
Research Article
Accountable Monero System with Privacy Protection

Yifan Zhang 1,2,3 and Haixia Xu 1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering, Beijing, China
2Data Assurance and Communication Security Research Center, Beijing, China
3School of Cyber Security, University of Chinese Academy of Science, Beijing, China

Correspondence should be addressed to Haixia Xu; xuhaixia@iie.ac.cn

Received 7 December 2021; Revised 30 January 2022; Accepted 10 February 2022; Published 23 April 2022

Academic Editor: Jie Cui

Copyright © 2022 Yifan Zhang andHaixia Xu.+is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Monero is one of the prominent cryptocurrencies bringing robust privacy safeguard levels. However, for Monero lacking
accountability, it is easy to use anonymity and privacy for committing the crime without the leakage of identity. And some
exchanges are not very receptive to Monero. +e purpose of this study is to balance privacy and accountability in Monero.
Specifically, we studied the way to provide accountability while keeping privacy. We develop an accountable Monero model.
Our model isolates three kinds of roles, users, the trusted registration authority, and a trusted regulator. Accountability enables
the trusted regulator to reveal the signer’s identity. Only the trusted regulator can trace users’ public keys as needed. We give a
construction for the accountable Monero system by combining CryptoNote protocol with ElGamal encryption. Our in-
stantiation is with a marginal influence on efficiency. +e security of our scheme is based on the discrete logarithm and
decisional Diffie–Hellman assumption.

1. Introduction

Cryptocurrencies are digital currencies using crypto-
graphic primitives to ensure transaction security, control
the supply of currency, and verify the ownership of coins.
Quite a few cryptocurrencies build decentralized block-
chain-based transaction ledgers and run on a peer-to-peer
network. Such cryptocurrencies have the benefit of direct
transactions among users. Issuing currency and managing
transactions are completed by collaborative efforts between
peers in the network. Among the decentralized crypto-
currencies, Bitcoin accounts for more than 50% of the
entire cryptocurrency market capitalization. Its use of
pseudonyms corresponds to Bitcoin address towards
protecting users’ privacy. Nevertheless, Bitcoin relies on a
shared transaction ledger and proof-of-work (PoW) con-
sensus protocol to prevent double-spending. +is requires
all transactions to be public, linkable, and stored in the
append-only ledger. +erefore, once a pseudonym is
connected to a user’s true identity, all associated transac-
tions undertaken by the pseudonym are revealed. Bitcoin’s

reliance on pseudonyms to provide anonymity has been
severely constrained. Different blockchain analysis tech-
niques such as multisignature addressing techniques and
network traffic analyzing techniques can break down user
anonymity status [1].

Many researchers show that Bitcoin has various privacy-
related weaknesses. A multitude of privacy-enhancing
technologies can be classified into two major categories,
namely, mixing services and altcoins. In the first, mixing
protocols consist of twomodes: centralizedmixing protocols
and distributed mixing networks. +e former, such as [2],
are to hide the relationship between the user and the coins by
a mixer that randomly mixes users’ coins. +e latter, like [3],
enable a set of untrusted users to mix their coins without
being reliant on support from a third party. +e second
category is based on cryptographic technologies, such as
Monero [4] using ring signatures and ZeroCash [5] using
noninteractive zero-knowledge proofs.

+e two types of methods can be used in the construction
of anonymous cryptocurrencies tomeet the users’ demand for
privacy protection. However, anonymous cryptocurrencies

Hindawi
Security and Communication Networks
Volume 2022, Article ID 7746341, 15 pages
https://doi.org/10.1155/2022/7746341

mailto:xuhaixia@iie.ac.cn
https://orcid.org/0000-0002-9290-5848
https://orcid.org/0000-0002-3833-6701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7746341

have become powerful weapons that help cyber-criminals
perform various illicit activities, such as ransomware, tax
evasion, black market trade, and money laundering while
evading prosecution. As a typical member of the second
privacy protection category, Monero was launched in 2014.
Privacy and scalability are the main focus of Monero. In
privacy protection aspects, the key innovation of Monero is
the use of the ring confidential transaction (RingCT) protocol
to hide the sender’s address and transaction amount, and the
employment of stealth address to conceal the receiver’s ad-
dress. Monero has become a medium of exchange on the
black market. +ree of the top five black markets accept
Monero as a means of payment. In addition, Monero is used
for paying off ransom. In 2017, the organization behind the
WannaCry ransomware tried to convert the bitcoin ransoms
received into Monero [6]. Cybercriminals have realized that
using bitcoin allows blockchain transactions to expose their
identity, so they increasingly demand ransom payments in
Monero coins. It also affects the plans of some exchanges to
list Monero, increasing the difficulty of exchange between
Monero and legal tender and other cryptocurrencies.
Moreover, adding accountability will help Monero to be
acceptable to law enforcement agencies [7].We aim to achieve
a balance between accountability and privacy in Monero.

1.1. Our Contribution. We propose a new accountable
Monero system based on the RingCTprotocol. In the system,
we add two roles: trusted registration authority and trusted
regulator. +e trusted registration authority interacts with
users to generate certificates and keys for them. +e trusted
regulator can gain the secret index selected by the trans-
action payer and can expose the long-term public key of
offenders. Anonymity can still be guaranteed except for the
tracing of the trusted regulator. We take advantage of
cryptographic techniques to design a scheme with privacy
and accountability assurance. Specifically, our contributions
are as follows:

(1) We propose a new accountable Monero system,
which includes users, the trusted registration au-
thority, and the trusted regulator. To make the
tracing for a user in the system possible, we employ
the certified public key as the user’s long-term public
key. Our approach combines signature with reran-
domizable keys, the signature of knowledge, and the
RingCT protocol. +e payer encrypts a randomiza-
tion factor during spending, and the trusted regu-
lator can obtain the payer’s one-time public key by
decryption. Long-term public keys can be further
traced.

(2) +e combination with Monero’s RingCT protocol
has produced the application of a more efficient
accountable Monero system. We compare the effi-
ciency and communication in our accountable
Monero system, Monero, and the accountable
Monero system in [8]. +e performance analysis
shows that our system has better computational
efficiency in the most frequently used settings.

1.2. RelatedWork. Ring signature schemes generally include
one-out-of-many proofs or membership proofs.+e RingCT
protocol used by Monero [9] is based on the discrete log-
arithm version of one-out-of-many signature in [10], which
convinces a verifier that the signature is from one of n
possible independent signers without revealing which one.
In addition, an accumulator is a construction tool for ring
signatures. Accumulators allow representing a set of ele-
ments Y � y1, y2, . . . , yn􏼈 􏼉 as a single value v whose size is
independent of Y’s cardinality. For each set element y, there
exists an efficiently computable witness w to prove that y is
accumulated in v. In 2009, Au et al. [11] proposed the first
dynamic universal accumulator. Dynamic accumulators can
efficiently add and delete elements to the accumulated value.
As the value is renewed, the witness w for each set element
can be efficiently updated. +e universality means that, for
any element y outside the set Y, there exists an efficiently
computable witness w to prove that y is not accumulated in
v. In 2004, Dodis et al. [12] proposed constant-size ring
signatures based on an accumulator of the one-way domain.

In 2004, Liu et al. [13] defined the linkability of ring
signatures and proposed the first linkable spontaneous
group signature (linkable ring signature) scheme. +e
linkability refers to the link between two signatures of the
same signer. In 2005, Tsang and Wei [14] constructed the
first short linkable ring signature scheme extended from a
short ring signature scheme proposed by Dodis et al. [12]. In
2019, Wang et al. [15] proposed a general construction
method to add linkability to arbitrary ring signature schemes
with one-time signatures.

In 2007, Fujisaki and Suzuki [16] proposed a traceable
ring signature. +e traceable ring signature contains a tag
composed of a list of ringmembers and an issue that refers to
an affair. Anyone who signs the same message again with the
same tag can be linked, whereas anyone who signs two
different messages with the same tag can be traced. In 2013,
Au et al. [17] proposed the first ID-based event-oriented
linkable ring signature, which provided a revocable option.
Two signatures with the same secret key in the same event
can reveal the signer’s identity. +e traceability of these
schemes is under linkable conditions. In these schemes,
there is no way to revoke the anonymity of signers whose
transactions are related to criminal behavior but are con-
sistent with transaction generation rules. Bootle et al. [18]
take care of this type of requirement in their work. +ey
proposed an accountable ring signature scheme, which is
based on the efficient one-out-of-many knowledge proof
proposed in [19] and improved it. +e signer can specify a
public key, allowing the owner of it to revoke the signer’s
anonymity.

Using ring signature and one-time keys, CryptoNote for
Monero conceals the signers and receivers of transactions.
Extended by CryptoNote, RingCT protocol can allow the
hiding of the amounts sent in a transaction. In 2017, Sun
et al. [20] gave a rigorous security definition for RingCT
protocol and proposed a new RingCTprotocol (RingCT 2.0).
Based on homomorphic commitment schemes, accumula-
tors with one-way domain, and the signature of knowledge,
RingCT 2.0 protocol constructs a constant size signature

2 Security and Communication Networks

independent of the number of input accounts. It requires
trusted public parameters. In 2020, Yuen et al. [21] proposed
RingCT 3.0, which does not require trusted settings.+e ring
signature size is the logarithm of the input account number.

