Bulletproofs++

Liam Eagen
liameagen@protonmail.com

March 30, 2022

Abstract

Building on Bulletproofs [1] and Bulletproofs+ [2], I describe several new range proofs that achieve
both shorter proof sizes and witness lengths as well as a new confidential transaction protocol for
multiple types of currency. The first section describes how to modify the (weighted) inner product
protocol to prove a norm relation, i.e. self inner product, while only committing to the vector once.
In the second section, this is used to construct a binary digit range proof of half the witness length of
Bulletproofs(+). Using a novel permutation argument, which is essentially the logarithmic derivative
of [3], and the norm argument, I then construct a family of range proofs for arbitrary bases. In the
case of 64 bit range proofs, using 16 hexadecimal digits, the reciprocal range proof achieves a proof size
of 10 curve points and 3 scalars, 416 bytes in Curve25519 and 418 in SECP256k1, and witness length
of 23 scalars. This proof size is approximately 27% smaller than Bulletproofs+ and 38% smaller than
Bulletproofs. The witness length, which is proportional to verification complexity, is reduced by a
factor of roughly 6, which asymptotically approaches 8 as the number of ranges increases. Finally,
I use the permutation argument to construct a zero knowledge confidential transaction protocol for
multiple types of currency. This uses one multiplication per input and per output and supports
multiparty proving, substantially improving on both ring signature [12] and Bulletproof [4] based
confidential transactions.

1 Introduction

The popularity of cryptocurrencies has led to an unprecedented level of interest in and work on zero
knowledge proofs. Unlike most other applications of zero knowledge proofs that typically must compete
with trusted, centralized alternatives, cryptocurrencies and blockchains are an unusual environment in
which these centralized alternatives either cannot exist or are categorically rejected by the users. This
hostile environment is ideal for zero knowledge proofs, and the real world demand for solutions to
problems in this space has massively incentivized the research and development of zero knowledge proof
protocols.

Different proof systems offer a variety of tradeoffs among proof size, proving time, verification time,
security assumptions, and power. In the context of blockchains specifically, proof size and verification
time of prime importance, as the consensus algorithm is primarily constrained by the amount of data
communicated and how long it takes to verify the data. Proving time is also critically important,
especially in zero knowledge proofs for privacy. The privacy of the system grows and diminishes in
proportion to the number of users of the privacy technology, so proof systems that are impractical to
prove tend not be used, reducing the degree of privacy, thus creating a negative feedback loop.

Among proof systems in practical use for privacy preserving transactions, the primary tradeoff is
between power and security assumptions, especially the use of a trusted setup. SNARKSs [5] can be used
to construct proofs for circuits of arbitrary complexity, and proofs of exceptionally small size, but require
a trusted setup. This assumption is fundamentally at odds with the essential ethos of public blockchains,
which is to eliminate central points of trust or, at the very least, make them transparent to the users of
the system.

1.1 Bulletproofs

Bulletproofs [1] fall on the other side of the power, assumptions spectrum. They do not require a
trusted setup or even any additional cryptographic assumptions beyond the hardness of the discrete
log problem. They are provably secure in the random oracle model and compose well with existing
technologies, for example elliptic curve digital signatures, already in use by cryptocurrencies. Proof size

increases logarithmically in the size of the witness, and is small enough in practice that they have found
applications in projects like Monero [6], MimbleWimble [7] protocols like [8] and [9], and many others.
Unfortunately, proving time and verification time increase linearly in the size of the witness. The linear
verification time severely limits the size of the circuits that are practical to verify compared to SNARKs.

Thankfully, many common uses for zero knowledge proofs do not require large circuits. In particular,
range proofs are small enough to efficiently prove and verify using Bulletproofs. Range proofs allow
users of a blockchain to keep the amounts of their transactions secret while still allowing verifiability of
their correctness. Hiding the amounts of money involved in a transaction increases privacy and helps
protect against targeted theft attempts. Bulletproofs can also be used to prove more complex confidential
transaction protocols like [4] and the confidential transactions of this paper.

Bulletproofs use a recursive structure to prove that a Pedersen commitment to a pair of vectors is equal
to a committed scalar. At each step in the proof, the prover is able to transform the committed vector
into a vector of half the length using a constant amount of communication with the verifier, resulting in
an overall proof size logarithmic in the length of witness. This builds on the earlier work of Bootle et al
[10] reducing the proof size by a factor of three and accepting inputs via Pedersen commitments.

Bulletproofs are further improved upon in Bulletproofs+ [2] to support a weighted inner product
structure. Most inner product based protocols use a system of random weights to transform independent
multiplicative constraints into a single inner product constraint by randomizing each sub product. When
the weights are powers of some value ¢, Bulletproofs+ integrate these weights into the recursive reduction
structure by factoring the weight vector into a tensor product of dimension 2 vectors

2" —1

n—1)
Di-@rod
=0 j=0

1.2 Contributions

I continue to build on this work by modifying the recursive structure of the (weighted) inner product
argument to show that a single committed vector satisfies a norm relation, that is a self inner product.
This can be used to construct a smaller binary (digit) range proof by phrasing the binary digit constraint
as a difference of squares instead of a product of each digit with its complement.

Next, I introduce a modification of the permutation argument in [3] to construct range proofs using
larger bases. Encoding the digits of a number as roots of a polynomial, this polynomial is equal to
a product of linear factors with roots at each public digit symbol raised to a secret power encoding
the multiplicity of that symbol. Taking the logarithmic derivative of both of these representations, the
equality becomes a sum of poles at the negated digits equals a multiplicity weighted sum of the poles
corresponding to the symbols. While this adds at least one extra round, in many cases the reduction in
the number of digits more than compensates for the increase in proof size.

