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Abstract

Extending Succinct Zero Knowledge Proofs for Set Membership to Ring Signatures

by

Jialin Li

in

University of California, Berkeley

,

Ring signatures are digital signatures that confirm the signer being a member of a public
group without revealing the identity of the signer. There are wide applications of ring
signatures, such as in the blockchain space. For example, anonymous cryptocurrency Monero
employs RingCT, which is based on Confidential Transactions and ring signatures. The
bottleneck for ring signatures is the size of the signatures as most current schemes have size
of signatures proportional or logarithmic to the number of parties in the ring, which are
highly inefficient. We hope to extend a state-of-art disjunctive zero-knowledge proof to ring
signatures.

Disjunctive zero knowledge proofs, where the prover demonstrates knowledge of solution to
a subset of problems, were first studied by Cramer et al.[8] Since then, there have been
numerous optimizations towards more efficient communication and computation. In order
to reach amortized computation that does not grow with the total number of statements, [6]
uses RSA set accumulators to combine with commitment schemes in a Σ−Protocol. There
is a natural connection between ring signatures and Σ−protocols as any Σ−protocol of zero
knowledge proofs can be converted to a ring signatures by embedding the message to be
signed in the hash function. Therefore, the construction of [6] give a ring signature scheme,
which can be potentially applied to the Monero protocol after modifications.
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Chapter 1

Commit-and-Prove Zero knowledge

1.1 Zero Knowledge Proof of Partial Knowledge

Zero Knowledge Proofs Zero Knowledge proofs, first proposed by Goldwasser, Micali
and Rickoff in 1985 [12], are used to prove the validity of a statement without leaking any
additional information. Essentially, any information the verifier learns by interacting with
the prover can be learned by the verifier on its own.

• Completeness If the statement is true (x ∈ L), an honest verifier will be convinced by
the prover.

• Soundness If the statement is false (x /∈ L), no prover should be able to convince the
verifier.

• Zero knowledge For any verifier strategy V ∗, there exists a probabilistic polynomial
time algorithm S, the simulator, such that for all x ∈ L, S(x), transcript of the simula-
tor, is ”indistinguishable” from V iew∗

V [P (x), V ∗(x, z)]. Here, View V ∗ [P (x), V ∗(x, z)]
denotes the distribution over all messages sent from P to V ∗ and randomness used by
V ∗. ”Indistinguishable” can mean perfect zero knowledge, statistical zero knowledge
or computational zero knowledge.

Honest verifier zero knowledge indicates if both the prover and verifier are honest, and
there exists an efficient simulator that on the statement x, outputs a simulated accepting
transcript with the same distribution as those of a real interaction.

Σ−Protocols A 3-round public coin interactive proof is called a Σ-protocol. The three
messages sent in the protocol is usually denoted as (a, c, z) where a and z are messages from
the prover and c is the challenge message sent by the verifier.

Σ−protocols are special honest-verifier zero-knowledge [9]: There exists a polynomial
time simulatorM, which can output an accepting transcript (a, c, z) with the same probability
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distribution as interactions between P and V on input x when given the input x and a random
challenge c.

A Σ−protocol is k-special sound if an efficient algorithm can recover the witness of the
proof upon receiving the statement x and accepting transcripts (a, c1, z1), (a, c2, z2), ...,
(a, ck, zk).

Fiat-Shamir transform Fiat-Shamir transform[11] is particularly useful in conjunction
with Σ − Protocols to generate a non-interactive proof. Instead of the verifier generating
random messages and send then to the prover, the prover simulates the random message
by hashing the transcript of the proof proceeding it. Then continue with the rest of the
proof. In the end, the prover generates the entire transcript and lets any verifier to verify
the validity of the proof. Later, the protocol is generalized to multi-round proof systems [1].
Fiat-Shamir transform and the generalization created a standard way to compile a public
coin argument systems to non-interactive systems.