In the matter of Monero’s accountability, there are not
many studies currently. In 2019, Li et al. [8] proposed a
traceable Monero system based on RingCT 2.0 and a var-
iation of the ElGamal public key encryption scheme. +e
scheme allows a trusted regulator to trace the user’s one-time
public key and long-term public key. Our solution is based
on the RingCTprotocol inMonero, certified key scheme [22]
and the variant ElGamal encryption scheme. Consider that,
since version v8 (2018-10), Monero uses a ring size of 11, and
the latest recommended ring size is 15. Our scheme’s
computation efficiency is independent of the length of the
element in Zq, which is 255 in CryptoNote 2.0. +erefore,
when the ring size is less than the length of the element, our
scheme is more efficient.

In terms of certified keys used in signature schemes, in
2007, Groth [23] constructed a group signature scheme with
a certified signature scheme, which allows users to pick
signature verification keys. +e verification keys can be
certified by a certification authority. In 2014, Ateniese et al.
[22] proposed certified Bitcoin. By using a self-certified
public key, a user can efficiently generate the certified ad-
dress. +e scheme is fully compatible with the Bitcoin
system.

2. Definition of Accountable Monero System

An accountable Monero system is a tuple of algorithms
(Setup, TKGen, RKGen, UKGen, Mint, Spend, Verify,
BlockGen, BlockVer, Trace, Judge).

(pp)← Setup (1λ): Given the security parameter λ, it
produces the public parameter pp.
(xT, yT)← TKGen (pp): Given the public parameter
pp, it produces a public-private key pair (xT, yT) for
the trusted registration authority.
(xR, yR)← RKGen (pp): Given the public parameter
pp, it produces a public-private key pair (xR, yR) for
the trusted regulator.
(sk, P)←UKGen (pp, yT): Given the public parameter
pp and the public key of the trusted registration au-
thority, it produces a signing key sk and a verification
key P for the user.
(act, ask)← Mint (P, a): Given a public key and an
amount a, it produces a coin cn with amount a for a
public key P.+e corresponding coin key is ck.+e coin
cn and the public key P form an account denoted by
act � (pk, cn), and the corresponding account secret
key is defined as ask � (sk, ck).
(tx, I, CT, π, aux)← Spend (m, Kin, Ain, A, Pout, yR):
+e inputs include a description m ∈ 0, 1{ }∗, a set of
account private keys Kin, and input account set Ain,
accounts A including Ain, the output stealth public keys
Pout, and the trusted regulator’s public key yR. +is
algorithm outputs a transaction message tx, a set of

serial numbers I, a proof π, a ciphertext CT, and some
additional information aux.
(0/1)← Verify (tx, I, CT, π, aux): Given the transac-
tion message tx, serial numbers I, the proof π, the
ciphertext CT, and additional information aux, this
algorithm checks, the transaction is valid or not and
outputs 1 or 0, respectively.
(non, blkn)← BlockGen (TX, blkn− 1): Given a set of
transactions TX � (tx, I, CT, π, aux){ } and the previ-
ous block blkn− 1, this algorithm outputs a nonce non

and a block blkn.
(0/1)← BlockVer (blkn): Given the current block blkn,
this algorithm verifies whether the block is valid or not
and outputs 1 or 0, respectively.
(P,ψ)← Trace (xR, TX, CT): Given the trusted regu-
lator’s secret key xR, the transaction TX, and the ci-
phertext CT, it outputs the payer’s public key P and a
trace proof ψ.
(0/1)← Judge (P,ψ, yR, CT): Given the payer’s public
key P, the trace proof ψ, trusted regulator’s public key
yR, and the ciphertext CT, this algorithm checks
whether the trace proof is valid or not and outputs 1 or
0, respectively.

An accountable Monero system should be correct,
balanced, anonymous, nonslanderous, and traceable as
in [8, 20].

Definition 1 (Perfect Correctness). All transactions gener-
ated by the Spend algorithm can pass the Verify algorithm.
All traced public keys and corresponding proofs generated by
the Trace algorithm can be verified by the Judge algorithm.
Specifically, an accountable Monero system is perfectly
correct if for all PPT adversaries A,

Pr

Verify(tx, I,

CT, π, aux)

� 1

Judge(P, ψ,

yR􏼁 � 1

:

(pp)←Setup 1λ􏼐 􏼑;

xT, yT(􏼁←TKGen(pp);

xR, yR(􏼁←RKGen(pp);

m, A, Pout(􏼁←A pp, Ain, Kin(􏼁

where Ain,(Kin􏼁 � (act, ask)s.t.

(sk, P)←UKGen pp, yT(􏼁;

(act, ask)←Mint(P, a);

(tx, I, CT, π, aux)←Spend

m, Kin(, Ain, A, Pout, yR􏼁;

(P,ψ)←Trace skR, tx, CT(􏼁

⎡⎢⎢⎣

⎤⎥⎥⎦

� 1.

(1)

Definition 2 (Balance). 3is property requires that any
malicious payers cannot (1) spend by using accounts that are
not their own; (2) spend more than the amount in their
accounts. Specifically, an accountable Monero system is
balanced if for all PPT adversaries A,

Security and Communication Networks 3

Pr

pp←Setup 1λ􏼐 􏼑;

Awins: acti
′􏼈 􏼉
μ
i�1, Si􏼈 􏼉

]
i�1􏼐 􏼑←

A
AddGen,ActGen,Spend,Corrupt

(pp)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(λ). (2)

where the oracles are defined as follows:

(i) AddGen (i): Given a query number i, if algorithm
TKGen has not been run, runs (xT, yT)← TKGen
(pp). 3en, it runs algorithm (ski, Pi)← UKGen
(pp, yT) and returns a public key Pi.

(ii) ActGen (i, ai): Given the index i and an amount ai, it
runs algorithm (act, ask)← Mint (Pi, ai), adds i,
acti � (Pi, cni) to the lists I, G, respectively and
returns (cni, cki) for Pi generated by AddGen. 3e
corresponding private key is aski � (ski, cki). 3e
oracle uses aski to compute the serial number Ii of the
account acti and adds it to the list S.

(iii) Spend (m, Ain, A, Pout): Given the inputs, if algo-
rithm RKGen has not been run, it runs algorithm
(xR, yR)← RKGen (pp). 3en, it runs algorithm
(tx, I, CT, π, aux)← Spend (m, Kin, Ain, A, Pout,

yR). Assume that at least one account in Ain has not

been corrupted, where Ain ⊂ G. It adds (tx, I,

CT, π, aux) to the list T and returns it.
(iv) Corrupt (i): Given the index i, it returns ski and uses

aski to determine the serial number Ii of account acti,
adds Ii, (Ii, ai) to the lists C and B respectively.

Finally, A outputs all his spending and some new ac-
counts he created (act1′, . . . , actμ′ ,S1, . . . ,S]), where Si �

(txi,Ii, CTi, πi, auxi), i ∈ []] and all transactions are paid
to the challenger. Specifically, we call A wins if the following
conditions are met:

(1) Verify (txi, Ii, CTi, πi, auxi) � 1, where i ∈ []].
(2) Si ∉ T∧Ii ⊂ S, i ∈ []], and Ij ∩ Ik � ∅ for any dif-

ferent j, k ∈ []].
(3) Let Ii � Ii,j􏽮 􏽯 and E � ∪]i�1 ai,j: (Ii,j, ai,j) ∈B∧􏽮

Ii,j ∈ (Ii ∩C)}, it holds that 􏽐ai,j∈E
ai,j < 􏽐

]
k�1 ai

out,
where ai

out denotes the balance of the output accounts
in Si.

Definition 3 (Anonymity). 3e property requires that the
accounts used by the payer cannot be distinguished. Specif-
ically, an accountable Monero system is anonymous if for all
PPT adversaries A,

Pr b′ � b:

pp←Setup 1λ􏼐 􏼑;

m, As0
, As1

, A, Pout􏼐 􏼑←

A
AddGen,ActGen,Spend,Corrupt,Trace
1 (pp);

b← 0, 1{ },

tx
∗
, I
∗
, CT
∗
, π∗, aux

∗
(􏼁←

Spend m, Ksb
, Asb

, A, Pout,􏼐 yR􏼁;

b′←ASpend,Corrupt,Trace
2

(pp, tx
∗
, π∗, I

∗
, CT
∗
, au(x
∗
􏼁􏼁

⎡⎢⎢⎣

⎤⎥⎥⎦

−
1
2

􏼌􏼌􏼌

􏼌􏼌􏼌

≤ negl(λ). (3)

3e oracles are defined as before, Asi
∈ A and Asi

⊂ G,
where i ∈ 0, 1{ }. Trace oracle is defined as follows:

(i) Trace (tx, π). Given the queried transaction tx and the
proof π, it returns a public key P. If the input is
(tx∗, π∗), returns ⊥.