In many cases ranges are naturally expressible using larger bases, e.g. 264 = 166 which reduces the
number of digits by a factor 4, but in other cases this requires modifications to handle arbitrary range
and bases. For proofs of many ranges, it becomes economical to use even larger bases, e.g. N > 256 the
proof can use 264 = 256® which reduces the commitment length by a factor of 16 compared to the binary
range proof. Compared to an inner product based range proof that commits to all the digits and their
complement, the reduction asymptotically approaches 16 as N grows.

Finally, I use the same reciprocal permutation argument to construct a confidential transaction pro-
tocol for multiple types of currency that is zero knowledge with respect to: the types, which inputs and
outputs are of the same type, and how many types there are, beyond what information can be inferred
from the number of inputs and outputs. In this case, the types are in the denominator and the signed
amounts are in the numerator. The marginal cost of this protocol compared to a range proof is very
small and this could be used to add transactions with multiple types of currency to protocols like Grin
and Monero at essentially no additional cost in terms of proof size, proving time, verification time, or
security assumptions.

2 Preliminaries

Bulletproofs++ use essentially the same model as Bulletproofs(+). The only important differences are
either superficial, i.e. using additive vs multiplicative notation for the group operation or the manner
in which vectors are decomposed, or in the case of the reciprocal argument a weakening from perfect
completeness to statistical completeness.

2.1 Cryptography

Bulletproofs++ use the same cryptographic assumptions as Bulletproofs and Bulletproofs+, the hardness
of the discrete log problem over curve points, and are provably secure in the random oracle model.

2.1.1 Discrete Log Problem

The discrete log problem can be equivalently phrase in several different ways. For the purposes of this
paper, the discrete log problem is most usefully stated as: given a uniformly random vector G of curve
points, it is computationally infeasible to find any vector of scalars x such that

(x,G)=0

The best known algorithms for the elliptic curve discrete log problem in general elliptic curves, i.e.
non-anomalous, with high embedding degree, is proportional to the square root of the group size, so an
elliptic curve group with order 22* requires O(2*) time to compute a random discrete log relation and is
therefore said to have a security level of A.

2.1.2 Zero Knowledge Proofs

Zero knowledge proofs satisfy three properties: completeness, soundness, and zero knowledge. Complete-
ness requires that a prover can construct a proof for any valid witness, soundness requires that a prover
not be able to construct a proof for an invalid witness, and zero knowledge requires that the verifier not
learn anything about the witness from the proof.

These properties can themselves either hold perfectly, meaning that they hold unconditionally, com-
putationally, meaning that they hold only under computational assumptions about the prover or verifier,
or statistically, meaning that they hold with overwhelming probability. For example, soundness will only
hold computationally, since a computationally unbound prover could just compute a discrete log relation
to construct a proof for an invalid witness. Traditionally, zero knowledge protocols with computational
soundness are referred to as “arguments” and those with statistical soundness are referred to as “proofs,”
although informally I will refer to both as zero knowledge proofs.

On the other hand, completeness typically holds perfectly meaning that the prover can always con-
struct a proof for a valid witness. In the case of the reciprocal argument, this is actually not true since
there is a negligible probability that the challenge might cause the denominator to vanish. In that case
it is not possible to construct a proof, but since the case occurs with negligible probability, the proof still
has statistical completeness.

2.1.3 Non-Interactive Zero Knowledge Proofs

To make zero knowledge proofs practical in certain applications like blockchains, it must be possible
for the prover to construct the proof without interacting with “the” verifier. This is accomplished by
replacing all interactions with the verifier by calls to a hash function, which is modeled as a random
oracle for the purposes of proving correctness. The random oracle will choice response data uniformly at
random, independently of the communication from the verifier. This limits what sorts of data the prover
can request from the verifier.

2.1.4 Computational Witness Extended Emulation

As in Bulletproofs(+4) to prove that a protocol has computational soundness in the random oracle model,
one uses an emulator to rewind the protocol and sample multiple challenges. Given multiple challenges
for the same witness, it is possible to solve for the witness, of a well formed protocol, using linear algebra.
The ability to extract the entire witness is sufficient to show that the prover must know the entire witness
in order to construct the proof.

2.1.5 Special Honest Verifier Zero Knowledge

The counterpart to CWEE is SHVZK, where one shows that it is not possible to learn the witness from
the public commitments and openings of the prover. The way I will do this is to show that there are
enough free linear degrees of freedom in the blinding of all the commitments such that fixing a witness
and a transcript it is possible to solve for blinding values that produce the transcript for the witness. The
“special honest verifier” refers to the requirement that the verifier choose the challenge values uniformly

at random. In non-interactive settings in the random oracle model, the verifier does not actually have
any freedom in choosing the challenges, so this is automatically the case.

2.1.6 Schwartz-Zippel Lemma

To show soundness, ZKPs typically reduce to the Schwartz-Zippel lemma, which states that for a non-zero
polynomial F' of total degree d and uniform distribution D of size N

— =P(F(e)=0| F eFy[x],e e D")

Informally, the probability of randomly choosing a zero of a polynomial is inversely proportional to
the size of the distribution per argument, and proportional to the total degree. The immediate corollary
is that if the polynomial is zero at the challenge point, the polynomial must be identically zero.

2.1.7 Commitments

Commitments are binding and hiding, either computationally or perfectly. A commitment cannot be both
perfectly hiding and binding, so a tradeoff must be made. Bulletproofs+-+ use Pedersen commitments,
which are computationally binding up to the hardness of the discrete log problem. In the case of the
inputs the protocols, they are also perfectly hiding and are distributed uniformly at random. Blinded
Pedersen commitments will be denoted

Com (v;x,G);y,H=sH +vG + (x,G) + (y, H)

In the zero knowledge protocols, commitments are also computationally binding, but instead of being
individually perfectly hiding I will show that the entire protocol is SHVZK. In a sense this is equivalent,
as in both cases no information about the witness is revealed, but these commitments will be explicitly
blinded. These commitments will be denoted

Compp (v;x, Gy, H) = vG + (x,G) + (y,H)

2.2 Notation

Fix an elliptic curve E and a prime order cyclic subgroup of E of order p. While the protocol is valid
over all elliptic curve groups, certain sections of the paper deal with optimizations for elliptic curves with
complex multiplication, in which case F is not super singular and the subgroup of points is closed under
complex multiplication. This is essentially always the case in practice.