Schnorr’s protocol [17] Schnorr’s protocol is a classic sigma protocol, aiming to prove
knowledge of a discrete log in a group G of prime order q. Let g ̸= 1, and x = gw be public
and the prover has the witness w, so the prover needs to prove that he knows w such that
x = gw. The protocol goes as the following:

1. The prover chooses z at random and sends a = gz to the verifier V .

2. The verifier chooses c at random and sends it to P .

3. Finally, P sends r = (z + cw)modq to V and V checks that gr = axc.

zk-SNARKs Zk-SNARKs, which stands for Zero-Knowledge Succinct Non-Interactive Ar-
gument of Knowledge, can be realized in many promising approaches, such as interactive
proofs(IPs), probabilistic checkable proofs(PCPs), multi-prover interactive proofs(MIPs), or
linear PCPs. They are zero knowledge proofs that are succinct and quick to verify, but usu-
ally at the expense of heavy computation on the prover side. All of these, aside from linear
PCPs, proof systems, by applying a polynomial commitment scheme, can generate succinct
proofs. Then apply Fiat-Shamir Transform so that the proof is non-interactive. Zk-SNRAKs
have a wide range of applications. In particular, it succinctness and quick verification pro-
cess make it compatible with blockchain applications. ZCash uses makes use of zk-SNARKs:
The spender, receiver, and the amount of transaction are all hidden, but a short SNARK
proof makes it easy for anyone to verify the validity of the statement.

Proofs of partial knowledge Proofs of partial knowledge allow a prover to convince a
verifier that he knows the witness of one statement out of n statements without revealing
which one he knows. This scenario can generalize to proving k-out-of-n statements: the
prover convinces the verifier that he knows k out of n secrets.
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The first protocol for proving one-out-of-n or k-out-of-n partial knowledge is by Cramer
et al. [8]. The main idea of the protocol is of the following: the prover prepares the first
round message of the statements that he knows the secrets for and simulates the full 3-round
proof transcript of those that he does not know the secrets for. Then he sends the first round
messages to the verifier. The verifier sends a random string. Finally, the prover splits the
random string and use each part to produce the proof for the statements where he know the
secrets. Along with the third round messages for the rest of the statement that he already
prepared, he sends the third round messages to the verifier. The restriction is that the
random string can only be split in a limited number of ways such that the prover must use
random strings for the statements whose secrets he claims to know,

1.2 Commit-and-Prove Zero Knowledge Proof

Systems

In [6], Campanelli et al. comes up with a new way to prove the accumulator verification
in SNARK, which is based on a novel combination of sigma protocols, succinct proof of
knowledge of exponent, and zkSNARKs for integer arithmetic.

Commit-and-Prove

1.3 RSA accumulator

RSA accumulators [5, 14] are used to prove set memberships from a prover to a verifier. The
list of elements in the set is all odd primes. The core procedures include aggregate, prove
membership and verify membership. As opposed to Merkle tree that has size logarithmic for
set membership proofs, RSA accumulators have constant size proof. But problems for such
protocols is that they require the numbers being proven are prime numbers.

• Setup(λ) Generate a group of unknown order and a generator for the group. G $←
GGen(λ), then g

$← G.

• Aggregate(S) Return A = g
∏

s∈S s.

• ProveMembership(S, x) Membership Proof for an element is calculating the accumu-
lator without the aggregated item. Return w = g

∏
s∈S,s ̸=x s.

• VerifyMembership(A,w, x) Return 1 of wx = A Otherwise return 0.

• ProveBatchMembership(S, x1, x2, ..., xn) Set the subset c = x1, x2, ..., xn. Return w =
g
∏

s∈S,s/∈c s.

• VerifyBatchMembership(A, S, w, x1, x2, ..., xn). Compute x =
∏

xi. Return 1 if wx =
A. Otherwise return 0.
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1.4 State-of-the-art membership proofs

The typical approach to zero knowledge membership proofs is zkSNARKs based on Merkle
Trees. A Merkle tree is a cryptographic primitive that after initial processing by iteratively
calculating the hashes, enables one to prove the membership of an element at any time.
However, to generate Merkle tree proof in SNARK results in large computation overhead
comparing to proof in plaintext. For a set of n elements, the circuit has to encode logn hash
computations in the zkSNARK system. Furthermore, Merkle trees do not support batch
membership proofs. for a batch of size m, O(mlogn) hash computations are required, using
Merkle Tree structure means repeating the proof for each element of the batch plus proving
all elements are distinct, causing worse runtime for the prover.

