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Abstract. Mining processes of Bitcoin and similar cryptocurrencies are
currently incentivized with voluntary transaction fees and fixed block
rewards which will halve gradually to zero. In the setting where optional
and arbitrary transaction fee becomes the prominent/remaining incen-
tive, Carlsten et al. [CCS 2016] find that an undercutting attack can be-
come the equilibrium strategy for miners. In undercutting, the attacker
deliberately forks an existing chain by leaving wealthy transactions un-
claimed to attract petty complaint miners to its fork. We observe that two
simplifying assumptions in [CCS 2016] of fees arriving at fixed rates and
miners collecting all accumulated fees regardless of block size limit are
often infeasible in practice and find that they are inaccurately inflating
profitability of undercutting. Studying Bitcoin and Monero blockchain
data, we find that the fees deliberately left out by an undercutter may
not be attractive to other miners (hence to the attacker itself): the de-
liberately left out transactions may not fit into a new block without
“squeezing out” some other to-be transactions, and thus claimable fees
in the next round cannot be raised arbitrarily.
This work views undercutting and shifting among chains rationally as
mining strategies of rational miners. We model profitability of undercut-
ting strategy with block size limit present, which bounds the claimable
fees in a round and gives rise to a pending (cushion) transaction set.
In the proposed model, we first identify the conditions necessary to
make undercutting profitable. We then present an easy-to-deploy defense
against undercutting by selectively assembling transactions into the new
block to invalidate the identified conditions. Indeed, under a typical set-
ting with undercutters present, applying this avoidance technique is a
Nash Equilibrium. Finally, we complement the above analytical results
with an experimental analysis using both artificial data of normally dis-
tributed fee rates and actual transactions in Bitcoin and Monero.

1 Introduction

Bitcoin network [20] and several cryptocurrencies rely on nodes participating in
transaction verification, ordering and execution, and mining new blocks for their
security and performance. Specifically, with honest majority, Byzantine-fault
? Part of this work was done while the author was at Purdue University.



tolerant consensus is possible with Proof of Work (PoW) assuming network syn-
chrony. With honest majority, attacks like double spending [24] are also harder
to implement in practice. Additionally, with more computing peers, liveness is
provided with higher probability. A proper incentive design helps attract more
honest miners to join. Bitcoin currently incentivizes nodes (or miners) with fixed
block rewards and voluntary transaction fees. Historically, the block reward has
been the dominating source of miners’ revenues. However, for Bitcoin, it is a
system parameter that halves approximately every four years.3 Its domination
is expected to vanish due to the deteriorating nature and transaction fees will
then become the major mining revenue generator.

With a stable reward, a miner’s expected revenues rely mostly on its prob-
ability of finding a block, which itself is contingent on the miner’s hash power.
However, in the fee-based incentive system, the revenues additionally depend
on the amount of fees inside a block, which further relies on users’ offerings and
miners’ transaction selections. The total fees inside blocks are market-dependent
and time-variant because: (i) transaction arrival can be arbitrary; (ii) transac-
tion fees are voluntary under the current mechanism, so they can be arbitrary
(even 0) and the threshold fee rates for faster confirmation change with supply
and demand in the block space market; (iii) miners have the freedom of sampling
transactions to form new blocks. As a result, the fair sharing of revenue based
on hashing power may not be maintained. For example, consider two miners A
and B in the system with the same mining power. If A mines blocks each with
total fees of 1 BTC and B always encounters wealthy transactions and mines
blocks each with 2 BTC total fees, B’s revenue is twice A’s revenue.

In particular, the fee-based incentivization framework nurtures a possible new
deviating mining strategy called undercutting [5]. In undercutting, the attacker
intentionally forks an existing chain by leaving wealthier transactions out in its
new block to attract other (petty compliant) miners to join the fork. Unlike
honest miners, who follow the longest chain that appears first, petty compliant
(PC) miners break ties by selecting the chain that leaves out the most fees. In
[5], fees accumulate at a fixed rate and miners claim all accumulated fees when
creating a new block. Thus, a miner undercuts another miner’s block because it
receives 0 of the fees in the target block but expects nonzero returns via forking.
Similarly, PC miners join the fork because the undercutter leaves out more fees
unclaimed (and they can claim all fees in the next block). Carlsten et al. find
that undercutting can become the equilibrium strategy for miners, thus making
the system unstable as miners undercut each other.

However, this result is based on a setting disregarding the block size limit.
If the fees claimable in the next block is bounded and a pending transaction set
exists due to the block size cap, PC miners may not join the fork and under-
cutting may not be more profitable than extending the current chain head. The
intuition is that the extra claimable fees are bounded, and the fork does not win
with absolute probability, while the main chain may provide slightly fewer fees
but extends with probability 1 when there’s no attack. We give an illustrative

3 The next halving event to 3.125 BTC is scheduled for May 2024. [10]
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example below where undercutting is not rational when we consider the limit.
Let there be 33% honest, 17% undercutter, and 50% PC mining power, 100 total
token fees with 20 claimable in each block. As we elaborate in Appendix F, the
undercutter expects 3.4 token returns by extending the chain head. Suppose it
instead undercuts and claims half of the tokens in the target block, 10 tokens,
in its first forking block (as in [5]). If PC miners do not shift, they expect 10
tokens from the next main-chain block; if they follow the fork, they expect to
gain 10 tokens. But, shifting is not rational for the owner of the undercutting
target block and may not be rational for others as they have started mining the
main chain for some time. Even if they shift, we find the undercutter’s expected
return to be 1.717 < 3.4.

Towards modeling undercutting attacks more realistically and generally, we
construct a new model to capture rational behaviors related to and performance
of undercutting strategy. Miners in our model are either honest or rational. A
rational miner may undercut or arbitrarily shift among chains as long as
the action maximizes its returns. Fees in our model arrive with transactions.
By sorting transactions in the unconfirmed transaction set and packing at most
a block size limit of transactions, we obtain the maximum claimable fees at a
certain timestamp. Miners can choose to claim no more than this maximum fee.

Essentially, when undercutting, the rational miner’s goal is to earn more than
what it can potentially gain not undercutting. The attacker needs to first (i) at-
tract other rational miners to join its fork if necessary, and second (ii) avoid
being undercut by others. If it leaves out too many fees, it may end up being
worse off undercutting. If it claims more than necessary, other rational miners
may undercut its fork, annihilating its efforts. Then how many fees should an
undercutter take to achieve both goals simultaneously? And can others make it
not possible to do so? We seek to first locate such a feasible area for an undercut-
ter to secure its premiums and next, uncover defenses against this attack. Note
that undercutting is not desired because it hurts the expected profits for honest
miners. Successful undercutting also harms users who attach high fee rates to
have their transactions processed faster.

1.1 Contributions

We define an analytical model that captures behaviors that are “rational” but not
necessarily “honest” like undercutting and shifting rationally. This can be used
to analyze other rational deviating strategies in fee-based incentive system. The
key is to pinpoint reward distributions and probabilities of earning the rewards.

Specifically for undercutting and as a key contribution, we offer closed-form
conditions on the unconfirmed transaction set to make undercutting
profitable. The key quantity is the ratio (γ) between the maximum claimable
fees in the next block (w.r.t. block size limit) and the fees in the current block.
For clarity, let the mining power fraction of the undercutter be βu and that of
the honest miner be βh, remaining rational miner be βr. (i) In the best case for
the undercutter in our model, the undercutter forgoes the fork after being one
block behind instead of hanging on longer. (ii) When γ < βu

1−βu , the attacker
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earns more through normal forking than extending the target chain. (iii) When
βu

1−βu < γ < βhβr+βu(1−βu)
(1−βu)2 , the attacker can expect to earn a premium by

proper undercutting. It should carefully craft the first block on its fork in such
a way that rational miners can be attracted to join the fork but not tempted
to undercut it again. We provide more details in Section 4. The conditions for
the case where the undercutter holds on for one more block (Appendix A) are
stricter, as noted in (i) and the overall returns are worse.

