delays for the messages,
as described in the Definition of our model. In order to realize the proofs, we
have to restrict q to be 1. And as in the last section, we do not assume message
losses.

Due the introduced network delays, we need to redefine unique successful
rounds, because they do not provide the same guarantees in the this model.
Especially, Lemma 15 (of [2]) will not hold in the new model. Therefore, we
will introduce two new random variables, one for successful and one for unique
successful rounds in the bounded delay model. Note, that the chances for the
adversary do not change and we can use the bounds from the synchronous model.

Let the random variable X ′
i be defined such that for each round i, X ′

i = 1, if
Xi = 1 and Xj = 0, ∀j ∈ {i − Δ + 1, . . . , i − 1}. A round i is called Δ-isolated
successful round, if X ′

i = 1. Further, let X ′(S) =
∑

i∈S X ′
i. Using Bernoulli, we

can derive the following bound on E[X ′
i]:

E[X ′
i] = E[Xi](1 − E[Xi])Δ−1 ≥ E[Xi](1 − (Δ − 1)E[Xi]).

In order to prove eventual consistency, we have to rely on stronger events
than just uniquely successful rounds. In [7], this is achieved by defining the
random variable Y ′

i such that for each round i, Y ′
i = 1, if Yi = 1 and Xj = 0,

∀j ∈ {i−Δ+1, . . . , i−1, i+1, . . . , i+Δ−1}. Then, a round i is called Δ-isolated
unique successful round, if Y ′

i = 1. Further, let Y ′(S) =
∑

i∈S Y ′
i . As before, we

can lower bound E[Y ′
i ] using Bernoulli:

E[Y ′
i ] = E[Xi](1 − E[Xi])2Δ−1 ≥ E[Xi](1 − (2Δ − 1)E[Xi]).

3 According to Theorem 11 of [12], the parameter Δ has to be known by the honest
parties to achieve state machine replication, e.g. achieving consensus.
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4.1 Temporary Dishonest Majority Assumption

We assume again honest majority on expectation, such that for each round
t ≤ c · (1 − δ) · E[nalert], where δ ≥ 2ΔE[Xi] + 4ε + 4Δ

ηκ and c ∈ [0, 1] is a
constant.4 The reason for the higher value of δ (compared to the synchronous
model) is that E[Y ′

i ] ≤ E[Yi] and we need a way to compensate this difference.

4.2 Security Analysis

In this subsection, we prove Bitcoin is secure, i.e. the chain growth, common
prefix and chain quality properties hold, for the semi-synchronous model without
message loss. We note that the properties of the typical execution apply to the
predefined random variables (X ′(S), Y ′(S), Z(S)), given that |S| ≥ ηκ.

The following lemma corresponds to the semi-synchronous version of
Lemma 4. Most of the relations follow the same structure and are similar to
prove as in the synchronous model.

Lemma 5. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

(a) (1 − ε)E[Xi](1 − E[Xi])Δ−1|S| < X ′(S)
(b) (1 − ε)E[Xi](1 − E[Xi])2Δ−1|S| < Y ′(S)
(c) Z(S) < (1 + ε) t

E[nalert]
E[Xi]

1−E[Xi]
|S| ≤ c(1 + ε)(1 − δ) E[Xi]

1−E[Xi]
|S|

(d) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r, . . . , r′ + Δ} and σ′ =
(1 − ε)(1 − E[Xi])Δ:

Z(S) <
(
1 +

δ

2σ′
) t

E[nalert]
X ′(S′)

(e) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r − Δ, . . . , r′ + Δ}:
Z(S) < Y ′(S′)

The proof of Lemma 5 as well as the proofs of the security properties can be
found in the full version.

5 The q-bounded Synchronous Model with Message Loss
M(q, 0, 0)

As in the synchronous case, we do not restrict the number of queries and assume
no message delays. In the previous sections, we assumed that messages, sent
from the diffusion functionality, will be written on the RECEIVE () string of
each party. However, in this section, we assume that the messages only get
4 One might notice that our lower bound of δ differs from the lower bound from [7].

First of all, they provided two different values for δ, where both of them are wrong
in the sense that they are too small in order to prove the needed bounds.
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written to the RECEIVE () strings of alert parties, i.e. sleepy parties do not
receive messages. This models the worst possible event of the reality, because
in Bitcoin itself, parties that were offline will check on the currently longest
chain, once they get back online. This model captures the effects if none of them
receives one of the currently longest chains, thus are eventually a victim of an
eclipse attack. This implies that it’s not necessarily true that all parties’ local
chains have the same length.

This change to the model leads to major differences compared to the results
from the previous sections. In this case, unique successful rounds doesn’t provide
the same guarantees as before, especially Lemma 15 (of [2]) doesn’t hold any
more.

In the following, we denote by Ci the set of chains containing all longest
chains that exist at round i. Further, we refer to the local chain of player Pj at
round i by Lj

i .
The following lemma shows the expected number of honest players, which

have adopted one of the longest chains existing at the current round.

Lemma 6. At every round i, there are expected E[nalert] = (1−s)(n−t) parties
j, such that Lj

i ∈ Ci.

Proof. We will prove the lemma by induction over all rounds of an execution.
The base case is trivial, because at round 1, every party starts with the genesis
block. Now for the step case, assume that the lemma holds at round i. Then we
show that it holds at round i + 1 too. In order to prove this, we perform a case
distinction:

– Case Xi = 0: No new chains will be diffused, therefore no new chains can be
adopted and we can apply the induction hypothesis.

– Case Zi = 0: Analogue to the previous case.
– Case Xi = 1: (But Yi = 0) Now we have to differentiate, if the new blocks

extend some chain in Ci not:
(a) Some longest chain is extended:

Every party, which is not asleep at round i will adopt one of the possibly
multiple resulting new longest chains. Thus, there are expected E[nalert]
alert parties which will have adopted one of the longest chains at round
i + 1.

(b) No longest chain is extended:
No honest party, whose local chain is already one of the currently longest
chain will adopt a new chain, since it’s length will not be larger than the
length of its local chain. Thus, we can apply the induction hypothesis.

– Case Yi = 1: As in the case before, every party, which was alert at round i,
will adopt the resulting chain, if its length is larger than the length of its local
chain. As before, there are E[nalert] alert parties which will have adopted one
of the longest chains at round i + 1.

– Case Zi = 1: Analogue to the previous case. But if the adversary withholds
the found block, the case Zi = 0 applies and at the round, where it diffuses
this block, this case applies. ��
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By the lemma above, at every round i only expected (1 − s)(n − t) parties
j have a local chain Lj

i ∈ Ci. And a fraction of (1 − s) of them will again be
sleepy in the following rounds. Therefore, let n∗

alert,i denote the number of alert
parties j at round i, where Lj

i ∈ Ci.
It’s easy to see that n∗

alert,i is binomially distributed with parameters (n− t)
and (1−s)2. Let E[n∗

alert] = (1−s)2(n− t) denote the expected value of n∗
alert,i,

omitting the round index i, since the expected value is equal for all rounds. We
define the random variable X∗

i which indicates, if at least one of the n∗
alert,i

parties solves a PoW at round i. Thus, we set X∗
i = 1, if some honest party j

with Lj
i ∈ Ci solves a PoW at round i and X∗

i = 0 otherwise. Further, we define
for a set of rounds S: X∗(S) =

∑
i∈S X∗

i .

Lemma 7. It holds that pqE[n∗
alert]

1+pqE[n∗
alert]

≤ E[X∗
i ] ≤ pqE[n∗

alert].

Proof. The lemma can be proven using the same argumentation as in the proof
for the Lemma 2. ��

Accordingly, let Y ∗
i denote the random variable with Y ∗

i = 1, if exactly one
honest party j solves a PoW at round i and Lj

i ∈ Ci. Note that the resulting
chain, will be the only longest chain. Further, for a set of rounds S let Y ∗(S) =∑

i∈S Y ∗
i .

Lemma 8. It holds E[Y ∗
i ] = E[pqn∗

alert,i(1−p)q(n∗
alert,i−1)] ≥ E[X∗

i ](1−E[X∗
i ]).

Proof. The proof follows the exactly same steps as the proof for Lemma 3. ��

5.1 Temporary Dishonest Majority Assumption

In this setting, the honest majority assumption changes slightly. We cannot
simply assume that t is smaller than some fraction of E[n∗

alert], because we have
also to consider parties j with Lj

i /∈ Ci. We assume that for each round holds
t + (1 − s)E[nsleepy] ≤ c · (1 − δ) · E[n∗

alert], where δ ≥ 3ε + 2E[X∗
i ] and some

constant c ∈ [0, 1]. Note that (1 − s)E[nsleepy] is the fraction of alert parties,
working on shorter chains.

In order to compute the upper bound for s, we reformulate the honest major-
ity assumption. Using the quadratic formula, this results in the following:

s ≤
2c(1 − δ) −

√
1 + 4(1 + c(1 − δ) t

n−t )

2(1 + c(1 − δ))

In the model description, we specified that the adversary is not informed if a
party Pi is set to sleep, after sending an instruction (sleep, Pi) to the control pro-
gram C. This assumption is realistic since the adversary can not be certain about
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the success of his attempt to create a crash-failure. Further, allowing the adver-
sary to know when he successfully set to sleep a node makes him quite powerful.
Specifically, in our model we have a fraction of 1 − s alert parties. Subtracting
the parties, which are working on a longest chain, from the (1 − s)(n − t) parties,
leaves us an expected fraction of s(1 − s) parties, which can be found on the left
hand side of the honest majority assumption. If we would assume that the adver-
sary knows, which parties are asleep at each round, we would have to change the
temporary dishonest majority assumption to t+E[nsleepy] ≤ c · (1−δ) ·E[n∗

alert].
Then, the adversary could exploit this knowledge to his advantage and send sleep
instructions to the parties working on the longest chains. To capture this adver-
sarial behavior a different model would be necessary (since s cannot be considered
constant).

5.2 Security Analysis

For this section, we note that the properties of an typical execution apply for
the random variables X∗(S), Y ∗(S) and Z(S), given that |S| ≥ ηκ.

Lemma 9. Suppose that at round r, the chains in Ci have size l. Then by round
s ≥ r, an expected number of E[nalert] = (1 − s)(n − t) parties will have adapted
a chain of length at least l +

∑s−1
i=r X∗

i .

Proof. By Lemma 6, for every round i, the expected number of parties j with
Lj

i ∈ Ci is E[nalert]. Therefore, we only have to count the number of times, when
one of these longest chains gets extended. ��

In the following, we define a new variable φ and provide an upper bound for
it. This is required for the proof of the common prefix property. Although the
proven bound is not tight, it is sufficient for proving the desired properties.

Lemma 10. The probability that the honest parties j with Lj
i /∈ Ci can create a

new chain C ′ ∈ Cr for some round r ≥ i, before any chain from Ci gets extended
is denoted by φ. It holds that:

φ ≤ s

1 − s

Proof. Without loss of generality, we may assume that all parties j with Lj
i /∈ Ci

have the same local chain. Further, we can assume that this chain is just one
block shorter than the currently longest chain. Thus, we search an upper bound
for the probability that the parties {Pj}Lj

i /∈Ci
are faster in solving two PoW’s

than the parties {Pj}Lj
i ∈Ci

solving one PoW.

In order to prove that, we have to introduce a new random variable X̃i,
with X̃i = 1 if some honest party j with Lj

i /∈ Ci solves a PoW. By the same
argumentation as in Lemma 2, we can argue that pq(1−s)E[nsleepy]

1+pq(1−s)E[nsleepy]
≤ E[X̃i] ≤

pq(1 − s)E[nsleepy]. Therefore, the upper bound on the required probability is:
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∞∑

k=2

(k − 1)E[X̃i]2(1 − E[X̃i])k−2(1 − E[X∗
i ])k

=
E[X̃i]2

(1 − E[X̃i])2
·

∞∑

k=2

(k − 1)
(
(1 − E[X̃i])(1 − E[X∗

i ])
)k

=
E[X̃i]2(1 − E[X∗

i ])2

(E[X̃i] + E[X∗
i ] − E[X̃i]E[X∗

i ])2

Now, let a := pq(1 − s)2(n − t) = pqE[n∗
alert] and b := pqs(1 − s)(n − t) =

pq(1 − s)E[nsleepy]. Then by the Definition of E[X̃i] and E[X∗
i ] holds:

E[X̃i]2(1 − E[X∗
i ])2

(E[X̃i] + E[X∗
i ] − E[X̃i]E[X∗

i ])2
=

b2

(1 + a)2(1 − ab)2(a + ab + b)2

Thus, φ ≤ s
1−s is equivalent to:

b2

(1 + a)2(1 − ab)2(a + ab + b)2
≤ s

1 − s

⇔ ab ≤ (1 + a)2(1 − ab)2(a + ab + b)2

The inequality holds, since (1 + a)2(1 − ab)2 ≥ 1 and ab ≤ (a + ab + b)2. ��
The lemma below replaces Lemma 15 (of [2]). The possibility to have chains

of different length at the same round offers various ways to replace a block from
round i, where Y ∗

i = 1. Thus, we cannot use the same arguments as in Lemma
15 (of [2]).

Lemma 11. Suppose the kth block B of a chain C was computed at round i,
where Y ∗

i = 1. Then with probability at least 1 − φ, the kth block in a chain C ′

will be B or requires at least one adversarial block to replace B.

As in the previous sections, the properties of the typical execution hold and
executions are typical with high probability, by Lemma 1.

Since we allow message losses in this model, we require more unique successful
rounds than in other models. This leads to a different bound in part (e) of the
following lemma.

Lemma 12. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

(a) (1 − ε)E[X∗
i ]|S| < X∗(S)

(b) (1 − ε)E[X∗
i ](1 − E[X∗

i ])|S| < Y ∗(S)
(c) Z(S) < (1 + ε) t

E[n∗
alert]

E[X∗
i ]

1−E[X∗
i ]

|S| < (1 + ε)
(
c(1 − δ) − s

1−s

) E[X∗
i ]

1−E[X∗
i ]

|S|
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(d) For σ∗ = (1 − ε)(1 − E[X∗
i ]):

Z(S) <
(
1 +

δ

σ∗
) t

E[n∗
alert]

X∗(S) ≤ c
(
1 − δ2

2σ∗
)
X∗(S)

(e)
Z(S) < Y ∗(S)(1 − ε)(1 − φ)

Next, we prove Bitcoin is secure in the synchronous model with message loss.
The proof can be found in the full version.

6 Security Analysis Results

As a result of the temporary dishonest majority assumptions, we have derived
upper bounds for the probability s as shown in Fig. 1. Therefore, we fixed c =
0.5 to limit the advantage of an adversary, following a Selfish Mining strategy.
Further, we have chosen for all three models ε = 0.005. For the synchronous
model without message losses, we set E[Xi] = 0.03, which results in δ = 0.075.
For the Semi-Synchronous model, we set also E[Xi] = 0.03, resulting in E[X ′

i] =
0.022. For Δ = 10, we then get δ = 0.46. And for the synchronous model with
message losses, we have chosen E[X∗

i ] = 0.03, which results in δ = 0.075.

Fig. 1. This figure shows the upper bound on the fraction of sleepy parties, depending
on the fraction of corrupted parties.

One might be wondering how we could allow such high values for s. We have
fixed E[Xi], respectively E[X∗

i ], for our calculations. We can do this without loss
of generality, since these expected values are dependent on p, which depends on
the difficulty parameter T . The adjustment of T , used to regulate the block
5 Note that δ is dependent on E[Xi], which is again dependent on s. If we would

remove this dependency, the results would be at most 2% better than the actual
results shown in Fig. 1.



Bitcoin Security Under Temporary Dishonest Majority 481

generation rate, depends on the fraction of sleepy parties, because they do not
provide computational power (e.g. new blocks) to the blockchain.

These results are also consistent with the results from [4], where the upper
bound on the adversarial fraction is stated at 49.1%. If we set c = 1 and s = 0,
due the value of δ, we get an maximal possible adversarial fraction of 48.5%.

7 Related Work

To model temporary dishonest majority in Bitcoin we used an idea, originally
introduced by Pass and Shi [12]. In this work, they introduced the notion of
sleepy nodes, i.e. nodes that go offline during the execution of the protocol,
and presented a provably secure consensus protocol. In this paper, we model
the dynamic nature of the system by additionally allowing the adversary to set
parties to sleep, thus enabling temporary dishonest majority.

Bitcoin has been studied from various aspects and multiple attacks have
been proposed, concerning the network layer [1,8,11] as well as the consensus
algorithm (mining attacks) [5,6,9,13]. The most famous mining attack is selfish
mining [6], where a selfish miner can withhold blocks and gain disproportionate
revenue compared to his mining power. The chain quality property, originally
introduced in [7], encapsulates this ratio between the mining power and the final
percentage of blocks, and thus rewards, the adversary owns. On the other hand,
Heilman et al. [8] examined eclipse attacks on the Bitcoin’s peer-to-peer network.
In turn, Nayak et al. [11] presented a novel attack combining selfish mining and
eclipse attacks. They showed that in some adversarial strategies the victims of
an eclipse attack can actually benefit from being eclipsed. Our last model, where
offline parties do not get the update messages, captures this attack.

8 Conclusion and Future Work

In this paper, we prove Bitcoin is secure under temporary dishonest majority.
Specifically, we extended the framework of Garay et al. [7] to incorporate offline
nodes and allow the adversary to introduce crush failures. This way we can
relax the honest majority assumption and allow temporary dishonest majority.
We prove Bitcoin’ s security by showing that under an expected honest majority
assumption the following security properties hold: chain growth, common prefix
and chain quality.

We examine three models: the synchronous model, the bounded delay model
and the synchronous model with message loss. The first two models result in
similar bounds regarding the fractions of corrupted and sleepy parties. In con-
trast, the last model that allows message losses when a party goes offline is less
resilient to sleepy behavior. This is expected since this model captures the nature
of eclipse attacks where the adversary can hide part of the network form an hon-
est party and either waste or use to his advantage the honest party’s mining
power. We illustrate in Fig. 1 the upper bounds on the fraction of sleepy parties
depending on the fraction of corrupted parties for all three models.
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For future work, we did not consider the bounded delay with message loss
model. We expect the difference on the results from synchronous to bounded
delay model to be similar to the model without message loss. Another interesting
future direction is to consider a more powerful adversary, who knows whether
his attempt to set a party to sleep is successful or not.
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Abstract. Blockchains is a special type of distributed systems that
operates in unsafe networks. In most blockchains, all nodes should reach
consensus on all state transitions with Byzantine fault tolerant algo-
rithms, which creates bottlenecks in performance. In this paper, we
propose a new type of blockchains, namely Value-Centric Blockchains
(VCBs), in which the states are specified as values (or more comprehen-
sively, coins) with owners and the state transition records are then spec-
ified as proofs of the ownerships of individual values. We then formalize
the “rational” assumptions that have been used in most blockchains. We
further propose a VCB, VAPOR, that guarantees secure value transfers if
all nodes are rational and keep the proofs of the values they owned, which
is merely parts of the whole state transition record. As a result, we show
that VAPOR enjoys significant benefits in throughput, decentralization,
and flexibility without compromising security.

Keywords: Blockchain · Distributed ledgers · Consensus algorithm ·
Scalability · Decentralization

1 Introduction

Blockchain technology, also referred as distributed ledger technology, considers a
distributed system operating in a network with untrusted nodes. In blockchains,
all nodes of the system apply the same rules to process consistent data, which
mainly takes form of data blocks chained with unbreakable hash functions.
We can categorize all existing blockchains into two categories by their data
structures: one follows the idea of Bitcoin [22] and we call Transaction-Centric
Blockchains (TCBs), and the other follows from Ethereum [32] and the classical
state machine replication model, we call Account-Centric Blockchains (ACBs).
The former is commonly referred as ledgers, since all data are transactions, i.e.,
value transfer records. The concepts of account and balance are not explicitly
emphasized. The latter, on the other hand, the states of nodes like their balances
and other variables are defined and the state transition records, e.g., the trans-
actions, are put to the back-end of the system. In either case, all nodes in the
c© International Financial Cryptography Association 2019
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blockchain system should essentially always keep a consistent state regardless
of whether the concept of state is explicitly emphasized. Then, in blockchains,
nodes should only pre-agree with the initial state, i.e., the genesis block, and
then be able to use a consistent rule to independently validate each input and
then perform their state transitions. As a result, both TCBs and ACBs require
the complete state transition records to be acquired reliably and consistently by
all nodes in the network, which causes a critical bottleneck in the performance of
blockchain. In this paper, we use the term “traditional blockchains” to refer to
all blockchains that all nodes need to acquire the whole state transition records.

A straightforward consequence of the bottleneck is the scalability issue which
has been addressed in several other works [9,31]. The throughput of blockchains
does not grow with the number of nodes as the requirement of communication,
computation, and storage grow at least proportionally to the number of nodes
in the network. Hence, the throughput is limited to the capacity of the least
capable node in the network and will not increase as the network grows.

Then, we also observe that centralization is an indirect consequence of the
requirement for the whole state transition record. As novel blockchain systems
are pursuing high throughput in terms of transaction per second (TPS), the
requirement for communication, computation, and storage becomes a threshold
too high for normal users to participate. Then, the participation threshold is
a crucial factor in evaluating the decentralization of the blockchain, since a
blockchain with a high participation threshold will be consequentially unfriendly
to normal users and more centralized, regardless of whether a fully decentralized
consensus algorithm is used.

The third problem we address in traditional blockchains is inflexibility. As
blockchains are decentralized by their nature, an upgrade or change to the system
is much more difficult than centralized systems as inconsistency might happen if
nodes follow different rules. Some examples of such inconsistency are “forks” like
Bitcoin Cash/Bitcoin and Ethereum Classic/Ethereum, which cause the system
to split and degrade in security.

In this paper, we address the problem of “all nodes need to acquire and agree
with all state transitions” which essentially causes all above mentioned prob-
lems. To solve this problem, we propose a new type of blockchains called Value-
Centric Blockchains (VCBs) that are equally secure as traditional blockchains
but requires each node to only acquire partial state transitions. More precisely:

– We formalize the rationality of nodes in value transfer system, we call Ratio-
nality of Value Owner (RVO), which has already been explicitly or implicitly
used in almost all blockchains without specification.

– We propose a novel type of blockchains, called VCBs, which differ from tradi-
tional blockchains as the states are specified as the distribution for all values.
A value can have an arbitrary amount and can be conceptually interpreted as
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a banknote. Then, all state transitions are sorted into proofs for the ownership
of individual values.1

– We propose a VCB called VAPOR in which nodes only needs to hold the
proof of their own values. We further prove that it guarantees secure and
fully decentralized value-transfer under the RVO assumption. Moreover, with
examples, we show that VAPOR can be easily extended with extra function-
alities like fast payment channels.

– We show that VAPOR has significant advantages over traditional blockchains
in throughput, decentralization, and flexibility.

This paper is organized as follows. In Sect. 2, we formally introduce the ratio-
nality of value owners in blockchains. Then, in Sect. 3, we introduce VCBs, their
features, and the conditions required for a valid VCB. In Sect. 4, we introduce
a VCB, called VAPOR, and prove that it guarantees reliable value transfer. We
show some examples of extension of VAPOR in Sect. 5 and show the advan-
tages of VAPOR over traditional blockchains in Sect. 6. At last, we compare our
system to some related works in Sect. 7 and conclude in Sect. 8.

2 Rationality of Value Owner

Blockchain technology is no stranger to the notion of rationality as it was intro-
duced as one of the fundamentals of Bitcoin. However, the rational behaviors
of nodes in blockchains, especially regarding the values they owned, are seldom
formalized. A commonly utilized rationality assumption is that rational trans-
action issuers are motivated to prove to the receivers that the transactions are
successful. It is mostly in the form of transaction fees, i.e., rational nodes would
like to pay reasonable transaction fees so that their transactions could be added
to the chains by the “miners”, which is shown as the evidences that the transac-
tions are successful. It has also been utilized in other forms, e.g., in the Tangle
[27], rational nodes will do a POW and validate two previous transactions to
make a transaction and in Omniledger [17], rational nodes will take initiative
in issuing their inter-shard transactions to all related shards and take effort in
completing the transactions.

There is another type of rationality, the rationality of receiving values, which
is mostly ignored in literature. In Bitcoin for instance, once a transaction is
issued, a rational receiver should observe the chain for the transaction and a
number of consecutive blocks to confirm the transaction. However, this is not
emphasized since in most blockchains, the receiver do not need to validate extra
information besides the blockchain itself. However, some off-chain solutions like
Lightning Network (LN) and Plasma [25,26] introduce new requirements for the
rational receivers to validate some off-chain information to confirm a transaction.

Finally, we also specify a rationality, the rationality of holding values, which
is usually considered trivial. In the basic Bitcoin system, it is simply holding
1 Similar ideas can be found in many classical digital cash systems, i.e., Ecash [7,8].

The relationship and difference between VCBs and early digital cash systems will
be discussed in Subsect. 7.1.
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the private key and keeping it secret. However, in current Bitcoin system, there
are some special transactions called Pay-to-Script-Hash (P2SH) transactions, in
which the values are locked by scripts that the value owners should be able
to provide. Then, in LN, rational nodes also need to keep certain “commitment
transactions” secretly. Moreover, they should actively monitor the chain to check
if some specific transactions appear and take certain responses. Otherwise, their
received transactions could be canceled.

In this paper, we formally introduce the Rationality of the Value Owners
(RVO), which is the combination of all three rationalities mentioned above. These
rules are in fact no stronger than the common rationality assumptions made in
existing blockchains. We say that if a rational node follow the RVO rules, then
he (we use the pronouns “he” for a node throughout this paper) would use his
communication, computation, and the storage resources to perform the following:

– Rationality in Holding Value: If he owns a value, he will make sure that
he could prove the ownership.

– Rationality in Sending Value: If he sends a value, then he will take respon-
sibility of proving to the receiver that (1), he owned this value; (2), the value
is successfully transferred to the receiver.

– Rationality in Receiving Value: If he receives a value, then he will take
responsibility of validating (1), the authenticity of that value; (2), the value
transfer is successful.

3 Value Centric Blockchains

The data structure of VCBs is similar to many “off-chain” schemes like [19].
Each node individually puts its own transactions in off-chain transaction blocks
and periodically sends an abstract of those blocks to a globally agreed main
chain. Then, the key elements in VCBs are values and their ownership. A value
can be conceptually interpreted as a banknote with arbitrary denomination.
Virtually, there exists a list of all values in the system, their amount, and their
owners which updates with the system states. Moreover, for each ownership,
there is a proof and an verification algorithm that could be used to determine the
ownership, which consists of a subset of all transaction blocks. In this section, we
introduce the basic concepts in VCBs: the main chain, the values, the verification
algorithm, and the conditions required for a valid VCB, i.e., a valid VCB should
be able to guarantee secure value transfers between nodes.

3.1 Main Chain

For a VCB, we define the main chain as a sequence of data blocks chained
with unbreakable hash function, denoted by B = {B1, B2, . . .}. The main chain
should have the following property, which is essentially achieved by all traditional
blockchains.
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Property 1 (Consensus on the Main Chain).

– Asynchronous Consistency: In the situation where the message delay in
the network is arbitrary, if an honest node agrees with a block Bi as the i-th
block of the chain, then another honest node will not agree with B′

i �= Bi as
the i-th block of the chain.

– Synchronous Liveness: In the situation where the message delay in the net-
work could be bounded by a constant τ , if an honest node proposes a message
m, then eventually an honest node will agree with a block B containing m.

The main chain has two functions. First, it serves as a global clock. Throughout
this paper, we use the term “the system is at state Bi” to represent a state that
the system has just reached consensus on Bi. Second, it is used to reach consensus
on data that needs global agreements, e.g., the initial value distribution, the
verification algorithm, and digital signatures of the transaction blocks of nodes,
which we will specify later.

3.2 Value, Ownership, and Proof

We assume that there are N nodes in the network, denoted by 1, 2, . . . , N . We
assume that there is a unique public key attached to each node and we can
match the node and its public key when both are shown. In VCB, at each
state of the system Bi, associated with a value vj , j = 1, 2, . . ., we have the
amount of the value Q(B1) = {Q(v1), Q(v2), . . . , } and the owner of the value
O(vj , Bi) ∈ {NA, 1, 2, . . . , N}. Here, O(vj , Bi) = NA suggests that this value
is not owned by anyone at state Bi. We define value distribution of state Bi as
V(Bi) = {[vj , O(vj , Bi)] : ∀vj}. The initial value distribution and the amount of
each value, i.e., V(B1) and Q(B1), are contained in the first block of the main
chain B1. Then, for a transaction, or more specifically a transfer of the value
vj from owner x to y, denoted by txm(vj , x → y), we will have O(vj , Bi) = x
and O(vj , Bi+1) = y for a certain state Bi. Furthermore, we define a verifica-
tion scheme, consists of an verification algorithm GetOwner(vj , Bi, p) and proofs
P (vj , Bi) for all i, j, that satisfies that (1), GetOwner(vj , Bi, p) returns O(vj , Bi)
if p = P (vj , Bi); (2), GetOwner(vj , Bi, p) returns “Fail” if p �= P (vj , Bi). The
algorithm GetOwner(vj , Bi, p) should also be agreed in B1.

Now, we have all fundamental elements of VCBs: for a state Bi, there exists
a set of values vj ,∀j, their corresponding owners O(vj , Bi), their proofs of the
ownership of the values P (vj , Bi), and an algorithm GetOwner(vj , Bi, p) that
could determine the owner of a value when the proof is given.

Creating, Demolishing, Merging, and Dividing Values. The creation
and demolition of values are crucial in many blockchains with Nakamoto-like
consensus algorithms, since usually part of the incentives is given by creating
new values. On the other hand, merging and dividing values are optional since
the value exchange does not require the values to be divisible or mergeable, e.g.,
fiat currencies with banknotes and coins. Hence, we introduce how values could
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be created or demolished here, and the merging and dividing of values will be
introduced in Sect. 5.1 as an additional functionality.

The creation and demolition of value should be agreed by all nodes, thus
will be contained in the main chain. More precisely, to create a new value vj :
[vj , O(vj , Bi)] /∈ V(Bi), a statement [Add : vj , Q(vj), O(vj , Bi+1)] should be in
block Bi+1. Similarly, to demolish value vj , we put a statement [Delete : vj ] in
block Bi+1.

3.3 Validity of VCB

As far as we know, a rigorous definition of a valid value transfer system is still
lacking, which remains a non-trivial and interesting topic for future research. In
this work, we aim to propose a system that provides an equivalent value transfer
functionality as other traditional blockchain systems, e.g., Bitcoin. Hence, we
have the following definition for a valid VCB.

Definition 1 (Valid VCB). Firstly, we give the following properties.

– Ownership: The owner of a value vj is able to validate the value and prove
it to others, i.e., if O(vj , Bi) = x, then node x will eventually have P (vj , Bi).
Moreover, the ownership can only be transferred by the owner.

– Liquidity: The owner of a value can transfer it to any other node within
a certain period of time, i.e., if O(vj , Bi) = x, then node x can make
O(vj , Bi+k) = y for some k, k ≥ 1.

– Authenticity: All values have at most one owner at each state, i.e., for all
vj , Bi, we have O(vj , Bi) ∈ {NA, 1, 2, . . . , N}.

A VCB is valid if and only if Ownership and Authenticity are guaranteed under
asynchronous network settings and Liquidity is guaranteed in synchronous net-
work settings.

3.4 RVO Rules in VCBs

In a VCB, the RVO rules becomes:

– Rationality in Holding Value: At a state Bi, if node x is the owner
of value vj , he will always make sure that he has a proof p such that
GetOwner(vj , Bi, p) = x unless he sends vj at Bi.

– Rationality in Sending Value: At a state Bk, for a value vj that
O(vj , Bk) = x, if node x would like to send this value, he will take responsi-
bility of providing to the receiver y: (1), the time of the transaction Bi, i > k;
(2), a proof p such that GetOwner(vj , Bi−1, p) = x and; (3), a proof p such
that GetOwner(vj , Bi, p

′) = y.
– Rationality in Receiving Value: For node y to receive this transaction, it

will check (1), GetOwner(vj , Bi−1, p) = x; and (2), GetOwner(vj , Bi, p
′) = y.
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4 VAPOR

In this section, we propose a VCB, namely VAPOR, which stands for the five
basic elements of our system, Value, Agreement, Proof, Ownership, and Ratio-
nality. As introduced in Sect. 3, a valid VCB should have the following.

– A main chain that guarantees Property 1.
– The owner and proof of value O(vj , Bi), and a valid authenticating scheme

including P (vj , Bi) for all i, j and a verification algorithm GetOwner(vj , Bi, p)
as described in Subsect. 3.2.

Now we describe these two parts in VAPOR. Then, we prove its validity and
state its features.

4.1 Main Chain and Its Consensus Algorithm

There are two major types of algorithms that could achieve Property 1: BFT
algorithms and Nakamoto-like algorithms. The former includes [6,13,18,21]
which explicitly requires the identity/public keys and the number of nodes to
be predetermined and known by all nodes. The latter is inspired by Bitcoin and
has been greatly developed in recent years. It contains a large number of algo-
rithms such as Proof-of-Work based algorithms [10,16,24], Proof-of-Stake based
algorithms [4,12,15], Directed Acyclic Graph based algorithms [27,29,30], etc.
This type of algorithms do not require nodes to be predetermined. However,
economical and game theoretical aspects have to be introduced to prevent Sybil
attack as well as to encourage honest behaviors, and Property 1 is achieved with
overwhelmingly high probability rather than absolute.

In VAPOR, any of the existing consensus algorithms that guarantee Prop-
erty 1 (with a high probability) can be used for the main chain B = {B1, B2, . . .}.
Then, VAPOR has the same requirements as the consensus algorithm and
achieve the same level of security. For instance, if PBFT [6] is chosen, then
VAPOR allows less than 1/3 of the predetermined nodes to be malicious. Then,
if Bitcoin POW is chosen, then VAPOR tolerates less than 1/4 of the total
mining power to be malicious [11] and the confirmation of the transactions is
probabilistic.

4.2 Proofs and the Verification Algorithm

The main content of VAPOR is transactions. The proofs of the ownership of val-
ues are just different subsets of the whole transaction set. Here, we first introduce
the data structure of the transactions, then introduce how the proof is chosen
for each value.

Transaction Blocks. In VAPOR, each node independently makes transaction
blocks with the transacitons sent by itself. A transaction txm(vj , x → y) is
defined as

txm(vj , x → y) = [vj , y, sn],
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in which sn is an internal serial number generated by node x to identify his
transactions. Since transactions are then put in blocks with index of x, x is
omitted in individual transactions. Note that here m is a virtual global trans-
action identifier we used in this paper and it does not actually acknowledged
by any node. Periodically, a node puts transactions in a transaction block b and
send an abstract,

a(x) = [x,H(pkx), Sigx(x|H(pkx)|MR(b))],

to reach consensus on the main chain, where H(pkx) is the hash of the public
key of x and Sigx(H(pkx)|MR(b)) is a digital signature made with H(pkx)
concatenated with the Merkle root of b encrypted by the private key of x. In
each round, at most one abstract from a node can be included in the main chain.
If multiple different abstracts from the same node are received in the same round,
then only one of them is considered valid. By the property of digital signature,
the content of b is immutable once the abstract a(x) is confirmed on the main
chain. Hence, we denote the abstract a(x) contained in block Bi by ai(x) and
the block b by bi(x) and call it a confirmed block. Then, as B is agreed by all
nodes, blocks bi(x),∀x will also form a chain that as immutable as B. Then, we
define CB = {bi(x),∀i, x}.

Transaction Fee for Abstracts. In our system, instead of individual transac-
tions, the consensus is only reached on the abstracts. Then, for many consensus
algorithms, a transaction fee should be provided to the block proposers, namely
the miners, for them to include the abstract. The amount of the transaction fee
should not be fixed so that a market can be created between the nodes and the
miners. It can be achieved by introducing a new type of transactions in which
the receiver is the miner, i.e., in a transaction block bi(x), node x could create
transactions in form of txm(vj , x → [miner]) = [vj , x, [miner], sn], where [miner]
is a variable that equals to the proposer of the block Bi. A non-trivial problem
for the transaction fee is that the sender of this transaction does not know the
receiver in advance, which hinders him from sending the proof to the receiver.
Hence, in the scope of this paper, the transaction fees are only feasible if the main
chain uses BFT algorithms or algorithms that the block proposer is determined
before the block, e.g., [10,12,15]. Then, the sender will give the proof of this
transaction to the corresponding node so that the abstract would be included.

Value Ownership and Proof. Firstly, we define the ownership of values as
the following.

Definition 2 (Value Ownership).

– The initial value ownership is agreed on the main chain, either by the initial
value distribution in B1 or value creation in Bk, k ≥ 1.

– We assume that node x started owning a value vj at Bi′ . Then, he will transit
the ownership of this value to node y if he makes a transaction in a confirmed
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block bi(x) and has not make any transaction of this value in any confirmed
blocks bk(x), k ∈ [i′ + 1, i − 1].

– If there are more than one transaction of the same value in one transaction
block, it is a clear sign of an attempt of double spending. Hence, we forbid
this by stating that if a value is transacted more than once by its owner in a
confirmed block, then the owner of that value is NA.

Then, we define the proof P (vj , Bi) as a subset of CB, which is essentially
all confirmed transaction blocks that are considered in the second item of Def-
inition 2, as well as all necessary public keys to verify them. The algorithm
Proof(vj , Bi, CB) can be used to get the proof P (vj , Bi), which is given in
Appendix A.

Verification Algorithm. Further, as defined in Subsect. 3.2, a verification
algorithm in a VCB should be able to determine the ownership when the
proof is given and output “Fail” if any input other than the correct proof is
given. In Algorithm 1, we propose GetOwner(vj , Bi, p) that outputs O(vj , Bi) if
p = P (vj , Bi) and outputs ‘Fail’ for p �= P (vj , Bi).

Algorithm 1. Verification Algorithm GetOwner(vj , Bi, p)
Get the block of initial distribution (creation) of value vj in the main chain: Bindex

Set owner according to the initial distribution from the main chain.
index++;
while aindex(owner) exists in Bindex do

if bindex(owner) or the public key of owner does not exist in p then return Fail;

if Merkle root and signature do not match then return Fail;

count ← number of transactions of vj in bindex(owner);
if count = 0 then

index++;
else if count = 1 then

index++;
owner ← the receiver of the transaction of vj ;

else return Fail;

if index > i then
if All data in p are blocks and all blocks have been checked then return

owner;
else return Fail;

The validity of GetOwner(vj , Bi, p) as an verification algorithm could be easily
shown. First, it uses the same method as the second item in Definition 1 to
check whether p consists of the exact transaction blocks as P (vj , Bi) and any
mismatch returns ‘Fail’. Then, since the algorithm use exactly the same rules
as the definition of ownership to determined the owner, it returns O(vj , Bi) if
p = P (vj , Bi).
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4.3 Validity of VAPOR

Here, we prove that VAPOR is a valid VCB under RVO rules and the consistency
of the system is uncompromised even if RVO rules do not hold.

Theorem 1. In VAPOR, the properties of a valid VCB will hold in the following
conditions.

Properties Ownership Liquidity Authenticity

Conditions RVO rules Synchrony —

Due to space limitation, we only give an outline of the proof and provide the
full proof in Appendix B. The Ownership could be proved by induction: for each
owner of the value, he is always able to receive the proof of the value from a
rational previous owner. Moreover, only the owner can transfer the value since
the transaction only happens when the block is confirmed. The Liquidity follows
from the Synchronous Liveness property of the main chain. Then, the Authen-
ticity follows from the Asynchronous Consistency of the main chain, which also
guarantees the consistency of all confirmed transaction blocks. Then, Authen-
ticity is proved as at each state, the values, owners, and proofs are based on the
confirmed transactions blocks in a deterministic and one-to-one mapped fashion.

The holding condition of each property in Theorem 1 provides a good insight
on VAPOR and its differences from traditional blockchains. First, even if RVO
rules do not hold, e.g., a sender refuses to send the proof to the receiver, it
only causes a fail to prove the ownership of this exact value. The Liquidity and
Authenticity of the system are not violated and other values are not corrupted.
Second, the Ownership does not depend on synchrony. Hence, if a value is trans-
ferred and the network lose synchrony for Liquidity, the proof of the value could
still be delivered to the receiver if the sender is rational.

4.4 Features of VAPOR

The most distinctive feature of VAPOR is that each node only needs to acquire
and keep the proofs of the values that it owns, i.e., at a state Bi, node x only
needs to have P (vj , Bi),∀O(vj , Bi) = x. To efficiently record the proofs, we
propose the following implementation:

– The main chain is stored and updated according to the consensus algorithm.
– A node keeps a transaction block database of for all confirmed transaction

blocks that he has.
– A node keeps a value ownership table that updates with the main chain and

keeps track of the values, their owners, and the proofs that he knows, which
includes his own values. The proofs are simply pointers to the transaction
block database.
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Comparing to TCBs and ACBs, a transaction of multiple values need to be
recorded as multiple transactions in VAPOR. However, for all these transactions
plus all transactions included in the same transaction block, only one signature
is required in VAPOR, which is in fact more efficient in storage. The commu-
nication is also efficient as transaction blocks are acquired directly from the
sender of the value with point-to-point communication and guaranteed security
under the RVO rules. Moreover, the receivers could inform the sender about the
transaction blocks that it already has to avoid overhead. Then, as a trade-off
between storage and communication, a node can choose to not delete the proofs
of the already spent values. This means that they do not need to re-acquire some
transaction blocks for future received values.

5 Extending VAPOR by Modifying the Verification
Algorithm

In Sect. 4, we introduced how transactions could be verified with the verification
algorithm GetOwner with the proof P (vj , Bi). In this section, we show the flexi-
bility of this framework by providing examples of extended functionalities. More
precisely, we will show that the functionalities of value division, fast off-chain
transactions, and value-related smart contracts can be easily achieved by simple
modifications to the verification algorithms.

5.1 Value Division

The functionality of value division can be achieved with a new type of transac-
tions called value division that has the form:

[Divide : vsource → (vsource,1, Q(vsource,1)), . . . , (vsource,n, Q(vsource,n)).

The index source forms a chain that can be traced back to the origin. Then, to
validate a value divided from another value, we simply call GetOwner to check
the owner of each value on the chain recursively from the origin. This new type
of transactions can either be added by making modifications to GetOwner or
defining another algorithm GetOwnerDV on the main chain that recursively calls
GetOwner. We describe GetOwnerDV in Appendix C.

5.2 Fast Off-chain Payment

In VAPOR, the confirmation of the transaction is dependent on the main chain,
thus it essentially has the same latency as traditional blockchains. However, a
fast off-chain payment solution like LN or Plasma [25,26] can also be deployed
in VAPOR. Briefly speaking, an off-chain payment scheme works as follows.
Firstly, some value is locked on the main chain as the deposit for the “fast pay-
ment channel” to a particular receiver. Then, transactions can be made to that
receiver without confirmations on the main chain. The safety of the transac-
tions are guaranteed by a mechanism for the receiver to take all deposit when
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the sender tries to cancel a transaction. However, this mechanism requires syn-
chrony between the receiver and the main chain. Then, there is a mechanism
allowing the sender to safely shut the off-chain payment channel at any time.

In VAPOR, similar ideas can be implemented under the same synchrony
assumption. A node can independently lock its values for a receiver and then
makes off-chain transactions by signing them and sending signed transactions to
the receivers as proofs. Then, the verification scheme should be modified to be
able to verify these proofs. The detail of this scheme will be given in Appendix D.

5.3 Smart Contracts

In the previous subsections, it is revealed that additional functionalities can be
easily achieved by changing the rules for verification, which is merely a mod-
ification to GetOwner, or agreeing on new verification algorithms on the main
chain. In fact, as long as values are transferred and there are interested parties
following RVO rules, smart contracts can be written in VAPOR as new verifica-
tion algorithms with one principle: only data that is against the value owners’
interest is required to be put on the main chain and other data can be safely
moved off-chain to the corresponding value owners. We give an example of such
smart contracts, a betting game, in Appendix E.

6 Advantages of VAPOR

It has been shown that in VAPOR, nodes do not necessarily need to record
the whole transaction set to allow secure value transfer. This fundamental dif-
ference from traditional blockchains leads to the advantageous in throughput,
decentralization, and flexibility.

6.1 Throughput

The most straightforward advantage of VAPOR is the throughput because nodes
only need to acquire the proofs of their own values instead of the whole trans-
action set, as stated in Subsect. 4.4. However, this improvement is not trivial
to quantify as it depends heavily on the networks and the transaction patterns.
Here, we theoretically analyze the throughput in terms of the transaction cost
C, defined as a combination of the expected bandwidth, computation, and stor-
age resources required to communicate, validate, and store a transaction in the
whole network.

Unlike traditional blockchains, the cost of an individual transaction in VAPOR
is determined by the proof size, which is situational. Hence, we calculate C by look-
ing at the expected transaction blocks in a round that a node eventually needs to
acquire, which we denote by b. Then, we have C = O(b) since a transaction will
be eventually acquired by b nodes on average. Let us consider a transaction block
bi(x). It will eventually be acquired by node y if node x holds a value at state Bi

and at a state Bj , j > i node y receives that value. In other words, for the set of
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values Vi(x) holding by node x at state Bi, if all other nodes will receive a value
from Vi(x) sometime in the future, then VAPOR have no throughput gain over tra-
ditional blockchains. In all other cases, as long as there exists some nodes that will
never acquire any value in Vi(x), then we have b < N and VAPOR has a through-
put benefit.

In [28], a concept of spontaneous sharding is proposed, which roughly works
as the following. When performing a transaction, a rational node will choose the
value with the least transaction blocks to transmit among all values that he has.
In other words, they tends to use the values for which the most part of the proof
is already known and validated by the receiver, e.g., the value that once owned
by the receiver. As a result, some values will only cycle in a part of the network,
namely a shard, instead of the whole network. Then, a node holding g values is
equivalent to participating in g shards and b will then equal to the expected size
of the union of these shards. Then, it is shown in [28] that in many scenarios,
we have C = O(b) = o(N), i.e., the throughput will scale out. Note that any
group of frequent transacting nodes can decide to perform this optimization at
any time to gain the throughput benefit, regardless of the rest of the network.
Hence, since spontaneous sharding gives direct benefit to individuals even if
other nodes refuse to cooperate, the “the tragedy of the commons” [14] problem
will not occur. We refer the readers to [28, Remark 2] for more discussion.

6.2 Decentralization

In Sect. 1, we address the centralization problem due to the high participation
threshold. In VAPOR, this problem is significantly mitigated due to the value
centric principle: nodes only transmit and store the data needed for validation of
their own values, which is mostly not the whole transaction set. For example, in
traditional blockchains, for nodes who only own a few coins in a blockchain, they
still have to acquire and validate the whole chain to validate their own values
and make transactions. In VAPOR, their cost of validating their own values and
making transactions is O(1).

6.3 Flexibility

As shown in Sect. 5, VAPOR enjoys benefits of easy modification, extension, and
upgrading by simply agreeing on new verification algorithms on the main chain.
However, this can be pushed one step further by allowing nodes to individually
choose the algorithms that they like to use. Then, hard forks like Bitcoin/Bitcoin
Cash or Ethereum/Ethereum Classic can be avoided. Instead, the forks will be
“hidden” as some values might not be validated by some users as they disagree
with a certain rules. However, they could still agree with the main chain and
contribute to the security of the entire system. We consider this as an advantage
of flexibility, as nodes are more freely to agree/disagree with each other, without
destroying the consistency of the whole system as long as they have the basic
agreement.
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7 Related Works

This work is mainly inspired and developed from [28]. However, it does has
similarities to other studies if we view VAPOR in different perspectives. We
explain the similarities and relations of this work and other works in this section.

7.1 Value Centric Principle

The origin of describing value transfer systems by values (or alternatively called
coins, notes, bills) can be dated back to some pioneering digital cash works like
[7,8,23]. However, in these schemes, the notions of value and transaction are
interchangeable as a central authority is required to validate each transaction.
Hence, Bitcoin, as well as most of its successors known as alt-coins, use TCBs
that focus on the validity of individual transactions rather than the value. The
main difference from TCBs and VCBs can be clarified using the example of the
Simple-Payment-Verification (SPV) nodes in Bitcoin. SPV nodes could verify
whether all related transactions of a value are validated by the miners and are
on-chain, but they could not validate the authenticity of this value, i.e., could
not detect double-spending.

Chainspace [2] is a blockchain with sharding that uses a similar value-centric
idea for inter-shard transactions, i.e., each transaction should include a “Trace”
pointing back to the source of the value, so that the validators from the value-
receiving shard only need to check the shards of the sources to prevent double
spending. However, it has more redundancy as the value-centric idea is used in a
shard level instead of the node level, and thus has less throughput improvement
comparing to VAPOR.

7.2 Off-chain and DAG Techniques

In the perspective of data structure, VAPOR has its similarities to many off-
chain systems like RSK [19] as data is stored off-chain and a main chain is
used for the hash of the data. However, most off-chain systems compromise in
decentralization as some trusted nodes are required to validate the contents of
the off-chain data. Also, comparing to the off-chain payment schemes like LN
and Plasma [25,26], VAPOR essentially moves all proofs for values off-chain. As
a result, it is no longer necessary to use deposits to enforcing the consistency
of the off-chain and on-chain values. Then, it is also similar to Hashgraph [3]
in the sense that node individually create their own transactions. However, in
Hashgraph, all nodes eventually need the whole transaction set.

7.3 Sharding

Recently, many sharding schemes have been proposed to divide the network into
small shards. Then, the transactions in a shard do not need to be communicated
outside the shard. However, a key problem is that the double spending prevention
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of inter-shard transactions relies on the security of shards instead of the whole
network, which is a degradation in the security. Shards can be either determined
artificially by the network topology [5] or at random [17,20], or determined based
on applications or users [1,2], to reduce the number of inter-shard transactions
as well as the probability of malicious shards. However, our system guarantees
no degradation on security since essentially, the shards are spontaneously formed
by the value transfer patterns. In other words, all shards are secure for their own
intra-shard transactions and there will be no inter-shard transactions.

7.4 Performance Comparison

It is difficult to make fair throughput comparison between VAPOR and other
systems using a uniform standard, e.g., transaction per second (TPS), as schemes
have different security assumptions and the throughput also depends on the net-
work settings. Therefore, we use a theoretical approach to analyze and compare
the throughput and security of VAPOR with a typical system of each kind, i.e.,
LN for off-chain schemes, PHANTOM for DAG, and Omniledger for sharding
schemes. We consider the transaction cost C (defined in Subsect. 6.1) and the
security S of a transaction, which is defined as the amount of compromised
nodes (corresponding resources for POW or POS) required to perform a double-
spending attack. We present the results in Table 1.

Table 1. The cost and security of a transaction in VAPOR, LN, PHANTOM, and
Omniledger for the whole network. Here b is the average transaction blocks of each
state acquired by a node and d is size of the shard.

Schemes VAPOR LN PHANTOM Omniledger

C O(b) O(1) O(N) O(d)

S O(N) O(1) or O(N) O(N) o(N)

The cost and security of VAPOR are given in Subsects. 6.1 and 4.3, respec-
tively. For LN, note that this transaction is different from classical notion of
transactions as it relies on a deposit and the value would be locked until the
channel is shut down. The security relies on the synchrony between the receiver
and the system (explained in Appendix D), thus would be compromised if either
one is compromised. PHANTOM uses a block DAG structure to remove the
dependency of security on the throughput of a chain-structure blockchain. How-
ever, all nodes still need to eventually acquire all transactions and the system
will not scale out. Omniledger reduces the cost to O(d) where d is the shard
size and promises a throughput benefit that is proportional to N/d. However, as
Omniledger yields a random approach to keep the malicious nodes within each
shard to be below 1/3, the security of the system becomes a non-trivial function
of d and N , which is dominated by N but not explicitly stated in [17].
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8 Conclusion

In this paper, we address and formalize the fundamentals of a value-transfer sys-
tem and the rationality assumptions. The highlight of this work is that we clarify
the redundancy in traditional blockchains for value-transfer and how this redun-
dancy can be removed by using the rationality assumptions and VCBs. We hope
that this work would set a theoretical framework for future blockchain designs
and inspire many theoretical studies on other basic concepts in blockchains, e.g.,
the rational assumptions in non-value-transfer blockchains.