Elements of this group will be called both “group elements” or “curve points” and denoted with
capital letters. Values in the finite field F, will be denoted by lowercase letters and called either “finite
field elements” or “scalars.” The group operation will be written additively and scalar multiplication via
juxtaposition so that

(x+y)(G+ H)=2G+yG+zH +yH

Vectors of both curve points and scalars will be written using bold letters. All vectors will be zero
indexed and padded on the right with zeros as necessary. The i element of a vector v will be written v;.
The inner product of two vectors is defined when the components can be multiplied and is written

n

<X, G> = Z xiGi

=0

Where n is the maximum of the lengths of the vectors. Equivalently, since all vectors are padded
with zeros and of finite length, the sum can be over all indices. For a scalar ¢ the (power) weighted inner
product starts at ¢! and will be written

n
(x, Y>q = Z ziyig'
i=0

Norms of vectors will be defined to be the (weighted) inner product of a vector with itself. This may
conflict with other definitions of norms, but in this paper I will refer to it as “the norm” unambiguously

2
x|, = (%, %),

Matrices will also be denoted by capital letters. In particular, the matrix D(x) is the diagonal matrix
of powers of z such that D(z); = 2* using zero based indexing, and the matrix @ = ¢D(q) which starts
at the first power of ¢, which can be inferred from context. It will generally be clear from context whether
I am referring to a group element or a matrix as matrices almost always appear multiplying a vector.
The tensor product of two vectors is used mostly as a notational convenience and is defined to be

a® (bo,bl,) = boa@ blaEB

In the inner product and norm arguments, each round splits a pair of vectors into nearly equal halves.
For a vector v the halves will be denoted vy and v; such that

o) = [202) i o = 2

In this paper, these halves are defined to be interleaved rather than concatenated. That is
Vo,; = V2; V1,; = V2i41

This is distinct from Bulletproofs(+) which use concatenated halves for the purposes of the inner
product argument. The is two versions are equivalent in the sense that any of the protocols can be made
to work with either concatenated or interleaved halves. I will use interleaved halves because I think they
are easier to reason about and because all of the reductions happen locally.

2.2.1 Norm Arguments

The norm arguments are not zero knowledge, which is a point where Bulletproofs and Bulletproofs+
differ. This is because in the protocols of this paper all the witnesses will be blinded before invoking the
arguments in a manner that is tightly integrated into the protocols themselves. This is more like the
original Bulletproof inner product argument in structure. It is therefore only necessary to show that the
norm argument is sound and CWEE, not that it is SHVZK.

3 Norm Argument

There are two different norm arguments in this section. The first is a reduction from a —r? weighted

norm argument to the weighted inner product argument by factoring adjacent difference of squares into
products. The second uses a different response structure to directly prove that a, potentially weighted,
sum of squares equals a committed value. Depending on the length of the vectors, the latter argument
can result in a slightly smaller proof size.

Then, both arguments are augmented by a linear argument, where the prover takes the inner product
of a committed vector with a public vector. In the former case, this is equivalent to concatenating the
witness and constraint onto vectors in the inner product after the transformation, but in the latter case
it is not possible to directly express without squaring the witness. In both cases, the response structure
is unchanged.

This linear argument has advantages in multiparty proofs and in the generic blinding protocol. All
the high level protocols in the paper will use this protocol to blind the witness and the “error terms”
from the blinding polynomial in a single round. In many cases, this avoids the need for a dedicated
blinding component in the vectors as the blinding from this protocol is sufficient. In case it is not, the
linear argument also supports moving the blinding value into the linear vector with associated coefficient
0. This protocol is responsible for a substantial portion of the reduction in proof size in small cases, like
the 64 bit range proof.

3.1 Inner Product Arguments

Bulletproofs use a recursive technique to transform a commitment to two vectors and their inner product
C= ComBP (<X7 y> 3 X, G; Yy, H)
Into a commitment to two vectors of half the length and their inner product

C’ = Compp ((xX',y');x',G";y', H')

Such that if v' = (x/,y’) then v = (x,y) with overwhelming probability. The proof structure, as well
as completeness, follows from the following identity of polynomials in e evaluated at a random point of
the verifier’s choosing and the Schwartz-Zippel lemma

<6_1X0 +exi,eyo + G_IY1> =e % (x0,y1) + (X, y) + € (x1,¥0)

Applying this identity to all three inner products in the commitment, (x,y), (x, G), and (y, H), the
prover needs only send two additional commitments L and R from which the verifier can evaluate the
identity for all the inner products at a random point.

L = Compp ((x0,¥1) ; X0, G1;y1,Ho)

R = Compp ((x1,¥0) ; %1, Go; yo, Hy)

To do so, after selecting e, the verifier will compute
G =eGo+e Gy H =e¢ 'Hy + eH;y

/ —1 / —1
X =e "X+ ex Yy =eyote yi1

So that
C'=C+e?L+e*R=Compp ((xX,y);x, Gy, H)

This argument can be applied recursively to generate a sequence of responses (L;, R;) and commit-
ments C; to vectors of the of sizes n, = [n;_1/2] such that C;_; = C; + 6;2Li + €?R;. Eventually, the
prover will be left with the commitment Cy = soH + vG + G’ + yH' which cannot be further reduced.