As a side-product and naturally, we provide an alternative transaction se-
lection rule to counter undercutting, other than fitting all available transactions
into a block. Once we have identified effective conditions for profitable under-
cutting, we work backward to proactively check the conditions before creating a
new block. By making the conditions no longer satisfied, potential undercutters
are no longer motivated to undercut. Applying the defense technique is Nash
equilibrium in a typical setting. In the equilibrium, we additionally calculate the
price of anarchy (PoA) to capture the inefficiency a strong undercutter brings or
the advantage it has in a system. To make the system more stable, we can either
strengthen the second potential undercutter or weaken the strongest undercutter
through decentralization.

We experiment with real-world data from Bitcoin and Monero blockchains
to evaluate the profitability of undercutting and the effectiveness of avoidance
techniques. We decide on the two systems because Bitcoin is representative of
swamped blockchains and Monero typically has a small unconfirmed transaction
set. (i) In Bitcoin, for a 17.6% undercutter, the average return is 17.9%. For a
hypothetical 49.9% attacker, the average revenue is 60.8%. In Monero, we ob-
serve a profit increase of around 8 percentage points from fair shares for a 35%
attacker. (ii) After enabling defense, undercutting generates around fair share
for Monero 35% undercutter where the two strongest rational miners possess
the same mining powers. We test a strong undercutter’s advantage in Bitcoin
(49.9%, 20%), which gives the 49.9% attacker around 63.5% of the total returns.

1.2 Related Work

Carlsten et al. [5] introduce the undercutting mining strategy to show the insta-
bility of the future Bitcoin fee-based incentivization system because undercut-
ting can become the equilibrium strategy. There, transaction fees accumulate at
a constant rate and miners can include all fees when creating a new block. But
fees essentially are not independent of transactions. If we dive into transaction
level and account for block size limit, the fees one can claim is restricted and
there can potentially be a large pending transaction set, which can cushion or
even annihilating the effects of undercutting. Based on this intuition, we con-
struct the new model focusing on transaction selection rules, which determine
fees claimed and left out. Further, both undercutting and hopping among chains
are modelled more generally as actions of rational miners instead of separately
as two types of miners as in [5]. This helps quantify the profit margin and brings
about opportunities for mitigation. Detailed examples for comparison and com-
bining with other deviating mining strategies reside in Appendix F.
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Sunk Cost. In traditional microeconomics [18], a rational agent makes deci-
sions based on prospective costs and disregard sunk costs. In behavioral eco-
nomics [3,28], decision-makers can have an irrational bias towards probability
distribution of future events, loss aversion, and other illusions. When a miner
decides whether to continue on a chain or shift to other chains, it can be influ-
enced by sunk costs including time already spent. We capture this mindset by
letting rational miners shift after its current chain is D ≥ 1 block(s) behind.
Lemon Market. Another angle to look at the problem on a higher level is
through the market for “lemons” [2], the brand-new car that becomes defective
the minute one bought it. In the Bitcoin block space market, users are bidders,
and miners are sellers. Users decide prices to pay based on their observation of
the relationship between confirmation time and fee rates. They attach fee rates
corresponding to the desired waiting time. If undercutting is prevailing, users
who attach high fee rates but are ghosted are provided with “lemons” instead
of “peaches” – fast confirmation. This can result in a decrease in the overall fee
rates, diminishing the profitability of undercutting.

2 Background and Definitions

Mempool. Mempool [4] is an unconfirmed transaction set maintained by min-
ers locally. When a transaction is announced to the network, it enters into miners’
mempools. Miners select transactions from their mempools to form new blocks.
Usually, a miner will choose the bandwidth set (Definition 1) with respect to the
local mempool and global block size limit. When a new block is published, miners
verify the block and then update their local mempools to exclude transactions
included in the newly published block. A miner can also intentionally leave out
wealthy transactions when forming blocks to attract rational miners. Wealthy
transactions are those with high fee rates. Here we have two measures for fee
rates. One is the fee per byte (F/B), which is calculated by dividing the total fee
by the transaction size. After SegWit is introduced to the Bitcoin system, a new
fee rate measure of fee per weight unit (F/WU) is adopted. For our analytical
discussion, we refer to both terms simply as fee rates.

Definition 1. (Bandwidth Set.) Given block size limit B and an unconfirmed
transaction set A comprising N transactions, S ∈ P (A) is one bandwidth set of
A w.r.t B if S.size ≤ B and ∀Si ∈ P (A), Si.size ≤ B,S.fee ≥ Si.fee, where
P (A) = {Sj}1≤j≤2N is the power set of A.

Remark 1. A bandwidth set is the subset of transactions in a miner’s mempool
providing the largest amount of fees a miner can obtain in one block. If the
unconfirmed transaction set is of size ≤ B, then the bandwidth set is the memory
pool itself. Note that bandwidth set is not necessarily unique.

Definition 2. (Safe margin D.) A miner chooses the chain that is D block(s)
ahead as main chain when there are multiple competing chains in the system.
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Remark 2. Honest miners apply the longest chain rule and always have D = 1.4
For rational miners, D ≥ 1. When the length discrepancy between competing
chains is within D, they select the chain with the most expected returns.

3 Mining Game featuring Undercutting Strategy

In this section, we model the mining game involving undercutting strategy and
played by honest and rational miners. Honest miners follow the default specifi-
cations and are only modeled as passive players. We address the rational miner
considering undercutting as the undercutter under discussion. So the undercutter
can refer to any rational miner.
Game definition. We define the mining game G = 〈M,A,R〉 as follows:

– Players M = {M0,M1, ...,Mη−1}: here η is the number of miners in the sys-
tem. Without loss of generality, we label a subset of the miners that have a
total of βh mining power as honest; we label a miner with βu mining power
as the current undercutter under discussion; we label the remaining miners as
(currently) non-undercutting rational miners and their total mining power is
denoted as βr = 1− βh − βu. Honest miners are treated as one because they
follow the same mining rules, and we assume they are informed the same way.

– Actions A = {undercut(·), stay(·), shiftToChain(·)}: we index chains during
a game according to their timestamps after the branching point, e.g. the orig-
inal (main) chain with index Chain0, abbreviated as C0. For honest miners,
they always honest mine and may choose to stay or shift depending on cir-
cumstances. Rational miners may choose to undercut an existing chain and
start a new chain, stay on a working chain, or shift among existing chains.

– Utility functions U = {ui}Mi∈M : we let ui = Ri − ci, where Ri is the total
transaction fees it receives and ci is the cost. We treat the cost ci as given and
reduce the problem of maximizing utility to maximization of obtained fees.

Threat model. We allow no miner to own more than 50% mining power
(i.e., βu ≤ 0.5). We let miners publish their discovered blocks immediately to
attract other miners to join. We assume the best case for the undercutter and let
the mempool be the same for miners on the same chain. Because undercutting
is not practical or meaningful if miners have distinct mempools, since wealthy
transactions an attacker left unclaimed may not exist in others’ mempools in
the first place. This assumption makes the attacker stronger, and we intend to
uncover what the attacker can obtain in advantageous environment settings.

We let miners know of other miners’ types (e.g. honest or rational) after
sufficient observations. We assume miners can approximate the amount of mining
power concentrated on a chain based on the block generation time on that chain.
Solution concept. We solve for Nash Equilibrium (NE) in the mining game
with undercutting mining strategy. In a Nash Equilibrium, players do not earn
extra utility by unilaterally deviating from the equilibrium strategy.
4 When there is a tie, they choose the chain with the oldest timestamp. If timestamps
should be the same, they select a chain at random.
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3.1 Miner’s Winning Probability

A miner’s expected returns from mining equal the product of its winning proba-
bility of a block and the fees residing in that block. Firstly, miner Mi’s winning
probability of a block is simply its mining power when there is only one chain. In
the case of competing chains, we need to additionally quantify a chain’s winning
probability when working in systems where only one chain survives.
A chain’s winning probability. In undercutting, the attacker forks an ex-
isting chain by leaving out wealthy transactions. In the following discussions,
we refer to the undercutting chain as C1 and the current main chain as C0. C0

might not be on the main chain eventually if C1 wins the race. The effective
height of a chain is the number of blocks it has accumulated after the forking
point. These competing blocks are called effective blocks in the game analysis.