A Algorithm Proof(vj, Bi, CB)

We define the proof of the ownership P (vj , Bi) as a subset of CB that output by
an algorithm Proof(vj , Bi, CB) shown in Algorithm 2.

Algorithm 2. Proof(vj , Bi, CB)
Get the block of initial distribution (creation) of value vj in the main chain: Bindex

Set owner according to the initial distribution from the main chain.
index++
Proof={}
while aindex(owner) exists in Bindex do

if Merkle root and signature do not match then return Proof

Add bindex(owner) and the public key of owner to Proof

count ← number of transactions of vj in bindex(owner)
if count = 0 then

index++
else if count = 1 then

index++
owner ← the receiver of the transaction of vj .

else return Proof

if index > i then return Proof

B Proof for Theorem 1

Proof. Firstly, we prove Ownership by induction. It is clear that the first owner
of any value vj will have the proof of this value, which are basically all of his
public key and his own confirmed transaction blocks until the block before the
one that spends it. Then, assume that the t-th owner of vj , denoted by ot,
has the proof P (vj , Bk) proving the ownership O(vj , Bk) = ot at state Bk.
Then, assume that the t + 1-th owner, ot+1 starts to own the value at state Bi,
i.e., O(vj , Bi−1) = ot, O(vj , Bi) = ot+1. Then, by the definition of proof, there
exists a transaction in bi(ot) that send the value to ot+1. By the Rationality of
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Holding Value in RVO, ot would not make this transaction unless he would like
to send this value. Then, by the Rationality of Sending Value in RVO, ot will
take responsibility of giving proof P (vj , Bi) to ot+1. Again, by the definition of
proof, P (vj , Bi) is merely P (vj , Bk) ∪ {bl(ot) : k < l ≤ i} ∪ {public key of ot},
which can be independently provided by ot. Hence, we prove that in this case
ot+1 will eventually has the proof P (vj , Bi). Furthermore, it is clear that only
the owner of a value could transfer it as a transaction must be included in a
block confirmed with the private key of the owner.

Then, we prove Liquidity. To transact a value, the owner simply needs to
put a transaction in a confirmed transaction block. Then the property (Partial)
Synchronous Liveness in Property 1 guarantees that the transaction block can
be confirmed as the abstract will be included in the main chain.

At last, we prove Authenticity. This is actually guaranteed by the design of
VAPOR. Firstly, the initial ownership of a value is unambiguous because it is
on the main chain which has Asynchronous Consistency in Property 1. Then,
the ownership transition is always determined by a confirmed block which is
immutable. Then, there are three possibilities for the number of transactions of
the same value in a confirmed block: (1) if there is no transactions of that value,
then the ownership remains unchanged; (2) if there is one transaction of that
value, then the ownership is changed to the receiver; (3) if there are more than
one transactions of that value, then the ownership becomes NA. Since all three
possibilities result in unambiguous ownership, we proved Authenticity. �

C Verification Algorithm for Value Division GetOwnerDV

Here we introduce GetOwnerDV in Algorithm 3. Note that in here, a minor mod-
ification should be made on GetOwner so that the result will not be ‘Fail’ if
redundant elements are detected in p.

Algorithm 3. Verification Algorithm for Divided Value GetOwnerDV(v[seq], Bi, p)
Find all value division transactions and their corresponding states in p. Order the
states by [s1, s2, . . .];
j ← the first entry of [seq];
t ← 1;
while t ≤ the length of seq. do

owner = GetOwner(vj , Bs1 , p);
Check if the corresponding value division transaction is in bst(owner) and the

sum of the amount of the divided value equals to the amount of the source value.
Return ‘Fail’ if the check fails.

t + +, j = [j, next element in seq];

if All blocks in p are checked then return owner

else return Fail
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D Off-chain Payment Scheme

Our fast payment scheme contains two new type of transactions, two new types
of message to the main chain, and a new verification algorithm GetOwnerFP. If
node x wants to make fast payment to node y, he simply performs the following:

– Node x makes deposit transactions to lock up a number of values with indi-
cations that they could only be send to y, confirm the blocks, and send them
to node y to initialize the fast payment.

– When a fast payment of value vj is issued, node x sends a signed transaction
of vj to node y, denoted by tx. Then, node y can include this transaction in
his own blocks at any time and confirm them to receive the value.

– When node x wants to end the fast payment and unlock a value vk, he sends
an unlock message to the main chain.

– The unlock will succeed in T rounds if no objection message shows in the
main chain. An objection message can be made by any node by sending tx
to the main chain.

Then, in GetOwnerFP we define three new rules on checking the proofs for own-
ership:

1. A value vj locked by node x is no longer considered as owned by x, but NA
indicating no owner. It will be reconsidered as owned by x if there is only one
unlock message is on the main chain, assume that it is included in Bi, and
there is no objection message included in Bk, i + 1 ≤ k ≤ i + T .

2. A value vj is transacted from node x to node y in state Bi if it is locked by
node x to send to node y at a state Bi′ , i

′ < i, and there is a signed transaction
by x included in block bi(y). There should not be a unlocking message for
this value on the main chain that is not responded for more than T blocks.

Note that although a fast transaction is only confirmed when the block is con-
firmed, the transaction itself is completed as soon as the signed transaction is
received by node y, since node y can then independently make the proof of him
owning this value.

Some drawbacks in existing off-chain payment schemes, e.g., LN, are: (1),
the values in the transactions and deposit will be locked until the channel is
closed. Hence, it is a different type of transaction and can only be considered
as a supplement to the value transfer system. (2), the receiver should have a
certain synchrony, i.e., the receiver should be able to issue a transaction to the
chain to take the deposit before it is refunded to the sender when he catches the
sender cheating. (3), the security of this scheme is not formally proved. A big
advantage of the off-chain payment scheme in VAPOR is that node y can spend
vj as soon as he owns it, without requiring shutting down the whole channel,
i.e., all deposit values been spend or unlocked. Moreover, we could use similar
arguments as the proof in Subsect. 4.3 to prove the Ownership property holds
when the network is synchronous and the RVO rules apply.
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E Betting Game

Here, we give a smart contract for on-chain betting. Node x and node y would
like to bet even or odd on the hash of block Bi. Then, we simply add a new
type of transaction which is Bet : [vj , x, y,Bi, sn]. The bet transaction will lock
the value vj until Bi with one unlocking condition: another value with the same
amount is bet by y before Bi with x and the ownership will depend on the hash
of Bi. Then, the verification algorithm is simply checking the lock transaction,
the ownership for both values, and the hash of Bi, i.e., if node x bet on even,
then the ownership of both locked values will be node x at state Bi if the hash
of Bi is even.

However, the difficulty is to make sure that both node x and node y could get
the proofs of ownership and the locking message for both values. This is a prob-
lem since there is always one node in the betting would benefit from not sharing
the proof and/or the locking message, which will cause a scenario similar to Two
Generals Problem. As a result, the verification algorithm must also check for a
confirmation send by one node on the main chain, which shows the agreement
for both nodes that both proofs are acquired. Without such confirmation, the
value will be unlocked at state Bi to its original owner.
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Abstract. Bitcoin, Ethereum and other blockchain-based cryptocurren-
cies, as deployed today, cannot support more than several transactions
per second. Off-chain payment channels, a “layer 2” solution, are a lead-
ing approach for cryptocurrency scaling. They enable two mutually dis-
trustful parties to rapidly send payments between each other and can be
linked together to form a payment network, such that payments between
any two parties can be routed through the network along a path that
connects them.

We propose a novel payment channel protocol, called Sprites. The
main advantage of Sprites compared with earlier protocols is a reduced
“collateral cost,” meaning the amount of money × time that must be
locked up before disputes are settled. In the Lightning Network and
Raiden, a payment across a path of � channels requires locking up col-
lateral for Θ(�Δ) time, where Δ is the time to commit an on-chain
transaction; every additional node on the path forces an increase in lock
time. The Sprites construction provides a constant lock time, reducing
the overall collateral cost to Θ(� + Δ). Our presentation of the Sprites
protocol is also modular, making use of a generic state channel abstrac-
tion. Finally, Sprites improves on prior payment channel constructions
by supporting partial withdrawals and deposits without any on-chain
transactions.

1 Introduction

Popular cryptocurrencies such as Bitcoin and Ethereum have at times reached
their capacity limits, leading to transaction congestion and higher fees. A limit
to scalability seems inherent in their model, since they are designed for security
through replication, every node validates every transaction.

A leading proposal for improving the scalability of cryptocurrencies is to
form a network of “off-chain” rapid payment channels. Payment channels require
initial deposits of on-chain currency, but once established can support an
unbounded number of payments in a session using only off-chain messages.
Payments can be routed through a network of such channels, with changes in
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balance flowing from one intermediary to the next. Only when the channel must
be settled is blockchain interaction required. The protocol is centered around a
smart contract, which handles deposits and withdrawals and defines the rules
for handling disputes.

In this paper we introduce the “collateral cost” of a payment channel, which
roughly corresponds to the amount of time that an amount of money is locked
up in the smart contract, (money× time). The main result of our paper is a new
payment channel protocol called Sprites that improves on the state-of-the-art in
worst-case collateral cost.

Collateral Costs in Payment Channels. A chief concern for the feasibility
of payment channel networks is whether or not enough collateral will be available
for payments to be routed at high throughput. For every pending payment, some
money in the channel must be reserved and held aside as collateral until the
payment is completed, called the “locktime.” Even though off-chain payments
complete quickly in the typical case, if parties fail (or act to maliciously impose
a delay), the collateral can be locked up for longer, until a dispute handler can
be activated on-chain.

We characterize the performance of a payment channel protocol as its “col-
lateral cost,” which we think of as the lost time value of money held in reserve
(i.e., in units of money × time) during the locktime.1 For a linked payment,
the longer the payment path, the more total collateral must be reserved: for a
payment of size $X across a path of � channels, a total of θ(�$X) money must
be reserved. Payment channel protocols depend on a worst-case delay bound,
Δ for the underlying blockchain. Essentially, Δ is a safe bound on how long it
takes to observe a transaction committed on the blockchain and commit one new
transaction in response, i.e., one blockchain round trip. In practical terms, Δ is
roughly 1 day.

In the Lightning Network and in Raiden, the two most well-known payment
networks, Δ is incorporated into the locktime parameter. However, a payment
on a path of length � requires an additional Δ delay added to the locktime for
each link. Thus the worst-case total collateral cost of a $X payment over a path
of length � is Θ(�2$XΔ). The diameter of the Lightning network is 8, and with
a payment of $10, the collateral costs for Lightning and Sprites are 360 dollar-
days and 116 dollar-days, respectively. Therefore, Sprites has an approximately
3x collateral cost improvement over Lightning.

Sprites: Constant-Locktime Payment Channels. Sprites improves on
Lightning and other linked-payments by avoiding the need to add an additional
Δ delay for each payment on the path, reducing the collateral cost by a factor
of � with a constant locktime. The key insight behind this improvement is the
use of a globally accessible smart contract that provides shared state between
individual payment channels. As such, this is expressible in Ethereum, but does
not appear possible in Bitcoin.
1 The rational investor’s preference is to obtain and use money now rather than later.
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Fig. 1. The underlying currency serves as collateral for a payment network [4,19]. A
payment channels allow rapid payment to another party, requiring on-chain transac-
tions in case of disputes. Payments can be routed through multiple channels based on
a condition (a). We improve the worse case delay for �-hop payments, (b), to Θ(�+Δ).

Although the Sprites protocol builds on prior payment channel designs, we
present it from scratch in a simplified and modular way. Our presentation is based
on a generic abstraction, the state channel, which serves two roles: First, it neatly
encapsulates the necessary cryptography (mainly exchanging digital signatures),
separating concerns in the protocol presentation. Second, it provides a flexible
interface bridging the off-chain and on-chain worlds. Sprites makes use of this
interface in several ways, both to define its constant-locktime dispute handler,
but also to support incremental deposits and withdrawals without interruption.
Our security and worst-case performance analysis ensures that intermediaries are
never at risk of losing money, and that the protocol provides real time guarantees
even in spite of Byzantine failures. Finally, we implemented a proof of concept
of Sprites, and deployed it on the Ropsten Ethereum Testnet.2 We found that
the transaction fees required to resolve a dispute on-chain are around ≈$0.20
USD as of November 2018, comparable to the Lightning Network.

2 Background and Preliminaries

2.1 Blockchains and Smart Contracts

At a high level, a blockchain is a distributed ledger of balances. The primary
use of blockchains are as decentralized cryptocurrencies, which allow users to
exchange a native token without trusted intermediaries. Transactions are made
by users (addressed by pseudonyms) and published on the blockchain (on-chain
transaction) to be confirmed by the rest of the network. Decentralized cryp-
tocurrencies like Ethereum, however, require state replication across all nodes
and can not support more than several transactions per second.

2 The reference implementation can be found at https://github.com/amiller/
sprites, Sprites: 0x85DF43619C04d2eFFD7e14AF643aef119E7c8414, Manager:
0x62E2D8cfE64a28584390B58C4aaF71b29D31F087.

https://github.com/amiller/sprites
https://github.com/amiller/sprites
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Concretely, a blockchain ensures the following properties:

1. All parties can agree on a consistent log of committed transactions
2. All parties are guaranteed to be able to commit new transactions in a pre-

dictable amount of time, Δ.

The time delay, Δ, is meant to capture the worst-case bound on how long it takes
to learn about a new transaction, then to publish a transaction in response. We
say one unit of time is the maximum time needed to transmit a point-to-point
message to any other party.

Modern cryptocurrencies, like Ethereum, also feature smart contracts. A
smart contract is an autonomous piece of code that exists at an address in
the Ethereum blockchain. It can hold funds like any other address and can act
on those funds through its functionality. To execute a piece of code in the con-
tract, a user account must submit a transaction to it specifying the method to
be executed. The method’s execution may change the state of the contract’s
balance or persistent storage, and the changes are eventually committed to
the blockchain. The main benefits of contracts are that they are essentially
autonomous machines that always execute their code correctly. Throughout this
paper, we show smart contracts using pseudocode resembling reactive processes
that respond to method invocations.

2.2 Blockchain Scaling

Proposed scalability improvements fall in roughly two complementary cate-
gories. The first, “on-chain scaling,” aims to make the blockchain itself run
faster [7,9,11,17]. A recurring theme is that the additional performance comes
from introducing stronger trust assumptions about the nodes.

The second category of scaling approaches, which includes our work, is to
develop “off-chain protocols” that minimize the use of the blockchain itself.
Instead, parties transact primarily by exchanging off-chain messages (point-to-
point messages), and interact with the blockchain only to settle disputes or
withdraw funds.

2.3 Off-Chain Payment Channels

There have been many previous payment channel constructions prior to this
work. However, for simplicity we present only the approach using signatures
over round numbers [2,15,18]. We also make the assumption that transactions
can depend on a “global” event recorded in the blockchain—and therefore Sprites
cannot (we conjecture) be implemented in Bitcoin.

An off-chain payment channel protocol roughly comprises the following three
phases:

Channel Opening. The channel is initially opened with an on-chain deposit
transaction. This reserves a quantity of digital currency and binds it to the smart
contract program.
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Off-Chain Payments. To make an off-chain payment, the parties exchange
signed messages, reflecting the updated balance. For example, the current state
would be represented as a signed message (σA, σR, i, $A, $B), where a pair of
signatures σA and σB are valid for the message (i, $A, $B), where $A (resp. $B)
is the balance of Alice (resp. Bob) at round number i. Each party locally keeps
track of the current balance, corresponding to the most recent signed message.

Dispute Handling. The blockchain smart contract serves as a “dispute han-
dler.” It is activated when either party suspects a failure, or wishes to close
the channel and withdraw the remaining balance. The dispute handler remains
active for a fixed time during which either party can submit evidence (e.g., signed
messages) of their last-known balance. The dispute handler accepts the evidence
with the highest round number and disburses the money accordingly.

The security guarantees, roughly, are the following:

(Liveness): Either party can initiate a withdrawal, and the withdrawal is pro-
cessed within a predictable amount of time. If both parties are honest, then
payments are processed very rapidly (i.e., with only off-chain messages).

(No Counterparty Risk): The payment channel interface offers Bob a local
estimate of his current balance (i.e., how many payments he has received). Alice,
of course, knows how much she has sent. The “no counterparty risk” property
guarantees that local views are accurate, in the sense that each party can actually
withdraw (at least) the amount they expect.

2.4 Linked Payments and Payment Channel Networks

Duplex payment channels alone cannot solve the scalability problem; opening
each channel requires an on-chain transaction before any payments can be made.
To connect every pair of parties in the network by a direct channel would require
O(N2) transactions.

Poon and Dryja [19] developed a method for linking payments across a path
of channels where the capacity within each channel is sufficient to facilitate the
transfer.

Linked payments are based on the “hashed timelock contract” (HTLC) for
conditional payments that relies on a single hash h = H(x) to synchronize a
payment across all channels. We denote an HTLC conditional payment from P1

to P2 by the following:

P1
$X−−−−−→
h,T

P2

which says that a payment of $X can be claimed by P2 if the preimage of h is
revealed via an on-chain transaction. In the optimistic case, the sender can create
and send a new unconditional payment with a higher round number. Otherwise,
the conditional payment can be canceled after a deadline T . Operationally, open-
ing a conditional payment means signing a message that defines the deadline,
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the amount of money, and the hash of the secret h = H(x); and finally sending
the signed message to the recipient.

Consider a path of parties, P1, ..., P�, where P1 is the sender, P� is the recip-
ient, and the rest are intermediaries. In a linked off-chain payment, Each node
Pi opens a conditional payment to Pi+1, one after another.

P1
$X−−−−−−−−−−−−−−→

h,T1=T�−1+Θ(�Δ)
P2 ... P�−1

$X−−−−−−−→
h,T�−1

P� (E)

Note that the hash condition h is the same for all channels. However, the
deadlines may be different. In fact, Lightning requires that T1 = T� + Θ(�Δ) as
we explain shortly. The desired security properties of linked payments are the
following (in addition to those for basic channels given above):

(Liveness): The entire chain of payments concludes (success or cancellation)
within a bounded amount of on-chain cycles. If all parties on the path are hon-
est, then the entire payment should complete successfully using only off-chain
messages.

(No Counterparty Risk): A key desired property is that intermediaries
should not be placed at risk of losing funds. During the linked payment pro-
tocol, a portion of the channel balance may be “locked” and held in reserve,
but it must returned by the conclusion of the protocol.3 This property poses a
challenge that constrains the choice of deadlines {Ti} in Lightning. Consider the
following scenario from the point of view of party Pi.

... Pi−1
$X−−−−−→
h,Ti

Pi
$X−−−−−−−→

h,Ti+1
Pi+1 ...

We need to ensure that if the outgoing conditional payment to Pi+1 com-
pletes, then the incoming payment from Pi−1 also completes. In the worst case
where Pi+1 attempts to introduce the maximum delay for Pi (which we call the
“petty” attacker), the party Pi only learns about x because x is published in the
blockchain at the last possible instant, at time Ti+1. In order to complete the
incoming payment, if Pi−1 is also petty then Pi must publish x to the blockchain
by time Ti. It must therefore be the case that Ti ≥ Ti+1+Δ, meaning Pi is given
an additional grace period of time Δ (the worst-case bound on the time for one
on-chain round).

We use the term “collateral cost” to denote the product of the amount of
money $X multiplied by the locktime (i.e., from when the conditional payment is
opened to the time it is completed or canceled). Since the payment can be claimed
by time T� + Θ(�Δ) in the worst case, the overall collateral cost is Θ(�2$XΔ)
for each party (see Fig. 1(a)). The worst-case collateral cost may occur because
of failures or malicious attacks intended to slow the network. The main goal of
our Sprites construction (Sect. 3) is to reduce this collateral cost.
3 The intermediary nodes in a path can also be incentivized to participate in the route

if the sender allocates an extra fee that will be shared among them.
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3 Overview of the Sprites Construction

We first give a high-level overview of our construction, focusing on the
main improvements versus Lightning [19]: constant locktimes and incremen-
tal withdrawals/deposits. We assume as a starting point the duplex payment
channel construction described earlier in Sect. 2.3 and presented in related
works [2,15,18]).

3.1 Constant Locktime Linked Payments

To support linked payments across multiple payment channels, we use a novel
variation of the standard “hashed timelock contract” technique [1,10,16,19].

We start by defining a simple smart contract, called the PreimageManager
(PM), which simply records assertions of the form “the preimage x of hash
h = H(x) was published on the blockchain before time TExpiry.” This can be
implemented in Ethereum as a smart contract with two methods, publish and
published (see Fig. 5).

Next, we extend the duplex payment channel construction with a conditional
payment feature, which can be linked across a path of channels as shown:

P1
$X−−−−−−−−−−→

PM[h,TExpiry]
P2 ... P�−1

$X−−−−−−−−−−→
PM[h,TExpiry]

P� (�)

In the above, the conditional payment of $X from P1 to P2 can be completed
by a command from P1, canceled by a command from P2, or in case of dispute,
will complete if and only if the PM contract receives the value x prior to TExpiry.
As with the existing linked payments constructions [15,18], operationally this
means extending the structure of the signed messages (i.e., the off-chain state)
to include a hash h, a deadline TExpiry, and an amount $X. To execute the linked
payment, each party first opens a conditional payment with the party to their
right, each with the same conditional hash. Note that here the deadline TExpiry

is also a common value across all channels.
The difference between Sprites and Lightning is how Sprites handles disputes.

Instead of locally enforcing the preimage x be revealed on time, in Sprites we
delegate this to the global PM contract. In short, each Sprites contract defines a
dispute handler that queries PM to check if x was revealed on time, guaranteeing
that all channels (if disputed on-chain) will settle in a consistent way (either all
completed or all canceled). It then suffices to use a single common expiry time
TExpiry, as indicated above (�).

The preimage x is initially known to the recipient; after the final conditional
payment to the recipient is opened, the recipient publishes x, and each party
completes their outgoing payment. Optimistically, (i.e., if no parties fail), the
process finishes after only � + 1 off-chain rounds. Otherwise, in the worst case,
any honest parties that complete their outgoing payment submit x to the PM
contract, guaranteeing that their incoming payment will complete. This proce-
dure ensures that each party’s collateral is locked for a maximum of O(� + Δ)
rounds.
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The worst-case delay scenarios for both Lightning and Sprites are illustrated
in Fig. 2. In the worst-case, the attacker publishes x at the latest possible time.
However, the use of a global synchronizing gadget, the PM contract, ensures that
all payments along the path are settled consistently. In contrast, Lightning [19]
(and other prior payment channel networks [4,5,12,15]) require the preimage
to be submitted to each payment channel contract separately, leading to longer
locktimes.

open(h) open(h)

publish(x)
publish(x)

open(h) open(h)

disputedispute

publish(x)
publish(x)

dispute

open(h) open(h)

TExpiry

TExpiry+

T1

T3

T1

Fig. 2. The worst-case delay scenario, in Lightning (left) and in Sprites (right). The
two parties shown are “petty,” dropping off-chain messages (striken red) after the
initial open, and sending on-chain transactions (blue) only at the last minute. Disputes
in Lightning may cascade, whereas in Sprite they are handled simultaneously. (Color
figure online)

3.2 Supporting Incremental Deposits and Withdrawals

A Lightning channel must be closed and re-opened in order for either party
to withdraw or deposit currency. Furthermore, all pending conditions must be
settled on-chain and no new off-chain transactions can occur for an on-chain
round (O(Δ) time) until a new channel is opened on the blockchain. On the other
hand, Sprites permits either party to deposit/withdraw a portion of currency
without interrupting the channel.

To support incremental deposits, we extend the off-chain state to include
local views, deposits{L,R}, which reflect the total amount of deposits from each
party. If one party proposes a view that is too stale (i.e., more than some bound
O(Δ) behind), then the other party initiates an on-chain dispute. Of course, the
on-chain dispute handler can read the current on-chain state directly.

To support incremental withdrawals, we implement the following. We extend
the off-chain state with an optional withdrawal value wdi, which can be set
whenever either party wishes to make a withdrawal. The on-chain smart contract
is then extended with an update method that either party can invoke to submit
a signed message with a withdrawal value. Rather than close, the smart contract
verifies the signatures, disburses the withdrawal, and advances the round number
to prevent replay attacks. Further off-chain payments can continue, even while
waiting for the blockchain to confirm the withdrawal.
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Incremental withdrawals and deposits are also supported in another
Ethereum payment network called Raiden [15]. Like Sprites, Raiden allows incre-
mental deposits to be made at any time by any party without interrupting the
channel. However, unlike Sprites, Raiden does not currently support partial with-
drawals and forces a channel to close before any withdrawal is possible.

4 The State Channel Abstraction

In this section, we present the state channel abstraction, which is the key to
our modular construction of Sprites payment channels. A state channel gener-
alizes the off-chain payment channel mechanism as described in Sect. 2.3. The
state channel primitive exposes a simple interface: a consistent replicated state
machine shared between two or more parties. The state machine evolves accord-
ing to an arbitrary, application-defined transition function. It proceeds in rounds,
during each of which inputs are accepted from every party. This primitive neatly
abstracts away the on-chain dispute handling behavior and the use of off-chain
signed messages in the optimistic case.

Each time the parties provide input to the state channel, they exchange
signed messages on the newly updated state, along with an increasing round
number. If at any time a party aborts or responds with invalid data, remaining
parties can raise a dispute by submitting the most recent agreed-upon state to
the blockchain, along with inputs for the next round. Once activated, the dispute
handler proceeds in two phases. First, the dispute handler waits for one on-chain
round, during which any party can submit their evidence (i.e., the most recently
signed agreed-upon state). The dispute handler checks the signatures on the
submitted evidence, and ultimately commits the state with the highest round
number. Finally, after committing the previous state, the dispute handler then
allows parties to submit new inputs for the next round.

To summarize, the security guarantees of a state channel are:

(Liveness): Each party is able to provide input to each iteration of the state
machine, and a corrupt party cannot stall.

(Safety): Each party’s local view of the most recent state is finalized and con-
sistent with every other party’s view.

A novel feature of our model is a general way to express side effects between
the state channel and the blockchain. Besides the inputs provided by parties,
the application-specific transition function can also depend on auxiliary input
from an external contract C on the blockchain (which, for example, can collect
currency deposits submitted by either party). The transition function can also
define an auxiliary output for each transition, which is translated to a method
invocation on the external smart contract C (e.g., triggering a disbursement
of coins). This feature generalizes the handling of withdrawals as transfers of
on-chain currency.
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4.1 Instantiating State Channels

We focus on explaining the behavior of the dispute handler smart contract,
ContractState, defined in Fig. 3; a detailed description of the local behavior for
each party is deferred to the Appendix (A.4). At a high level, the off-chain state
can be advanced by having parties exchange a signed message of the following
form (for the party Pi):

σr,i := SignPi
(r‖stater‖outr) (1)

where r is the number of the current round, stater is the result after applying
the state transition function to every party’s inputs, and outr is the resulting
blockchain output (or ⊥ if this transition makes no output). In the appendix
we describe a leader-based broadcast protocol used to help parties optimistically
agree on a vector of inputs. We now explain how ContractState handles disputes.

Protocol ΠState(U, P1, ...PN )

Contract ContractState

Initialize bestRound := −1
Initialize state := ∅
Initialize flag := OK

Initialize deadline := ⊥
Initialize applied := ∅

on contract input evidence(r, state′,
out, {σr,j}):
discard if r ≤ bestRound
verify all signatures on the message
(r‖state′‖out)
if flag == DISPUTE then
flag := OK

emit EventOffchain(bestRound + 1)
bestRound := r
state := state′

invoke C.aux output(out)
applied := applied ∪ {r}

on contract input dispute(r) at time T :
discard if r �= bestRound + 1
discard if flag �= OK

set flag := DISPUTE

set deadline := T + Δ
emit EventDispute(r, deadline)

on contract input input(r, vr,j) from
party Pj :
if this is the first such activation, store vr,j

on contract input resolve(r) at time T :
discard if r �= bestRound + 1
discard if flag �= PENDING

discard if T < deadline
apply the update function state :=
U(state, {vr,j}, auxin), where the default
value is used for any vr,j such that party
Pj has not provided input
set flag := OK

emit EventOnchain(r, state)
bestRound := bestRound + 1

Fig. 3. Contract portion of the protocol ΠState for implementing a general purpose state
channel.

Raising a Dispute. Suppose in round r a party fails to receive off-chain signa-
tures from all the other parties for some (stater, outr) before an O(1) timeout.
They then (1) invoke the evidence method to provide evidence that round
(r − 1) has already been agreed upon, and (2) invoke the dispute(r) method,
which notifies all the other parties (EventDispute).
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Resolving Disputes Off-Chain. Once raised, a dispute for round r will be
resolved in one of two ways. First, another party may invoke the evidence(r′, ...)
method to provide evidence that an r or a later round r′ ≥ r has already been
agreed upon off-chain, clearing the dispute (EventOffchain). This occurs, for
example, if a corrupted node attempts to dispute an earlier already-settled round.

Resolving Disputes On-Chain. Alternatively, if a party Pj has no more
recent evidence than (r − 1), they invoke the input method on-chain with their
input vr,j . After the deadline T + Δ, any party can invoke the resolve method
to apply the update function to the on-chain inputs (EventOnchain).

Avoiding On-Chain/Off-Chain Conflicts. We now explain how we avoid
a subtle concurrency hazard. Suppose in round r, a party receives the
Dispute(r, T ) event, and shortly thereafter (say, T + ε, for some ε > 0), receives
a final signature completing the off-chain evidence for round r. It would be incor-
rect for the party to then invoke evidence(r, ...), since this invocation may not
be confirmed until after T +Δ+ε. If a malicious adversary equivocates, providing
input(v′

r,j) on-chain but vr,j off-chain, the off-chain evidence would arrive too
late. Instead, upon receiving a Dispute(r) event, if the party does not already
have evidence for round r, it pauses the off-chain routine until the dispute is
resolved.

Update function UPay

UPay(state, (inputL, inputR), auxin) :
if state = ⊥, set state := (0, ∅, 0, ∅)
parse state as (credL, oldarrL, credR, oldarrR)
parse auxin as {depositsi}i∈{L,R}
for i ∈ {L, R}:
if inputi = ⊥ then inputi := (∅, 0)
parse each inputi as (arri,wdi)
payi := 0, newarri := ∅
while arri �= ∅
pop first element of arri into e
if e + payi ≤ depositsi + credi:

append e to newarri
payi += e

if wdi > depositsi + credi − payi: wdi := 0
credL += payR − payL − wdL
credR += payL − payR − wdR
if wdL �= 0 or wdR �= 0:
auxout := (wdL,wdR)

otherwise auxout := ⊥
state := (credL, newarrL, credR, newarrR)
return (auxout, state)

Auxiliary smart contract
ContractPay(PL, PR)

Initially, depositsL := 0, depositsR := 0

on contract input deposit(coins($X)) from
Pi :
depositsi += $X
auxin.send(depositsL, depositsR)

on contract input output(auxout):
parse auxout as (wdL,wdR)
for i ∈ {L, R} send coins(wdi) to Pi

Local protocol ΠPay for party Pi

initialize payi := 0, wdi := 0, paidi = 0
on receiving state (credL, newL, credR, newR)
from ΠState,
foreach e in newi: set paidi += e
provide (arri,wdi) as input to ΠState

arri := ∅
on input pay($X) from ContractPay,
if $X ≤ ContractPay.depositsi +paidi −payi −
wdi:
append $X to arri
payi += $X

on input withdraw($X) from ContractPay,
if $X ≤ ContractPay.depositsi +paidi −payi −
wdi then wdi += $X

Fig. 4. Implementation of a duplex payment channel with the ΠState primitive.
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4.2 Modeling Payment Channels with State Channels

To demonstrate the use of the Πstate abstraction, we now construct a duplex
payment channel (e.g., as in [2,15,18]). In Fig. 4, we give a construction that
realizes ΠPay given a state channel protocol ΠState. Our construction consists of
(1) an update function, UPay, which defines the structure of the state and the
inputs provided by the parties, (2) an auxiliary contract ContractPay that handles
deposits and withdrawals and (3) local behavior for each party.

The update function UPay encodes the state with two fields, credi and
deposistsi, instead of a single “balance” field. This encoding is designed to
cope with the fact that blockchain transactions are not synchronized with state
updates and may arrive out of order. So when ContractPay receives a deposit of
coins(x), we have it accumulate in a monotonically increasing value, depositsi,
that can safely be passed to aux input. The state then includes credi as a balance
offset, such that the balance available is depositsi + credi.

Since the state channel abstraction handles synchronization between the par-
ties, when reasoning about the security of the payment channel we need only
to consider the update function. Notice that each party’s balance can only be
lowered by a pay input provided by them, and the overall sum of balances, with-
drawals, and deposits is maintained as an invariant.

As a consequence of our generic state channel, each payment requires two
signatures and two rounds of communication, from the sender to the recipient
(assuming the sender is the leader, see Appendix A.4) and back again. An opti-
mization taken in Lightning and in Raiden is to omit the return trip if receipt of
the payment is not necessary. The on-chain dispute resolution requires the same
number of transactions as in Lightning: one transaction establishes the deadline
(dispute, evidence, and input can be invoked simultaneously) and resolve
applies the next update on-chain.

5 Linked Payments from State Channels

In this section we complete the Sprites construction, focusing on how we link
payments together along a path of payment channels from a sender to receiver.
The challenge is to ensure the collateral provided by intermediaries is returned
to them within a bounded time.

Our construction for linked payment chains is modular, relying on multiple
instances of duplex channels ΠPay. Like ΠPay, the definition for linked payments
consists of an update function ULinked, an auxiliary contract, and a local protocol
for each party. Figure 5 defines the update function, the auxiliary contract and
the preimage management contract, ContractPM (a contract accessed through
the auxiliary contract). The update function ULinked is an outer layer around the
UPay function (Fig. 4), but extends state with a status flag to include support for
conditional payments.

To establish a path of linked payments off-chain, the initial sender P1 first
creates a secret x, shares it with the recipient P�, and creates an outgoing con-
ditional payment to P2 using h = H(x). Each subsequent party Pi in turn, upon
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receiving the incoming conditional payment, establishes an outgoing conditional
payment to Pi+1. Once the recipient P� receives the final conditional payment,
it multicasts x to every other party.

When a conditional payment is in-flight, all parties on the path must wait
for the preimage to be revealed to them by the receiver, P�, before TCrit; if it
arrives on time Pi completes the outgoing payment off-chain. If the outgoing
payment doesn’t complete before TCrit, but Pi has received the preimage, then
Pi sends it to the preimage manager, ContractPM. By TExpiry, if the preimage
was published the payment is completed; otherwise, it is canceled (by all Pi,
because publishing the preimage is a global event). Finally, if after TDispute the
payment has failed to complete or cancel, the party raises a dispute and forces
the payment be completed or canceled on-chain.

Security Analysis of Linked Payments. Our model begins with parties Pi through
P� that have established � − 1 payment channels, such that Πi

Pay denotes the
payment channel established between parties Pi and Pi+1. Given the state chan-
nel abstraction, it is easy to check that the desired properties described earlier
(Sect. 2.3) are exhibited by this protocol:

(Liveness). If all parties P1 through P� are honest, and if sufficient balance is
available in each payment channel, then the chained payment completes success-
fully after O(�) rounds. More specifically, for each channel ΠPay, the outgoing
balance Πi

Pay.credR is increased by $x and each incoming balance Πi
Pay.credL

is decreased by $x. If the sender and receiver, P1 and P�, are both honest the
payment either completes or cancels after O(� + Δ) rounds.

(No Counterparty Risk). Even if some parties are corrupt, no honest party
on the path should lose any money. In the dispute case, the preimage manager,
ContractPM, acts like a global condition. If the preimage manager receives x
before time TExpiry, then every conditional payment that is disputed will com-
plete. Otherwise they are canceled. Therefore, for an honest party that receives
x before TExpiry − Δ, it is safe to complete their outgoing payment. In the worst
case then can use the preimage manager and claim their incoming payment.

Implementation and Performance Analysis. We created a proof-of-concept
implementation using Solidity and pyethereum available online4. In the typi-
cal case, the off-chain communication pattern in Sprites is similar to that of
Lightning. We need one round of communication between each adjacent pair of
parties to open each conditional payment, and finally one round to complete all
the payments.

In the worst-case scenario, each channel that must be resolved via the dispute
handler requires one on-chain transaction to initiate the dispute and send the
preimage to ContractPM, and, later, a transaction to complete the dispute and

4 https://github.com/amiller/sprites.

https://github.com/amiller/sprites
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withdraw the balance (Section 4.1). Based on our implementation, the dispute
process costs up to 137294 gas per disputed channel, or ≈$0.20 in November
2018. For comparison, in the Lightning Network the typical cost of closing a
channel is 0.00002025 BTC (≈$0.072)5.

Protocol ΠLinked($X, T, P1, ...P�)

Let TExpiry := T + 6� + Δ.
Let TCrit := TExpiry − Δ
Let TDispute := TExpiry + Δ + 3.

Update Function
ULinked,$X(state, inL, inR, auxin)

if state = ⊥, set state := (init, ⊥, (0,0))
parse state as (flag, h, (credL, credR))
parse ini as (cmdi, in

Pay
i ), for i ∈ {L, R}

if cmdL = open(h′) and flag = init, then
set credL −= $X, flag := inflight, and
h := h′

else if cmdL = complete and flag = inflight,
set credR += $X, and flag := complete

else if cmdR = cancel and flag = inflight,
set credL += $X and flag := cancel

else if cmdR = dispute or cmdL = dispute,
and flag = inflight, and current time >
TExpiry, then
auxout := (dispute, h, $X) and flag =
dispute

let statePay := (credL, credR)
(auxPay

out , statePay):= UPay(state
Pay, inPayL , inPayR ,

auxin)
set state := (flag, h, statePay)
return (state, (auxout,aux

Pay
out ))

Auxiliary contract ContractLinked

Copy the auxiliary contract from Figure 5, re-
naming the output handler to outputPay

on contract input output(aux∗
out):

parse auxout as (auxout,aux
Pay
out )

if aux∗
out parses as (dispute, h, $X) then

if PM.published(TExpiry, h), then
depositsR += $X

else
depositsL += $X

auxin := (depositsL,depositsR)
invoke outputPay(auxPayout )

Global Contract ContractPM

initially timestamp[] is an empty mapping
on contract input publish(x) at time T :
if H(x) /∈ timestamp: then set
timestamp[H(x)] := T

constant function published(h, T ′):
return True if h ∈ timestamp and
timestamp[h] ≤ T ′

return False otherwise

Fig. 5. Smart contract for protocol ΠLinked that implements linked payments with the
ΠState primitive. Parts of ULinked,$X that are delegated to the underlying UPay are in
bold to help readability. See Appendix (Fig. 6) for local behavior.

6 Related Works

The first off-chain protocols were Bitcoin payment channels, due to Spilman [23].
These channels, however, only allow for payments to be made in one direction—
from Alice to Bob. Subsequent channel constructions by Decker and Watten-
hofer [4] as well as Poon and Dryja [19] supported “duplex” payments back-and-
forth from either part, however, they require an every growing list of keys to
defend against malicious behavior.
5 Representative Lightning transaction https://www.blockchain.com/btc/tx/

c9e6a9200607871e18fcfdd54dcb0da17ac8eca005101b82c8a807def9885d3e.

https://www.blockchain.com/btc/tx/c9e6a9200607871e18fcfdd54dcb0da17ac8eca005101b82c8a807def9885d3e
https://www.blockchain.com/btc/tx/c9e6a9200607871e18fcfdd54dcb0da17ac8eca005101b82c8a807def9885d3e
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Improvements to Payment Channels. Gervais et al. [8] proposed a protocol for
rebalancing payment channels entirely off-chain. Dziembowski et al. [5] developed
a mechanism for virtual payment channel overlays, enabling two parties with
a path to establish a rapid payment channel between them. A limitation of
payment channels is that their security requires honest parties to be online at all
times. McCorry et al. [13] discuss how channel participants can hire third parties
to arbitrate channel disputes (see Sect. 2.3). These ideas are all complementary
to our work and we think could be combined.

Routing in Payment Channels. While in our presentation we assume the pay-
ment path is given, in reality finding a route is a challenging problem. Sprites
can be used with proposed routing protocols [20–22] which are complimentary.
Although the TExpire deadline is defined in terms of the path length, � (see Fig. 5),
to avoid revealing path length for privacy, we can pad the deadline to a conserva-
tive upper bound. Given that measurements of the Lightning Network [6] today
show a diameter of 8, we suppose an upper bound of � = 16 is conservative. The
expiration time is dominated by the block time Δ (1 day, if we follow Lightning
and Raiden).

Malavolta et al. [12] identified a potential for deadlock when multiple con-
current payments need to use the same link. They propose a solution, Rayo, that
guarantees non-blocking progress. Rayo assumes the existence of global identi-
fiers for payments and a global payment ordering. We conjecture such a global
identifier can be implemented on top of Sprites payment channels; for example,
it can be derived from the channel address and hash of the proposed state.

Credit Networks. Malavolta et al. [14] developed a protocol for privacy-
preserving credit networks. The main difference between a payment channel
and a credit line is that payment channel balances are fully backed by on-chain
deposits, and can be settled without any counterparty risk, where lines of credit
seem inherently to expose counterparty risk.

7 Conclusion

Cryptocurrencies face several ongoing challenges: they must be scaled up beyond
several transactions per second to accommodate increasing user demand and
compete with centralized alternatives. Off-chain payment channel networks are
currently a leading proposal to scale blockchain-based cryptocurrencies. How-
ever, the current state of the art payment network scaling solutions, like Light-
ning [19], require collateral to be locked up for a maximum period that scales
linearly with the number of hops, O(�Δ). In this paper, we introduced a con-
struction of payment channels and networks, Sprites, that drastically improves
upon the current worst-case locktime—reducing it to a constant, O(� + Δ). We
also introduce a modular construction for payment channels, building on top of a
generalized state channel primitive. State channels abstract away all blockchain
interaction, allow arbitrary off-chain protocols (e.g. channels and linked pay-
ments) to be more easily defined and analyzed.
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Our constant locktime construction relies on a global contract mechanism,
which is easily expressed in Ethereum, although it cannot (we conjecture) be
emulated in Bitcoin without modification to its scripting system. We therefore
pose the following question for future work: what minimal modifications to Bit-
coin script would enable constant locktimes?

A Appendix
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A.2 Further Discussion

Supporting Fees. Participants who act as intermediaries in a payment path con-
tribute their resources to provide a useful service to the sender and recipient.
The intermediaries’ collateral is tied up for the duration of the payment, but
the sender and recipient would not be able to complete their payment otherwise.
Therefore the sender may provide a fee along with the payment, which can be
claimed by each intermediary upon completion of the payment. To achieve this,
each conditional payment along the path should include a slightly less amount
than the last; the difference can be pocketed by the intermediary upon comple-
tion. The following example provides a $1 fee to each intermediary, P2 and P3.

P1
$X+2−−−−−−−−−−→

PM[h,TExpiry]
P2

$X+1−−−−−−−−−−→
PM[h,TExpiry]

P3
$X−−−−−−−−−−→

PM[h,TExpiry]
P4

A.3 Details of the Linked Payments Construction

In the body of the paper (Sect. 4) we presented the update function and auxiliary
smart contracts (Figure 5) for the state channel protocol ΠLinked. In Fig. 6 we
define the local behavior of the parties.

A.4 Local Protocol for the State Channel Construction

In the body of the paper (Figure 3) we presented the smart contract portion of
the state channel protocol. In Fig. 7 we define the local behavior of the parties.

Reaching Agreement Off-Chain. The main role of the local portion of the pro-
tocol is to reach agreement on which inputs to process next. To facilitate this
we have one party, P1, act as the leader. The leader receives inputs from each
party, batches them, and then requests signatures from each party on the entire
batch. After receiving all such signatures, the leader sends a COMMIT message
containing the signatures to each party. This resembles the “fast-path” case of
a fault tolerant consensus protocol [3]; However, in our setting, there is no need
for a view-change procedure to guarantee liveness when the leader fails; instead
the fall-back option is to use the on-chain smart contract.
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Protocol ΠLinked($X, T, P1, ...P�)

Local protocol for sender, P1

on input pay from the environment:

x
$← {0, 1}λ, and h ← H(x)

pass (open, h, $X, TExpiry) as input to Π1
State

send (preimage, x) to P�

if (preimage, x) is received from P2 before TExpiry, then pass complete to Π1
State

at time TExpiry + Δ, if PM.published(TExpiry, h), then
pass input complete to Π1

State

at time TDispute, then pass input dispute to Π1
State

Local protocol for party Pi, where 2 ≤ i ≤ � − 1

on receiving state (inflight, h, ) from Πi−1
State

store h
provide input (open, h, $X, TExpiry) to Πi

State

on receiving state (cancel, , ) from Πi
State,

provide input (cancel) to Πi−1
State

on receiving (preimage, x) from P� before time TCrit, where H(x) = h,
pass complete to Πi

State

at time TCrit, if state (complete, , ) has not been received from Πi
State, then

pass contract input PM.publish(x)
at time TExpiry + Δ,
if PM.published(TExpiry, h), pass complete to Πi

State

otherwise, pass cancel to Πi−1
State

at time TDispute, pass input dispute to Πi−1
State and Πi

State

Local protocol for recipient, P�

on receiving (preimage, x) from P1, store x and h := H(x)

on receiving state (inflight, h, ) from Π�−1
State,

multicast (preimage, x) to each party
at time TCrit, if state (complete, , ) has not been received from Π�

State, then
pass contract input PM.publish(x)

at time TDispute, pass input dispute to Π�−1
State

Fig. 6. Construction for ΠLinked with the ΠState primitive. (Local portion only. See Fig. 5
for the smart contract portion.) Portions of the update function ULinked,$X that are
delegated to the underlying UPay update function (Fig. 5) are in bold to help readability.
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Protocol ΠState(U, P1, ...PN )

Local protocol for the leader, P1

Proceed in consecutive virtual rounds numbered r:
Wait to receive messages {INPUT(vr,j))}j from each party.
Let inr be the current state of auxin field in the the contract.
Multicast BATCH(r, inr, {vr,j}j) to each party.
Wait to receive messages {(SIGN, σr,j)}j from each party.
Multicast COMMIT(r, {σr,j}j) to each party.

Local protocol for each party Pi (including the leader, L)

flag := OK ∈ {OK, PENDING}; lastRound := −1; lastCommit := ⊥

Fast Path (while flag == OK): Proceed in rounds r, with r := 0

Wait input vr,i from environment. Send INPUT(vr,i) to L.
Wait BATCH(r, in′

r, {v′
r,j}j) from L. Discard if v′

r,i �= vr,i OR in′
r not a recent auxin.

(state, outr) := U(state, {vr,j}j , in
′
r)

Send (SIGN, σr,i) to P1, σr,i := signi(r‖outr‖state)
Wait COMMIT(r, {σr,j}j) from L. Discard if !(verifyj(σr,j‖outr‖state)) for each j.
lastCommit := (state, outr, {σr,j}j); lastRound := r
If outr �= ⊥, invoke evidence(r, lastCommit).

If COMMIT not received within one time-step, then:
if lastCommit �= ⊥, invoke evidence(r − 1, lastCommit) and dispute(r)

Handling on-chain events

On EventDispute(r, ), if r ≤ lastRound, invoke evidence(lastRound, lastCommit).
Else if r = lastRound + 1, then:
Set flag := PENDING, buffer inputs of “waiting” until returning to fast path.
Send input(r, vr,i) to the contract.
Wait to receive EventOffchain(r) or EventOnchain(r) from the contract. Attempt
to invoke resolve(r) if Δ elapses, then continue waiting. In either case:
state := state′

flag := OK

Enter the fast path with r := r + 1

Fig. 7. Construction of a general purpose state channel parameterized by transition
function U . (Local portion only, for the smart contract see Fig. 3.)
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Abstract. So far, the topic of merged mining has mainly been consid-
ered in a security context, covering issues such as mining power central-
ization or cross-chain attack scenarios. In this work we show that key
information for determining blockchain metrics such as the fork rate can
be recovered through data extracted from merge mined cryptocurrencies.
Specifically, we reconstruct a long-ranging view of forks and stale blocks
in Bitcoin from its merge mined child chains, and compare our results to
previous findings that were derived from live measurements. Thereby, we
show that live monitoring alone is not sufficient to capture a large major-
ity of these events, as we are able to identify a non-negligible portion of
stale blocks that were previously unaccounted for. Their authenticity is
ensured by cryptographic evidence regarding both, their position in the
respective blockchain, as well as the Proof-of-Work difficulty.

Furthermore, by applying this new technique to Litecoin and its child
cryptocurrencies, we are able to provide the first extensive view and lower
bound on the stale block and fork rate in the Litecoin network. Finally,
we outline that a recovery of other important metrics and blockchain
characteristics through merged mining may also be possible.

1 Introduction

In blockchain-based cryptocurrencies the fork rate is considered to be an essential
metric to better gauge the performance, capacity, and health of the respective
communication network [1], and may also help in estimating other aspects such
as their security [2] or degree of decentralization [3]. Furthermore, the fork rate
can be indicative of adversarial behavior, such as selfish mining and its vari-
ants [2,4–6] and other attacks that induce a higher ratio of stale blocks [7–9],
or highlight periods of contention over protocol rule changes [10]. Historic and
long-ranging data on stale blocks and the fork rate could also help determine the
effectiveness of improvement measures and also provide a vital empirical basis
for both predicting and directing future development.
c© International Financial Cryptography Association 2019
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However, for many cryptocurrencies such extensive data sets are not always
readily available as a consequence of both design decisions, as well as the neces-
sity to perform ongoing live monitoring to try and capture these events from
gossip in the peer-to-peer (p2p) network. Moreover, while public sources of
live monitoring data from popular cryptocurrencies, such as Bitcoin, do pro-
vide information on stale blocks [11–13], it is not clear how extensive and well-
connected these monitoring efforts were for the data to be considered represen-
tative. Finally, some of the available information may lack the necessary data to
perform verification, such as establishing the validity of the respective Proof-of-
Work.

In this paper we present a novel reconstruction technique for stale blocks that
can be applied to Bitcoin-like Proof-of-Work blockchains, which have served the
role as a parent chain for merged mining. Specifically, we shine light on the
aspect that the prevalent implementation of merged mining requires the child
blockchain to include both, the full block header, as well as the Merkle branch
and coinbase transaction, of a candidate parent block every time a child block
is produced through merged mining, to be able to validate its correctness.

Using Bitcoin as an example parent, we extract and analyze the additional
data embedded through merged mining from several of Bitcoin’s child currencies,
and compare our findings to those of Decker and Wattenhofer [1] and other stale
block and fork rate data derived from live measurements [11–13]. Based on this
analysis, we are not only able to show that our technique is successful in recov-
ering stale blocks and forks, but also that our method uncovers a non-negligible
portion of blocks that have otherwise not been captured by live monitoring. This
raises interesting new questions on the accuracy of former fork rate estimates
and shows that the ratio of stale blocks is higher than previously anticipated.
The contributions of this paper can be summarized as follows:

– We outline how the process of merged mining provides an interesting, but
generally overlooked side channel for gaining additional information about
the involved parent cryptocurrencies.

– We show that the data from merged mining can be used to recover stale
blocks and forks in the parent chain, and may also enable the inference of
other key blockchain metrics.

– Our analysis reveals a sizable portion of forks and stale blocks that were
not recognized through live monitoring activities, suggesting that this new
approach serves as a complementary mechanism for determining the fork
rate. Furthermore, our findings suggest that previous models and estimates
on fork rates and stale blocks should be re-evaluated.

– We demonstrate that our approach can be readily applied to other merge
mined parent cryptocurrencies by reconstructing (a lower bound of) the fork-
and orphan-block rate in Litecoin [14].
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2 Background

First, this section outlines the concept and relevance of forks and stale blocks to
Bitcoin-like cryptocurrencies, and why they can be considered key metrics, after
which the core ideas and primitives related to merged mining are presented.