3.2 Weighted Inner Product

This technique is modified in Bulletproofs+ to evaluate the inner product (x,y) p directly, which Bullet-
proofs do by separately scaling the vector and then using the inner product argument. This works by
decomposing the) power matrix as a tensor product and combining the ¢ scaling into the inner product
relation. In Bulletproofs+ this is done “top down” starting with the largest ¢®° and working down,
since the subvectors concatenate to form the larger vector, but in Bulletproofs++ I do this “bottom up”
starting with the smallest ¢2° and working up since the vectors are interleaved. Writing the weighted
inner product with interleaved vectors

1

x" = (eq) 'xg + exy G =qeGo+e Gy

<X/7y/>q2 = 6_2q_1 <X0,Y1>q2 + <X,Y>q + 62 <X17y0>q2
(x',G") = e 2q7 (x0,G1) + (x,G) + €% (x1, Go)

Where the y’ and H' are unchanged. Substituting these definitions into the definitions of L and R,
the polynomial relation is unchanged. In the next round, the prover will use ¢? instead of q.

3.3 Norm Argument

The inner product argument requires committing to both vectors in order to show that the inner product
relation is satisfied. In some cases committing to both vectors includes redundant information. For
example, in range a proof the prover might want to show that a sequence of committed values are either
zero or one. To do this in Bulletproofs(+) using the inner product argument, the prover will typically
commit to the vector of bits in x and the vector of binary complements in y and show

riy; =0 zityi=1

Which is equivalent to showing that x;(x; — 1) = 0. The vector of binary complements is redundant
in the sense that there is an algebraically equivalent constraint, given by completing the square, that
does not require committing to two separate values. Given a norm argument, the square constraint only
requires committing to one value per bit, reducing the witness length by half compared to the inner
product.

zi(z; —1) = (x; —1/2)2 —1/4

3.3.1 Reduction to Inner Product

In the case of a weighted inner product, which is what the higher level protocols will ultimately use,
there are some weights that can be directly reduced to a weighted inner product argument. If ¢ = —r?
mod p the weighted norm equals

2n—1 n—1
|X|2 = aj?qi+1 = qil (.7621' — T‘JJQH_l)(CCQi + rx2¢+1)q2(i+1) = ’/‘7le — X1, 7"71X0 +x1) ,
q q
1=0 =0

Given a commitment C' = Compgp (\X|z X, G), there exists a different basis such that C' commits to

to the inner product witness. It is important to note that, since the basis transformation is invertible,
the curve points remain linearly independent and therefore valid for the purposes of constructing a
Bulletproof.

x =r7lxg —x; y =r"1xo+x;

G =(r/2)Go— (1/2)G1 H' = (r/2)Go + (1/2)G4
C = Com ((x’,y’>q2 ;i x', G y’,H’)

If the field characteristic satisfies p = 1 mod 4 then —1 is a quadratic residue, and the constraint
is equivalent to requiring ¢ be a quadratic residue. In this case, the unweighted sum of squares is also
reducible to the inner product argument.

In the case p = 3 mod 4, this is not true. However, it is still possible to reduce an unweighted sum
of squares to an inner product of vectors of nearly half the length in such a field. In fact, this is true of
any quadratic form over any finite field as a consequence of the Chevalley-Warning theorem. This is not
used in any of the zero knowledge proof protocols but is described in the Appendix.

3.3.2 Modified Norm Argument

The inner product argument reduces x and y differently, with the first half of x scaled by 1/e and the
first half of y scaled by e. To create a norm argument directly, without reduction to the inner product
argument, the prover must use a polynomial relation that treats both vectors symmetrically such as

<XO +ex1,yo0 + 6Y1> = <X7Y> +e (<X0,y1> + <X17y0>) + (62 - 1) <x1,y1>

The norm argument follows from this relation by applying it to both inner products, \x|2 and (x, G),
and grouping like terms in the same manner as the inner product argument. Soundness follows from the
fact that the polynomials 1, e, and e — 1 are linearly independent. That is, given

C,, = Compp <|x|2 i X, G)
The prover will commit to
X, = Compp (2 (x0,X1) ; X0, G1;%1, Go) R, = Compgp (|x1\2 X1, Gl)
Which the verifier will use these to compute the next commitment as
G' =Gy +eG; x =x0+ ex;
Cn_1=Cy+eX, + (e —1)R, = Compp (|x'|2 i x, G’)

After recursively applying this argument, the protocol will terminate with a commitment Cjy to a
value and its square. However, the final round of the protocol reduces the length of the committed vector
by 1 at the cost of two additional group elements. The prover will instead halt the proof at C; or even
C5 to achieve the smallest possible proof size. This is the primary advantage of this technique over the
reduction to the inner product proof, as it is sometimes possible achieve a slightly smaller proof size
using the specialized norm argument.

For example, a sum of 10 squares will split to an inner product of two vectors of length 5, which
after 2 rounds will both be of length 2 for a total of four group elements and four scalars. The norm
argument after two rounds will have 3 scalars as 10 — 5 — 3 and four group elements, which saves one
scalar. On the other hand, committing to X requires evaluating asymptotically twice as many elliptic
curve operations so different use cases may prefer different sides of the trade off.

3.3.3 Weighted Norm

To scale the norm by ¢ powers, the norm argument will adapt the technique of Bulletproofs+. As in the
reduction to the inner product argument, the powers must lie in a particular quadratic residuosity class,
in this case ¢ = 2.

x' =r"'xg + ex; G =rGy+eG;
2 _ 2 _
|x'|q2 = ’r Ixo + ex1’q2 = |x|3 + 2er™? (x0,X1) 2 + (e —1) |x1|22

(x',G) = (x,G) +e(r " (xo,G1) +r(x1,Go)) + (¢* = 1) (x1,G1)

The modified X,, and R,, commitments then become

X = Compp (27‘71 <x0,x1)q

2;7"X1,G0;7“71X0»G1> R = Compp <|X1|Zz ;X17G1)
With the next commitment given by the same linear combination as the unweighted norm argument