There is no scalable solution for proving batch membership in zero-knowledge. We would
like to consider batch memebership proofs with RSA accumulators. Although the näıve
implementation still requires O(m) RSA group operations (1.8ṁ millions constraints [6]). In
[6], Campenelli et al. proposed new techniques to use zkSNARKs with RSA accumulators.

Commit and Prove

Commit-and-prove zero knowledge proofs (CP-ZKPs) [13, 7] are a class of zero knowledge
proofs where the prover proves the validity of a statement that involves some committed
values. The informal definition is as follows: Lck = {cx : Comm(x) = cx , x ∈ L}. One
benefit of CP-ZKPs that is relevant to our problem is the property of interoperability. In
another word, one can prove two different statements about the same value being committed
using different zero knowledge proof systems. Of course, one can combine the commitment
opening and other proof(s) as one large proof by putting them in a large circuit, but the
approach is highly inefficient.

This motivated a proposal[2] to formalize the definitions of CP-ZKPs and have a frame-
work for building CP-ZKPs, which involves instantiating a commitment scheme. What is
particularly relevant from the proposal is the definition of CP-NIZKs (Commit and prove
non-interactive zero knowledge proofs), which applies to the protocol of [6] detailed in 1.5.

Definition 1 (CP-NIZK). Let {Rλ}λ∈N be a family of relations R over Dx×Du×Dω such
that Du splits over ℓ arbitrary domains (D1 × · · · × Dℓ) for some arity parameter ℓ ≥ 1.
Let Com = (Setup, Commit, VerCommit) be a commitment scheme (as per Definition 4.2)
whose input space D is such that Di ⊂ D for all i ∈ [ℓ]. A commit-and-prove NIZK for
Com and {Rλ}λ∈N is a NIZK for a family of relations

{
RCom

λ

}
λ∈N such that: - every R ∈

RCom is represented by a pair (ck, R) where ck ∈ Setup
(
1λ
)
and R ∈ Rλ; - R is over

pairs (x,w) where the statement is x :=
(
x, (cj)j∈[ℓ]

)
∈ Dx × Cℓ, the witness is w :=(

(uj)j∈[ℓ] , (oj)j∈[ℓ] , ω
)
∈ D1 × · · · × Dℓ ×Oℓ ×Dω, and the relation R holds iff∧

j∈[ℓ]

VerCommit (ck, cj, uj, oj) = 1 ∧R
(
x, (uj)j∈[ℓ] , ω

)
= 1



CHAPTER 1. COMMIT-AND-PROVE ZERO KNOWLEDGE 5

Furthermore, when we say that CP is knowledge-sound for a relation generator RG and aux-
iliary input generator Z (denoted KSND(RG,Z), for short) we mean it is a knowledge-sound
NIZK for the relation generator RGCom

(
1λ
)
that runs ck ← Setup

(
1λ
)
and (R, auxR) ←

RG
(
1λ
)
, and returns ((ck, R), auxR).

1.5 New zkSNARK for RSA accumulators [6]

Campanelli et al.[6] designed a succinct zero knowledge proof of set membership for a batch
of elements, which sought to improve the scalability challenge of the problem. The main
scheme is a Σ−protocol along with several SNARKs to assist with the proof. Notably, no
RSA group operations is encoded in the SNARK system. Both proof size and verification
time is O(1).

Blockchain transactions can benefit from such zero knowledge proofs. When new trans-
actions are broadcasted, validators run validity checks: checking if the new transactions
comply with the global state. In bitcoins, we have UTXO; in ethereum, we have account
balance pairs. Ideally, verification for large batches should not require the verifiers to store
all global states. We observe Monero could also benefit from such constructions in their ring
signature protocol, which will be discussed more in detail 2.2

First approach

We first show a naive approach of the problem that employs a Σ−protocol. Given a random
element g from a group of unknown group order, S = x1, x2, ..., xn is the set of elements
to be accumulated assuming all elements are prime, acc = g

∏
xi∈S xi . S ′ = u1, ..., um. W =

g
∏

s∈S,s/∈S′ s.The prover aims to prove that S ′ ∈ S.

1. The prover chooses a large random r, and computes R = W r and sends it to the
verifier.

2. The verifier chooses c at random and sends it to the prover.

3. The prover sends the verifier k = r + c
∏̇

ui∈S′ui. The verifier checks if R · accc = W k.