2.1 Forks and Stale Blocks

Simplified, in Bitcoin and similar cryptocurrencies, the heaviest chain rule, i.e.
the chain with the most consecutive Proof-of-Work (PoW), determines which
sequence of blocks is considered canonical and defines the ledger’s current valid
state [15]. In this context, PoW puzzles that are based on blocks play a key role
as part of the consensus mechanism through which Bitcoin achieves aspects of
decentralization [16,17]. Because the discovery of puzzle solutions, referred to as
mining, is probabilistic, and also because of propagation delays in the underlying
peer-to-peer network [1], it is possible that more than one block with a solution
can exist for a particular height of the chain at the same time, leading to a so
called fork in the blockchain. In this case miners may choose to extend either
one of these valid chain tips. Assuming an honest majority of computational
power1 follows the heaviest chain rule, it can nevertheless be shown that even-
tual agreement (and other desirable properties) over a distributed ledger can be
achieved as miners converge on a single common chain [17,19].

Within this paper, we refer to any blocks which satisfy the prescribed PoW
puzzle difficulty of the main chain at that time or height, but are not part of
the canonical chain, as being stale. Further, we consider a fork to be a branch
of stale blocks of length n ≥ 1 that can be cryptographically linked to a block
in the canonical main chain. On the other hand, blocks for which we cannot
ascertain such a link are called orphans.

Blockchain metrics such as the fork rate and ratio of stale blocks can pro-
vide useful information about the health and current state of cryptocurrencies.
A high stale block rate may be indicative of insufficient network or block val-
idation capacities [1,20] and is detrimental to the overall security, as it can
increase the likelihood of successful double-spending attacks [2]. Additionally,
many described attacks, such as selfish mining and its variants, or attempts
at double spending, have an impact on the stale block rate [2,5]. Finally, con-
tentious or unsuccessful protocol changes may also manifest themselves in high
stale block rates as a portion of the network may fall into disagreement and
mine on different branches [10]. Here, it depends both on the protocol upgrade
mechanism and rule set a node prescribes to if a block is only considered stale
or deemed invalid and not considered at all.

However, the Bitcoin protocol and many of its direct derivatives do not pro-
vide mechanisms or incentives to include information on stale blocks and forks as
part of the consensus layer, though it has been outlined that taking these aspects

1 We exclude attacks such as selfish mining [4] and possible countermeasures [18] in
this example to simplify the discussion.
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into consideration could improve protocol characteristics [15,21] and would gen-
erally lead to underlying structures that form a directed acyclic graph instead
of a chain [22,23].

Furthermore, while protocol implementations do serialize information on
stale blocks observed through p2p gossiping locally2, due to privacy concerns
that arise from the ability to fingerprint [25] a node based on the set of stale
blocks it knows, a limit of thirty days is imposed on how far back stale blocks
will be served to peers [24]. Hence, up until now, the primary source for both
historic and current data related to stale blocks and forks for Bitcoin and similar
cryptocurrencies comes from dedicated monitoring operations that gather and
provide this additional information [1,3,11–13,26].

2.2 Merged Mining

Merged mining is an approach, whereby miners can leverage on the same process
for searching for a valid PoW solution in more than one cryptocurrency, with-
out having to split their computational resources among them. The motivation
behind merged mining originally stemmed from the problem of how to avoid
that competing cryptocurrencies reduce each other’s security by competing in
hash rate, and has also been suggested as a suitable bootstrapping and harden-
ing mechanism for fledgling cryptocurrencies [27,28]. The idea of repurposing or
reusing the computational effort spent in computing Proofs-of-Work is not new,
and was first systematically described by Jakobson and Juels as bread pudding
protocols [29].

The prevalent mechanism among existing cryptocurrencies by which merged
mining is implemented follows a parent and child relationship. Thereby, no sub-
stantial changes to the block header and verification logic of already deployed
cryptocurrencies is required. The hash of a candidate block in the child cryp-
tocurrency is to be embedded into the candidate block of the parent in a pre-
scribed way, generally within the coinbase transaction [30] of the block. Then
the search for a valid PoW is performed on the parent’s block header as usual.
While such an approach necessitates the explicit support of merged mining in the
child cryptocurrency, the parent can be oblivious to any ongoing merged mining
activity, relating this protocol change to the concept of a velvet fork [10,31].

This form of merged mining requires miners to additionally attach the block
header and coinbase transaction (and its Merkle branch) of the parent to the
block submitted to the child chain (see Fig. 1). These elements are necessary to
validate the PoW performed on the header of the parent block, the so called
Auxiliary PoW (AuxPoW ). Thereby, merge mined blockchains contain addi-
tional information from their parents (see Fig. 3). The PoW difficulty for the
child chain is usually lower than that of the parent chain [28] and is instead
encoded and adjusted in the headers of the child chain blocks. Therefore, partial

2 In Bitcoin core [24] the RPC command getchaintips can be used to list all forks and
stale blocks the local node knows of.
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(also called weak or near) PoW solutions for a parent blockchain may neverthe-
less be valid for one or more child chains. If more than one child blockchain is
to be merge mined with the same parent chain, a Merkle tree root hash as well
as a parameter defining its size is included by the miner. The leaves of the tree
represent the hashes of the block headers of each child blockchain. If merged
mining involves only one child blockchain, the hash of the block header of the
child blockchain can be included directly in the coinbase of the parent.

When mining multiple child chains, it is vital to ensure that merged mining
does not occur for multiple forks of the same child blockchain; this would com-
promise the security of the latter as two branches of a fork can be mined at the
same time. To address this issue, each child blockchain has a fixed chainID that
is defined by its developers. For example, the chainID for Namecoin is set [32]
to the value 0x0001. Every miner can choose freely for how many and for which
PoW child blockchains they want to perform merged mining and, hence, main-
tain a different Merkle tree. The combination of MerkleSize, MerkleNonce, and
chainID are fed to a linear congruential generator so as to produce the unique
position of a child blockchain chainID on a Merkle tree of a given size [33].

Merged mining was first introduced in Namecoin at block height 19200 (2011-
10-11) and the corresponding AuxPoW built upon the Bitcoin block at height
148553. Since then merged mining has been deployed in a variety of other cryp-
tocurrencies [28].
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Fig. 1. Common Bitcoin block and merged mining data structures [30]

3 Merged Mining as a Side Channel

After having covered the principle mechanisms of merged mining, we first
describe how the accrued data can serve as a side channel for gaining infor-
mation about a parent chain, and then outline potential information that could
leak this way.
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3.1 Auxiliary Proofs-of-Work as Informants

The prevalent form of merged mining requires the child chain to include the
block header, coinbase transaction and Merkle branch of the parent, otherwise
it is not possible to verify the correctness of the Auxiliary Proof-of-Work. Hereby,
the difficulty requirement for the child chain does not have to be equivalent to
that of the parent, and other parametrizations, such as the target block interval,
can also differ. For example, I0Coin [34], which can be merge mined with Bitcoin,
has a target block interval of 90 s compared to the 600 s target of Bitcoin. This
means that a valid AuxPoW for a child block may not necessarily be considered
a valid PoW in the parent. In principle, the child cryptocurrency could even
go as far as to change characteristics of the PoW itself while still retaining the
ability for merged mining, such as reversing the final output bits of the utilized
hash function, or additionally applying a bit mask before checking the output.
For instance, Garay et al. [17] outlines how such 2-for-1 PoWs can be achieved.

However, in practice the required PoW format is the same for child and
parent, thereby encoding additional useful information regarding parent solu-
tion candidates because their discovery probability is no longer independent. An
explanation for this behavior may be that the used mining hardware (ASICs) is
not readily adaptable. If the difficulty requirement of the PoW for the parent,
Dp, exceeds the difficulty for the child, Dc, i.e Dp ≥ Dc, then finding a valid
PoW in the parent will at the same render it a valid AuxPoW for the child. With
few distinct exceptions, it is observed that merge mined child cryptocurrencies
do not exceed the parent difficulty [28], and one would therefore expect a subset
of valid PoWs that were mined in the parent to become encoded as AuxPoWs
in the merge mined children.

Assuming merge miners are economically rational actors, it would be
expected that the candidate block headers being mined in the parent cryptocur-
rency are intended to be valid, i.e., contain a valid previous block hash, time
stamp and difficulty etc., as miners would otherwise be wasting computational
resources without receiving compensation from successfully mining valid blocks.
Because transactions are not embedded in the auxiliary PoW, its full validity can
not be ascertained, unless it contained only the coinbase transactions. A miner
does not, a priori, know when they will find a valid PoW solution and hence
is incentivized to update and maintain a valid candidate block and its header
while mining. As we later outline in the discussion of our findings in Sect. 6, we
identified sporadic patterns in our data that are not easily explained under this
assumption and may be indicative of software malfunction or misconfiguration.

3.2 Parent Block Information Leaking Potential

As previously outlined, the AuxPoW provides a snapshot of the particular
miner’s parent block header candidate at the time the child solution was found.
Depending on both the block interval and difficulty requirement of the child
chain, multiple such snapshots from different miners can exist between the dis-
covery of blocks in the parent cryptocurrency, providing different vantage points
of the network. Because the entire coinbase transaction is also available for each
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AuxPoW, miner identification schemes such as the approach from Judmayer
et al. [28] are also applicable. Additionally, most valid merge mined PoWs of the
parent chain are likely to be recorded in the child chain because the child block
would also meet its respective difficulty requirement.

Further, in the case of a fork event in the parent chain, there is a chance that
one, or even both, of the parent block headers are captured through AuxPoWs if
they were merge mined, and consecutive stale blocks from a prolonged fork may
also be recorded in child cryptocurrencies in this fashion. In this respect, being
able to draw information from multiple merge mined children with different block
intervals may increase the likelihood that the block headers of competing forks
are present in at least one of them.

Another interesting aspect is the additional, and possibly better, timing infor-
mation that can be gained through both the child block(s) directly linked to an
AuxPoW, as well as the additional time stamps from candidate parent block
headers.

Categorization of Recoverable Blocks: Based on the information available
within an AuxPoW, we categorize recoverable parent block headers and illustrate
their relationship to the canonical parent chain in terms of difficulty requirements
in Fig. 2.

– Canonical Block: If the block header belongs to a block that is part of the
canonical main chain in the parent it is considered a canonical block.

– Stale Block: A block header that does not end up as part of the canonical
parent chain but could have been a valid fork based on its (verifiable) difficulty
and respective height or time stamp relative to the parent.

– Near Block: Parent block headers that do not meet the difficulty require-
ment of the canonical chain are referred to as near blocks. While near blocks
are not valid in the parent chain, they may still provide useful information
such as the particular miner’s view of the longest chain at that time3.

– Orphan Block: Blocks for which we are unable to establish a cryptographic
link that eventually leads to a canonical block are considered orphan blocks.
Orphan blocks have weaker guarantees as to their potential validity, as it is
unclear if they were actually related to the parent chain being analyzed.

– Shadow Block: We refer to predecessors, where we can not obtain the full
block header, e.g. only a hash, as shadow blocks. Even without the ability of
cryptographic verification it can be possible to perform some basic validation,
i.e, by checking if the hash itself could have met the required difficulty of the
parent chain at the approximate time or height, which can be inferred from
data in successors that build upon the shadow block.4 Any parent headers
that build upon a shadow block are implicitly orphans because they cannot
be linked to the canonical chain.

3 Assuming the miner follows the protocol rule of extending the longest chain it
knows of.

4 In Litecoin and its children this validation is not possible because a DSHA256 hash
of the block header is used for linking, instead of the scrypt hash used for the PoW.
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– Invalid Block: Based on the information available in the AuxPoW, some
parent block headers may be identified as invalid because they do not follow
the prescribed protocol rules of the parent chain. For instance, the encoded
target difficulty may be too low or the time stamp outside of the permissible
range.
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Fig. 2. Recoverable block categories and their relationship to the parent chain.

4 Data Sources and Processing

In this work, we primarily consider Bitcoin [35], as it not only has the longest
history of being a parent to merged mining, but also because there exists both live
monitoring services that provide information on forks and stale blocks [11–13], as
well as scientific literature that relates to forks and stale block rates [1,2,36,37].
Thereby, we gain access to necessary information for comparing and validating
our results, for instance through forming the intersection of block headers that
have been discovered by live monitoring and merged mining. Furthermore, we
also apply our approach to Litecoin [14] to determine if it is readily adaptable
to other merge mined cryptocurrencies.

Our raw blockchain data sources related to Bitcoin, Litecoin, and their merge
mined children herein considered, are listed in Table 1 in the appendix, and were
collected using fully validating clients. In total, we gathered data from 7 merge
mined children for Bitcoin, and 2 merge mined children for Litecoin. Further-
more, we also included data from the Bitcoin Cash fork to help identify orphan
blocks, because it has served as a parent for DSHA256 merge mined currencies.
The set of merge mined cryptocurrencies we selected is not exhaustive, and the
focus was placed on projects with a long history of merged mining in order to
gain as extensive of a view as possible. Relevant blockchain and AuxPoW data
was then extracted through the respective RPC interface of the cryptocurrency
client and aggregated in a graph database (Neo4J [38]), to aid in our exploratory
data analysis and simplify searching for interesting patterns.

To determine if the extracted AuxPoW block headers can be considered stale
block candidates for the target parent chain, several steps were followed:
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1. The encoded difficulty target in the AuxPoW header was checked against the
resulting block hash to determine if the parent header forms a valid PoW5.

2. To establish a time frame for Bitcoin difficulty epochs (2016 blocks), we con-
sider the time stamp of the first block in the epoch as the starting point and
the time stamp of the first block in the next epoch as its end.

3. A link between the AuxPoW and a particular difficulty epoch in the parent
was established to determine if the PoW difficulty is high enough to be con-
sidered valid. This was first attempted based on the block height, which can
either be inferred if the block is linked to the canonical chain or, if the block
is BIP34 compliant [39], determined from the height encoded in the coinbase
transaction.

4. If the height could not be inferred in the previous step, the time stamp in
the block header is used instead. For shadow blocks, the lowest time stamp
of any AuxPoW that builds on top of it was used.

In respect to the live monitoring data that was used to compare and evaluate
our results against, we rely on different sources. First, we gathered publicly avail-
able data on forks and stale blocks from block explorers [11–13,26]. Second, we
reached out to the authors of academic measurement studies related to Bitcoin’s
fork rate and inquired if they could provide us with the relevant monitoring data,
and were kindly provided data from [1]. See Table 2 in the appendix for more
details on live monitoring data.

5 Analysis

To analyze the feasibility and effectiveness of merged mining as a side channel,
we focus on the recovery of information related to a key metric in the parent,
namely the stale block rate and hereby resulting forks. This is of particular
value, as long-ranging views that estimate stale block and fork rates are not
readily retrievable from the data persisted in the respective blockchain for most
cryptocurrencies, and require additional live monitoring efforts.

We subsequently first compare our findings on stale blocks and forks in Bit-
coin to the measurement study conducted by Decker and Wattenhofer [1], as
the authors have kindly provided us with raw data that was used in their work.
Following this initial evaluation, we then extend our analysis over a wider time
span and draw upon multiple live monitoring data sources for comparison.

5.1 Comparison to Decker and Wattenhofer Monitoring Data

The Bitcoin p2p measurement study of Decker and Wattenhofer (DW) has pro-
vided important insights on the blockchain fork rate and its dependency on
propagation times, and serves as a critical reference point for Bitcoin’s perfor-
mance [20]. Therein, live monitoring data gathered over two 10000 block inter-
vals, ranging from block height 180000 to 190000 and 200000 to 210000, was
5 We also validated if the AuxPoW actually meets the difficulty encoded in the child.
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analyzed and compared to a formal model for predicting the probability of a
blockchain fork. In particular, while the first monitoring interval only involved
passive observation, the second interval was actively influenced by relaying block
information to as many peers as possible. Thereby, it was empirically shown that
propagation delay, and consequently also block size, plays an important factor in
the probability of forks, as the fork rate dropped from a measured 1.69% in the
first interval to 0.78% in the second interval. Furthermore, at a 1.78% predicted
fork rate, the presented formal model using propagation metrics from the live
measurements was relatively close to the actual monitored fork rate of the first
interval.

Because the commencement of merged mining in Bitcoin dates back far
enough to cover both intervals, an obvious approach would be to compare the
fork rate recoverable through merged mining with these results. Unfortunately,
while we were able to obtain a large portion of the raw monitoring captures from
the respective authors, it was reported to us that some of the data was rendered
unrecoverable due to storage failure. Specifically, we were unable to obtain any
data related to the second monitoring interval. Nevertheless, a comparison of
our recovered stale blocks with live monitoring from the first interval already
reveals interesting insights.

Fig. 3. Number of stale blocks observed by live monitoring (Decker and Wattenhofer)
and merged mining; a single bar accounts for 250 blocks

Figure 3 shows our recovered stale blocks, the blocks captured by DW, as well
as the overlap between the two data sets. All of the stale blocks we consider are
linkable to the canonical parent chain and meet the correct difficulty requirement
of the respective epoch, i.e. have a cryptographic link to Bitcoin. Surprisingly,
our recovery technique is able to reveal 58 new stale blocks that were previously
unaccounted for. The overlap in both data sets (54 blocks) further confirms that
we are able to capture valid stale blocks observable through live monitoring.
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Combining both data sources, we distinguish 227 forks, which corresponds to a
total fork rate of 2.27% for the first monitoring interval.

5.2 Long Range Comparison of Stale Blocks and Forks

Based on the initial approach from the DW monitoring interval, we extend our
analysis over a wider time frame that stretches over the entire set of complete
difficulty epochs for which we can recover stale blocks through merged mining,
starting at epoch 74 and ending with epoch 264. Hereby, we aggregate and filter
duplicates from all considered live monitoring data sources and compare the
results to the stale blocks we were able to recover. Analogous to the methodology
previously used, we only include stale blocks from our data that we can directly
link to Bitcoin, i.e. are not orphans, and for which we can ensure that the PoW
meets the target requirement of the parent chain at that height.

The results are shown in Fig. 4, which contains some interesting patterns.
First, an overall decline in the stale block rate as time progresses can be observed,
which is to be expected as both, relay networks such as Falcon [3] (2016-06-8)
and FIBRE [40] (2016-07-07), as well as and more efficient block announce-
ment mechanisms, i.e. BIP130 [41] (2016-03-17), have come into play. Second, it
appears that even though the overall stale block rate improves over time, blocks
continue to be uncovered through merged mining which have otherwise not been
observed.

In Figs. 5 and 6 we further visualize this aspect by plotting, on the one hand,
the derived fork rate and on the other hand, the ratio of stale blocks that were
exclusively identified through merged mining. The latter also includes the ratio
if we were to additionally consider orphan and shadow blocks that we link to
an appropriate difficulty epoch and which would meet the prescribed difficulty
requirement.

We further derive two average total fork rates for the Bitcoin network, includ-
ing both live monitoring and merged mining, for difficulty epochs 146 to 209 and
209 to 264. The first range is chosen such that it begins with several of our live
monitoring data sets and avoids gaps, while the second interval begins roughly
after the commencement of relay network activities. Our results show a total
fork rate of 0.85% for the first range of epochs (approx. 03/2014–07/2016) and
0.24% for the second range of epochs (approx. 07/2016–07/2018).

Based on our data, one possible explanation for the more recent increase in
exclusively observed stale blocks, while at the same time observing a decrease
in the fork rate may be, that the technique of fork observation through merged
mining captures blocks which are either never announced over the p2p network or
are not propagated for other reasons. The occurrence of such blocks would hence
not be readily affected by improvements in the communication infrastructure and
may stay at a certain level, even if the remaining fork rate is lowered.
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Fig. 4. Number of stale blocks observed by live monitoring (all considered data sources)
and merged mining; a single bar accounts for a single difficulty period of 2016 blocks

Fig. 5. Estimate of the fork rate in Bitcoin based on different data sources; 5 difficulty
epochs grouped together

Fig. 6. Ratio of stale blocks exclusively identified through merged mining; 5 difficulty
epochs grouped together
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5.3 Stale Blocks and Forks in Litecoin

Through a stale block and fork rate recovery in Bitcoin we have shown the fea-
sibility of our approach. By employing the same technique as before to Litecoin,
we highlight that the same methodology can also be expanded to other merge
mined blockchains. While we were able to obtain some live monitoring data [26]
for Litecoin that includes forks, it is substantially less than what we were able
to source for Bitcoin and not representative. We hence only show our recovered
number of stale blocks as well as the fork rate, and point the interested reader to
the appendix for further details (AppendixA.2). The methodology for deriving
these values is analogous to the one previously used for Bitcoin (Figs. 7 and 8).

Fig. 7. Estimate of the stale block rate in Litecoin based only on merge mined data; 5
difficulty epochs grouped together

Fig. 8. Estimate of the fork rate in Litecoin based only on merge mined data; 5 difficulty
epochs grouped together
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6 Discussion

In Sect. 5 we show that the recovery of stale blocks and forks in merge mined
parent cryptocurrencies is not only possible, but can also reveal new insights
regarding their occurrence and the apparent inability to be fully captured by live
monitoring alone. This raises the interesting question if other key metrics, such
as the block propagation delay could, at least to some degree, be recovered in a
similar fashion. Furthermore, it is important to acknowledge inherent limitations
and necessary assumptions of this analysis method. Hereinafter, we address both
of these points and additionally share some interesting anomalies and patterns
that we discovered.

6.1 Recovery of Other Metrics and Information

The side channel that is established to a merge mined parent may be useful
beyond the recovery of stale and near block headers. In the following we present
a list of possible application scenarios that we believe could be worthy of further
investigation.

– Block Time Estimates: The time stamp encoded in Bitcoin block head-
ers does not have to follow strict clock synchronization rules and hence can
be relatively unreliable [1,42]. Through merged mining, it may be possible
to gain access to better timing information, both from the child block as
well as the additional data from AuxPoW near blocks. In particular, merge
mined cryptocurrencies with very short block intervals ranging in the order
of seconds, such as GeistGeld [43], could prove helpful for improving timing
estimates.

– Information Propagation: Also relating to better time estimates, near and
stale blocks recovered from the AuxPoW can provide additional information
about a miner’s particular choice which chain tip they were extending at that
time. While it seems unlikely that a high enough sampling rate and tim-
ing precision through AuxPoWs can be achieved to reconstruct propagation
delays, anomalies or large discrepancies may nevertheless be detectable.

– Hash Rate Estimates: The additional PoW samples that are available
through AuxPoWs could help improve the quality and granularity of hash
rate estimates [44] and may also allow for better approximations of how much
of the computational power was split-off during past fork events.

– Miner Behavior Analysis: In Sect. 3 we have outlined that miner identi-
fication schemes are also applicable to AuxPoWs, because the full coinbase
transaction is included for verification purposes. Thereby, the additional data
gained from merged mining allows for a more detailed analysis of miner behav-
ior, and may even reveal suspicious or adversarial behavior of bad actors, such
as block withholding, if they also engaged in merged mining at the time.
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6.2 Limitations

While merged mining can be used to recover certain information related to the
parent chain, several limiting factors apply that may diminish its effectiveness.
First and foremost, the presented technique only applies to currencies that have
served as the parent in a merge mined relationship. The merge mining landscape
is currently not well documented and information pertaining to merged mining
in general is not readily available. Previous literature has shed some light on this
topic [27,28], however many details still remain relatively unknown outside of
the specific mining communities. While we are aware of merge mining activities
for cryptocurrencies that use Proofs-of-Work other than the herein considered
DSHA256 and scrypt, such as X11 [45] or CryptoNote [46], we leave a detailed
survey of potential merge mined parents to future work.

Furthermore, the effectiveness of merged mining as a side channel is depen-
dent on a variety of factors, such as the degree of its adoption, the number and
concrete parametrizations of the child chains, as well as the technique by which
merged mining is achieved. In particular, the recovery of full block headers that
meet the parent chain difficulty becomes increasingly unlikely, if only a small
subset of the total hash rate is actively participating in merged mining. A sim-
ilar situation can be observed for long consecutive forks, where linking may be
prevented if only shadow blocks are registered.

Another important issue is the fact that merge mined cryptocurrencies may
have more than one possible parent with which they can be merge mined. With-
out an explicit cryptographic link to the canonical parent chain, orphan stale
blocks could therefore belong to a different parent. For instance, we have recov-
ered close to 15000 AuxPoW block headers that meet the encoded parent dif-
ficulty in their header, but which actually belong to a different parent cryp-
tocurrency than Bitcoin (see Appendix Table 1). Section 4 outlines how orphan
stale blocks can be linked to a particular difficulty epoch in the analyzed par-
ent, which discards these blocks as false positives as long as the difficulties of
both parents are not the same. Nevertheless, certainty is only achieved when all
orphan stale blocks are not taken into consideration. In our analysis in Sect. 5
we clearly state when such orphan stale blocks were included in figures or tables.
Furthermore, we specifically decided not to rely on the additional data sources
from live monitoring in our recovery process, which could have aided in bridging
gaps between orphan stale blocks, to retain a clear picture of what is achievable
solely through blockchain data and merged mining AuxPoWs.

6.3 Anomalies and Interesting Patterns

During the process of our analysis we were able to identify interesting patterns
and anomalies that are not always readily explained by rational miner behavior.
For instance, it is not widespread knowledge that several of the merge mined
children to Bitcoin and Litecoin have, on occasion, also served the role as a parent
for their siblings. This is possible because the requirements extended toward the
AuxPoW do not include additional verification logic and only demand that the
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data structure and PoW follows an expected format. Because the child chains will
generally also adhere to the same header format as the parent, it hence becomes
possible to merge mine them interchangeably. As an example, the AuxPoW and
parent block header of canonical Namecoin block “a10e863165101af92314. . . ” at
height 19236 actually stems from GeistGeld block “00000000000026c050e6. . . ”
at height 144590. We were further able to verify this insight through online
references from respective mining communities [47,48].

Another highly interesting pattern emerges when searching for the most con-
current forks extending a single parent block. For Bitcoin, we were able to iden-
tify a maximum of 18 concurrent stale blocks, i.e. 19 forks, that meet the correct
parent difficulty and extend block “0000000000000d331567. . . ” at height 153210.
By applying a miner identification scheme similar to [28], we believe that all of
these stale blocks were possibly mined by the same entity, namely BTC Guild.
A similar pattern can also be observed in Litecoin, where the number of con-
current forks extending a parent is even higher, at a staggering 47 potentially
valid blocks. In this case we were unable to achieve a possible match with a
mining entity. The occurrence of such large concurrent fork events however is
very rare in our recovered data, and the total count of situations where forks
with more than 2 children exist is only 14 for Bitcoin and 37 for Litecoin. We
believe that the above pattern can be explained by considering software issues
or misconfiguration in the merged mining setup of the respective miner.

When checking for monotonically increasing heights, we were able to identify
one case in Bitcoin where the BIP34 encoded height was not properly incre-
mented while the target difficulty of the canonical chain was met, rendering the
block invalid. Overall, we discovered 55 blocks in Bitcoin and one block in Lite-
coin in our recovered data where the BIP34 encoded height did not correspond
to the respective position to which the block could be linked in the parent chain
and which are consequently invalid.

7 Related Work

In [1] Decker and Wattenhofer consider peer-to-peer network and information
propagation characteristics of the Bitcoin network. Donet et al. [49] present an
extensive survey of the Bitcoin p2p network and its topology, including block
and transaction propagation delays, however information on stale blocks and
forks is not included. Gervais et al. [2] presents a framework for quantifying and
analyzing parametrizations of PoW blockchains. They include live measurements
in Bitcoin, Litecoin, Dogecoin and Ethereum conducted in February 2016, from
which a stale block rate of 0.41% for Bitcoin and 0.273% for Litecoin is derived.
The presented simulation results predict a stale block rate of 0.14% (relay
network and unsolicited block push) and 1.85% (standard propagation mech-
anism) for Bitcoin and 0.24% (standard propagation) for Litecoin. In Gencer
et al. [3] a measurement study on decentralization metrics in Bitcoin and
Ethereum is conducted, including aspects related to the peer-to-peer network



Echoes of the Past: Recovering Blockchain Metrics from Merged Mining 543

such as provisioned bandwidth and latency. The work introduces a fairness prop-
erty, which is defined as the ratio of a miner’s share of pruned (stale) blocks to
her mining power.

The encoding of additional data within the Bitcoin blockchain is addressed
by Bartoletti and Pompianu [50], which analyze OP RETURN metadata, and
Matzutt et al. [51], which systematically analyzes and conducts an extensive
quantitative and qualitative study of arbitrary encoded data within Bitcoin.
Grundmann et al. [52] exploit characteristics of transaction processing and for-
warding in the Bitcoin p2p network to infer its topology.

8 Conclusion

In this paper we outline and analyze a novel technique for recovering stale blocks
through data that is accrued from merged mining. Thereby, we show that merged
mining can act as a side channel for gaining information about the parent cryp-
tocurrency, and that this data helps to infer key metrics such as the fork rate.
Interestingly, a cryptocurrency is not trivially able to prevent another cryptocur-
rency from designating it as its parent in a merge mine relationship [28], and
this fact has been identified as a potential attack vector in the context of hostile
blockchain forks [53].

Our results indicate that live monitoring alone is not sufficient to capture
all stale blocks and forking events in Bitcoin, as merged mining data is able to
exclusively identify a majority of the stale blocks in more recent difficulty epochs.
The authenticity of the recovered blocks and forks is hereby cryptographically
ensured both, by the ability to link them to the canonical main chain, as well as
the correct Proof-of-Work difficulty they satisfy. Important questions are there-
fore raised as to the nature of these newly identified stale blocks, to be addressed
in future work.

Overall, we show that data embedded through merged mining can provide
interesting new insights and may help augment and improve the fidelity and
quality of empirical measurements to provide a more effective basis for future
models, analysis, and simulations of Proof-of-Work cryptocurrencies.
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A Appendix

Table 1. Considered blockchain data of merge mined cryptocurrencies and their par-
ents

Cryptocurrency PoW Merge M Start of merge M Considered

block heights

Parent

blocks

Child

blocks

Bitcoin (BTC) DSHA256 ✗ – 0–532485 181658 0

Bitcoin Cash (BCH) DSHA256 ✗ – 478559–544355 12389 0

Namecoin (NMC) DSHA256 ✓ 19200 (2011-10-08) 0–409629 0 390300

IXCoin (IXC) DSHA256 ✓ 45001 (2011-12-31) 0–455051 861 409969

I0Coin (I0C) DSHA256 ✓ 160045 (2011-12-20) 0–2556904 1620 2395170

GeistGeld (XGG) DSHA256 ✓ 14092 (2011-09-16) 0–7309971 2 2493631

Devcoin (DVC) DSHA256 ✓ 25000 (2012-01-07) 0–337624 135 312624

Groupcoin (GPC) DSHA256 ✓ 17187 (2012-02-16) 0–235751 0 218494

Unobtanium (UNO) DSHA256 ✓ 600135 (2015-05-08) 0–1163483 6 561355

Litecoin (LTC) scrypt ✗ – 0–1477146 699714 0

Dogecoin (DOGE) scrypt ✓ 371337 (2014-09-11) 0–2357918 3 1983945

Viacoin (VIA) scrypt ✓ 551885 (2014-12-25) 0–5324736 973 4767508

Table 2. Considered live monitoring data for Bitcoin and Litecoin

Cryptocurrency Source First block

height

Start time Last block

height

Stop time Stale

blocks

Bitcoin Decker and Wattenhofer [1] 142258 2011-08-23 200206 2012-09-23 612

Bitcoin blockchain.com 291123 2014-03-18 525890 2018-06-04 932

Bitcoin chainquery.com 283421 2014-01-31 525890 2018-06-04 715

Bitcoin bitcoinchain.com 395001 2016-01-25 525890 2018-06-04 51

Litecoin chainz.cryptoid.info 1217073 2017-06-05 1472513 2018-08-11 223

A.1 Bitcoin Total Number of Stale Blocks for Different Data
Sources

Table 3 shows both, the total number of unique stale blocks exclusive to the data
source, as well as the overall number of (non-duplicate) stale blocks it contains.

Table 3. Comparison of total stale blocks in Bitcoin observed by different live moni-
toring sources and merged mining

Unique stale blocks Total stale blocks

Merged mining 1164 1678

Decker and Wattenhofer 410 612

blockchain.com 256 932

chainquery.com 113 715

bitcoinchain.com 4 51

2863 3988

http://www.blockchain.com
http://www.chainquery.com
http://www.bitcoinchain.com
http://www.chainz.cryptoid.info
http://www.blockchain.com
http://www.chainquery.com
http://www.bitcoinchain.com
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A.2 Litecoin Stale Block Rate Comparison

As we have previously outlined in Subsect. 5.3, the live monitoring data we were
able to obtain for Litecoin was relatively limited and only contained 223 stale
blocks/forks. Nevertheless, we plot this live monitoring data against the recov-
ered stale blocks through merged mining in Fig. 9 and show that the data sets
also contain some overlap. Again, our recovered data only contains stale blocks
that can be cryptographically linked to the canonical Litecoin chain and which
meet the prescribed difficulty target (Table 4).

Fig. 9. Stale block rate recovered from merged mining in Litecoin compared to available
live measurements [26]; 5 difficulty epochs grouped together

Table 4. Structure of the coinbase of a merge-mined block [30]

Field name Type (size) Description

coinbaseLen VarInt (1–9 bytes) Length of the coinbase field in bytes as a

variable length integer. Maximum size is

100 bytes

coinb. blockHeightLen (1 bytes) Length in bytes required to represent the

current blockHeight

blockHeight (3 bytes) Current block height

[data] char[] (0–52 bytes) Optional: Arbitrary data that can be filled by

the miner (e.g., identifying the block miner)

[magic] char[] (4 bytes) Optional: If len(coinbase) ≥ 20, magic bytes

indicate the start of the merged mining

information, e.g., “\xfa\xbe\x6d\x6d”
BlockHash or MerkleRoot char[] (32 bytes) Hash of the merge-mined block header. If more

than one cryptocurrencies are merge-mined, this

is the Merkle tree root hash of those

cryptocurrencies

MerkleSize uint32 t (4 bytes) Size of the Merkle tree, i.e., the maximum

number of contained cryptocurrencies

MerkleNonce uint32 t (4 bytes) Used to calculate indices of the mined

cryptocurrencies in the Merkle tree. If no

Merkle tree is used, set to 0
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Abstract. Bitcoin relies on a peer-to-peer overlay network to broadcast
transactions and blocks. From the viewpoint of network measurement,
we would like to observe this topology so we can characterize its perfor-
mance, fairness and robustness. However, this is difficult because Bitcoin
is deliberately designed to hide its topology from onlookers. Knowledge of
the topology is not in itself a vulnerability, although it could conceivably
help an attacker performing targeted eclipse attacks or to deanonymize
transaction senders.

In this paper we present TxProbe, a novel technique for reconstruct-
ing the Bitcoin network topology. TxProbe makes use of peculiarities in
how Bitcoin processes out of order, or “orphaned” transactions. We con-
ducted experiments on Bitcoin testnet that suggest our technique recon-
structs topology with precision and recall surpassing 90%. We also used
TxProbe to take a snapshot of the Bitcoin testnet in just a few hours.
TxProbe may be useful for future measurement campaigns of Bitcoin or
other cryptocurrency networks.

1 Introduction

Bitcoin builds on top of a peer-to-peer (P2P) network to relay transactions
and blocks in a decentralized manner. Broadcast is the routing scheme chosen
to propagate transactions and blocks over the network, in order to spread the
information as quick as possible and facilitate agreement on a common state.
The topology of the Bitcoin network is unknown by design and it is built to
mimic a random network. While knowing the topology of the network does not
pose a threat by itself, it eases the performance of several network based attacks,
such as eclipse attacks [8,12], or attacks on users anonymity [2,10]. On top of
that, a study of the network topology may reveal to what extent the network
is really decentralized, whether there exist supernodes, bridge nodes, potential
points of failure, etc.
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In this paper we present TxProbe, a technique to infer the topology of the
publicly reachable Bitcoin network. Nodes of the non-reachable network, such as
nodes behind NAT or firewalls, or nodes not accepting incoming connections will
not be inferred with our technique. Our work builds on prior work in exploiting
Bitcoin network side channels as measurement techniques, but exploits a new
side channel involving the handling of orphan transactions (transactions that
arrive out of order).

To validate our technique, we have conducted an experiment in which our
custom node is connected to our own ground truth nodes (running Bitcoin Core
software). We then check whether we were able to get the connections of such
nodes. On top of that, a scan of the entire live network has been performed
resulting on a snapshot of the Bitcoin testnet. Finally, a comparative analysis of
the obtained testnet graph against similar random graphs is provided to quantify
whether or not the network resembles a random network.

TxProbe is an active measurement technique, and we have not conclusively
ruled out that it could interfere with ordinary transactions. We have therefore
limited our measurement and validate activities to the Bitcoin testnet. The tech-
nique could be used in the future to infer the topology of Bitcoin or any alt-coin
sharing its network protocol, including Bitcoin Cash, Litecoin or Dogecoin.

2 Related Work

Network topology inference is a topic that has been previously analysed in several
other works. Biryukov et al. [2] showed how a node could be uniquely identified
by a subset of its neighbourhood, and how the neighbourhood could be easily
inferred by checking the address messages propagation throughout the network.
Biryukov et al. [3] also showed how using Tor to guard against the aforemen-
tioned technique was not useful, and it could even ease the deanonymization
process.

The use of address message propagation along with timestamp analysis was
used by Miller et al. [11] to infer the topology of the Bitcoin network. The analysis
highlighted how the network did not behave as a random graph but, instead, it
was filled with several influential nodes representing a disproportionate amount
of mining power. Their AddressProbe technique took advantage of the two-hour
penalty applied to received address messages from connected peers. However,
the two-hour penalty was removed from the Bitcoin Core nodes after 0.10.1
release [16,17], reducing the fingerprint left by address messages, and therefore,
making AddressProbe no longer useful to infer the topology of the network.

Neudecker et al. [13] performed timing analyses of the transaction propaga-
tion to infer the topology of the Bitcoin network with a substantial precision
and recall (∼40%).

Network information from the P2P network has also been used, alongside
with address clustering heuristics, to check whether such information could be
useful in the deanonymization of Bitcoin users [14]. The study shows how while
most of the network information cannot ease the address clustering process,
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a small number of users show correlations that may make them vulnerable to
network based deanonymization attacks.

A recent proposal by Grundmann et al. [6] has shown how transaction accu-
mulation of double-spending transactions can also be used to infer the neigh-
bourhood of a targeted node with precision and recall as high as 95%.

Finally, Efe Gencer et al. [5] have presented a comparative analysis of the
decentralization on two of the most popular cryptocurrencies to the date, Bit-
coin and Ethereum, using application layer information obtained from the Falcon
Network. Their results show how around 56% of Bitcoin nodes are run in data-
centers. On top of that, their study highlights how the top four Bitcoin miners
control more than the 54% of the mining power.

3 Background

In this section we give an overview of Bitcoin’s transaction propagation behavior.
Since our TxProbe technique relies on subtleties of this process, we go into detail
on just the relevant parts.

3.1 Three-Round Transaction Propagation

Bitcoin nodes propagate transactions by flooding, such that each node relays
data about each transaction to every one of its peers. However, to minimize net-
work traffic, nodes follow a three-step protocol, first sending just the transaction
hash (32 bytes) and only sending the entire transaction (range from a few hun-
dred bytes up to tens of kilobytes) if it is requested. This protocol is depicted in
Fig. 1. In more detail, the three steps are:

– Inventory messages (inv) are used to announce the knowledge of one
or more transactions or blocks. When a node receives (or generates) a new
transaction or block he announces it to his peers by creating an inv message
containing the transaction hash. Those peers who do not know about the
announced item will ask for it back using a getdata message. Furthermore,
when a node receives an inv message asking for a certain item, and he requests
it back using a getdata message, the requester will wait up to 2 min for the
node offering the item to respond back with it. Any other request offering the
same item will be queued and only responded, first in first out, if the first
node fails to reply.

– Get data messages (getdata) are used by Bitcoin nodes to request trans-
actions and blocks to their peers. Such messages are sent as a response to the
aforementioned inv messages when the receiver of the latter is interested in
any of the offered items.

– Transaction messages (tx) are used to send transactions between peers.
They are usually sent as a response to a getdata message. In contrast to the
previously introduced messages, tx messages always contain a single transac-
tion.
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Fig. 1. Three-step protocol used to forward transactions in Bitcoin.

3.2 Mempool and Unspent Transaction Outputs (UTXOs)

A Bitcoin node validates each transaction it receives before relaying to its peers
as described above. A valid transaction must have correct signatures, and must
only spend existing and currently-unspent coins. Otherwise the transaction is
discarded and not propagated further.

To aid in validation, each Bitcoin full node maintains a view of the current
set of available coins (the utxo set). It also maintains a collection of pending
transactions, called mempool, all of which have been validated against the utxo
set and contain no double-spends amongst themselves.

Much of the complexity in the Bitcoin software, and the behavior we exploit
in TxProbe, involves handling special cases during validation. Hence when a
transaction is received, it is validated against the current utxo set. Since mem-
pool is also kept free of double-spends, when a Bitcoin node receives a second
transaction that spends the same coin as a transaction held in mempool, the
second transaction is simply discarded.1

3.3 Handling Orphan Transactions

Sometimes a node receives transactions out of order. A transaction is considered
an “orphan” if it is received prior to its direct ancestors, i.e. it spends a coin that
is not yet part of the blockchain or in mempool. Since orphan transactions cannot
be validated until the parent arrives, they are not immediately relayed to peers.
Instead, orphan transactions are stored in a buffer, MapOrphanTransactions so
that when the parent arrives it can be validated without re-requesting it from
the network.

1 There is a special case, called replace-by-fee (RBF) [7], in which a double-spending
transaction replaces a previous transaction as long as the previous transaction is
flagged to allow this and if the new transaction pays a larger fee. This does not
affect the TxProbe technique.
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Fig. 2. Basic edge inferring technique.

To point out a detail relevant to our TxProbe technique: If a node receives a
notice about a transaction from a peer (an inv message), but that transaction
has already been stored as an orphan, then that transaction will be omitted
from subsequent get data messages. Looking ahead, this behavior enables our
measurement node to probe whether an orphan transaction has already been
received or not. We discuss other details about MapOrphanTransactions, such
as eviction policies, later on when discussing optimizations to TxProbe.

4 Inferring the Bitcoin Network Topology

In this section we explain our technique for inferring the topology of Bitcoin’s
reachable peer-to-peer network, making use of the subtleties of transaction prop-
agation in Bitcoin as described earlier, and in particular conflicting transactions
and orphan transactions. We start by introducing a basic edge inference tech-
nique that tests for an edge between a single pair of peers. Later we discuss how
to scale the technique up to take network-wide snapshots efficiently.

4.1 Basic Edge Inferring Technique

To explain the main idea behind our technique, we start by describing a scenario
in which our Coinscope measurement node is connected to two nodes A and B,
and we want to check if there exists an edge between them. Note that such a
scenario is not realistic, but we will discuss real cases later on. First we create
a pair of double spending transactions referred to as the parent (txP ) and the
flood (txF ). We send txP to A and txF to B and assume that both transactions
arrive to their destination at the same time, so A will reject txF if B sends it to
him and vice versa. Now we create a third transaction, the marker (txM ), that
spends from txP and we send it to A. On receiving txM , A will forward it to all
his peers. If the edge between the two nodes exists, as depicted in Fig. 2a, B will
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receive the transaction. It is worth noting that B does not know about txP , so
txM will be flagged as orphan and not relayed any further. On the contrary, if
the edge between nodes A and B does not exist, as depicted in Fig. 2b, txM will
never be sent to B.

At this point we can check if the connection between the two nodes exists.
To do so, we ask B about txM by sending him an inv message containing txM ’s
hash. If the connection between the two nodes exists, B will have txM stored
in his MapOrphanTransactions pool, so he will not request it back. On the
other hand, if the edge does not exist, B will respond with a getdata message
containing txM ’s hash.

Fig. 3. Incorrect edge inferring with three nodes.

While this basic technique works in the most simple scenario, namely with
two nodes potentially connected only between them, it can drastically fail if
just one additional node is added to the picture. Let’s see what happens if we
connect one additional node C, as depicted in Fig. 3, and repeat the procedure.
Since A is connected to C, txP and txM will be forwarded to him, C will treat
both transactions as regular ones, and forward them to B, who will reject txP

as double spending of txF , but accept txM as orphan. Ultimately, we will ask B
about txM , and infer a non-existing edge between him and A.

Such a basic example highlights the first main issue of the basic approach:
isolation. We need to ensure that txP remains only in the node we have sent
it to. Otherwise, we may end up inferring non-existent edges. Moreover, this
basic technique also builds on top of another fragile property: synchronicity.
If node A receives txP before B receives txF , A can forward txP to B, and
the latter will end up rejecting txF upon reception, making the technique to
fail. Finally, the basic technique lacks scalability. Assuming we can sort out
the two previous issues, for every three transactions created we will be able to
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infer at most the whole neighbourhood of a single node. Inferring the topology
of the whole reachable network will require creating almost three transactions
per node, namely 3 · (n − 1) where n is the number of reachable nodes in the
network. In order to solve the three aforementioned problems, we have created
a technique called TxProbe.

4.2 TxProbe

TxProbe is a topology inference technique that uses double spending and orphan
transactions to check the existence of edges between a pair of nodes. TxProbe
can be used to infer the topology of several cryptocurrency P2P networks, as
long as they share the network protocol and orphan transactions handling with
Bitcoin (i.e. Bitcoin Cash, Litecoin, ZCash, etc). In contrast to recently proposed
techniques, such as [6], TxProbe is intended to perform full network topology
inference, instead of targeted neighbourhood discovery, even though the latter
can be also achieved. TxProbe builds on the aforementioned basic edge inferring
technique solving its three main downsides:

Regarding isolation and synchronicity, TxProbe uses Coinscope, the
observation and testing framework introduced by Miller et al. in [11], to main-
tain connections with all reachable nodes and performs the invblock tech-
nique (proposed also in [11]) to ensure that a target transaction will remain
in a target node. With regard to scalability, TxProbe takes advantage of the
MapOrphanTransactions pool management to perform multiple nodes neigh-
bourhood discovery at the same time.

We now describe the main components of the TxProbe technique. In a single
trial, we break the network nodes into two groups, the source set and the sink
set, where we aim to infer all the connections between source set nodes and
sink set nodes. The source set will be usually smaller than the sink set,
and should at least be less than the size of the mapOrphanTransactions pool.

Setup

Create Conflicting Transactions: First, we need to create the set of con-
flicting transactions, namely the parents, markers, and flood transactions. This
time we are not targeting a single node to infer his peers (as we did with A in
the basic inferring technique), but all the nodes in the source set. Therefore
instead of creating a single parent and the flood transaction spending from the
same utxo, we will create n + 1 distinct double spending transactions, n being
the number of nodes in the source set: n of those transactions will be tagged
as parents, while the remaining one will be the flood transaction. Finally we
create a marker transaction from each of the parents, resulting in n parents, n
markers, and the flood transaction. Figure 4 depicts a high level representation
of the created transactions (spending from UTXO1).



TxProbe: Discovering Bitcoin’s Network Topology 557

Fig. 4. High level representation of the transactions created in TxProbe

Invblock the Network: Once all the parents, markers and the flood transaction
have been created, it is time to ensure that the isolation property will hold
during the experiment. It is worth noting that for the isolation property to hold
there are two things we need to ensure: First, that the flood transaction (txF )
remains within the sink set. Secondly, that each parent (txPi) remains only in
the source set node (Ni) it will be sent to. To ensure so, we will perform an
invblock of txF and every txP . invblock consists of sending inv messages to
all the nodes in the network with the transaction hashes we want to block the
propagation. Recall that a node requesting a transaction with a getdata message
in response to a inv message will wait up to two minutes until requesting such
transaction to any other peer offering it. By sending multiple inv messages
containing the same transaction hashes to a node it can be blocked to request
those transactions to any other node for an arbitrary number of minutes, which
gives enough time to send all the transactions without having to worry about
the isolation property being broken. It is also worth noting that the network
will not be blocked with the markers hashes, since their propagation from the
source set to the sink set is what will allow us to infer edges between nodes.

Main protocol

Once we have set the proper conditions for the experiment to be run, we can
start sending the transactions we created earlier.

Send Transactions: First, the flood transaction is sent to all the nodes in the
sink set. After waiting a few seconds for the flood transaction to propagate,
we can send the proper transactions to the source set. We start by sending a
different parent to each node in the set, wait a couple of seconds, and then send
the corresponding marker to each node. Since we have invblocked the whole
network with the flood and parents, at this point we are sure that, as long as
the nodes behave properly, the flood transaction is only present in the sink set
and each parent is only present in its respective node from the source set.

Requesting Markers Back: After waiting a few seconds for the propagation
of the markers, we will request all of them back from every node in the sink
set. Despite being orphans, markers are still considered known transactions
by those sink set nodes. In that sense, as we have already seen in the basic
inferring technique, when an orphan transaction is requested as part of a getdata
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message the node holding it will not include it in their response. By sending an
inv message containing all the markers to the sink set nodes we will receive
back a request of only the subset of markers they have not heard of.2 By mapping
the markers that have not been sent back to the source set node we originally
sent them to, we can infer edges between the source set and the respondent
sink set nodes.

Permuting the Sets: With all the aforementioned steps, we are able to infer
the edges between a certain configuration of the network, that is, a specific set
of nodes forming the source set and sink set. However, the technique cannot
infer edges between nodes in the same set. In order to infer the whole topology,
we need to run several rounds permuting the sets. Therefore, both the setup and
the main protocol will be run until every pair of nodes have been in a different
set at least once.

4.3 Making Room for Marker Transactions

The MapOrphanTransactions pool is not allowed to grow unbounded. In fact,
it has a small default limit of only 100 transactions at a time. When this limit
is exceeded, orphan transactions are evicted. The eviction mechanism works
as follows: First, it generates a random hash randomhash. Next, it selects the
transaction in the pool with the closest hash higher than randomhash and evicts
it from the pool. The eviction mechanism repeats until the pool size is within
limits.

Eviction poses a problem for scaling up the TxProbe technique. Marker trans-
actions must not be evicted until they are read back at the end of a measurement
trial. However, the eviction policy has a design flaw, which enables us to make
preferential transactions that are hard to evict. By crafting transactions for
which their hashes lay between a small fixed range (e.g: by re-signing the trans-
action), and since the randomhash hash used in the eviction mechanism picks
values over an uniform distribution, we can bound the odds of our transaction
being evicted depending on how small the range is set.

Cleansing the Orphan Pool: When we were performing the basic inferring
technique there was no need to worry about transactions being evicted from
the MapOrphanTransactions pool since we were only creating a single marker.
However, now up to n markers would need to be stored by a single node. In
order to ensure that there is enough space to store all the markers, we will
empty the MapOrphanTransactions pool of all nodes in the sink set. We start
by creating a transaction we call the cleanser, and spending from it we create
100 distinct double spending transactions we call the squatters. Next, we send
all the squatters to every single node in the sink set aiming to full the orphan
pool. Finally, we send the cleanser to every sink set node. Upon reception of
the cleanser, all transactions in the orphan transactions pool will no longer be
orphans. One of the squatters will be flagged as valid, whereas the rest will

2 Notice that some times the subset will be the actual set.
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be discarded as double-spending transactions. Regardless of which squatter is
accepted by each node, the MapOrphanTransactions pool of each sink set
node will be emptied. Figure 4 depicts a high level representation of the orphans
and cleanser transaction creation (spending from UTXO0).

5 Costs of Topology Inference

In this section we discuss the costs of running TxProbe both in terms of time
and transaction fees.