Besides, the following conditions should be satisfied:

(1) None of the accounts in As0
and As1

have been
corrupted.

(2) No query in the form of (·, As, ·, ·)s.t.As ∩Asi
≠∅ has

ever been queried to Spend oracle.

Definition 4 (Nonslanderability). 3e property requires that
a malicious user cannot slander any honest user. Specifically,
an accountable Monero system is nonslanderous if for all PPT
adversaries A,

Pr AWins:

pp←Setup 1λ􏼐 􏼑; ((􏽢tx, 􏽢I, 􏽣CT,

􏽢π , 􏽤aux),(􏽥tx, 􏽥I, 􏽦CT, 􏽥π, 􏽧aux))←

A
AddGen,ActGen,Spend,Corrupt

(pp)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(λ). (4)

4 Security and Communication Networks

where all oracles are defined as before, and (􏽢tx, 􏽢I, 􏽣CT, 􏽢π, 􏽤aux)

is one of the outputs of Spend oracle. Specifically, A wins if
the following conditions are met: (1)Verify (􏽥tx, 􏽥I, 􏽦CT, 􏽥π,
􏽧aux) � 1; (2) (􏽥tx, 􏽥I, 􏽦CT, 􏽥π, 􏽧aux) ∉ T; (3) 􏽢I∩C � ∅ but
􏽢I∩ 􏽥I≠∅.

+e nonslanderability property already covers the
linkability property [20].

Definition 5 (Traceability). 3e property requires that the
trusted regulator can trace the transaction payer and can
prove the validity of tracing. Specifically, an accountable
Monero system is traceable if for all PPT adversaries A,

Pr

Trace skR, tx,(

CT) � (P,ψ)

Judge(P, ψ,

pkR, CT􏼁 � 1

:

(pp)←Setup 1λ􏼐 􏼑;

(tx, I, CT, π, aux)←

A
AddGen,ActGen,Spend,Corrupt

(pp);

Verify(tx, I, CT, π, aux) � 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1. (5)

3. Preliminaries

Define [z] � 1, 2, . . . , z{ }. We use PPT, which stands for
“probabilistic polynomial-time.” “‖” denotes the concate-
nation of strings. Besides, we recall here the tools and as-
sumptions used throughout this paper.

3.1. Terminology. Monero uses terms according to [24] as
follows:

(i) q is a prime number and the order of the underlying
finite field;

(ii) Zq is the underlying finite filed;
(iii) E is an elliptic curve defined on Zq;
(iv) G⊆E(Zq) is a subgroup of large prime order of the

elliptic curve E over a finite field Zq.
(v) G is a generator of G;
(vi) l is a prime order of G.

Private ec-key is a standard elliptic curve private key,
such as a ∈ [1, l − 1];

Public ec-key is a standard elliptic curve public key, such
that A � aG.

3.2. Hardness Assumptions

Discrete logarithm (DL) Assumption Let (l,G, G) be a
tuple, where |G| � l and G ∈ G such that <G> � G.
Given a tuple (G, aG) ∈ G2, where a ∈ Z∗q , for all PPT
adversaries A, the probability of computing a is neg-
ligible in security parameter λ, which can be expressed
as AdvDL

A (λ) � P[A(G, aG) � a]≤ negl(λ)

Decisional Diffie–Hellman (DDH) Assumption Let
(l,G, G), where |G| � l and G ∈ G such that <G> � G.
+e DDH assumption is as follows: given a tuple
(G, aG, bG, ((1 − x)ab + xc)G), where a, b, c ∈ Z∗q ,
x ∈ 0, 1{ }, for all PPT adversaries A,

Adv
DDH
A (λ) � |P[A(G, aG, bG, abG)] − P[A(G, aG, bG, cG)]|≤ negl(λ). (6)

3.3. Homomorphic Commitment Scheme [19]. A noninter-
active commitment scheme includes a pair of polynomial-
time algorithms (CGen,Comck): on inputting a security
parameter λ, CGen(1λ) outputs a commitment key ck.
Comck(m, r) generates a commitment C on the input
message m and a randomness r, where ck is often omitted
when it is clear in context.

Security of HCom A noninteractive homomorphic
commitment scheme HCom � (CGen,Com) is secure
if it satisfies the following properties:
Binding+is property means that a committer cannot
generate a commitment C, which can be opened as two
different messages. More precisely, for all PPT adver-
saries A,

Pr m0 ≠m1 ∧Com m0; r0(􏼁 � Com m1; r1(􏼁: ck←CGen 1λ􏼐 􏼑; m0, r0, m1, r1(􏼁⟵A(ck)􏽨 􏽩≤ negl(λ). (7)

Security and Communication Networks 5

Hiding +is property means that the commitment
reveals nothing about m. More precisely, for all PPT
adversaries A,

Pr

ck←CGen 1λ􏼐 􏼑;

A(C) � b: m0, m1(􏼁←A(ck);

b← 0, 1{ }; C←Comck mb(􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ negl(λ).

(8)

Homomorphic +is property means that for all
λ ∈ N, ck←CGen(1λ), m0, r0, m1, r1 ∈ Zq, it holds that

Com m0; r0(􏼁 · Com m1; r1(􏼁 � Com m0 + m1; r0 + r1(􏼁.

(9)

3.4. Elliptic Curve ElGamal Encryption [25]. +e EC-ElGa-
mal encryption scheme consists of three algorithms.

(x, P)← KeyGen (1λ): Given a security parameter λ,
this algorithm generates gk � (l,G, G), where |G| � l

and G ∈ G such that <G> � G. +e private key
x ∈ [0, l − 1] is chosen uniformly at random.+e public
key is computed as P � xG. It outputs the key pair
(x, P).
C← Enc (P, m): Given a public key P and a message m,
which has been embedded as a point M on the elliptic
curve E overZq, it chooses a random α and outputs the
ciphertext C � (C1, C2) � (αG, α(xG) + M).
M← Dec (x, C): Given the private key x and the ci-
phertext C � (C1, C2), it outputs M � C2 − xC1.

+e EC-ElGamal encryption is IND-CPA secure under
the DDH assumption. And the EC-ElGamal ciphertexts are
homomorphic.

3.5. Signatures with Rerandomizable Keys [26]. +is primi-
tive can consistently rerandomize the private and public keys
of a signature scheme.

3.5.1. Signatures with Rerandomizable Keys. A digital sig-
nature scheme with rerandomizable keys contains the fol-
lowing PPT algorithms:

(sk, vk)← SGen (1λ): Given the security parameter λ,
this algorithm generates a public-private key pair
(sk, vk).
σ← Sig (sk, m): Given a signing key sk and a message
m, this algorithm generates a signature σ.

b← Ver (vk, m, σ): Given a verification key vk, a
message m, and a signature σ, this algorithm outputs a
bit b.
sk′← RndSK (sk, ρ): Given a signing key sk and a
random number ρ, this algorithm outputs a new
signing key sk′.
vk′← RndVK (vk, ρ): Given a verification key vk and a
random number ρ, this algorithm outputs a new ver-
ification key vk′.

If for all λ ∈ N, all key-pairs (sk, vk)←SGen(1λ), all
messages m, Ver(vk, m, Sig(sk, m)) � 1 and for all ρ,
Ver(RndVK(vk, ρ), m, Sig(RndSK(sk, ρ), m)) � 1, this
scheme is complete.+e formal definition is in the following.

3.5.2. Rerandomizable Keys. A signature scheme has per-
fectly rerandomizable keys if for all λ ∈ N, all key-pairs
(sk, vk))←SGen(1λ) and a uniformly chosen random
number ρ, the following distributions are identical:

sk, vk, sk′, vk′(􏼁 � sk, vk, sk″, vk″(􏼁 (10)

where (sk′, vk′)←SGen(1λ), sk′′←RndSK(sk, ρ), and
vk′′←RndVK(vk, ρ).

3.5.3. Unforgeability under Rerandomizable Keys. We say
that a signature scheme achieves unforgeability under
rerandomizable keys if all PPTadversaryA cannot be able to
win the following game with nonnegligible probability:

(1) +e challenger runs (sk, vk)←SGen(1λ) and sends vk

to A.
(2) A is allowed to access the signing oracle and ran-

domized signing oracle to make signing queries. A
signing query is for the input (m,⊥), where m is the
message. +e challenger responds with Sig(sk, m). A
randomized signing query is for the input (m, ρ),
where m is the message, and ρ is randomness. +e
challenger responds with Sig(RndSK(sk, ρ), m).

(3) A outputs a tuple (m∗, σ∗, ρ∗).

We say that A wins the game if:

(i) For all queries (m, ·) to the signing oracle or ran-
domized signing oracle, it holds that m≠m∗;

(ii) Either Ver(vk, m∗, σ∗) � 1 or Ver(RndVK(vk, ρ∗),
m∗, σ∗) � 1.