Problems The main problem with this sigma protocol is that it does not fully hide the
elements in the batch to be proved: S ′. As the verifier needs to know W , which leak
information about which elements are in the batch, especially if the batch size is small. The
verifier could test all potential elements or element combinations by brute force.

The Σ−protocol only provides proof for the elements in the batch, but fails to link the
elements with their commitments.

The proof is not succinct as the last message from the prover to verifier is O(m) bits long.
It is not of a constant size.
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Solutions [6] uses randomization techniques to hide the elements in the batch by adding
additional small prime numbers, so that the witness is no longer the aggregation of elements
from the original set. Because of the introduction of small primes, a few SNARKs are needed
to prove that the numbers is the batch are not the newly introduced small primes, which we
will expand later.

The prover uses a zkSNARK to link the commitments to every element in S ′ to the
Σ − protocol. Specifically, it connects the commitment cu⃗ with the last message of the
Σ− protocol since that is the only place ui’s are included.

Finally, because the last message from the prover is proportional to the size of S ′, [6]
decides to use of a proof of knowledge of an exponent(PoKE) [4]. With PoKE, the prover

does not send k = r + c
∏̇

ui∈S′ui directly, but sends a zkSNARK to prove the knowledge of

k for the relation ( ˆacccR) =
(
Ŵu⃗

)k

where ˆaccc and Ŵ correspond to the previous acc and

W after adding small primes.

New Sigma Protocol

We discuss the new protocol that is computationally witness hiding. The new technique
relies on adding small prime numbers to the accumulator.

Preprocessing

Let Pn = {2, 3, 5, 7, . . . , pn} be the set of the smallest n prime numbers.
First, the prover and verifier modify the accumulator acc to contain the smallest 2λ

primes by computing

• ˆacc← acc(
∏

pi∈P2λ
pi). This is the same as Aggregate(S ∪ P2λ).

Second, the prover will randomly chose a subset of P2λ to be added to the batch to be proven.

• The prover randomly samples 2λ bits b1, . . . , b2λ
$← {0, 1} and set s =

∏
pi∈P2λ

pbii and

s̄ :=
∏

pi∈P2λ
p1−bi
i .

• The prover computes the complement of the batch to be proven and the selected small

primes Ŵ ← W s̄ = g
(
∏

xi∈S\X xi)·
(∏

pi∈P2λ
p
1−bi
i

)
? .

By adding some small primes into the accumulator, essentially, the verifier will not be able
to guess which elements of S are part of the batch; therefore, witness hiding was achieved.

After the preprocessing, the prover and verifier proceed with the Σ−Protocol detailed
above.
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Proof of computational indistinguishability

Now, we would like to prove Ŵ computed by the prover at the end of preprocssing is
computationally indistinguishable from a random group element. First, we introduce the
DDH-II assumption [10] and proves that under DDH-II, Ŵ is indistinguishable from random.

DDH-II Assumption There are variations of DDH-II assumptions for generic groups,
prime order groups an unknown order groups, which are all derived from the original DDH
assumption, and security has been proven for each category. We are using the unknown order
group model, and the idea is the following: For a group G? of unknown order and g?,g

a
? ,g

b
?,

where a is drawn from a certain (not necessarily uniform) distribution, with sufficient min-
entropy, whereas b is picked uniformly at random, gab? is indistinguishable from a uniform
element in G?.

Formally, let G? ← G?
(
1λ
)
and g?

$← G?. Let WS2λ be a well-spread distribution with
domain X2λ ⊆ [1 , minord(G?)]. Then for any PPT A :∣∣Pr [A (gx? , g

y
? , g

xy
? ) = 0]− Pr

[
A
(
gx? , g

y
? , g

t
?

)
= 0

]∣∣ = negl(λ)

where x
$←WS2λ and y, t

$←
[
1,maxord (G?) 2

λ
]
.

In the RSA accumulator, D2λ is well spread as there are 22λ distinct possible outcomes.

Therefore, for each s̄ =
∏

pi∈P2λ
p1−bi
i , Pr

[
s̄

$← D2λ

]
= 1/22λ for every s̄.