5.1 Time Costs

How long it takes to infer the topology of a network using TxProbe directly
depends on the number of reachable nodes rn in the network. As we have already
seen, the size of our source sets is bound by the MapOrphanTransactions
pool size, which is 100 by default. Our set partitioning algorithm works as a
grid, in order to separate nodes in two sets we create a grid of width w =
min(�√rn �, 100) and length h = �rn

w
�, and we traverse the grid by rows and

columns, being the selected row/column in iteration i our source set for the
i-th round of the experiment, and the rest of nodes our sink set.3 The total
number of different source sets, and therefore, the total number of rounds
required to run an experiment will then be:

tr =

⎧
⎨

⎩

h + w − 2, for h ≤ w

h − 1 + � h
w

� · w, for h > w

Each round of the TxProbe can be run in about 2.5 min, resulting in 2.5 ·
tr min to run TxProbe over a network of rn nodes. Inferring the topology of
a network like Bitcoin testnet (∼1000 nodes) requires, therefore, about 2.6 h,
whereas inferring the topology of Bitcoin mainnet (∼10000 nodes) requires about
8.25 h. The partitioning algorithm can be found depicted in Fig. 5.

5.2 Transaction Fee Costs

The costs of running TxProbe directly depend on the number of rounds of the
experiment tr and the fee rate to be paid in order to get our transactions relayed
by the network. For every round we will perform an orphan cleansing, resulting
in two standard 1-1 P2PKH transactions (only the cleanser and one squatter will
be accepted, the rest will be eventually flagged as double-spends). Moreover, at
every round either the flood will be accepted (1-1 P2PKH transaction) or a
parent-marker pair will be accepted (two 1-1 P2PKH transactions).

3 Notice that when traversing columns the number of elements in the set can be higher
than w, in which case the algorithm will create �h/w� sets per column.
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Fig. 5. Set-partitioning algorithm used in TxProbe. Sets corresponding to the last row
and column (marked in red) can be skipped since they will be already counted by the
rest of sets. (Color figure online)

The size of a 1-1 P2PKH transaction using compressed public keys and
assuming a signature of maximum length (73-byte signature) is 193 bytes long.
Putting all together, the cost of running TxProbe in a network of rn nodes ranges
between 3 · 193 · fee rate · tr and 4 · 193 · fee rate · tr.

At a fee rate of 5 sat/byte4, running the experiment in a network like Bitcoin
mainnet will cost between 573210 and 764280 satoshi.

Impact of TxProbe Measurement. We say a few words about the feasibility of
using TxProbe to do ethical measurement. The TxProbe measurement involves
sending many kinds of abnormal transactions, and thus it can only be used
ethically if we ensure it does not harm or burden the network we are measuring.
To start with, although TxProbe transactions are unusual in that they are multi-
way conflicting double-spends, they are not relayed and thus do not increase
network or storage utilization compared to ordinary transactions.

The TxProbe experiment can have a destructive effect, however, on the
MapOrphanTransactions data structure. As we discussed earlier, if the orphan
transactions pool is full, then adding new orphan transactions (such as the
marker transactions in TxProbe) can evict others. We could not rule out the
potential that our measurement would add to this congestion (i.e., over an 8+ h
for a scan of the entire network) and could adversely affect real transactions.

6 Experiments and Results

We conducted experiments using the Bitcoin testnet in order to evaluate our
topology inference technique. We first conducted ground truth experiments to
4 Fee to get transactions confirmed between 1–2 blocks on 27th August 2018 according

to https://bitcoinfees.earn.com/.

https://bitcoinfees.earn.com/
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quantify its precision and recall, and then took a snapshot measurement of test-
net to demonstrate its usefulness for network-wide scans.

6.1 Validation

In order to validate our results we run 5 local Bitcoin nodes as ground truth.
The ground truth nodes are included as part of the source set in each round
of the experiment. This means that, if our results are correct, at the end of the
experiment we would have inferred every edge between the ground truth nodes
and the sink set nodes.

For every run of the experiment there are always nodes that do not behave
according to the default client, for example by ignoring invblock and therefore,
sending transactions without receiving getdata messages. In order to detect
such nodes, an invblock test is performed before every experiment using two
Coinscope instances: the first instance crafts a random 32-byte hash and offers it
to the whole network using inv messages. The second instance offers the exact
same hash within the next two minutes and collects all the getdata responses.
All those nodes who responded the second instance are flagged as unblockable
nodes and taken out of the experiment.

Transitory edges (i.e. edges that have been there for a short amount of time)
are also removed from the inferred results, as well as nodes who know about
transactions they are not supposed to (nodes who missed a parent/marker when
it has been sent to them, nodes holding the flood transaction when they were
supposed to hold a parent transactions, etc). Finally, disconnecting nodes (nodes
that have disconnected from Coinscope while the experiment was running) are
also removed, as well as all inferred edges referring them.

Our validation reported a precision of 100% and recall between 93.86% and
95.45% with a 95% confidence over 40 runs of the experiment.

6.2 Analysis of the Inferred Network

This section includes a description of a testnet network snapshot taken on 21st
February, 2018, as obtained using our technique, which reported a precision of
100% with a recall of 97.40%.

The observed network has 733 nodes and 6090 edges, with an average degree
of 16.6. The degree distribution of the network is far from uniform (Fig. 6a),
with most of the nodes having between 7 and 14 neighbors. The most common
degree observed in the network is 8 (shown by 12% of the nodes), a value that
matches the default maximum number of outgoing nodes of the Bitcoin Core
client.5 The maximum degree is 59, less than half of the maximum number of
default peer connections of Bitcoin Core.6

5 https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L59.
6 The maximum number of default connections is set to 125: https://github.com/

bitcoin/bitcoin/blob/v0.16.2/src/net.h#L73.

https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L59
https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L73
https://github.com/bitcoin/bitcoin/blob/v0.16.2/src/net.h#L73
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Table 1 provides a summary of basic properties of the network regarding
clustering, distances, assortativity, and community structure, comparing the
observed values with those obtained over random graphs with similar charac-
teristics. That is, for each property, we create 100 random graphs that resemble
the obtained testnet graph, compute the property over the random graphs, and
provide both the average of the results over the random graphs and the per-
centage of times the value over the random graph is higher than the observed
in the testnet snapshot. We have considered three different models for gener-
ating random graphs: Erdős-Rényi [4] (ER), configuration model [15] (CM),
and Barabási-Albert [1] (BA). The Erdős-Rényi model generates graphs where
each pair of nodes may have an edge with the same probability, and indepen-
dently of the other edges of the network. ER generates graphs with a binomial
degree distribution, and it is commonly used as baseline to analyse networks.
However, the observed testnet graph does not seem to have an ER-like degree
distribution (recall Fig. 6a). Therefore, we also create random graphs using the
configuration model, that allows creating networks with a chosen degree distri-
bution. Finally, since many real world computer networks have been reported
to be preferential attachment networks, we also include Barabási-Albert model.
BA generates scale-free networks, that have power-law degree distributions. The
random graphs we create resemble the observed network: ER graphs are created
with the same number of nodes and edges, CM graphs have the same degree
distribution (and, therefore, they implicitly also have the same number of nodes
and edges), BA graphs have the same number of nodes and a similar number of
edges (by adjusting the number of new edges created at each step of the graph
generation algorithm, the number of edges is adjusted to be as close as possible
to the observed one).

Distances are the properties analyzed in the testnet graph that most approx-
imate those obtained in random graphs. For instance, the radius of the testnet
snapshot is 3, exactly the same value observed in all the generated random
graphs. The diameter (the maximum distance between any pair of nodes) of
the testnet graph is 5, which is higher than most of the random graphs, but
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Table 1. Network properties. For random graphs, the 100-run average is provided,
with the percentage of times the property over the random graph is higher than the
observed in the testnet snapshot in parenthesis.

Metric Testnet ER CM BA

Diameter 5 4 (0%) 4.93 (1%) 4 (0%)

Periphery size 6 612.9 (100%) 21.2 (80%) 379.6 (100%)

Radius 3 3 (0%) 3 (0%) 3 (0%)

Center size 45 120.7 (100%) 57.9 (70%) 362.9 (100%)

Eccentricity 3.946 3.827 (0%) 3.979 (70%) 3.528 (0%)

Clustering coefficient 0.052 0.023 (0%) 0.036 (0%) 0.066 (100%)

Transitivity 0.128 0.023 (0%) 0.036 (0%) 0.057 (0%)

Degree assortativity 0.291 −0.001 (0%) −0.008 (0%) −0.043 (0%)

Country assortativity 0.007 −0.001 (0%) −0.001 (0%) −0.002 (0%)

Clique number 24 3.73 (0%) 4.05 (0%) 6.58 (0%)

Modularity 0.270 0.220 (0%) 0.216 (0%) 0.214 (0%)

very close to their diameters. Moreover, by removing just 3 of the lowest degree
nodes of the testnet graph, its diameter becomes 4 (removing the degrees from
the sequence in the CM model has the same effect). On the contrary, the number
of nodes in the center and in the periphery (i.e. nodes with eccentricity equal to
the radius and the diameter, respectively) differs largely from random graphs.

With respect to clustering, the testnet graph exhibits a higher average clus-
tering coefficient than ER and CM graphs, but less than BA graphs. However,
observed transitivity is higher than any of the random graphs. Clustering coef-
ficient analyses how well connected the neighborhood of a node is (taking into
account the neighborhood regardless of its size), whereas transitivity is focused
on studying 3-node substructures.

The testnet snapshot shows higher assortativity than the expected for ran-
dom graphs, that is, nodes in the testnet tend to connect to other nodes that
are similar to themselves more often than what ER, CM and BA random graphs
exhibit. Specifically, nodes tend to connect to other nodes with the same degree
and, to a less extent but also in a significant manner, to nodes in the same
country.

Regarding community structure, we have computed the modularity over the
best partition found using the Louvain method. The modularity of the testnet
graph is higher than any of the random graphs, regardless of the chosen model.
That is, the network shows more community structure than what should be
expected for a random graph. Figure 6 depicts a visualization of the communities
found in the testnet snapshot, with the color of the node denoting the community
it belongs to. There are nine communities, with the biggest two (purple and
green in the image) having 37% of the nodes of the network. Notably, there
is one community (colored in pink) that contains only 7.5% of the nodes but
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Fig. 6. Geographical location of nodes. (Color figure online)

includes the 25 highest degree nodes of the network. This is consistent with
the high degree assortativity reported in the network. Remarkably, the testnet
graph contains a clique (a fully connected graph) of 24 nodes. This clique is
found inside the high-degree community (depicted in pink in the visualization).
In contrast, the largest clique formed by nodes of any other community has a
size of just 6 nodes.

We have also used an IP Geolocation API7 to obtain the geographical location
of the nodes in the testnet snapshot. Figure 6 shows a map with the node’s
locations, where both the size and color of the nodes are used to denote nodes’
degree. Most nodes are located in the United States, Central Europe, and East
Asia.

7 Conclusions

We set out to design an effective measurement technique that can reconstruct
the Bitcoin network topology. We validated TxProbe to show that it is accurate
and can indeed be scaled up to snapshot the entire network with reasonably low
fees. However, we decided not to carry out a measurement of the main network
because we could not rule out its potential to delay the propagation of real users’
transactions. We consider it an open question whether this technique (or analysis
thereof) can be improved so it can be used less invasively.

We did, however, take network measurement snapshots of the Bitcoin test
network topology (over 700 nodes). Our analysis of the Bitcoin testnet reveals
significant non-random structure, including several communities, as well as a
clique of high-degree nodes. Although our findings over testnet cannot be applied
to the mainnet, it demonstrates that the technique is viable not only in Bitcoin,
but in any other cryptocurrency sharing the network protocol and orphan trans-
action handling with it.

7 http://ip-api.com/.

http://ip-api.com/
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Like other measurement techniques, TxProbe makes use of implementation-
specific behaviors in the Bitcoin software. While cryptocurrencies have not made
topology-hiding an explicit design requirement, in the past software changes
that improve user anonymity have also had the effect of closing off measure-
ment avenues. Viewed in this light, TxProbe is the next step in a tacit arms race
between measurement efforts and privacy enhancing design. We make the follow-
ing suggestions to the cryptocurrency community to avoid this cycle: First, deter-
mine whether network topology or other metrics should be an explicit design
goal, in which case effort can be focused on achieving it robustly. Second, follow
the Tor project [9] for example, in deploying measurement-supporting mecha-
nisms into the software itself, that balances the positive goals of network mea-
surement (such as quantifying decentralization, detecting weaknesses or attacks,
etc.) with the privacy goals of users.
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Abstract. In the face of large-scale automated social engineering
attacks to large online services, fast detection and remediation of com-
promised accounts are crucial to limit the spread of the attack and to
mitigate the overall damage to users, companies, and the public at large.
We advocate a fully automated approach based on machine learning: we
develop an early warning system that harnesses account activity traces
to predict which accounts are likely to be compromised in the future. We
demonstrate the feasibility and applicability of the system through an
experiment at a large-scale online service provider using four months of
real-world production data encompassing hundreds of millions of users.
We show that—even limiting ourselves to login data only in order to
derive features with low computational cost, and a basic model selec-
tion approach—our classifier can be tuned to achieve good classification
precision when used for forecasting. Our system correctly identifies up to
one month in advance the accounts later flagged as suspicious with preci-
sion, recall, and false positive rates that indicate the mechanism is likely
to prove valuable in operational settings to support additional layers of
defense.

Keywords: Forecasting · Machine learning for security · Big data
analytics for security · Large-scale cyberattacks · Cloud security

1 Introduction

Online services are an integral part of our personal and professional lives. To
support widespread adoption and improve usability, large-scale online service
providers (LSOSPs) have made it simple for users to access any of the provided
services using a single credential. Such “single sign-on” systems make it much
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easier for users to manage their interactions through a single account and sign-
in interface. As users become more invested in the platform, the single login
credential becomes a valuable key to a whole set of services, as well as the ‘key’
to their digital identity and the personal information stored on the platform. As
a consequence, these credentials are highly attractive targets to attackers.

As LSOSPs improve their defense systems to protect their user base, attackers
have shifted their efforts to social engineering attacks: e.g, attacks that exploit
incorrect decisions made by individual users to trick them into disclosing their
login credentials [14]. Once an account is compromised, the attackers hijack
the account from its legitimate owner and, typically, use it for their own pur-
poses [19]: for example, to evade detection while perpetuating an attack (e.g.,
multi-stage phishing, or malware distribution campaigns) or to carry out other
fraudulent activity (e.g., sending out spam email).

Thus, detecting compromised accounts early and giving back control to their
legitimate owners quickly, as well as designing defense mechanisms that add
additional layers of defense to protect users likely to fall prey to social engineering
attacks, is crucial. Doing so can mitigate the damage an attacker can do while in
control of a compromised account, protect the account owner’s digital identity,
and reduce the damage inflicted by an automated large-scale social-engineering
attack to a LSOSP and its user community. It should be noted that, detecting
compromised accounts is much more challenging than just identifying fake ones
(i.e., those created by an attacker) since, in the former case, suspicious activity
is typically interleaved with the account owner’s legitimate activity [8].

This paper tests the hypothesis that it is feasible to identify likely future vic-
tims of mass-scale social-engineering attacks. In a nutshell, we postulate that
the behavioral patterns of the users that have little incentives or low ability to
fend off social-engineering attacks can be learned. To this end we propose an
early warning system based on a completely automated pipeline using machine
learning (ML) to identify the accounts with similar behavioral patterns to those
that have been flagged as suspicious in the past.

Predicting accounts that are more likely to be compromised in the future can
be used to develop new defenses, to fine-tune and better target existing defense
mechanisms, as well as to better protect vulnerable users [10]. While we briefly
discuss the intuition behind some of these defense mechanisms in the discussion
section (Sect. 7), their design and evaluation, however, is beyond the scope of
this paper and we focus here solely on evaluating our conjecture that predicting
which accounts are more likely to be compromised is feasible.

We have tested our hypothesis using real-world data from a large LSOSP
(i.e., at the scale of Amazon, Facebook, Google, or Yahoo). Throughout this
paper we will refer to it as a LSOSP (in italics, the non-italicized LSOSP refers
to a generic Large-Scale Online Service Provider). Our experiments were carried
out over four months of production data covering hundreds of millions of users
generating hundreds of billions of login events to LSOSP’s platform. Due to
space constraints we omit some relevant in-depth descriptions from this paper,
and we refer interested readers to our more exhaustive technical report [11] for
more information.
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This paper makes the following contributions:

� We formulate the hypothesis that it is feasible to identify the users more
likely to fall prey to mass-scale social-engineering attacks (Sect. 2), propose
an approach to identify their accounts, and design an early warning system
(Sect. 3).

� We demonstrate the feasibility and applicability of the proposed approach
on real-world production data (Sect. 5). We show that, even using low-cost
features extracted from two basic datasets (Sect. 4) and a simple model selec-
tion approach (Sect. 3) leading to acceptable training runtime, the proposed
classifier can be tuned to achieve good classification quality based on the
recall, precision, and false positive rate metrics (Sect. 5). For example (CEC

in Sect. 5), using only one week of login event history and predicting one month
in advance, our classifier predicts more than half of the accounts later flagged
as having suspicious behaviour (i.e., achieves a recall of 50.62%) and, at the
same time, around one in five of the predicted accounts is actually labeled
as suspicious at LSOSP within a 30-day prediction horizon (i.e., precision of
18.33%, with a low false positive rate of 0.49%). While, overall, our results
indicate that it is feasible to achieve good classification quality, we stress two
important points: first, it is important to note that our results should be
seen as a lower bound of the achievable classification performance: this can
likely be further improved by using richer data or additional computational
resources (e.g., to support more sophisticated learning methods). Second, effi-
cient defense mechanisms can be developed based on future victim predictors
as, for example, Boshmaf et al. [5] demonstrate in the context of a social-bot
infiltration attack. We expand on these points in the discussion Sect. 7.

2 Problem Formulation

We present an overview of our problem (Sect. 2.1) by abstracting away from all
company- and experiment-specific details which we describe in detail in Sects. 3,
4 and 5. Here, we go over the assumptions and objectives that influenced our
approach, we elaborate on the datasets required to carry out the classification
task (Sect. 2.2), and we introduce our classification exercises (CEs), which are
the means by which we organize our experiments (Sect. 2.3).

2.1 Overview

Our goal is to develop an early warning system that can be used by LSOSPs to
harness observable user behavior to identify accounts likely to be compromised
in the future. Our intuition is the following: over the course of everyday use, the
history of user interactions encapsulates information from which one can infer
whether an account is more likely to be compromised in the future (e.g., because
the user does not have the interest or the ability to fend off social-engineering
attacks); eventually (some of) these accounts are compromised, generate suspi-
cious activity, and are later flagged. In other words, to forecast future suspicious
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activity, we aim for features that approximate user behavioral patterns to infer
similarity to accounts that are later flagged as suspicious and develop a binary
classifier to act as an early warning system. We chose a supervised learning app-
roach as, over the past few years, it has been shown to achieve good performance
for a variety of classification tasks [3,6,16,21,22].

2.2 Assumptions, Objectives, and Datasets

Assumptions. We treat the prediction of suspicious accounts as a binary clas-
sification problem (suspicious vs. non-suspicious). We assume that only a small
subset of the overall population is likely to exhibit suspicious activity. We believe
that this is true for large providers that offer services to a large number of users
around the world (up to billions of users) and dedicate resources to maintain
a “healthy” user population. The direct implication is that the ML techniques
used, the data selection for the training of the classifiers, and the success metrics
used are all tuned for imbalanced data.

Objectives. We aim to meet the following objectives when designing and tuning
the binary classifier. First, a low rate of false positives: accounts incorrectly
predicted as suspicious (i.e., false positives) should be minimized even at the
cost of decreasing the number of correctly predicted suspicious accounts (i.e., true
positives). This trade-off can be controlled by tuning the classifier’s prediction
threshold when generating the final binary classification. We also discuss tuning
for a low rate of false negatives in (Sect. 7).

Second, and crucially for deployment at a LSOSP, with hundreds of mil-
lions of users and tens of billions of user activity events per day (or more!),
the classifier should be optimized for runtime efficiency during both training
(feature extraction and model building) and testing/use (prediction and clas-
sification). This can be accomplished by employing features that can be easily
extracted/computed from the raw data, and by choosing ML models that offer a
good trade-off between the quality of prediction and performance. Balancing this
trade-off is crucial for timely forecasting of suspicious activity and thus faster
remediation (as well as adoption in realistic settings).

Required Datasets. We assume that the LSOSP has access to at least two
types of data. First, data that can be mined to extract behavioral patterns.
Second, a sample of accounts previously flagged as suspicious that can be used
as ground truth. We detail the data we use from LSOSP in Sect. 4.

2.3 Experiment Organization

Here we establish the terminology we use for the rest of this paper. We define
the means by which we organize our experiments (Classification Exercises), and
we detail the categories of accounts that can be observed in the datasets and
how we use them.
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Classification Exercises (CEs). CEs are our way of grouping together all
parameters of a binary classification experiment (e.g., training time interval,
testing time interval, ML model hyperparameters) and the associated results.
As with any typical supervised ML approach, a CE is divided into two distinct
phases: training and testing (Figure. 1 provides an overview). During training,
our goal is to fit a model that learns user behavioral patterns that can be used as
early predictors of suspicious account activity. During testing, the fitted model
is applied to new data not seen during training and the classifier’s performance
is evaluated against a labeled ground truth.

Categories of Accounts. We consider U as the set of all accounts registered
with the LSOSP. Depending on the scale and popularity of the LSOSP, U can
be extremely large potentially exceeding a billion users. We use days as a coarse-
grain measure of time. We consider Ld as the set of users with login activity on
day d. For the set Ld, we extract easy-to-compute low-cost features representing
the users’ login behavior on day d. We aim to learn the behavioral patterns of
legitimate accounts prior to them being flagged as suspicious. We denote with Sd

the set of user accounts flagged as suspicious on day d. Existence of an account in
set Sd on day d is a clear indication that the account exhibited some suspicious
activity prior to or on day d. However, it is important to note that the opposite
is not true: if an account is absent from the set Sd on day d that does not imply
that it did not exhibit any irregular activity prior to or on day d. The reason for
this is that the pipeline used for detecting suspicious accounts at the LSOSP is
expected to have some lag. In other words, it takes time for an account to be
flagged as suspicious after it first starts exhibiting irregular behavior.

Avoiding Attacker-Controlled Accounts. The set Ld contains not only legit-
imate user accounts but also those that are under the control of an attacker (the
set Ad). These include fake as well as compromised accounts (considered as
sets Fd and Cd respectively). We implement several heuristics to prune such
accounts and avoid learning user behavioral patterns from accounts that may be
under attacker control. Thus, we do not use the sets Ld and Sd directly. Instead,
to avoid learning the behavior of accounts under attacker control (Ad), we prune
both Ld and Sd in order to eliminate accounts that may be under attacker con-
trol. We discuss this preprocessing step in detail in Sect. 3.3.

3 Proposed Approach

This section outlines our proposed approach: the details of our classification
exercises (Sect. 3.1), the proposed supervised ML pipeline (Sect. 3.2), and the
heuristics we implement to avoid learning from accounts under the control of an
attacker and to reduce bias when evaluating our approach (Sect. 3.3). The follow-
ing sections describe our datasets (Sect. 4) and the evaluation results (Sect. 5).

3.1 Classification Exercise Composition

We organize our classification exercises (CEs) as outlined in Fig. 1. During
training, we attempt to fit a model (M) that learns which behavioral patterns
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during the training Data Window (training-DW1) correlated to the account
being labeled as suspicious later in the Label Window (LW). We introduce a
Buffer Window (BW) between the DW and LW, to account for any lag (delay)
in the suspicious account flagging pipeline used to generate the ground truth
of suspicious accounts. The reason is that, in the absence of the BW, a lag in
the pipeline will cause the fitted model to learn user behavioral patterns from
accounts that are already under the control of an attacker. In Sect. 3.3, we present
our heuristics to estimate the width of the Buffer Window (BW).

During testing, the fitted model (M) obtained during training, is applied dur-
ing the testing-DW to forecast the set of accounts that are likely to have suspi-
cious behaviour (PCE). The quality of those predictions is then evaluated against
the ground truth of labeled suspicious accounts extracted from the testing-LW.

Fig. 1. Overview of a Classification Exercise (CE). Each exercise is divided into two
broad phases: training, during which the classifier is fitted, and testing, during which
the classifier predictions are evaluated. Each phase is subdivided into smaller non-
overlapping time windows: Data Window (DW), Buffer Window (BW) and Label Win-
dow (LW). The DW is the period of time over which behavioural features are mined.
The BW is a period of time introduced to avoid learning from accounts that may
already be compromised but not yet labeled as such. The LW is the period over which
labels are extracted.

3.2 The Early Warning Pipeline

Our system is composed of a pipeline that can be easily integrated into existing
systems. We note that our pipeline design stresses efficiency, scalability, and,
ultimately, achieving a practical training runtime sometimes even to the detri-
ment of the learned classifiers (e.g., using simple low-cost features as opposed
to sophisticated feature extraction). With production data, similar in scale to
what we have access to at LSOSP, our pipeline is designed to extract behavioral
patterns and to train in reasonable time on log traces from hundreds of millions
of accounts leading to hundreds of billions of log entries over the duration of
each CE. We developed our pipeline in Scala 2.11, employed SparkML for all
our developed classifiers, and ran our CEs on Spark 2.0.2 [28].

Data Preprocessing. We preprocess the datasets from which we extract the
user behavioral patterns (e.g., login activity dataset) as well as the ground truth
(e.g., accounts flagged as suspicious). Importantly, we also carry out a series of
1 Where the context makes the notation unambiguous, we skip the prefix and use DW

only for training-DW or testing-DW. Similarly for LW.
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pruning operations in order to exclude accounts that may bias either learning
or evaluation as discussed in Sect. 3.3. During this stage, for each account, we
extract features at the day level and aggregate them for the intervals associated
with the classification exercise. There is an inherent trade-off here: extracting
and computing a large number of features over a long duration of time could
potentially include more behavioral information thereby increasing the predic-
tion accuracy. However, this comes at the cost of longer runtime and might
affect prediction timeliness. At LSOSP, we find that extracting only a relatively
small set of low-cost features that are both simple and quick enough to compute
is both sufficient and also more practical from a performance perspective in a
production environment (details in Sect. 4).

Preprocessing Imbalanced Data. Typically at LSOSPs, suspicious accounts (the
positive class) are a minority compared to the overall population. Naively train-
ing an ML classifier on such imbalanced data will typically result in a classifier
that always predicts the dominant class (the negative class in our case) to achieve
the highest accuracy [20]. Approaches to mitigate this problem include simple
preprocessing techniques such as undersampling the majority class or oversam-
pling the minority class [12], or Cost-Sensitive Learning [17] that attempts to
minimize the cost of misclassifications by assigning asymmetrical costs during
the training process. At LSOSP, given the scale of the data and our focus on
building a practical pipeline with good balance between runtime and classifica-
tion performance, we use undersampling during training (however, we test on
the whole set of labeled data in the test set).

Classifier Tuning. Second, during the hyperparameter optimization stage,
model selection is carried out in order to find the best model (or set of parame-
ters) for the classification task. This only needs to be done once during training
(or periodically, with low frequency and offline, to learn new user behavioral
patterns) and is not carried out during inference using the fitted model in pro-
duction. We use a Random Forest (RF) classifier considering the good trade-off
it offers between runtime and classification accuracy [9]. We carry out the hyper-
parameter optimization on an independent dataset extracted from the available
history and specifically reserved for this purpose (CEA in Sect. 5). The extracted
model parameters are then fixed for all the subsequent CEs.

Model Fitting and Inference. Third, after data preprocessing and hyperpa-
rameter tuning, a ML model M is fitted and later applied to make predictions
on new data (i.e., inference). On the one hand, this data could be one for which
there already exists labeled ground truth. In that case, the goal is to evaluate
the performance of the developed classifier. On the other hand, this could be
new data from production for which no ground truth exists (i.e., during the
real-world deployment) and in this case, the goal is to put the classifier into
practice to predict accounts likely to generate suspicious activity in the future
based on their recent behavioral patterns.

Model Evaluation. Finally, we obtain the confusion matrix based on the result-
ing predictions and collect statistical measures of the classifier’s performance.
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3.3 Heuristics

Our goal is to learn behaviour from legitimate accounts (i.e., that are not
attacker-controlled: fake and compromised accounts—Ad{d|d ∈ Training Inter-
val}) and predict which legitimate accounts may later get compromised and
get labeled as suspicious. To this end we use a number of heuristics. We also
implement additional heuristics to increase the confidence in our evaluation.

Heuristics to increase the chance that we capture only the behaviour
of accounts under the control of legitimate users. During training, we
attempt to exclude all accounts that are potentially under the control of an
attacker. In practice the set of accounts Ad is unknown, even for historical data
for which there is collected ground truth, as this set may include not-yet-detected
fakes and compromised accounts. We take advantage of having an extremely
large dataset to carry out aggressive exclusions that reduce the chance that we
capture behaviour from attacker-controlled accounts. We use three heuristics:

� First, we exclude any account flagged as suspicious during the training DW
or at a later point of time within the Buffer Window (BW). By excluding
these accounts, we reduce the likelihood that our classifier learns behavioral
patterns stemming from detected compromised accounts.

� Second, to the same end, for the classification exercises where there is available
data before the start of the training interval (CEC in Sect. 5), we exclude
accounts flagged as suspicious before the start of training (as they are more
likely to be compromised in the future).

� Finally, to eliminate fakes, one of our classification exercises (CEC in Sect. 5)
attempts to eliminate all recently-created or dormant fakes by selecting for
training only accounts that are older than two months and have at least one
month of activity (our assumption is that once fakes generate enough activity
the LSOSP can detect them through existing techniques [25,27] as detecting
fakes is easier than detecting compromised accounts [8]).

Heuristics to Reduce Bias During Classifier Evaluation. Our prelimi-
nary experiments suggest that user accounts that have been flagged as suspicious
in the past are more likely to be flagged again in the future (a possible indication
that their users are more vulnerable to attacks than the general user population).
To provide a conservative (lower-bound) evaluation of the developed classifier’s
performance, we exclude all accounts that have been previously labeled as suspi-
cious during training (i.e., flagged at any point during the training-LW or before).
Moreover, one of our classification exercises (CEC in Sect. 5), also excludes any
accounts flagged as suspicious during the first month of the data collection. As
a result, the classifier is evaluated on never seen before true positives.

Heuristics to Size the Buffer Window (BW). It is expected that, at any
LSOSP, detection of suspicious activity is not instantaneous, thus accounts may
be under the control of an attacker for a while before they are flagged. We devel-
oped an experiment to estimate how aggressive is LSOSP’s suspicious activity
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flagging pipeline. For this experiment, we only rely on two types of events: flag-
ging events for accounts marked as suspicious on day d (extracted from set Sd)
and login events for these accounts (extracted from set Ld). We include only
user accounts that have at least one login event and at least one flagging event
within the period of time over which we run the experiment. We define the lag
per flagged user as the number of days between the first time that account is
flagged and the most recent previous login event. Over a period of 30 days, the
results showed that 90% of accounts flagged within that period have a lag of at
most one week and 98.6% have a lag of less than three weeks. As such, we decided
on a 1-week buffer window (BW) for most of our CEs, yet we also experimented
with a 3-week BW (CED in Sect. 5).

Table 1. Summary of low-cost features. (from login traces)

Brief description Type

# Login Attempts Numeric

# Unique Login Sources (e.g., Web Login, Mobile Login, etc.)

# Unique Login Types (e.g., Password Login, Account Switch, etc.)

# Unique Login Statuses (e.g., Success, Session Extension, etc.)

# Unique Password Login Statuses (e.g., Success, Invalid Password, etc.)

# Unique Actions (e.g., Login/Logout, Device Authentication, etc.)

# Unique Login Geographical Locations

# Unique Login Geographical Location Statuses (e.g., Neutral Location,
White-listed Location, etc.)

# Unique Login Autonomous Systems (ASNs)

# Unique Login User Agents (e.g., Browser, Mobile App, etc.)

# Successful Logins

# Unsuccessful Logins

User has a “verified” mobile number 2-Categorical

4 Datasets

Overall, we had access to 118 days (≈4 months or ≈16 weeks) worth of production
data collected from September 1st, 2016 to the December 27th, 2016 across two
datasets which were updated daily. Overall, these datasets are representative of
any LSOSP with a global user base, an extensive set of offered online services,
as well as the latest techniques to identify potentially compromised accounts.

4.1 Extracting Features

The first dataset includes features associated with all login events. Whenever a
user logs-in to a service offered by LSOSP or has their session re-authenticated,
a login event is recorded into this dataset with all relevant features that can be
associated with the event at that time. We use this dataset to extract a minimal
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set of 13 basic and easy to compute features that reflect users’ login behavioral
patterns (summarized in Table 1) from login traces at a day-level granularity, and
then aggregate them for each user account as a way of characterizing its behav-
ioral pattern over the DW. It is important to note that we do not have access to
any fine-grained account features such as account/user details. Importantly, we
do not have access to any personally identifiable information. Moreover, given
the diversity of the login methods as well as the services offered at LSOSP, the
features extracted for each login event are not uniform and the set of features
extracted for each user is sparse.

4.2 Groundtruth: Suspicious Account Flagging

The second dataset includes events from which we extract our groundtruth. At
LSOSP, a list of accounts flagged as suspicious is generated daily by combin-
ing information from various sources that include human content moderators,
manual reports from internal teams, user reporting, in addition to automated
systems employing heuristics (which include clustering techniques to identify
anomalies, and regression models to identify spammers). We used this daily list
of accounts flagged as suspicious as our ground truth.

For this study, we had access to this daily list of accounts flagged as suspicious
and a high-level description of the system. The detailed internals of the flagging
pipeline were not available. As a consequence, we are neither able to distinguish
between the different classes of suspicious accounts nor to identify the reason why
a particular account had been flagged. We believe that, the lack of such fine-
grained information poses only limited threats to the validity of our findings: on
the one side we have developed heuristics to exclude attacker-controlled accounts
from training (see Sect. 3.3), and, on the other side, at this point our machine
learning model aims to provide only predictive power (will an account be flagged
as suspicious?) rather than explanatory power (why will the account be flagged?).
We extend this discussion in Sect. 7.

5 Evaluation Results

The Objectives of our Classification Exercises. We present four of the
classification exercises (CEs) carried out at LSOSP labeled CEA, CEB , CEC ,
and CED in Table 2. The table outlines the Training and Testing intervals
assigned to each CE and their respective Data Window (DW), Buffer Window
(BW), and Label Window (LW). For each CE, we have a specific objective:

� CEA: evaluating the feasibility of our proposed pipeline, its applicability at
LSOSP, and optimizing hyperparameters.

� CEB : testing the tuned model on new data to ensure that no overfitting
occurred in CEA.

� CEC : investigating how the performance of our classifier changes when
excluding accounts previously flagged as suspicious (higher chance to be
flagged again) or accounts that have little previous activity (lower chance
to include fakes).
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� CED: evaluating the impact of more training data (longer data and label win-
dows) and more aggressive exclusion of potentially not-yet-flagged attacker-
controlled accounts (longer buffer window).

Summary of Results. Tables 3 and 4 summarize the results for all CEs carried
out (their setup is outlined in Table 2). For conciseness, we focus here only on the
most relevant metrics we collected. The two tables highlight how several metrics
are impacted by the selected operating threshold T of the classifier as well as
by the duration of the prediction horizon (presented as Test-LW and Extended-
Test-LW in Table 2 and whose combined size in days is denoted as the prediction
horizon: H). The tables present results for operating thresholds of T = 0.5 and
T = 0.9 and prediction horizons of H = 7, 21, 30, 34, and 90 days, in separate
columns. Note that the minimum and maximum values of H depend on the CE.

In summary, these results show :

� High accuracy (ACC) ≈99.9% and low false positive rate (FPR) <0.01% for
an operating threshold T = 0.9,

� Good evidence for the absence of overfitting (CEB),
� Good balance between precision (PRE) and recall (REC): ≈18.33% and

≈50.62% respectively, when forecasting with a Horizon H = 30 days and Oper-
ating Threshold T = 0.5 (CEC),

� A small improvement after excluding recent/no activity accounts (more likely
to be fakes) and those flagged as suspicious before training (Comparing CEB

and CEC),
� As the Horizon (H) increases, precision increases while recall stays roughly

constant (We expand on this in Sect. 5.1),
� High AUC as shown in Fig. 2 (≈0.947 for CED), and
� More training data and a more aggressive exclusion of not-yet-flagged

attacker-controlled accounts do not significantly impact classification perfor-
mance (CED).

5.1 The Impact of the Prediction Horizon

Our classifier’s precision markedly improves with the depth of the prediction
horizon H (Fig. 3). Some of the accounts that are false positives for a small
precision window then become true positives as the prediction window increases.
We speculate that those accounts are owned by users that do not have the
ability or the interest to fend off social engineering attacks, and thus a longer
horizon increases the chance that they fall victim to an attack, and then generate
suspicious activity which gets them flagged during the longer prediction horizon.

6 Related Work

Statistical methods (including ML) have achieved widespread adoption within
LSOSPs not only to provide rich business features (e.g., product recommenda-
tions) but also for cybersecurity purposes. For instance, such approaches have



580 H. Halawa et al.

Table 2. Timeline of the four classification exercises (CEs) Performed CEA, CEB ,
CEC , and CED. Notation: DW - Data Window, BW - Buffer Window, LW - Label
Window, H - Prediction Horizon.

CE
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
Train Test Extended Test

DW BW LW DW LW Extended LW (H = [7, 90] days)

B
Unused Train Test Extended Test
Unused DW BW LW DW LW Extended LW

C
Preprocess Unused Train Test Extended Test
Preprocess Unused DW BW LW DW LW Extended LW

D
Train Test Ext. Test

DW BW LW DW LW Ext. LW

Table 3. Summary of results using an operating threshold (T) = 0.5 for different pre-
diction horizons (H days). Notation used: AUC-Area Under Receiver Operating Char-
acteristic Curve, BTR-%-tile better than a random classifier, PRE-Precision, REC-
Recall, ACC-Accuracy, FPR-False Positive Rate. Values in bold represent the best
result for that performance metric.

CE

Performance Evaluation Metrics

HMin HMax
H=HMin H=7 H=21 H=30 H=HMax

AUC BTR PRE REC ACC FPR PRE REC PRE REC PRE REC
A 7 90 0.928 85.61% 6.38%46.87% 99.43% 0.52% 19.79% 45.81% 20.14% 43.81% 24.99% 31.02%
B 7 30 0.910 82.14% 3.78% 41.26% 99.50%0.46% 18.18% 46.82% 19.98% 42.28% 19.98% 42.28%
C 7 30 0.922 84.42% 3.18% 42.96% 99.38% 0.58% 16.58% 57.32% 18.33% 50.62% 18.33% 50.62%
D 21 34 0.94789.41% H < HMin 10.64% 57.42% 11.68% 48.96% 12.34% 48.13%

Table 4. Summary of results using an operating threshold (T) = 0.9 for different pre-
diction horizons (H days). Notation used: AUC-Area Under Receiver Operating Char-
acteristic Curve, BTR-%-tile better than a random classifier, PRE-Precision, REC-
Recall, ACC-Accuracy, FPR-False Positive Rate. Values in bold represent the best
result for that performance metric.

CE

Performance Evaluation Metrics

HMin HMax
H=HMin H=HMin H=HMax

AUC BTR PRE REC ACC FPR PRE REC ACC FPR
A 7 90 0.928 85.61% 12.92% 0.47% 99.92% 0.0024% 33.99% 0.20% 99.54% 0.0018%
B 7 30 0.910 82.14% 7.11% 13.15% 99.88% 0.0760% 35.96% 12.90% 99.74% 0.0520%
C 7 30 0.922 84.42% 6.91% 15.57% 99.86% 0.0940% 35.33% 16.29% 99.75% 0.0650%
D 21 34 0.947 89.41% 26.19% 14.45% 99.86% 0.0430% 28.47% 11.36% 99.82% 0.0420%

been used for detecting compromised accounts, fake accounts, spam, and phish-
ing. None of these approaches has focused on evaluating the feasibility of predict-
ing which legitimate accounts are more vulnerable and likely to be compromised
in the future (our long term aim). In this section each paragraph focuses on a
specific area, surveys related approaches, and outlines the statistical methods
and features used.
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Fig. 2. ROCs for all classification exer-
cises.

Fig. 3. Impact of the prediction horizon
on precision (left) and recall (right) at
operating threshold T = 0.5

Compromised Accounts. Egele et al. [8] combined statistical modeling and
anomaly detection techniques in order to detect compromised accounts on
Online Social Networks (OSNs). Their approach was based on identifying sud-
den changes in user behavioral patterns in addition to observing whether those
changes are common to a large group of accounts therefore potentially a result of
a malicious campaign. Thomas et al. [24] employed clustering and classification
(via logistic regression) in order to detect account hijacking on Twitter. Their
approach was based on the observation that legitimate account owners frequently
delete tweets posted via their accounts after recognizing the compromise. Those
deletions are thus used as a feature to retroactively identify hijacked accounts
and clustering is then used to detect similarly compromised accounts. Zhang
et al. [29] made use of a ML-based approach to automatically detect compro-
mised accounts at a large academic institution. Their approach employed logistic
regression on features extracted from web login and VPN authentication logs.

Fake Accounts. Yang et al. [27] proposed approaches to identify Sybil (i.e.,
fake) accounts on the Renren OSN. One approach was based on ML and
employed Support Vector Machines (SVMs) on basic user-level features (e.g., the
frequency of friendship requests and the fraction of accepted incoming friendship
requests). Wang el al. [25] instead used clustering to identify fake accounts on
Renren. Their approach clustered users with similar behavior based on features
extracted from their clickstreams (e.g., the average session length, the average
number of clicks per session).

Spam. Benevenuto et al. [2] developed an ML-based approach to identify spam-
mers on Twitter. Their approach was based on a non-linear Support Vector
Machine (SVM) classifier with the Radial Basis Function (RBF) kernel and made
use of both content- and user-level features (e.g., the age of the user account, the
number of followers, the average number of URLs per tweet). Castillo et al. [7]
developed a ML-based approach using cost-sensitive decision trees to detect spam
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pages on the Web. Their approach makes use of content- and link-based features
extracted from the Web graph (e.g., the ratio between the average degree of
a page and that of its neighbours, number of words in the page/title). In the
context of email spam, Blanzieri et al. [4] carried out a survey of many of the
approaches to detect email spam proposed in the literature based on statistical
methods (including ML).

Phishing. Ludl et al. [18] developed a ML-based approach to identify phishing
web pages. Their approach was based on the C4.5 decision tree algorithm and
made use of features extracted from a page’s content as well as its URL (e.g., the
number of forms/fields tags on the page, whether the page is served over HTTPS,
whether the URL’s domain appears on a Google whitelist). Whittaker et al. [26]
developed a scalable ML-based approach to detect phishing websites that is
used to maintain Google’s phishing blacklist automatically. Their approach is
based on a Random Forest (RF) classifier and employed both content-, host-
and URL-based features (e.g., PageRank, the host geolocation/ASN).

7 Summary and Discussion

Summary. We explore the feasibility of predicting the legitimate (i.e., not
attacker-controlled) accounts more likely to generate suspicious activity in the
future, a likely indication that they have fallen for a mass-scale social engineering
attack. To this end, we propose an early warning system that employs super-
vised machine learning to identify the accounts whose behavioral patterns indi-
cate that they are similar to other accounts that have been eventually labeled as
suspicious in the past. We implement this early warning system at a Large-Scale
Online Service Platform (LSOSP) and evaluate it on four months of real-world
production data covering hundreds of millions of users. Our evaluation demon-
strates that our approach is not only feasible but that it also offers promising
classification performance based on which further defense mechanisms can be
developed as we discuss below.

Discussion. We continue by exploring several interrelated topics:
How can a defense system use information about which users are likely to be
compromised in the future, and thus more “vulnerable”, to enhance its robust-
ness? User vulnerability can be thought of as an additional “signal” that can
inform a number of defense mechanisms. For example, it can: (i) serve as an
indicator to prioritize the allocation of limited defense resources (e.g., use of
human analyst time [13], or compute-intensive filters [23]), (ii) support dif-
ferentiated defenses that take into account user vulnerability (e.g., additional
CAPTCHAs [1] on login attempts into vulnerable accounts, or imposing rate
limits on the outbound messages of vulnerable users to slow-down the spread
of multi-stage—and potentially epidemic—phishing attacks), (iii) enable faster
remediation of compromised accounts (e.g., by enabling more efficient inspection
campaigns that focus on the accounts of vulnerable users instead of the entire
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user population [15]), (iv) facilitate the detection of the origin of an attack (as,
in effect, the differentiated response between vulnerable and robust users to sim-
ilar interactions initiated by the same source can be used as a weak yet effective
signal [5]); and (v) even facilitate the detection of new attacks (as, in effect, the
differentiated response between vulnerable and robust—yet otherwise similar—
user groups to the same “stimuli” is an indication of an attack). We explore the
use of such information for several cybersecurity domains in [10].

Is the prediction quality good enough? Even if defense mechanisms based on
vulnerability predictions can be imagined, an immediate subsequent question
is whether the classification quality implied by our results (e.g., PRE ≈ 15–
25%, REC ≈ 40–50%, and FPR ≈ 0.1–0.5%) is good enough to support such
mechanisms. While we have not yet extensively studied such mechanisms, our
intuition is that this signal, although noisy, is useful. Consider, for example,
defense resource prioritization - it is evident that a heuristic that uses this sig-
nal, as weak as it is, to prioritize those resources is better than randomly allo-
cating them (the only alternative when capacity is constrained). Others have
also experimented with a heuristic that harnesses the different responses to sim-
ilar requests between vulnerable and robust users [5] to infer attack source(s)
(although in the context of a social network). In this case, even a vulnerability
predictor significantly weaker than the one we have obtained here has proven
useful, leading to a technique that improves over the state-of-the-art. While the
above indicates that even low quality predictions can still be used to improve
defenses, we believe that the prediction quality threshold above which these
mechanisms become valuable is context specific and we are studying this issue
in a related project [10].

Why do we focus on minimizing the false positive rate (FPR)? What if the focus
were on maximizing recall instead? We envisage that the predictions made by
our early warning system will be used to better target existing defenses. As many
of these defenses are not lightweight and may lead to increased friction for users
(e.g., rate-limiting outbound emails of vulnerable users to prevent an attack out-
break, delaying incoming suspicious email addressed to vulnerable users to give
enough time for more robust users to report mass-phishing emails), or allocating
costly resources (e.g., human analyst time), the resulting cost of false positives
is high: thus, we have focused on minimizing the FPR at the expense of lower
recall. Other situations, however, offer a different cost/benefit balance between
the false positive rate and recall. For these situations, our classifier can be tuned
by either using lower threshold values (T as highlighted by the ROC across all
CEs available in Fig. 2), or by specifically optimizing for recall.

What are the threats to validity? Our study indicates that it is feasible to har-
ness account behaviour to predict the accounts that are more likely to generate
suspicious traffic in the future (an indicator that they may be compromised).
There are two main concerns regarding the validity of our conclusions. The first
one relates to the quality of the ground truth we use—this is a threat to validity
common to any study using a methodology based on machine learning.
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The second one relates to the accuracy of the heuristics used to avoid learning
behavioural patterns from accounts that may be controlled by an attacker (i.e.,
compromised or fake accounts) detailed in Sect. 3.3. We prune: (i) all accounts
flagged for suspicious activity in the data window (DW) - as they are highly
likely to be compromised, (ii) all accounts flagged as suspicious in the buffer
window (BW) - as these accounts are more likely to have been compromised
but not yet flagged as such (thus contaminating our training data), (iii) all
accounts which have been labeled as suspicious at any point before the training
data window - as our experience shows that these accounts are more likely to
be compromised again (in experiment CEC); and, finally (iv) new/low activ-
ity accounts (for which the system may not have enough history to determine
whether the accounts are fakes). We run various experiments that compare the
impact of these heuristics - even the most conservative experiments appear to
support our conclusions.

It is worth discussing, however, the alternative: assume that our heuristics
fail to eliminate a large portion of attacker controlled accounts. Even in this
case, we believe that our pipeline provides value through forecasting. Assume,
for example, that these accounts are predominantly (dormant) fakes that mimic
legitimate user behaviour. In this case, our pipeline predicts the fakes that will
likely be “awakened” by the attacker and start generating suspicious activity.
Assume, on the other side, that these are compromised accounts not yet exploited
by the attacker, then our pipeline predicts which compromised accounts are
under the control of the attacker but not yet exploited. In this case as well the
forecasting pipeline can give an early sign of the attacker resources and strategy.

A final concern may be that our proposed approach may be learning the
heuristics by which some accounts are flagged as suspicious in the ground truth
(other accounts in the ground truth are flagged by humans). We believe that
this represents a limited threat due to the way we formulated our forecasting
problem (i.e., making future predictions) as opposed to the underlying heuristics
which operate in real-time by design.

Why are the presented results positioned as lower-bounds? Our goal was to test
the feasibility of our proposed approach within constraints related to:

� Access to Data (i.e., login traces only). Datasets with additional information
that characterizes user behaviour (e.g., email or browsing traces) would likely
improve classification performance.

� Limited Computational Resources (i.e, runtime feasibility for processing bil-
lions of events). More resources enabling additional data preprocessing (e.g.,
to extract complex aggregate features), model optimization, or sophisticated
learning methods (e.g., deep neural networks) would likely improve classifi-
cation performance.

� Imperfect Ground Truth (i.e., detection lag as well as the presence of false
positives and false negatives). This impairs the learned models during train-
ing, and impacts the evaluation during testing.
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� Aggressive Pruning Heuristics (i.e., extensive pruning of accounts during
training as described in Sect. 3.3). This reduces bias during the evaluation
of the classifier but leads to more conservative results.
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Abstract. Aiming at the increasing threat of fraud in electronic trans-
actions, so far researchers have already proposed many different models.
However, few previous studies take advantage of the sequential character-
istics of fraudulent transactions. In this paper, by statistical analysis on
a real dataset, we discover that partial-order sequential features are able
to reflect the intrinsic motivation of fraudsters, e.g., stealing the money
as quickly as possible before being intercepted. Based on the sequential
features, we propose a novel model, SeqFD (Sequential feature boosting
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applies a sliding time window strategy to aggregate the historical trans-
actions. In specific, statistical sequential features are computed based on
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1 Introduction

1.1 Background

Recent years, the huge development in e-commerce makes more and more people
shop online. The amount of money people spend online is also increasing. In
China’s 2017 Double Eleven shopping festival, the total sales on Tmall1 reached
168.2 billion yuan [1]. However, this prosperity gives criminals chances to steal
money. According to the Nilson Report in October 2016, worldwide losses from
credit card fraud rose to 21 billion dollars in 2015, and will possibly reach 31
billion dollars by 2020 [13]. There is no doubt that it is meaningful to prevent
people’s properties from being stolen by fraudsters.

Although the criminals have various tricks, such as telephone fraud, Trojan
and pseudo base station [7], their unchanged goal is to steal money from peo-
ple’s bank accounts. It is spontaneous to think about how to prevent fraud when
fraud is presenting as fraudulent transactions. In the literature, fraud detection
methodologies using behavioral models are proposed [2,5]. Behavioral models
mainly fall into two categories: individual behavioral models and crowd behav-
ioral models. For the individual models, concept drift [17] and lack-of-history are
the two main tough challenges faced by individual behavioral models. Basically,
concept drift means that a change in behavior may not be due to fraud [10].
The lack-of-history problem is that a portion of customers do not have sufficient
historical records to depict their behavioral patterns. To handle concept drift,
one common solution is using the time window strategy [11] to neglect the old
transaction and keep the model updated. This strategy will make the lack of his-
tory problem severer, but if we set a larger time window to contain more records,
it contradicts the original intention to solve the problem of concept drift.

As a result, researchers are trying to build models based on crowd behavior. In
general, their models extract normal and fraud behavioral patterns from a large
number of customers. By measuring the differences between the two patterns,
effective features can be designed, then a classifier or an anomaly detector can be
trained. Crowd behavioral models alleviate the lack of history problem because
the history of active customers can be used to make up for that of inactive
customers. In the literature, many crowd behavioral models have been proposed
for e-transaction fraud detection. However, most of the previous studies have
one or more of the three problems below.

