
1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

1

Traceable Monero: Anonymous Cryptocurrency
with Enhanced Accountability

Yannan Li, Student Member, IEEE, Guomin Yang, Senior Member, IEEE,
Willy Susilo, Senior Member, IEEE, Yong Yu, Member, IEEE, Man Ho Au, Member, IEEE and Dongxi Liu

Abstract—Monero provides a high level of anonymity for both users and their transactions. However, many criminal activities might be
committed with the protection of anonymity in cryptocurrency transactions. Thus, user accountability (or traceability) is also important in
Monero transactions, which is unfortunately lacking in the current literature. In this paper, we fill this gap by introducing a new
cryptocurrency named Traceable Monero to balance the user anonymity and accountability. Our framework relies on a tracing authority,
but is optimistic, in that it is only involved when investigations in certain transactions are required. We formalize the system model and
security model of Traceable Monero. We present a detailed construction of Traceable Monero by overlaying Monero with two types of
tracing mechanisms, tracing the one-time addresses with money flows and tracing the long-term addresses. We prove the security of
Traceable Monero and implement a prototype of the system, which demonstrates that Traceable Monero incurs merely a very small
overhead in generating and verifying a transaction compared to Monero transactions.

Index Terms—Cryptocurrency, Monero, Blockchain, Anonymity, Accountability.

F

1 INTRODUCTION

C RYPTOCURRENCY is a digital currency whose security
is mainly based on public-key cryptography. Unlike

traditional centralized system [1–4] that suffers from issues
of scalability and delay, cryptocurrency systems are decen-
tralized, which enable two parties to conduct transactions
directly. The trading and verification of cryptocurrencies
are achieved through a mechanism known as a blockchain.
Blockchain [5][6] is an append-only public ledger by all the
participants collectively in the system in a verifiable and
permanent way.

Protecting users’ privacy is one of the most enticing fea-
tures of cryptocurrencies. If transactions are not conducted
anonymously, a malicious merchant may sell customers’
transaction information to third parties for financial benefit.
The loss of privacy in cryptocurrency transactions may
eventually lead to spam and other harassment in a user’s
daily life.

Monero (XMR) 1 is an open-source decentralized cryp-
tocurrency that mainly focuses on privacy and anonymity.
It was launched in 2014 and now has been one of the largest
cryptocurrencies with a market capitalization of 5.7 billion
US dollars (Mar. 2018). Monero protects payee’s identity
based on CryptoNote protocol [7] and takes advantage of

• Yannan Li, Guomin Yang and Willy Susilo are with School of Computing
and Information Technology, University of Wollongong, Wollongong,
NSW 2522, Australia.
Email: yl738@uowmail.edu.au; {wsusilo,gyang}@uow.edu.au.

• Yong Yu is with School of Computer Science, Shaanxi Normal University,
Xi’an, 710062, China.
E-mail: yuyong@snnu.edu.cn.

• Man Ho Au is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong.
E-mail: csallen@comp.polyu.edu.hk.

• Dongxi Liu is with Data61, CSIRO, Australia.
E-mail: Dongxi.Liu@data61.csiro.au.

Manuscript received March 24, 2018; revised October 20, 2018.
1. http://monero.org/.

the linkable ring signature [8], which is known as Ring
Confidential Transactions (RingCT) protocol [9].

Anonymity is a desirable requirement to preserve user-
s’ privacy in cryptocurrency transactions. Unfortunately,
anonymity makes investigating illegal transactions more
difficult. More specifically, anonymity in cryptocurrencies
provides a cover for various illegal activities, such as money
laundering, contraband trading and extortion, as the adver-
saries are hard to be identified and punished. The abuse
of anonymous cryptocurrencies for illegal purposes is on
the rise in recent years. In 2017, the worldwide cyberattack
WannaCry23 hacked more than 300,000 computers across
150 countries by encrypting files and asking for money to
ransom them. Victims were required to pay $300 - $600 in
Bitcoin to three hardcoded accounts. It is estimated that
the financial loss caused by WannaCry incident is about
4 billion dollars and the perpetrators are still unknown.
Three months later, the Bitcoins paid by victims have been
exchanged for Monero, which utilizes the one-time address
and is incredibly hard to trace 4. Thus, traceability and
the surveillance in anonymous cryptocurrency is of great
importance. Our motivation is to optimally trace an extor-
tionist in anonymous Monero to deter criminals or simplify
investigations when a blackmail event happens. As shown
in [10] (Paragraph 2), when the data are at stake, many
people are willing to put aside the privacy and reveal
some necessary information. Just as the example above, the
victims in WannaCry would have enough incentive to adopt
the system of anonymous cryptocurrency with traceability.

Our Contributions. We introduce Traceable Monero, a
solution to balance the anonymity and traceability in cryp-

2. http://malware.wikia.com/wiki/WannaCry.
3. https://arstechnica.com/gadgets/2017/08/researchers-say-

wannacry-operator-moved-bitcoins-to-untraceable-monero/
4. https://cointelegraph.com/news/bitcoin-exchange-shapeshift-

helps-police-as-wannacry-attacker-converts-to-monero

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

2

tocurrency Monero. In Traceable Monero, normal transac-
tions can still be conducted anonymously as in the Monero
system except that there exists a tracing authority who is
able to revoke a payer’s anonymity due to his/her misbe-
havior. It is worth noting that the tracing authority in Trace-
able Monero is passive and optimistic, meaning that it will
not interfere with any transaction and is involved only when
investigation is required. Specifically, our contributions are
as follows.

1) We introduce Traceable Monero, a new cryp-
tocurrency system which can achieve conditional
anonymity and traceability in Monero simultane-
ously. We formalize the system model and the secu-
rity model of Traceable Monero, including balance,
anonymity and traceability. We instantiate Traceable
Monero, in which we propose two tracing mecha-
nisms atop an improved Monero, and prove that the
proposed system achieves all the security require-
ments in the formalized security model.

2) We implement the proposed scheme. The perfor-
mance analysis and experimental results demon-
strate that the proposed system incurs only a small
overhead compared with the underlying Monero
system.

1.1 Anonymity in Cryptocurrencies Revisited
Bitcoin [5] provides pseudonymity instead of true

anonymity [11] of a user, but the pseudonym mechanism
of Bitcoin is not sufficiently strong to protect users’ privacy
in some real-world applications. Monero is a secure, private
and untraceable cryptocurrency system. Besides, there are
several other cryptocurrencies proposed to enhance the level
of user privacy. Dash5 was released in 2014 and is the
first privacy-focused cryptocurrency designed on top of
an improved version of Bitcoin. PIVX6is the fourth largest
privacy-oriented cryptocurrecy in the sense of market cap.
The ecosystem of PIVX is similar to Dash, and it uses PoS,
which requires 10,000 tokens to be the Master Nodes. Lately,
PIVX proposed zPIV, which combines PIVX and zerocoin
[12] to receive a better privacy. Verge(XVG) 7 was proposed
in 2014 to improve Bitcoin privacy. It uses TOR (The onion
router) and I2P to hide the real IP address. The wraith
protocol makes Verge even more anonymous. Zerocash (Z-
cash) [13] was proposed in 2014, which leverages a nested
commitment to protect the payer identity as well as the
transaction amount, then a zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARKs) [14] proof
is generated to let miners validate the commitment without
knowing the serial number, addresses or the transaction
amount. A formal security proof is provided for Zcash
but improving its efficiency is still a challenging problem.
In 2017, Sun et al. [15] proposed a new efficient RingCT
protocol (RingCT 2.0), in which accumulators with one-way
domain [16] were employed to significantly save the storage
space. More privacy-enhancing techniques and altcoins to
Bitcoin can be found in [17](section V-B)[18], such as Mix
and Coinjoin.

5. https://www.dash.org/
6. https://pivx.org/
7. https://vergecurrency.com/

1.2 Traceability in Cryptocurrencies Revisited

Anonymity may hinder the acceptance and adoption
of cryptocurrencies. Moreover, anonymous cryptocurrencies
also suffer criticism from governments. To reduce the abuse
of cryptocurrencies for illegal activities, many countries
have put the regulation of cryptocurrencies on agenda 89.
Blockchain surveillance has received much attention. Some
companies, such as Chainalysis 10 and Elliptic 11 are design-
ing tracing software for them who are seeking to monitor
cryptocurrecies.

In academia, there are already some anonymity revoca-
tion methods in traditional e-cash. Some e-cash schemes rely
on a trusted party in the withdrawal phase that can bind the
customer [19] or in opening an account [20]. Camenisch et al.
[21] proposed a scheme with passive anonymity-revoking
trustees based on a fair blind signature. Kulger et al. [22]
proposed a deanonymization without trusted third parties,
which detects illegal transactions in an audit phase.