Security proof under DDH-II assumption For any parameters pp ← Setup
(
1λ
)
, set

S (where S ∩ P2λ = ∅) , R $← G? and Ŵ computed as described above it holds:

|Pr[A(pp, S, Ŵ ) = 0]− Pr[A(pp, S, R) = 0]| = negl(λ)

for any PPTA, under the DDH-II assumption for G? and D2λ. Proof. Call A an ad-
versary achieving a non-negligible advantage ϵ above, i.e. ϵ := |Pr[A(pp, S, Ŵ ) = 0] −
Pr[A(pp, S, R) = 0]|We construct an adversary B against DDH-II that, using adversary

A, gains the same advantage. B receives (G ? , g?, g
s̄
?, g

r
? , g

bs̄r+(1−b)t
? ), where s̄ ← $D2λ

and r, t ← $ [1, maxord( G?) 2
λ
]
. Then it chooses arbitrarily an element u and sets

S = {u}, pp ← (G?, g
r
?) and V = g

bs̄r+(1−b)t
? · B sends (pp, S, V ) to the adversary A, who

outputs a bit b∗. Finally, B outputs b∗.
First, notice that gr? is statistically close to a random group element of G?, meaning that

A cannot distinguish pp from parameters generated by Acc.Setup
(
1λ
)
. Furthermore if

b = 0: V is again a (statistically indistinguishable element from a) uniformly random
group element of G? therefore Pr[B = 0 | b = 0] = Pr[A(pp, S, R) = 0].
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b = 1: V = gr·s̄? = Ŵu is a witness of u so Pr[B = 0 | b = 1] = Pr[A(pp, S, Ŵ ) = 0].
In both circumstances, Pr[B = 0] is the same as the probability of adversary A winning

the game, which is negligible.

Proof of Knowledge of Exponent

Although the new Σ-protocol satisfies the desired zero knowledge property, the proof is not
succinct as the last message grows with the size of the batch. Therefore, we use a recent
result Boneh et al.[4] called Proof of Knowledge of Exponent(PoKE) to prove the relation

RPoKE(u,w;x) = 1⇔ ux = w

for a group of unknown order G? and a random element from the group. Here, u,w ∈ G?

and x is an integer.

Params: G?
$← GGen(λ); Inputs: u,w ∈ G; Witness: x ∈ Z; Claim: ux = w

1. Verifier sends ℓ
$← Primes(λ).

2. Prover finds the quotient q ∈ Z and residue r ∈ [ℓ] such that x = qℓ+ r. Prover sends
(Q = uq,r) to the Verifier.

3. Verifier accepts if r ∈ [ℓ] and Qℓur = w.

To make the protocol non-interactive, we apply Fiat-Shamir transform: instead of l being
sampled by the verifier, the prover applies a hash function on the input (crs, A, B) to sample
a prime of size 2λ. Then sends the verifier the proof. The verification process is the same.
Note this protocol is insecure if applied to a base freely chosen by the prover as in some
circumstances the prover can select Q and r based on the information he has about u and
w to still generate a valid proof without knowing x. However, this is sufficient for our case
because we will combine it with a SNARK that proves the correct computation of r based
on the commitments, i.e. r = x mod l. We will discuss this specific SNARK for integer
arithmetic relations below.

The proof is succinct as the proof size and verification time are independent of the size
of the exponent as x ∈ Z can be much larger than |G|.

CP-SNARK for integer arithmetic relations

We need a snark proof for connecting the Σ−Protocol with the vector commitment of the
batch. It is natural to connect the last message with the commitment to show the elements
used in the proof are those being committed. To summarize, we are proving the relationship

Rmodarithm
(
cu⃗, cs,r, h, ℓ, k̂

)
= 1⇔ k̂ = s · h ·

∏
i∈[m]

ui + r mod ℓ
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with a SNARK cpΠmodarithm . Here, u⃗ is a vector of integers in the batch and cu⃗ is the
commitment. s =

∏
pi∈P2λ

pbii and r, randomly sampled in the first round of the Σ−Protocol
are also integers committed. l, h ∈ Z and k̂ is the final message of the Σ−Protocol.

The relationship can be encoded in a SNARK in the format of

Rarithmetic
(
cu⃗, cs,r, h, ℓ, k̂; q

)
= 1⇔ qℓ+ k̂ = s · h

∏
i

ui + r

where q is the witness.