Lack of Sequential Features. In order to build a behavioral model, sequences
of transactions are supposed to be taken into consideration rather than iso-
lated transactions. In order to avoid dimension disaster, transaction aggregation
strategies are applied to build the behavioral models [18]. A common way for
transaction aggregation is to set up several time spans, and calculate the sta-
tistical values of spending for each time span, such as average and variance, as
aggregated features [6,7]. However, in previous studies, the aggregated features

1 Tmall is a Chinese-language website for business-to-consumer (B2C) online retail.
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do not contain information about the partial-order relationship between consec-
utive transactions. Thus they are not sequential features. By real data analysis,
we find out that the sequential features are strongly correlated with fraud. In
Sect. 2 this will be explained in detail.

Lack of Efficiency Tests. Recent studies also tried to implement more complex
models, such as deep learning models, to detect fraudulent transactions. For
example, CNN (Convolutional Neural Network) is used for credit card fraud
detection in recent studies [6,12]. However, most of them ignored the efficiency
test. Deep learning models are probably not fast enough to meet the requirement
of efficiency, because nowadays a deep learning model usually contains at least
hundreds of thousands of units [8], needs GPUs and parallelized clusters to
compute. As a result, both the training and predicting process could take a long
time. On the contrary, banks usually require their fraud detection systems to
give a response in a couple of milliseconds, and the training time should also be
as short as possible.

Lack of Real Dataset. Banks are usually very sensitive to the confidentiality
of their data, this makes the publication of a real electronic transaction dataset
nearly impossible [16]. Therefore, some previous studies used simulated datasets
to train and test their models. Nevertheless, the results obtained from simulated
datasets might be inconvincible. In addition, some of the previous studies which
used simulated dataset employed Accuracy as a performance indicator [4]. How-
ever, Accuracy is an unsuitable indicator in the area of fraud detection, because
real datasets are highly unbalanced [15]. This paper applies TPR (True Positive
Rate) and FPR (False Positive Rate) as the indicators.

1.2 Our Work

In this paper, by statistical analysis, we discover that sequential features are a
reflection of the intrinsic motivation of the fraudsters. We apply a sliding time
window to aggregate the simple sequential features into statistical sequential
features. Based on These features, we propose a real-time fraudulent transac-
tion detection model, SeqFD (Sequential feature boosting Fraud Detector). By
experiments on a real dataset, we validate that SeqFD can detect more than
97% fraudulent transactions but only disturb less than 1% normal transactions,
and it can give a prediction in 1.5 ms on average. To choose a suitable classifier,
we conduct experiments on six machine learning models. Finally, XGBoost is
validated to be a suitable classifier for SeqFD. Moreover, experiments are also
conducted to choose a feasible window size, and to test the influence of under-
sampling.

At the same time of presenting SeqFD in detail, a practical workflow for
fraudulent transaction detection is presented. After SeqFD gives a prediction,
staffs of banks can check the suspicious transactions by phone call, so the con-
firmed fraudulent transactions can be labeled. With continuously new-coming
labeled instances, SeqFD can be trained periodically to be kept updating. Our
contributions are summarized as follows:
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• We design novel statistical sequential features which are effective for fraud-
ulent transaction detection, and which can reflect the intrinsic motivation of
fraudsters.

• We propose and implement SeqFD. By comprehensive experimental evalua-
tion, we prove the effectiveness and the usability of SeqFD.

• Based on real data, we present our statistical discoveries and learned lessons
of fraudulent transactions, which are valuable for future studies.

Fig. 1. The difference between fraudulent transactions in B2C and C2C scenarios.

The rest of this paper is organized as follows: Sect. 2 offers the statistical anal-
ysis and the learned lessons of the dataset. In Sect. 3, the mechanism of SeqFD
is demonstrated. In Sect. 4, the results of the experiments are shown. Section 5
gives a complimentary discussion on SeqFD and Sect. 6 draws a conclusion for
this paper.

2 Real Data Analysis

In this section, the dataset we study is introduced in detail first. Afterward, the
statistical characteristics of the fraudulent transactions are shown graphically.
Based on the abnormal patterns we observe from the fraudulent transactions,
we explore the possible motivations behind their fraudulent behaviors.

2.1 Dataset Description

We study a real electronic transaction dataset provided by a real commercial
bank. The dataset totally contains 3502048 B2C transaction records made by
92133 customers in 3 months (from April 1, 2017, to June 30, 2017). Among all
the transaction records, 65291 are labeled fraudulent manually by staffs of the
bank. Although this dataset only covers a small portion of all the customers of
the bank, it covers all the customers who were defrauded in the 3-month time
span. Among the 92133 customers, 8238 are victims, and all of their transactions
in the time span are extracted into our dataset. The other normal customers are
picked out randomly, and all of their transaction records in the time span are
extracted. These two parties form the whole dataset.
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Although the original dataset has more than 20 attributes, some of the
attribute values are missing in many instances, and some of the attributes have
the same value for all the instances. We omit those helpless attributes. After
data preprocessing, for each transaction record, we preserve 8 attributes. Their
explanations are listed in Table 1. Note that Customer ID and Vendor ID do not
have the same format.

Table 1. Attributes explanation

Attribute Name Type Representation

Customer ID String A unique customer.

Transaction ID String A unique transaction record.

Vendor ID String A shop, a restaurant or a third-party payment
provider, etc.

Transaction Time Date The exact time when the transaction occurred.

Daily Limit Numeric The daily spending upper limit of an account.

Single Limit Numeric The spending upper limit for one transaction.

Transaction Amount Numeric The amount of money that the customer pay.

Frequently-Used IP Address Boolean If the transaction comes from an IP address which
is frequently used by the customer

2.2 Learned Lessons

Why B2C Other Than C2C. Besides the B2C transaction records, actually
we are also provided the C2C transaction records of those 92133 customers in the
three months, but the number of fraudulent instances in those C2C transactions
is only 1. Why criminals steal money mainly by B2C transactions instead of C2C
transactions? Regarding the difference of their procedures shown in Fig. 1, the
explanation is as follows: If a fraudster transfers the money into his/her own card
directly by a C2C transaction, it will be too risky because his/her card number
can be seen in the C2C transaction record. But in a B2C scenario, B can be a non-
bank e-transaction service provider, such as PayPal. For example, a fraudster
can transfer money from the stolen card to a PayPal account for the first step
and then transfer the money from the PayPal account to multiple fraudulent
cards. In the B2C scenario, the PayPal account and the fraudulent cards are
untraceable in the transaction record, because in a B2C transaction record, the
Vendor Id field only contains a String that stands for the PayPal company, not
the specific PayPal account. By stealing money via B2C transactions, a fraudster
can keep himself/herself invisible in the transaction records. This is probably
the reason why fraudsters usually commit crimes through B2C other than C2C
transactions.
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Fig. 2. Distribution of the transaction records when they are divided by the frequently-
use IP address attribute.

Statistical Discoveries. We conduct statistical analysis on a month of trans-
actions. We find out that 99.6% of the fraudulent transactions did not use a
frequently-used IP address (FUIP), as shown in Fig. 2. This means that these
transactions are highly possible to be made by the criminals after they have
stolen the accounts, instead of being made by the deceived victims themselves.
We also discover that more than 96% of the fraudulent B2C transactions are not
the first transaction made by the customer in the month (without the influence
of data boundary, this ratio could be higher). Furthermore, we discover that the
time intervals between each two consecutive fraudulent transactions of a cus-
tomer are often abnormally short, and the amounts of the two transactions are
often close. We name these two quantities TTD (Transaction Time Difference)
and TAD (Transaction Amount Difference), so the graph of the joint cumula-
tive density function is drawn in Fig. 3. It is obvious that fraudulent transactions
usually have smaller TTD and TAD than normal transactions. In another word,
fraudsters usually steal the money with multiple consecutive quick transfers.
Another abnormal phenomenon about the fraudulent transactions we find out
is shown in Fig. 4. The amounts of normal transactions present a power-law dis-
tribution, by contrast, the amounts of fraudulent transactions present a quite
different distribution which has several isolated peaks. The two dominating peaks
are 1000 and 2000.

(a) normal (b) fraud

Fig. 3. The TTD-TAD distribution.
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(a) normal (b) fraud

Fig. 4. The difference between fraudulent and normal transactions in amount distri-
bution.

Explore Fraudsters’ Motivation. So far we have presented the observations
and discoveries we obtained from the statistical results. In this part, we want to
explore the reasons behind the abnormal fraudulent behavioral patterns.

Let’s start with the abnormally small TTD. Consider such a scenario: When
a fraudster has just stolen an account, his goal is to take more money away.
However, in most instances, as soon as a transfer occurs, the customer will
be informed by the bank immediately probably by phone message. Then the
customer will immediately inform the bank to freeze the account. This leads to
the abnormal small TTD, because if the fraudsters want to steal more money,
they have to do it quickly. They don’t even have time to camouflage the TTD.
But why the fraudsters do not steal money in a single transaction? Why the
fraudulent transactions often present in sequences?

Table 2. Frequencies of different daily spending upper limits.

Daily spending upper limit Frequency

1000 1.65%

2000 10.80%

5000 80.60%

10000 1.40%

20000 5.54%

50000 or more 0.07%

Usually, a bank will set a daily spending upper limit for each customer. We
make statistics for all the upper limits on a month of transaction records, which
is shown in Table 2. It shows that over 80% of the customers have a daily upper
limit of 5000. This fact can explain the two peaks (1000 and 2000) in Fig. 4(b):
Consider a criminal has stolen a bank account and does not know whether or
not the card has been used for shopping on the very day. In such a situation,
1000+2000+2000 could be one good combination of transfer amounts because of
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three advantages: First, compared to a single transfer with larger amount, such as
5000, 1000+2000+2000 is more likely to succeed, at least partially, because more
than 93% of the customers have a daily spending limit equal to or less than 5000.
Once the customers have used their card for shopping today, a transfer request
of 5000 will fail, because it exceeds the daily spending upper limit. Second, once
the card is not used yet on the very day, then this combination can take as much
money as possible without any remnant. Third, compared to transfer amount
less than 1000, this combination needs fewer transaction requests, which leads
to fewer risk of being intercepted by fraud detection systems.

To summarize, fraudsters are willing to steal the money in smaller amounts
by multiple quick transfers, because this way has a higher profit expectation
and fewer risks. As a result, the fraudulent transactions present a sequential
form for most of the time, and the time intervals between every two consecutive
transactions are often small.

3 Proposed Model

In response to the threat of fraudulent B2C transactions, we propose a novel
model, SeqFD, for real-time fraudulent transaction detection. The innovation of
SeqFD lies in the statistical sequential features. In this section, we first overview
the mechanism and deployment scenario of SeqFD. Then, we elaborate on how
to compute the statistical sequential features by using the sliding time window.
Finally, we list all the 9 features applied by SeqFD.

3.1 Overview

The workflow of SeqFD is depicted in Fig. 5. Within the dashed line in the right
part, the mechanism of SeqFD is demonstrated in detail. In the left part, a
possible deployment scenario is shown.

The Mechanism of SeqFD. SeqFD has two stages: the training stage and the
classification stage. At the training stage, the labeled transaction records will be
sampled to form a raw dataset. The reasons for sampling are two-fold: First,
the volume of the whole dataset is very large, using the whole dataset to train
the classifier is quite time-consuming. Second, in reality, fraudulent instances
are often far less than normal instances so the dataset is extremely skewed. One
feasible sampling strategy is just like how the dataset is extracted for our study:
Obtain all the victims in a time span first (we use three months in this work),
then query for all the transactions these customers have made within the time
span. After that, randomly pick out some normal customers and retrieve their
transaction records in the same time span. Finally, combine these two parts to
form a labeled training set, which is not that large or skewed.

Through the sliding time window strategy for transaction aggregation, a raw
instance can be turned into a feature vector which includes sequential features.
Feed the feature set to a machine learning model for training, and after that, a
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trained classifier will be ready to give a prediction. At the classification stage,
streaming transaction requests will be sent to SeqFD, and SeqFD will give a real-
time response. In specific, SeqFD will first turn the raw request into a feature
vector composed of the same features as above, and then the feature vector will
be sent to the classifier. Finally, the classifier gives the prediction.

Deployment Scenario of SeqFD. The left part of Fig. 5 shows how to put
SeqFD into a real application. When SeqFD receives a transaction request, it
gives a prediction. If SeqFD judges a transaction request suspicious, people of
the bank could give a phone call to the customer to figure out if the transaction
is truly fraudulent. Then the transaction can be labeled and be added into the
database of labeled transaction records. Another source of labeled instances is
police reports. SeqFD cannot catch all the fraudulent transactions, and some
of the missing fraudulent instances might be obtained from the police. With
these two sources of labeled transactions, SeqFD can be retrained periodically to
make the model updated. Therefore, SeqFD is able to adjust itself in accordance
with the change in crowd behavior patterns. No matter how the normal crowd
behavior change, as long as it is different from the fraudulent crowd behavior,
then SeqFD is able to work effectively.

3.2 Sliding Time Window

This subsection introduces the detailed design of the transaction aggregation
technique based on sliding time window strategy. In the database of historical
behavior which is in the middle of Fig. 5, an independent list of historical trans-
actions is kept individually for every customer. An example of such a list of
a certain customer is shown in Fig. 6. In this simple example, the size of the
time window is set to 1 minute, which means that the list will only contain the
newest transaction records that happened within 1 minute ago. Every time a
new-coming transaction is added into the list, the time window slides forward,
then the obsolete transactions will be thrown out of the time window. Sliding
time window ensures that the features computed by aggregated transactions can
precisely depict the recent behavior pattern of a customer.

Fig. 5. SeqFD overview.
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Fig. 6. An exemplary illustration of how the time window slides on the historical
transactions of a certain customer.

3.3 Feature Engineering

The features and their explanations are shown in Table 3.
As mentioned in Sect. 2.2, TTD and TAD are two typical sequential features,

but they only include information on two consecutive transactions. What we
need are features that can summarize a bunch of transactions, so the sequential
features should be aggregated. In specific, within the time window, the TTDs and

Table 3. Selected features

Name Type Explanation Sequential? Original?

Amount Numeric The amount of the transaction No Yes

FUIP Boolean If this transaction is made from a frequently
used IP address

No Yes

OverLim Boolean If this transaction is over the spending
limitation

No No

AmtAvg Numeric The average of the transaction amounts in
the time window

No No

Times Numeric The number of transactions within the time
window

No No

TDAvg Numeric The average of all the TTDs within the time
window

Yes No

TDVar Numeric The variance of all the TTDs within the
time window

Yes No

ADAvg Numeric The average of all the TADs within the time
window

Yes No

ADVar Numeric The variance of all the TADs within the time
window

Yes No
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TADs are aggregated by computing their average and variance. Thus, statistical
sequential features which summarize the characteristics of all the transactions
in the time window are generated.

In this work, we design only 9 features, and most of them can be computed
just by time and amount. This makes our model easy to be transplanted to
other datasets. Furthermore, SeqFD can also sufficiently protect the privacy of
customers. If a bank deploys SeqFD to help them detect fraudulent transactions,
SeqFD will only gather the basic information of the transactions. No personal
information will be gathered. This is also one of the advantages of SeqFD.

4 Evaluations

In this section, comprehensive experiments are conducted to evaluate SeqFD.
The questions for which we want to find out answers are as follows:

(1) Which machine learning model performs best on the features?
(2) What size is appropriate for the sliding time window?
(3) Are the statistical sequential features really important?
(4) Are there any possible negative influences when the under-sampling is

applied to solve the skewed-data problem?

4.1 Experimental Setup

We use the dataset of April and May as the training set and the dataset of June
as the test set. Cross-validation is not adopted in the experiment because it will
cause the time travel problem, e.g., using the data from future to train a model
and using the data from past to test. The training set contains 2393817 normal
instances and 40393 fraudulent instances, and the testing set contains 1003539
normal instances and 24898 fraudulent instances. The ratio of the two classes
seem approximately 59 : 1, but it is not the true ratio because 2393817 is just a
portion of the normal instances. Actually, the number of transactions in a month
is nearly 14 million, so the actual ratio is nearly 693 : 1. As the two classes are
highly unbalanced, we sample 10% of the normal instances.

Note that we do the sampling process after the raw dataset have been trans-
formed to feature set so that the statistical sequential features are kept lossless.
The instances of the test set are sent to the classifier in the right temporal order
to simulate the transaction stream.

Window Size Candidates. We prepare six candidate window sizes on different
scales: 1 minute, 10 minutes, 1 hour, 1 day, 1 week and 1 month. Our goal is
to figure out which one can lead to the best performance of classification. The
window size will be referred to as WS for short afterward. A WS larger than
1 month is not taken into account since the intervals of the adopted dataset for
training is only two months.
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Machine Learning Model Candidates. For classification, the candidate
machine learning models we choose are the Random Forest [9], XGBoost [3],
Decision Tree, Naive Bayes, 2-hidden-layer Neural Network, and Logistic Regres-
sion. For Neural Network, we set 10 perceptrons to each hidden-layer. For other
models, we use the default hyper-parameters preset in Scikit-Learn [14].

Assessment Criteria. We use three assessment criteria to evaluate the WS
and choose a suitable classifier.

AUC (Area Under ROC Curve): For each window size, we take the AUC
of the machine learning models as a performance indicator.

The highest TPR when FPR is less than 0.01: According to our dataset
provider, in the industry 1% is the tolerance upper limit for FPR. As a result,
a TPR reached with a FPR higher than 1% is regarded as meaningless in this
work.

The time for generating features: For a practical model, the efficiency, e.g.,
the time of generating features, is a necessary factor.

4.2 Evaluation Results

Figue 7 shows that XGBoost has the highest AUC for all the six candidate
window sizes, it performs robustly and stably. Random Forest is able to take
the second place except when WS is 1 minute. The performances of the other
four machine learning models fall behind.

Figure 8 presents the highest TPR reached by each machine learning model
when FPR is controlled under 0.01 by tuning the classification threshold. The
best record is 97.2%, which is achieved by XGBoost when WS is set to be 1
month. Random Forest performs better than XGBoost when the WS is smaller,
except for 1 minute. And the other four models still fall behind.

In common sense, a larger window size could lead to more cost for efficiency,
because for the customers who make transactions frequently and continuously, a
larger window size will contain more transactions to compute. Thus we test the
average time it costs to transform a raw transaction into a feature vector on a

Table 4. The training and predicting time (seconds) of the candidate ML models.

Model Training time Predicting time

Random forest 7.18 1.79

Naive Bayes 0.94 0.83

Decision tree 6.38 0.62

Logistic Regression 7.05 0.67

XGBoost 9.44 1.09

Neural Network 32.96 0.78
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server with a dual-core 2.40 GHz CPU and 32 GB RAM, and the result is shown
in Fig. 9. Surprisingly, it shows that when the WS is 1 month, the average time
is only about 1.5 ms, which is not far more than the average time when the WS
is smaller. Therefore, 1 month is adopted as the appropriate WS.

Furthermore, we also test the training time and the predicting time of each
machine learning model. These two indicators are not influenced by the WS,
because the number of instances and the number of features remain unchanged
when WS is changed. Therefore, we set the WS to be 1 month and test the
training and test efficiency for each classifier. The result is shown in Table 4. For
the training stage, the time cost of XGBoost is 9.44 s. For the test stage, the
test set contains 1028437 instances, so the average predicting time of XGBoost
for one instance is less than 2 µ. Therefore, the total time cost for the predicting
stage is 1.5 ms+2µs ≈ 1.5 ms. According to our experience of the industry, this
time cost is far below the tolerance upper bound. XGBoost is nearly 40% faster
than Random Forest. In addition, XGBoost has the best performance when the
WS is 1 month. Therefore, it should be applied by SeqFD.

(a) 1 min (b) 10 min (c) 1 hour

(d) 1 day (e) 1 week (f) 1 month

Fig. 7. The ROC curves of the candidate machine learning models under different
window sizes.

4.3 Feature Importance

As XGBoost and Random Forest are both capable to output the importance of
the features, we use them to evaluate the importance of the features. The result
is shown in Fig. 10(a).
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Fig. 8. The highest TPR reached by the candidate machine learning models when FPR
is less than 0.01.

Figure 10(a) shows that all of the 4 statistical sequential features play indis-
pensable roles in SeqFD, especially TDAvg. The other two features generated by
the sliding time window, Times and AmtAvg, are also quite important. For the
original features, Amount plays an important role in both models. FUIP is quite
important in Random Forest but seems useless in XGBoost. We also conduct a
comparative experiment with different features. For the first set, all the nine fea-
tures are included; For the second set, the four statistical sequential features are
eliminated; For the third set, transaction aggregation is not used and only two
original features, Amount and FUIP, are included. The result in Fig. 10(b) shows
that the statistical sequential features truly boost the performance of SeqFD.

4.4 Effects of Under-Sampling

In the evaluations above, we use a training set composed of 10% normal instances
(about 100000) and all fraudulent instances (24898). Actually, 10% is out of
intuition. Therefore, we want to figure out if different sampling ratios will lead
to fluctuations in performance. We use the ROC of XGBoost to represent the
classification performance. The WS is set to be 1 month. The candidate sam-
pling ratios for the normal instances are 5%, 10%, 20%, 50% and non-sampling,
respectively. The result is shown in Fig. 11.

Figure 11 shows that all of the candidate sampling ratios have an AUC larger
than 0.995, which means that SeqFD performs robustly without a large fluctua-
tion under different sampling ratios. Surprisingly, when the sampling ratio is set
to be 5%, XGBoost performs the best. Although this result may be due to for-
tuitous, the rationality of under-sampling for solving the skewed-data problem
is proved.

5 Discussion

Although TPR = 97.2% with FPR < 1% is the highest performance we get from
the experiment, actually the performance can be improved further in practice
because our dataset has a boundary. Some of the seemingly first transactions
in sequences are actually not the first ones, because those plausible headers
could have precedents in the data outside the boundary. For example, when we
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compute the feature vectors for the transactions in April, the transactions of
March should be within the time window if WS is set to be 1 month. But we
are not provided the dataset of March. As a result, a portion of the feature
vectors, especially the ones near the boundary, are not computed precisely. In
practice, the transactions will be continuous streaming data. The problem of
data boundary can be diluted infinitely.

Fig. 9. The average time it costs to transform a raw transaction to a feature vector.

Another issue is about the test set. As mentioned before, the test set contains
a sampled portion of the normal transactions. However, as the normal transac-
tions are picked randomly, they are supposed to have the same distribution as
the whole transaction dataset. Thus, there is no straightforward reason for the
FPR to rise if the whole transaction dataset is used to test SeqFD, because
with the rise of the numerator (the number of error-alarmed transactions), the
denominator (the number of all the normal transactions) is also rising. In addi-
tion, as our test set contains all the fraudulent transactions in the time span, the
TPR has absolutely no reason to decrease when using the whole dataset to test
SeqFD. Thus the performances of SeqFD in the evaluations are reliable indeed.

Fig. 10. Evaluations of the feature importance. In common sense, when the perfor-
mance gets higher, it will be harder to get improved.

The third point we want to discuss is the scalability of SeqFD. For the classi-
fication process of SeqFD, the top two classifiers, Random Forest and XGBoost,
are both scalable models [3,9]. For the feature generation process of SeqFD, the
historical records retained by the sliding time window of two customers have
no coupling, so transactions of different customers can also be transformed into
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feature vectors in parallel. We use Redis to implement the data warehouse of
the historical records. The Redis data warehouse can be distributed in multiple
servers in cluster mode, and it has high efficiency for both reading and writing.
As a result, SeqFD is scalable and is possible to be applied to real bank systems
with a huge volume of data.

Our work in progress is to deploy SeqFD in a distributed structure for real
banking transaction systems with high concurrency and burst network traffic,
and to test the performance of SeqFD in real streaming data.

Fig. 11. The ROC curves of XGBoost when the WS is 1 month under different sampling
ratios of normal instances.

6 Conclusion

To reach the goal of detecting effectively fraudulent transactions, we propose a
novel model, SeqFD. The main innovation of SeqFD is a new-designed set of sta-
tistical sequential features. Instead of intuition, the sequential features come from
statistical analysis of a real dataset. By observing the difference between normal
and fraudulent transactions, we discover several typical abnormal patterns of the
fraudulent transactions which can be distinguished by sequential features. We
explore the reasons behind the observations, and find out that the fraudulent
behavior patterns are possibly caused by the fraudsters’ intrinsic motivation:
They always want to steal more money as quickly as possible. Accordingly, we
apply a sliding time window strategy to aggregate the sequential features into
statistical sequential features, and we present the mechanism and deployment
scenario of SeqFD in detail.

Through experimental evaluations, among the six representative machine
learning models, we find that XGBoost is the classifier which fits the best with
SeqFD. In specific, when the window size is set to be 1 month, XGBoost reaches
an AUC of 0.996, and a TPR of 97.2% when FPR is less than 1%. In SeqFD, the
problem of concept drift is alleviated by the sliding time window, and the prob-
lem of class-imbalanced data is solved by the under-sampling. The experiment
shows that no observable negative influence emerges when the sampling ratio is
smaller. Furthermore, the result of the efficiency test is also given. On a server
with dual-core 2.40 GHz CPU and 32 GB RAM, the trained SeqFD can give a
response to a transaction request in about 1.5 ms, which can competently meet
the requirement of real-time. This makes SeqFD a practical model for fraudulent
transaction detection in real-world applications.
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Abstract. Collaboration between financial institutions helps to improve
detection of fraud. However, exchange of relevant data between these
institutions is often not possible due to privacy constraints and data con-
fidentiality. An important example of relevant data for fraud detection is
given by a transaction graph, where the nodes represent bank accounts
and the links consist of the transactions between these accounts. Previous
works show that features derived from such graphs, like PageRank, can
be used to improve fraud detection. However, each institution can only
see a part of the whole transaction graph, corresponding to the accounts
of its own customers. In this research a new method is described, mak-
ing use of secure multiparty computation (MPC) techniques, allowing
multiple parties to jointly compute the PageRank values of their com-
bined transaction graphs securely, while guaranteeing that each party
only learns the PageRank values of its own accounts and nothing about
the other transaction graphs. In our experiments this method is applied
to graphs containing up to tens of thousands of nodes. The execution
time scales linearly with the number of nodes, and the method is highly
parallelizable. Secure multiparty PageRank is feasible in a realistic set-
ting with millions of nodes per party by extrapolating the results from
our experiments.

Keywords: Multiparty computation · PageRank · Fraud detection ·
Collaborative computation

1 Introduction

Cyber security, anti-fraud and other anti-crime activities benefit from cooper-
ation amongst involved parties like financial institutions, governments and law
enforcement agencies. The public and private sectors are actually stimulated
by regulators to perform joint activities and share threat intelligence and other
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data as they have a common goal to battle this type of crime. Examples of
such data are lists of known criminals, confirmed money mules and known mali-
cious IP addresses. Sharing benign operational data on customers, transactions
and events between different organizations would be beneficial as well. However,
sharing benign data between organizations has always been strongly limited due
to competition and privacy regulations, especially if it concerns personal data
of customers and employees. The risks of sharing data for companies as well
as public services are loss of trust in services, integrity, financial losses, societal
damage and damaged reputation.

1.1 The Financial Sector

The financial sector continuously fights the misuse of the financial infrastructure
for criminal activities like fraud and money laundering. An example of such a
criminal activity is the following.

Example 1 (‘Carousel’). Loan applications are based on income of the client
that requests the loan. A criminal may try to feign income by creating repeated
transactions to his account, or node, coming from another node pretending to be
a company - just as legitimate salary payments. To keep the needed funds for a
criminal low, the money is often drained from the account and placed back on
the node of the fake company where the process is repeated.

By looking at the whole network, we may quickly realize that while the feigned
salary payments look similar to other salary payments, the node pretending to be
a company lacks the structure we see of nodes known to be companies.

Protected by privacy regulations such as the recent GDPR, these bank-
transcending fraud and money laundering cases can be challenging to detect.
In fact, even malign transaction sequences moving through different departments
or channels within a bank may be troublesome to detect, due to the confidentiality
of the involved data.

Financial crime detection is an example of a situation in which different
parties share a common interest, but confidentiality and privacy regulations pre-
vent collaboration. In a payment transaction a financial institution typically only
knows one of the parties involved in the payment. Financial institutions would
greatly benefit from accessing information from other organizations.

1.2 Secure Multiparty Computation

Secure multiparty computation (MPC) provides a cryptographic solution to the
described dilemma above. MPC protocols are cryptographic techniques that
allow multiple parties to collaboratively evaluate a function on private input
data in such a way that only the output of the function is revealed, i.e. pri-
vate input remains private. MPC could be explained as the implementation of
a trusted third party that collects all relevant input data, evaluates the desired
function and reveals its output. However, using an actual trusted third party,
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such as a consultancy agency, to collect and analyse all private information is
often not allowed by regulations and usually expensive.

Already in the 1980s it was shown that any computable function can be
evaluated securely, i.e. in an MPC fashion [3,9,14,27,28]. However, early MPC
protocols came at a cost as they introduced a significant computation and/or
communication overhead. Over the years progress has been made and research
interests have shifted towards practical applicability making MPC ready for
deployment [4,12,17,19,22].

MPC has been applied to various use cases ranging from sugar-beet auc-
tions [5] to key-management systems [25]. Moreover, applications in the financial
domain include confidential benchmarking [10] and off-exchange trading [24]. All
these use cases fall under the MPC paradigm in which multiple parties aim to
collaboratively evaluate some function without revealing its private input values.

Secure graph algorithmic has been another particular area of interest. Short-
est path and max-flow algorithms, for example, find their applicability in many
situations and a natural question to ask is whether these algorithms can be eval-
uated in a privacy-preserving manner. In [8], a secure shortest path algorithm is
constructed for the 2-party setting. In [1], the shortest path and max-flow algo-
rithm are considered in the general multi-party setting. However, the complexity
of these algorithms renders them only applicable to small graphs.

In 2015, Nayak et al. [21] developed a framework for securely computing
graph algorithms like PageRank. The main difference is that they outsource the
secure graph algorithm to two parties, who execute a garbled circuit. In our
solution, the partial graph owners jointly perform the algorithm by means of
additively homomorphic encryption. Their solution has complexity O(M log M),
where M = |V |+ |E|, because edges and nodes need to be obliviously sorted. We
exploit the fact that in our setting each party knows its own transaction graph,
because then additively homomorphic encryption allows for local computations
with private values, and sorting is not necessary, which leads to an overall O(M)
complexity. Both solutions can easily be parallellised.

MPC delivers the mechanisms needed to collaborate and safeguard data secu-
rity and privacy without the need for a trusted third party, which would be highly
beneficial for the financial industry.

The rest of this paper is structured as follows. The PageRank algorithm
is explained in Sect. 2. Secure multiparty PageRank is described in Sect. 3. In
Sect. 4 the performance results are presented and the conclusions are presented
in Sect. 5.

2 PageRank for Fraud Detection

In a transaction graph, nodes represent bank accounts, and edges consist of the
unique transactions between accounts. Several graph-based features can be used
in machine-learning algorithms to improve existing fraud detection algorithms, by
reducing the false positives of existing techniques [20]. Namely, after the graph-
based features are computed, new transactions that are classified as fraudulent by
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an existing fraud-detection technique can be re-evaluated by an algorithm that
uses these features.

One of these graph-based features is PageRank, developed by Google to
return a ranking of websites when searching on the web. In essence, PageRank
is a centrality measure for all nodes in the directed graph, and can be used
for other purposes as well. Together with other features, PageRank and reverse
PageRank (PageRank on the reversed directed graph) have shown their value in
discriminating between fraudulent and non-fraudulent transactions [20].

2.1 Requirements for PageRank Application for Fraud Detection

Financial institutions could compute the PageRank values of bank accounts with
their observation of the transaction graph. However, in that case they would use
only a part of the whole transaction graph. The PageRank values would be much
more accurate if the PageRank algorithm were securely applied on transaction
data of multiple financial institutions.

In order to apply secure multiparty PageRank in the fraud detection of a
bank, the PageRank values need to be available as a feature for machine learning
models that use PageRank as input feature. They need to be calculated based
on the transaction graph for a predefined period, which is typically one or two
months, and need to be updated regularly, e.g. on a monthly basis.

This requires the PageRank and the reverse PageRank computations to take
place within ∼15 days each. For practical application, however, it would be
preferable to compute the PageRank values within ∼1 day. This process spans
from the starting point where all participants have their graph for the given
period ready, to the moment when the PageRank values for all nodes of the
participants have been computed and can be used. Furthermore, a reasonable
bandwidth for each participant is required, e.g., 100 Mbit/s.

In terms of information, it is not allowed for any participant to learn anything
about the graph of another participant, other than what can be learned from
the final private PageRank values.

2.2 PageRank and the Power Method

The original goal of the PageRank algorithm is to compute a scalable centrality
measure for websites using the hyperlink structure of the web. Intuitively, imag-
ine an Internet user that randomly follows hyperlinks on websites, goes to the
next website, etc. As soon as it encounters a website without hyperlinks (a so-
called dangling website), a new website is chosen at random. In addition to this
behavior of following hyperlinks, the Internet user will ‘teleport’ to any random
website with a known probability 1−p. The resulting probability distribution of
visiting frequencies of the Internet user on the websites represents the PageRank
value of each website.

Inspired by [20], this idea can easily be translated to transaction graphs.
Similarly as with the websites, as soon as a dangling node is encountered, a
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new node is chosen at random, and there is a teleport probability 1 − p. The
PageRank values of the transaction graph is the probability distribution based
on the visiting frequency of an imaginary coin on the bank accounts.

A commonly used iterative solution method to compute the PageRank is the
so-called power method. A useful variant thereof has been presented in [18], where
only the PageRank values of non-dangling nodes have to be computed during the
power method iterations, while correcting for the contribution of dangling nodes.
Moreover, this variant has the added benefit of closely matching the intuition
given at the beginning of this subsection. The set of dangling nodes is denoted
by D and the set of non-dangling nodes is denoted by U . The PageRank value
of node j at the k-th iteration is denoted as xj

k. Equation (1) describes the
initialization and iterations of the power method variant of [18] to compute the
PageRank values of the non-dangling nodes.
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where p is a fixed probability, n the total number of nodes, ci the out-degree
of node i, S(j) is the set of incoming edges of node j intersected with U . Note
that ci ≥ 1 for ∀i ∈ S(j). Equation (2) describes how the PageRank values of
the dangling nodes can be computed after convergence of the power method
iterations in Eq. (1).
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Under mild conditions that are satisfied by transaction graphs, the convergence
rate of the power method equals p [15] (and is thus independent of the size of the
graph). For the commonly used p = 0.85, the power method converges within
50 to 100 iterations.

3 A Secure Multiparty PageRank Algorithm

Several factors make securely implementing an algorithm a non-trivial task. The
overhead introduced by MPC is significant, requiring a careful analysis of the
PageRank algorithm in order to select the optimal MPC protocol. Moreover,
most cryptographic protocols work over finite groups, rings or fields and not
over the real or complex numbers. This requires a specific representation of the
PageRank algorithm, which is originally defined over the real numbers.
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3.1 Additively Homomorphic Encryption

A key observation is that the PageRank algorithm consists of mainly linear
operations, i.e. additions and multiplications by constants. It is assumed that
the total number of nodes n (bank accounts) and the PageRank probability p
are publicly known constants, and therefore the only non-linearity in Eq. (1)
is division by the private value ci. The variable ci represents the number of
outgoing edges of node i ∈ V , is fixed throughout the algorithm and is known
by the associated party, for which this division can thus be seen as a linear
operation.

A crucial observation is that all nodes i are owned by one of the parties
participating in the protocol. In practice, this does not have to be the case as
there might be transactions to accounts owned by other banks. To take into
account these nodes, other approaches, that are out-of-scope for this paper, are
required.

An approach to utilize the linear properties of the PageRank algorithm is
additively homomorphic encryption. A homomorphic encryption scheme allows
the evaluation of certain functions on encrypted input values while remaining
oblivious to the actual input values.

Any of the parties could play the evaluator role and perform the compu-
tations, as long as the other parties deliver their encrypted input values. The
computations can also be distributed amongst the parties so that they share the
computational effort. By distributing the computations in such a way that the
division by the private value ci is executed by the party that knows this value,
all computations become linear, i.e. ciphertexts do not have to be multiplied by
other ciphertexts. Because of this linearity the encryption scheme only has to be
additively homomorphic and there is no need to use the more sophisticated but
far less efficient fully homomorphic encryption (FHE) schemes. For this reason,
the additively homomorphic Damg̊ard-Jurik encryption scheme [11], which is a
generalization of the Paillier encryption scheme [23], has been adapted.

Damg̊ard-Jurik is a public-key encryption scheme that takes plaintexts from
ZNs and maps them to ciphertexts in Z

∗
Ns+1 , for some s ∈ Z>0,

Encpk : ZNs → Z
∗
Ns+1 ,

where N is an RSA-modulus and pk is the public key with the associated pri-
vate key sk. The Damg̊ard-Jurik encryption function is probabilistic; it takes as
additional input a random argument r ∈R ZNs+1\{0} for each invocation, which
we omit in our notation. The additive homomorphic property means that for all
a, b ∈ ZN ,

Decsk (Encpk (a) · Encpk (b)) = Decsk (Encpk (a + b)) = a + b mod Ns,

and, as a consequence, for all c ∈ Z,

Decsk (Encpk (a)c) = Decsk (Encpk (c · a)) = c · a mod Ns.

The parameter s influences the size of the plaintexts, the size of the ciphertexts
and the ratio of the former two. In Sect. 3.6 we will see that, in our case, s = 1
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results in a sufficiently large plaintext space. For this reason we will fix s = 1
from now on.

It must also be noted that this approach of distributing the computations
does introduce a communication overhead in contrast to using, for example, a
fully homomorphic encryption scheme. This trade-off between computation and
communication complexity is typical for applying MPC. As we will see later in
Sect. 4, the communication overhead of our solution is acceptable.

3.2 PageRank Algorithm over ZN

The PageRank algorithm is defined over the real numbers, whereas the Damg̊ard-
Jurik encryption scheme assumes plaintexts in the finite ring ZN . To solve this
discordance the PageRank algorithm has to be defined over ZN such that the
outcome (approximately) coincides with the outcome of the original PageRank
algorithm.

An integer representative y of the real number x can be found by applying a
scaling factor fx ∈ Z+,

y = �fx · x� ∈ Z.

The fixed scaling factor fx determines the precision of the computations, in fact,
the real number x can be approximated by y

fx
and

∣∣∣∣x − y

fx

∣∣∣∣ ≤ 1
2fx

.

The scaling factor fc is applied to find an integer representation of the fraction
p
ci

. Multiplying both sides of Eq. (1) with the factor (fc)k+1fx then results in
the following recurrence relation:

(fc)k+1fxxj
k+1 =

(fc)k+1fx

n
+

∑

i∈S(j)

pfc

ci
(fc)kfxxi

k − pfc

n

∑

i∈U

(fc)kfxxi
k.

Defining ỹj
k :=

⌊
(fc)kfxxj

k

⌉
, φk :=

⌊
(fc)

k+1fx

n

⌉
, ρi :=

⌊
pfc

ci

⌉
and ψ :=

⌊
pfc

n

⌉
for

all nodes i and iterations k yields the following approximation:

ỹj
k+1 ≈ φk +

∑

i∈S(j)

ρiỹ
i
k − ψ

∑

i∈U

ỹi
k.

From this the recurrence relation of Eq. (3) is deduced, which is defined
over the integers and can be used to approximate the PageRank values of the
non-dangling nodes.

yj
k+1 = φk +

∑

i∈S(j)

ρiy
i
k − ψ

∑

i∈U

yi
k with yj

0 =
⌊
fxxj

0

⌉
, ∀j ∈ V. (3)
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The same scaling approach is applied to Eq. (2) in which the PageRank values for
the dangling nodes are computed. The PageRank values xi

k can be approximated
by yi

k/((fc)kfx) with a precision that can be modified by changing the scaling
factors fx and fc.

It is now straightforward to define the PageRank algorithm over ZN , where
the RSA-modulus N should be chosen such that we avoid modular reductions
(or overflows) during the evaluation of the PageRank algorithm. It is easy to see
that more precision, or larger scaling factors, requires N to be larger as well. In
Sect. 3.6 the exact parameter choices will be presented.

3.3 PageRank Algorithm in the Encrypted Domain

The encryption function Encpk maps Eq. (3) to the following recursive relation
over Z

∗
N2 ,

zj
k+1 = Φk ·

∏

i∈S(j)

(
zi
k

)ρi ·
(

∏

i∈U

zi
k

)−ψ

mod N2 ∀k,

zj
0 = Encpk

(
yj
0

)
∀j ∈ V.

Here ρi, ψ ∈ Z are as in Sect. 3.2, Φk := Encpk (φk) ∈ Z
∗
N2 and zj

k ∈ Z
∗
N2 for

all j, k. Since the encryption scheme is additively homomorphic it follows that
Decsk

(
zj
k

)
= yj

k for all j, k.
Note that the value ρi is derived from the out-degree of node i ∈ V , and

therefore contains private information. For this reason, the terms
(
zi
k

)ρi should
be computed by the party owning node i. Similarly, the sets S(j) and U contain
private information, hence summing over these sets can only be done collabo-
ratively. More precisely, the product

∏
i∈S(j)

(
zi
k

)ρi should be computed by the
party owning node j, and the product

∏
i∈U zi

k should be computed as the pro-
duct of all privately computed products

∏
i∈UP zi

k, for all parties P ∈ P. Here
UP is the set of non-dangling nodes belonging to party P and P is the set of all
parties.

Algorithm 1 describes the computations that have to be performed by
party P , assuming that the encryption key has already been generated. Except
for the initialization phase all computations take place in Z

∗
N2 , hence modular

reductions are implicit. Each party executes this algorithm and it is evident that
it can only be performed collaboratively.

All values that are broadcast are ciphertexts, hence they do not leak private
information. However, together multiple ciphertexts might leak information. In
particular, we see that ρj could be derived from the two ciphertexts Zj

k and
zj
k. For this reason, every ciphertext is rerandomized before it is broadcast. By

rerandomization we obtain another unlinkable ciphertext that decrypts to the
same value. We therefore maintain the required functionality without leaking
private information. Rerandomization is a standard technique and, in our case,
comes down to multiplying the ciphertext with a fresh encryption of 0.
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Furthermore, the broadcasting introduces unnecessary communication and
even leaks some private information, namely the set UP . Both can be avoided
by only sending the ciphertexts to the parties that require them.

Algorithm 1. Secure PageRank algorithm for party P

Public inputs: pk, n, p, fx, fc

Private input: UP , DP , (cj)j∈V P , (S(j))j∈V P

Output: Encrypted and scaled PageRank values
(
zj

K

)
j∈V P

1: ψ ← ⌊
pfc
n

⌉
� Initialization

2: for j ∈ UP do
3: zj

0 ← Encpk

(⌊
fx
n

⌉)

4: ρj ←
⌊

pfc
cj

⌉

5: for k = 0 to K − 1 do � Non-dangling nodes

6: Φk ← Encpk

(⌊
(fc)

k+1fx
n

⌉)

7: sP
k ← (

∏
i∈UP zi

k)−ψ

8: Rerandomize and broadcast sP
k

9: Upon receiving sQ
k for all Q ∈ P do

10: Sk ← ∏
Q∈P sQ

k

11: for j ∈ UP do
12: Zj

k ← (
zj

k

)ρj

13: Rerandomize and broadcast
(
j, Zj

k

)

14: for j ∈ UP do
15: Upon receiving Zi

k for all i ∈ S(j) do
16: zj

k+1 ← Φk · Sk · ∏
i∈S(j) Zi

k

17: for j ∈ DP do � Dangling nodes
18: zj

K ← ΦK−1 · SK−1 · ∏
i∈S(j) Zi

K−1

3.4 Key Generation and Decryption

In conventional deployments of public key cryptosystems (e.g. securing commu-
nication channels) both the public pk and private key sk are generated by one of
the parties. In our setting, however, giving one of the parties complete knowledge
of the private key would undermine our privacy requirements. For this reason, our
solution requires a distributed implementation of the key generation and decryp-
tion algorithm, ensuring that ciphertexts can only be decrypted collaboratively,
while individually no information can be deduced. Solutions for distributed key-
generation and decryption, allowing up to |P|−1 passive corruptions, are readily
available for some cryptosystems [11,16], including, in particular, the DJ scheme
of our choice.
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3.5 Security Model

The implementation achieves computational security in the semi-honest model
(passive security), i.e. assuming that all parties follow the prescribed protocol.
The number of passive corruptions that can be tolerated is |P| − 1.

It is assumed that the number of nodes n in the entire graph is publicly
known. This can be achieved by each party P sharing their number of nodes nP ,
or by again applying an MPC solution to avoid leaking nP , and only revealing
n. In our solution the values are nP are made public.

3.6 Parameters

An overview of all public parameters and private parameters can be found in
Tables 3 and 4 of Appendix A.

As discussed in Sect. 2, the parameter p and the number of iterations K are
set to 0.85 and 50 respectively. The size of the RSA-modulus N is set to 2048
bit, as is recommended for 112-bit computational security [2], hence N > 22047.
Moreover, the scaling parameters fx and fc are both chosen to be equal to 27n,
where n is the total number of nodes in the graph. In Sect. 4 we will show that
these scaling factors achieve a desirable level of precision.

Each PageRank value xi
k is upper bounded by 1, and the total scaling fac-

tor after 50 iterations equals (fc)
50

fx = 2357n51; the following condition will
therefore guarantee that we do not encounter overflows:

n < 233 =⇒ 2357n51 < N.

In other words, the chosen parameter set returns approximated PageRank values
for all graphs with less than 233 nodes and there is no need to initialize the
Damg̊ard-Jurik cryptosystem with parameter s > 1.

For larger graphs a larger RSA-modulus N can be chosen or the Damg̊ard-
Jurik cryptosystem can be initialized with a larger exponent s. Another approach
is the implementation of a secure division protocol, see for example [26], by which
the size of the accumulated scaling factor, (fc)

k
fx, can be reduced after some

iterations.

4 Results

In this section, our secure multiparty PageRank solution is evaluated, both in
terms of accuracy and in terms of computational and communication complex-
ity. Firstly, the securely-computed PageRank values are compared to the stan-
dard PageRank values. Secondly, the running time of the algorithm is evaluated
for various randomly-generated transaction graphs. Thirdly, the communication
complexity of the protocol is analyzed, and finally, the results of the experiment
are extrapolated to large-scale transaction graphs.

Our solution has been implemented in Python 3.5 using the General Multi-
Precision library gmpy2 and the Partially Homomorphic Encryption library phe.
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All experiments were run in a single virtual machine with 48 CPU cores (2.4 GHz
Intel Xeon E5-2680v4) and 16 GB RAM. The multiparty setting is emulated by
assigning every core to exactly one party. The parties communicate by reading and
writing data in a given folder on the virtual machine, which means the communi-
cation between the parties is performed instantly in this experimental set-up.

4.1 Accuracy of the Secure Multiparty PageRank Algorithm

According to Sect. 3.2 the results of the secure multiparty PageRank algorithm
should be approximations of the standard PageRank values. For i ∈ V let s(i)
be the standard PageRank value of node i and let x(i) be the associated approx-
imation computed by the secure multiparty PageRank algorithm. The accuracy
of our solution can be quantified by various metrics. For the application in fraud
detection, we are interested in point-wise comparison on the accuracy of secure
PageRank. The maximum relative error satisfies this requirement and is com-
puted as follows:

max
i∈V

|s(i) − x(i)|
|s(i)| .

To evaluate the accuracy of our algorithm, we randomly sampled directed graphs
G, with n nodes and average out-degree d. To be more precise, for distinct nodes
i, j ∈ V we draw an edge from i to j with probability d/n. The nodes of this
graph are distributed equally amongst 3 parties to represent the multiparty
setting. Figure 1 displays the maximum relative error for randomly generated
graphs with n ranging from 3 × 256 to 3 × 4096 and d ranging from 10 to 160.

The values x(i) are computed by our implementation of the secure multi-
party PageRank algorithm and the values s(i) are computed with the PageRank
functionality of the Python3 package NetworkX. These results show that the
maximum relative error is between 0.0057 and 0.0064, meaning that our imple-
mentation indeed gives an accurate approximation of the standard PageRank
values. For realistic graphs, it is more likely that large transaction graphs will
approximate a scale-free graph [6]. Experiments on more realistic scale-free large
graphs, with resulting PageRank values ranging from 10−6 to 10−2, show that
the maximum relative error stays under 0.006.

The accuracy of our algorithm is actually independent of the number of
parties. To further increase it, the number of iterations K and/or the scaling
factors fx and fc could be increased.

4.2 Performance of the Secure Multiparty PageRank Algorithm

To benchmark the computational complexity of our algorithm, we again consider
randomly generated graphs with a total number of nodes n ranging from |P|×256
to |P| × 4096 and an average out-degree d ranging from 10 to 160. Recall that
P is the set of parties. In our first experiment, we fixed the number of parties
to 3 and consider the computation time for various graph sizes. In our second
experiment, we fix the average out-degree to 80 and vary the number of parties.
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Fig. 1. Maximum relative error with increasing number of nodes and edges.

Note that the final step of our protocol, the decryption, is executed collabo-
ratively, and therefore the computation times for each party are approximately
equal. For this reason, only the computation time for party 1 is considered.

Graph Size. Figure 2 shows the results of our first experiment, in which the
number of parties is fixed at 3 and each party runs their part of the protocol
on a single core of the virtual machine. The computation time of the algorithm
scales linearly in the number of nodes and in the average out-degree.

Fig. 2. Computation time for increasing
numbers of nodes and edges.

Fig. 3. Computation time for increas-
ing numbers of parties.

Number of Parties. Figure 3 shows the results of our second experiment, in
which the average out-degree is fixed to 80 and the number of parties is varied
between 1 and 4. In the setting of our instantiations, each party is assigned the
same number of nodes. Hence, the size of the total graph increases with the
number of parties. The results show that increasing the number of parties only
has a minor effect on the computational complexity of the protocol.
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4.3 Parallelization

The secure multiparty PageRank algorithm is well-suited for distributed com-
puting, an effect that we already observed when varying the number of parties.
In our third experiment, the number of parties is fixed to 3 and each party owns
4096 nodes of a randomly-generated graph with an average out-degree of 80.
Figure 4 shows the computation time of our algorithm when increasing the num-
ber of CPU cores per party. For this relatively small graph, a speed-up of factor
3.4 can be achieved by using 12 cores per party (instead of 1). By inspecting
our algorithm, it is easily seen that larger graphs will benefit even more from
distributing the computations over several CPU cores. Note that the upload
respectively download communication times are excluded from this experiment
(using 1 machine), but are expected to be within 5 respectively 9 s based on
Table 1.

Fig. 4. Computation time for increasing numbers of cores.

4.4 Communication

The experiments of the above section were all run on a single machine, and the
communication between the parties thus amounted to reading and writing data
in a given folder. In real-life scenarios, the parties would be physically separated,
and this data has to be communicated over some network. It is therefore impor-
tant to measure the communication complexity of the protocol, both in terms
of communication rounds and in terms of communicated data.

The number of communication rounds of our secure multiparty PageRank
algorithm, excluding the key generation phase, equals K + 1, where K is the
number of PageRank iterations. Table 1 displays the number of ciphertexts that
have to be communicated in our protocol, under the assumption that the graph
is randomly generated with average out-degree d � |P|. Recall that |P| is the
number of parties, n is the total number of nodes and nP is the number of nodes
of party P .
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Table 1. The number of cipher texts that each party P uploads and downloads during
the secure multiparty PageRank algorithm.

Phase Number of uploaded

cipher texts

Number of downloaded

cipher texts

PageRank computation K(nP + 1) K(|P| + n − nP − 1)

Decryption n n − 2nP + nP |P|

Thus for a realistic-size 3-party setting with 10 million nodes per party and 50
PageRank iterations, Table 1 amounts to 530 million and 1040 million 2048-bit
cipher texts that have to be uploaded and downloaded, respectively. Assuming
a bandwidth of 100 Mbit/s, this results in 2.8 h upload time and 5.5 h download
time.