Lately, a few attempts have been put forward for trace-
ability of cryptocurrencies and the proposed methods main-
ly fall into the following three categories: (1) Based on
transaction analysis. Most existing tracing methods for
Bitcoin are based on statistical approaches to collect and
analyze the transactions. The re-use (use the same account
in more than one transactions) and co-use (use more than
one accounts in a single transaction) of Bitcoin address-
es together with their topologies can be used to match
some of the accounts to the same user. Moreover, it is
shown by Barcelo [23] that, with some external information
[24, 25], it is possible to find real identities. Moreno-Sanchez
et al. [26] deanonymized transactions in Ripple network
using heuristic clustering to group wallets according to
the observations. In 2018, Möser et al. [27] proposed an
empirical analysis for Monero traceability. According to on-
chain transaction and mining pool analysis, 62% transaction
input can be deduced. However, for the aforementioned
tracing methods, plenty of transactions are needed to do the
statistical analysis. If a user joined the system for few times,
he/she could be identified only with small probability. (2)
Based on a central party. Danezis et al. [28] put forward
a cryptocurrency framework called RSCoin, in which the
central banks are required to command over the financial
policies. In CCS 2017, Cecchetti et al. [29] proposed Solidus.
The protocol contains several banks to control all the ac-
counts and complete the transactions on behalf of the users.
It supports strong confidentiality for bank-intermediated
ledgers in which the payer and payee cannot be traced. (3)
Based on cryptographic tools. The existing tracing methods
in this category are very few. For the regulatory purpose,
Garman et al. [30] introduced privacy-preserving policy-
enforcement mechanisms, in which selective user and coin
can be traced in a cryptocurrency. Note that the tracing
mechanisms proposed in this paper falls into this category
with Monero as an underpinning.

8. https://www.acic.gov.au/sites/g/files/net1491/f/2016/06/acc
ar 2014-15.pdf?v=1467012395.

9. https://themerkle.com/south-korean-regulators-aim-to-increase-
bitcoin-trading-supervision/

10. https://www.chainalysis.com/
11. https://www.elliptic.co/

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

3

Organization. The rest of the paper is organized as
follows. The system model and security model of Traceable
Monero are presented in Sec. 2 and Sec. 3, respectively. Some
preliminaries are provided in Sec. 4. We present the detailed
construction of the proposed Traceable Monero system in
Sec. 5. We analyze the properties of the proposed system in
Sec. 6. We then show the elaborate implementation in Sec. 7.
Finally, we conclude the paper and provide future directions
in Sec. 8.

2 SYSTEM MODEL OF TRACEABLE MONERO

In this part, we introduce the system model and system
components of Traceable Monero system.

2.1 System Model

As shown in Fig. 1, four entities namely, users, a P2P
network, a tracing authority and a blockchain are involved
in Traceable Monero. Users include payers and payees who
have long-term addresses. Users generate transactions with
a one-time private key and distribute the transactions in
the P2P network. The P2P network consists of a number
of peers, who are supposed to have strong computation
power and resources. The peers can be honest or malicious,
but the 51% attack is assumed unworkable in the P2P
network. The peers can behave as miners to generate a
block for some valid transactions. Miners are expected to
achieve the Consensus in the system. Peers can also act as
users to generate transactions when a peer needs to transfer
some digital currencies to others. The tracing authority is
responsible for tracing a payer in dubious transactions with
his private key. The blockchain is a continuously growing
database, which consists of blocks and records the valid
transactions in the P2P network.

2.2 System Components

Specifically, Traceable Monero system is composed of the
following algorithms.

Setup(1λ)→(pp). On input a security parameter λ ∈ N ,
it outputs a public parameter pp of the system.

KeyGen(pp)→(pk, sk). On input the public parameter pp,
it outputs a public-private key pair (pk, sk).

Mint(pk, a)→ (ck, cn). On input an amount a and the
public key pk, this algorithm outputs a coin cn with
amount a and the corresponding coin key ck. The coin cn
and the public key pk consist of an account denoted by
act = (pk, cn). And the corresponding account secret key
is defined as ask = (sk, ck).

Spend(m,Ks, As, A,R, pkM)→(tx, π, S, CT). On input a
group of spending addresses As together with the corre-
sponding group of secret key Ks, a set of groups of input
addresses A including As, a set of output address R, some
transaction descriptions m ∈ {0, 1}∗ and tracing authority’s
public key pkM , this algorithm outputs a transaction tx, a
proof π, a set of serial number S and a ciphertext CT .

Verify(tx, π, S, CT)→(0/1). On input the transaction tx,
the proof π, the set of serial numbers S and the cipertext
CT , this algorithm checks the transaction is valid or not
and outputs 1 or 0.

Fig. 1
System model of Traceable Monero

BlockGen({tx}, blkn−1)→(non, blkn). On input a set of
transactions {tx} and the previous block blkn−1, this algo-
rithm outputs a nonce non and a block blkn.

BlockVer(blkn)→(1/0). On input the current block blkn,
this algorithm verifies whether the block is valid or not and
outputs 1 or 0.

Trace(skM , tx, CT)→(pks, ψ). On input the tracing au-
thority’s secret key skM , the transaction tx and the cipher-
text CT , it outputs the payer’s public key pks and a tracing
proof ψ.

Judge(pks, ψ, pkM , CT)→(0/1). On input the payer’s
public key pks, the tracing proof ψ, the tracing authority’s
public key pkM and the ciphertext CT , this algorithm
checks whether the tracing proof is valid and outputs 1 or
0.

3 PROPERTIES OF TRACEABLE MONERO

Regarding the security of Traceable Monero, we assume
the involved P2P network in the system is secure and
reliable, which can resist the common attacks such as Sybil
attack, selfish mining attack etc. In practice, we can employ
the P2P network of Monero as the P2P network of Traceable
Monero. Thus, we only focus on the security issues related
to the transactions. Below we first present the security
threats to traceable Monero, and then introduce the formal
security definitions.

3.1 Threat Model

As analyzed above, focusing on secure transactions, we
assume an adversary may launch the following attacks [15]
in traceable Monero.

Double-Spending Attack: Double-spending attack says
that the money in an account is spent in more than one
transaction.

Over-Spending Attack: Over-spending attack attempts
to spend a larger amount of money than that in an account
in a transaction.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

4

Anonymity Attack: Anonymity attack is that one can i-
dentify the payer in a transaction without tracing authority’s
private key.

Forgery Attack: Forgery attack indicates that a malicious
payer can spend money in the accounts without his control.
That is, to forge a transaction without the corresponding
private key of an account.

Linkability Attack: Linkability attack states that two
transactions issued by the same payer can be linked with-
out tracing authority’s private key. Note that linking two
transactions performed by the same payer is easier than
identifying the payer in those transactions.

Traceability Attack: Traceability attack is that a payer
successfully conducts a transaction but cannot be identified
by the tracing authority.

3.2 Security Model
In this subsection, we formalize the security model,

whose goal is Balance. Balance aims to cover over-spending
attack, double-spending attack and forgery attack. Formal
security definitions of Traceable Monero are defined as
follows.

Definition 1 (Balance) [15]. Balance requires that a ma-
licious payer cannot (1) spend the money more than that in
his account and (2) spend the money without his control. A
traceable Monero is balanced if for any PPT adversary A,

Pr

[
AWins :

pp←Setup(1λ);
(
{act′i}

µ
i=1,{Si}

v
i=1

)
← AAddGen,ActGen,Spend,Corrupt(pp)

]
≤negl(λ),

in which the definitions of the oracles AddGen, ActGen, Spend
and Corrupt are as follows:

• AddGen(i): On input a query number i, pick
a randomness τi, run algorithm (ski, pki) ←
KeyGen(pp; τi) and return an address pki.

• ActGen(i, ai): On input an address index i and an
amount ai, run algorithm (cni, cki)← Mint(pki, ai),
then add i and account acti = (pki, cni) to ini-
tially empty lists I and G respectively, and output
(acti, cki) for pki, where pki was generated by Ad-
dGen.

• Spend(m, As, A,R, pkM): On input a trans-
action string m, input addresses A con-
taining As and output addresses R, run
(tx, π, S, CT) ← Spend(m, ,Ks, As, A,R, pkM)
and return (tx, π, S, CT) after adding it to list T . We
presume at least one of the addresses in As has not
been corrupted.

• Corrupt(i): On input a query number i ∈ I , de-
termine the serial number si of account acti with
address pki using account secret key aski, then add
si and (si, ai) to lists C and B respectively, where ai
is the amount of the account with address pki, and
finally return τi.

Finally, A outputs all her spending with some new ac-
counts (act

′

1, act
′

2, · · · , act
′

µ,S1,S2, · · · ,Sv) such that Si =
(txi, πi, Si, CTi), where all spends are payed to, w.l.o.g.,
the challenger with address pkc, i.e., txi = (mi, Ai, A{pkc})
for all i ∈ [v]. A wins the game if her outputs satisfy the
following conditions:

1. Verify(txi, πi, Si, CTi) = 1 for all i ∈ [v].
2. Si /∈ T ∧ Si ⊂ S for all i ∈ [v], and Sj ∩ Sk = ∅ for

any different j, k ∈ [v].

3. Let Sj = {si,j} and E =
v⋃
i=1

{
ai,j : (si,j , ai,j) ∈ B ∧

si,j ∈ Si ∩ C
}

, it holds that
∑
ai,j∈E ai,j <

∑v
i=1 aout,i,

where aout,i denotes the balance of an output account in Si.

3.3 Other Desirable Properties
In this subsection, we list several other required prop-

erties of the traceable Monero, including Perfect Correctness,
Anonymity and Traceability, in which Anonymity is to resist
linkability attack and anonymity attack and Traceability is
for against traceability attack. Formal definitions of these
properties are defined as follows.