CP-SNARK for inequalities

Because of the added small primes that could be confused as elements in the batch, the
prover needs to show every element in the batch is bigger than B, a pubic parameter. We
use a SNARK cpΠbound to prove this relation:

Rbound (cu⃗, B) = 1⇔ ∀i, ui > B

Hashing integers to primes

So far, we’ve been assuming the input to the RSA accumulator are large primes. However,
we would like to expand the functionality to accept arbitrary elements. The main idea for the
adaptation is using collision-resistant hash functions that map arbitrary elements to prime
numbers and prove the correct mapping. In [6], they used the two mapping algorithms from
[3]. Assume a collision-resistant function H : {0, 1}η × {0, 1}ι → {0, 1}µ−1 that inputs and
outputs binary numbers. Define the function Hprime : {0, 1}η → Primes (2µ−1, 2µ) that looks
for the first j ∈ [0, 2ι − 1], s.t. the integer representation of the binary string 1|H(u, j) is a
prime. The function will fail with negligible probability. Now we discuss the implementation
of H. [3] gives two candidates:

1. Pseudorandom function Let H(u, j) := Fκ(u, j) where Fκ : {0, 1}η+ι is a PRF with
public seed κ and ι = | log µλ|. The expected runtime is O(µ) for the density of primes
and the resulting Hprime(u) fails with probability at most exp(−λ).

2. Deterministic map Let f(u) := 2(u + 2)log2(u + 1)2 and set H(u, j) := f(u) + j with
u > 2η−1 and j ∈ (f(u), f(u + 1)). If µ > η, the function is collision free. This
complies with Cramer’s conjecture that implies (f(u), f(u+1)) contains a prime when
u is sufficiently large.

Using either of these two algorithms gives a satisfactory mapping function Hprime(u). How-
ever, by sending arbitrary elements to primes and only using these primes in commitments
and RSA accumulators, we need to add proofs for the mapping by utilizing the commit-and-
prove modularity. Let (û1, û2, ..., ûm) by the original elements that map to (u1, u2, ..., um),
i.e. ui = Hprime(ûi). We use a CP-SNARK, CPHashEq to prove that ∀i, ui = Hprime(ûi). The
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relation to be proved (We call it RHashEq : {0, 1}µ × {0, 1}η × {0, 1}ι) can be written as the
following:

RHashEq (u1, u2, ω) = 1⇐⇒ u1 = (1|H(u2, ω))

Here, u1 refers to the resulting prime, u2 refers to the original element, and ω is the index used
to generate the prime, i.e first number in [0, 2ι − 1] that makes (1|H(u2, ω)) a prime. Note
that in the proof, we skip the iteration process of finding j, so only one hash computation
is encoded, reducing the complexity of the circuit.

Full Protocol

To summarize, the full protocol contains a Σ−Protocol and several zkSNARKs to support the
Σ−Protocol. It has the following setting: a prover wants to prove membership of elements
in an accumulator under zero knowledge. The elements are committed and each element is
a prime number greater than the 2λ-th prime. Since both parties hold acc, the accumulated
value of entire set, by property of RSA accumulator, the prover wants to show it has Wu⃗

such that W
∏

i ui

u⃗ = acc for a batch of elements u⃗ = (u1, . . . , um).
The core of the proof is a novel Σ−Protocol: by injecting the first 2λ primes into the

accumulator, the prover prevents the verifier from guessing the elements in the batch. As a
result of that, the prover needs to prove no element in the batch is a small prime(cpΠbound ).
The last step of the Σ−Protocol produces a message of large size. To preserve succinct-
ness of the proof, the prover employs a PoKE proof along with a SNARK that connects
the Σ−Protocol with the commitment(cpΠmodarithm ). The following is a discription of the
protocol:

Setup
(
1λ, ck, pp

)
:

• crs2 ← cpΠmodarithm . Setup
(
1λ, ck, Rmodarithm

)
• crs3 ← cpΠbound . Setup

(
1λ, ck, Rbound

)
• return crs :=(ck, pp, crsarithmetic, crsbound)

Prove(crs, acc, cu⃗;Wu⃗, u⃗, ou⃗):