C'=CHeX +(2—1R

3.4 Linear Argument

In both the inner product and the norm arguments, the new vectors are constructed using the same
polynomial relation, which means the prover can reduce two different vectors at the same time. The
prover can show, given a public vector ¢ of constraints, two committed vectors 1 and n and a scalar v
satisfy

v={(c,1) + [n|”

3.4.1 Reduction to Inner Product

When reduced to an inner product argument, the exact same argument and commitment structure can be
used for the linear vector 1 but instead of committing to ¢ the prover and verifier will carry out all of the
reduction computations in public. The similarity in structure allows the prover to actually concatenate
the linear vector onto one of the arguments to the inner product and carry out the argument. When the
sizes of the vectors satisfy

528 <len (1) +len (n) < (s +1)2F 52F < len (n)

For s = 2,3 concatenating the linear vector onto one of the vectors for the inner product argument
will reduce the proof size. This is because the number of rounds to reduce the vectors is unchanged, and
the final scalar for the reduced 1 is eliminated. In fact, it is possible to achieve smaller proof sizes even
than the direct norm argument.

3.4.2 Multiparty Proving

In a multiparty proof, it is easy for multiple provers to compute the sum of secret values, as Pedersen
commitments are linear. It is also easy to construct zero knowledge proofs involving linear combinations
of secret values since each party can compute the linear combination over their secret data and provers
can then sum the results publicly. Computing products of secret data is much more expensive and may
require additional security assumptions to be practical.

Throughout all of the protocols, at no point will secret values from different ranges by multiplied.
The only multiplications occur within a single component of the norm vector and between elements
during the norm argument, at which point all the components will be blinded and the products can
be computed publicly. Since the components of the linear vector are never multiplied before they are
blinded, the provers can all linearly contribute to them.

3.4.3 Norm Argument

For a public vector ¢, committed vectors 1 and n, and v = (c,1) + \n|2 the prover will initially commit to

C = Compp (v;,H;n, G)

And then commit to the modified responses

X = Compp ((co, 1) + (c1,1) + 2 (ng,ny) ;1;, Ho; 1o, Hy;ny, Going, Gyp)

R = Compp (<C1,11> + |y |? ;117H1;n17G1)

The verifier will choose the challenge value and the prover will compute the next commitment and

updated vectors as
C'=C+eX+ (1R

G =Gy +eG; H =H, +eH;
¢ =cg+ecy =1y +ely n' =ng +en;

In general 1 and n will not be the same length and the optimal number of rounds for overall proof size
will depend on how much larger one is than the other. The optimal number of rounds k can be defined
such that increasing the number of rounds removes two or fewer total scalars from the final opening.
This only becomes an issue when the lengths of the vectors are similar in size and one occurs in the
“upper half” of the range given by its number of bits. Stated precisely the optimal number of rounds &
is

r(v) = [logy len(v)] — 2

{max(r(l),r(n)) +1 if [k — k| <1 and max (1;;1}113, 1;:‘5:3) —4

max(r(l), r(n)) otherwise

3.5 Fast Scalar Multiplication

In proving the norm and linear arguments, as well as the original Bulletproof inner product argument,
the prover must compute the updated basis points G’ at each round of the protocol. This is fairly
expensive, even compared to the elliptic curve inner product computations, since updating the basis
does not benefit from optimizations as much as large elliptic curve inner product computations.

The amount of time spent on computing the updated bases can be substantially reduced by taking
advantage of the fact that each updated basis element is the same linear combination of different basis
points. That is, the updated basis points are

G/ = SGO + tGl

Where s and t will depend on the kind of argument, but are each pair of points in each vector being
reduced. For a fixed linear relation, there exists a shortest vector in the lattice

{(a,b,q) : tb — sa + pg = 0}

This vector can be found using a general algorithm like LLL or for this lattice the extended euclidean
algorithm. Optimal performance will likely be achieved by a specialized half gcd algorithm. Each a and
b will be about half the length of the field and given such a solution

bs IG' = bGg + aGq
The factor of bs~! can be deferred until the end of the proof and linearly factors through subsequent
rounds, while the multiplications of @ and b are amenable to Shamir’s trick.

3.5.1 Complex Multiplication

In elliptic curves with complex multiplication, basis updates can be performed even more efficiently by
exploiting the fact that for some quadratic integer o computing a.P is very efficient. Assuming o embeds
into IF),, which is always the case if the curve is not supersingular and the prime subgroup is not unusually
small, the basis update can be performed using the minimal vector in the lattice

{(a,b,¢,d,q) : a+ba — ec — edo + pg = 0}

Which is the set of solutions to

These scalars will each be about one fourth the length of the field. Each updated basis element is
now is a linear combination of 4 values, two of which are o multiples of the other two. In elliptic curve
with j = 0,1728 these complex multiples are extremely efficient to compute, a linear transformation of
the coefficients, and the resulting basis computations can be even faster than in the first case. In these
cases, since the associated CM fields are euclidean domains, it is possible to use the same kind of half
ged technique to find the a, b, ¢, d representation of e. See Appendix for details.

3.6 Combined Weighted Norm Linear Argument

To integrate the fast scalar multiplications and the ¢ power scaling into the prover, each round of the
norm linear argument will accept four normalization factors (ss, $;, sn,q) where ¢ is not, except for the
first round, the same as the initial q input. As described earlier, these normalizations allow for shorter
basis update computations without affecting the security properties of the protocol. At the beginning
and end of each round, the commitment