Definition 2 (Perfect Correctness). All transactions gen-
erated by Spend can be accepted by Verify and any proof
produced by Trace can pass Judge. Formally, a traceable
Monero has the property of perfect correctness if for any
PPT adversary A,

Pr


Verify(tx, π, S,
CT) = 1

Judge(pks, ψ, pkM ,
CT) = 1

:

(pp)←Setup(1λ);
(pk, sk)←KeyGen(pp)
(cn, ck)←Mint(pk, a)

(m, A,R)←A(pp,As,Ks);
(tx, π, S)←Spend

(m,Ks, As, A,R, pkM)
(pks, ψ)←Trace(skM , tx, CT)


=1.

Definition 3 (Anonymity). A traceable Monero is anony-
mous if for all PPT adversaries A = (A1,A2), it holds that∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

pp← Setup(1λ); (m, As0 , As1 , A,R)←
AAddGen,ActGen,Spend,Corrupt,Trace

1 (pp);
b← {0, 1} , (tx∗, π∗, S∗, CT ∗)←

Spend (m,Ksb , Asb , A,R, pkM) ; b
′
←

ASpend,Corrupt,Trace
2 (pp, (tx∗, π∗, S∗, CT ∗))

−12
∣∣∣∣∣∣∣∣∣∣
≤negl(λ)

where all oracles are defined as before, Asi ∈ A and
Asi ⊂ G for i ∈ {0, 1} and Trace oracle is defined as follows.

• Trace(tx, π)12. This is an oracle that on query a trans-
action tx together with a proof π, it returns a public
key pks. If the query (tx, π) is the challenging pair,
then the oracle returns ⊥.

Besides, the following conditional also needs to be satis-
fied:

– For all i ∈ {0, 1}, none of the accounts in Asi have
been corrupted.

– No query in the form of (·, As, ·, ·) s.t. As∩Asi 6= ∅ has
been issued to Spend oracle.

Definition 4 (Traceability). Traceability ensures that the
tracing authority can always successfully trace the real
payer, who conducted the transaction, and the tracing au-
thority can generate a valid proof to this trace for public
verification. A protocol has the property of traceability if for
any PPT adversary A,

Pr

Trace(skM , tx, CT)= (pks,ψ)
Judge(pks, ψ, pkM ,

CT) = 0

:
(pp)←Setup(1λ);(tx,π,S)←
AAddGen,ActGen,Spend,Corrupt

1 (pp)
Verify(tx, π, S, CT)=1

≤negl(λ).
12. We note that tx contains transaction description m, the input

address set A and output address R, as defined in system component

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

5

4 PRELIMINARIES

We recall preliminaries used throughout this paper in
this section.

4.1 Bilinear Maps

Let G1, G2 and GT denote cyclic groups of the same
prime order p. A bilinear pairing e : G1 × G2 → GT is a
map satisfying the following properties [31]:

Bilinear: e(ua, vb) = e(u, v)ab, for all u ∈ G1, v ∈ G2 and
a, b ∈ Zp.

Non-degenerate: e(g1, g2) 6= 1, where g1 and g2 are gener-
ators of group G1 and G2 respectively.

Computational: e(u, v) can be computed efficiently for all
u ∈ G1 and v ∈ G2.

The aforementioned bilinear maps are asymmetric ones.
It is called a symmetric bilinear pairing when G1=G2, which
is widely used in a number of protocols.

4.2 Intractable Assumptions

Let λ be a security parameter and G =< g > denotes a
cycle group of prime order p. Then we define the following
assumptions in such group.

1) Discrete Logarithm (DL) Assumption.

DL problem is that, given a tuple (g, ga) ∈ G and output
a ∈ Zp. DL assumption holds if for any polynomial-time
algorithm A, the following advantage AdvDL

A is negligible
in λ.

AdvDL
A (λ) = Pr

[
A(g, ga)→ a

]
2) Decisional Diffie-Hellmam (DDH) Assumption [31]
DDH problem states that given a tuple (g, ga, gb,

g(1−x)ab+xc) ∈ G and output x ∈ {0, 1}. DDH assumption
holds if for any polynomial-time algorithm C, the following
advantage AdvDDH

C (λ) is negligible in λ.

AdvDDH
C (λ) =

∣∣∣Pr[C(g, ga, gb, gab) =1]−Pr[C(g, ga, gb, gc) =1
]∣∣∣

4.3 Accumulators with One-Way Domain
An accumulator [16] can accumulate a set of elements into a

single value and for each given element, there exists a witness
to prove that it has been incorporated into the accumulator
indeed. Specifically, let F = {Fλ} be a sequence of families
of functions and X = {Xλ} a sequence of families of finite
sets, which satisfy Fλ = {f : Uf × Xf → Uf} and Xλ ⊆ Xf
for all λ ∈ N . An accumulator family contains the following
algorithms.

• ACC.Gen(1λ). This is a probabilistic algorithm that takes
as input a security parameter λ, and outputs a descrip-
tion desc and some auxiliary information.

• ACC.Eval(desc, X). This is a probabilistic algorithm that
takes as input the description desc and X ⊂ Xλ. It
outputs an accumulated value v = f(u,X), where f ∈
Fλ, u ∈ Uf and f(u,X) = f(· · · f(u, x1) · · ·xn), X =
{x1, · · · , xn} ⊂ Xλ.

• ACC.Wit(desc, x,X). This is a probabilistic algorithm
that takes as input the description desc, X ⊂ Xλ and
x ∈ X . It outputs a witness ω, where v = f(w, x).

An accumulator satisfies the following properties.

• Efficient generation: The ACC.Gen is efficient that runs
in polynomial time.

• Efficient evaluation: Any f ∈ F is computable in poly-
nomial time in λ.

• Quasi-commutativity: For all λ ∈ N , f ∈ Fλ, u ∈
Uf and x1, x2 ∈ Xλ, it holds that f(f(u, x1), x2) =
f(f(u, x2), x1).

The pair (F ,X) is an accumulator with one-way domain if it
has the following properties.

• Collision-resistance: An accumulator is one-way do-
main if for all λ ∈ N and an adversary A,

Pr

 X ⊂ Xλ ∧ x ∈ Xf \X
x ∈ Uf ∧ f(ω, x) = f(u,X)

:
f←Fλ;u←Uf
(x, ω,X)←
A(f, Uf , u)

≤negl(λ)
• One-way domian: Let {Yλ}, {Rλ} be two sequences of

families of sets associated with {Xλ} and each Rλ is
an efficient verifiable, samplable relation over Yλ ×Xλ.
It is infeasible to efficiently compute a witness y′ ∈ Yλ
for an x sampled from Xλ with W . Specifically, for any
adversary A,

Pr
[
(y′, x) ∈ Rλ: (y, x)←W (1λ); y′←A(1λ, x)

]
≤negl(λ)

4.4 Signature of Knowledge

Signature of Knowledge (SoK) for a NP-relation R with the
corresponding language L = {y : ∃x, s.t.(x, y) ∈ R} consists
of the following algorithms.

• Gen(1λ): On input a security parameter λ, this algorith-
m outputs a public parameter par.

• Sign(m,x, y): On input a message m and a pair (x, y) ∈
R, it outputs a SoK π.

• Verf(m,π, y): On input a message m, a SoK π and a
statement y, it outputs 0/1.

A SoK is SimExt-secure [32] if it satisfies correctness, simu-
latability and extractability.

Correctness. For any message m and a pair (x, y) ∈ R, it
holds that

Pr

[
Verf(m,π, y) = 1 :

par← Gen(1λ)
π ← Sign(m,x, y)

]
≥ 1− negl(λ),

Simulatability. There exists a polynomial-time simulator
Sim=(SimGen,SimSign) s.t. for any PPT adversary A,

∣∣∣Pr[b = 1 : (par, td)← SimGen(1λ); b← ASim(par)]−

Pr[b = 1 : par← Gen(1λ); b← ASign(par)]
∣∣∣ ≤ negl(λ)

where td is an additional trapdoor in Sim to simulate the
signatures without the witness.

Extractability. There exists an extractor Ext s.t. for any PPT
adversary A,

Pr

(x, y) ∈ R ∨ (m, y) ∈ Q
∨Verf(m, y, π) = 0

:
(par, td)← SimGen(1λ)
(m, y, π)← ASim(par)
x←(Ext(par, td,m, y, π)

≤negl(λ)
where Q is a list of queries to SimSign Oracle that A made.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

6

4.5 Commitment
A commitment scheme allows a committer to commit to a

selected message, which is hidden to others but can be revealed
by the sender. Specifically, a commitment scheme consists of the
following polynomial-time algorithms (CGen,Com,Open).

• CGen(1λ): On input a security parameter λ, this algo-
rithm outputs a public commitment key ctk.

• Com(ctk,m, r): On input a commitment key ctk, a
message m ∈ {0, 1}∗ and some randomness r, this
algorithm outputs a commitment c.

• Open(c,m, r): On input a commitment c, the message
m and the randomness r, it checks c ?

= Com(ctk,m; r)

A commitment scheme is secure if it satisfies the properties of
binding and hiding defined as follows.

Hiding. Hiding requires that the commitment c reveals
nothing about m. Specifically, for any polynomial-time adver-
sary A,∣∣∣∣∣Pr

A(c) = b :

ctk ← CGen(1λ)
(m0,m1)← A(ctk)

b← {0, 1};
c← Com(ctk,mb)

− 1

2

∣∣∣∣∣ ≤ negl(λ).
Binding. It is infeasible for a committer to generate a

commitment c that can be opened as two different messages
m0,m1. Specifically, for any polynomial-time adversary A,

Pr

 Com(m0, r0) =
Com(m1, r1)
∧ m0 6= m1

:
ctk←CGen(1λ)

(m0,m1, r0, r1)←A(ctk)

 ≤ negl(λ).
We now introduce the classic Pedersen commitment [33].