3.6. Signature of Knowledge [27]. A Signature of Knowledge
(SoK) for an NP-relation R is a tuple of algorithms (Setup,
Sign, Verify) as follows:

6 Security and Communication Networks

par← Setup (1λ): Given a security parameter λ, it
outputs public parameters par.
σSoK← Sign (par, s, w, m) : Given the public parameter
par, a statement s, a witness w, and a message m, where
(s, w) ∈R, it outputs a signature σSoK on m.
(0/1)← Verf (par, s, m, σSoK): Given the public pa-
rameter par, a statement s, a message m, and a sig-
nature σSoK, it outputs 1 if σSoK is a valid signature or 0
otherwise.

+e security definition for SoK (SimExt-secure) requires
correctness, simulatability, and extractability.

3.6.1. Correctness. For any message m and a pair (s, w) ∈R,
such that

Pr
Verf(par, s,

m, σSoK􏼁 � 1
:

par←Setup 1λ􏼐 􏼑; σSoK

←Sign(par, s, w, m)

⎡⎣ ⎤⎦≥ 1 − negl(λ).

(11)

3.6.2. Simulatability. +ere exists PPT simulator
Sim�(SimGen, SimSign), where SimGen (1λ) outputs public
parameters par and a trapdoor τ and SimSign (par, τ, s, m)

outputs a signature σSoK, such that for all PPTadversariesA,

|Pr b � 1: (par, τ)←SimGen 1λ􏼐 􏼑; b←ASim
(par)􏽨 􏽩−

Pr b � 1: par←Setup 1λ􏼐 􏼑; b←ASign
(par)􏽨 􏽩|≤ negl(λ)

.

(12)

3.6.3. Extractability. For all PPTadversariesA, there exists a
polynomial-time extractor Ext, such that

Pr

(s, w) ∈R∨(s, m)

∈ Q∨Verf(par,

s, m, σSoK􏼁 � 0

:

(par, τ)←SimGen 1λ􏼐 􏼑

m, s, σSoK(􏼁←ASim
(par)

w←Ext par, τ, m, s, σSoK(􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥
1−

negl(λ)
. (13)

where Q denotes the queries to the SimSign oracle that A
made.

4. Accountable Monero System

In this section, we present the procedure of the accountable
Monero and describe the concrete scheme. +en, we give an
instantiation of the SoK used in the system and the security
analysis.

4.1. AccountableMonero SystemWorkflow. Our accountable
Monero system adds accountability to the original Monero
system. It includes three types of subjects, namely, the
trusted registration authority, denoted by T, the trusted
regulator, denoted by R, and users. As shown in Figure 1, the
main processes are Registration, Transaction, Transaction on
the chain, and Tracing.

Registration: To meet the demand of the trusted
regulator tracing users’ long-term public keys, a user
has to cooperate with the trusted registration authority
to create the certificate and key pair. +e user’s signing
public key and certificate can be accessed in the system.
It allows others to make a transaction with him.
Transaction: +e payer wants to transfer coins to others.
Firstly, the payer produces the one-time public key for
each payee. At the same time, the payer encrypts the
necessary message with the trusted regulator’s public key
to support the tracing of payees’ long-term public keys.

Secondly, the payer mints coins for each payee. +irdly,
the payer randomizes his one-time keys, uses the trusted
regulator’s public key to encrypt the random number
used in randomization, and signs the transaction. Finally,
he broadcasts the transaction to the P2P network.
Transactions on the chain: Miners collect and verify new
transactions in the P2P network.+en, they compete for a
proof-of-work to add their block to the blockchain.
Tracing:When tracing the one-time public key, the trusted
regulator decrypts the ciphertext in the transaction to
obtain the random number. +en, the regulator can re-
cover the one-time public key from the randomized public
key. Obtaining the one-time public key, the trusted reg-
ulator can decrypt the ciphertext generated along with the
one-time public key to reveal the long-term public key.

4.2. Accountable Monero System Instantiation. Our ac-
countable Monero system is designed as follows:

Setup (1λ): +is algorithm generates the public pa-
rameters of the system. On inputting a security pa-
rameter λ, H, 􏽥H, U are generators inG and their discrete
logarithms regarding G are unknown. We denote par as
par � SoK.Setup (1λ). It outputs pp � (1λ, par, G, H,
􏽥H, U,Hs,Hp, ξ), where Hs: 0, 1{ }∗ ⟶ Zq and
Hp: 0, 1{ }∗ ⟶ 0, 1{ }∗ denote two cryptographic se-
cure hash functions, and ξ is a fixed function from G to
Zq.

Security and Communication Networks 7

TKGen (pp): �is algorithm generates the trusted
registration authority’s key pair. Given input pp, it
outputs (xT, YT), where xT ∈ [0, l − 1] and YT � xTG.
RKGen (pp): �is algorithm generates the trusted
regulator’s key pair. Given input pp, it outputs
(xR, YR), where xR ∈ [0, l − 1] and YR � xRU.
UKGen (pp, YT): �is algorithm generates the user’s
public key. We use the certi�ed key [22] generation
method.

A certi�ed key is certi�ed by the trusted registration
authority. �e Certi�ed Key Generation protocol is exe-
cuted between user U and the registration authority T as
follows:

(1) U picks uniformly at random k in [0, l − 1], com-
putes Z � kG and sends Z to T.

(2) On receiving Z from user U, T picks uniformly at
random k′ in [0, l − 1] and computes Cu � Z + k′G,
e � ξ(Cu), x � k′ + e · xT. Finally, T sends Cu, x to
user U.

(3) On receiving Cu, x from T, U computes x � x + k as
his private key corresponding to his certi�ed public
key Yu � Cu + ξ(Cu)YT and veri�es that

xG � Cu + ξ Cu()YT. (14)

�e user’s public key Yu and certi�cate Cu are publicly
accessed. A payer obtains the payee’s long-term public key
Yu � xG, where x is the payee’s long-term private key. �e
payer generates a one-time public key as a receiving public
key for the payee, which can hide the payee’s real public key.
In the process of generating a one-time public key, to
simplify, we use one of the methods in [28]. �e payer �rstly
chooses uniformly at random r ∈ [0, l − 1] and computes
R � rG. �e payee’s one-time public key is computed as
P �Hs(rYu)G + Yu, and the corresponding one-time pri-
vate key is x +Hs(xR). �e payer picks uniformly at
random r̃ ∈ [0, l − 1] and then encrypts Hs(rYu)G with the
trusted regulator’s public key YR as Ct1 � r̃YR, Ct2 �
Hs(rYu)G + r̃U. �e ciphertext is denoted as CT1 � (Ct1,
Ct2).

And it produces SoK as follows:

SoK Cu, Yu, r, r̃(){ : Yu � Cu + ξ Cu()YT∧P � Yu +
Hs rYu()G∧R � rG∧Ct1 � r̃YR∧Ct2 �Hs rYu()G + r̃U}

.

(15)

Mint (P, a): �is algorithm mints a coin for the public
key address P with an amount a as follows. It chooses
uniformly at random r ∈ [0, l − 1] and computes the
commitment C � Com(ck, a; r) � rG + aH and then
outputs (Cn, ck) � (C, (r, a)). �e account is denoted

…

…

1.Registration

long-term
public key

2.Transaction

3.Transactions
on chain

4.Tracing

C

randomize

one-time public keys

one-time
public key

+
account

randomized one-
time public key

sign the transaction
C

ciphertext

C C

Figure 1: Work�ow of our accountable Monero system.

8 Security and Communication Networks

as act � (P, C) and the corresponding account private
key is denoted as ask � (sk, ck) � (sk, (r, a)).
Spend(m , Kin, Ain, A, Pout, YR): +is algorithm allows
users to spend their coins while maintaining privacy. in

is a secret index corresponding to the signer of the ring.
Given the transaction message m ∈∈ 0, 1{ }∗, account
private keys Kin and the corresponding account set Ain,
accounts A which containAin, a set of output public key
Pout and the trusted regulator’s public keyYR, it outputs
a transaction, which contains a proof π, randomized
spending public keys P∗ and serial numbers I associ-
ated with Ain. Without loss of generality, we denote
Kin � askin,j � skin,j, (rin,j, ain,j)􏽮 􏽯

j∈[m]
, Ain � actin,j �

Pin,j, Cnin,j􏽮 􏽯
j∈[m]

, A � acti,j � Pi,j, Cni,j􏽮 􏽯
i∈[n],j∈[m]

and

the output public key set Pout � Pout,k􏽮 􏽯
k∈[t]

. +e pro-
cess of spending coins is as follows:

(1) +e payer sets the output amount aout,k(k ∈ [t]) for
each output public key Pout,k(k ∈ [t]) such that the
input sum is equal to the output sum, i.e.,
􏽐

m
j�1 ain,j � 􏽐

t
k�1 aout,k. +en, the payer chooses

uniformly at random rout,k ∈ [0, l − 1](k ∈ [t]) and
mints coins Cnout,k � Cout,k � Com(aout,k; rout,k) �

rout,kG + aout,kH for the output public keys. Af-
terward, the payer adds the output accounts
actout,k � Pout,k, Cnout,k􏽮 􏽯

k∈[t]
to receivers’ account

set AR and sends ckout,k � (rout,k, aout,k) to the
owner of a public key Pout,k(k ∈ [t]) through secret
channels.