• ˆacc← acc
∏

pi∈P2λ
pi

• Let u∗ =
∏

i ui, p
∗ =

∏
pi∈P2λ

pi

• Sample b1, . . . , b2λ
$← {0, 1}. Let s :=

∏
pi∈P2λ

pbii , s̄ :=
∏

pi∈P2λ
p1−bi
i

• Ŵu⃗ ← W s̄
u⃗

• Sample r
$← {0, 1}∥p∗∥+∥u∗∥+2λ. Then compute cs,r ← Commck (s, r; os,r) and R← Ŵ r

u⃗ .
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• Compute challenge message h ← H
(
crs ∥ acc ∥cu⃗ ∥cs,r∥ Ŵu⃗∥R

)
and the last message

of Σ-Protocol k ← r + (u∗s)h

• ℓ← Hprime

(
(G?, g?) , Ŵu⃗ , âcc

hR
)

• π1 ← ΠPoKE · Prv
(
(G?, g?) , Ŵu⃗, âcc

hR; k
)
. Parse π1 as (Q, k̂).

• π2 ← cpΠmodarithm · Prv
(
crs2, cu⃗, cs,r, h, ℓ, k̂; u⃗, ou⃗, r, s, os,r

)
• π3 ← cpΠbound · Prv (crs3, cu⃗, p2λ; u⃗, ou⃗)

• return π =
(
Ŵu⃗, R, cs,r, π1, π2, π3

)
Verify(crs, acc, cu⃗, π):

• aĉc← acc
∏

pi∈P2λ
pi

• Parse π as
(
Ŵu⃗, R, cs,r, π1, π2, π3

)
and π1 as (Q, k̂)

• ℓ← Hprime

(
(G?, g?) , Ŵu⃗ , âcc

hR
)

• h← H
(
crs ∥ acc ∥cu⃗ ∥cs,r∥ Ŵu⃗∥R

)
• Reject if ΠPoKE . Vfy(G?, g?) , Ŵu⃗, âcc

hR, π1

)
̸= 1

• Reject if cpΠmodarithm .Vfy
(
crs2, cu⃗, cs,r, h, ℓ, k̂, π2

)
̸= 1

• Reject if cpΠbound .Vfy (crs3, cu⃗, p2λ, π3) ̸= 1
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Chapter 2

New Ring Signature Construction

2.1 Ring Signatures

Ring signatures are a type of digital signatures that can hide the identity of the signer within
a group by Rivest et al [16]. Ring signatures make it possible to specify a set of possible
signers and it is publicly verifiable that the signature is produced by one of the members but
one cannot identify the member who creates the signature. Group signatures offer a similar
guarantee, but always have one or more group leaders who are in charge of adding members
and revealing the identity of the signer afterwards when a dispute arises. Therefore, a group
signature is useful when there is a prearranged group of users who would like to cooperate.

However, ring signatures do not have a prearranged group of users and anonymity of the
actual signer is never revoked. Adding or deleting members can be done by the signer.

Definition 2 (Ring Signatures) A set of possible signers is called a ring, and the ring
member who produces the signature is called a signer. A ring signature scheme is defined by
the following PPT algorithms:

KeyGen(1λ): takes in the security parameter 1λ, and outputs a pair of public and secret
keys (vk, sk).

Sign(sk,m,R): takes in a secret key sk, a message m, and a list of public keys, which
are also called verification keys, R = vk1, ..., vkr and outputs a signature σ.

Verify(m,σ,R) takes in a message m, its signature σ, and a list of verification keys
R = vk1, ..., vkr. Output either true or false.

Properties of Ring Signatures

Correctness: We require that a user can sign any message on behalf of a ring where she
is a member. A ring signature scheme (Setup, KGen, Sign, Vfy) has perfect correctness if
for all adversaries A

Pr

[
pp← Setup

(
1λ
)
; (vk, sk)← KGen(pp) Vfypp(M,R, σ) = 1

(M,R)← A(pp, vk, sk);σ ← Signpp,sk(M,R) or vk /∈ R

]
= 1
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Set-up free: The signer does not need confirmation from the other ring members when
adding them to the ring. The signer only needs to know the public keys of all ring members.