On input a parameter λ, CGen generates a cyclic group G
with prime order q, two generators g, h ∈ Zq and outputs
ctk = (G, g, h). To commit to a message m ∈ Zq , the committer
generates a random r ∈ Zp and computes c = Com(ctk,m; r) =
gmhr . To Open a commitment c, the committer reveals m, r
and everyone can check if c = Com(ctk,m; r). Pedersen com-
mitment also satisfies the homomorphic property.

Homomorphic. For λ ∈ N ,m0,m1, r0, r1 ∈ Zq , it holds that,

Com(m0, r0) · Com(m1, r1) = Com(m0 +m1, r0 + r1).

where + is the operation in Zq and · is the operation in group
G.

4.6 Variant ElGamal Encryption
In our protocol, we leverage a variant of the original ElGa-

mal encryption[34] with the following components.
KeyGen(λ). On input a security parameter λ, it generates a

cyclic group G with prime order q. g ∈ G is a generator of G.
Choose a random x ∈ Z∗q as a secret key, it outputs the public
key as z = gx. The key pair is (x, z)

Enc(z,m). On input a public key z and a message m, first
choose a random α and encrypt m as C = (c1, c2) = (zα,mgα).
The ciphertext of m is (c1, c2).

Dec(x,C). The entity who has the knowledge of the secret
key x can decrypt the ciphertext and recover the message m as
m = c2/c1

x−1

It is shown in [35] that in ElGamal encryption, the public
key and the base can be interchangeable and both schemes are
IND-CPA secure under DDH assumption. In our construction,
it is easy to generate zero-knowledge proof with the variant
ElGamal encryption

5 TRACEABLE MONERO SYSTEM
In this part, we firstly introduce how the proposed Traceable

Monero system works, and then describe the concrete protocol
of the proposed Traceable Monero and finally give an instanti-
ation of the Signature of Knowledge used in the system.

5.1 Workflow of Traceable Monero
The proposed traceable Monero system is based on an

improved Monero. As shown in Fig. 2, the main processes of the
proposed Traceable Monero system are Transaction generation,
Transaction on chain and Tracing.

Transaction generation: To launch a transaction (spending),
a payer needs to generate keys and mint coins first. When
generating one-time key pairs for a payee, a tag is also pro-
duced for each one-time address, which is used to trace the
long-term public key of the payee when he acts as a malicious
payer. Every payer and payee involved in a transaction have
their own tags, where a payee’s tag is computed by his/her
payer in the current transaction and a payer’s tag is generated
in the previous transaction when he was a payee. To mint a
coin for a one-time address before conducting a transaction, the
payer needs to compute a homomorphic commitment with the
currency amount and a random number to hide the amount
of currency in a transaction. A payer employs a linkable ring
signature to sign the transaction with his one-time secret key to
hide his identity and broadcasts the transaction Tx into the P2P
network.

Transaction on chain: This part is the same as the under-
lying Monero 13. Specifically, when miners receive the trans-
action generated by the users in the system, they validate the
transactions first and generate a block for the valid transactions
he collects. Then, the miners compete to broadcast a block on
the blockchain via Consensus, say proof-of-work. Anyone can
validate the correctness of the proof-of-work efficiently.

Tracing: To trace the long-term public key of a payer,
the tracing authority decrypts the ciphertext in the tag using
his own private key to obtain the payer’s long-term public
key. When tracing a one-time address of a payer, the tracing
authority decrypts the ciphertext in the transaction and gets
the index s in a ring, and thus can find the corresponding one-
time public keys. Moreover, with the exposure of a real input
(i.e., paying) account, the tracing authority can trace back to the
accounts, from which the money is transferred to the current
account, and trace forward, to locate the subsequent accounts
that receive payment originated from the current account and
thus the tracing authority can trace the money flow.

5.2 Traceable Monero Construction
A concrete construction is presented in this part, in which

several cryptographic building blocks are leveraged.
Suppose there are n groups of input accounts A =

{(pk(k)in,i, cn
(k)
in,i)}1≤i≤n,1≤k≤m in the sytem and the real payer

is the s-th group denoted by As = {(pk(k)in,s, cn
(k)
in,s)}1≤k≤m. The

public keys in the accounts can be regarded as a matrix with
each group of public keys in a column and each row k of the
public keys being accumulated into a single value vk by an
accumulator f . Each group of public keys are set as {pk(k)in,i ·u

i}.
An extra row of p̃ki ·ui is computed in the last line of the matrix
to guarantee the total balance in each transaction.

Traceable Monero system. Define f= (ACC.Gen,
ACC.Eval,ACC.Wit) as an accumulator with one-way domain
Gq and SoK=(SoK.Gen,SoK.Sign,SoK.Verf) as a signature of
knowledge. The concrete protocol is defined as follows on the
basis of the underlying f and SoK.

Setup(1λ). Let the description of the accumulator be desc =
ACC.Gen(1λ) and denote par as par = SoK.Gen(1λ). Choose
h0, h1, h3, h̃, u ∈ Gq randomly and the public parameter is
pp = (1λ, desc, par, h0, h1, h3, h̃, u,H), where H : {0, 1}∗ → Gq
denotes a collision resistant hash function. 14.

13. https://getmonero.org/
14. We note that the parameters h0, h1, h3 can be generated as hi =

H(‘traceable monero i′), which are publicly verifiable.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

7

Transaction
Input

Output

...

Output Account

Tag

Tag*

Input Account

Payer Payee

pk1

Tagn

Tag*
.
.
.

R

P

Tracing
Authority

...

Spending

Tracing

Tag Ciphertext of
Input accounts

One-time
public key

Long-term
public key

Ciphertext C

Mint

One-time public key

pk

Amount

Commitment pk

Account

pk
One-time
Public key

Long-time
public key

pkpk

pk1

pkm

pkn

pk

pk1

pkm

pk

pk1

pkm

KeyGen

Tx Tx

Tx Tx

block

block
On Chain

Tx

User 1 User 2 User n

Tag1

Tag1

Tagm

Tag1 Tag1

Tagm Tagm

Fig. 2
Workflow of the proposed Traceable Monero

KeyGen(pp). This algorithm generates public keys as users’
addresses in the system as follows. Let (ω ∈ Gq, z = h0

ω) be the
key pair of the tracing authority. A payer wants to pay to a pay-
ee whose long-term public key is (A′ = h0

a′ , B′ = h0
b′), where

the pair (a′, b′) is the corresponding long-term private key.
When pay to the payee, the payer generates a one-time public
key as well as a corresponding tag for the payee. Specifically,
to generate the one-time address, the payer chooses a random
r′ ∈ Gq and computes R′ = h0

r′ . Let h = H(A′
r′
, B′). The

payee’s one-time public key is y = B′h0
h, and the correspond-

ing one-time private key is x = b′ + H(R′
a′
, B′). To produce

a tag, the payer first encrypts the payee’s long-term public key
B′ with tracing authority’s public key z using variant ElGamal
encryption as ct = zh. And then compute the tag with the SoK
as follows:

SoK

{(
(Ai, Bi), r

′
)
:

l∨
i=1

R′ = h0
r′ ∧ y = B′ih0

H(A′i
r′ ,B′i)

∧ ct = zH(A′i
r′ ,B′i)

}
In the above setting, in order to trace the real spender with

the help of the tags, we modified the underlying CryptoNote to
add the part of the public key B′ into the hash function H . By
doing so, the payee can still recover the corresponding private
key and the payer can bind (A′, B′) with the one-time key y,

as it is hard to find another (A′′, B′′) to have the same y. More
detailed proof is shown in section 6.

Transaction

Input

Output

...

Output Account

Tag

Tag*

Input Account

Payer Payee

pk1

pkn

Tag 1

Tag n

Tag*

.

.

.

R

P

Tracing
Authority

...
Spending

Tracing

Tag + Ciphertext of
Input accounts

One-time
Public key

Long-term
Public key

Ciphertext C

Block n+1

Prev_Hash Nonce

Tx_Root

Block n

Prev_Hash Nonce

Tx_Root

Block n++2

Prev_Hash Nonce

Tx_Root

Hash01 Hash23

Hash0 Hash3Hash2Hash1

Tx0 Tx1 Tx2 Tx3

Tx

Tx

Tx

Tx

Blockchain

Tx

P2P system

Tracing
authority

Transactions

Tx

Tx

Transactions

hash5 hash6 hash7 hash8

hash78hash56

Root

hash
5678

h1

hash2hash1 hash3 hash4

hash12 hash34

hash
1234

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8

Mint
One-time
Public key

pk +

Amount

Commitment pk

Account

Timestamp Timestamp Timestamp

Block n+1

Prev_Hash Nonce

Tx_Root

Block n

Prev_Hash Nonce

Tx_Root

Block n++2

Prev_Hash Nonce

Tx_RootTimestamp Timestamp Timestamp

Payer
randomness

r'

R' y tag

h Enc(B)

A' B'

Payee long-term key

Hash0 Hash3Hash2Hash1

Tx0 Tx1 Tx2 Tx3

Hash01 Hash23

Fig. 3
Generating one-time address

Mint(pk, a). This algorithm mints a coin for a public key
address with an amount a as follows. Pick a random r ∈ Zq ,
and compute Pedersen commitment c with the amount a and
the randomness r as c = Com(ctk, a; r) = h0

rh1
a. The output

is (cn, ck) = (c, (r, a)). We denote the account as act = (pk, cn),
and the corresponding secret key is ask = (sk, ck).