(2) +e payer computes 􏽥Pi � 􏽐
m
j�1 Pi,j + 􏽐

m
j�1 C ni,j−

􏽐
t
k�1 Cnout,k, where i ∈ [n]. If 􏽐

m
j�1 ain,j � 􏽐

t
k�1

aout,k, 􏽥Pin is a commitment to 0. 􏽥Pin � (􏽐
m
j�1(skin,j+

rin,j) − 􏽐
t
k�1 rout,k)G � 􏽥skinG, where 􏽥skin � 􏽐

m
j�1

(skin,j + rin,j) − 􏽐
t
k�1 rout,k.

(3) +e payer chooses uniformly at random ρ←[0, l −

1] and computes the randomized public keys
P∗j←Pin,j + ρG and the randomized private keys
sk∗j←skin,j + ρ, where j ∈ [m]. We denote
P∗ � (P∗1 , . . . , P∗m). +e payer computes I←ρ 􏽥H.

(4) +e payer computes Ij � skj
􏽥H and I∗j � Ij + I �

sk∗j
􏽥H, where j ∈ [m]. Let I denote (I1, . . . , Im).

(5) +e payer picks uniformly at random 􏽥a ∈ [0, l − 1]

and then encrypts ρ with the trusted regulator’s
public key YR as Ct1′ � 􏽥aYR, Ct2′ � ρG + 􏽥aU. +e
ciphertext is denoted as CT2 � (Ct1′, Ct2′). +e SoK
proof π is as follows:

SoK

skj􏽮 􏽯􏼐
m

j�1, in, ρ, 􏽥skin, 􏽥α􏼑 : Ct1′ � 􏽥αYR∧

Ct2′ � ρG + 􏽥αU ∧􏽥Pin � 􏽥skinG∧

P
∗
1 � sk1 + ρ(􏼁G ∧I1 � sk1

􏽥H∧

⋮

P
∗
m � skm + ρ(􏼁G ∧Im � skm

􏽥H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(tx).

(16)

Finally, the payer outputs TX � (tx, P∗, I, I, CT2,

π), where tx � (m, A, AR).

Verify (tx, P∗, I, I, CT, π): Receiving A and AR, the
verifiers can compute 􏽥Pi � 􏽐

m
j�1 Pi,j + 􏽐

m
j�1 Cni,j − 􏽐

t
k�1

Cnout,k, where i ∈ [n]. Output 1 if π passes the verifi-
cation of the SoK and the serial numbers of the
transaction have never appeared on the blockchain.
Output 0 otherwise.
BlockGen (TX{ }, blkn− 1): Monero uses the Proof-of-
Work (PoW) consensus protocol. Firstly, miners collect
someMonero transactions from the network and verify
them. Validated transactions can be used to generate a
Merkle tree. Information such as the root of the Merkle
Tree and the hash value of the previous block are
contained in the block. Finally, miners try different
nonce to make the hash value of the new block meet the
mining condition. It outputs the nonce and the block
blkn.
BlockVer (blkn): Given the current block blkn, the
miners in the network verify whether the hash value of
the current block meets the mining condition and
whether the transactions in the block are valid; then
output 1 or 0, respectively.
Trace (xR, TX, CT2): +ere are two ways to trace user
public keys. One is to reveal the user’s one-time public
key, and the other is to reveal the user’s long-term
public key.

(1) Given the ciphertext CT2 � (Ct1′, Ct2′) in the
transaction TX, the method to reveal the user’s
one-time public key is as follows. +e trusted
regulator decrypts the ciphertext with his private
key xR by computing P � ρG � Ct2′ − sk− 1

R Ct1′.
+en, he looks up the list (P1,j, . . . , Pn,j) and
verifies if P + Pi,j � P∗j is satisfied. If the condition
is satisfied, then i is the index of the payer in the ring
and Pi,j􏽮 􏽯, where j ∈ [m] are the one-time public
keys of the user being tracked.+e trusted regulator
can prove to others that Pi,j􏽮 􏽯 are the one-time
public keys of the payer by generating the proof
ψ � SoK (xR): YR � xRU∧Ct1′ � xR(Ct2′ − ρG)􏼈 􏼉.
He outputs Pi,j􏽮 􏽯 and ψ.

(2) After getting a one-time public key Pi,j of the user,
the trusted regulator can reveal the user’s long-term
public key. He finds where the one-time public key
is generated on the blockchain and extracts the
ciphertext CT1 � (Ct1, Ct2) from it. +en, he de-
crypts the ciphertext with his private key xR by
computing Hs(rY)G � Ct2 − sk− 1

R Ct1 and gets the
user’s long-term public key by calculating
Y � Pi,j − Hs(rY)G. +e trusted regulator proves
to others that the public key Y is the long-term
public key of the user by generating the proof ψ′ �
SoK (xR):􏼈 YR � xRU∧Ct1 � xR(Ct2 − Hs(rY)

G)}. He outputs Y and ψ′.

Judge (Pk,ψ(ψ′), YR, CT1(CT2)): Given the user’s
public key, the proof is generated by the trusted

Security and Communication Networks 9

regulator, the public key of the regulator, and the ci-
phertext. +e verifier can verify the correctness of trace
results by checking whether the proof is valid or not
and outputs 1 or 0, respectively.

Figure 2 shows the transaction flow in our system.
Similar to transaction from Payer to Payee-Payer, that from
Payee-Payer to Payee is omitted. Figure 3 shows the
transaction verification flow in our system. Figure 4 shows
the tracing flow in our system. Figure 5 shows the judging
flow in our system. In these figures, we only consider the

communications relevant operations. Besides, except that
ckout,k is sent through secret channels, all other messages are
public. +e transactions are assumed verified in Figures 4
and 5.

4.3. Instantiationof SoK. +e instantiation of SoK inUKGen
uses ZKSnark. +e SoK described in Spend can be in-
stantiated as follows. We can divide it into three parts, and
the first part is as follows:

PoK1 in, ρ, 􏽥skin􏼐 􏼑􏽮 : P
∗
j − Pin,j � ρG, where j ∈ [m]∧

I � ρ 􏽥H∧􏽥Pin � 􏽥skinG}
. (17)

Pick uniformly at random si,j ∈ [0, l − 1], i ∈ [n], j ∈ [m

+1] and select uniformly at random αin,j ∈ [0, l − 1], where
j ∈ [m + 1], in ∈ [n] and compute

M←Hp Pout,1‖Cnout,1‖ · · · ‖Pout,t‖Cnout,t􏼐 􏼑,

Lin,j � αin,jG, j ∈ [m]

Rin,j � αin,j
􏽥H, j ∈ [m]

Lin,m+1 � αin,m+1G.

(18)

then set cin+1 � Hs(m, M, Lin,1, Rin,1, . . . , Lin,m, Rin,m,

Lin,m+1).

Lin+1,j � sin+1,jG + cin+1 P
∗
j − Pin+1,j􏼐 􏼑, j ∈ [m]

Rin+1,j � sin+1,j
􏽥H + cin+1 I, j ∈ [m]

Lin+1,m+1 � sin+1,m+1G + cin+1
􏽥Pin+1.

(19)

and repeat this, incrementing in mod n up to

Lin− 1,j � sin− 1,jG + cin− 1 P
∗
j − Pin− 1,j􏼐 􏼑, j ∈ [m]

Rin− 1,j � sin− 1,j
􏽥H + cin− 1 I, j ∈ [m]

Lin− 1,m+1 � sin− 1,m+1G + cin− 1
􏽥Pin− 1

cin � Hs m, M, Lin− 1,1, Rin− 1,1, . . . ,􏼐

· Lin− 1,m, Rin− 1,m, Lin− 1,m+1􏼑.

(20)

Solve for sin,j by αin,j � sin,j + cin · ρmodq, j ∈ [m] and
solve for sin,m+1 by αin,m+1 � sin,m+1 + cin · 􏽥skin modq. Fi-
nally, get π1 � (c1, s1,1, . . . , s1,m, s1,m+1, s2,1, . . . , s2,m, s2,m+1,

sn,1, . . . , sn,m, sn,m+1).
+e second part of SoK is as follows:

PoK2 sk
∗
j􏽮 􏽯

m

j�1􏼒 􏼓: I
∗
j � sk

∗
j

􏽥H∧P∗j � sk
∗
j G􏼐 􏼑, j ∈ [m]􏼚 􏼛.

(21)

Pick uniformly at random aj ∈ [0, l − 1], and compute
the commitment A1

j � ajG, A2
j � aj

􏽥H, j ∈ [m], c2 � Hs(I∗1 ,

. . . , I∗m, P∗1 , . . . , P∗m, A1
1, . . . , A1

m, A2
1, . . . , A2

m) and zj � aj+

c2 · sk∗j , where j ∈ [m]. Finally, get π2 � (A1
1, . . . , A1

m,

A2
1, . . . , A2

m, z1, . . . , zm).
+e third part of SoK is as follows:

PoK3 (ρ, 􏽥a): Ct1 � 􏽥aYR∧Ct2 � ρG + 􏽥aU∧ I � ρ 􏽥H􏼈 􏼉. (22)

Pick uniformly at random a, b ∈ [0, l − 1], and compute
the commitment A1′ � aYR, A2′ � aU + bG, B � b 􏽥H, c3 � Hs

(Ct1, Ct2, I, A1′, A2′, B) and z1′ � a + c3 · 􏽥a, z2′ � b + c3 · ρ.
Finally, get π3 � (A1′, A2′, B, z1′, z2′).