C=sH+vG+ (LH)+ (n,G)
Will satisfy, given the normalization at that point

v = Sg (c,l>+sss%\n\z qg=r

Algorithm 1 ¢g-Weighted Norm Linear Argument

Require: v = sgs1v; + sssivn

function NORMARGUMENT(Ss, 8, Sn, ¢, 7, ¢,C' = Com (v;1, H;n, G))

if len (n) +len (1) < 6 then
return(s,, s;,c,C)

end if
vy = sss1((co, 1) + (c1,10)) + 25.557 7" (x0,%1)
vy = 8551 (€1, 1) + 5452 |X1\zz
commit X = Compgp (U;z; 11, Hy; 10, Hi;rny, Go; ’I“_lllo7 Gl)
commit R = Compp (v,;11,Hy;ny, Gy)
query e < F,
(ar,b;) = RATIONALREP(e)
(an,br) = RATIONALREP(e/r)
¢’ = bcg + aicy
U'=(1/b)lp + (e/b)l; n' = (1/b,)ng + (er/b,)n;
H/ = blHO + alHl G' = bnGO + anGl
C'=C+eX +(e2—1)R = Comgp (v;V,H';n',G’)
NORMARGUMENT (S, 81b;, $pbn7 1, ¢2, 12, C7)

end function

(12

For the first round, the prover will initialize s; = 1 and s, = 1. At the final round of the protocol, the
prover will output the final g value ¢y and the remaining vectors scaled by their respective normalization
factors, 1y = s;1 and ny = s,n. For verification, the verifier will receive the initial commitment C, the
responses (X;, R;), the final scalar v, and the final vectors 1y and ny. The verifier will expand out the
challenges into two vectors

k k
el:®1@ei en:®r21€9ei
i=0 i=0
And verification will consist of one field computation and one elliptic curve inner product. Keeping in
mind that the tensor products may be longer than the basis vectors and that vectors should be padded

with identity elements as necessary, these are

v=s5{(c,e;®1y) + s |nf|§f

k
C—i—ZeiXi + (e —1)R; = sH +vG + (e, @ 1;,H) + (e, @ ny, G)
=0

10

As T have already mentioned, it is possible to modify this protocol to break the vectors into concate-
nated, rather than interleaved, halves. To do this, the prover can reverse the order of the e; values in
the tensor and keep the r powers in the same order.

3.7 Blinding

All the range proof protocols, as well as the arithmetic circuit protocol, will use the linear argument to
blind the entire proof in a single round. To do this, consider a generic argument of the following form.

n
C; = Compp (x;) > leixi) =v (Xn,Xp-1), =0
i=1
In the case where the final multiplication needs to be a square, the system works out in more or less
the same way. For simplicity, I will just consider this case. Given an additional blinding commitment
B = Compp (b), the commitments naturally form a polynomial

n
p(t)=b+ Z % + QT i
i=1
Where the central coefficient encodes our constraints
n
[P = C + (XnyXno1)y + > 2(cix;) =0
i=1

The rest of the terms of this polynomial are “error terms” that do not encode the constraint directly,
but are necessary to prove knowledge of the norm of p(¢). The error terms can be partitioned into three
groups. For degrees greater than 3n — 1, the error terms are computable from public constants and q.
Error terms of degree 2n + 1 through 3n — 2 are sums of inner products of witnesses with constraints,
which causes all the ¢ terms to cancel. The rest of the error terms of degree 1 through 2n — 2 and 2n
depend on the witness and on gq.

For each of the third group of error terms, the protocol will add linear components to all the vectors
corresponding to these error terms of degree t° through ¢*»~2 and ¢2". The updated commitments then
becomes

B:COIDBP (e,b) Ci = COHIBP (ui7xi)

Given the linear combination of the commitments corresponding to the polynomial
n
C'=B+ Zth’i = Compp (€', x’)
i=1
The openings of the error term components are

n
r_ G,
ejfej—i—g b ug;
i=1

The linear combination of the error term components with their associated ¢ power monomial, as-
suming u;; = 0 for values that are not present in a commitment, is then

D eth) =3 "I <ej +Xn:tiuij> =1 ST un |+ T e+ > u
i j i=1 i

i+f(k)=2n—1 FG)=f(k)+i

Where the function f(j) injectively maps the indices in the error components of the linear vector
to the error monomial degree. If the prover can show that all the diagonal components, u;; where
i+ f(k) = 2n—1, are zero and choose the e; values appropriately then all the u;; values will cancel. Let

the error terms be)))
()2 = F" [P + Y et/
J

Then the prover will commit to Cy through C,,_; and the verifier will choose a random value ry. Let
the set A be
A={a:2n+1< f(i) <3n -2, f(a) = f(i) — n}

11

These are the components of the error term vector in C,, which map to the ¢ independent error terms.
The prover will set u,; = (1/79)e; for j € A. Following the commitment to C,, the verifier will choose
a second challenge 71 and ¢. The prover will commit to the blinding with e

a(g)

5 _
ej =1 (ror1) " tej — Z Uik

F@)=F(k)+i

Where 4 is the indicator function on the set. Evaluating the linear combination of the opening €’
with the modified monomials then leaves only the error terms

Z egroriféA(j)tf(j) — Z Ejtf(j)
J J

Note that for all commitments besides C,, any nonzero diagonal components will be scaled by r(or
ror1 and added to the value term. This will cause the proof to fail with overwhelming probability. For
C,,, the diagonal term is n — 1 which is not present in A. Therefore, it will be scaled by 1 which will
have the same effect.

For two or more commitments, the u;; values are sufficient to blind all the commitments, including
the blinding. See the proofs section for details. In the case that the multiplication should be an inner
product, it is sufficient to modify the error terms to include 2n — 1 and exclude 2n. For a proof with
one commitment, the prover can add a single additional blinding component to the commitment C
with linear coefficient 0. The t° error term can be mapped to the scalar component of the bulletproof
commitments.

3.7.1 Inputs

Inputs to the proof will be handled separately and scaled by t2"~! so that their scalar component is

added to the value term directly. The base that they use for blinding can be set to the ¢! error term and
their blinding values subtracted off of the 2n error term. Except for the inputs, it is sufficient to show
that this protocol is SHVZK and CWEE to show that all the range proofs and the arithmetic circuit
protocols are as well.