Spend(m,Ks, As, A,R, z). Without loss of generality, we
define the following parameters. The secret keys are denoted
as Ks =

{
ask

(k)
s = (sk

(k)
in,s, (r

(k)
in,s, s

(k)
in,s))

}
1≤k≤m. Let the output

address be R = {pkout,j}1≤j≤t. To spend a coin, a payer needs
to do the following,

1) The payer chooses a random rout,j ∈ Zp(1 ≤ j≤ t) and
mints the coin for an output address pkout,j ∈ R(1 ≤
j ≤ t) as cnout,j = cout,j = Com(ctk, aout,j ; rout,j) =

h0
rout,jh1

aout,j , where
∑m
k=1 a

(k)
in,s =

∑t
j=1 aout,j .

The payer adds the output account actout,j =
(pkout,j , cnout,j) to AR, and sends the coin key
ckout,j = (rout,j , aout,j) to the payee holding address
pkout,j .

2) The payer sets s̃ks =
∑m
k=1 sk

(k)
in,s +

∑m
k=1 r

(k)
in,s−∑t

j=1 rout,j and computes p̃ki as

p̃ki =

m∏
k=1

pk
(k)
in,s ·

m∏
k=1

cn
(k)
in,i/

t∏
j=1

cnout,j .

It can be concluded that p̃ks = h0
s̃ks if

∑m
k=1 a

(k)
in,s =∑t

j=1 aout,j holds.
3) The payer generates a proof π to show that the transac-

tion is spent properly as follows. The payer computes
the accumulated value vk = ACC.Eval(desc, {y(k)i · u

i})
and the witness ws = ACC.Eval(desc, {y(k)i · ui|i 6= s})
for 1 ≤ k ≤ m + 1 to show that z(k)s = y

(k)
s · us

is indeed accumulated in vk. For 1 ≤ k ≤ m, the
payer computes sk = h̃x

(k)
s according to the secret key

x
(k)
s of the account as the serial number to uniquely

defined the address. Choose a random ã, and encrypt
the index γ with tracing authority’s public key z as
ct1 = zã, ct2 = hγ3h0

ã. The ciphertext isCT = (ct1, ct2).
Then invoke Sign algorithm to produce SoK π on tx as
follows.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

8

SoK



({ωk, zk, xk}mk=1, γ, ã) : ct1 = zã ∧ ct2 = h3
γh0

ã∧
f(ωm+1, zm+1) = vm+1 ∧ zm+1 = h0

xm+1uγ∧
f(ω1, z1) = v1 ∧ z1 = h0

x1uγ ∧ s1 = h̃x1∧
...

f(ωm, zm) = vm ∧ zm = h0
xmuγ ∧ sm = h̃xm


(tx)

Finally, output (tx, π, S, CT), where S = {s1, s2, · · · , sm}
and CT = (ct1, ct2).

Verify(tx, π, S, CT). Given A = {(pk(k)in,i, cn
(k)
in,i)}1≤i≤n,

1≤k≤m, AR = (pkout,j , cnout,j)1≤j≤t, and the ciphertext CT
from the transaction tx, one can compute p̃ki =

∏m
k=1 pk

(k)
in,s ·∏m

k=1 cn
(k)
in,i/

∏t
j=1 cnout,j , vk = ACC.Eval(desc, {y(k)i · ui}) and

vm+1 = ACC.Eval(desc, {p̃ki · ui}). Then verify the SoK with
(v1, · · · , vm+1), serial number S, transaction tx and proof π by
checking

Verf(tx, ct1, ct2, (v1, · · · , vm+1, s1, · · · , sm), π)
?
= 1.

BlockGen({tx}, blkn−1)→(non, blkn)15. A miner collects
some valid transactions in the P2P network and generates
a Merkle Hash Tree for those transactions. Then the miner
includes the root of the Merkle Hash Tree Root together with
the hash of the previous block Pre Hash in the current block.
Finally, the miner needs to compute a proper nonce non to
make the hash of the block less than some target value.

BlockVer(blkn)→(1/0). On input the current block blkn, the
miners in the P2P network check whether the hash value of the
block is less than the target value and output 1 or 0.

Trace(ω, tx, CT). Two tracing mechanisms are provided in
this system. One is to trace one-time public key and the other
one is to trace long-term public key as a supplement.

To trace a one-time public key by given the ciphertext
CT = (ct1, ct2) from a transaction tx, the tracing authority
decrypts the ciphertext using his secret key ω by computing
p = ct2/ct1

ω−1

. Then he tries to find γ ∈ [1, n] by testing
which γ satisfies p = h3

γ , and then the corresponding public
key can be traced. By producing a proof ψ′ as SoK

{
(ω) : z =

h0
ω∧ct1 = (ct2

h3γ
)ω
}
(γ), the tracing authority can prove himself

that γ is indeed the index of the payer in the group.
To trace a long-term public key, the tracing authority de-

crypts the tag by computing B′ = y/ct′
ω−1

and thus can get
the corresponding long-term public key B′. By producing the
SoK

{
(ω) : z = h0

ω ∧ ct′ = (y
B′)

ω
}

as a proof ψ, the tracing
authority can prove that the tag is opened correctly by the
authority himself and Bi is indeed the payer. Note that the
proof ψ can be publicly verified.

Judge(pks, ψ(ψ′), z, CT). On input the payer’s public key,
the proof generated by the tracing authority, the tracing au-
thority’s public key z and the ciphertext, anyone can validate
the proof ψ and ψ′ by checking the following two equations
respectively.

Verf(B′, (z, y, ct), ψ)
?
= 1

Verf(γ, (z, ct1, ct2), ψ
′)

?
= 1

5.3 Extension

In this subsection, we show some extensions of our con-
struction.

15. Note that this algorithm and BlockVer are the same as the
underlying Monero. We put them here to make the whole construction
self-contained. More details can be found at https://getmonero.org/
and [9]

5.3.1 Sharing tracing capability
To avoid single point of failure, authority’s tracing capabil-

ity of the can be shared among several authorities according
to an access structure [36], such that a qualified subset of the
authorities can trace suspicious transactions. In this case, we
provide a set of tracing authorities, in which users may not
trust all of them, but can choose the subset of the Tracing
Authorities they believe in to conduct the tracing. An easy way
to achieve this is shown as follows. Suppose there are n Tracing
Authorities whose public key is z1 = h0

ω
1 , · · · , zn = h0

ω
n , the

payer can choose t out of n Tracing Authorities and aggregate
their public key into a single z =

∏t
i=1 zt. Then the t Tracing

Authorities can decrypt to reveal the payer when tracing is
needed.

5.3.2 Permissioned Blockcahin
The blockchain in our system is public blockchain, and we

also consider the permissioned blockchain, such as consortium
blockchain, which can be a ledger among members (e.g. banks).
More specifically, in the Consortium blockchain, each bank can
generate transactions on the chain but can hide their transaction
metadata from other banks, and a tracing authority is required
by regulation to determine illegal transactions, such as money
laundering. In this way, the tracing result can be linked to the
real-world identity and the lawbreaker can be punished.

5.4 Instantiation of the SoK
The SoK mentioned in subsection 5.2 can be instantiated by

Fiat-Shamir paradigm [37] incorporated with zero-knowledge
protocols in [16]. For the SoK in KeyGen, the instantiation of
h in the proof needs to employ zk-snark [14]. For the SoK in
Spend, more details are shown below.

For simplicity, we use the symmetric bilinear pairing in
our construction. Let g0, g1, g2 be generators of group G1 and
h0, h1, h2, h3, h̃, u be generators of Gq , which is a subgroup of
Z∗p . Firstly, PoK1 is to prove the knowledge of (xk, zk, γ, ã) s.t.
zk = h0

xk · uγ , sk = h̃xk , ct1 = zã and ct2 = h3
γgã in a zero-

knowledge approach. Specifically, we have,

PoK1

{
(xk, zk, rk, t, γ, ã) : Ck = g0

zkg1
rk ∧ zk = h0

xk · uγ∧

sk = h̃xk ∧D = h1
γh2

t ∧ ct1 = zã ∧ ct2 = h3
γgã
}

This protocol can be split into the following two sub-
protocols,

PoK1,1

{
(zk, rk) : Ck = g0

zkg1
rk
}

PoK1,2

{
(xk, rk, t, γ, a) : Ck = g0

h0
xk ·uγ g1

rk ∧ sk = h̃xk

∧D = h1
γh2

t ∧ ct1 = zã ∧ ct2 = h3
γgã
}

The first protocol is a standard protocol to prove the discrete
logarithm of a statement while the second one is to prove the
knowledge of a double discrete logarithm [35].

Secondly, PoK2 is to show that zk is indeed accumulated
in the value vk without leaking any knowledge of zk and its
witness wk. Specifically, we have,

PoK2

{
(wk, zk, rk) : e(wk, g0

zkg0
α) = e(vk, g0)∧Ck = g0

zkg1
rk
}

To instantiate PoK2, we choose τ1, τ2 ∈ Zp, compute wk,1 =
g0
τ1g1

τ2 , wk,2 = wkg1
τ1 , and implement the following PoK,

PoK′2

{
(τ1, τ2, zk, δ1, δ2, rk) : wk,1 = g0

τ1g1
τ2 ∧ wzkk,1 = g0

δ1g1
δ2

∧ e(wk,2, g0
α)

e(vk, g0)
= e(wk,2, g0)

−zke(g1, g0)
δ1e(g1, g

α
0)
τ1

∧ Ck = g0
zkg1

rk
}

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

9

where δ1 = τ1zk and δ2 = τ2zk.