In conclusion, π � (π1, π2, π3).
+e verification of the SoK is as follows. Parse π as

π1, π2, π3.

(1) Verify π1 as follows:

M←Hp Pout,1‖Cnout,1‖ · · · ‖Pout,t‖Cnout,t􏼐 􏼑,

L1,j � s1,jG + c1 P
∗
j − P1,j􏼐 􏼑, j ∈ [m]

R1,j � s1,j
􏽥H + c1 I, j ∈ [m]

L1,m+1 � s1,m+1G + c1􏽥P1

c2 � Hs m, M, L1,1, R1,1, . . . , L1,m, R1,m, L1,m+1􏼐 􏼑.

(23)

And repeat this, incrementing i modn until they
figure out all Li,j, Ri,j, ci, where j ∈ [m], i ∈ [n] and
Li,m+1, where i ∈ [n], and then verify if cn+1 � c1.

(2) Compute I∗j � Ij · I, where j ∈ [m]. Verify π2 � (A1
1,

. . . , A1
m, . . . , A2

1, . . . , A2
m, z1, . . . , zm) by checking

whether Verf(I∗j , P∗j , π2) � 1, where j ∈ [m]. +e
details are as follows:
Compute c2′ � Hs(I∗1 , . . . , I∗m, P∗1 , . . . , P∗m, A1

1, . . . ,

A1
m, · · · , A2

1, . . . , A2
m). Check whether the equations

are satisfied, including A1
j � zjG − c2′P

∗
j , A2

j � zj
􏽥H−

c2′I
∗
j , where j ∈ [m].

(3) Verify π3 � (A1′, A2′, B, z1′, z2′) by checking whether
Verf(I, Ct1, Ct2, YR, π3) � 1. +e details are as
follows:
Compute c3′ � Hs(Ct1, Ct2, I, A1′, A2′, B), and check
whether the following equations are satisfied: A1′ �

10 Security and Communication Networks

Figure 2: Transaction �ow of our system.

Figure 3: Transaction veri�cation �ow of our system.

Figure 4: Tracing �ow of our system.

Security and Communication Networks 11

z1′YR − c3′Ct1, A2′ � z1′U + z2′G − c3′Ct2, B � z2′H̃−
c3′ I.

�e instantiation of SoK in Trace is similar to PoK2 in
Spend.

4.4. Security Analysis. In this section, the security of our
accountable Monero scheme is analyzed.

Theorem 1. Let SoK be a SimExt-secure signature of
knowledge. �e proposed accountable Monero scheme is
balanced under the discrete logarithm (DL) assumption.

Theorem 2. Assume the SoK is SimExt-secure. �e homo-
morphic commitment is perfectly hiding, and the encryption
scheme is IND-CPA secure.�e proposed accountableMonero
scheme satis�es anonymity under the decisional Dif-
�e–Hellman (DDH) assumption.

Theorem 3. Assume the SoK is a SimExt-secure. �e pro-
posed accountable Monero scheme satis�es nonslanderability
under the discrete logarithm (DL) assumption.

Theorem 4. Assume the SoK and public key encryption are
with perfect correctness. �e SoK is sound and the certi�ed
address scheme satis�es unforgeability. �e proposed ac-
countable Monero scheme achieves traceability.

5. Efficiency Analysis

In this section, we analyze the performance of our ac-
countable Monero system and compare it with that of
Monero. �en, we compare our scheme with the account-
able Monero system of [8] in the practical e�ciency. Our
system is constructed directly on RingCT protocol, the
linkable ring signature used in Monero, while the scheme of
[8] depends on the accumulator with a one-way domain,
which compresses the ring signature size, so that it is in-
dependent of the number of groups. However, in practice,
Monero’s ring size is small. Our scheme will obtain better
e�ciency. �e comparison is given in Table 1.

“n”: the number of input account groups; “m”: the
number of input accounts in each group; “l”: the length of
the element in Zq; “expq”: an exponentiation operation in
the group G; “exp1”: an exponentiation operation in group
G1 used in the accumulator of [8]; ”expT“: an exponentiation

operation in the group GT used in the accumulator of [8];
“p”: a bilinear pairing operation; |G|, |G1|, |GT|, |Zq| and |Zp|
are the lengths of the element in group G,G1,GT,Zq andZp
respectively.

In the e�ciency analysis, we only consider the expensive
operations, including exponentiation and multi-
exponentiation, and ignore other lightweight calculations.
We use the same optimization as in [8], where the double-
exponentiation calculation costs 1.2 times as many as that of
a single exponentiation, and the triple-exponentiation cal-
culation cost is 1.5 times that of a single exponentiation, and
we neglect the time consumption of operations that can be
precomputed.

�e details of the analysis are as follows. For a payer, (2m
+1)(n − 1) · expq is required in PoK1. All the other compu-
tations in SoK can be precomputed. For a veri�er, it needs
1.2 · (2m + 1) · n · expq in verifying PoK1, 2.4m · expq in
verifying PoK2 and 3.9 · expq in verifying PoK3. For the
communication cost, as in [8], we consider the parameters to
be stored and transferred to a veri�er in SoK. In addition, we
count the parameters P∗ and I in our scheme. (m + 1)|G| is
required in P∗ and I, ((m + 1) · n + 1)|Zq| is required in
PoK1, 2m|G| +m|Zq| is required in PoK2 and 3|G| + 2|Zq| is
required in PoK3.

6. Proof of Theorems

6.1. Proof of �eorem 1

Proof. Our proof is consistent with [8, 20], with only minor
di�erences. If there exists an e�cient adversary A that
breaks the property of balance with nonnegligible proba-
bility ε, the DL problem can be solved by constructing an
e�cient algorithm A′.

Having DL instance (G, αG), the algorithm A′ runs
SoK.Gen (1λ) to generate par.�en, it letsH � αG and picks
generators uniformly at random H̃, U ∈ G. �e public pa-
rameter is pp � (1λ, par, G,H, H̃, U,Hs,Hp, ξ), where
Hs: 0, 1{ }∗ ⟶ Zq and Hp: 0, 1{ }∗ ⟶ 0, 1{ }∗ denote two
cryptographic secure hash functions, and ξ is a function
from G to Zq. A can make queries to AddGen, ActGen,
Spend and Corrupt Oracles at most qad, qac, qsp and qco
times, respectively. First of all, A′ chooses a j∗ ∈ [qad] and
picks uniformly at random ski ∈ [0, l − 1], for all i ∈ [qad] as
the private keys. �e queried public keys are calculated as
follows:

Figure 5: Judging �ow of our system.

12 Security and Communication Networks

Pi �
skiG, i≠ j

∗
,

skiH, i � j
∗
,

􏼨 (24)

A′ simulates the oracles as follows:

(i) AddGen (i): Return Pi for the i− th query.
(ii) ActGen (i, ai): Given i and an amount ai, A′

chooses uniformly at random ri ∈ [0, l − 1] and sets
Cni � Ci � riG + aiH. i, acti � (Pi, Cni), and Ii �

ski
􏽥H are added to the listsI,G, andS, respectively.

(iii) Spend (m, Ain, A, Pout): Given the inputs, if actj∗ ∉
Ain, A′ generates (tx, P∗, I, I, CT, π) according to
the scheme. Otherwise, A′ produces π by simu-
lating SoK. Without witnesses, it is indistinguish-
able from A’s view. (tx, P∗, I, I, CT, π) is added to
the list T.

(iv) Corrupt (i): Given i, if i � j∗,A′ aborts. Otherwise,
A′ returns ski and adds Ii, (Ii, ai) to the list C and
the list B, respectively.

Finally,A outputs some new accounts he created and all
his expenses (act1′, . . . , actμ′ , S1, . . . , S]), where Si � (txi,

P∗i , Ii, Ii, πi, CTi), for all i ∈ []]. All transactions are paid to
A′.

Let Ei � ai,j: (Ii,j,ai,j) ∈B∧Ii,j ∈ (Ii∩C)􏽮 􏽯, where i ∈ []],

j ∈ [m], E � E1∪E2∪ · · · ∪E].