Overall, the process proceeds as follows. The undercutter sees a new block
is appended to C0 by another miner. It starts to work on a forking block that
excludes wealthy transactions appearing in the current chain head. With some
probability, it can create the fork faster than the next block appearing on C0.
When the undercutter publishes its block, some rational miners consider shifting
to C1 because there are more high fee rate transactions that they can benefit
from. To model this procedure, we screenshot the state of the system as a tuple
that we denote as ~S = (m,n, ~F 0, ~F 1, O, δ, λ0, λ1), wherem and n are respectively
the effective height of C0 and C1; ~F 0 and ~F 1 are the list of transaction fee total
in effective blocks on C0 and C1; O is the mining power currently working on
C1, which updates upon new block appending events; δ ∈ (−1, 1) is the mining
power shifting from the source chain to the destination chain, which is defined
to be positive if miners are shifting to C1 and negative if they are shifting to C0;
λ0 and λ1 are block generation rates for C0 and C1.

To obtain the winning probability measure for a chain from state ~S, we view
the block generation event as a Poisson process and use a random variable to
represent the waiting time between block occurrence events. We denote waiting
time for C0 asX and C1 as Y . They both follow exponential distribution but with
different rates. The rate parameters depend on the mining power distribution.
Given the state ~S, we obtain the block occurrence rate as: λ0 = 1−O

I ; and λ1 = O
I ,

where I is block generation interval (e.g. 10 minutes for Bitcoin). This is derived
from the thinning theorem of the Poisson point process. The main idea is that
independent sub-processes of a Poisson process are still Poisson processes with
individual rates. With this property, we can determine the time interval for the
next block to appear on a chain. Then, the key is the mining power concentrated
on a chain, and further is whether honest and rational miners shift.

For D = 1, there is only one state that the currently non-undercutting ratio-
nal miners βr need to make a decision, when the undercutter extends C1 before
the C0 extends by one. The two competing chains are in a tie with relative height
difference D̃ = 0. The probability that C1 wins is simply p = Pr[C1 Wins] =
Pr[Y < X] = O + δ.

For D = 2, there is an infinite number of states where flexible rational miners
need to make decisions about shifting. We let D̃ = n − m < D, denoting the
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number of blocks by which C1 leads C0. For example, when D̃ = −1, C1 is
one block behind C0. Then C1 wins if it creates 3 blocks before C0 extends
by 1, or discovers 4 blocks before C0 extends by 2, and so on. Thus, we have
p =

∑∞
i=0 Pr[(D − D̃ + i)Y < (i+ 1)X].

(i)When D̃ = −1, C1 is behind C0. For C1 to win, we need p =
∑∞
i=0 Pr[(3+

i)Y < (1 + i)X] =
∑∞
i=0(βu + δ)3+i(1− βu − δ)i.

(ii)When D̃ = 0, there is a tie between C1 and C0. In this case, p =∑∞
i=0 Pr[(2 + i)Y < (1 + i)X] =

∑∞
i=0(βu + δ)2+i(1− βu − δ)i.

(iii)When D̃ = 1, C1 is leading. We have p =
∑∞
i=0 Pr[(1+i)Y < (1+i)X] =∑∞

i=0(βu + δ)1+i(1− βu − δ)i.
A miner’s probability of winning a block. Suppose a miner Mi with βMi

mining power is mining on a chain Cj with βCj accumulated total mining power
which has winning probability pCj . Then Mi’s winning probability is βMi

βCj
pCj .

4 Game Analysis

(1,0)

(1,1)

(2,0)

(2,1) (1,2)

1 − #
! #!

1 − #
!−

$ #! + $

(1,0)

(1,1)

(2,0)

(3,1) (1,3)

1 − #
! #!

1 − #
!−

$ #! + $

(2,1)

(2,2)

(1,2)

… …

#! + $ + #" + $’
#! + $ −

$’1 − #!
− $ + $

’’ #! + $ − $’’

Fig. 1: State transition for D = 1.
“X” Boxes are terminal states. For
non-terminal states, circles indi-
cate ties. Every left branch means
C0 extends by one and every right
branch refers to C1 creating a new
block. The quantity on the arrow is
the probability of state transition.

We analyze undercutting strategy with pa-
rameter D = 1 in this section and continue
the discussion with D = 2 in Appendix A.
The latter generates fewer profits. The high-
level idea is that we differentiate between sce-
narios with “abundant” and “limited” amounts
of fees. The extreme case where there are
only negligible fees claimable for a long period
(“drought”) is described in Appendix B.

4.1 Giving Up If One Block Behind

Now we discuss D = 1. We use the abbrevi-
ated state S∗ = (m,n) in discussion. We de-
note the transaction fees inside the first two
blocks of C0 as F 0

1 and F 0
2 , the transaction

fees inside blocks of C1 as F 1
1 and F 1

2 , the ex-
pected returns for flexible rational miners βr
as Rr and the expected returns for the under-
cutter as Ru. When there is no undercutting,
we denote their respective expected return as R′r and R′u.

For D = 1, rational miners only need to decide whether to shift at state S∗ =
(1, 1) when undercutting becomes visible as shown in Figure 1. Suppose they shift
x of its mining power βr to C1. They can decide x by solving maxx∈[0,1]E[Rr] =

max
x∈[0,1]

( βr
βr + βh

(1− p) ·F 0
1 +

(1− x)βr
βh + (1− x)βr

(1− p) ·F 0
2 +

xβr
xβr + βu

p ·F 1
2

)
(1)

where p is the probability of C1 winning and the term before each block fee
total F is the miner’s winning probability for this block. The shift can then be
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calculated as δ = xβr. We can observe that the optimization problem involves
fees inside succeeding blocks after the forking point. We seek to represent the
fees in a relative way so that the analysis can be applied more generally. We
let F 0

1 = 1 and have fee total in other blocks measured relative to it. Now we
continue the discussion in two different mempool situations.

Mempools with limited bandwidth set By “limited” we mean the current
bandwidth set on C0 has a small enough transaction fee total (< βu

1−βuF
0
1 ). We

provide more details concerning this quantity as we proceed. WLOG, we assume
F 0
1 = 1, F 0

2 = γ ≥ 0 (s.t. F
0
2

F 0
1
= γ), F 1

1 = a and F 1
2 = 1 + γ − a where a ∈ [0, 1].

Here we are implicitly assuming the best case for the undercutter that it can
compose the first block on C1 in such a way that the second block can claim all
unclaimed fees within one block. If a rational miner decides to undercut, with
probability βu, the undercutter can create a new chain and the game is started.
With probability p = βu+ δ, C1 wins and with probability βh+βr− δ, C0 wins.
The expected profit of the undercutter is E[Ru] =

βu(βu + δ) · (1 · a+ βu
βu + δ

· (1 + γ − a))

The expected return for the rational miner if it does not undercut is E[R′u] =
βuγ. The miner will undercut only if E[R′u] < E[Ru]. Then

γ <
δa+ βu
1− βu

(2)

With γ < βu
1−βu , E[R′u] < E[Ru] even when δ = 0. That is, even no rational

miner shifts to C1, there are so few fees left in the mempool that the attacker is
always better off by forking C0 compared with extending it.

One extreme case is when there are no transactions left or the bandwidth set
has negligible fees and F 0

2 = 0. The rational miner will fork because originally
there is nothing left on C0 and E[R′u] = 0. One detail is that the attacker needs
to craft the first block (determine a) it generates to avoid being undercut again.
Suppose when γ < T (T = βu

1−βu in our current context), a potential undercutter
initiates the attack. Then by choosing a in such a way that 1+γ−a

a ≥ T , the
undercutter can avoid being undercut again (in the current context). Note that
here when an undercutter decides a, it is picturing a potential undercutter other
than itself so βu is not the same as when we decide the condition for γ. We will
revisit the choice of a after complete the discussion for γ > βu

1−βu case.
In conclusion, for D = 1, when the attacker is stronger (βu is larger), the

requirements on the mempool bandwidth set fee total for undercutting to be
profitable regardless of rational miners’ actions is looser. When βu approximates
0.5, the threshold ratio approaches 1, which occurs with high frequency. For
βu = 0.2, the upper bound is 0.25, where the current bandwidth set is 1/4 of
the fees inside the chain head of C0.