6 SECURITY PROOFS
In this section, we provide detailed security proofs of bal-

ance, anonymity and traceability of the proposed scheme.

6.1 Proof of Balance
Theorem 1. The proposed Traceable Monero achieves the property

of balance if DL assumption holds, ACC is an accumulator with one-
way domain and SoK is SimExt-secure.

Proof(Sketch). We borrowed the idea from [15] to achieve
the proof. If there is an adversary A that breaks the balance of
the proposal with a non-negligible probability ε, then we can
construct another algorithm A′ to solve DL problem.

Given a DL instance (h0, h1 = gα), A′ runs ACC.Gen(1λ)
and Gen(1λ) to generates desc and par. Then choose β and γ
randomly to compute h̃ = h0

β and h3 = h0
γ . A can make

queries to AddGen, ActGen and Corrupt Oracles for at most
qad, qac and qco times respectively. A′ chooses xi for each i ∈
[qad]. A′ chooses a j∗ ∈ [qad], and sets the queried addresses as
follows. For i 6= j∗, pki = h0

xi and for i = j∗, pki = h1
xi . Now

B simulates the following oracles.

• AddGen(i). Return the address pki generated as the way
mentioned above for the i-th query.

• ActGen(i, ai). Given i and an amount ai, choose a
random ri and set ci = h0

rih1
ai . Add (cni, cki) =

(ci, (ri, ai)) to list I, i, acti = (pki, cni) to list G and
si = h̃ski to list S respectively.

• Spend(m, As, A,R). Given the inputs, A′ generates
(tx, π, S) as the way in the proposal if actj∗ 6∈ As. Oth-
erwise, A′ generates π by simulating SoK. Specifically,
A′ invokes Sim and generates the simulated spending
without using the witness, which is indistinguishable
from A’s view.

• Corrupt(i). On input the query i, if i = j∗, thenA′ aborts.
Otherwise, B returns xi and puts si as well as (si, ai) to
list C and B.

Finally, A outputs (act′1, · · · , act′µ,S1, · · · ,Sv), where Si =
(txi, πi, Si) and all transactions are paid to A′.

Now let’s see the way to solve a DL instance if A wins the
game above. We denote Ei = {ai,j : (si,j , zi,j) ∈ B ∧ si,j ∈
Si ∩ C} for simplicity.

• Case 1: ∀i ∈ [v], Si\C = ∅. From the winning con-
dition

∑
ai,j∈E ai,j <

∑
avi=1∈E

aout,i, we know that
there exists some i∗ ∈ [v] s.t.

∑
ai∗,j∈Ei∗

ai∗,j <∑
avi=1∈E

aout,i∗ . From the serial number, we can find
the group {acti∗,j} of the spent accounts in Ai∗ ,
where acti∗,j = (pki∗,j , cni∗,j) and the secret key
is aski∗,j = (ski∗,j , (ri∗,j , ai∗,j)). Then we can com-

pute p̃ki∗ as p̃ki∗ =
m∏
j=1

pki∗,j ·
m∏
j=1

cni∗,j/cnout,i∗=

h0

m∑
j=1

ski∗,j+
m∑
j=1

ri∗,j−rout,i∗
·h0

α(
m∑
j=1

ai∗,j−aout,i∗)
. We al-

so know from the definition that Si 6∈ T for al-
l i ∈ [v], thus we can use Ext to extract a

witness
(
{(xi∗,j , zi∗,j , ski∗,j)}mj=1, (w̃i∗ , z̃i∗ , s̃ki∗), γi∗

)
With s̃ki∗ , the DL instance (h0, h1) can be solved by
computing

α =

s̃ki∗ − (
m∑
j=1

ski∗,j +
m∑
j=1

ri∗,j − rout,i∗)

m∑
j=1

ai∗,j − aout,i∗
.

• Case 2: ∀i ∈ [v], Si\C 6= ∅. Let J = {i ∈ [v] : Si\C 6= ∅},
SJ =

⋃
i∈J (Si\C) and the size of Si\C is li. Then check

if sj∗ ∈ SJ . If so, there exists i∗ ∈ J s.t sj∗ ∈ Si∗ .
Now we can extract a witness including skj∗ s.t. pkj∗ =
h0
skj∗ = αxj∗ . Thus the DL problem can be solved by

computing α = skj∗/xj∗ .

Thus, the proof is completed.

6.2 Proof of Anonymity
In this subsection, we describe the proof of anonymity.

Theorem 2. The proposed Traceable Monero achieves the property
of anonymity if the SoK satisfies extractability, homomorphic commit-
ment is perfect hiding, DDH assumption holds and encryption scheme
is IND-CPA.

Proof. We make use of game-based framework to present
our proofs. We denote Pr[Wini] as the winning probability of
an adversary (guessing correctly) in Gamei [15].

Game 0. This is the challenge game defined in section
2 (cf. Definition 6) and the challenge transaction is denot-
ed as (tx∗, π∗, S∗, C∗), where tx∗ = (m, A,A

(b)
R), S∗ =

(s
(b)
1 , s

(b)
2 , · · · , s(b)m) and C∗ = (ct1, ct

(b)
2). A outputs a guess b′,

from subsection 3, we can easily get

Pr[Win0] = Pr[b′ = b]

Game 1. Game 1 is the same as Game 0 with one differ-
ence. The simulator replaces the algorithm Gen by SimGen to
generate par and Sign by SimSign to generate the SoK. The
Spend and challenge queries are computed without using the
witness. Specifically, for a challenge query (m, As0, As1, A,R),
the simulator calculates the statement and the correspond-
ing witness as in Game 0, while computes the SoK: π∗ =

Sim(tx∗, ct1, ct
(b)
2 , (v1, v2, · · · , v(b)m+1, s

(b)
1 , · · · , s(b)m)) without the

knowledge of the witness. Clearly, if there is a difference in the
adversary’s winning probability between Game 0 and Game
1, then the adversary can be used to construct an algorithm to
violate SimExt of SoK. The adversary’s winning probability in
Game 1 satisfies the following equation due to the SimExt se-
curity of our employed SoK, where λ is the security parameter
of this system.

|Pr[Win1]− Pr[Win0]| ≤ negl(λ)

Game 2. Game 2 is the same as Game 1 with one difference.
During the challenge phase, the simulator chooses the output
address pkout,j ∈ R randomly and uniformly. Specifically, the
simulator sets h1 = hα0 for some randomness α and changes
the output address pkout,j by picking a random r̂j from Zp and
setting cnout,j = h0

r̂j for 1 ≤ j ≤ t. Thus, the output account
AR = {(pkout,j , cnout,j)}tj=1 is independent of b. In this case, we

also have p̃ki =
m∏
i=1

pk
(k)
i ·

m∏
i=1

cn
(k)
i /

t∏
j=1

cnout,j is independent of

b and so is vm+1 = ACC.Eval(desc, {p̃ki ·ui}ni=1). Clearly, if there
is a difference in the adversary’s winning probability between
Game 1 and Game 2, we can use the adversary to construct an
algorithm to break the perfect hiding property of homomorphic
commitment. The adversary’s winning probability in Game 2
satisfies

Pr[Win2] = Pr[Win1]

Game 3. Game 3 is the same as Game 2 with one difference.
The simulator changes the setting of the serial numbers when
answering the challenging queries by choosing sk (k ∈ [m])
randomly from Gq . We claim that no accounts in Asb is cor-
rupted and no spend queries (m, As, A,R) s.t. As

⋂
Asb = φ is

permitted, so the serial numbers S∗ = (s1, · · · , sm) are fresh
to the adversary. Clearly, the serial numbers are uniformly dis-
tributed from the adversary’s view if DDH assumption holds.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

10

That is to say, if there is a difference in the adversary’s winning
probability between Game 2 and Game 3, we can use the
adversary to construct an algorithm to break the DDH problem.
The adversary’s winning probability in Game 3 satisfies

|Pr[Win3]− Pr[Win2]| ≤ negl(λ)

Game 4. Game 4 is the same as Game 3 with one differ-
ence. The simulator changes the ciphertext CT by encrypt-
ing a random number ξ. More specifically, the simulator sets
ct1 = za, ct2 = h3

ξga, where a is also a random element. When
answering a query, the simulator modifies Trace oracle into
Trace’ such that the simulator can run Ext to extract the public
key pk from the SoK instead of decrypting the ciphertext. If the
queried transaction tx is in the list T , then the index can be
returned by looking up the list. Otherwise, the simulator can
get a witness by the SimExt security of the SoK. Then by IND-
CPA security of the encryption scheme, the simulator can get a
unique public key as a response. Clearly, if there is a difference
in the adversary’s winning probability between Game 3 and
Game 4, we can use the adversary to construct an algorithm to
violate SimExt of SoK and IND-CPA of the encryption scheme.
The adversary’s winning probability in Game 4 satisfies

|Pr[Win4]− Pr[Win3]| ≤ negl(λ)

Wrapping up. The security analysis above shows that,
the challenge transaction (tx∗, π∗, S∗, C∗) is independent of b
if SoK is SimExt secure, the encryption scheme is IND-CPA
secure and DDH assumption holds, thus this setting leaks no
information about b to the adversary. There is only a negligible
difference in winning probability for an adversary between
Game 0 and Game 4. So the probability of A in winning the
Anonymity game is 1

2
+ ε, where ε is negligible.