(i) Case 1: ∀i ∈ []], Ii\C � ϕ. According to the condi-
tion of a successful attack 􏽐ai,j∈E

ai,j < 􏽐
]
k�1 ai

out,

where ai
out � 􏽐

t
k�1 ai

out,k, there exists some i∗ ∈ []],
which have 􏽐

ai∗ ,j ∈ Ei∗

ai∗,j < ai∗

out. From the serial
numbers, A′ can find the set acti∗,j􏽮 􏽯 of accounts
spent in Ai∗ from the list G, where acti∗,j � (pki∗,

j, Cni∗,j) and the private key is aski∗,j � (ski∗,j,

(ri∗,j, ai∗,j)). +en,A′ can compute 􏽥Pi∗ � 􏽐
m
j�1 Pi∗ ,j+

􏽐
m
j�1 Cni∗,j − Cni∗

out � (􏽐
m
j�1 ski∗,j + 􏽐

m
j�1 ri∗,j − ri∗

out)

G + (α · (􏽐
m
j�1 ai∗,j − ai∗

out))G. Si ∉ T for all i ∈ []];
thus, A′ can use Ext to extract the witness 􏽥ski∗ . +e
DL instance can be solved by calculating

α �
􏽥ski∗ − 􏽐

m
j�1 ski∗ ,j + 􏽐

m
j�1 ri∗,j − r

i∗

out􏼐 􏼑

􏽐
m
j�1 ai∗,j − a

i∗

out

,

where a
i∗

out � 􏽘
t

k�1
a

i∗

out,k, r
i∗

out � 􏽘
t

k�1
r

i∗

out,k.

(25)

(ii) Case 2: ∃i ∈ []], Ii\C≠ϕ, Let J � i ∈ []]: Ii\C􏼈

≠ϕ}, IJ � ∪ i∈J(Ii/C). If Ij∗ ∈ IJ, then ∃i∗ ∈ J,

Ij∗ ∈ Ii∗ . A′ can extract a piece of witness that
contains skj∗

′ and ρj∗
′, namely, Pj∗ � g

skj∗ ′ �
g
α·skj∗+ρj∗ ′. DL instance can be solved by calculating

α � ((skj∗
′ − ρj∗
′)/skj∗). □

6.2. Proof of 3eorem 2

Proof. We define Pr[Succi] as the probability that adversary
A succeeds in Gamei.

Game 0. Game 0 is the challenge game defined in
anonymity. +e challenger generates public parameters
pp � (1λ, par, G, H, 􏽥H, U,Hs,Hp, ξ) by executing
Setup(1λ) and responds to all queries to AddGen,
ActGen, Spend, Corrupt Oracles as in the real game.
When receiving the challenge query (m, As0

, As1
,

A, Pout), where A � (Pi,j, Cni,j)􏽮 􏽯
i∈[n],j∈[m]

are the input
accounts, Asb

� (Psb,j, Cnsb,j)􏽮 􏽯
j∈[m]

is the sb − th group
of A, and Pout � Pout,k􏽮 􏽯

k∈[t]
, the challenger chooses

uniformly at random b ∈ 0, 1{ } and calculates according
to the algorithm to get a response (tx, P∗, I, I, CT).
Finally, A outputs a guess b′. According to the defi-
nition of anonymity, we have

Pr Succ0􏼂 􏼃 � Pr b′ � b􏼂 􏼃. (26)

Game 1. Game 1 and Game 0 are the same, except that
the algorithm Gen is replaced by SimGen, and all SoK
are generated by calling the simulator Sim� (SimGen,
SimSign). +at means no witness is needed in the
calculation during Spend Oracle queries and the
challenge query. Specifically, for a challenge query
(m, As0

, As1
, A, Pout) and allowed Spend queries (m, As,

A, Pout), it has As ∩Asb
� ∅. For Spend queries, the

challenger computes the statement (M, P∗, I, I, CT)

and generates π � Sim(M, P∗, I, I, CT). For the chal-
lenge query (m, As0

, As1
, A, Pout), the proof is generated

in the same way. If the difference between the adver-
sary’s success probability of Game 0 and in Game 1 is
not negligible, we can use the adversary to construct an
algorithm to break the SimExt property of SoK.

Pr Succ1􏼂 􏼃 − Pr Succ0􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ negl(λ). (27)

Game 2. +e difference from Game 1 is that, in the
challenge phase of Game 2, the challenger uniformly and
randomly selects the transaction output addresses Pout,k,
where k ∈ [t]. Specifically, the challenger picks uni-
formly at random α←[0, l − 1], sets H � αG and sets
output coins Cnout,k � 􏽢rkG for addresses Pout,k ∈ Pout by
choosing uniformly at random 􏽢rk ∈ [0, l − 1]. +e cor-
responding coin private keys satisfy ckout,k � (􏽢rk−

α · a
(b)
out,k, a

(b)
out,k), where k ∈ [t].+us, the output accounts

AR � (Pout,k, Cnout,k)􏽮 􏽯
k∈[t]

are independent of the
choice of b. In this case, 􏽥Pi � 􏽐

m
j�1 P

j
i + 􏽐

m
j�1 Cn

j
i

− 􏽐
t
k�1 Cnout,k, where i ∈ [n] is independent of b. If the

adversary’s success probability inGame 1 andGame 2 is

Table 1: Comparison of Monero systems.

Ref. Payer Verifier Communication
[9] (2.2m n − 1.2m+ n).. Expq 2.4mn expq (m n+ 1) |Zq|

[8] ((n − 1)+1) (m+ 1) exp 1 + (m+ 1) exp
T+ (m+ 1) p+1.2 l(m+ 1) exp

5.6l(m+ 1) exp q + (4.2 + n+ 1.2l) (m+ 1)
exp1 + 4(m+ 1) exp T+ 3(m+ 1) p

(l+4) (m+ 1) |G1|+ (5l+ 8) (m+ 1) |Zq|

p+5l(m+ 1) + (m+ 1) |GT|

Ours (2m+ 1) (n − 1) expq (2.4m n+ 1.2n+ 2.4m+ 3.9) expq (3m+ 4) |G|+ ((m+1) (n+ 1) + 3) |Zq|

Security and Communication Networks 13

different, we can use the adversary to construct an al-
gorithm to break the perfect hiding property of ho-
momorphic commitment.

Pr Succ2􏼂 􏼃 � Pr Succ1􏼂 􏼃. (28)

Game 3.+e difference between Game 3 and Game 2 is
in the generation of serial numbers. When answering
the challenge query, the challenger chooses uniformly
at random Ij ∈ G, as the value of the serial numbers,
where j ∈ [m]. Assume that no account in Asb

is
corrupted and has been asked in the Spend Oracle
queries. +erefore, the serial numbers 􏽥I � (I1, . . . , Im)

are fresh to the adversary. If DDH assumption holds,
the serial numbers are uniformly distributed. If the
difference between the adversary’s success probability
inGame 3 andGame 2 is not negligible, we can use the
adversary to construct an algorithm to break DDH
assumption. +e adversary’s success probability
satisfies

Pr Succ3􏼂 􏼃 − Pr Succ2􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ negl(λ). (29)

Game 4. When replying Spend Oracle queries, the
challenger encrypts a random number μ to replace the
original ciphertext. When replying Trace Oracle, if tx

being queried is in the list T, the challenger returns ρG

through searching the list. Otherwise, the simulator can
obtain a witness through the SimExt-secure of SoK. And
according to the IND-CPA security of the encryption
scheme, the challenger gets a unique ρG. If the difference
between the adversary’s success probability in Game 4
andGame 3 is not negligible, we can use the adversary to
construct an algorithm to break the SimExt-secure of
SoK and the IND-CPA of the encryption scheme. +e
adversary’s success probability satisfies

Pr Succ4􏼂 􏼃 − Pr Succ3􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ negl(λ). (30)

In Game 4, the challenge transaction (􏽥tx, 􏽥P
∗
, 􏽥I, 􏽥I, 􏽥π, 􏽦CT)

is independent of b. Hence, the probability of the adversary’s
success in Game 4 is (1/2). In summary, the probability of
success is (1/2) + negl(λ). □

6.3. Proof of 3eorem 3

Proof. Suppose that there is an adversary A that can break
the nonslanderability of the protocol with a nonnegligible
probability. We can construct a polynomial-time algorithm
A′ to solve the DL problem in G by calling A.

Given a DL instance (G, H � αG), the algorithmA′ runs
Gen (1λ) to produce par. A′ uniformly chooses a random
β ∈ [0, l − 1], computes 􏽥H � βG, selects a generator at
random U ∈ G and sets pp � (par, G, H, 􏽥H, U,Hs,Hp, ξ),
where Hs: 0, 1{ }∗ ⟶ Zq and Hp: 0, 1{ }∗ ⟶ 0, 1{ }∗ de-
note two cryptographic secure hash functions, and ξ is a
function from G to Zq. Assume that A can make queries to
AddGen, ActGen, Spend and Corrupt Oracles at most
qad, qac, qsp and qco times, respectively. First of all, A′

chooses a j∗ ∈ [qad] and picks uniformly random
ski ∈ [0, l − 1], as the private keys, where i ∈ [qad]. +e
queried public keys are calculated as follows:

Pi �
skiG, i≠ j

∗
,

skiH, i � j
∗
,

􏼨 (31)

A′ simulates AddGen, ActGen, Spend, and Corrupt
Oracles, consistent with that in the proof of +eorem 1.
Finally, A outputs ((􏽢tx, 􏽢P

∗
, 􏽢I, 􏽢I, 􏽢π, 􏽣CT), (􏽥tx, 􏽥P

∗
, 􏽥I, 􏽥I, 􏽥π, 􏽦CT)).