The communication complexity is thus significant. However, it is currently
not the main bottleneck as our experiments have shown that the required com-
putation times are even larger. For this reason, we have not focused on improving
the communication complexity. A first improvement could be made by noting
that parties are not required to download the encrypted PageRank contributions
of the entire graph for every iteration. Alternatively, another MPC paradigm
with a much smaller communication complexity, such as fully homomorphic
encryption [13], could be used. However, this would negatively impact the com-
putation complexity.

4.5 Realistic Transaction Graphs

Based on experiments with scale-free graphs [6], it was shown that the maximum
relative error of secure PageRank stays under 0.006.

The performance of our solution was evaluated on relatively small graphs,
while in practice, transaction graphs contain millions of nodes. The first column
of Table 2 shows the expected computation time for a 3-party setting in which
each party has 10 million bank accounts with 80 transaction per bank account on
average. Moreover, we assume a very conservative performance gain of a factor
3.4 by distributing the computation over 12 cores instead of using a single core
per party; in practice, this gain will likely be much closer to a factor 12 for large
graphs.

A significant improvement can be expected by judiciously implementing the
algorithm in C++. In particular, 2048-bit modular multiplications have been
reported to take only 3.012 ms on a Xeon X64 processor [7]. Modular multipli-
cations take up a significant part of the computation time and can be accelerated
up to a factor 17 compared to our Python implementation. The estimates in the
second column of Table 2 show such an implementation would enable a running
time of less than 1 day for a large-scale graph as described above.
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Table 2. The estimated runtime for the application of the secure multiparty PageRank
algorithm to a graph with 30 million nodes and average out-degree 80 in the 3-party
setting.

Python
implementation

C++
implementation

Computation time (days) 10.62 ∼0.62

Communication time (days) 0.35 0.35

Total time (days) 10.97 ∼0.97

5 Conclusions and Future Research

Existing techniques for fraud detection would highly benefit from collaboration
between financial institutes. However, the exchange of relevant information is
often limited, or not even possible, due to privacy restrictions or commercial
confidentiality. This paper illustrated that secure multiparty computation can
help tackle this challenge.

It was previously shown that fraud detection techniques can be improved
by taking into account features, such as PageRank values, derived from trans-
action graphs [20]. Transaction graphs of multiple financial institutes are cou-
pled through interbank transactions and analyzing a combined transaction graph
leads to a more complete picture and, possibly, to more effective fraud detection.

An innovative solution has been described for multiple financial institutes
to securely and collaboratively compute the PageRank values of a combined
transaction graph without revealing private and/or confidential information to
each other or to any other party. Each financial institute learns the PageRank
values of its own bank accounts that are derived from the joint network. To
achieve the desired security properties an additively homomorphic encryption
scheme has been used.

The feasibility of this secure multiparty PageRank algorithm has been shown
by implementing it in Python and applying it successfully on randomly gener-
ated test networks while simulating up to four different parties. Furthermore,
the results show that the secure multiparty PageRank algorithm is scalable and
can handle transaction graphs of realistic size in reasonable time, while remain-
ing sufficiently accurate. In particular, this allows financial institutes to update
PageRank scores at reasonable intervals, e.g. over a month, and use these as
features for their own fraud detection methods.

Planned future work includes developing, in contrast to the current passively
secure protocol, an actively secure solution. In addition, other homomorphic
encryption schemes, in particular ones that can withstand the attack of a quan-
tum computer, will be considered.

Moreover, our MPC solution is tailor made to evaluate the PageRank algo-
rithm securely as it specifically utilizes the linearity of this algorithm. However,
this linearity applies to many other algorithms and an analysis of the broader
applicability of this MPC approach would be of interest. In particular since
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PageRank is only one of many graph-based features that may be extracted from
transaction graphs as input for fraud detection methods. In addition, there are
other application domains in the financial sector that could benefit from the
secure analysis of transaction graphs, such as commercial banking and anti-
money laundering. Further important future work is testing the algorithm on
actual combined transaction graphs and analyzing its effect on the resulting
PageRank values and its effectiveness in improving fraud detection.

In conclusion, the feasibility of securely analyzing features of a large-scale
network that is distributed over multiple parties has been demonstrated, thus
paving the way for several collaboration initiatives that were previously not
possible.
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A Parameters

The following public and private parameters are considered in the secure
PageRank algorithm, Algorithm 1.

Table 3. Public parameters of the secure multiparty PageRank algorithm

Parameter Description

P Set of parties

n Number of nodes

N RSA modulus

K Number of PageRank iterations

p PageRank probability

fc Scaling factor for all p
ci

fx Scaling factor for all xi
k

φk Integer PageRank constant of iteration k

Φk Encrypted PageRank constant of iteration k

ψ Integer PageRank constant

pk Public Damg̊ard-Jurik encryption key

zi
k Encrypted and scaled PageRank value of node i at iteration k
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Table 4. Private parameters of the secure multiparty PageRank algorithm

Parameter Description

V P Set of all nodes belonging to party P

UP Set of non-dangling nodes belonging to party P

DP Set of dangling nodes belonging to party P

S(i) Set of incoming nodes at node i ∈ V

ci The out-degree of node i ∈ V
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Abstract. We are increasingly surrounded by numerous embedded sys-
tems which collect, exchange, and process sensitive and safety-critical
information. The Internet of Things (IoT) allows a large number of inter-
connected devices to be accessed and controlled remotely, across exist-
ing network infrastructure. Consequently, a remote attacker can exploit
security vulnerabilities and compromise these systems. In this context,
remote attestation is a very useful security service that allows to remotely
and securely verify the integrity of devices’ software state, thus allow-
ing the detection of potential malware on the device. However, current
attestation schemes focus on detecting whether a device is infected by
malware but not on disinfecting it and restoring its software to a benign
state.

In this paper we present HEALED – the first remote attestation
scheme for embedded devices that allows both detection of software com-
promise and disinfection of compromised devices. HEALED uses Merkle
Hash Trees (MHTs) for measurement of software state, which allows
restoring a device to a benign state in a secure and efficient manner.

1 Introduction

Embedded devices are being increasingly deployed in various settings providing
distributed sensing and actuation, and enabling a broad range of applications.
This proliferation of computing power into every aspect of our daily lives is
referred to as the Internet of Things (IoT). Examples of IoT settings range from
small deployments such as smart homes and building automation, to very large
installations, e.g., smart factories. Similarly, an embedded or (IoT device) may
constitute a low-end smart bulb in a smart home or a sophisticated high-end
Cyber-Physical System (CPS) in a smart factory.

Increasing deployment and connectivity combined with the collection of sen-
sitive information and execution of safety-critical (physical) operations has made
embedded devices an attractive target for attacks. Prominent examples include:
the Stuxnet worm [36], the Mirai botnet [10], the HVAC attack [1] and the
Jeep hack [2]. One common feature of such attacks is that they usually involve
modifying the software state of target devices. This is referred to as malware
infestation.
c© International Financial Cryptography Association 2019
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Remote attestation has evolved as a security service for detecting malware
infestation on remote devices. It typically involves a standalone (or network
of) prover device(s) securely reporting its software state to a trusted party
denoted by verifier. Several attestation protocols have been proposed based on
trusted software for securing the measurement and reporting of a prover’s soft-
ware state [14,17,20,32–34], on trusted hardware [19,21,22,27,29,31,35], or on
software/hardware co-design [12,13,18]. In the recent years, several collective
attestation schemes have been proposed that enable efficient attestation of large
networks of devices [5,8,15,16].

While prior remote attestation schemes focus on detection of malware infes-
tation on prover devices, the problem of disinfecting a prover, i.e., restoring its
software to a benign state, has been totally overlooked. Prior remote attestation
schemes usually focus on malware presence detection and consider the reaction
policy to their presence to be out of scope. In this paper we present HEALED
– HEaling & Attestation for Low-end Embedded Devices – which is the first
attestation scheme that provides both detection and healing of compromised
embedded devices. HEALED is applicable in both standalone and network set-
tings. It allows measuring the software state of a device based on a novel Merkle
Hash Tree (MHT) construction.

Main contributions of this paper are:

– Software Measurement: HEALED presents a novel measurement of prover’s
software state based on MHT which allows the verifier to pinpoint the exact
software blocks that were modified.

– Device Healing: HEALED enables disinfecting compromised provers by
restoring their software to a genuine benign state.

– Proof-of-concept Implementation: We implemented HEALED on two recent
security architectures for low-end embedded devices as well as on our small
network testbed composed of 6 Raspberry Pi-based drones.

– Performance Evaluation: We provide a thorough performance and security
evaluation of HEALED based on our implementations and on network simu-
lations.

2 HEALED

In this section, we present the system model, protocol goals, and a high-level
overview of HEALED.

2.1 System Model

Our system model involves a group of two or more devices with a communication
path between any two of them. A device class refers to the set of devices with
the same software configuration. We denote by s be the number of devices in the
smallest class. A device (regardless of its class) is denoted by Di. Whenever a
device Dv wants to attest another device Dp, we refer to the former as prover, and
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to the latter as verifier. As common to all current attestation schemes, we assume
that Dv has prior knowledge of the expected benign software configuration of
Dp. We also assume that Dv and Dp share a unique symmetric key kvp.1 Devices
can be heterogeneous, i.e., have different software and hardware. However, all
devices satisfy the minimal hardware requirements for secure remote attestation
(see Sect. 2.2). Moreover, each device Dc can always find a similar device Dh

with the same software/hardware configuration.
The goal of HEALED is to detect and eliminate malware on a device.

HEALED consists of two protocols: (1) an attestation protocol between Dv and
Dp, through which a verifier device Dv assesses the software state of a prover
device Dp, and (2) a healing protocol between two similar devices Dh and Dc,
through which a healing device Dh restores the software of a compromised device
Dc to a benign state. Software state of a device refers to its static memory con-
tents and excludes memory locations holding program variables.

2.2 Requirements Analysis

Threat Model. Based on a recent classification [4], we consider two types of
adversaries:

1. Local communication adversary: has full control over all communication chan-
nels, i.e., it can inject, modify, eavesdrop on, and delay all packets exchanged
between any two devices.

2. Remote (software) adversary: exploits software bugs to infect devices, read
their unprotected memory regions, and manipulate their software state (e.g.,
by injecting malware).

We assume that every device is equipped with minimal hardware required for
secure remote attestation, i.e., a read only memory (ROM) and a simple Memory
Protection Unit (MPU) [12]. A remote software adversary cannot alter code pro-
tected by hardware (e.g., modifying code stored in ROM), or extract secrets from
memory regions protected by special rules in the MPU. These memory regions
are used to store cryptographic secrets and protocol intermediate variables.

Key Observation. Let Benign(ta,Dx,Dy) denote “device Dx believes that
device Dy is not compromised at ta, Equal(ta,Dx,Dy) denote “device Dx and
device Dy have the same software state at time ta. We make the following key
observation:

– Healing: if two devices Dx and Dy have the same software state, then either
both are benign or both are compromised.

1 In the case of networks of embedded devices, we rely on the initialization protocol
of existing collective attestation schemes for sharing software configurations and
symmetric keys between devices [8].
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∀x ∀y ∀y ∀ta Equal(ta,Dy,Dz)

∧ Benign(ta,Dx,Dy) → Benign(ta,Dx,Dz)

Consequently, healing can be supported by letting similar devices (i.e., devices
having the same software configuration) attest and recover each other.

Objectives. A remote attestation protocol should not only detect presence of
malware on a compromised devices, it should also identify exact regions in mem-
ory, where the malware resides in order to eliminate it. Consequently, a remote
attestation protocol should have the following properties:

– Exact measurements: The measurement process on the prover should be capa-
ble of detecting software compromise and determining exact memory regions
that have been manipulated.

– Healing: The protocol should allow secure and efficient disinfection of com-
promised devices, i.e., enable restoring the software of a compromised device
to a benign state with low overhead.

Requirements. A verifier device Dv shares a symmetric key kvp with every
prover device Dp that it needs to attest. Similarly, every healer device Dh shares
a symmetric key khc with every compromised device Dc that it heals, i.e., every
device Di shares a key with some (or all) similar devices. For brevity we assume
that all devices in the group share pairwise symmetric keys. This assumption
applies to small groups of device and is indeed not scalable. To achieve better
scalability, keys and software configurations management might follow the design
of collective attestation [8,16]. Every device that is involved in one of the proto-
cols, i.e., Dv, Dp, Dh, and Dc supports a lightweight trust anchor for attestation,
e.g., devices are equipped with a small amount of ROM and a simple MPU.
During the execution of the attestation and healing protocols there should exist
a communication path (or logical link) between Dv and Dp and between Dh and
Dc respectively.

Fig. 1. HEALED in a group of 5 devices.
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2.3 High Level Protocol Description

We now present a high level description of HEALED based on the example
scenario shown in Fig. 1. The figure shows a group of five devices D1–D5, in
addition to 3 communication nodes that are responsible for relaying messages
between devices, e.g., routers. HEALED incorporates two protocols:

– attest: At predefined intervals, each device (e.g., D1 in Fig. 1) acts as a verifier
device and attests a random prover device (e.g., D2). The prover uses a MHT-
based measurement to report its software state. If a software compromise is
detected by the verifier it initiates the healing protocol heal for the prover.
The output of attest is a bit b1 indicating whether attestation of Dp was
successful.

– heal: When a compromised prover device (e.g., D2) is detected, a benign healer
device (e.g., D4), which is similar to the prover, is identified. The healer uses
the MHT-based measurement to pinpoint corrupted memory regions on the
prover and restore them to their original state. The result of heal is a bit b2
indicating whether healing by Dh was successful.

Fig. 2. Protocol attest

2.4 Limitations

HEALED has some limitations in terms of system model, adversary, and appli-
cation that we briefly described below:

– System model: HEALED is applicable to a set of devices under the same
administrative control, e.g., devices in a smart home. Extending it to a more
generic model, e.g., across multiple IoT environments, might require involv-
ing public key cryptography and using device manufacturers as certification
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authorities. Moreover, gateways between multiple networks would need to be
configured to exchange protocol messages.

– Adversary model: HEALED assumes that, at all times, at least one device of
each class is not compromised, i.e., at most s−1 devices can be compromised
at the same time.

– Application: HEALED provides secure and efficient detection and disinfec-
tion of compromised devices. However, it neither guarantees successful disin-
fection, nor does it prevent subsequent compromise of these devices.

Fig. 3. Merkle Hash Tree of software configurations

3 Protocol Description

As mentioned earlier, HEALED includes the following protocols executed
between devices acting as verifier Dv, prover Dp, healer Dh, and compromised
device Dc.

Attestation. As shown in Fig. 2, each device Dv periodically acts as a verifier
and attests a random device Dp acting as prover. Specifically, every tA amount of
time, Dv sends Dp an attestation request containing a random nonce Np. Upon
receiving the request Dp measures its software state, and creates a MAC μvp

over the generated measurement c′
p and the received nonce based on the key kvp

shared with Dv. The MAC μvp is then sent back to Dv. Having the reference
benign software configuration cp of Dp and the shared key kvp, Dv can verify
μvp. Successful verification of μvp by Dv implies that Dp is in a benign software
state. In this case attest returns b1 = 1. On the contrary, if μvp’s verification
failed, Dv deduce that Dp is compromised and initiates the healing protocol for
Dp. In this case attest returns b1 = 0.

The measurement of software state on Dp is created as a root of a Merkle
Hash Tree (MHT) [23], as shown in Fig. 3. In particular, Dp divides the code to
be attested into w segments: s1, . . . , sw of equal length, and computes hashes:
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hp[x
2 +1], . . . , hp[x] of each segment. A MHT is then constructed, with hp[x

2 +1],
. . . , hp[x] as leaves and c′

p as the root, where x denotes the number of nodes in
the MHT excluding the root node. Note that, a malware-infected code segment
(e.g., sw−3), leads to generation of false hash values along the path to the root.
attest is formally:

attest
[
Dv : kvp, cp, tA;Dp : kvp; ∗ : −] → [

Dv : b1;Dp : Np

]
.

Based on attest the compromise of any device will be detected.

Healing. Whenever a device Dv detects a compromised device Dc through attest,
it searches for a healer device Dh, whose reference software configuration ch is
identical to that of Dc, i.e., a Dh that has the same version of the same software
of Dc. Note that, if Dv and Dc are similar Dv directly initiates heal with Dc acting
as healer device. Otherwise, Dv broadcasts the reference software configuration
cc of Dc along with a constant (protocol specific) Time-to-Live (TTL), and a
random nonce N . Every device Di that receives this tuple (1) checks TTL, and
(2) compares cc to its reference software configuration ci. If cc and ci do not
match, and TTL is not equal to zero, Di re-broadcasts the tuple after TTL
is decremented. Consequently, this tuple is flooded across devices until TTL is
exceeded or a healer device Dh is found.

When a device Dh, whose reference software configuration ch matches cc,
receives the tuple it sends a reply to Dv, which includes its current software
configuration c′

h, authenticated along with the received nonce N , using a MAC
based on the key kvh shared with Dv.

Fig. 4. Protocol heal



634 A. Ibrahim et al.

After proving its software trustworthiness, Dh initiates heal with Dc (as shown
in Fig. 4). Note that, messages between Dh and Dc may go through Dv using
the newly established route between Dh and Dv. Dh may also exploit an existing
routing protocol to find a shorter path to Dc.

In details, Dh sends a protocol message begin to Dc. Upon receiving begin,
Dc sends its software configuration c′

c and a fresh nonce Nc to Dh. Dh compares c′
c

to its own software configuration c′
h. If the two configurations did not match, Dh

replies requesting children hc[0] and hc[1] of c′
c in the Merkle Hash Tree (MHT)

rooted at c′
c (protocol message continue). Dh continues recursively requesting

child nodes of every hash that does not match its reference value (i.e., the value
at the same position in Dh’s tree) until leaf nodes are reached. Next, Dh sends a
protocol message end indicating that it has reached leaf nodes. Finally, Dh adds
a code segment l , for each modified leaf node, to the patch L, authenticates L
with a MAC based on khc and sends it back to Dc. A code segment l = {a0 , aε, s}
is identified by its starting address a0 , its end address aε, and its code s. Dc, in
turn verifies L. If the verification was successful, it installs the patch, i.e., replaces
segments indicated by L with the code in L, and outputs b2 = 1. Otherwise, Dc

outputs b2 = 0. heal is formally:

heal
[
Dh : khc, c′

h, {hh[0], . . . , hh[x]};

Dc : khc, cc, c′
c, {hc[0], . . . , hc[x]}; ∗ : −] → [

Dh : Nc;Dc : L, b2
]
.

Device healing allows devices that have the same software configuration to
recover from malware. By refusing to participate in the healing process (e.g.,
not installing the patch), Dc remains malicious and would not be able to prove
its trustworthiness to other devices.

Fig. 5. Implementation of HEALED on SMART [12]

4 Implementation

In order to demonstrate viability and evaluate performance of HEALED we
implemented it on two lightweight security architectures for low-end embed-
ded devices that provide support for secure remote attestation: SMART [12]
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and TrustLite [18]. We also implemented HEALED on a testbed formed of six
autonomous drones in order to demonstrate its practicality. In this section we
present the details of these implementations.

4.1 Security Architectures

SMART [12] and TrustLite [18] are two lightweight security architectures for low-
end embedded devices that enable secure remote attestation based on minimal
hardware requirements. These two architectures mainly require: (1) A Read-
Only Memory (ROM), which provides emutability and ensures integrity of the
code it stores; and (2) A simple Memory Protection Unit (MPU), which controls
access to a small region in memory where secret data is stored. Memory access
control rules of MPU are based on the value of the program counter.

In SMART, the ROM code stores the attestation code and an attestation key,
and the MPU ensures that the attestation code has exclusive access to the attes-
tation key. As a consequence, only unmodified attestation code can generate an
authentic attestation report. TrustLite exploits ROM and MPU to provide iso-
lation of critical software components. In particular, ROM is used to ensure the
integrity of a secure boot code which has exclusive access to a securely stored
platform key. TrustLite enables isolation by initiating critical components via
secure boot, which sets up appropriate memory access rules for each component
in the MPU. We implemented HEALED on SMART replacing the attestation
code in ROM, and on TrustLite as two isolated critical components. Our pro-
totype implementations for SMART and TrustLite are shown in Figs. 5 and 6
respectively.

4.2 Implementation Details

Let Ki denote the set of all symmetric keys shared between a device Di and
any other device, and Vi denote the protocol variables processed and stored by
HEALED. These include all nodes in the Merkle Hash Tree (MHT), including
the root ci. Integrity of HEALED code is protected through ROM of SMART
(see Fig. 5), or secure boot of TrustLite (see Fig. 6). The secrecy of the set Ki

of Di is protected by the MPU of SMART and TrustLite (rule #1 in Fig. 5 and
rule #2 in Fig. 6 respectively). Further, rules #2 in SMART and #3 in TrustLite
ensure that variables processed and produced by HEALED are exclusively read-
and write-accessible to HEALED’s code.

4.3 Autonomous Testbed

In order to test and demonstrate the practicality of HEALED, we implemented
and tested it on our autonomous drones testbed. The testbed is formed of six
Raspberry Pi-based drones forming an ad-hoc network, where four of the drones
are involved in HEALED while the remaining two drones act as relay drones.
The Pi-s are equipped with a 1.2 GHz Quad-core 64-bit CPU and they are
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connected through a 150 MBit/s WiFi link. Our setup is shown in Fig. 7. Our
implementation uses C programming language and is based on mbed TLS [6]
cryptographic library.

Fig. 6. Implementation of HEALED on TrustLite [18]

5 Performance Evaluation

HEALED was evaluated on SMART [12], TrustLite [18], and on the drones
testbed. The results of evaluation on TrustLite and the runtimes on our drones
testbed are presented in this section. Results for SMART are very similar to
those of TrustLite and will therefore be omitted.

Hardware Costs. A comparison between the hardware costs of our implemen-
tation of HEALED and that of the existing implementation of TrustLite [18] is
shown in Table 1. As shown in the table, HEALED requires 15324 LUTs and 6154
registers in comparison to 15142 LUTs and 6038 registers required by TrustLite.
In other words, HEALED incurs a negligible additional increase of 1.20% and

Fig. 7. Testbed setup
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1.92% on the original hardware costs of TrustLite in terms of number of LUTs
and registers respectively.

Memory Requirements. TrustLite already includes all the cryptographic
operation that are involved in HEALED. Implementing HEALED on TrustLite
required incorporating the code that is responsible for handling protocol mes-
sages and generating the Merkle Hash Tree (MHT). Further, every device Di

needs to securely store gi symmetric keys (20 bytes each), where gi corresponds
to the number of devices Di is expected to attest or heal. For every device Di, gi

is upper bounded by the total number n of devices involved in HEALED. Fur-
thermore, Di should store the entire MHT that represents its benign software
configuration. MHT size depends on the size of the code and the number of code
segments. Each hash value is represented by 20 bytes.

Table 1. Hardware cost of HEALED

Look-up Tables Registers

TrustLite 15142 6038

HEALED 15324 6154

% of increase 1.20% 1.92%

Energy Costs. We estimated the energy consumption of HEALED based on
reported energy consumption for MICAz and TelosB sensor nodes [24].2 Note
that, SMART [12] and TrustLite [18] support the same class of low-end devices
that these sensor nodes belong to. Figure 8 shows the estimated energy consump-
tion of attest and heal as function of the number of attested and healed devices
respectively. We assume 100 KB of code divided into 128 segments.

Fig. 8. Energy consumption of HEALED

2 It is not possible to provide accurate measurements of the energy consumption of
HEALED since our FPGA implementations of SMART and TrustLite tend to con-
sume considerably more energy than manufactured chips.
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Energy consumption of both the healing and attestation protocols increases
linearly with the number of attested/healed devices. Moreover, this consumption
can be as low as 21 mJ for attesting then healing 4 devices.

Fig. 9. Runtime of HEALED

Simulation Results. In order to measure the runtime of HEALED we used net-
work simulation. We based our simulation on OMNeT++ [25] network simulator,
where we emulated cryptographic operations as delays based on measurements
we made for these operations on SMART [12] and TrustLite [18]. We measured
the runtime of attest and heal for different number of attested/healed devices.
We also varied the number of hops between the compromised device and the
healer, as well as the number w of segments the attested code is divided into.
The results of our simulation are shown in Figs. 9, 10, and 11.

As shown in Fig. 9 runtimes of attest and heal increase linearly with the
number of attested and healed devices respectively. Further, these runtimes can
be as low as 0.6 s for attesting then healing 4 devices.

Figure 10 shows the runtime of heal when the attested code is divided into
128 segments. As can be seen in the figure, the runtime of heal increases linearly
with the number of hops between the healer Dh and the compromised device
Dc. Finally, Fig. 11 shows the run-time of heal and getConfig (i.e., time needed
to create the Merkle Hash Tree) when Dh and Dc are 10 hops away. As shown in
the figure, the runtime of heal is logarithmic in the number of segments, while
getConfig has a low run-time which is linear in the number of segments.

Note that, runtime of heal decreases with the number of segments, due to
consequent decrease in code that should be transferred to Dc. Increasing the
number of segments indeed increases the number of rounds of heal by increasing
the size of MHT. However, the effect of this increase on the performance of heal
is overshadowed by the huge reduction in the communication overhead.

Our simulation results also show that the runtimes of heal and attest are
constant in the size of the network. These results are omitted due to space
constraints. On the other hand, increasing the size of the network while keeping
the number of similar devices constant could increase the expected number of
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hops between a healer Dh and a compromised device Dc. This would indeed lead
to an increase in the runtime of heal (see Fig. 10).

Fig. 10. Runtime of heal as function of number of hops

Drones Testbed. We also measured the runtime of HEALED on our drones
testbed shown in Fig. 7. These runtimes are smaller than those of TrustLite since
our Raspberry Pi-s utilize a much more powerful processor. The runtime of attest
on drone D2 attesting drones D1 and D3 is 11 ms, and the runtime of heal on
drone D1 healing drone D4 through one relay node is 34 ms. Note that, the
attested code is 100 KB in size and is divided into 128 segments. Further, these
runtimes are averaged over 100 executions.

6 Security Consideration

Recall that the goal of HEALED is to allow secure detection and disinfection
of compromised devices. We formalize this goal as a security experiment ExpA,
where the adversary A interacts with involved devices. In this experiment A
compromises the software of two similar devices Dc and Dh. Then, after a poly-
nomial number (in �mac, �hash, and �N ) of steps by A, one verifier device Dv

outputs its decision b1 signifying whether Dc is benign. The compromised device
Dh executes heal with Dc which outputs b2 signifying whether healing was suc-
cessful. The result of the experiment is defined as the OR of outputs b1 and b2
of Dv and Dc respectively, i.e., ExpA = b | b = b1 ∨ b2. A secure attestation &
healing scheme is defined as follows:

Definition 1 (Secure attestation & healing). An attestation & healing scheme
is secure if Pr

[
b = 1|ExpA(1�) = b

]
is negligible in � = f(�mac, �hash, �N ), where

function f is polynomial in �mac, �hash, and �N .
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Fig. 11. Runtime of heal vs. getConfig

Theorem 1 (Security of HEALED). HEALED is a secure attestation & healing
scheme (Definition 1) if the underlying MAC scheme is selective forgery resistant,
and the underlying hash function is collision resistant.

Proof sketch of Theorem 1. A can undermine the security HEALED by either
tricking Dv into returning b1 = 1 or tricking Dc into returning b2 = 1 We
distinguish among the following two cases:

– A attacks attest: In order for Dv to return b1 = 1 it should receive an attes-
tation report containing a MAC μvc = mac(kvc;Nc‖cc), where kvc is the sym-
metric key shared between Dv and Dc, Nc is the fresh random nonce sent from
Dv to Dc, and cc is a benign software configuration of Dc. Consequently, A can
try to: (1) extract the symmetric kvc and generate such a MAC, (2) modify the
measurement process on Dc to return a MAC over benign software configura-
tion regardless of the software state on Dc, (3) replay an old attestation report
containing a MAC μold = mac(kvc;Nold‖cc) over a benign software configura-
tion cc and an old nonce Nold, (4) forge a MAC μvc = mac(kvc;Nc‖cc) over a
benign software configuration cc and the current nonce Nc, or (5) modify the
code on Dc in a way that is not detectable by the measurement process. How-
ever, the adversary is not capable of performing (1) and (2) since the secrecy
of the key kvc and the integrity of the measurement code are protected by the
hardware of the underlying lightweight security architecture. Moreover, since
Dv is always sending a fresh random nonce, the probability of success of (3) is
negligible in �N . Furthermore, the probability of A being able to forge a MAC
as in (4) is negligible in �mac. Finally, modifying the value of one bit of Dc’s
code would change the hash value of the segment containing this bit. This
will change the hash value on the higher level in the Merkle Hash Tree and
so on leading to a different root value, i.e., a different software configuration.
Consequently, in order to perform (5) A should find at least on collision of
the hash function that is used for constructing the MHT which is negligible
in �hash.

– A attacks heal: In order for Dc to return b2 = 1 it should receive a healing
message containing a patch L and a MAC μhc = mac(khc;Nc‖L‖cc), where khc
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is the symmetric key shared between Dh and Dc, Nc is the fresh random nonce
sent from Dc to Dh, and cc is a benign software configuration of Dc. Similar to
attest A may try to extract khc, modify the code responsible for generating the
healing message, replay an old healing message, forge μhc, or compromise Dh

in a way that is not detectable by the measurement process. However, because
of the security of the underlying hardware and cryptographic primitives the
success probabilities of these attacks are negligible in �mac, �hash, and �N .
Indeed Dc may refuse to execute the healing protocol or install the patch, thus
remaining compromised. However, the compromise of Dc will be detected by
any subsequent attestation. One remedy for this problem could incorporate
performing a subsequent attestation for healed devices and reporting devices
that do not comply to the healing protocol.

This means that the probability of A bypassing the attestation protocol or infect-
ing a benign device through the healing protocol is negligible in �mac, �hash, and
�N . Consequently, HEALED is capable of securely detecting and disinfecting
compromised devices. �	

7 Related Work

Attestation. Attestation is a security service that aims at the detection of
(malicious) unintended modifications to the software state of a device. Attes-
tation is typically realized as an interactive protocol involving two entities:
a verifier and a prover. Through this protocol the prover sends the verifier
an attestation report indicating its current software state. Existing attestation
schemes can be categorized into their main classes: (1) software-based attesta-
tion [14,17,20,32–34] which does not requires hardware support, but is based on
strong assumptions and provides weak security guarantees; (2) hardware-based
attestation [19,21,22,27,29,31,35] which provides stronger security guarantees
based on complex and expensive security hardware; and (3) hybrid attesta-
tion [12,13,18] which aims at providing strong security guarantees while impos-
ing minimal hardware costs. Additionally, recent advances have lead to the
development of attestation schemes for verifying the intergrity of networks of
embedded devices – collective attestation [5,8,15], and for detecting runtime
attacks – control-flow attestation [3,11,37]. All existing attestation schemes,
regardless of the type, aim at the detection of software compromise and overlook
the problem of disinfecting compromised devices. These schemes usually consider
the reaction policy to malware detection to be out of scope. HEALED is, to the
best of our knowledge, the first attestation scheme that allows the detection and
elimination of software compromise in both single-device and group settings.

Software Update and Healing. There is not much of prior work on attesta-
tion that allows the disinfection of compromised devices. SCUBA [33] leverages
verifiable code execution based on software-based attestation to guarantee an
untampered execution of a software update protocol. While SCUBA is built on
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top of a software-based attestation scheme that is based on unrealistic assump-
tions [7] to perform software update, HEALED leverages a lightweight secu-
rity architecture to provide security guarantees regarding efficient disinfection of
compromised devices. POSH [28] is a self-healing protocol for sensor networks
which enables collective recovery of sensor nodes from compromise. The core idea
of POSH is to enable sensor nodes to continuously compute new keys that are
unknown to the adversary based on randomness provided by other sensors. Con-
sequently, an adversary that compromises a device and extracts its current key
would not be capable of extracting its future keys. TUF [30] is a software update
for embedded systems that aims at reducing the impact of key compromise on
the security of software update. TUF is based on role separation and multisig-
natures, where particular signatures using distinct private keys ensure different
properties of the software update, e.g., timeliness or authenticity. ASSURED [9]
enables applying secure update techniques, such as TUF, to the IoT setting
while providing end-to-end security and allowing the verification of successful
updates. In HEALED, we rely on a lightweight security architecture for pro-
tecting the secrecy of the keys and leverage MHT to restore the software state
of compromised devices. Finally, PoSE [26] presents a secure remote software
update for embedded devices via proof of secure erasure. The protocol allows
restoring a device to its benign software state by ensuring the erasure of all code
on that device. However, PoSE imposes a high communication overhead which
is linear in the size of the genuine software. Moreover, similar to all existing
software-based attestation protocols, PoSE assumes adversarial silence during
the execution of the update protocol.

8 Conclusion

Most of the prominent attacks on embedded devices are at least started through
malware infestation [1,2,10,36]. Remote attestation aims at tackling the prob-
lem of malware infestation by detecting device software compromise. However,
current attestation schemes focus on the detection of malware, and ignore the
problem of malware removal. These schemes usually consider the reaction to
software compromise to be an orthogonal problem. In this paper, we present
HEALED – the first attestation scheme for embedded devices which is capable
of disinfecting compromised devices in a secure and efficient manner. The core of
HEALED is a software measurement process based on Merkle Hash Tree (MHT)
which allows identifying infected memory regions, and a healing protocol that
efficiently restores these regions to their benign state. We implemented HEALED
on two lightweight security architectures that support remote attestation and
on an autonomous drones testbed. Moreover, we evaluated the energy, runtime,
and hardware costs of HEALED based on measurements of real execution and
on network simulation.
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Abstract. A one-time program (OTP) works as follows: Alice pro-
vides Bob with the implementation of some function. Bob can have
the function evaluated exclusively on a single input of his choosing.
Once executed, the program will fail to evaluate on any other input.
State-of-the-art one-time programs have remained theoretical, requiring
custom hardware that is cost-ineffective/unavailable, or confined to ad-
hoc/unrealistic assumptions. To bridge this gap, we explore how the
Trusted Execution Environment (TEE) of modern CPUs can realize the
OTP functionality. Specifically, we build two flavours of such a system:
in the first, the TEE directly enforces the one-timeness of the program;
in the second, the program is represented with a garbled circuit and the
TEE ensures Bob’s input can only be wired into the circuit once, equiva-
lent to a smaller cryptographic primitive called one-time memory. These
have different performance profiles: the first is best when Alice’s input is
small and Bob’s is large, and the second for the converse.

1 Introduction

Consider the well-studied scenario of secure two-party computation: Alice and
Bob want to compute a function on their inputs, but they do not want to disclose
these inputs to each other (beyond what can be inferred from the output of the
computation). This is traditionally handled by an interactive protocol between
Alice and Bob.1 In this paper, we instead study a non-interactive protocol as
follows: Alice prepares a device for Bob with the function and her input included;
once Bob receives this device from Alice, he supplies his input and learns the
outcome of the computation. The device will not reveal the outcome for any
additional inputs (thus, a one-time program [12]). Alice might be a company
selling the device in a retail store, and Bob the customer; the two never interact
directly. By using the device offline, Bob is assured that his input remains private.

To build a one-time program (OTP), we use the Trusted Execution Envi-
ronment (TEE), a hardware-assisted secure mode on modern processors, where

1 Hazay and Lindell [19] give a thorough treatment of interactive two-party protocols.
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execution integrity and secrecy are ensured [31], with qualities that include plat-
form state binding and protection of succinct secrets. TEEs may appear to offer
a trivial solution to OTPs; however, complexities arise due to Bob’s physical pos-
session of the device and, more importantly, performance issues. We propose two
configurations for one-time programs built on TEEs: (1) deployed directly in the
TEE, and (2) deployed indirectly via TEE-backed one-time memory (OTM) [12]
and garbled circuits [50] outside of the TEE. OTMs hold two keys, only one of
which gets revealed (dependent on its input); the other is effectively destroyed.

Contributions. Our system, built using Intel Trusted Execution Technology
(TXT) [13] and Trusted Platform Module (TPM) [45] as the TEE, is available
today (as opposed to custom OTP/OTM implementations using FPGA [21],
PUF [24], quantum mechanisms [5], or online services [25]) and could be built
for less than $500.2

We propose and implement the following OTP variants, considering that
TPM-sealing3 or encrypting data is time-consuming.

• TXT-only seals/unseals Alice’s input directly, and performance is thus sen-
sitive to Alice’s input size. Bob’s input is entered in plaintext and processed
in TXT after he has received the device.

• GC-based converts the logic into garbled circuit, where number of key pairs
is determined by Bob’s input size. Key pairs are encrypted/decrypted with a
master key (MK). This way, the performance is largely determined by Bob’s
input size. Upon receiving the device, he does the one-time selection of key
pairs in TXT to reflect his input. Thereafter, evaluation of the garbled circuit
can be done on any machine with the selected keys.

To illustrate the generality of our solution, we also map the following application
into our proposed OTP paradigm: a company selling devices that will perform a
private genomic test on the customer’s sequenced genome. For this use case, in
one of our two variants (TXT-only), a company can initialize the device in 5.6 s
and a customer can perform a test in 34 s.

2 Preliminaries

2.1 One-Time Program Background

A one-time program can be conceived of as a non-interactive version of a two
party computation: y = f(a, b) where a is Alice’s private input, b is Bob’s, f
is a public function (or program), and y is the output. Alice hands to Bob an
implementation of fa(·) which Bob can evaluate on any input of his choosing:
yb = fa(b). Once he executes on b, he cannot compute fa(·) again on a differ-
ent input. For our practical use-case, we conceive of OTPs with less generality
2 As an example, Intel STK2mv64CC, a Compute Stick that supports both TXT and

TPM, was priced at $499.95 USD on Amazon.com (as of September 2018).
3 A state-bound cryptographic operation performed by the TPM chip, like encryption.

http://amazon.com/
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as originally proposed by Goldwasser et al. [12]; essentially we treat them as
one-time, non-interactive programs that hide Alice and Bob’s private inputs
from each other without any strong guarantees on f itself. Note with a general
compiler for f (which we have for both flavours of our system), it is easy but
inefficient to keep f private.4

2.2 Threat Model and Requirements

We informally consider an OTP to be secure if the following properties are
achieved: (1) Alice’s input a is confidential from Bob; (2) Bob’s input b is con-
fidential from Alice, and (3) no more than one b can be executed in f(a, b)
per device. We argue the security of our two systems in Sect. 8 but provide a
synopsis here first. Property 3 is enforced through a trusted execution environ-
ment, either directly (TXT-only variant in Sect. 4) or indirectly via a one-time
memory device (GC-based TXT in Sect. 5) as per the Goldwasser et al. construc-
tion. Given Property 3, we consider Property 1 to be satisfied if an adversary
learns at most negligible information about a when they choose b and observe
〈OTP, f(a, b), b〉 as opposed to simply 〈f(a, b), b〉, where OTP is the entire instan-
tiation of the system, including the TPM-sealed memory and system details (and
for the GC-variant: the garbled circuit and keys revealed through specifying b).
Property 2 is achieved by being provisioned an offline device that can compute
fa(b) without any interaction with Alice. There is a possibility that the device
surreptitiously stores Bob’s input and tries to leak it back to Alice. We discuss
this systems-level attack in Sect. 8. We also address a subtle adaptive security
attack in the full version of our paper.

The selection of TEE has to reflect the aforementioned Properties 1 and 3.
Property 3 is achieved by stateful (recording the one-time state) and integrity-
protected (enforcing one-timeness) execution, which is the fundamental purpose
of all today’s TEEs. Moreover, both Properties 1 and 3 mandate no information
leakage, which can occur through either software or physical side-channels. We
choose Intel TXT, primarily because of its exclusiveness, which means: TXT
occupies the entire system when secure execution is started and no other code
can run in parallel. This naturally avoids all software side-channels, an advantage
over non-exclusive TEEs. We do consider using non-exclusive TEEs as future
exploration when the challenge of software side-channels has been overcome,
e.g., for Intel SGX, the (recent) continually identified side-channel attacks, such
as Foreshadow [6], branch shadowing [29], cache attacks [4], and more; for ARM
TrustZone, there have been TruSpy [51], Cachegrab [36], etc. They all point to
the situation when trusted and untrusted code run on shared hardware.

The known physical side-channels can also be mitigated in the setting
of our OTP, i.e., DMA attacks are impossible if I/O protection is enable
4 Essentially, one would define a very general function we might call Apply that will

execute the first input variable on the second: y = Apply(f, b) = f(b). Since f is
now Alice’s private input, it is hidden. The implementation of Apply might be a
universal circuit where f defines the gates’ logic—in this case Apply would leak (an
upper-bound on) the circuit size of f but otherwise keep f private.
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(by the chipset), and the cold-boot attack [17] can be avoided if we choose
computers with RAM soldered on the motherboard (cannot be removed to be
mounted on another machine, see Sect. 8).

We strive for a reasonable, real-world threat model where we mitigate attacks
introduced by our system but do not necessarily resolve attacks that apply
broadly to practical security systems. Specifically, we assume:

• Alice is monetarily driven or at least curious to learn Bob’s input, while Bob
is similarly curious to learn the algorithm of the circuit and/or re-evaluate it
on multiple inputs of his choice.

• We assume Alice produces a device that can be reasonably assured to execute
as promised (disclosed source, attestation quotes over an integral channel, and
no network capabilities).

• We assume that Alice’s circuit (including the function and her input) actually
constitutes the promised functionality (e.g., is a legitimate genomic test).

• We assume the sound delivery of the device to Bob. We do not consider
devices potentially subverted in transit which applies to all electronics [40].

• Both Alice and Bob have to trust the hardware manufacturer (in our case,
Intel and the TPM vendor) for their own purposes. Alice trusts that the circuit
can only be evaluated once on a given input from Bob, while Bob trusts that
the received circuit is genuine and the output results are trustworthy.

• Bob has only bounded computational power, and may go to some lab effort,
such as tapping pins on the motherboard and cloning a hard drive, but not
efforts as complicated as imaging a chip [27,28,43].

• Components on the motherboard cannot be manipulated easily (e.g., forward-
ing TPM traffic from a forged chip to a genuine one by desoldering).

2.3 Intel TXT and TPM

Intel Trusted Execution Technology (TXT) is also known as “late launch”, for its
capability to launch secure execution at any point, occupying the entire system.
When the CPU enters the special mode of TXT, all current machine state is
discarded/suspended and a fresh secure session is started, hence its exclusiveness,
as opposed to sharing hardware with untrusted code.

Components. TXT relies on three mandatory hardware components to func-
tion: (a) CPU. The instruction set is extended with a few new instructions for the
management of TXT execution. (b) Chipset. The chipset (on the motherboard)
is responsible for enforcing I/O protection such that the specified range of I/O
space is only accessible by the protected code in TXT; and (c) TPM. Trusted
Platform Module [45] is a microchip, serving as the secure storage (termed Secure
Element). Its PCR (Platform Configuration Register) is volatile storage contain-
ing the machine state, in the form of concatenated hash values. There are also
multiple PCRs for different purposes. On the TPM, there is also non-volatile
storage (termed NVRAM ), allocated in the unit of index of various sizes. Mul-
tiple indices can be defined depending on the capacity of a specific TPM model.
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Measured Launch. A provisioning stage is always involved where the platform
is assumed trusted and uncompromised. A piece of code is measured (similar to
hashing) and the measurements are stored in certain TPM NVRAM indices
as policies. Thereafter (in our case in the normal execution mode with Bob),
the program being loaded is measured and compared with the policies stored in
TPM. The system may then abort execution if mismatch is detected, or otherwise
proceed. This process is enforced by the CPU.

Machine State Binding. As run-time secrecy (secret in use) is ensured by
measured launch and I/O isolation, we also need secrecy for stored data (secret
at rest). Alice’s input should not be learned by Bob when the device is shipped
to him. From the start of TXT execution, each stage measures the next stage’s
code and extends the hash values as measurement to the PCR (concatenated
and hashed with the existing value). This way, the measurements are chained,
and at a specific time the PCR value reflects what has been loaded before. The
root of this chained trust is the measured launch.

Such chained measurements (in PCRs) can be used to derive the key for
data encryption, so that only when a desired software stack is running can the
protected data be decrypted. This cryptographic operation performed by the
TPM is termed sealing. A piece of data sealed under certain PCRs can only
be unsealed under the same PCRs, hence bound to a specific machine state.
The sealed data (ciphertext) can be stored anywhere depending on its size. It is
noteworthy to mention that there exists a distinct equivalent of sealing which,
instead of just encryption, stores data in a TPM NVRAM index and binds its
access to a set of PCRs. As a result, without the correct machine state, the
NVRAM index is completely inaccessible (read/write) and thus replaying the
ciphertext is prevented. We term it PCR-bound NVRAM sealing in this paper
and use it for our OTP prototype implementation.

3 Related Work

In the original one-time program paper by Goldwasser et al. [12], OTM is left
as a theoretical device. In the ensuing years, there have been some design sug-
gestions based on quantum mechanisms [5], physically unclonable functions [24],
and FPGA circuits [21]. (a) Järvinen et al. [21] provide an FPGA-based imple-
mentation for GC/OTP, with a GC evaluation of AES, as an example of a com-
plex OTP application. They conclude that although GC/OTP can be realized,
their solution should be used only for “truly security-critical applications” due
to high deployment and operational costs. They also provide a cryptographic
mechanism for protecting against a certain adaptive attack with one-time pro-
grams; it is tailored for situations where the function’s output size is larger
than the length of a special holdoff string stored at each OTM. (b) Kitamura
et al. [25] realize OTP without OTM by proposing a distributed protocol, based
on secret sharing, between non-colluding entities to realize the ‘select one key;
delete the other key’ functionality. This introduces further interaction and enti-
ties. Our approach is in the opposite direction: removing all interaction (other
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than transfer of the device) from the protocol. (c) Prior to OTP being proposed,
Gunupudi and Tate [16] proposed count-limited private key usage for realizing
non-interactive oblivious transfer using a TPM. Their solution requires changes
in the TPM design (due to lack of a TEE). In contrast, we utilize unmodified
TPM 1.2. (d) In a more generalized setting, ICE [41] and Ariadne [42] con-
sider the state continuity of any stateful program (including N-timeness) in the
face of unexpected interruption, and propose mechanisms to ensure both roll-
back protection and usability (i.e., liveness). We solve the specific problem of
one-timeness/N-timeness, focusing more on how to deal with input/output and
its implication on performance. We do sacrifice liveness (i.e., we flip the one-
timeness flag upon entry and thus the program might run zero time if crashed
halfway). We believe their approaches can be applied in conjunction with ours.

4 System 1: TXT-Only

Overview. In the first system, we propose to achieve one-timeness by running
the protected program in TEE only once (relying on logic integrity) and stor-
ing its persistent state (e.g., the one-time indicator) in a way that it is only
accessible from within the TEE. To eliminate information leakage from soft-
ware side-channels, we have chosen Intel TXT for its exclusiveness (i.e., no other
software in parallel).5 We hence name this design TXT-only.

To achieve minimal TCB (Trusted Computing Base) and simplicity, we
choose native C programming in TXT (as opposed to running an OS/VM).
Therefore, for one-time programs that have an existing implementation in other
languages, per-application adaptation is required (cf. similar porting effort is
needed for the GC-based variant in Sect. 5). New programs may not require
extra effort.

Design. We briefly describe the components and workflow of the TXT-only
system as follows. A one-time indicator (flag) is sealed into the PCR-bound TPM
NVRAM to prevent replay attacks. The indicator is checked and then flipped
upon entry of the OTP. Without network connection, the device shipped to the
client can no longer leak any of the client’s secrets to the vendor. Therefore, only
the vendor’s secret input has to be protected. We TPM-seal the vendor input on
hard drive for better scalability, and there is no need to address replay attacks
for vendor input as one-timeness is already enforced with the flag.

The OTP program is loaded by the Intel official project tboot [20] and GRUB.
It complies with the Multiboot specification [11], and for accessing TPM, we
reuse part of the code from tboot, and develop our own functions for commands
that are unavailable elsewhere, e.g., reading/writing indices with PCR-bound
NVRAM sealing. Since we do not load a whole OS into TXT with tboot, we
cannot use OS services for disk I/O access; instead, we implement raw PATA
(Parallel ATA, a legacy interface to the hard drive, compatible mode with
SATA) logic and directly access disk sectors with DMA (Direct Memory Access).
5 We consider various TEEs and justify this choice in the full version of our paper.
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Fig. 1. Our realization of OTPs spans two phases when relying on TXT alone for the
entire computation. Alice is active only during phase 1; Bob only during phase 2.

In the provisioning mode, the OTP program performs a one-time setup, such as
initiating the flag in NVRAM, sealing (overwriting) Alice’s secret, etc. Once the
normal execution mode is entered, the program will refuse to run a second time.

Memory Exposure. As an optional feature for certain computers with swap-
pable RAM, we expose the unsealed vendor input in very small chunks during
execution. For example, if the vendor input has 100 records, we would unseal one
record into RAM each iteration for processing the whole user input. This way, in
case of the destructive cold boot attack, the adversary only learns one-hundredth
of the vendor’s secret, and no more attempts are possible (the indicator is already
updated).

4.1 TXT-Only Provisioning/Evaluation.

Figure 1 gives an overview of TXT-only, illustrating the initial provisioning by
Alice and evaluation of the function upon delivery to Bob. Note that what is
delivered to Bob is the entire computer in our prototype (laptop or barebone
like Intel NUC).

Provisioning at Alice’s Site. At first, Alice is tasked with setting up the
box, which will be delivered to Bob. Alice performs the following: (1) Write the
integrity-protected payload/logic in C adapted to the native TXT environment,
e.g., static-linking any external libraries and reading input data in small chunks.
We may refer to it as the TXT program thereinafter. (2) In the provisioning
mode, initialize the flag to 0 and seal.6 The one-timeness flag is stored with the
PCR-bound NVRAM sealing. Instead of depending on a password and regular
sealing, this is like stronger access-controlled ciphertext. (3) Seal Alice’s input
onto the hard drive.

6 A flag is more straightforward to implement than a TPM monotonic counter, thanks
to the PCR-bound NVRAM sealing, whereas a counter would involve extra steps
(such as attesting to the counterAuth password).



One-Time Programs Made Practical 653

Evaluation at Bob’s Site. After receiving the computation box from Alice,
Bob performs the following: (1) Place the file with Bob’s input on the hard drive.
(2) Load the TXT program in normal execution mode, which will read in Bob’s
input and unseal Alice’s input to compute on. (3) Receive the evaluation result
(e.g., from the screen or hard drive). As long as it is Bob’s first attempt to run
the TXT program, the computation will be permitted and the result will be
returned to Bob. Otherwise, the TXT program will abort upon loading in step
(2), as shown in Fig. 1.

5 System 2: GC-Based

As seen in our TXT-only approach to OTP (System 1) the data processing
for protection is only applied to Alice’s input (with either sealing/unsealing or
encryption/decryption), and Bob’s input is always exposed in plaintext due to
the machine’s physical possession by Bob. Intuitively, we may think that it is
a good choice when Alice’s input is relatively small regardless of Bob’s input
size. However, there might be other applications where Alice’s input is substan-
tially larger and become the performance bottleneck. Is there a construction that
complements TXT-only and is less sensitive to Alice’s input size? The answer
may lie in garbled circuits. During garbled circuit execution, randomly generated
strings (or keys) are used to iteratively unlock each gate until arriving at the final
output. Alice’s input (size) is only “reflected” in the garbled circuit (assumed
not trivially invertible [12]), and the key pairs (whose number is determined by
Bob’s input size, not to do with Alice’s) are sealed/encrypted, hence insensitive
to Alice’s input size.