6.3 Proof of Traceability
In this subsection, we provide the proof of traceability.

Theorem 3. The proposed Traceable Monero achieves traceability
if the SoK in the construction is sound and the encryption and SoK is
with perfect correctness.

Proof. Take one wallet from the ring as an example to prove
the traceability. If the SoK π of the transaction tx in Spend
algorithm is valid and sound, it implies that ct1 and ct2 are
in the required form, thus the perfect correctness property of
the leveraged public key encryption scheme guarantees h3

γ

could be uniquely recovered. Moreover, γ is the index of the
one-time public key in the ring, which is a small set and
can be identified easily. Once the one-time public key y is
decided, by the soundness of SoK in KeyGen, we can extract
the element r′ and the key pair (A′i, B

′
i) and R′, y, ct are in

the required form. We now need to prove that given a one-
time key y = B′ih0

H(Ai
′r′ ,Bi

′), it is computational infeasible
to find another key pair (A′′i , B

′′
i) as a collision that satisfies

y = B′′i h0
H(A′′i

r′ ,Bi
′′). We can see from the equation that, for a

fixed y, one can choose an arbitrary B′′i , and the possibility to
find a A′′i s.t. logh0(y/B

′′
i) = H(A′′i

r′
, Bi
′′) is negligible, if we

treat the hash functionH as a random oracle. In this way we say
that the (A′i, B

′
i) in this proof should be the real payee chosen

by the payer. And from the correctness of variant ElGamal
encryption, we can ensure that the decryption is correct, which
means we can get B′ = y/ct′

x−1

. The other part of Trace output
is a SoK ψ as a proof generated by the racing authority with
his private key to show that the tracing output is generated
correctly according to the protocol. From the correctness and
soundness of the SoK scheme, the proof ψ can be verified
correctly. Thus our proposal achieves traceability if SoK is
sound as well as the encryption scheme and SoK are with
perfect correctness.

7 PERFORMANCE OF THE SYSTEM
We first show the efficiency analysis of our proposed

traceable Monero system, then provide a comparison of the
efficiency between our construction and that of the Monero.
The parameters in Table 1 are as follows. m: the number of
input accounts in each group; n: the number of group of input
accounts; l: the length of the element in group Zp; exp1: an
exponentiation operation in group G1; expT : an exponentiation
operation in group GT ; expq : an exponentiation operation in
group Gq ⊂ Zp; |G1|: the length of the element in group G1,
similarly for |Zp|, |Gq| and |GT |.

In Table 1, we only pay attention to the expensive operations
in the schemes, including exponentiation, multi-exponentiation
and bilinear pairing, which are mainly involved in computing
an accumulator and a SoK, and ignore the cost of other light
computations. We count the operations in a concrete instan-
tiation of SoK based on Fiat-Shamir framework [37]. We also
take advantage of the trick the pre-computation, and neglect the
time-consumption of the operations that can be pre-computed.
For example, ωk,1 = g0

τ1gτ21 and e(g1, g0)
α in PoK′2 can be

pre-computed, since the elements in these equations are public
parameters or can be selected by the payer in advance.

The details of the result are as follows. For a payer,
((n − 1) + 1)(m + 1)· exp1 is required in the computation of
an accumulator, in which for each 1 ≤ k ≤ m + 1, (n − 1)
exp1 is needed in the computation of a witness, and one
exp1 to compute the accumulator vk with the witness. Note
that the cost of computing a mult-exp is not equal to that of
the n times of an exp operation, but relies on the specific n.
For example, a double-exponentiation has a cost of about 1.2
times, rather than 2 times, that of a single exponentiation by
taking advantage of Shamir’s Simultaneous Squaring Multi-
Exponentiation Algorithm [34] and a triple-exponentiation has
a cost of about 1.5 times that of a single exponentiation [38].
Besides, it needs (m + 1) expT and (m + 1) pairing in PoK′2
and 1.2 l(m + 1) expq in PoK1,2, where l is involved because
the double discrete logarithm in PoK1,2 needs to be committed
in bits. All the other operations in SoK can be pre-computed.
The cost of a verifier is mainly on the operations of verifying
a response in SoK and vk. For the communication cost, we
count the parameters that need to be stored and transferred
to a verifier in SoK. We can see from table 1, the efficiency
of Traceable Monero is comparable to that of the underlying
Monero [15].

The implementation results are reported as follows. All the
algorithms are conducted on a desktop with 64-bit Win 10
operating system and 16.0 GB RAM. The processor is Intel(R)
Core(TM) i7-7700 CPU @ 3.6 GHz. The programs are written
in C++ language with Visual Studio 2010 compiler. We invoke
interfaces in Miracl library 16 to realize the operations in big
integer and elliptic curve groups. Tate Pairing is used to imple-
ment an asymmetric bilinear map 17, e : G1 ×G2 → GT , where
|G1| = |G2| = order, where order is a 1024-bit prime. For each
algorithm, we executed 100 times and get an average running
time.

We first test the overhead in Spend18 and Verify protocol
compared to the underlying Monero. And we can see from
Fig. 4 that the overhead in Spend and Verify are almost con-
stant, i.e., 0.70 ms and 1.07 ms respectively. This is consistent
with our empirical analysis, as the overhead is for generating
and verifying the encryption on the column number γ, which
doesn’t rely on the number of the input accounts. We also test
the efficiency of Verify protocol, which is much more important,

16. https://certivox.org/display/EXT/MIRACL.
17. We note that symmetric bilinear maps are also suitable in this

implementation, however, the operations in asymmetric bilinear groups
are more efficient.

18. For the overhead in Spend protocol, we only consider the time to
spend a coin rather than to mint a coin.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

11

TABLE 1
Computational cost of our protocol and RingCT 2.0 [15]

Scheme Spender Verifier Communication

[15]
((n− 1) + 1)(m+ 1)· exp1 3.4l(m+ 1)· expq (l + 4)(m+ 1)|G1|
+(m+ 1)· expT +(m+ 1) · p (4.2 + n+ 1.2l)(m+ 1)· exp1 (3l + 8)(m+ 1)|Zp|

+1.2l(m+ 1)· expq 4(m+ 1)· expT + 3(m+ 1) ·p 3l(m+ 1)|Gq |+(m+ 1)|GT |

Ours
((n− 1) + 1)(m+ 1)· exp1 5.6l(m+ 1)· expq (l + 4)(m+ 1)|G1|
+(m+ 1)· expT +(m+ 1) · p (4.2 + n+ 1.2l)(m+ 1)· exp1 (5l + 8)(m+ 1)|Zp|

+1.2l(m+ 1)· expq 4(m+ 1)· expT +3(m+1)· 5l(m+ 1)|Gq |+(m+ 1)|GT |

1 2 3 4 5 6 7 8 9 10
The number of input accounts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e
(m

s)

Spend
Verify

Fig. 4
Overhead of Spend and Verify

1 1.5 2 2.5 3 3.5 4 4.5 5
The number of input accounts

0

1

2

3

4

5

6

T
im

e
(s

)

Verify

Fig. 5
Time consumption of Verify

since Spend protocol is executed only once in a transaction but
Verify protocol can be run many times. The result is shown in
Fig. 5. The time cost grows with the increase of the number
of input accounts. This is in accordance with our scheme,
as the effect of the mixins is eliminated by leveraging the
accumulators with one-way domain, and the number of input
accounts affect the number of zero-knowledge proof in Verify.
For tracing authority to identify the long-term public key and
one-time public key, it takes 6.331 ms.

8 CONCLUSION AND FUTURE WORK

Balancing users’ privacy and accountability remains a ma-
jor challenge in decentralized cryptocurrencies. In this paper,
we provided a positive answer towards resolving the conflict
between two fundamental dichotomy of security requirements
in cryptocurrency transactions. We introduced the concept of
Traceable Monero and proposed a concrete construction of this
new cryptocurrency. The proposed framework achieves the
properties of correctness, balance, anonymity and traceability.
Both the efficiency analysis and the implementation results
show that the proposed system is comparable to the underlying
Monero in efficiency.

We leave the following problems as future works. (1) Find-
ing more methods to reduce the trust of the tracing authority
except threshold mechanisms. (2) Designing new tracing ap-
proaches for other anonymous cryptocurrencies [13, 18, 39].

ACKNOWLEDGMENT

This work is supported by Data61, CSIRO and the National
Key R&D Program of China (No.2017YFB0802000), the NSFC
grant (61872229) and the Fundamental Research Funds for the
Central Universities (GK201702004).

REFERENCES

[1] Y. Li, Y. Yu, W. Susilo, G. Min, J. Ni, R. Choo. “Fuzzy
Identity-Based Data Integrity Auditing for Reliable Cloud
Storage Systems”, IEEE Trans. on Dependable and Secure
Computing, vol, 16, no. 1, pp. 72-83, 2019.

[2] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, G.
Min. “Identity-Based Remote Data Integrity Checking with
Perfect Data Privacy Preserving for Cloud Storage”, IEEE
Trans. Information Forensics and Security, vol. 12, no. 4, pp.
767-778, 2017.