Mempools with sufficient bandwidth set By “sufficient” we mean the cur-
rent bandwidth set in the mempool has more than “limited” transaction fee total
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(≥ βu
1−βuF

0
1 ). In this case, the undercutter needs to attract some rational min-

ers at state (1,1) (make δ > 0). We continue to let F 0
1 = 1, F 0

2 = γ, F 1
1 = a,

F 1
2 = 1 + γ − a (a ∈ [0, 1], γ ≥ 0). To decide whether to shift to the fork, the

rational miner solves for x in maxx∈[0,1]E[Rr] =

max
x∈[0,1]

( βr
βr + βh

(1− p) + (1− x)βr
βh + (1− x)βr

(1− p)γ +
xβr

xβr + βu
p(1 + γ − a)

)
Here p = O + δ = βu + xβr. One observation is that the rational miners either
move to C1 with all their mining power or none (function is linear in x). When
x = 1, we have E[Rr|x=1] =

βr
βr + βh

βh +
βr

βr + βu
(βu + βr)(1 + γ − a) = βrβh

βr + βh
+ βr(1 + γ − a)

Similarly setting x = 0, we obtain

E[Rr|x=0] =
βr

βr + βh
(1− βu) +

βr
βh + βr

(1− βu)γ = βr(1 + γ)

To encourage shifting of rational miners, we need E[Rr|x=1] > E[Rr|x=0], thus

a <
βh

βr + βh
(3)

By transforming Equation 2 with our knowledge of a as indicated in Equa-
tion 3, we have

γ <
βra+ βu
1− βu

<
βhβr + βu(1− βu)

(1− βu)2
(4)

To avoid being undercut, the undercutter additionally needs to pick an a such
that this condition is not satisfied for the first block on its C1. This is to say the
undercutter can profitably undercut C0 in expectation, but others do not expect
to attack its C1 successfully. As previously touched on, we need

a ≤ 1 + γ

1 + T
=

1 + γ

1 +
βh2βr2+βu2 (1−βu2 )

(1−βu2 )2
<

1 + βhβr+βu(1−βu)
(1−βu)2

1 +
βh2βr2+βu2 (1−βu2 )

(1−βu2 )2
(5)

where βu2 is the mining power of the strongest potential undercutter for this
attacker and βr2 , βh2 is the remaining flexible rational mining power and honest
mining power in that case.

For D = 1, let the current bandwidth set containing fee total of γ relative
to the fees inside the current C0 chain head. We can conclude that with γ <
βhβr+βu(1−βu)

(1−βu)2 , the undercutter with mining power βu can expect a profitable
undercutting attack. If γ ≥ βu

1−βu , the undercutter needs to also set a, the fees
inside C1’s chain head relative to current C0 chain head, to be smaller than
βh

βr+βh
(Inequality 3). But since new transactions may arrive and change the

bandwidth set, there is still some uncertainties when actually carrying out the
attack. The undercutter in addition needs to make sure it does not get undercut
again by ensuring a to be no greater than 1+γ

1+T (Inequality 5).
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We present algorithms (D = 1) for undercutter to start an attack, for other
rational miners to decide whether to join a chain and for miners to avoid being
undercut below. Figure 2 demonstrates the undercutting conditions graphically.

Part 1. undercutter decides whether to undercut:

1. Check if γ < βu
1−βu . If Yes, start forking. Calculate T =

βh2βr2+βu2 (1−βu2 )
(1−βu2 )2

and set the first block on C1 to contain a ≤ 1+γ
1+T

of the fees in C0 chain head; else, continue.
2. Check if γ < βhβr+βu(1−βu)

(1−βu)2 . If Yes, start undercutting. Calculate

T =
βh2βr2+βu2 (1−βu2 )

(1−βu2 )2
and set the first block on C1 to contain a <

min{ βh
βr+βh

, 1+γ
1+T } of the fees in C0 chain head. Exit.

Part 2. flexible rational miners decide whether to join a chain: Solve
for x (proportion of mining power to shift to the chain) in Equation 1.
Part 3. miners avoid being undercut: Calculate T = βhβr+βu(1−βu)

(1−βu)2
a.

Check if γ < T . If Yes, include in the current block a < 1+γ
1+T of the fees

in bandwidth set; else, use the bandwidth set.
a Here βu is the undercutter a miner is defending against unlike in undercutting
reasoning, where βu is the miner’s own computation power.
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Fig. 2: Undercutting conditions for D = 1 as summarized in Part 1 of the algorithm.
The shaded area indicates the “limited” bandwidth set condition and the upper line
depicts the undercutting conditions when faced with “sufficient” bandwidth set.

Treating rational miners as one miner. In the above analysis, rational
miners make decisions from a collective perspective by maximizing E[Rr] instead
of the expected returns for a specific rational miner Mi (i < n). This can give
rise to coordination problems. Fortunately, rational miners either move all their
mining power or staying on their current chain. There is only one state (1, 1)
where they need to make a decision. There is one scenario in practice when a
rational miner may not be flexible, which is when this miner owns the current
chain head of C0. In analysis, we only consider this scenario probabilistically
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by applying a probability βr
βr+βh

as the probability rational miners own the C0

head. But in reality, a miner either owns the block or not. When a rational miner
indeed owns the C0 head, we treat it like honest miners when applying the above
analysis. Since miners are aware of other miners’ types across time, they will be
able to adjust in their reasoning process.
When to apply undercutting avoidance. Suppose the current bandwidth
set contains fees of 1 and the remaining next bandwidth set contains γ amount of
fees. The mempool is always sorted so γ ≤ 1 (except in edge cases). Suppose we
have computed the corresponding threshold attacking condition T for a rational
attacker and γ < T . Then this attacker undercuts if a miner simply assembles the
current bandwidth set into a block. When a minerMi does not apply avoidance,
its expected return from this single block is E[RMi ] = 1−βu−δ. WhenMi applies
avoidance, its expected return is E[RMi,avoid] =

1+γ
1+T . Then if 1+γ

1+T > 1−βu− δ,
Mi applies avoidance routine. We state the following theorem.

Theorem 1. In setting D = 1, each miner applying avoidance procedure when
creating a new block is NE.

Proof. Let Mi ∈ M be a miner and Mi calculates T = βhβr+βu(1−βu)
(1−βu)2 . When

γ ≥ T , Mi proceeds as normal. Therefore, we only need to show that for Mi,
when γ < T , Mi is better off by claiming a < 1+γ

1+T of the fees in bandwidth set.
(i) γ < βu

1−βu : this means βu > γ
1+γ and the undercutter does not attract

others. E[RMi
] = (1 − βu) · 1 ≤ (1 + γ)(1 − βu) = 1+γ

1+T = E[RMi,avoid]. This
indicates that a miner expects higher returns by applying avoidance in this set-
ting. (ii) βu

1−βu ≤ γ <
βhβr+βu(1−βu)

(1−βu)2 : the undercutter attracts other miners and

E[RMi
] = 1− βu − βr = βh. Since E[RMi,avoid] =

1+γ
1+T > 1

1+T = (βh+βr)
2

βhβr+βh+βr
>

βh, a miner also expects higher profits when applying avoidance in this case.
By unilaterally deviating from avoidance when γ satisfies undercutting con-

ditions for a potential undercutter,Mi receives smaller expected returns because
the undercutter’s best response is undercutting in that case.

There are two special cases worth noting: (1) all miners are honest (βh = 1)
so that T = 0. We know that γ ≥ 0. No effective avoidance is ever needed in this
case; (2) Mi is the only rational miner (βr = 0) so that T = 0 for itself. Mi also
does not need to actually apply avoidance since γ ≥ 0.
Quantifying Strong Undercutter’s Advantage. Let the strongest under-
cutter have mining power βu and the second strongest undercutter have mining
power βu2

. We know from the previous discussion that a miner should always
apply avoidance techniques to avoid being undercut in our setting. For miners
other than the strongest undercutter βu, they need to defend against βu while
βu itself only needs to defend against βu2 . Let T, T ′ be the threshold ratio com-
puted for βu and βu2 respectively. We can capture its advantage with the ratio
1+T
1+T ′ . For example, if βu = 0.5, βu2

= 0.2, βh = 0, 1+T
1+T ′ = 4, which means

that the strongest undercutter can claim 4 times than what the other miners
are collecting each time. When the discrepancy between βu, βu2

approaches 0,
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1+T
1+T ′ approaches 1. More formally, we capture this inefficiency brought by selfish
behavior with the price of anarchy (PoA) [12].