Anonymity: A signature should not leak any information about the identity of the signer
from a ring. We say that a ring signature scheme RS = (KeyGen, Sign, Verify) is anonymous
against full key exposure, if for every q = poly(λ) and every PPT adversary A it holds that
A has at most negligible advantage in the following experiment. Exp RS-Anon (A) :

1. For all i = 1, . . ., q the experiment generates the keypairs (VKi, SKi) ← KeyGen(
1λ, ri

)
using random coins ri and sends VK1, . . . ,VKq and r1, . . . , rq to A.

2. The adversary provides a challenge (R,m, i0, i1) to the experiment, such that VKi0

and VKi1 are in the ring R. The experiment flips a random bit b← ${0, 1}, computes
Σ∗ ← Sign (sKib , m,R) and outputs Σ∗ to A.

3. A outputs a guess b′. If b′ = b, the experiment outputs 1 , otherwise 0

The advantage of A is defined by AdvRS−Anon(A) =
∣∣Pr [ExpRS−Anon(A) = 1

]
− 1

2

∣∣.
Unforgeability: ExpRS-Unf (A) :

1. For all i = 1, . . . , q the experiment generates the keypairs (VKi, SKi)← RS.KeyGen
(
1λ, ri

)
using random coins ri. It sets VK = {VK1, . . . ,VKq} and initializes a set C = ∅.

2. The experiment provides VK1, . . . ,VKq to A.

3. A is now allowed to make the following queries: (sign, i, m,R) : Upon a signing query,
the experiment checks if VKi ∈ R, and if so computes Σ ← RS. Sign (SKi, m,R) and
returns Σ to A. Moreover, the experiment keeps a list of all signing queries. ( corrupt,
i ) : Upon a corruption query, the experiment adds VKi to C and returns ri to A.

4. In the end, A outputs a tuple (R∗, m∗,Σ∗). If it holds that R∗ ⊆ VK\C (i.e. none of the
keys in R∗ were corrupted), A never made a signingquery of the form (sign, ·,m∗,R∗)
and it holds that

Verify (R∗, m∗,Σ∗) = 1

then the experiment outputs 1 , otherwise 0 .

The advantage of A is defined by AdvRS−Unf(A) = Pr
[
ExpRS−Unf (A) = 1

]
.

Applications of Ring Signatures

Ring Signatures are used in e-commerce, e-voting. And notably, they are adopted by Monero,
a cryptocurrency, to provide user privacy. Monero modified the classic definiton of ring
signatures to cater to their application. Specifically, they created linkable ring signatures,
and by incorporating all coins of a user, the technique was named RingCT2.2.
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2.2 RingCT of Monero

Monero is a decentralized anonymous cryptocurrency. Originally, it was based on CryptoNote,
which uses ring signatures and one-time keys to hide the source and receiver of transactions.
To further improve the protocol, Monero implements hidden amounts for a transaction, which
is based on Conidential Transactions on a side-chain in Bitcoin. RingCT [15], short for Ring
Confidential Transactions, is how transaction amounts are hidden in Monero. In summary,
a Multilayered Linkable Spontaneous Anonymous Group Signature (MLSAG) will be used
to combine Confidential Transanctions and ring signatures in order to achieve anonymity
of sender and receiver, infeasibility of double-spending, and enabling of multiple inputs and
outputs.

2.3 Compile zero knowledge proof into ring signatures

Naturally, we can compile a zero knowledge proof in the format of sigma protocols to ring
signatures by applying Fiat-Shamir transform. The challenge message of the Σ−protocol
is generated by computing the hash of the first message plus the message to be signed, we
transform the zero knowledge proof system to ring signatures.

2.4 Ring signatures from commit-and-proof zero

knowledge proofs

Previous works of ring signatures have circuit size and hence signature size grow linearly in
the size of the rings |R|. Alternatively, by using a Merkle tree, the size if now logarithmic
in |R|. The main appeal of using zero knowledge proofs for set membership is the signature
size does not grow with the size of the ring. It is constant or proportional to the size of the
batch when multiple elements are involved in the proof.

As a result of properties of a commit-and-proof protocol, a prover can append any ad-
ditional proof of the committed value, including discrete log or pseudo-random function
computation, which are often used as public and private key generations.
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