[3] Y. Yu, Y. Li, B. Yang, W. Susilo, G. Yang, J. Bai. “Attribute-
Based Cloud Data Integrity Auditing for Secure Outsourced
Storage”, IEEE Trans. on Emerging Topics in Computing.
doi:10.1109/TETC.2017.2759329.

[4] L. Xue, Y. Yu, Y. Li, M. H. Au, X. Du, B. Yang. “Efficient
attribute-based encryption with attribute revocation for as-
sured data deletion”, Information Science, vol, 479, pp. 640-
650, 2019.

[5] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash sys-
tem”. http://bitcoin.org/bitcoin.pdf, 2008.

[6] Y. Yu, Y. Li, J. Tian, J. Liu. “Blockchain-Based Solutions to
Security and Privacy Issues in the Internet of Things”, IEEE
Wireless Commun., vol. 25, no. 6, pp. 12-18, 2018.

[7] N. van Saberhagen. “Cryptonote v 2.0”. http-
s://cryptonote.org/whitepaper. pdf, 2013.

[8] J. K. Liu, V. K. Wei, D. S. Wong. “Linkable sponta-
neous anonymous group signature for ad hoc groups”,
Australasian Conference on Information Security and Privacy.
Springer, Berlin, Heidelberg, pp. 325-335, 2004.

[9] S. Noether, A. Mackenzie. “Ring confidential transactions”,
Ledger, vol. 1, pp. 1-18, 2016.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

12

[10] P. P.Swire, “Financial privacy and the theory of high-tech
government surveillance,” Wash. ULQ, 77, 461, 1999.

[11] A. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfed-
er. “Bitcoin and cryptocurrency technologies: A comprehen-
sive introduction”, Princeton University Press, 2016.

[12] I. Miers, C. Garman, et al. “Zerocoin: Anonymous dis-
tributed e-cash from bitcoin”, Security and Privacy, 2013
IEEE Symposium on. pp. 397-411, 2013.

[13] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, Madars Virza. “Zerocash: Decentralized anony-
mous payments from bitcoin”, Security and Privacy, 2014
IEEE Symposium on. IEEE. pp. 459-474, 2014.

[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza.
“SNARKs for C: verifying program executions succinctly
and in zero knowledge”, Advances in Cryptology-CRYPTO
2013. Springer, Berlin, Heidelberg, pp. 90-108, 2013.

[15] S. F. Sun, M. H. Au, J. K. Liu, T. H. Yuen. “RingCT
2.0: A compact accumulator-based (linkable ring signature)
protocol for blockchain cryptocurrency Monero”, European
Symposium on Research in Computer Security. Springer, Cham,
pp. 456-474, 2017.

[16] M. H. Au, P. P. Tsang, W. Susilo, Y. Mu. “Dynamic u-
niversal accumulators for DDH groups and their appli-
cation to attribute-based anonymous credential systems”,
Cryptographers Track at the RSA Conference. Springer, Berlin,
Heidelberg, pp. 295-308, 2009.

[17] M. Conti, S. Kumar, C. Lal, S. Ruj. “A survey on security
and privacy issues of bitcoin”, IEEE Communications Sur-
veys & Tutorials, 2018. DOI: 10.1109/COMST.2018.2842460.

[18] Y. Li, W. Susilo, G. Yang, Y. Yu, X. Du, D. Liu, N.
Guizani. “Toward Privacy and Regulation in Blockchain-
based Cryptocurrencies”, IEEE Network, DOI: 10.1109/M-
NET.2019.1800271

[19] M. Jakobsson, M. Yung. “Revokable and versatile elec-
tronic money”, In Proceedings of the 3rd ACM conference on
Computer and communications security, pp. 76-87, 1996.

[20] J. Camenisch, J.-M. Piveteau, M. Stadler. “An Efficient
Fair Payment System”, ACM Conference on Computer and
Communications Security, pp. 88-94, 1966.

[21] J. Camenisch, U. Maurer, M. Stadler. “Digital payment
systems with passive anonymity-revoking trustees”. Journal
of Computer Security, vol. 5, no. 1, pp. 69-89, 1997.

[22] D. Kulger, H. Vogt. “Off-line payment with auditable
tracing”, Financial cryptography-FC’ 2002, Berlin: Springer-
Verlag, pp.42-55, 2002.

[23] J. Barcelo. “User privacy in the public
bitcoin blockchain”. http://www. dtic. up-
f.edu/j̃barcelo/papers/20140704 User Priva-
cy in the Public Bitcoin Blockc hain/paper. pdf, 2014.

[24] P. Koshy, D. Koshy, P. McDaniel. “An analysis of anonymi-
ty in bitcoin using p2p network traffic”, International Con-
ference on Financial Cryptography and Data Security. Springer,
Berlin, Heidelberg, pp. 469-485, 2014.

[25] F. Reid, M. Harrigan, “An analysis of anonymity in the
bitcoin system,” Security and Privacy in Social Networks.
Springer, New York, pp. 197-223, 2013.

[26] P. Moreno-Sanchez, M. B. Zafar, A. Kate. “Listening to
whispers of ripple: Linking wallets and deanonymizing
transactions in the ripple network”, Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 4, pp. 436-453, 2016.

[27] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Sri-
vastava, N. Christin. “An Empirical Analysis of Traceability
in the Monero Blockchain”, Proceedings on Privacy Enhancing
Technologies, vol. 2018, no. 3, pp. 143-163, 2018.

[28] G. Danezis, S. Meiklejohn. “Centrally banked cryptocur-
rencies”, arXiv preprint arXiv: 1505.06895, 2015.

[29] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, E. Shi.
“Solidus: Confidential distributed ledger transactions via
PVORM”, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, pp. 701-

717, 2017.
[30] C. Garman, M. Green and I. Miers. “Accountable privacy

for decentralized anonymous payments”, International Con-
ference on Financial Cryptography and Data Security. Springer,
Berlin, Heidelberg, pp. 81-98, 2016.

[31] J. Katz. “Digital signatures”, Springer Science and Business
Media, 2010.

[32] M. Chase and A. Lysyanskaya. “On signatures of knowl-
edge”, Annual International Cryptology Conference. Springer,
Berlin, Heidelberg, pp. 78-96, 2006.

[33] T. P. Pedersen. “Non-interactive and information-theoretic
secure verifiable secret sharing”, Annual International Cryp-
tology Conference. Springer, Berlin, Heidelberg, pp. 129-140,
1991.

[34] T. ElGamal. “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information Theory. vol. 3, no. 4, pp. 469-472, 1985.

[35] J. Camenisch. “Group Signature Schemes and Payment
Systems Based on the Discrete Logarithm Problem”, Diss.
Swiss Federal Institute of Technology Zurich, 1998.

[36] Y. Yu, L. Xue, Y. Li, X. Du, M. Guizani, B. Yang. “Assured
Data Deletion with Fine-Grained Access Control for Fog-
Based Industrial Applications”, IEEE Trans. on Industrial
Informatics, vol. 14, no. 10, pp. 4538-4547, 2018.

[37] A. Fiat, A. Shamir. “How to prove yourself: Practical solu-
tions to identification and signature problems,” Conference
on the Theory and Application of Cryptographic Techniques.
Springer, Berlin, Heidelberg, pp. 186-194, 1986.

[38] B. B. Brumley, “Efficient three-term simultaneous elliptic
scalar multiplication with applications”, Proceedings of the
11th Nordic Workshop on Secure IT Systems. vol. 6, pp. 105-
116, 2006.

[39] Y. Yu, Y. Ding, Y. Zhao, Y. Li, X. Du, M. Guizani.
“LRCoin: Leakage-resilient Cryptocurrency Based on
Bitcoin for Data Trading in IoT”, IEEE Internet of
Things Journal, DOI 10.1109/JIOT.2018.2878406, http-
s://ieeexplore.ieee.org/document/8513813.

Yannan Li is currently a Ph.D. candidate of
School of Computing and Information Technolo-
gy, University of Wollongong, Australia. Her re-
search interests are applied cryptography and
cryptocurrencies.

Guomin Yang is currently a Senior Lecturer
and a DECRA Fellow with University of Wollon-
gong, Australia. He received the Ph.D. degree
in computer science from the City University of
Hong Kong, Hong Kong, in 2009. His current
research interests include digital signature and
blockchain.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2910058, IEEE
Transactions on Dependable and Secure Computing

13

Willy Susilo received a Ph.D. degree in Com-
puter Science from University of Wollongong,
Australia. He is a Professor and the Head of
School of Computing and Information Technol-
ogy and the director of Institute of Cybersecurity
and Cryptology (iC2) at the University of Wol-
longong. He was previously awarded the presti-
gious ARC Future Fellow by the Australian Re-
search Council (ARC). His main research in-
terests is applied cryptography. He is a senior
member of IEEE.

Yong Yu is currently a Professor of Shaanxi Nor-
mal University, China. He holds the prestigious
one hundred talent Professorship of Shaanxi
Province as well. He received his Ph.D. degree
in cryptography from Xidian University in 2008.
His research interests are blockchain and cloud
security. He is an Associate Editor of Soft Com-
puting.

Man Ho Au received the Ph.D. degree from
the University of Wollongong, Australia, in 2009.
He is currently an Assistant Professor with the
Department of Computing, The Hong Kong Poly-
technic University, Hong Kong. His research in-
terests include public key cryptography and cryp-
tocurrency..

Dongxi Liu is a Senior Research Scientist in
CSIRO since 2008. His research interests are
applied cryptography, data processing and sys-
tem security.