3.7.2 Linear Error Terms

Linear components to the proof are handled using the same structure. Treating the ¢t power of each
commitment as fixed with respect to the norm blinding procedure, and letting 1; be the linear witness
and c;; be the linear coefficients for commitment ¢ the combined linear witness and constraint are

n

l(t) _ Xn:tzh Cl(t) _ Zt?nfiflcl’i
=1

=1

Has the same structure as the constraints for the norm. The modifications to the error terms come
from the expansion of the unweighted inner product added to the old error terms

()] + (), 1(8)) = [[p(t)]® + Z et

3.7.3 Interface

All of this functionality is self contained, and the rest of the protocols can interface with it using the
functions
BLINDNORMTERM(n, k, Cy) BLINDIPTERM(n, k, C,)

Which add the correct number of random values to the commitments depending on their position in
the polynomial. For the final term, protocols can also call

BLINDFINALIPTERM(n, €, C,—1)

With the ¢ independent error terms. The final blinding term can then be constructed, given the rest
of the error terms, the inputs, and the previous commitments and openings via

NORMBLINDING(n, €, C) IPBLINDING(n, e, C)

12

4 Binary Range Proof

The binary digit range proof is a straightforward extension of the g-power norm argument and with
witness half the size of an equivalent Bulletproof(+) range proof using the technique mentioned in the
Norm Argument section. That is, by completing the square of the standard binary digit constraint
d;(d; — 1) = 0, the prover can instead check

2
1 1
di—f —_ - =

Which is suitable for a norm argument directly and reduces the witness length by half compared to
the inner product argument. Taking a random linear combination of these constraints is sufficient to
show that all the values d; € {0,1} and therefore that they are valid binary digits. To complete the
proof, the prover must show that the appropriate 2 power linear combination of these bits equals the
value.

Instead of just using powers of 2, the prover can vary the coefficients to support arbitrary ranges. To
show that A < v < B for any integers A < B such that B — A < p, the prover will instead show that
0 <v—A < B— A by construct the base vector b as

n = [logy(B — A)] by =2 for i = 0.n — 2 by1=(B—A)—2""1
To see why this is valid, it suffices to check that the minimum binary linear combination of this base

vector is 0 and the maximum is
n—2
bo1+ Y bpo=(B—A-2""") 42" -1)=B-A-1
i=0
This is possible because certain elements of the ranges where B — A is not a power of two are

representable using multiple bit patterns. Given the base vector and after committing to the value v and
the digit vector d, the verifier will select a challenge value g and the prover will show that

1 P 1
(a3t o] =[(e-31)

1
21-Q b
5 Q

2
+20— (1,b) + [Q7'b|}
q

2
:2v—|—‘

q

The final norm term is independent of any committed values, and the equality holds only if the digits
are valid and (b,d) = v. To extend this to multiple values, the prover will concatenate the digit and
base vectors for each value and define a new diagonal matrix U(z) which scales the digits of value i by
21, Scaling the base vector by this matrix

n

(U(@)b,d) = 3 2ty

=0

Finally, to blind the proof, the prover will use the norm version of the blinding protocol with one
term in the polynomial. This requires adding an additional blinding component to the linear portions of
the vectors with coefficient 0. Given the public values

2 n

— inHAi) G+t <—;1 +Q'U(x)b, G>

q 1=0

1
P(z,q,t) =t (‘21 -Q'b

The range proof protocol is

13

Algorithm 2 Binary Range Proof
Require: A; <v; < B;
function BINARYPROVER((4;, B;, C; = Com (v;)) : 1)
commit D = BLINDNORMTERM(1, 1, Compp (d, G))
query z,q = ¢*,r + F,
commit B = NORMBLINDING(1, D, C)
query t < [,
1. = (0,7t)
C'=P(z,q,t)+ B+tD+2t>> " 2"t C;
NorRMARGUMENT(1,1,1, ¢, ¢s,1.,C")
end function

5 Reciprocal Range Proofs

Reciprocal range proofs have many more degrees of freedom than binary range proofs. The first choice is
how to represent the digits and multiplicities for each value. These can either be represented “inline” for
each value or they can be “shared” between multiple values. These offer different tradeoffs. The inline
case has an optimal base for a particular range [A, B) given by

P =B-A

Some common ranges are expressible very nearly optimally, like 264 = 16'¢, while many others are
not. For this reason, it is especially important that the protocol be able to prove arbitrary ranges for
arbitrary bases.

The other kind of range proof shares a single base among multiple values. In this protocol, the base
can increase past the optimal value for any individual range, but the witness size is also increased by an
amount equal to the size of the shared bases relative to the inline case. This kind of range proof is only
more efficient for large numbers of values.

5.1 Reciprocal Argument

Naively trying to extend the binary digit check to multiple bases, one might try to simply use a larger
polynomial. The check for binary digits is 2(x — 1) which naturally generalizes to

b—1

dy(z) = [[(z —4)

=0

Unfortunately, this uses (b—1)/log b multiplications which is increasing for b > 2. One can do slightly
better using balanced digit representations

k—1
dopy1(x) = x H(x2 — %)
i=1

But this still has more multiplications per value than a binary range proof. Other more exotic
techniques like using complex, i.e. 22" — z, bases still do not achieve a lower number of multiplications
per value and are impractical for other reasons.