To adapt garbled circuits for OTP, key generation and key selection steps
are separated. As long as we limit key selection to occur a single time, and
the unchosen key of each key pair is never revealed, we can prevent running a
particular circuit on a different input. To prevent keys from being selected more
than once, we need to instantiate a one-time memory (OTM), which reveals the
key corresponding to each input bit and effectively destroys (or its equivalent)
the unchosen key in the key pair. OTM is left as a theoretical device in the
original OTP paper [12]. We realize it using Intel TXT and the TPM. As in
System 1, we seal a one-time flag into the PCR-bound TPM NVRAM, and
minimize the TXT logic to just handle key selection, in preparation for GC
execution. Alice will seal (in advance) key pairs for garbling Bob’s inputs. Bob
may then boot into TXT to receive the keys corresponding to his input. When
Bob reads a key off the device (say for input bit 0), the corresponding key (for
input bit 1) is erased.7 By instantiating an OTM in this manner, we can replace
interactive oblivious transfer (OT) and perform the rest of the garbled circuit
execution offline, passing key output from trusted selection. By combining TXT
and garbled circuits in this way, sealing complexity is now tied to Bob’s inputs.
We name this alternate construction GC-based (System 2).

7 Unselected keys remain sealed, if never unsealed it serves as cryptographic deletion.
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Fig. 2. In our GC-based approach to OTP, Alice generates key pairs and seals them.
Bob unseals the keys that correspond to his input and locally evaluates the function.

Performance Overhead with TPM Sealing. According to our measurement,
each TPM sealing/unsealing operation takes about 500 ms, and therefore 1 GB
of key pairs would need about 1000 h, which is infeasible. Instead, we generate
a random number as an encryption key (MK) at provisioning time and the GC
key pairs are encrypted with MK. We only seal MK. This way, MK becomes per-
deployment, and reprovisioning the system will not make the sealed key pairs
reusable due to the change of MK (i.e., the old MK is replaced by the new key).
Note that we could also apply the same approach to TXT-only (i.e., encrypting
Alice’s input with MK and sealing only MK), if needed by the application.

Memory Exposure. Similarly to the TXT-only OTP, our GC-based approach
can also optionally adapt to address the cold-boot attack. MK becomes a single
point of failure if exposed in such memory attacks, i.e., all key pairs can be
decrypted and one-timeness is lost. As with TXT-only, for smaller-sized client
input, we can seal the key pairs directly and only unseal into RAM in small
chunks.

5.1 Implementation

We use the Boolean circuit compiler Frigate [32] to implement the garbled cir-
cuit components of GC-based. We choose the Frigate compiler for the following
reasons: Frigate outperforms several other garbled-circuit compilers; it is also
extensively validated and found to produce correct and functioning circuits where
other compilers fail [32]. The interpreter and execution functionalities of Frigate
are separately referred to as Battleship. For our purposes, we split Battleship
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execution into two standalone phases: a key pair generation phase (gen) and a
function evaluation phase (evl). Our specific modifications to Battleship that
make split-phase execution possible are detailed in the full version of our paper.

Our GC-based approach to OTP relies on TXT for trusted key selection and
leaves the computation for garbled circuits, as shown in Fig. 2. In our setting,
Alice represents the vendor and Bob represents the client.

Provisioning at Alice’s Site. Alice sets up the OTP box by doing the follow-
ing: (1) Initialize flag to 0 and seal in the TXT program’s provisioning mode. (2)
Write and compile, using Frigate, the wire program (.wir), together with Alice’s
input, into the circuit.8 (3) Load the compiled .mfrig and .ffrig files, vendor’s
input, and the Battleship executable onto the box. (4) Write the TXT program
(for key selection) in the same way as in TXT-only. (5) Run Battleship in key-
generation mode to generate the k0

i and k1
i key-pairs corresponding to each of

the i bits of Bob’s input. These are saved to file. (6) Seal the newly generated
key pairs onto the hard-drive in provisioning mode of the TXT program. Alice is
able to generate the correct number of key pairs, since garbled circuit programs
take inputs of a predetermined size, meaning Alice knows the size of Bob’s input.
Costly sealing of all key pairs could be switched out for sealing of the master
key (MK) used to encrypt the key pairs.

Evaluation at Bob’s Site. Bob, upon receiving the OTP box from Alice,
performs the following steps to evaluate the function on his input: (1) Place
the file with Bob’s input bits on the hard drive. (2) Load the TXT program
in normal (non-provisioning) mode for key selection. (3) Receive selected keys
corresponding to Bob’s input bits; these are output to disk in plaintext. As long
as it is Bob’s first attempt to select keys, the TXT program will return the keys
corresponding to Bob’s input. Otherwise, the TXT program will abort upon
loading in step (2), as shown in Fig. 2. After Bob’s inputs have been successfully
garbled (or converted into keys) and saved on the disk, Bob can continue with
the evaluation properly. TXT is no longer required. (4) Reboot the system into
the OS (e.g., Ubuntu). (5) Launch Battleship in circuit-evaluation mode. (6)
Receive the evaluation result from Battleship. When Battleship is launched in
circuit-evaluation mode, the saved keys corresponding to Bob’s input are read
in. Battleship also takes vendor input (if not compiled into the circuit) before
processing the garbled circuit. The Boolean circuit is read in from the .mfrig
and .ffrig files produced by Frigate. Evaluation is non-interactive and offline.
The evaluation result is available only to Bob.

6 Case Study

We apply our proposed systems on a concrete use case based on genomic test-
ing as a prototype. Single nucleotide polymorphism (SNP) is a common form
8 The wire program may be written and compiled on a separate machine from that

which will be shipped to Bob. If Alice chooses to use the same machine, the (no
longer needed) raw wire code and Frigate executable should be removed from the
box before provisioning continues.
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of mutation in human DNA. Certain sets of SNPs determine the susceptibility
of an individual to specific diseases. Analyzing an individual’s set of SNPs may
reveal what kind of diseases a person may have. More generally, genomic data
can uniquely identify a person, as it not only gives information about a person’s
association with diseases, but also about the individual’s relatives [35]. Indeed,
advancements in genomics research have given rise to concerns about individual
privacy and led to a number of related work in this space. For instance, Canim
et al. [7] and Fisch et al. [10] utilize tamper-resistant hardware to analyze/store
health records. Other works [2,49] investigate efficient, privacy-preserving anal-
ysis of health data.

While a number of different techniques have been proposed for privacy-
preserving genomic testing, ours is the first work to address this using one-time
programs grounded in secure hardware. Other than providing one-timeness, the
proposed scheme also provides (i) non-interactivity, in which the user does not
need to interact with the vendor during the protocol, and (ii) pattern-hiding,
which ensures that the patterns used in vendor’s test are kept private from the
user. On the other hand, homomorphic encryption-based schemes [1] lack non-
interactivity and functional encryption-based schemes [34] lack non-interactivity
and pattern-hiding. We did not specifically implement these other techniques and
compare our solution with them. However, from the performance results that are
reported in the original papers, we can argue that our proposed scheme provides
comparable (if not better) efficiency compared to these techniques.

Our aim is to prevent the adversary (the client/Bob), who uses the device
for genomic testing, from learning which positions of his genome are checked
and how they are checked, specifically for the genomic testing of the breast can-
cer (BRCA) gene. BRCA1 and BRCA2 are tumor suppressor genes. If certain
mutations are observed in these genes, the person will have an increased prob-
ability of having breast and/or ovarian cancer [48]. Hence, genomic testing for
BRCA1 and BRCA2 mutations is highly indicative of individuals’ predisposition
to develop breast and/or ovarian cancer.

We aim also to protect the privacy of the vendor (the company/Alice) that
provides the genomic testing and prevent the case where the adversary extracts
the test, learns how it works, and consequently, tests other people without having
to purchase the test. We aim to protect both the locations that are checked on
the genome and the magnitude of the risk factor corresponding to that position.
Note that client’s input is secure, as Bob is provided the device and he does not
have to interact with Alice to perform the genomic test.

6.1 Genomic Test

In order to perform our genomic testing, we obtained the SNPs related with
BRCA19 along with their risk factors from SNPedia [8], an open source wiki site

9 Similarly, we can also list the SNPs for BRCA2 and determine the contribution of
the observed SNPs to the total risk factor.
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that provides the list of these SNPs. The SNPs that are observed on BRCA1 and
their corresponding risk factors for breast cancer are omitted here for brevity.

We obtain genotype files of different people from the openSNP website [14].
The genotype files contain the extracted SNPs from a person’s genome. At a
high level, for each SNP of the patient that is linked to BRCA1, we add the
corresponding risk factor to the overall risk.

If a BRCA1-associated SNP is observed in the patient’s SNP file, we check
the allele combination and add the corresponding risk factor to the total. In
order to prevent a malicious client from discovering which SNPs are checked, we
check every line in the patient’s SNP file. If an SNP related to breast cancer is
not observed at a certain position, we add zero to the risk factor rather than
skipping that SNP to prevent inference of checked SNPs using side channels.

Let i denote the reference number of an SNP and sji be the allele combination
of SNP i for individual j. Also, Si and Ci are two vectors keeping all observed
allele combinations of SNP i and the corresponding risk factors, respectively.
Then, the equation to calculate the total risk factor for individual j can be
shown as RFj =

∑
i f(sji ) where

f(sji ) =

{
Ci(�) if sji = Si(�) for � = 0, 1, . . . , |Si|
0 otherwise

For instance, for the SNP with ID i = rs28897696, Si = <AA,AC> and Ci =
<7, 6>. If the allele combination of SNP rs28897696 for individual j corresponds
to one of the elements in Si, we add the corresponding value from Ci to the total
risk factor.

6.2 Construction for GC-Based

The garbled circuit version of the genomic test presented in Sect. 6.1 is written
as wire (.wir) code accepted by the Frigate garbled circuit compiler. The code
follows the test description in Sect. 6.1, adjusting overall risk factor upon com-
paring allele-pairs of matching SNPs and explicitly adding zero when needed.

We choose Bob’s input from AncestryDNA files available on the openSNP
website [14]. We perform preprocessing on these to obtain a compact representa-
tion of the data. Alice’s input is hard-coded into the circuit at compile-time, by
initializing an unsigned int of vendor input size and assigning each bit’s value
using Frigate’s wire operator.

Final Input Representation. Following the original design of Battleship, inputs
are accepted as a single string of hex digits (each 4 bits). Each digit is treated sep-
arately, and input is parsed byte-by-byte (e.g., 4116 is represented as 100000102).

We use 7 hex digits (28 unsigned bits) for the SNP reference number and a
single hex digit (4 unsigned bits) to represent the allele pair out of 16 possible
combinations of A/T/C/G. Alice’s input contains 2 more hex digits (8 signed
bits) for risk factor, supporting individual risk factor values ranging from -128
to 127. We keep risk factor a signed value, since some genetic mutations lower
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the risk of disease. Although we did not observe any such mutations pertaining
to BRCA1, our representation gives extensibility to tests for other diseases.

Output Representation. The program outputs a signed 16-bit value, allowing us
to support cumulative risk factor ranging from −32,768 to 32,767.10

6.3 Construction for TXT-only

In TXT-only, the genomic test logic of Sect. 6.1 is ported in pure C but largely
keeps the representation used by the GC program (Sect. 6.2). Alice’s input is in
the form of 7 hex digits for the SNP ID, 1 hex digit for the allele pair and 2
digits for the risk factor. Bob’s input is 2 digits shorter without the risk factor.

We pay special attention to minimizing exposure of Alice’s input in RAM
to defend against potential cold-boot attack. We achieve this by processing one
record at a time performing all operations on and deleting it before moving on to
the next record. We also seal each record (10 bytes) into one sealed chunk (322
bytes), which consumes more space. In each iteration, we unseal one of Alice’s
records and compare with all of Bob’s records. For certain laptops and other
computers with RAM soldered on the motherboard, this is optional.

Table 1. TXT-only results with ven-
dor input fixed at 880 bits and varying
client input size, averaged over 10 runs.
Prov./Exec. refers to the provisioning
mode and execution mode respectively.

Client input (bits) Prov. (ms) Exec. (ms)

224 5640.17 9394.58

2K 5640.17 9393.88

22K 5640.17 9388.27

224K 5640.17 9426.56

2M 5640.17 11078.19

22M 5640.17 33427.50

Table 2. TXT-only results with client
input fixed at 224k bits and varying ven-
dor input size, averaged over 10 runs. Per-
formance of TXT-only is linear and time
taken is proportional to vendor input size.

Vendor input (bits) Prov. (ms) Exec. (ms)

880 5640.17 9426.56

8800 53515.75 92551.43

88000 527026.89 921338.53

7 Performance Evaluation

In this section, we evaluate the two OTP systems’ performance/scalability, with
varying client and vendor inputs, and try to statistically verify the suitability of
the two intuitive designs in different usage scenarios. We perform our evaluation

10 This can easily be adjusted, but is accompanied by substantial changes in the result-
ing circuit size. For example, an 11 GB circuit that outputs 16 bits grows to 18 GB
by doubling the output size to 32 bits. We conservatively choose 16 bits for demon-
stration purposes, but the output size may be reduced as appropriate.
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on a machine with a 3.50 GHz i7-4771 CPU, Infineon TPM 1.2, 8 GB RAM, 320 GB
primary hard-disk, additional 1 TB hard-disk11 functioning as a one-time memory
(dedicated to storing garbled circuit, and client andvendor input), runningUbuntu
14.04.5 LTS. In one case, we required an alternate testing environment: a server-
class machine with a 40 core 2.20 GHz Intel Xeon CPU and 128 GB of RAM.12

We perform experiments to determine the effects of varying either client or
vendor input size. Based on the case study, the vendor has 880 bits and the
client has 22.4M bits of input, so we use 224 and 880 as the base numbers for
our evaluation. We multiply by multiples of 10 to show the effect of order-of-
magnitude changes on inputs. We start with 224 for client and 880 for vendor
inputs. When varying client input, we fix vendor input at 880 bits. When varying
vendor input, we fix client input at 224K bits.

7.1 Benchmarking TXT-only

Varying Client Input. Table 1 shows the timing results for TXT-only pro-
visioning and execution with fixed vendor input and varying client input size.
During provisioning, only the vendor input is sealed, so the provisioning time is
constant in all cases. As client input size increases, so does execution time, but
moderately. Performance is insensitive to client input size up through the 224K
case. Even for the largest (22M) test case, increasing the client input size by two
orders of magnitude results only in a slowdown by a factor of 3.5x.

Varying Vendor Input. Table 2 shows the timing results with fixed client input
and varying vendor input size. Although we only tested against three configura-
tions, we see an order-of-magnitude increase in vendor input size is accompanied
by an order-of-magnitude increase in both provisioning and execution times.

7.2 Benchmarking GC-Based

Table 3. GC-based results with client input
fixed at 224k bits, varying vendor input size,
and encryption of keys by a sealed master key,
averaged over 10 runs.

Vendor

input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

880 2323.7 4244.03 2508.73 31815.4

8800 3198.7 4244.03 2508.73 32200.4

88000 3286.9 4244.03 2508.73 32000.9

We use the same experimental
setup as used in TXT-only, but
with additional time taken by the
GC portion. Vendor and client
each incur runtime costs from a
GC (gen/evl) and a sealing-based
(Prov./Sel.) phase.

11 We use a second disk to simulate what is shipped to the client (with all test data con-
solidated), separate from our primary disk for development.

12 Another option would have been to upgrade the memory of the initial evaluation
machine, but we chose to forgo this, as a test run on the server-class machine revealed
that upwards of 60 GB would be required (not supportable by the motherboard).
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Table 4. GC-based results with vendor input
fixed at 880 bits, varying client input size, and
encryption of keys by a sealed master key, aver-
aged over 10 runs. Provisioning- and execution-
mode times were measured separately. *s indi-
cate tests run in an alternate environment, due
to insufficient memory on our primary setup.

Client input

(bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

224 1503.7 843.64 600.55 1350.8

2K 1318.9 906.70 688.62 1631.8

22K 1659.7 991.91 724.24 3643.7

224K 2323.7 4244.03 2508.73 31815.4

2M 16842.8 33934.54 19188.31 305362.8

22M 148387.9* 346606.87 283704.57 3108271*

Varying Vendor Input. We are
interested in whether GC-based is
less sensitive to the size of Alice’s
input than TXT-only ; see Table 3.
Since provisioning (Prov.) involves
sealing a constant number of key
pairs, and selection (Sel.) is depen-
dent on the unsealing of these key
pairs to output one key from each,
there is no change. Both Battle-
ship gen and evl mode timing is
largely invariant, as well. Whereas
System 1 performance was linearly
dependent on vendor input size, we
observe that GC-based (System 2)
is indeed not sensitive to vendor input.

Table 5. Performance for TXT-only and GC-
based OTP implementations of the BRCA1
genomic test, averaged over 10 runs. Vendor
input is 880 bits. Client input is 22,447,296
bits. *s indicate tests run in an alternate envi-
ronment, due to insufficient memory on our pri-
mary testing setup.

OTP type Mode Timing (ms)

TXT-only Prov. 5640.17

Exec. 33427.50

GC-based gen 148387.9*

Prov. 346606.87

Sel. 283704.57

evl 3108271*

Varying Client Input. For com-
pleteness, we also examine the
effects of varying client input size
on runtime; see Table 4. Prov. and
Sel. stages are both slow as client
input size increases, since more key
pairs must be sealed/unsealed. gen
and evl times are also affected by
an increase in client input bits.
Most notably, evl demonstrates a
near order-of-magnitude slowdown
from the 224K case to the 2M case,
and the slowdown trend continues
into the 22M case (despite using
the better-provisioned machine to
evaluate the 22M case). We indeed find that TXT-only OTP is complemented
by GC-based OTP, where performance is sensitive to client input.

7.3 Analysis

Onto our real-world genomic test (among other padded data sets for the eval-
uation purpose), Alice’s input comprises the 22 SNPs associated with BRCA1.
Each SNP entry takes up 40 bits, so Alice’s input takes up 880 bits. Bob’s input
comprises the 701,478 SNPs drawn from his AncestryDNA file, each of which
is represented with 32 bits, adding up to a total size of 22,447,296 bits. This
genomic test corresponds to our earlier experiment with vendor input size of 880
bits and client input size of 22M bits.

Table 5 puts together the results for both OTP systems. Even at first glance,
we see that TXT-only OTP vastly outperforms the GC-based OTP. Provisioning
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is two orders of magnitude slower in GC-based OTP, and trusted selection itself
is an order of magnitude slower than the entire execution mode of TXT-only
OTP. gen and evl further introduce a performance hit to GC-based OTP (again,
despite the fact that we evaluated this case on a better-provisioned machine).
TXT-only is the superior option for our genomic application.

Choosing One OTP. We already saw in Sect. 7.1 that TXT-only OTP is less
sensitive to client input, whereas we saw in Sect. 7.2 that GC-based OTP is less
sensitive to vendor input. We illustrate the four cases in Table 6.

Table 6. Depending on the input sizes
of vendor and client, one system may
be preferred to the other. GC-based
OTP is favorable when large vendor
input is paired with small client input;
TXT-only OTP otherwise.

Small vendor

+Small client

TXT-only

Small vendor

+Large client

TXT-only

Large vendor

+Small client

GC-based

Large vendor

+Large client

TXT-only

In this specific use-case of genomic
testing, we are in the upper-right quad-
rant and thus the TXT-only OTP domi-
nates. However, other use cases (consid-
ered in the full version of our paper)
might occupy the lower-left quadrant; if
so, GC-based will outperform the TXT-
only OTP. What should we do if both
inputs are of similar size (i.e., equally
“small” or “large”)? A safe bet is to stick
with the TXT-only OTP. Even though
GC technology continues to improve, gar-
bled circuits will always be less efficient
than running the code natively.

7.4 Another Use Case: Database Queries

To give an example where the vendor input can be significantly large, we may
consider another potential and feasible application of our proposed OTP designs,
where GC-based can outperform TXT-only. It is also in a medical setting where
the protocol is between two parties, namely a company that owns a database
consisting of patient data and a research center that wants to utilize patient
data. The patient data held at the company contains both phenotypical and
genotypical properties. The research center wants to perform a test to determine
the relationship of a certain mutation (e.g., a SNP) with a given phenotype.
There may be three approaches for this scenario:

1. Private information retrieval [9]: PIR allows a user to retrieve data from
a database without revealing what is retrieved. Moreover, the user also does
not learn about the rest of the data in the database (i.e., symmetric PIR [37]).
However, it does not let the user compute over the database (such as calcu-
lating the relationship of a certain genetic variant with a phenotype among
the people in the database).

2. Database is public, query is private: The company can keep its database
public and the research center can query the database as much as it wants.
However, with this approach the privacy of the database is not preserved.
Moreover, there is no limit to the queries that the research center does.
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As an alternative to this, database may be kept encrypted and the research
center can run its queries on the encrypted database (e.g., homomorphic
encryption). The result of the query would then be decrypted by the data
owner at the end of the computation [23]. However, this scheme introduces
high computational overhead.

3. Database is not public, query is exposed: In this approach, the com-
pany keeps its database secret and the research center sends the query to
the company. This time the query of the research center is revealed to the
company and the privacy of the research center is compromised.

In the case of GC-based, the company stores its database into the device (in
the form of garbled circuit) and the research center purchases the device to run
its query (in TXT) on it. This system enables both parties’ privacy. The device
does not leak any information about the database and also the company does not
learn about the query of the research center, as the research center purchases
the device and gives the query as an input to it. In order to determine the
relationship of a certain mutation to a phenotype, chi-squared test can be used
to determine the p-value, that helps the research center to determine whether a
mutation has a significant relation to a phenotype. We leave this to future work.

8 Security Analysis

(a) Replay attacks. The adversary may try to trick the OTP into execut-
ing multiple times by replaying a previous state, even without compromising
the TEE, or the one-time logic therein. The secrets (e.g., MK) only have per-
deployment freshness (fixed at Alice’s site). Nevertheless, in our implementation,
the TPM NVRAM indices where the one-timeness flag and MK are stored are
configured with PCR-bound protection, i.e., outside the correct environment,
they are even inaccessible for read/write, let alone to replay.

(b) Memory side-channel attacks. Despite the hardware-aided protection
from TEE, sensitive plaintext data must be exposed at certain points. For
instance, MK is needed for encrypting/decrypting key pairs, and the key pairs
when being selected must also be in plaintext. Software memory attacks [6,26,30]
do not apply to our OTP systems, as the selected TEE (TXT) is exclusive. In our
design, the code running in TEE does not even involve an OS, driver, hypervisor,
or any software run-time. There are generally two categories of physical mem-
ory attacks: non-destructive ones that can be repeated (e.g., DMA attacks [38]);
and the destructive (only one attempt) physical cold-boot attack [17]. All I/O
access (especially DMA) is disabled for the TEE-protected regions and thus
DMA attacks no longer pose a threat.

The effective cold-boot attack requires that the RAM modules are swappable
and plaintext content is in RAM. For certain laptops or barebone computers [22],
their RAM is soldered on the motherboard and completely unmountable (and
thus immune). To ensure warm-boot attacks [47] (e.g., reading RAM content on
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the same computer by rebooting it with a USB stick) are also prevented, we
can set the Memory Overwrite Request (MOR) bit to signal the UEFI/BIOS
to wipe RAM on the next reboot before loading any system (cf. the official
TCG mitigation [44]). We do take into account the regular desktops/laptops
vulnerable to the cold-boot attack: For small-sized secrets like MK, existing
solutions [15,33,39,46] can be used, where CPU/GPU registers or cache memory
are used to store secrets. For larger secrets, like the key pairs/vendor input, we
perform block-wise processing so that at any time during the execution, only
a very small fraction is exposed. Also, as cold-boot attack is destructive, the
adversary will not learn enough to reveal the algorithm or reuse the key pairs.
At least, the vendor can always choose computers with soldered-down RAM.

(c) Attack cost. Bob may try to infer the protected function and vendor inputs
by trying different inputs in multiple instances. This attack may incur a high cost
as Bob will need to order the OTP from Alice several times. This is a limitation
of any offline OTP solution, which can only guarantee one query per box.

(d) Cryptographic attacks. The security of one-time programs (and garbled
circuits) is proven in the original paper [12] (updated after caveat [3]), so we do
not repeat the proofs here.

(e) Clonability. Silicon attacks on TPM can reveal secrets (including the
Endorsement Key), but chip imaging/decapping requires high-tech equipment.
Thus, cloning a TPM or extracting an original TPM’s identity/data to populate
a virtual TPM (vTPM) is considered unfeasible. Sealing achieves platform-state-
binding without attestation, so non-genuine environments (including vTPM) will
fail to unseal. We discuss TPM relay and SMM attacks in the full version of our
paper. Furthermore, there has been a recent software attack [18] that resets and
forges PCR values during S3 processing exploiting a TPM 2.0 flaw (SRTM) and a
software bug in tboot (DRTM). They (allegedly patched) do not pose a threat to
our OTP design, as neither SRTM nor any OS software (e.g., Linux) is involved,
not to mention our OTP does not support/involve any power management.

9 Concluding Remarks

Until now, one-time programs have been theoretical or required highly cus-
tomized/expensive hardware. We shift away from crypto-intensive approaches
to the emerging but time-tested trusted computing technologies, for a practical
and affordable realization of OTPs. With our proposed techniques, which we will
release publicly, anyone can build a one-time program today with off-the-shelf
devices that will execute quickly at a moderate cost. The cost of our proposed
hardware-based solution for a single genomic test can be further diluted by exten-
sion to support multiple tests and multiple clients on a single device (which our
current construction already does). The general methodology we provide can be
adapted to other trusted execution environments to satisfy various application
scenarios and optimize the performance/suitability for existing applications.
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A Appendix

For space considerations, we also publish a full version [52] of this paper that
provides additional information as follows:

• More background helpful for understanding on one-time programs, garbled
circuits, and one-time memories;

• Discussion of an adaptive security attack on OTP systems;
• Detailed modifications we make to Battleship;
• Preprocessing steps for our case study application;
• Additional one-time program use cases;
• A list of the SNPs associated with BRCA1;
• Details of our genomic algorithm;
• Comments on porting efforts required for OTP; and
• Discussion of more attacks (e.g., SMM and TPM relay attacks).
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Abstract. The conventional (election) voting systems, e.g., representa-
tive democracy, have many limitations and often fail to serve the best
interest of the people in a collective decision-making process. To address
this issue, the concept of liquid democracy has been emerging as an
alternative decision-making model to make better use of “the wisdom of
crowds”. However, there is no known cryptographically secure e-voting
implementation that supports liquid democracy.

In this work, we propose a new voting concept called statement voting,
which can be viewed as a natural extension of the conventional voting
approaches. In the statement voting, instead of defining a concrete elec-
tion candidate, each voter can define a statement in his/her ballot but
leave the vote “undefined” during the voting phase. During the tally
phase, the (conditional) actions expressed in the statement will be car-
ried out to determine the final vote. We initiate the study of statement
voting under the Universal Composability (UC) framework, and propose
several construction frameworks together with their instantiations. As
an application, we show how statement voting can be used to realize a
UC-secure liquid democracy voting system. We remark that our state-
ment voting can be extended to enable more complex voting and generic
ledger-based non-interactive multi-party computation. We believe that
the statement voting concept opens a door for constructing a new class
of e-voting schemes.

1 Introduction

Elections provide people with the opportunity to express their opinions in the
collective decision making process. The existing election/voting systems can be
mainly divided into two categories: direct democracy and representative democ-
racy. Unfortunately, either approach has many limitations, and it often fails to
serve the best interest of the people. For example, to make correct decisions,
the voters have to invest tremendous effort to analyze the issues. The cost of
identifying the best voting strategy is high, even if we assume that the voter has
collected all the necessary information accurately. In addition, misinformation
campaigns often influence the voters to select certain candidates which could be
against the voters’ true interests. We here ask the following challenging question:
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Is it possible to introduce new technologies to circumvent the implementa-
tion barriers so that more effective democracy can be enabled?

A New Concept. We could approach the above problem via multiple angles.
In this paper, we propose a new powerful concept: statement voting. Statement
voting can be viewed as a natural extension of traditional candidate voting.
Instead of defining a fixed election candidate, each voter can define a statement
in his/her ballot but leave the vote “undefined” during the voting phase. During
the tally phase, the (conditional) actions expressed in the statement will be car-
ried out to determine the final vote. More specifically, in a statement voting, the
ballots typically contain a conditional statement that requires external inputs
(a.k.a. parameters and/or arguments) to be executed. For simplicity of illustra-
tion, here we consider (nested) if-statements or switch-statements: If A and B
then C1 else C2, where A,B are conditions and C1, C2 are election candidates.
We emphasize that A and B are usually not defined yet at the time this ballot
is created; In the case that, A and B are defined, i.e., all the necessary infor-
mation is readily collected during the voting phase, the voter can evaluate such
a statement himself, and statement voting boils down to conventional voting.
Thus, statement voting can be viewed as a non-trivial extension of conventional
voting. We note that statement voting can be very flexible. For instance, a ballot
statement could be “if tomorrow is rainy, I vote for ‘staying at home’; otherwise,
I vote for ‘hiking’.” Note that the ballot can be cast today without even being
aware of tomorrow’s weather.

Single Transferable Vote (STV) is a special case of statement voting, where
the voters rank the election candidates instead of naming only one candidate in
their ballots. The ranked candidate list together with the STV tally rule can be
viewed as an outcome-dependent statement. Roughly speaking, the statement
declares that if my favorite candidate has already won or has no chance to win,
then I would like to vote for my second favorite candidate, and so on1.

Modeling Statement Voting. We provide a rigorous modeling for statement
voting. More concretely, we model statement voting in the well-known Universal
Composability (UC) framework, via an ideal functionality FSV. The functionality
interacts with voters and trustees, where trustees are the set of voting committee
members who prepare the election and calculate the tally result. In our formu-
lation, we introduce a family of functionalities to facilitate various realizations.
In practice, there is a trade-off between efficiency and privacy guarantees; typi-
cally, more efficient constructions yield more privacy leakage. To capture various
leakage scenarios, in our ideal functionality, a working table W is introduced to
trace the election transcripts. Depending on which parties are corrupted (and
which scheme is considered), some part of the working table will be leaked to
the adversary.

Realizing Statement Voting. In this work, we provide several methods to
implement statement voting. Similar to most conventional e-voting systems, we
1 Note that this is not a complete description of STV. For those readers who are

unfamiliar with STV, please see its full definition to avoid misunderstanding.
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assume a trusted Registration Authority (RA) to ensure voter eligibility and a
consistent Bulletin Board (BB) where the voting transactions and result will be
posted. The protocol involves a set of voters and a set of trustees, where the
trustees are the set of voting committee members who prepare the election and
compute the tally.

A Fully Homomorphic Encryption (FHE) Based Scheme. Intuitively, in this
scheme, the trustees first run a distributed key generation protocol to setup the
voting public key pk. Each voter Vi then encrypts, signs and submits their vot-
ing statements, xi (in forms of (PIDi,Encpk(xi))) to the BB. To prevent re-play
attacks, non-interactive zero-knowledge (NIZK) proofs are necessary to ensure
the voter knows the plaintext included in his/her submitted ciphertext. After
that, the tally processing circuit is evaluated over {(PIDi,Encpk(xi))}i∈[n] by
every trustee. The final tally ciphertext is then decrypted by the trustees and
the result will be announced on the BB.

A Publicly Auditable MPC Based Scheme. Intuitively, we can adopt BDO-type
of publicly auditable MPC [4], where the trustees form the MPC system. Dur-
ing the preparation phase, they pre-compute sufficiently many correlated ran-
domness (e.g., Beaver triples), and also set up a voting public key. Each voter
Vi then encrypts, signs and submits their voting statements, xi (in forms of
(PIDi,Encpk(xi))) together with necessary NIZK proofs to the BB. After that,
the trustees perform MPC online computation to first decrypt those encrypted
ballots and then evaluate the tally processing circuit over the secretly shared
ballots. Finally, the tally result will be posted on the BB. Note that during the
online phase, the BDO MPC scheme also posts audit information on the BB to
enable public verifiability.

Application: Liquid Democracy. In the past decades, the concept of liq-
uid democracy [16] has been emerging as an alternative decision making model
to make better use of collective intelligence. Liquid democracy is a hybrid of
direct democracy and representative democracy, where the voters can either
vote directly on issues, or they can delegate their votes to representatives who
vote on their behalf. Due to its advantages, liquid democracy has received high
attentions since the spread of its concept; however, there is no provably secure
solution in the form of either paper-voting or e-voting yet. Liquid democracy
can be viewed as a special case of statement voting. The vote delegation can
be expressed as a target-dependent statement, where a voter can define that
his/her ballot is the same as the target voter’s ballot. Therefore, we can have an
immediate construction for liquid democracy based on the above FHE-based and
MPC-based schemes. In addition to those “generic” constructions, we also show
how to realize liquid democracy with a more efficient construction. In Sect. 3.1,
we first define an ideal functionality for liquid democracy, and we then provide
a mix-net based construction. Note that the tally processing function must be
symmetric, otherwise we cannot use mix-net.

Further Remarks. In this work, we initiate the study of statement voting and
liquid democracy. Our statement voting concept can be significantly extended
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to support much richer ballot statements. It opens a door for constructing a new
class of e-voting schemes. This area of research is far from being completed, and
our design and modeling ideas can be further improved. For example, if there is
a delegation loop in which a set of voters delegate their votes to each other while
no one votes, then what should be the “right” policy? One possible approach is
to extend the delegation statement to include a default vote. When a delegation
loop exists, the involved ballots could be counted as their default votes. On the
other hand, if we don’t allow delegation loop in a liquid democracy voting, to
what extend can we guarantee voter privacy? How to refine the conventional
e-voting privacy to fit liquid democracy is still an open problem. We emphasize
that, voting policies can be heavily influenced by local legal and societal condi-
tions. How to define “right” voting policy itself is a very interesting question.
We believe our techniques have the potential to help people to identify suitable
voting policies which can further eliminate the barriers to democracy. Finally,
we note that several important security requirements, e.g., coercion resilience,
have not been investigated in this work. See more details in Sect. 4.

Related Work. To our best knowledge, Ford [16] first officially summarized the
main characteristics of liquid democracy and brought it to the vision of computer
science community. However, in terms of implementation/prototyping, there was
no system that can enable liquid democracy until very recently. All the exist-
ing liquid democracy voting systems only focus on the functionality aspect of
liquid democracy, and no privacy or some other advanced security properties
were considered. For instance, Google Votes [20] is a decision-making system
that can support liquid democracy, and it is built on top of social networks,
e.g., the internal corporate Google+ network. Similarly, systems such as Liq-
uidFeedback [26], Adhocracy [1], GetOpinionated, [15] also fail to offer provable
security guarantees. It is worth mentioning that Sovereign [29] is a blockchain-
based voting protocol for liquid democracy; therefore, its privacy is inherited
from the underlying blockchain. As a special case of liquid democracy, Kulyk
et al. proposed several proxy voting schemes [23–25]. In terms of UC modeling
on e-voting. Groth [18] gave the first UC definition for an e-voting system, and
he proposed a protocol using (threshold) homomorphic encryption. Moran and
Naor [27] later studied the privacy and receipt-freeness of an e-voting system in
the stand-alone setting. Unruh and Muller-Quade [30] gave a formal study of
e-voting coerciability in the UC framework. Alwen et al. [3] considered stronger
versions of coerciability in the MPC setting under UC framework. Almost all the
end-to-end verifiable e-voting systems [2,13,21,22] requires a consistent bulletin
board. Finally, our temporary ID matching technique is closely related to the
queried term matching technique used in UnLynx[17] and the anonymous ID
linking technique used in [31].

2 Modeling

The parties involved in a statement voting system are a set of trustees T :=
{T1, . . . ,Tk}, and a set of voters V :=

{
V1, . . . ,Vn

}
.
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Fig. 1. The voting functionality F
SV

.

The Statement Voting Functionality. The ideal functionality for statement
voting, denoted as FSV, is formally described in Fig. 1. Let Vhonest, Vcorrupt and
Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees, respectively.
FSV consists of three phases—Preparation, Ballot Casting, and Tally. The func-
tionality uses a working table W to track the voters’ behavior during the entire
ideal execution. The working table W stores each voter’s information including
the voter’s original ID, his alternative/temporary ID, and the voting statement
that he submitted.

Preparation Phase. During the preparation phase, the trustees needs to indicate
their presence to FSV by sending (InitialTrustee, sid) to it. The election will
not start until all the trustees have participated in the preparation.

Ballot Casting Phase. During the ballot casting phase, each voter can submit
his voting statement, and this voting statement will be recorded in the cor-
responding entry. If a voter is corrupt, then he is also allowed to revise his
own alternative/temporary ID in the working table. More concretely, based on
the input (Cast, sid, (si, w

∗
i )) from voter Vi, the corresponding entry will be
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Fig. 2. The extended tally processing algorithm.

updated, i.e., W[i] := (Vi, wi, si) if the voter is honest, and W[i] := (Vi, w
∗
i , si)

if Vi is corrupt. When all the trustees are corrupted, the functionality FSV leaks
the entire working tape of the election transcript (i.e., W), to the adversary.

Tally Phase. Voters’ information in the working table W will be used in the tally
phase to define the privacy leakage as well as the final result. More concretely,
we compute a new table U by first eliminating all Vi’s in W, and then sorting all
the entries lexicographically. This carefully sanitised table U can now be used
to define (1) the final result via applying a circuit TallyProcess on U, and (2)
certain level of privacy leakage L. This formulation allows us to define a class of
statement voting functionalities. For instance, to define a functionality with full
privacy guarantees, we can set L := TallyProcess(U); we can also set L := U to
define a functionality with relatively weaker privacy guarantees, or set L := W

to define a functionality without privacy guarantees.

The Liquid Democracy Ideal Functionality. Given that liquid democracy
is the special case of statement voting, we can easily derive an ideal functionality
for liquid democracy from FSV. The full description of the concrete functionality
for liquid democracy, FLiquid, can be found in the full version. At a high level,
FLiquid uses the following statement interpretation step in the TallyProcess. Each
ballot is in form of either Bi = (wi, ui,⊥) or Bi = (wi,⊥, xi), where wi and ui

are temporary ID’s, and xi is a vote. To resolve the delegation, the algorithm
needs to follow the “chain of delegation”, i.e., for each ballot Bi:

– If Bi is in form of (wi, ui,⊥), try to locate a ballot Bj in form of (ui,X, Y ).
If founded, replace Bi := (wi,X, Y ).

– Repeat the above step, until Bi is in form of (wi,⊥, Z). If there is a delegation
loop, define Bi := (wi,⊥,⊥).

In case of delegation loop, we set the ballot to blank ballot. Of course, we can
enrich the statement by adding another variable to indicate whether a voter
wants to be delegated. When the “chain of delegation” breaks by Vi wants to
delegate his vote to Vj , while Vj does not want to be delegated. In this case,
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Vi’s ballot will be re-set to a blank ballot. The most preferable statement for
liquid democracy in practice shall be determined by computational social choice
theory, which is outside the scope of this paper.

3 Constructions

Due to space limitation, we present the two generic constructions – (i) FHE-
based construction and (ii) MPC-based construction, in the full version. In
the former one, the voters use FHE to encrypt and upload their statements
to the BB. The tally evaluation circuit can be then publicly evaluated over the
encrypted statements by any party. After that the trustees will jointly decrypt
the final ciphertext(s). In the latter one, any public key encryption scheme can
be adopted, so it is more efficient. Similarly, during the voting, the voters encrypt
their statements and post them on the BB. The trustees will then participate the
MPC evaluation to jointly decrypt the submitted statements and then compute
the tally algorithm in the shared format with privacy assurance.

3.1 A Practical Construction for Liquid Democracy

The construction is based on mix-net, and the privacy that it achieves is known as
pseudonymity. We emphasize that this level of privacy has been widely accepted
and is consistent with the existing paper-based voting systems.

As mentioned before, liquid democracy is an emerging type of voting system
that receives high attentions since the spread of its concept; however, there is no
provably secure solution in the form of either paper-voting or e-voting yet.2 We
now show that how to define a simple statement to enable liquid democracy.

In a generic statement voting, the ballot can be defined in the following form:
(ID, targets, statement), where ID is the voter’s ID, targets is a set of target voters’
IDs which will be referenced in the statement, and statement is the (conditional)
statement. To realize liquid democracy voting, we can define the following simple
statement: (i) if voter Vi wants to delegate his vote to Vj , then the ballot is
B := (Vi, {Vj}, delegate); (ii) if voter Vi wants to vote directly for election
option x, then the ballot is B := (Vi,⊥, vote x); and (iii) if the voter does not
want to be delegated, then he can set his own ID to ⊥. To obtain the basic
intuition, let’s first leave privacy aside and consider the following toy example.

Toy Example. Take the Yes/No election as an example. Suppose there are 7 bal-
lots: B1 := (V1,V7, delegate), B2 := (V2,⊥, vote Yes), B3 := (V3,⊥, vote No),
2 All the existing liquid democracy implementations do not consider pri-

vacy/anonymity. This drawback prevents them from being used in serious elections.
Here, we note that straightforward blockchain-based solutions cannot provide good
privacy in practice. Although some blockchains (e.g., Zerocash [5]) can be viewed
as a global mixer, they implicitly require anonymous channels. In practice, all the
implementations of anonymous channels suffer from time leakage, i.e., the user’s ID
is only hidden among the other users who are also using the system at the same
time. Subsequently, the adversary may easily identify the users during quiet hours.
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B4 := (⊥,⊥, vote Yes), B5 := (V5,V4, delegate), B6 := (⊥,V3, delegate) and
B7 := (V7,V3, delegate). Here, the effective vote of B1 is defined by B7, which
is further defined by B3; note that B3 votes for No; that means, B1 and B7 vote
for No by following B3. Now let’s consider B6: B6 follows B3; however, B6 is
not willing to be followed by anyone; as a result, B6 also votes for No. Finally,
let’s consider B5: B5 follows B4; however, B4 is not willing to be followed by
anyone; as a consequence, B5 is re-defined as blank ballot, ⊥. After interpreting
the delegation statements, the final votes are (No,Yes,No,Yes,⊥,No,No).

Intuition. At the beginning of each election, the voters Vi, i ∈ [n], are assigned
with a temporary random ID, denoted as IDi. Let I := {ID1, . . . , IDn} be the
set of all the voter’s random IDs. The voter’s statement takes the input as an
ID in I, and use it as a reference to point to the corresponding ballot that
will be involved in the statement execution, i.e., the potential vote delegation
of liquid democracy. To ensure privacy, the voters cannot post their temporary
IDs publicly on the bulletin board ḠBB; however, the voters should be allowed
to freely refer to any voter’s ID.

To address this challenge, we introduce the following technique. Before
the ballot casting phase, each voter picks a random ID and posts the (re-
randomizable) encryption of the ID on the ḠBB. If a voter wants to refer to
another voter in the statement, he/she simply copies and re-randomizes the
ciphertext of the corresponding voter’s ID. At the tally phase, all the ballots
are passing through re-encryption based mix-net, and then are decrypted to cal-
culate the statements and tally result. We remark that in practice the mix-net
servers can be different from talliers (a.k.a. decrypters). As such, they could have
different threshold.

Building Blocks. Our protocol utilises a bulletin board functionality, a cer-
tificate functionality, a threshold re-randomizable encryption scheme, and the
corresponding non-interactive zero-knowledge proofs. Their formal descriptions
and defintions can be found in the full version.

Bulletin Board Functionality. The public bulletin board (BB) is modeled as a
global functionality ḠBB. The functionality is parameterized with a predicate
Validate that ensures all the newly posted messages are consistent with the
existing BB content w.r.t. Validate. Any party can use (submit, sid,msg) and
(read, sid) to write/read the BB.

Certificate Functionality. We adopt the multi-session version of certificate func-
tionality following the modeling of [7]. The multi-session certificate functionality
F̂Cert can provide direct binding between a signature for a message and the
identity of the corresponding signer. This corresponds to providing signatures
accompanied by “certificates” that bind the verification to the signers’ identities.

Threshold Re-randomizable Encryption. A threshold re-randomizable encryp-
tion scheme TRE consists of a tuple of algorithms: (Setup,Keygen,Enc,Dec,
CombinePK,CombineSK,ShareDec,ShareCombine,ReRand) as follows.
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– param ← Setup(1λ). The algorithm Setup takes input as the security parame-
ter λ, and outputs public parameters param. All the other algorithms implic-
itly take param as input.

– (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public
parameter param, and outputs a public key pk, a secret key sk.

– c ← Enc(pk,m). The algorithm Enc takes input as the public key pk and the
message m, and outputs the ciphertext c.

– c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk
and a ciphertext c, and outputs a re-randomized ciphertext c′.

– m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a
ciphertext c, and outputs the decrypted plaintext m.

– pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a
set of public keys (pk1, . . . , pkk), and outputs a combined public key pk.

– sk ← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a
set of secret key (sk1, . . . , skk), and outputs combined secret key sk.

– μi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key
ski and a ciphertext c, and outputs a decryption share μi.

– m ← ShareCombine(c, μ1, . . . , μk). The algorithm ShareCombine takes input
as a ciphertext c and k decryption shares (μ1, . . . , μk), and outputs a plaintext
m.

– c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext
c ← TRE.Enc(pkj ,m) and a set of secret keys {ski}i∈[k]\{j}, and outputs a
ciphertext c′.

– {μj}j∈[k]\I ← SimShareDec(c,m, {μi}i∈I). The algorithm SimShareDec takes
as input a ciphertext c, a plaintext m, and a set of decryption shares {μi}i∈I
and outputs a set of decryption shares {μj}j∈[k]\I . Here I � [k].

In AppendixA, we provide the corresponding TRE security definitions.

Non-interactive Zero-Knowledge Proofs/Arguments. Here we briefly introduce
non-interactive zero-knowledge (NIZK) schemes in the Random Oracle (RO)
model. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R
we call x the statement and w the witness. Let LR be the language consisting
of statements in R, i.e. LR = {x|∃w s.t. (x,w) ∈ R}. An NIZK scheme includes
following algorithms: a ppt algorithm Prov that takes as input (x,w) ∈ R and
outputs a proof π; a polynomial time algorithm Verify takes as input (x, π) and
outputs 1 if the proof is valid and 0 otherwise.

Definition 1 (NIZK Proof in the RO Model). NIZKro

R .{Prov,Verify,Sim,
Ext} is an NIZK Proof of Membership scheme for the relation R if the following
holds:

– Completeness: For any (x,w) ∈ R,

Pr
[
ζ ← {0, 1}λ;π ← ProvRO(x,w; ζ) : VerifyRO(x, π) = 0

] ≤ negl(λ).

– Zero-knowledge: If for any ppt distinguisher A we have
∣
∣Pr[ARO,O1(1λ) = 1] − Pr[ARO,O2(1λ) = 1]

∣
∣ ≤ negl(λ).
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Fig. 3. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, ̂FCert}-hybrid world
(Part I)

The oracles are defined as follows: O1 on query (x,w) ∈ R returns π,
where (π, aux) ← SimRO(x); O2 on query (x,w) ∈ R returns π, where
π ← ProvRO(x,w; ζ) and ζ ← {0, 1}λ.

– Soundness: For all ppt adversary A,

Pr
[
(x, π) ← ARO(1λ) : x �∈ LR ∧ VerifyRO(x, π) = 1

] ≤ negl(λ).

Definition 2 (NIZK PoK in the RO Model). NIZKro

R .{Prov,Verify,Sim,
Ext} is an NIZK Proof of Knowledge scheme for the relation R if the com-
pleteness, zero-knowledge, and extraction properties hold, where the extraction is
defined as follows. For all ppt adversary A, the following is 1 − negl(λ).

Pr
[
(x, π) ← ARO(1λ);w ← ExtRO(x, π) : (x,w) ∈ R if VerifyRO(x, π) = 1

]

Protocol Description. The protocol is designed in the {ḠBB, F̂Cert}-hybrid
world and it consists of three phases: preparation, ballot casting, and tally. For
the sake of notation simplicity, we omit the processes of filtering invalid messages
on ḠBB. In practice, ḠBB contains many messages with invalid signatures, and
all those messages should be ignored. We will use threshold re-randomizable
encryption (TRE) as a building block.

Preparation Phase. As depicted in Fig. 3, in the preparation phase, each trustee
Tj , j ∈ [k] first picks a randomness generates αj and generates a partial public
key using (pkj , skj) ← TRE.Keygen(param;αj). It then generates an NIZK proof

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}

to show that this process is executed correctly; namely, it shows knowledge of
(αj , skj) w.r.t. to the generated partial public key pkj . It then signs and posts

(pkj , π
(1)
j ) to ḠBB.
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Fig. 4. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, ̂FCert}-hybrid world
(Part II)

Ballot Casting Phase. As depicted in Fig. 4, the ballot casting phase consists of
two rounds. In the first round, each voter Vi, i ∈ [n] first fetches the trustees’
partial public keys {pkj}k

j=1 from ḠBB. She then checks the validity of their
attached NIZK proofs. If all the NIZK proofs are verified, she computes and
stores the election public key as pk ← TRE.CombinePK({pkj}k

j=1). In addition,
the voter Vi picks a random temporary ID wi ← {0, 1}λ. She then uses the
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Fig. 5. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, ̂FCert}-hybrid world
(Part III)

election public key pk to encrypt wi as Wi ← TRE.Enc(pk, wi;βi) with fresh
randomness βi. She also computes the corresponding NIZK

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
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Fig. 6. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, ̂FCert}-hybrid world
(Part IV)

to show she is the creator of this ciphertext. Voter Vi then signs and posts
(Wi, π

(2)
i ) to ḠBB. In the second round, each voter Vi, i ∈ [n] first fetches all

the posted encrypted temporary IDs from ḠBB, and checks their attached NIZK
proofs. For any missing or invalid (encrypted) temporary IDs, the voters replace
them with TRE.Enc(pk,⊥; 0), which is the encryption of ⊥ with trivial random-
ness. Moreover, the voters also defines W0 ← TRE.Enc(pk,⊥; 0). The statement
for liquid democracy, si, can be parsed as either (i) (Vj ,⊥) or (ii) (⊥, vi).

In Case (i) (Vj ,⊥), i.e. delegating to voter Vj , the voter produces Vi as a
re-randomized Wj and Ui as encryption of ⊥. She then gives a NIZK proof
showing that Vi is re-randomized from one of the ciphertexts in (W0, . . . , Wn)
and another NIZK proof showing Ui is created by her. Denote the corresponding
proofs as π

(3)
i and π

(4)
i , respectively. Vi signs and posts (Ui, Vi, π

(3)
i , π

(4)
i ) to ḠBB.
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In Case (ii) (⊥, vi), i.e. voting directly vi, analogous to Case (ii), the voter
produces Vi as a re-randomized W0 and Ui as encryption of vi. Meanwhile,
she also gives a NIZK proof showing that Vi is re-randomized from one of the
ciphertexts in (W0, . . . , Wn) and another NIZK proof showing Ui is created by
her. Denote the corresponding proofs as π

(3)
i and π

(4)
i , respectively. Vi signs and

posts (Ui, Vi, π
(3)
i , π

(4)
i ) to ḠBB.

Tally Phase. The tally phase is depicted in Figs. 5 and 6. The trustees first
fetches (Wi, Vi, Ui) (which is viewed as the submitted ballot for voter Vi) from
ḠBB and check their attached NIZK proofs. All the invalid ballots will be discard.
Let n′ be the number of valid ballots. All the trustees then jointly shuffle the
ballots via a re-encryption mix-net. More specifically, each trustee sequentially
permutes (Wi, Vi, Ui) as a bundle using shuffle re-encryption. To ensure correct-
ness, the trustee also produces a NIZK proof showing the correctness of the
shuffle re-encryption process. After that, upon receiving (Tally, sid) from the
environment, all the trustees Tj check the correctness of the entire mix-net and
then jointly decrypt the mixed ballots using TRE.ShareDec. More specifically,
each trustee will sign and post its decryption shares to ḠBB.

Each voter can then compute the tally result as follows. The voter first fetches
all the decryption shares and checks their validity using NIZKR8 .Verify. Upon
success, the voter uses TRE.ShareCombine to reconstruct the messages. She then
use TallyProcess as described in Fig. 2 to calculate the final tally.