If A succeeds in the nonslanderability game, that means (1)
Verify(􏽥tx, 􏽥P

∗
, 􏽥I, 􏽥I, 􏽥π, 􏽦CT) � 1; (2) (􏽥tx, 􏽥P

∗
, 􏽥I, 􏽥I, 􏽥π, 􏽦CT) ∉ T;

(3) 􏽢I∩C � ∅ but 􏽢I∩ 􏽥I≠∅. Checking if j∗ ∉ 􏽢I∩ 􏽥I, A′
outputs a random bit guess. Otherwise, A′ can extract the
witness of (􏽥tx, 􏽥P

∗
, 􏽥I, 􏽥I, 􏽥π, 􏽦CT), which includes 􏽥skj∗ and 􏽥ρj∗ ,

namely, 􏽦P∗j∗ � 􏽦sk∗j∗G � (α · skj∗ + 􏽦ρj∗)G. +e discrete loga-
rithm of H concerning G can be calculated as
α � ((􏽦sk∗j∗ − 􏽦ρj∗)/skj∗). □

6.4. Proof of 3eorem 4

Proof. If the SoK proof π in the transaction TX of Spend
algorithm is correct and sound, Ct1′ andCt2′ are in the correct
form. +e encrypted plaintext ρG is unique according to the
perfect correctness of the public key encryption system.
With ρG, P∗ and the input accounts A, the one-time public
key P can be determined. According to the extractability of
SoK in the KeyGen algorithm, r can be extracted. Y, R, P,
and CT1 are all in the correct form. Because Hs is a
cryptographic secure hash function, the probability of
finding a Y′ that satisfies logG(P − Y′) � H(rY) is negli-
gible. +erefore, Y is the long-term public key of the real
payee selected by the payer. Moreover, due to the unfor-
geability of the certified address and SoK’s soundness, Y has
been certified by the trusted registration authority. +e
correctness of the encryption scheme means that we can get
Y � P − (Ct2 − sk− 1

R Ct1). +e other part of the tracing
output is the SoK proof ψ(ψ′), which proves that the public
key outputted is correct. +e correctness and soundness of
the SoK prove that it can be correctly verified. □

7. Conclusion

In this paper, an accountable Monero system based on the
RingCT protocol is proposed. We utilize the signature with
rerandomizable keys to randomize the one-time spend keys
and exploit ElGamal public key encryption to encrypt the
random number, which only enables the trusted regulator to
reveal the public keys of the payers. And to enable the
traceability of all users of the system, we replace the long-
term public key with a certified long-term public key. +e
designed system maintains correctness, balance, non-
slanderability, and traceability. +rough security proof and
analysis, we demonstrate the security and performance of
the proposed system.

Data Availability

No data were used during this study.

14 Security and Communication Networks

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported in part by the National Key R&D
Program of China (2017YFB0802500) and Shandong
Province Major Science and Technology Innovation Project
(2019JZZY020129).

References

[1] M. Conti, E. Sandeep Kumar, C. Lal, and S. Ruj, “A survey on
security and privacy issues of bitcoin,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 3416–3452, 2018.

[2] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world.,”
2013, https://bitcointalk.org/index.php?topic�279249.

[3] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and
S. Goldberg, “Tumblebit: an untrusted bitcoin-compatible
anonymous payment hub,” in Proceedings of the Network and
Distributed System Security Symposium, California, CA, USA,
2017.

[4] S. Nakamoto, “Monero project,” 2021, https://www.
getmonero.org/index.html.

[5] E. B. Sasson, A. Chiesa, C. Garman et al., “Zerocash:
decentralized anonymous payments from bitcoin,” in Pro-
ceedings of the 2014 IEEE Symposium on Security and Privacy,
pp. 459–474, IEEE, California, CA, USA, 2014.

[6] A. B. Turner, S. McCombie, and A. J. Uhlmann, “A target-
centric intelligence approach to wannacry 2.0,” Journal of
Money Laundering Control, vol. 22, 2019.

[7] I. Damgård, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and
L. Siniscalchi, “Balancing privacy and accountability in
blockchain identity management,” in Proceedings of the Topics
in Cryptology - CT-RSA 2021, pp. 552–576, San Francisco, CA,
USA, 2021.

[8] Y. Li, G. Yang, W. Susilo, Y. Yu, M. H. Au, and D. Liu,
“Traceable monero: anonymous cryptocurrency with en-
hanced accountability,” IEEE Transactions on Dependable and
Secure Computing, vol. 18, no. 2, pp. 679–691, 2021.

[9] S. Noether, A. Mackenzie, and T. M. Research Lab, “Ring
confidential transactions,” Ledge, vol. 1, pp. 1–18, 2016.

[10] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures
from a variety of keys,” in Proceedings of the International
Conference on the 3eory and Application of Cryptology and
Information Security, pp. 415–432, Springer, Singapore, 2002.

[11] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu, “Dynamic
universal accumulators for ddh groups and their application
to attribute-based anonymous credential systems,” in Pro-
ceedings of the Cryptographers’ Track at the RSA Conference,
pp. 295–308, Springer, San Francisco, CA, USA, 2009.

[12] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous
identification in ad hoc groups,” in Proceedings of the In-
ternational Conference on the 3eory and Applications of
Cryptographic Techniques, pp. 609–626, Springer, Interlaken,
Switzerland, 2004.

[13] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous
anonymous group signature for ad hoc groups,” in Pro-
ceedings of the Australasian Conference on Information Se-
curity and Privacy, pp. 325–335, Springer, Sydney, Australia,
2004.

[14] P. P. Tsang and V. K. Wei, “Short linkable ring signatures for
e-voting, e-cash and attestation,” in Proceedings of the In-
ternational Conference on Information Security Practice and
Experience, pp. 48–60, Springer, Singapore, 2005.

[15] X. Wang, Y. Chen, and X. Ma, “Adding linkability to ring
signatures with one-time signatures,” in Proceedings of the
International Conference on Information Security, pp. 445–
464, Springer, New York City, NY, USA, 2019.

[16] E. Fujisaki and K. Suzuki, “Traceable ring signature,” in
Proceedings of the International Workshop on Public Key
Cryptography, pp. 181–200, Springer, Beijing, China, 2007.

[17] M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen, “Secure id-
based linkable and revocable-iff-linked ring signature with
constant-size construction,” 3eoretical Computer Science,
vol. 469, pp. 1–14, 2013.

[18] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and
C. Petit, “Short accountable ring signatures based on DDH,”
in Proceedings of the Computer Security -- ESORICS 2015,
pp. 243–265, Springer, Vienna, Austria, 2015.

[19] J. Groth and M. Kohlweiss, “One-out-of-many proofs: or how
to leak a secret and spend a coin,” Advances in Cryptology -
EUROCRYPT 2015, Springer, in Proceedings of the Annual
International Conference on the 3eory and Applications of
Cryptographic Techniques, pp. 253–280, 2015.

[20] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “Ringct 2.0: a
compact accumulator-based (linkable ring signature) proto-
col for blockchain cryptocurrency monero,” in Proceedings of
the European Symposium on Research in Computer Security,
pp. 456–474, Springer, Oslo, Norway, 2017.

[21] T. H. Yuen, S.-f. Sun, J. K. Liu et al., “Ringct 3.0 for blockchain
confidential transaction: shorter size and stronger security,” in
Proceedings of the International Conference on Financial
Cryptography and Data Security, pp. 464–483, Springer, Kota
Kinabalu, Malaysia, 2020.

[22] G. Ateniese, A. Faonio, B. Magri, and B. De Medeiros,
“Certified bitcoins,” Applied Cryptography and Network Se-
curity, in Proceedings of the International Conference on
Applied Cryptography and Network Security, pp. 80–96,
Lausanne, Switzerland, 2014.

[23] J. Groth, “Fully anonymous group signatures without random
oracles,” in Proceedings of the International Conference on the
3eory and Application of Cryptology and Information Se-
curity, pp. 164–180, Springer, Kuching, Malaysia, 2007.

[24] N. Van Saberhagen, “Cryptonote v 2.0,” 2013, https://
cryptonote.org/whitepaper.pdf.

[25] N. Koblitz, “A Course in Number+eory and Cryptography,”
Springer, USA, 1987.

[26] G. Malavolta and D. Schröder, “Efficient ring signatures in the
standard model,” Advances in Cryptology - ASIACRYPT 2017,
Springer, in Proceedings of the International Conference on the
3eory and Application of Cryptology and Information Se-
curity, pp. 128–157, 2017.

[27] M. Chase and A. Lysyanskaya, “On signatures of knowledge,”
in Proceedings of the Annual International Cryptology Con-
ference, pp. 78–96, Springer, California, CA, USA, 2006.

[28] N. T. Courtois and R. Mercer, “Stealth address and key
management techniques in blockchain systems,” in Proceedings
of the ICISSP, vol. 2017, pp. 559–566, Porto, Portugal.

Security and Communication Networks 15

https://bitcointalk.org/index.php?topic=279249
https://www.getmonero.org/index.html
https://www.getmonero.org/index.html
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