Corollary 1 (Price of Anarchy). In setting D = 1, βh < 1, βr > 0, with
the strongest and the second-strongest undercutters respectively having mining
power βu, βu2

, the Price of Anarchy is PoA = 1+T
(T−T ′)βu+1+T ′ , where T, T ′ are

as defined above.

This follows from the above analysis. When all miners stay honest, the “un-
dercutter” is expected to earn a fair share βu. When miners apply avoidance,
the strongest undercutter claims 1+γ

1+T ′ each time while others claim 1+γ
1+T . We can

obtain its share
βu

1+γ
1+T ′

βu
1+γ
1+T ′ +(1−βu) 1+γ

1+T

. Then we can calculate the PoA as the ratio

between the strongest undercutter’s shares in its optimal situation (the worst-
case NE for the system) and in its worst case (the optimal all honest outcome).
We do not include other miners’ returns in calculation because the total shares
always sum up to 1 regardless of the outcome and our focus is capturing the ad-
vantage of the undercutter. One observation is that when βu and T−T ′ are large,
PoA is large. To move it towards 1 (more stable system), we can either strengthen
the second potential undercutter or downsize βu through further decentraliza-
tion. For example, let βu = 0.499, βu2

= 0.176 and βh ∈ {0, 0.05, 0.10, . . . , 0.30},
on average (over βh) T = 1.06, T ′ = 0.37 and PoA = 1.20. This means that for
βu, the mean revenue proportion from undercutting is 0.499× 1.20 = 0.6.

5 System Evaluation

In this section, we evaluate the profitability of undercutting using data obtained
from Bitcoin and Monero. Bitcoin is a typical example of congested blockchains,
and Monero is a more available one. The simulation codes and a sample data set
have been made open source [19]. In previous analysis, we let the undercutter
be aware of future transaction flows in and out of the mempool. In reality, there
is more uncertainty involved. Another difference is that now mining powers are
discrete, and we model each miner individually.

5.1 Data Collection and Experiment Setup

Transactions. We obtain the blocks from height 630, 457 (May 15th, 2020
after the Bitcoin’s block reward halving) to 634, 928 (June 15th, 2020) from the
Bitcoin blockchain using the API provided by blockchain.com [25], comprising
9, 167, 040 transactions. The Monero blockchain data are collected using a similar
API from xmrchain.net. In total, we acquire 1, 482, 296 transactions from block
height 2, 100, 000 (May 17th, 2020) to 2, 191, 000 (Sept 20th, 2020). For each
of these transactions, we extract the size, fee, and timestamp attributes. Note
that transactions that appeared during the sample period but not in any of the
collected blocks are not included. Thus, the memory pools reconstructed are not
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the exact mempools miners were faced with. We also create artificial transaction
data sets with normally distributed fee rates.

Miners. To mimic the actual Bitcoin network, we follow the mining power
distribution of miners published by blockchain.com [26] on July 30th, 2020. We
make the strongest miner with 17.6% mining power the undercutting miner.
We additionally consider a hypothetical undercutter with 49.9% mining power.
This is to uncover the profitability of undercutting for a strong attacker and
its advantage over other miners when avoidance techniques are adopted by all.
For the Monero network, we follow the mining power distributions published by
exodus [29] and moneropool.com [1]. The strongest pool with 35% mining power
is made the undercutting miner.

Setup. We model the blockchain system as event-based, with new block cre-
ation being the event. Parameters and states of the system are updated upon a
new block creation event that we denote as Bi for the remaining of this section.
Miners have the same view of the network and the same latency in propagat-
ing the blocks and transactions. So miners working on the same chain see the
same mempool. We initialize the time of the system to the earliest transaction
timestamp. As shown in Algorithm 1, new block creation first happens (line 2-4).
Then chains, miners, mempools are updated in line 5-7. We include more details
for chain and miner updating routines in Algorithm 2. Detailed descriptions for
each routine reside in Appendix C.1.

Algorithm 1: Simulation Overview
input : txSet, minerSet, chainsTime

1: while txSet not empty do
2: extChain ← nextChainToExtend(chainsTime);
3: m ← selectNextBlockMiner(extChain);
4: nextBlock ← publishBlock(m);
5: updateChains(extChain, nextBlock);
6: updateMiners(extChain);
7: updateMempool(extChain);

Algorithm 2: Chain and Miner Updates
1: Function updateChains(extChain, nextBlock):
2: extChain.append(nextBlock);
3: foreach chain in chainsTime do
4: remove from chainsTime if it is non-wining
5: t ← NextBlockCreationTime(extChain);
6: update chainsTime with tuple (extChain, t);

7: Function updateMiners(extChain):
8: foreach miner in minerSet do
9: if miner = undercutter then

10: decide to fork or not and craft the new block as described in Part 1 of
the D = 1 algorithm in 4.1, the D = 2 algorithm in Appendix A;

11: if miner = honest then
12: if extChain longest chain then
13: switch to extChain;
14: if miner = rational then
15: decide to switch to extChain or stay on current chain as described in

Part 2 of the D = 1 algorithm in 4.1, the D = 2 algorithm in
Appendix A;
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Fig. 3: Undercutting Returns: normal runs (dashed lines) and runs with avoidance
feature enabled (solid lines). The shadowed band is statistics’ 95% confidence interval.

Simulation run. In a normal run, we repeat the above steps until we exhaust
all transactions. In an avoidance enabled simulation run, we repeat the procedure
but with all miners actively defending against undercutting in line 4, according
to the two summarized algorithms in Section 4.1 and Appendix A.

5.2 Experiment Results

Normal runs. Overall in a normal run, a strong undercutter can expect to earn
more than fair shares by conditional undercutting as shown in figures 3b and
3d. (i) In Bitcoin runs, the 17.6% undercutter receives on average (for D = 1)
17.9% shares for 0-50% honest mining power (Figure 3a). The strong 49.9%
undercutter receives a greater profit of 60.8% of the shares (Figure 3b). (ii)
In runs with artificial transactions, the profits for D = 1, 2 bear a wider gap
than with actual Bitcoin transactions (Figure 3c). (iii) In Monero runs, the 35%
undercutter obtains 43.2% of the profit on average (for D = 1, 2) for different
honest miner portions (Figure 3d). Undercutting is especially efficient in Monero
because of its small mempools, which provide limited cushion effects.
With undercutting avoidance. As noted by PoA, the attacker has an ad-
vantage over others in equilibrium. The predicted average revenue proportion
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(adjusted for rounds where the undercutter mines a block and attacking is un-
necessary) for the 49.9% attacker is around 63.5%. (i) In Bitcoin actual and
artificial data runs, the return proportion is close to this predicted average.
Avoidance runs can result in better revenues for the undercutter if the attack
cannot be carried out to its ideal extent. That is because a large mempool along
with continual incoming transactions lower the profitability of undercutting. The
implication is that if undercutting cannot be implemented ideally, avoidance can
be relaxed from the exact extent. (ii) For Monero, we observe profit reduction
for attackers in both margins after enabling avoidance, as shown in Figure 3d.
(iii) Monero runs and Bitcoin runs for 17.6% undercutter provide more straight-
forward results, compared to Bitcoin runs with 49.9% attacker. Because the sec-
ond undercutter in Monero has 35% mining power, which equals the strongest
undercutter’s mining power and in Bitcoin, the configuration is that the second-
strongest mining power is 15.3% for 17.6% attacker and 20% for 49.9% attacker.
Minor changes to Bitcoin core codebase. We provide discussions concern-
ing undercutting avoidance implementation in Appendix F.1. We note that only
light code changes in Bitcoin core codebase are needed, which we demonstrate
in this source [9] and also describe the code snippet in Appendix F.1.