Remark 1. The re-randmonizable encryption (TRE) scheme used in this pro-
tocol can be replaced by a re-randomizable RCCA encryption scheme. Here
RCCA is the short name for replayable CCA defined by Canetti, Krawczyk, and
Nielsen [9]. Several RCCA constructions can be found in literature [11,12,19,28].
In our construction, it is possible to distribute a publicly verifiable RCCA encryp-
tion scheme, e.g. [12] and then use it as an enhanced version of TRE. Subse-
quently, NIZKR6 can be removed. Since the running time of proving/verifying
NIZKR6 is linear in the number of voters n, it is more efficient to use RCCA
instead of TRE for large n in practice.

Theorem 1. Protocol Πmix-Liquid described in Figs. 3, 4, 5 and 6 UC-realizes
FLiquid in the {ḠBB, F̂Cert}-hybrid world against static corruption.

4 Further Discussions

Statement Policy. We initiate the study of statement voting and liquid democ-
racy in this work. Our statement voting concept can be significantly extended to
support much richer ballot statements, which opens a door for designing a new
class of e-voting schemes. A natural question to ask is what type of statements
are allowed. For correctness, the (deterministic) TallyProcess function should be
a symmetric function in the sense that its output does not depend on the order of
the ballots to be counted. Moreover, the voting statement has a maximum run-
ning time restriction to prevent DoS, and it should not depend on partial tally
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result. This is known as fairness. Namely, the statement execution cannot be
conditional on the partial tally result at the moment when the ballot is counted.
On the other hand, the statement can take input as external information oracles,
such as News, Stock market, etc. When statement voting is integrated with a
blockchain infrastructure, our scheme can be used to enable offline voting or
smart voting. In particular, the voters may submit their statement ballot any
time before the election on the blockchain; during the tally phase, the voter’s
ballots will be decrypted, and their statements will define their final votes based
on the latest information provided by News oracles on the blockchain.

This line of research is far from being completed. We also remark that, voting
policies can be heavily influenced by local legal and societal conditions. How to
define “right” voting policy itself is a very interesting question. We believe our
techniques here have the potential to help people to identify suitable voting
policies which can further eliminate the barriers to democracy.

Trusted Setup. Typically, trusted setup assumptions3 are required for con-
structing UC-secure e-voting systems. Common Reference String (CRS) and
Random Oracle (RO) are two popular choices in practice. If an e-voting system
uses CRS, then we need to trust the party who generates the CRS, which, in
our opinion, is a stronger assumption than believing no adversary can break a
secure hash function, e.g., SHA3. Therefore, in this work, we realize our liquid
democracy voting system in the RO model. As a future direction, we will con-
struct more solutions to liquid democracy. For example, an alternative approach
is as follows: we first use MPC to generate a CRS; then we construct liquid
democracy voting system by using the CRS. As argued above, we need to trust
the parties who generate the CRS; e.g., at least one honest MPC player.

Privacy and Coercion Resilience. Both statement voting and liquid democ-
racy voting extend (deviate) from the conventional e-voting; therefore, the con-
ventional privacy definitions are no longer suitable for these new types of voting
schemes. For instance, if delegation loop is not allowed in the liquid democracy,
how much voter privacy can be possibly achieved? We will investigate the privacy
of statement voting and liquid democracy in depth in our future work.

Finally, we note that coercion resilience is critical in many scenarios. We will
investigate this strong security requirement in our future work, too. Recently,
Daian et al. [14] discussed the difficulty to achieve coercion resilience in the on-
chain voting. We remark that Daian et al. only excluded a special class of voting
protocols that “users can generate their own keys outside of a trusted environ-
ment”. A potential approach is to follow our preliminary result [3]; there, very
different technique has been explored for achieving coercion resilience: voters’
keys and correlated secret information are generated inside a trusted hardware
which cannot be obtained by the coercer.

Voter’s Complexity. In our FHE-based and MPC-based solutions, the voter’s
complexity is constant in the number of ballots; the voting tally members have
3 Most non-trivial functionalities (including the e-voting functionality) cannot be UC-

realized in the plain model [6,8,10].
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linear (or superlinear) complexity with respect to the number of voters, which
is asymptotically the same as many existing voting schemes. In our mix-net
based protocol, the voter’s complexity is linear in the number of ballots; we
remark that, this is our implementation choice for small scale, statement vot-
ing. As already discussed in Remark 1 in previous section, we can replace the
TRE encryption with an RCCA encryption [11,12,19,28] to achieve better (i.e.,
constant) voter’s complexity in the mix-net based protocol.
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A Security Definition for TRE

Definition 3. WesayTRE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK,
ShareDec,ShareCombine,ReRand} is a secure threshold re-randomizable public key
encryption if the following properties hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs,
pk := TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]),
then (pk, sk) is also a valid key pair. For all ciphertext c ∈ Cpk, where Cpk is
the ciphertext-space defined by pk, we have

TRE.Dec(sk, c) = TRE.ShareCombine(c,TRE.ShareDec(sk1, c), . . . ,TRE.ShareDec(skk, c))

Ciphertext transformative indistinguishability:
There exists a ppt algorithm Trans such that if {(pki, ski)}i∈[k] are
all valid key pairs, pk := TRE.CombinePK({pki}i∈[k]) and sk :=
TRE.CombineSK({ski}i∈[k]), then for all message m, for any j ∈ [k], the
following holds.

(
param,TRE.Trans(c, {ski}i∈[k]\{j})

) ≈ (
param,TRE.Enc(pk,m)

)

IND-CPA security: We say that a TRE scheme achieves indistinguishability
under plaintext attacks (IND-CPA) if for any ppt adversary A the following
advantage AdvCPA is negligible.

Experiment
CPA(1λ)

1. Run param ← TRE.Setup(1λ).
2. Run (pk, sk) ← TRE.Keygen(param);
4. A(pk) outputs m0,m1 of equal length;
5. Pick b ← {

0, 1
}
; Run c ← TRE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.
We define the advantage of A as

AdvCPAA(1λ) =
∣
∣
∣
∣Pr[ExperimentCPA(1λ) = 1] − 1

2

∣
∣
∣
∣ .
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Unlinkability: We say a TRE scheme is unlinkable if for any ppt adversary
A the following advantage AdvUnlink is negligible.

Experiment
Unlink(1λ)

1. A outputs a set I ⊂ {
1, . . . , k

}
of up to k − 1 corrupted indices.

2. For i = [n], run (pki, ski) ← TRE.Keygen(1λ;ωi);
3. A(

{
pkj

}
j∈[k]\I) outputs c0, c1;

4. b ← {
0, 1

}
; c′ ← TRE.ReRand(pk, cb;ω);

5. A(c′) outputs b∗; It returns 1 if b = b∗; else, returns 0.
We define the advantage of A as

AdvUnlinkA(1λ) =
∣
∣
∣
∣Pr[ExperimentUnlink(1λ) = 1] − 1

2

∣
∣
∣
∣ .

Share-simulation indistinguishability: We say TRE scheme achieves share-
simulation indistinguishability if there exists a ppt simulator SimShareDec
such that for all valid key pairs {(pki, ski)}i∈[k], all subsets I � [k], all mes-
sage m, the following two distributions are computationally indistinguishable:

(
param, c,SimShareDec(c,m, {μi}i∈I)

) ≈ (
param, c, {μj}j∈[k]\I

)

where param ← TRE.Setup(1λ), c ← TRE.Enc(pk,m) and μj ←
TRE.ShareDec(skj , c) for j ∈ [k] \ I.
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Abstract. An attempt to derive signer-efficient digital signatures from
aggregate signatures was made in a signature scheme referred to as
Structure-free Compact Rapid Authentication (SCRA) (IEEE TIFS
2017). In this paper, we first mount a practical universal forgery attack
against the NTRU instantiation of SCRA by observing only 8161 sig-
natures. Second, we propose a new signature scheme (FAAS), which
transforms any single-signer aggregate signature scheme into a signer-
efficient scheme. We show two efficient instantiations of FAAS, namely,
FAAS-NTRU and FAAS-RSA, both of which achieve high computational effi-
ciency. Our experiments confirmed that FAAS schemes achieve up to
100× faster signature generation compared to their underlying schemes.
Moreover, FAAS schemes eliminate some of the costly operations such as
Gaussian sampling, rejection sampling, and exponentiation at the signa-
ture generation that are shown to be susceptible to side-channel attacks.
This enables FAAS schemes to enhance the security and efficiency of their
underlying schemes. Finally, we prove that FAAS schemes are secure (in
random oracle model), and open-source both our attack and FAAS imple-
mentations for public testing purposes.

Keywords: Authentication · Digital signatures · Universal forgery ·
NTRU-based signatures

1 Introduction

Efficient authentication is critical for applications that need to generate a large
throughput of authenticated data in a short amount of time. For instance, in
smart grids [23,42], vehicular [1,24] and commercial drone networks [38,43], a
large number of messages should be authenticated and transmitted to ensure
reliable service and safe operation. While conventional digital signatures (e.g.,
RSA [36], ECDSA [5]) are deemed as an ideal mean to provide authentication,
they might not offer the computational efficiency required by such applications.
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It is essential to propose fast digital signature schemes that can meet with the
stringent requirements of such applications.

Achieving this computational efficiency becomes even harder when con-
sidering security in the post-quantum era [2,28]. While efficient and easy-
to-implement one-time/multiple-time signatures exist (e.g., [26]), the case for
polynomially-unbounded signatures seems to be more difficult. The proposal
of such schemes is also necessary to support post-quantum key encapsulation
schemes [11]. In this direction, the Department of Energy (DOE) and the Depart-
ment of Homeland Security (DHS) have shown increased interest in proposals
on post-quantum secure authentication schemes [3] for smart grids. To ensure
a smooth and timely transition, National Institute of Standards and Technol-
ogy (NIST) has started the initial rounds of accepting proposals for PQ secure
constructions [4].

Aggregate digital signature schemes allow multiple signatures to be aggre-
gated into a single one [10]. They are used to achieve efficient signature gen-
eration as shown in [44] with Rapid Authentication (RA) scheme. In RA, the
signer precomputes a set of individual signatures in the key generation algorithm,
and aggregates a subset of them to efficiently compute signatures. However, RA
requires messages to be in a predefined (fixed-length) format.

It is very desirable to develop fast digital signature schemes that can avoid
both the storage/re-generation of one-time signatures and the need of a prede-
fined message format. Such schemes can potentially support the legacy systems
(aggregate RSA-based signatures [31]) and be secure against quantum comput-
ers, with the advent of post-quantum aggregate signature schemes [25]. One
recent attempt to address these issues was proposed in Structure-free Compact
and Rapid Authentication (SCRA) [45]. In this paper, we show that, it is a chal-
lenging and yet feasible task to create such fast signatures by first mounting
an attack to SCRA [45], and then constructing a new generic scheme that can
address the aforementioned limitations.

1.1 Our Contributions

Our contributions are two-fold: (i) We identify a weakness in SCRA which
leads to a universal forgery attack on its lattice-based instantiations. (ii) We
then present a new scheme called Fast Authentication from Aggregate Signatures
(FAAS) which achieves significant performance gains on the signer’s side along
with an improved security in terms of side-channel resiliency.

Attack on Lattice-Based Instantiation of SCRA [45]: We identified a flaw in
generic SCRA where each signature leaks the aggregation of a subset of the
private key, along with their corresponding indexes. In the lattice-based instan-
tiation of SCRA, we show how the adversary can form a set of linear equations,
and forge signatures on any message only after observing 8161 signatures. We
have fully implemented our attack and forged signatures in a few milliseconds
after a one-time 2.5-hour learning phase.
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Table 1. Experimental performance comparison and analysis.

Schemes Sign Verify Delay Sig size SK size PK size Online phase

Gauss Exp RS

RSA [36] 8.08 0.05 8.13 372 768 386 × � ×
ECDSA [5] 0.73 0.93 1.66 64 32 32 × � ×
Ed25519 [9] 0.13 0.33 0.46 64 32 32 × � ×
SPHINCS [8] 13.46 0.37 13.83 41000 1088 1056 × × ×
pqNTRUsign [25] 14.52 0.30 14.82 576 1024 1024 � × �
FAAS-RSA 0.19 0.06 0.25 768 197408 1024 × × ×
FAAS-NTRU 0.49 0.71 1.20 3072 525328 1024 × × ×
FAAS-NTRU′ 0.14 0.71 0.85 3072 1049600 1024 × × ×
FAAS schemes do not require any Gaussian sampling (Gauss), exponentiation
(Exp) or rejection sampling (RS) at its online calculations. Therefore, they have an
improved side-channel resiliency and better performance that is further explained
in Sect. 5.1.
All sizes are in Bytes (B). All times are inmilliseconds (ms). The results are obtained
on a laptop equipped with an Intel i7 6th generation CPU operating at 2.6GHz.
All parameter sizes are selected to provide κ = 128-bit security level (except for
SPHINCS [8], that provides κ = 256-bit security). A detailed performance analysis
and comparison are given in Sect. 6.

Fast Authentication from Aggregate Signatures ( FAAS ): We present our new
signature scheme FAAS that can be instantiated from any aggregate signature
scheme. We prove the security of FAAS in the random oracle model (ROM) under
the hardness of breaking the underlying aggregate signature scheme. We propose
two efficient instantiations of FAAS: (i) An instantiation with pqNTRUsign [25]
called FAAS-NTRU (ii) and an instantiation with Condensed-RSA [31] called
FAAS-RSA. The desired properties of FAAS are as follows:

(i) Improved Side-Channel Resiliency: The signature generation of FAAS only
relies on signature aggregation, and therefore improves the side-channel
resiliency of its base schemes (i.e., [25,31]). For instance, FAAS-NTRU does not
require any Gaussian sampling algorithm (in its signature generation) which
is known to be susceptible to a number of side-channel attacks (e.g., [18,22]).
Besides, FAAS-NTRU offers a fixed-time sign algorithm (as opposed to its under-
lying scheme [25]) since it does not require any rejection sampling. Moreover,
FAAS instantiations offer deterministic signing and therefore immune to side-
channel attacks targeting weak pseudorandom number generators (PRNGs).
Lastly, FAAS-RSA is not susceptible to the attacks targeting the square-and-
multiply method on traditional RSA signatures [20,34].

(ii) High Computational Efficiency: We instantiate FAAS with verification-
efficient digital signature schemes to complement the benefits of the improved sig-
nature generation, and therefore achieving a low delay1 for FAAS instantiations.

1Delay is defined as the aggregated time required to compute and verify a signature.
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For instance, FAAS-RSA and FAAS-NTRU′ improve the delay of their base schemes by
32× and 17×, respectively.

(iii) Generic Design: FAAS can be instantiated with any aggregate signature. For
example, several lattice-based post-quantum signature schemes (which require
Gaussian and/or rejection sampling) have been proposed to the NIST post-
quantum competition (e.g., Dilithium [16]). FAAS can be used to enhance the
security (from side-channel perspective) and performance of these schemes pro-
vided that they offer a secure signature aggregation capability.

Limitations: FAAS has an increased private key size due to the storage of precom-
puted signatures. FAAS-RSA and FAAS-NTRU require 193 KB and 511 KB private
keys, respectively, with κ = 128-bit security (see Table 1). This increased private
key size; however, translates into 30× and 42× faster signing with an improved
side-channel resiliency, for FAAS-RSA and FAAS-NTRU, respectively.

2 Preliminaries

Notation. |a| denotes the bit length of variable a. M denotes the message space.

a
$← S denotes that a is selected from set S at random. In x||y, || denotes the

concatenation of bit strings of x and y. We represent vectors as bold letters (i.e.,
a), and matrices are defined by bold capital letters (i.e., A), while scalars are
represented as non-bold letters (i.e., a). ||a||2 and ||a||∞ denote the Euclidean
norm and infinity norm of vector a, respectively. We define hash functions H0 :
{0, 1}∗ → {0, 1}l0 , H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → {0, 1}l2 for some
integers l0, l1 and l2, to be defined in Sect. 6.2. AO1,...,Oi denotes that algorithm
A is provided with access to oracles O1, . . . ,Oi.

Definition 1. A digital signature SGN = (Kg,Sig,Ver) is defined as follows.

– (sk ,PK ) ← SGN.Kg(1κ): Given the security parameter κ, it outputs the pub-
lic/private key pair (sk ,PK ).

– σ ← SGN.Sig(m, sk): Given a message m and sk , it outputs the signature σ.
– {0, 1} ← SGN.Ver(m,σ,PK ): Given a message-signature pair (m,σ), and PK ,

it outputs b ∈ {0, 1}.

We say that SGN is correct if 1 ← SGN.Ver(m, SGN.Sig(m, sk),PK ).

Definition 2. Existential Unforgeability under Chosen Message Attack (EU-
CMA) [27] experiment ExptEU−CMA

SGN,A against an adversary A is as follows.
Lm ← ∅ Signsk (mi)
(sk ,PK ) ← SGN.Kg(1κ) σi ← SGN.Sig(mi, sk)
(m∗, σ∗) ← ASignsk (·)(PK ) Lm ← Lm ∪ mi

We say A wins in time t, and after making qS signatures and qh queries to
random oracles (H1,H2, and H3), if ((SGN.Ver(m∗, σ∗,PK ) ∧ (m ∩ Lm = ∅)).
The advantage of A is defined as AdvEU -CMA

SGN,A (t, qS , qh) = Pr[ExpEU -CMA
SGN,A = 1].
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We define the notion of EU-CMA for aggregate signatures (A-EU-CMA) in
AppendixA.

Definition 3. A single-signer aggregate signature ASig = (Kg,Sig,Agg,Ver)
is defined as follows.

– (sk ,PK ) ← Asig.Kg(1κ): Given the security parameter κ as the input, it
returns a private/public key pair (sk ,PK ).

– σ ← Asig.Sig(m, sk): Given a message m ∈ {0, 1}∗ and sk as the input, it
returns a signature γ of the message under sk.

– s ← Asig.Agg(σ1, . . . , σL): Given a set of signatures (σ1, . . . , σL) as the
input, it returns a single-compact signature s .

– {0, 1} ← Asig.Ver(−→m, s,PK ): Given messages −→m = (m1, . . . ,mL), s and PK
as the input, it returns a bit: 1 means valid and 0 means invalid.

Definition 4. Agg function, that is used to aggregate multiple messages to a
single message, is defined as follows.

– m ← Agg(m1, . . . ,mL): Given a set of messages (m1, . . . ,mL) as the input,
Agg function returns a single message m as the output.

Agg function is also a part of the Asig.Ver algorithm that allows the batch
verification of multiple messages. This function can be instantiated as modular
multiplication in RSA [31] or vector addition in pqNTRUsign [25].

2.1 Lattice-Based Tools

We work over a polynomial ring Rq = Zq[x]/(xN +1) for a prime q and a positive
integer N [25]. For FAAS-NTRU, we model a hash function HN : {0, 1}∗ → Z

N
q .

This enables generating random elements mp = (up,vp) with up ∈ Z
N1
p and

vp ∈ Z
N2
p for a prime p and N = N1 + N2.

NTRU Lattice: Following the work in [25], we work over a NTRU lattice as an
Rq module of rank 2. We let f(x), g(x), h(x) ∈ Rq where f(x) and g(x) have
small coefficients and h(x) = p−1g(x)f−1(x).

The NTRU lattice associated with h is defined as L = {(û, v̂) ∈ R2
q :

ûh = v̂}. A vector in NTRU lattice can be written as v = 〈̂s, t̂〉 where ŝ, t̂ ∈ Rq,
following [25], we refer to ŝ as the s-side and t̂ as the t-side of the vector.

Definition 5. An N-dimensional Gaussian function ρσ̃,c : R → (0, 1]) is defined
as ρσ̃,c(x) =Δ exp(−‖x−c‖2

2σ̃2 ). Given a lattice Λ ⊂ R
n, the discrete Gaussian dis-

tribution over Λ is DΛ,s,c(x) = ρσ̃,c(x)
ρσ̃,c(Λ) for all x ∈ Λ.

Hoffstein et al. uses a Bimodal Gaussian distribution χN
σ̃ [15] with standard

deviation σ̃ to sample an N -dimension random vector r. Hoffstein et al. also
uses rejection sampling to ensure that the signature components do not leak
any information about the private keys by checking if its norm is in (− q

2 +
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Algorithm 1. pqNTRUsign Signature Generation [25]

(v′) ← pqNTRUsign.Sig(m, sk′,h):

1: Compute (up,vp) = HN (m||h) and sample r ← χN
σ̃ and b

$← {0, 1}
2: Compute u1 ← pr + up, v1 ← u1h mod q and a ← (vp − v1)/g mod p
3: if ||af ||2 > νs or ||ag||∞ > νt then go to Step 1

4: v′ = v1 + (−1)bag
5: if ||v′||∞ > q/2 − Bt then go to Step 1

6: Calculate b = (r+(−1)baf) with probability 1/
(
Msexp

( − ||af ||
2σ̃2

)
cosh

( 〈b,af〉
σ̃2

))
, else

go to Step 1
7: Return v′

Algorithm 2. SCRA - pqNTRUsign Instantiation

(sk ,PK ) ← SCRA-NTRU.Kg(1κ):

1: Generate secrets f ,g ∈ Rq such that h(x) = p−1g(x)f−1(x)
2: If f and g are not invertible mod q, go to Step 1

3: sk′ ← (f ,g), PK′ ← h and P
$← {0, 1}l0 and

4: Select integers (b, L) such that b · L = l0
5: m̃i,j ← (i||j||P ), γi,j ← pqNTRUsign.Sig(m̃i,j , sk

′, PK′), i = 1, . . . , L and j =
0, . . . , 2b − 1

6: sk ← (sk′, Γ ) and PK ← (PK′, P ), where Γ ← {γi,j}L,2b−1
i=1,j=0

σ ← SCRA-NTRU.Sig(m, sk):

1: (M∗
1 , . . . M∗

L) ← H0(m||r) where r
$← {0, 1}κ and M∗

i ∈ [0, 2b − 1], i = 1, . . . , L.
2: s ← ∑L

i=1 γi,M∗
i

and σ ← (r, s)

{0, 1} ← SCRA-NTRU.Ver(m, σ,PK ):

1: (M∗
1 , . . . M∗

L) ← H0(m||r)
2: û = sh−1 mod q
3: if ||û||∞ >

√
(k + L)τpσ̃ then return 0

4: (upi ,vpi) ← HN (i||M∗
i ||P ||h) where i = 1, . . . , L

5: if (û, s) =
∑L

i=1(upi ,vpi) then return 1, else return 0

νy, q
2 − νy) for some public parameter ν where y ∈ {s-side, t-side}. This is

done as in the Step 3 of Algorithm 1. We also note that σ̃ in Algorithm 1 is
a Gaussian distribution parameter which ensures a bound on the value of the
sampled vector’s coordinates. In Step 6, b ← {0, 1} is a random bit related to
bimodal Gaussian distribution [15]. Ms as defined in [25], is the repetition rate
which determines the rate of rejection.
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3 On the Security of SCRA-NTRU

We first recall SCRA signature scheme and also present its lattice-based instan-
tiation. We then describe the idea behind our attack, followed by its detailed
description and implementation.

3.1 SCRA Signature Scheme

SCRA was proposed as a generic scheme that transforms a single-signer aggre-
gate signature scheme into a fast signature scheme. Before we highlight the
weakness that leads to our attack, we briefly recall the generic SCRA signature
scheme below. For a detailed description, we refer the interested reader to [45].

Key Generation: A set of signatures are precomputed for each b-bit L fields of the
hash output, where l0 = b · L, and l0 is the bit length of the hash output. These
signatures are stored in a precomputed table containing 2b · L signatures. This
table and the public key of the underlying aggregate signature are the private
and public keys, respectively.

Signature Generation: The message is hashed with a randomness, and for each
of L fields of the hash output, their corresponding precomputed signatures
(retrieved from the private key of the signer) are aggregated. The randomness
is sent along with the aggregated signature to enable signature verification.

Signature Verification: Individual indexes are recovered and their batch verifica-
tion is performed under the signer’s public key.

SCRA Lattice-Based Instantiations: SCRA was instantiated with lattice-
based aggregate signatures in [17]. Recently, Hoffstein et al. [25] proposed an
NTRU-based signature scheme called pqNTRUsign which offers provably secure
single-signer secure aggregation [25]. Therefore, we instantiate SCRA with the
scheme in [25]. We present this instantiation in Algorithm 2 with a reference
to the signature generation of pqNTRUsign in Algorithm 1. We remark that
given the similarity of pqNTRUsign with the schemes used in the instantiations
of SCRA (e.g., [17]), our attack can be directly applied to the lattice-based
instantiations originally proposed in SCRA.

3.2 Our Attack

In generic SCRA, the signature generation algorithm releases an aggregation
of a subset of the precomputed signature components without any masking.
Furthermore, to enable signature verification, the message fields (i.e., indexes),
dictating the selected precomputed components, are publicly released. These
leakages can be observed in all instantiations of SCRA and they permit an
adversary A to learn which private key components are aggregated to form the
signature for a given message. In this paper, we leverage such leakages to mount
a universal forgery attack on the lattice-based instantiations of SCRA.
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Algorithm 3. Attack on SCRA Lattice-Based Instantiation

Setup:
1: (sk ,PK ) ← SCRA-NTRU.Kg(1κ) and Lm ← ∅

Learning:
2: Query σi ← SCRA-NTRU.Sig(mi, sk) and Lm = Lm ∪mi for i = 1, . . . , (2b −1) ·L+1
3: Parse (si, ri) ← σi and form B = [B|si] for i = 1, . . . , (2b − 1) · L + 1
4: Li = (M∗

1,i, . . . , M
∗
L,i) ← H0(m||ri) for i = 1, . . . , (2b − 1) · L + 1

5: Set A s.t. A[i, j] = 1 if j ∈ Li, for i = 1, . . . , (2b − 1) · L + 1, j = 1, . . . , 2b · L,
otherwise, A[i, j] = 0.

6: C ← [A|B] and C′ ← echelon(C)

Forgery:

7: m′ $← M where m′ /∈ Lm

8: r′ $← {0, 1}κ, and L = (M∗
1 , . . . M∗

L) ← H0(m
′||r′).

9: Linearly combine rows of C′ to generate a row, such that for i = 1 . . . 2b ·L, a[i] = 1
if i ∈ L and 0 otherwise.

10: The right side of the new row a gives a valid signature over m′.

Attack Algorithm: Since one can compute the indexes used to form the sig-
nature, each signature leaks the aggregation of L private keys. For lattice-based
instantiations, these are vector additions of individual private key components.

In our first attempt, our goal was to observe enough signatures to perform
a key recovery attack. Since there are 2b · L private key components, we have
2b ·L variables in our linear equations, and A needs the observe the same number
of equations/signatures. However, to solve this equation system, each equation
A observes must be linearly independent. However, due to the selection of private
keys in signature generation (i.e., one private key component from each L fields),
the adversary can only observe (2b − 1) · L + 1 linearly independent equations.
While one can use methods such as least mean squares to estimate the private
key components, it is not possible to fully recover them with this many equations.
However, we observed that (2b − 1) · L + 1 linearly independent equations are
enough for A to generate signatures on any message (i.e., universal forgery). The
details of this attack are given in Algorithm 3, and further explained below.

The function Y ← echelon(X) computes the row echelon form of matrix X.
Following the definition of EU -CMA in Definition 2, our attack takes place in
two phases, namely the learning phase and the forgery phase.

In the attack, A first observes enough signatures to construct the linear equa-
tions. In Step 3, A parses signatures (si, ri) ← σi and extracts si’s to form the
matrix B. This matrix represents the solutions of each linear equation, since
they are derived by vector addition in SCRA.Sig . In Step 4, A derives all the
indexes from the messages as in the signature verification. Using these indexes,
A forms a matrix A, that represents which private key components are aggre-
gated to derive the signature si. A then concatenates these two matrices (as in
Step 6) and calculates the row echelon form of the new matrix. This enables
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the adversary to easily form the linear combinations of these vectors to generate
new signatures. Therefore, after this point, A selects any message that was not
queried before, get the indexes with a simple hash function, and forms a new
row from the row echelon matrix, based on the indexes of the target message.
Since this matrix includes the signature components observed (C ← A|B), the
right side of this vector gives the signature for the selected message.

Attack Implementation: We have fully implemented our attack2 and forged a
signature over the message “May the force be with you”. We used C for the hash
operations and computing SCRA signatures and Matlab for the matrix opera-
tions. Specifically, we used the predefined rref function in Matlab to generate
the row echelon form of the matrix and then used this matrix to forge signatures.
With the suggested parameters of SCRA (b = 8, L = 32), rref function of Mat-
lab took around 2.5 h (executed only once). After that, each forgery only took a
few milliseconds. Therefore, we were able to forge signatures on any message, by
observing only 8161 signatures. Note that, although SCRA can be instantiated
with different (b, L) parameters, since the storage overhead is 2b · L, increas-
ing parameters to make our attack impractical would also make the signature
scheme impractical for the signer.

4 The Proposed Scheme

Main Idea: Following the works in [44,45], we capitalize on the observations
that signature aggregation of some signature schemes is significantly faster than
their signature generation. FAAS differs from the previous constructions in the
way that messages and randomness are encoded and computed: (i) FAAS has
significantly shorter private keys since we only rely on sampling L-out-of-2b

different combinations (as in [12]) rather than encoding the message as L b-bit
structures as in SCRA. (ii) Most importantly, FAAS masks the aggregation of
private key components (i.e., individual signatures) via an aggregate one-time
masking technique (elaborated below) to address the vulnerability identified in
SCRA [45] (see Sect. 3 for our attack).

Aggregate One-time Masking of Signatures: The security flaw in SCRA
stems from disclosing the aggregation of private key components. To efficiently
overcome this, we (deterministically) generate random message components ui

and their corresponding signatures βi in the key generation phase (Step 3 in
FAAS.Kg of Algorithm 4) and then aggregate a subset of them to generate a
random message-signature pair (u, σU ) as in Step 3–4 of FAAS.Sig (Algorithm 4).
We then use this one-time randomness σU to hide the aggregation of private keys
at Step 6 of FAAS.Sig. Although the aggregated message u is released with the
signature, computing the individual message components or the selected indexes
is as hard as breaking the underlying signature scheme.

2www.github.com/ozgurozmen/SCRA-NTRU ATTACK.

www.github.com/ozgurozmen/SCRA-NTRU_ATTACK
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Algorithm 4. Generic FAAS Scheme

(sk ,PK ) ← FAAS.Kg(1κ):

1: Select integers (k, t) such that k · |t| = l2 and (b, L) such that b · L = l0
2: (sk′, PK′) ← ASig.Kg(1κ) and z ← {0, 1}κ

3: ui ← H1(i||z) and βi ← ASig.Sig(ui, sk
′) for i = 0, . . . , t − 1

4: Set precomputed signature table B ← {βi}t−1
i=0

5: γi ← ASig.Sig(i, sk′) for i = 0, . . . , 2b − 1

6: Set precomputed signature table Γ ← {γi}2b−1
i=0

7: sk ← (z, B, Γ ) and PK ← PK′

σ ← FAAS.Sig(m, sk):

1: (j1, . . . , jk) ← H2(m||z), where each {ji}k
i=1 is interpreted as a |t|-bit integer.

2: uji ← H1(ji||z) for i = 1, . . . , k
3: u ← Agg(uj1 , . . . , ujk)
4: σU ← ASig.Agg(βj1 , . . . , βjk)
5: (j∗

1 , . . . , j∗
L) ← H0(m||u), where each {ji}L

i=1 is interpreted as a b-bit integer.
6: s ← ASig.Agg(σU , γj∗

1
, . . . , γj∗

L
) and set σ ← (u, s)

{0, 1} ← FAAS.Ver(m, σ,PK ):

1: (j∗
1 , . . . , j∗

L) ← H0(m||u)
2: {0, 1} ← ASig.Ver(〈u, j∗

1 , . . . , j∗
L〉, s, PK′)

4.1 Generic FAAS

Generic FAAS is presented in Algorithm 4, and is further elaborated as follows.

Key Generation: In Step 1–2, first, parameters (k, t) and (b, L) are generated. We
then create the private/public key pair of the underlying aggregate signature and
a random seed z, which are used to generate two precomputed signature tables:
(i) In Step 3–4, we deterministically derive t random numbers ui with a keyed
hash and compute their corresponding individual signatures βi to be stored in
table B. (ii) In Step 5–6, we generate 2b signatures, from which L of them will
be selected to encode the message in signature generation (FAAS.Sig Step 5–6).
Finally, the tables (B,Γ ) and z constitute FAAS private key, while the public key
of the underlying aggregate signature scheme is used as FAAS public key.

Signature Generation: In Step 1–2, we derive the secret indexes (j1, . . . , jk) from
the message m and compute their corresponding random numbers (uj1 , . . . , ujk

)
via a keyed hash. In Step 3–4, we set u as the aggregation of the random
(uj1 , . . . , ujk

) and aggregate their corresponding signatures (βj1 , . . . , βjk
) fetched

from table B, as σU . In Step 5–6, we first encode the message and u to get
indexes (j∗

1 , . . . , j∗
L), and then mask the aggregation of (γj∗

1
, . . . , γj∗

L
) with σU as

s ← ASig.Agg(σU , γj∗
1
, . . . , γj∗

1
). We set FAAS signature as σ = (u, s).

Signature Verification: This algorithm checks if the aggregated random number
u and indexes (j∗

1 , . . . , j∗
L) ← H0(m||u) are verified with s under PK ′.
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Algorithm 5. FAAS pqNTRUsign instantiation

(sk ,PK ) ← FAAS-NTRU.Kg(1κ):

1: Generate secrets f ,g ∈ Rq such that h(x) = p−1g(x)f−1(x)
2: If f and g are not invertible mod q, go to Step 1
3: sk′ ← (f ,g), PK′ ← h and z ← {0, 1}κ

4: Select integers (k, t, b, L) as in generic FAAS.Kg Step 1
5: ui ← H1(i||z), βi ← pqNTRUsign.Sig(ui, sk

′, PK′), where |ui| = κ for i =
0, . . . , t − 1

6: Set precomputed signature table B ← {βi}t−1
i=0

7: γi ← pqNTRUsign.Sig(i, sk′), for i = 0, . . . , 2b − 1

8: Set precomputed signature table Γ ← {γi}2b−1
i=0

9: sk ← (z,B, Γ ) and PK ← PK′

σ ← FAAS-NTRU.Sig(m, sk):

1: (j1, . . . , jk) ← H2(m||z), where each {ji}k
i=1 is interpreted as a |t|-bit integer.

2: uji ← H1(ji||z) and (upji
,vpji

) ← HN (uji ||h) where i = 1, . . . , k

3: (up,vp) ← ∑k
i=1(upji

,vpji
), and σU ← ∑k

i=1 βi

4: (j∗
1 , . . . , j∗

L) ← H0(m||up||vp), where each {ji}L
i=1 is interpreted as a b-bit integer.

5: s ← σU +
∑L

i=1 γj∗
i

and σ ← (up,vp, s)

{0, 1} ← FAAS-NTRU.Ver(m, σ,PK ):

1: (j∗
1 , . . . , j∗

L) ← H0(m||u)
2: û = sh−1 mod q̂
3: if ||û||∞ >

√
(k + L)τpσ̃ then return 0

4: (upi ,vpi) ← HN (j∗
i ||h) where i = 1, . . . , L

5: if (û, s) = (up,vp) +
∑L

i=1(upi ,vpi) then return 1, else return 0

Remark 1. It is essential to keep individual random messages and their indexes
as secrets. We do this with an aggregation function u ← Agg(uj∗

1
, . . . , uj∗

k
) as

in Step 4 for random message components. The aggregation function Agg(.) is
instantiated as modular multiplication and vector addition in Condensed RSA
(C-RSA) [31] and pqNTRUSign [25], respectively. We derive indexes (j1, . . . , jk),
which select random numbers to be aggregated, via the private key z. Therefore,
unlike public indexes (j∗

1 , . . . , j∗
L) that are used to encode the message, secret

indexes (j1, . . . , jk) are only known to the signer.

4.2 FAAS Instantiations

FAAS can be instantiated with any single-signer aggregate signature scheme. We
propose two efficient instantiations of FAAS as below.

Lattice-Based Instantiation (FAAS-NTRU): Lattice-based signature schemes
provide a viable post-quantum security promise [16]. Among the identi-
fied lattice-based signature schemes with secure aggregation [17,25], pqN-
TRUsign [25] offers fast verification with a slow signature generation that
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Algorithm 6. Instantiation of FAAS with C-RSA

(sk ,PK ) ← FAAS-C-RSA.Kg(1κ):

1: Generate two large primes (p, q) and n ← p · q. Compute (e, d) such that e · d ≡
1 mod φ(n), where φ(n) ← (p − 1)(q − 1)

2: sk′ ← (n, d), PK′ ← (n, e) and z ← {0, 1}κ

3: Select integers (k, t, b, L) as in generic FAAS.Kg Step 1
4: ui ← H1(i||z) and βi ← ui

d mod n, where |ui| = |n| for i = 0, . . . , t − 1
5: Set precomputed signature table B ← {βi}t−1

i=0

6: γi ← HF (i)d mod n, for i = 0, . . . , 2b − 1, where HF : {0, 1}∗ → Z∗
n

7: Set precomputed signature table Γ ← {γi}2b−1
i=0

8: sk ← (z, B, Γ ) and PK ← PK′

σ ← FAAS-C-RSA.Sig(m, sk):

1: (j1, . . . , jk) ← H2(m||z), where each {ji}k
i=1 is interpreted as a |t|-bit integer.

2: uji ← H1(ji||z) for i = 1, . . . , k
3: u ← ∏k

i=1 uji mod n and σU ← ∏k
i=1 βji mod n

4: (j∗
1 , . . . , j∗

L) ← H0(m||u), where each {ji}L
i=1 is interpreted as a b-bit integer.

5: s ← σU · ∏L
i=1 γj∗

i
mod n and set σ ← (u, s)

{0, 1} ← FAAS-C-RSA.Ver(m, σ,PK ):

1: (j∗
1 , . . . , j∗

L) ← H0(m||u)
2: if se = u · ∏L

i=1 HF (j∗
i ) mod n then return 1, else return 0

requires Gaussian sampling. Thus, FAAS-NTRU improves the security and signing
efficiency of pqNTRUsign by eliminating the Gaussian sampling and rejection
sampling from the online signature generation phase. The detailed description
of FAAS-NTRU is presented in Algorithm 5, that refers to pqNTRUsign signa-
ture generation algorithm defined in Algorithm 1, to refrain from repetitions in
the algorithm description. Notice that expensive calculations such as Gaussian
sampling and polynomial multiplication are done in the key generation algo-
rithm (once and offline). At the signing phase, only polynomial additions are
performed.

RSA-Based Instantiation (FAAS-RSA): We instantiate FAAS with Condensed
RSA (C-RSA) [31], which is secure under the RSA assumption in the ROM [7].
The signature generation of C-RSA requires an exponentiation over a large mod-
ulus, whereas its verification only requires an exponentiation over a small mod-
ulus (e.g., 65537). Therefore, FAAS-RSA, given in Algorithm 6, gains significant
improvements over C-RSA in terms of signature generation.

5 Security Analysis

Theorem 1. AdvEU-CMA
FAAS,A (t, qS , qh) ≤ AdvA-EU-CMA

Asig,B (t′, q′
S , q′

h) where t′ =
O(t) + 2qS(tRNG + tSig + tAgg) , q′

S ≥ 2qS and qH = q′
H .
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Proof. Please refer to the appendix in the full version of the paper in [35].

5.1 Security and Performance of Online Operations

Side-channel attacks pose a serious threat to cryptographic implementations.
Some critical operations that are prone to side-channel attacks are given below.

Gaussian Sampling: Lattice-based cryptography offers efficient solutions with
post-quantum security promise. However, most of the efficient lattice-based sig-
nature schemes require a (high precision) sampling from a distribution, mostly
a Gaussian, which not only degrades their performance on the signer’s side but
also is highly prone to side-channel attacks. For instance, BLISS [15], as one of
the most efficient instances of such schemes, has been targeted with a number of
side-channel attacks [18,22]. Secure implementation approaches might mitigate
some of these side-channel attacks; however, they are deemed to be a highly
challenging and error-prone task [16].

Rejection Sampling: This operation is required in lattice-based signatures to
ensure signatures do not leak information about the private key. The number of
rejections can significantly decrease the performance of a scheme. For instance,
in pqNTRUsign [25], the probability that the signature lies in a desired range
is only 6%. Aside from the performance burdens, an efficient variant of this
algorithm is shown to be prone to side-channel attacks [18,22]. These attacks
showed the vulnerability of the Bernoulli-based algorithm for rejection sampling
in BLISS signature.

Exponentiation and PRNG: There has been many attacks on the efficient expo-
nentiations and elliptic curve scalar multiplications [13,20,29]. While counter-
measures were proposed in [37], similar to the blinding technique, they incur
performance sacrifice. The security of PRNGs is highly dependent on the hard-
ware. Although one can find secure PRNGs in well-developed CPUs, the PRNG
implementations in low-end IoT processors are prone to attacks. Therefore, it
is a desirable property for a signature scheme to be deterministic (i.e., do not
require any fresh randomness in signature generation phase) [9].

FAAS instantiations do not require any of the above operations in their sign-
ing algorithm. Therefore, we believe FAAS instantiations can offer improved side-
channel resiliency and easy implementation as compared to some of their under-
lying schemes.

6 Performance Evaluation and Comparison

We first give the analytical costs of FAAS instantiations and their counterparts in
terms of computational overhead and key/signature sizes. We then outline our
experimental setup, parameters and provide a detailed experimental comparison.



Fast Authentication from Aggregate Signatures with Improved Security 699

6.1 Analytical Performance Analysis

Key Generation: Key generation of FAAS instantiations require the computation
of two tables, and therefore, it is more expensive than their base schemes. Specif-
ically, to generate the two tables, 2b + t signatures of the underlying aggregate
signature schemes should be computed.

Signature Generation: FAAS signature generation requires signature aggregations
(k + L) · ASig.Agg(·), message aggregations k · Agg(·) and hash calls k · H(·).

pqNTRUsign [25] requires Gaussian sampling and polynomial multiplication
to generate a signature. This is reduced to polynomial additions and mapping
functions HN in FAAS-NTRU. We present a variant of FAAS-NTRU (referred to as
FAAS-NTRU′) to improve the efficiency of signature generation with the cost of an
increased private key size. Our implementation (see Sect. 6.2) showed that the
mapping function in FAAS-NTRU takes a significant time. FAAS-NTRU′ stores the
results of the mappings as the private key to eliminate this overhead. Aside from
the Gaussian sampling, pqNTRUsign also requires a rejection sampling to ensure
that signatures do not leak information about the private key distribution. Due
to rejection sampling, the signature generation of this scheme does not have a
constant time, whereas FAAS instantiations do not require any rejection sampling
during signature generation.

FAAS-RSA signing only requires a few hash calls and modular multiplications
over n, while RSA takes an exponentiation with a large exponent d.

Signature Verification and Delay: FAAS instantiations add a slight overhead to
the verification of their base schemes, which is equal to L message aggregations.
However, since message aggregation is efficient, this only incurs a slight overhead,
especially considering the overall gain in terms of the total delay due to the highly
improved signature generation.

Storage and Transmission Overhead: FAAS requires two tables to be stored at
the signer’s side, with the size of (2b + t + 1) · |σi| + κ where σi ← ASig.Sig(·).
Moreover, in addition to their base scheme, FAAS requires an aggregated ran-
domness which makes the total signature size |s| + |u|. Note that, in FAAS-NTRU,
the signature size changes from |s| bits to |v′| bits, since the ‘t-side’ of the vector
should be transmitted for aggregate verification in pqNTRUsign [25]. Therefore,
the signature size of FAAS-NTRU increases slightly more. The public key size of
FAAS instantiations is the same with that of their base signature schemes.

6.2 Performance Evaluation

Experimental Setup: We implemented FAAS instantiations on a laptop
equipped with Intel i7 Skylake 2.6 GHz processor and 12 GB RAM. Our operat-
ing system was Ubuntu 16.04 with gcc version 5.4.0.

Software Libraries and Implementation: We developed FAAS instantia-
tions3 in C. We implemented FAAS-RSA with GMP due to its optimized modular
3www.github.com/ozgurozmen/FAAS.

www.github.com/ozgurozmen/FAAS
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arithmetic operations [21]. We used the open-source pqNTRUsign implementa-
tion available in NTRU open-source project [25] to develop FAAS-NTRU. We used
Blake2 as our hash function (as in SPHINCS [8]), due to its high efficiency [6].

We ran the open-source implementations of our state-of-the-art counterparts
in our experimental setup, to draw a fair comparison. We benchmarked the
ECDSA in MIRACL library [40] and RSA in GMP library [21]. We benchmarked
Ed25519 and SPHINCS using their Supercop implementations. Lastly, we used
the open-source implementation of pqNTRUsign [25].

Parameters. We selected parameters to achieve κ = 128-bit security.

PQ Secure Schemes: We used the suggested parameters providing κ ≈ 128-bit
security for pqNTRUsign [25]. More specifically, σ̃ = 107, N = 512, and q =
216 + 1 and d = 77 to achieve κ = 128. For SPHINCS, we refer the reader for
the suggested parameters to [8].

Traditional Schemes: We selected |n| = 3072 bit, |e| = 17 bit and |d| ≈ 3072 bit
for RSA-based schemes. We chose |p′| = |q′| = 256 bit for ECC-based schemes.

FAAS Parameters: FAAS parameters are selected as (b, L) = (8, 32) and (k, t) =
(32, 256) for l0 = l2 = 256. The security of these parameters depend on how many
different combinations one can derive with k-out-of-t precomputed components,
that is

(
t
k

)
=

(
2b

L

)
. With current parameters, there are 2141 different combinations

that can be created. Another important aspect is to keep the indexes secret. As
discussed in Sect. 4, this ensures that presented attack cannot be applied to FAAS.
Since we are concatenating a secret (z) in the hash call (H1), the indexes will
remain as secret. On the other hand, one can attack H0 and try to obtain an
m∗ such that H0(m||u) corresponds to the same indexes as H0(m∗||u). However,
since u is a random value derived based on secret indexes, the attacker must
conduct a target collision attack to find such m∗. Since, any permutation of the
indexes would correspond to a collision on H0, there are k! different possible
index permutations. Thus, the probability to find such an m∗ is L!

22b . With the
current parameter selection, the probability for this is 2−138. Since the underlying
signature schemes’ parameters are selected to provide κ = 128-bit security, all
in all, FAAS instantiations offer κ = 128-bit security.

Experimental Comparison: Table 1 shows numerical evaluation and compar-
ison of FAAS instantiations and their counterparts.

FAAS instantiations offer notably faster signing over their base schemes
with a slightly slower verification. (i) FAAS-NTRU and FAAS-NTRU′ improve pqN-
TRUsign [25] signature generation by 29.67× and 105.29×, respectively. (ii) For
FAAS-RSA, signature generation is over 40× faster than traditional RSA.

However, FAAS instantiations require storing a private key up to 1 MB
(Table 1). With their improved side-channel resiliency and fast signature gen-
eration, FAAS instantiations can be preferred for delay-aware applications where
the signer can tolerate storing up to 1MB of private key. We observed that the
signing cost of FAAS-NTRU was dominated by the mapping functions, which map
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messages to vectors. We also noticed that these vectors can be stored as a pri-
vate key component, instead of being deterministically generated during signing.
This resulted in a trade-off between the signing time and private key size, where
signing speeds up 3.55× with a 2× increased private key size (Table 1).

Recall that, SCRA [45] does not use a masking strategy, and therefore, leaks
its private key (as shown in Sect. 3). Since FAAS uses an efficient and constant-size
aggregate masking strategy, its signature generation requires only twice as much
signature aggregations and k message aggregations compared to insecure SCRA.
This results in an approximately three times slower signature generation. The
signature verification times of the both schemes are highly similar. Moreover,
since FAAS relies on an efficient message encoding (see Sect. 4), the private key
of FAAS is L× smaller than that of SCRA. In practice, since L is selected as 32,
this results in a significant improvement in terms of private key size. Therefore,
FAAS addresses the flaws of SCRA with a small computation overhead and a
more compact private key size.

7 Related Work

Online/offline signatures [19,33,39,44] offer fast signing since they precompute
tokens for each message to be signed in the offline phase. In the online phase,
these precomputed tokens are used to provide efficient signature generation.
However, such methods incur linear storage with respect to the number of mes-
sages to be signed. Moreover, as tokens are depleted, they should be renewed
that might introduce further overhead. Therefore, we believe they may not be
practical for real-time networks that require continuous signature generation.

There are many schemes that leverage signature aggregation to ensure
authentication and integrity in outsourced databases (e.g., [31,32,41]). In such
applications, the signatures of a small set of messages with well-defined indexes
(e.g., signatures belonging to some row elements in a database table) are aggre-
gated to obtain compact signatures for the response of database queries [32].
Despite their merits, potential security issues that stem from the homomor-
phic properties of these signatures were pointed out [30,32]. Specifically, it has
been shown that since aggregate signatures are mutable, one can create “new
signatures” on data items that have not been explicitly queried by combining
previously obtained aggregate signatures. To prevent this, immutable signatures
(e.g., [30,32]) have been developed, which generally rely on one-time masking
and/or sentinel signatures. Recently, signature schemes that depend on secure
aggregation (e.g. RA [44] and SCRA [45]) have been proposed. However, as dis-
cussed, RA [44] is an online/offline signature with a dependency on predefined
structures in messages. In this paper, we showed that an adversary can forge
signatures on any message in SCRA by observing a small number of signatures.

8 Conclusion

We first presented an attack to SCRA signature scheme that can forge signatures
over any message by observing only 8161 signatures. We fully implemented our
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attack and forged signatures in only a few milliseconds after a one-time 2.5-h
preparation phase. We then proposed a new generic signature scheme (i.e.,
FAAS) that can transform any secure single-signer aggregate signature into a
signer efficient signature scheme. We proposed two instantiations of FAAS called
FAAS-RSA and FAAS-NTRU that can offer up to 42× and 105× faster signature
generation as compared to their base signature schemes, respectively. Moreover,
FAAS instantiations do not require some operations that are vulnerable to side-
channel attacks, and therefore, they provide an improved side-channel resiliency,
where FAAS-NTRU also provides a post-quantum promise.

Acknowledgments. We would like to thank Zhenfei Zhang and the anonymous
reviewers for their insightful comments and suggestions. This work is supported by
the Department of Energy Award DE-OE0000780 and NSF Award #1652389.

Appendix A Security Definitions

Definition 6. Aggregate Existential Unforgeability under Chosen Message
Attack (A-EU -CMA) for a single user aggregate signature is as follows.

ExpA-EU -CMA
Asig,A (1κ) :
Lm ← ∅ SigAsk (−→m)
(sk ,PK ) ← Asig.Kg(1κ) γi ← Asig.Sig(mi, sk) for i = 1, . . . , j
(−→m∗, σ∗) ← ASigAsk (·),RO(·)(PK ) σ ← Asig.Agg(γ1, . . . , γj)

Lm ← Lm ∪ −→m
We say A wins in time t, and after qS and qh queries if ((Asig.Ver(−→m∗, σ∗,PK )∧
(−→m∗ ∩ Lm = ∅)) .The A-EU -CMA advantage of A is defined as
AdvA-EU -CMA

Asig,A (t, qS , qh) = Pr[ExpA-EU -CMA
Asig,A = 1].

FAAS requires that the underlying aggregate signature achieves k-element
Aggregate Extraction (AE) property [10,14], which is defined in the following.

Definition 7. For a given aggregate signature s ← SigAsk (−→m) computed on k
individual data items −→m = (m1, . . . ,mk), it is difficult to extract the individ-
ual signatures (γ1, . . . , γk) of (m1, . . . ,mk) provided that only s is known to the
extractor.

Initially, Boneh et al. [10] assumed that it is a hard problem to extract indi-
vidual BLS signatures given an aggregate BLS signature, which was then proven
to hold in [14] under the Computational Diffie-Hellmann assumption. We note
that C-RSA [31] and pqNTRUsign [25], which are used in FAAS instantiations,
achieve this property.
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