6 Conclusion

We study the profitability of undercutting mining strategy with block size limit
present. The intentional balancing of undercutting others and avoiding one’s fork
being undercut again demands specific conditions on the unconfirmed transac-
tion set at the time of decision-making. Upon conditions being met, an attacker
can expect positive premiums. However, because such conditions are not easy
to satisfy, time-dependent (can be invalidated if new transactions arrive), and
can be manipulated, it opens a door for mitigation. By applying an avoidance
technique to invalidate the aforementioned conditions, miners can avoid being
undercut. Avoidance encourages miners to claim fewer fees if the current band-
width set is sufficiently wealthier than the next bandwidth set. As a result,
the competition of undercutting can involuntarily promote the fair sharing of
fees even in a time-variant fee system. Nevertheless, in a one-sided competition
where the mining power discrepancy between the first and second strongest un-
dercutters is large, the stronger undercutter has a natural advantage over others
because it only has to defend against the weaker.
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Fig. 4: State transition for D = 2. Nota-
tions are the same as Figure 1. Now we have
infinite state transitions. δ′ and δ′′ are the
amount of rational mining power shifting
from one chain to another. We do not label
the probabilities of state transitions at the
end of the graph to emphasize that: (i) the
game can go on infinitely, and (ii) the cor-
responding probabilities are different when
traveling from different paths.

Now, we discuss D = 2. Ratio-
nal miners make decisions at states
S∗ = {(1, 1), (1, 2), (2, 1), (2, 2), ...}.
The probability p now comprises in-
finite series. Without loss of general-
ity, we let F0,1 = 1, F0,2 = F0,3 = γ,
F1,1 = a, F1,2 = b and F1,3 = 1 +
2γ − a − b (where a ∈ [0, 1], γ ≥ 0).
F0,2, F0,3 can be of different values in
reality but here we use the same value
to highlight the wealthiness of F0,1.
Following the intuition from D = 1
case, we let F1,1 = a and the remain-
ing fees from the first two blocks on
C1 is (1 + γ − a). Suppose eventu-
ally we derive a condition T for set-
ting D = 2 as well, then the under-
cutter would want to set a and b to
satisfy 1+γ−a

a > T and 1+2γ−a−b
b > T

to avoid being undercut.
We take the same route as in D =

1 case. We know that if there is no
attack, the undercutter expects to re-
ceive

E[R′u] = 2βuγ
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If it starts the attack, its expected
return from the rightmost branch (shown in Figure 4) when no miners shift is

E[Ru] = βu(2γ + 1)

∞∑
i=0

βi+2
u (1− βu)i

= β3
u(2γ + 1) · lim

n→∞

1− βnu (1− βu)n

1− βu(1− βu)
=

β3
u(2γ + 1)

1− βu(1− βu)

When γ < β2
u

2(1−βu) (with limited bandwidth set), the undercutter can expect
to successfully start the attack without rational miners joining C1. This bound
is more demanding than the one for D = 1. For βu = 0.5, the upper bound is
now 0.25 instead of 1. For βu = 0.2, the bound is 0.025 instead of 0.25. Overall,
for weak attackers, the condition is way more demanding than before.

Next, we consider when γ ≥ β2
u

2(1−βu) (with sufficient bandwidth set) and the
undercutter needs rational miners to join C1. Same as before, rational miners
allocate their mining power among the two chains to maximize their expected
returns. We solve for x in

max
x∈[0,1]

E[Rr] = max
x∈[0,1]

(
βr

βr + βh
p0 +

(1− x)βr
βh + (1− x)βr

p0 · 2γ

+
xβr

xβr + βu
p1 · b+

xβr
xβr + βu + βh

p1 · (1 + 2γ − a− b))
)

(6)

where p0 = βu(1−βu−xβr)2 is the probability of C0 leading by 2 blocks first and
p1 = βu(βu+xβr)(βu+xβr+βh) is the probability of C1 leading by 2 blocks first.
Here we only consider the leftmost and rightmost branch in Figure 4 because
they are the two most significant paths. We can observe that the coefficient
for the second-degree term in the quadratic function is positive. The expected
returns for rational miners may reach maximum at either of the two ends.

Again we let E[Rr|x=0] < E[Rr|x=1].

2(βh − βu)γ <
β2
h

βh + βr
+ βhb− (βu + βr)a+ βu − βh

Here optimal choices of a and b depend on γ as described in the beginning of
this subsection. We know that a ∈ [ 1+γ2 , 1+γ

1+T ]. The lower bound is because the
undercutter does not need to claim less than 1/2 of the fees in the first two blocks
on C0 because the avoidance ratio would be 1 for the first two blocks on C1. It’s
safe except when the undercutter has majority mining power. Similarly, b has
lower bound 1+2γ−a

2 . The exact solution for γ in the above inequality can be
obtained numerically for different sets of variables. We provide an approximate
solution that can be provided in closed form, using the lower bounds for a, b. We
can obtain

γ >

4β2
h

βh+βr
− βh + 4βu − 2

3βh − 8βu + 2

19



where 3βh − 8βu + 2 < 0 or βh < 8βu−2
3 . For βu < 0.25, there is no feasible

solution.
With rational miners joining, the expected return for undercutter on the

rightmost branch is now

E[Ru|r] =
(
a+

βu
βu + βr

b+ βu(1 + 2γ − a− b)
)
βu(βu + βr)

We let E[Ru|r] > E[R′u] to arrive at a tighter bound, and we have

γ <
4βu + 2βr − βuβh
8βh + 6βr + 3βuβh

(7)

Overall in sufficient mempool scenario, we need βh < 8βu−2
3 , Equation 7 and

γ > max{ β2
u

2(1− βu)
,

4β2
h

βh+βr
− βh + 4βu − 2

3βh − 8βu + 2
}

Note that a solution might not exist for certain parameter sets.
In conclusion, for D = 2, the limited bandwidth set bound is now γ <
β2
u

2(1−βu) . This criterion can be hard to meet for weak miners with less than 30%
mining power (γ < 0.065 for βu = 0.3). But for strong attackers with 40%-50%
mining power (0.13 - 0.25), the conditions are not rare to satisfy. In the sufficient
bandwidth set scenarios, attackers also have tighter bounds on γ, especially for
weak attackers.

We present algorithms for D = 2 below. Figure 5 demonstrates the under-
cutting conditions for D = 2 graphically.

Part 1. undercutter decides whether to undercut:

1. Check if γ <
β2
u

2(1−βu) . If Yes, start undercutting. Calculate T =
β2
u2

2(1−βu2 )
if βh ≥

8βu2−2
3 and T =

4βu2+2βr2−βu2βh2
8βh2+6βr2+3βu2βh2

otherwise. Set

the first block on C1 to contain a ≤ 1+γ
1+T of the fees in C0 chain head,

exit; else, Continue.
2. Check if βh < 8βu−2

3 , if Yes, Continue; else, Exit.

3. Check if γ < 4βu+2βr−βuβh
8βh+6βr+3βuβh

and γ >
4β2h

βh+βr
−βh+4βu−2

3βh−8βu+2 . If Yes, start

undercutting. Calculate T =
4βu2+2βr2−βu2βh2
8βh2+6βr2+3βu2βh2

. Set the first block

on C1 to contain a < min{ βh
βr+βh

, 1+γ
1+T } of the fees in C0 chain head.

Exit.

Part 2. rational miners decide whether to join a chain: Solve for x (the
proportion of mining power to shift to the chain) in Equation 8.
Part 3. miners avoid being undercut:

1. Calculate T :
– If γ < β2

u

2(1−βu) , Calculate T =
β2
u

2(1−βu) ;
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– else if βh < 8βu−2
3 and γ < 4βu+2βr−βuβh

8βh+6βr+3βuβh
and γ >

4β2h
βh+βr

−βh+4βu−2
3βh−8βu+2 , calculate T = 4βu+2βr−βuβh

8βh+6βr+3βuβh
;

– otherwise, exit.
2. Check if γ < T . If Yes, include in the current block a < 1+γ

1+T of the
fees in bandwidth set; else, use the bandwidth set.
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Fig. 5: Undercutting conditions in D = 2 setting as summarized in Part 1 of the D = 2
algorithm.

Suppose C1 extends by one, rational miners decide the amount of mining
power allocated on C0 to shift to C1 by solving x in

max
x∈[0,1]

E[Rr] = max
x∈[0,1]

(
(fees own on C0)p0 + (fees own on C1)p1

+ (claimable fees on C0)
(1− x)βr

1−O − xβr
p0 + (claimable fees on C1)

xβr
O + xβr

p1

)
(8)

where p1 = (O+xβ∗R|m)D−D̃ and p0 = (1−O−xβ∗R|m)D+D̃ (β∗R|m is the rational
mining power on C0). Claimable fees are total fees that a miner can expect
to obtain in the unconfirmed transaction sets of each chain within size limit
(D∓ D̃) ·B (B is the block size limit). When C0 extends by one, the processing
is similar to the previous scenario (conceptually equivalent). The only difference
is that in calculation, p1 = (O−xβ∗R|f )

D−D̃ and p0 = (1−O−xβ∗R|f )
D+D̃ (β∗R|f

is the rational mining power on C1).

Since we are solving for approximate conditions by considering only signifi-
cant paths instead of infinite many paths, we do not give an exact theorem as
Theorem 1. The attacking conditions when D = 2 are tighter. This means that
when one can expect a profitable attack in D = 2, it’s also feasible to undercut
and give up after being one block behind.
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B Rearranging of Past Blocks in Extreme Case

Let’s consider an extreme case where there are only negligible fees unclaimed in
the unconfirmed transaction set for a sufficiently long time (greater than multiple
block generation intervals I). As we have noticed, when there is only a limited
amount of fees left in the mempool, a rational miner can avoid undercutting
by claiming only a part of the bandwidth set. But if the situation continues to
worsen and no new transactions enter into the system, the remaining transaction
fees become negligible at a certain point. In this extreme case, rational miners
may look back to the previous blocks and start undercutting at certain block
height and rearrange blocks from there onwards. Suppose an undercutter goes
back C blocks. As long as there are only negligible transaction fees flowing into
the system during C·I

βu
, it’s more desirable for an attacker who earned less than

its fair share in the past C blocks to attack. The previous analysis does not
apply to this extreme case. However, the good news is that Bitcoin, Monero,
and possibly other important altcoins currently do not suffer from this problem
and may remain this way. If this is no longer the case, undercutting may not be
a major concern.

C Experiment Details

C.1 Experiment Setup

Initial setup. We initialize the system’s time to the earliest timestamp (t0)
of the collected transaction. Then we create the empty genesis block B0 and
create the chain C0 by appending B0 to it. Next, we insert the tuple (C0, t0)
to an empty list chainsTime. The tuples inside this list indicate when the next
block for each of the chains will be generated. Alg. 1 provides an overview of the
simulation after the initial setup. The simulation takes the transactions (txSet),
miners (minerSet) and the tuple list (chainsTime) as inputs. We consider these
inputs as global for all functions in the simulation. Each iteration of the while
loop indicates a new event.
Block creation (line 2-4 in Alg. 1). In the first step of each iteration,
the chain to be extended, extChain, is selected using the nextChainToExtend
function. It sorts all the tuples in chainsTime and picks the chain with the
smallest next block creation time. Next, the algorithm selects the new block’s
miner using the function selectNextBlockMiner. This function randomly se-
lects miner m, from all the miners that are working on extChain, weighted by
their mining power. Finally, the selected miner m publishes the next block using
the transactions in its mempool.
Chain updates (line 5 in Alg. 1). After the creation of the new block Bi,
all the chains in the system are updated via the procedure depicted in Alg. 2.
In the first step, block Bi is appended to the current extending chain extChain.
Next, all other chains are checked against the extChain to see if they are in a
non-winning situation (extChain has at least D blocks from the forking point).
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If a chain is non-winning, it will be removed from the system, and chainsTime
will be updated. Finally, the chainsTime list is updated with the new time for
the next block on extChain.
Miner updates (line 6 in Algo. 1). Following the chain updates, miners
update their working chains. Each miner based on its type (undercutter, honest,
rational) decides whether to change its working chain (shown in updateMiners
function in Algo. 2).

1. If extChain is an competing chain of a undercutter miner, the miner checks
whether extChain isD blocks ahead of its own chain and switches to extChain
if Yes.

2. If extChain is not a forked chain created by the undercutter, and miner
m (miner of block Bi) is not the undercutting miner itself, the undercutter
begins condition checking routine. If the condition is ripe, it forks block Bi.
Otherwise, it continues to extend extChain.

3. All honest miners check whether extChain is the longest chain in the system.
If Yes, they switch to chain extChain.

4. Rational miners that are not on extChain, compare the length of extChain
with their current chain and calculate their expected returns as described in
Section 4.1 and Appendix A, and decide whether to switch to extChain.

Mempool update (line 7 in Algo. 1). The last system update before moving
to the creation of the next block (Bi+1) is the mempool update. In this step, all
transactions in txSet with a timestamp between the creation time of Bi−1 and
Bi are added to the mempool of the miners on extChain.
Simulation run. In a normal run, we repeat the above steps until all trans-
actions have been consumed (txSet is empty). To moderate fluctuations caused
by the random selections (of block generation time and block owners), we repeat
the experiments 10 times (for each parameter set) for both Bitcoin and Monero
and report the mean values of profit proportions along with the 95% confidence
intervals. We maintain two parameters in the simulation: (i) safe margin D:
the undercutter gives up on the forked chain as soon as the competing chain is
D(= 1 or 2) blocks ahead; (ii) honest miners βh in the system: we consider 0%
to the maximum feasible honest mining powers, with increment being 5%.

We also simulate undercutting avoidance enabled. The difference from a nor-
mal run is that when miners extend a chain, they implement “Part 3” described
in the two summarized algorithms in Section 4.1 and Appendix A. Undercutting
avoidance, implemented by other miners, makes the original attacking condi-
tions no longer satisfied. We do not carry out the exact avoidance technique for
experiment purposes and potentially give some advantage to the undercutter.
To be more specific, the fees left unclaimed for avoidance purposes may not fit
into the next block and the effectiveness of avoidance is weakened.

D Definitions

Definition 3. (Near Bandwidth Set.) Given block size limit B and an un-
confirmed transaction set A composed of N transactions, S̃ ∈ P (A) is a near
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bandwidth set of A w.r.t B if S̃.size ≤ B and S.fee − S̃.fee ≥ ε where S is a
bandwidth set of A w.r.t B, ε > 0 is a small distance parameter.

Remark 3. Near bandwidth set appears more often than bandwidth set accord-
ing to history block statistics, due to propagation delay, miners’ balancing be-
tween block size and bandwidth usage, reluctance to give up work already spent
on the current block, and potentially other causes. To be more specific, when a
miner forms a block, it balances the computation of the puzzle and the inclusion
of new transactions into the block being constructed. It also takes into account
the propagation speed of the new block which depends on its size. As a result,
miners often have near bandwidth set in their new blocks. We do not distinguish
between the exact bandwidth set and near bandwidth set in analysis.

E Proofs

E.1 Choice of D

We have looked into safe margins D = 1 and D = 2 in the analysis. We do
not explore into D > 2 because (i) first, from D = 1 to D = 2, we observe a
change towards smaller profitability space. Intuitively, there are more uncertain-
ties when safe margins increase as undercutters rely on future bandwidth set to
be less wealthy than the undercutting target block. Larger safe margins poten-
tially reduce the premiums from each attack, and profitability conditions become
tighter, which diminishes the total number of attacks for the same dataset. (ii)
Second, when we apply avoidance techniques as a defense against undercutting,
the avoidance for D = 1 is the strongest as profitability conditions for higher
margins D are tighter. In other words, when we defend against D = 1 attacker,
we defend against others as well. (iii) Third, the probability of catching up af-
ter being more than 2 blocks behind is small. We give more details about this
argument below.

Problem Statement. Let m,n be the relative height of chain 1 and chain
2 after the forking point, α be the mining power on chain 2 and α ≤ 0.5. Let
D̃ = n−m (|D̃| < D). Show that for D > 2, the probability of chain 2 winning
when D̃ ≤ −2 is sufficiently small.

Proof. Let X denotes the waiting time for chain 1 until it extends by one and Y
denotes the waiting time for chain 2 until it creates a new block. We calculate
the probability of chain 2 winning as follows:

p = Pr[Chain 2 wins] =
∞∑
i=0

Pr[(D − D̃ + i) · Y < (i+ 1) ·X]

We know that D − D̃ ≥ 5.

p =

∞∑
i=0

αD−D̃+i(1− α)i <
∞∑
i=0

α5+i(1− α)i
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We know α5 and (α(1−α))i both take maximum at α = 0.5 for α ∈ (0, 0.5].
Let α = 0.5, we have

p <

∞∑
i=0

(
1

2
)5+2i =

∑∞
i=0 4

−i

32
=

1

32
lim
n→∞

1− 4−n

1− 1/4
=

1
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We consider this probability to be relatively small. For a more practical α = 0.2,
p < 1

2625 and we consider it to be small.

F Related work

First, we give more details to the example where undercutting is not rational and
“petty compliant” may not be rational for a miner. Note that petty compliant
miners break ties by selecting the chain with more unclaimed tokens (mainly
because they can claim all of them in a setting without a block size limit). Let
there be 33% honest mining power and 100 total tokens at this timestamp with
at most 20 claimable tokens. For a 17% potential undercutter, there is 50%
remaining PC mining power. If the undercutter does not attack, it expects to
receive at most 3.4 from the next block. If it attacks and claims 10 in the first
block, with a 17% probability this block appears before the main chain extends.
If other PC miners stay on the main chain, they expect profits of 0.5/0.83∗0.83∗
20 = 10; if they follow the fork, they expect premiums of 0.5/0.67∗0.67∗20 = 10.
Shifting is not rational for the PC miner who owns the first block and may not
be rational for others since they have already started working on the next block
on the main chain for some time. Then the undercutter’s expected returns are
either 0.17 ∗ (0.17 ∗ 10 + 0.17 ∗ 20) = 0.867 < 3.4 (PC miners not joining) or
0.17 ∗ (0.67 ∗ 10 + 0.67 ∗ 0.17/0.67 ∗ 20) = 1.717 < 3.4 (PC miners joining).
Undercutting is not rational in this example.

Together with other non-compliant mining strategies. There have al-
ready been rigorous discussions on attacks related to mining strategies. Most
notable attacks are selfish mining [8,27,21], block withholding [23,17,6,16,7],
and fork after withholding [13]. Defenses against these game-theoretic attacks
have also been studied [11,30,22,14,15]. It is possible to combine undercut-
ting with other mining strategies like selfish mining [8,27,21] and block with-
holding [23,17,6,16,7]. For block withholding, because undercutters prefer larger
mining power, the two attacks have opposite goals, so one needs to balance
the computation resource allocation. Selfish mining purposely hides discovered
blocks, while undercutting intends to publish a block and attract other miners.
They do not share the same rationale, but we can schedule the two strategies and
apply the one with higher expected returns at a certain time. In this work, we
put our focus on the profitability and mitigation of undercutting, which affects
the undercutting part of this strategy scheduler.
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F.1 Undercutting and Avoidance in the wild

Optimization. In real-world implementations of undercutting, optimized con-
ditions can be applicable based on mempool states, miner type composition,
network latency, and possibly others. The performance can be improved if one
can predict future transaction arrival. Avoidance parameters should be adjusted
accordingly based on observations or more sophisticated models. To differenti-
ate between normal forks and undercutting, one can examine the timestamp and
differences of embedded transactions inside competing chain heads, and whether
this happens regularly. Undercutter often starts attacking after the target block
has been created and includes only part of claimable transactions.
Latency. Network and propagation latency have large impacts on mempool
states, thus affecting the feasibility of undercutting. If some transactions are not
broadcast across the network, undercutting is hard to implement, and it can be
difficult to differentiate between normal and undercutting forks. One extreme
case is when each transaction is submitted to only one mining pool and each
pool holds a distinct mempool. Undercutting becomes infeasible.
Other Mitigations. There also exist other mitigation techniques. One such
proposal is to implement the rule that transactions include the height of the latest
chain head block, and they can only be included in blocks of higher height. For
example, at time t1, a new block is appended to the block at height h. Then
transactions appearing during height h and h+1 are only allowed to be included
in blocks of height higher than h. We note that the effectiveness of this defense
technique is discounted by the size of the mempool.
Changes to Bitcoin Core codebase. The changes are mainly contained
in “miner.cpp” with the parameter for threshold value T being set in con-
sensus file “consensus.h” and “policy.h”. Major changes specifically reside in
addPackageTxs() and a utility function RemoveFromBlock() is added. We
show the code snippet we add to the transaction selection function as follows:

Listing 1.1: Changes to function BlockAssembler::addPackageTxs

// This transaction selection algorithm orders the mempool based
// on feerate of a transaction including all unconfirmed ancestors.
// Since we don’t remove transactions from the mempool as we select them
// for block inclusion, we need an alternate method of updating feerate
// of a transaction with its not-yet-selected ancestors as we go.
// This is accomplished by walking the in-mempool descendants of selected
// transactions and storing a temporary modified state in mapModifiedTxs.
// Each time through the loop, we compare the best transaction in
// mapModifiedTxs with the next transaction in the mempool to decide what
// transaction package to work on next.
void BlockAssembler::addPackageTxs(int &nPackagesSelected, int

&nDescendantsUpdated)
{

// until line 331
while (mi != m_mempool.mapTx.get<ancestor_score>().end() ||

!mapModifiedTx.empty()) {
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// ... until line 395
if (!TestPackage(packageSize, packageSigOpsCost)) {

// ... until line 406
if (TestPackageForBS(packageSize, packageSigOpsCost)) {

// add the failed transaction to next bandwidth set
CTxMemPool::setEntries ancestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
m_mempool.CalculateMemPoolAncestors(*iter, ancestors,

nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);

onlyUnconfirmed(ancestors);
ancestors.insert(iter);

// Test if all tx’s are Final
if (TestPackageTransactions(ancestors)) {

// Package can be added. Sort the entries in a valid
order.

std::vector<CTxMemPool::txiter> sortedEntries;
SortForBlock(ancestors, sortedEntries);
for (size_t i=0; i<sortedEntries.size(); ++i) {

nFeesNext += sortedEntries[i]->GetFee();
nNextBlockWeight +=

sortedEntries[i]->GetTxWeight();
nNextBlockSigOpsCost +=

sortedEntries[i]->GetSigOpCost();
}

}
}

if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES &&
nBlockWeight >

nBlockMaxWeight - 4000 && nNextBlockWeight >
nBlockMaxWeight - 10000 ) {

// Give up if we’re close to full and haven’t succeeded in
a while

assert(!nFees);
float gamma = nFeesNext/nFees;
float T = 0.63; // as an example, 30% strongest rational

miner min{0.5,0.63}
// T needs to be in consensus file
CAmount nFeesCurrent = 0;
if (gamma < T) {

nFeesCurrent = std::floor(nFees* (1+gamma) / (1+T));
// iterate over transactions at the end of the current

block
CTxMemPool::setEntries::iterator iit = inBlock.end();
// CTxMemPool::txiter iit = inBlock.end();
while (nFeesCurrent < nFees) {

failedTx.insert(*iit);
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RemoveFromBlock(*iit);
iit--;

}
}
break;

}
continue;

}
// until the end
}

}

void BlockAssembler::RemoveFromBlock(CTxMemPool::txiter iter)
{

pblocktemplate->block.vtx.pop_back();
pblocktemplate->vTxFees.pop_back();
pblocktemplate->vTxSigOpsCost.pop_back();
nBlockWeight -= iter->GetTxWeight();
--nBlockTx;
nBlockSigOpsCost -= iter->GetSigOpCost();
nFees -= iter->GetFee();
inBlock.erase(iter);

bool fPrintPriority = gArgs.GetBoolArg("-printpriority",
DEFAULT_PRINTPRIORITY);

if (fPrintPriority) {
LogPrintf("fee %s txid %s\n",

CFeeRate(iter->GetModifiedFee(),
iter->GetTxSize()).ToString(),

iter->GetTx().GetHash().ToString());
}

}

// in miner.h : class BlockAssembler
uint64_t nNextBlockWeight;
uint64_t nNextBlockSigOpsCost;
CAmount nFeesNext = 0;
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