Rather than showing each digit is the root of some polynomial, the prover will reverse the represen-
tation and construct a polynomial that encodes the digits of our value, or their negation, as its roots.
Given the digits d; of some value in base b the polynomial f(e) encoding its roots satisfies

n—1 b—1
fle)y=[Jte+d)=]][e+)m
i=0 j=0

Where m; is the multiplicity of the symbol j among the digits. Taking the logarithmic derivative
of this equation, keeping in mind that this reduces the multiplicities mod p, the equation becomes an
equality of sums of rational functions

flle) = 1 m;
f(e)ige—diij e—j

i
L

Il
=)

14

This moves all of the interesting data about the value, namely its digits by position and their mul-
tiplicities, into the field and suggests a zero knowledge proof protocol: commit to the digits d; and the
symbol multiplicities m;, choose a challenge value for e, and then commit to values

1
T, =
e — di
Then, to show the values all belong to the set of valid base b symbols, prove
n—1 b—1 M
e+d;)r; =1 and r; = J_

5.1.1 Multiparty Reciprocal Argument

Notice that, unlike the polynomial representation, the reciprocal argument involves no multiplications
between digits, only between a particular digit and its reciprocal. This makes the reciprocal argument
especially well suited to multiparty proofs. Regardless of how the proof is organized, the sum of re-
ciprocals can be taken over all the set membership proofs for a particular set, i.e. a particular set of
digits, regardless of which ranges are known to which provers. At each point in the protocol, the provers
will sum their commitments and submit the result to the random oracle. The resulting proof will be
indistinguishable from a single party proof.

5.2 Arbitrary Ranges

While the arbitrary range condition is convenient for binary range proofs, it is absolutely necessary for
arbitrary bases. Many ranges are fixed externally to the proof system and often do not have nice integer
solutions like 4* = 28 or 16'6 = 254 that allow expressing them efficiently as a power of a larger base,
e.g.10% < 232 < 101, Without loss of generality with respect to the lower bound, for a range 0 < v < B
in base b there are three cases.

52.1 b—1|B-1

This is the natural generalization of the binary case, in the sense that 2 — 1 = 1 divides every range. For
arbitrary bases this is obviously not the case, but when it is the prover will use the base vector b

) B — bnfl
b, =0b" f ; -1 bp1 = ——m—
or 1<n n—1 b1
Expanding out the maximum representable value to check soundness
n—1
S b-1b =" —1)+(B-b""")=B-1
i=0

5.2.2 b l<B<2pn!

When the range is not divisible by b—1 but is sufficiently close to the lower power of b the prover can still
use n digits by making the last digit binary. To see why this works, observe that the subrange spanned
by the first n — 1 digits is [0,56""!). Since this is at least half the distance to B, the prover can overlay
the same range shifted up by B — b"~! and cover the whole range [0, B). Thus in this case the base
vector is

bi:bi for i<n-1 bn_lzB—bn_l

5.2.3 2" 1< B<b"

In the final case, the prover must add an additional digit increasing the length of b to n+1 but cannot let
bo_1 = b""!, as this would allow representing values outside the range. Instead, the prover will choose
some value so that the maximum representable value with the first n digits is at least half way to B and
then use another binary digit to cover the upper part of the range as in the previous case.

b =b" for i<n-—1
B—l—‘ -1

= =B—(b—1)by_y — """
bn_1 {2@—1) - b (b—1)bp_1 —b

15

5.3 Inline Multiplicities

I will consider the more complex case first where the multiplicities are inline with the digits. Suppose b
is defined as above for the base b and the range A < v < B. Then let the vector d be a vector of base b
digits, potentially with a final binary digit if it is necessary for the range, such that (b,d) = v. Let the
vector m be defined in such that m; for i = 0..b — 2 is the number of occurrences of the symbol i 4 1
among the base b digits in the value v. If there is a binary digit, let m;_1 be equal to the binary digit.

Notice that it is not necessary to store a multiplicity for the zero symbol for any base because the
total number of digits is a public constant, so the number of zero digits will always be the total number
of digits minus the number of nonzero digits. Consider for simplicity the case where there is no bit first.
The reciprocal check without a zero multiplicity is

len(d)—1 len(m)—1

1 1 1\ len(d)
Z e+d; Z mJ<e+je> e

i=0 =1

When there is a bit, the prover will perform the same check on the binary digit separately. The core
of the reciprocal argument remains the same as before: the prover will commit to the digits and the
multiplicities, the verifier will choose the challenge e, and the prover will then commit to the reciprocals.
To actually show this the prover will organize the commitments into a polynomial, show that the central
coeflicient encodes the constraints, and use the blinding protocol to prove knowledge of the error terms.
In particular, let u(x) = 2%b and the vectors v(x), and ¢(z) be defined so that

2% if d; is base 2 L—ﬁ if0<i<b-1
vi(x) =< x® if d; id base b ci(x) = -3 if i = b —1 and range has bit
0 if fewer than ¢ + 1 digits 0 if m undefined

Let the vector a be 1 on entries where digits are defined, i.e. whenever b is defined, and 0 elsewhere.
This yields the vector valued polynomial

p(t) =s+tm+t*((el +d) + Q7 'v(x)) + *(r + Q u(z)) + t'Q 'e(w)

Where the t° term of the norm of p(t) is, given the public value C(q) = (u(z), v(@))1/4

%] |p(t)\2 =2 (az2 (el +d,b) + ((r,v(z)) + (m, c(x))) + (r, (el + d)>q> +C(q)

Breaking this polynomial down further in terms of & powers, the 22 term encodes the value, the 3
term encodes the base 2 reciprocal sum, and the 2° term encodes the base b reciprocal sum. The constant
x term encodes multiplicative constraints as a polynomial in ¢. So, if the following holds, all the digits
must be of the correct base and sum with the bases to product the correct value

2(v(x), 1)

[°] |P(t)|§ = 2ux? + +2 |a|§ +C(q)

The prover can easily extend this to check to multiple values with different bases by concatenating
the vectors of each value, scaling the base values of each value by distinct even powers of x, and scaling
distinct base digits by distinct odd powers of . Also note that the d, m, and r must be padded to be
the same length for the purposes of concatenation.

5.3.1 Protocol

There is a certain degree of freedom in how one defines the error terms and the public terms. For the
purposes of this protocol, all publicly computable products are included in the public terms, although
verification might be faster if they are moved into the error terms.

Ny (x, ¢, t) = t2(el + Q 'v(z)) + 3Q tu(x) + t'Q ()
~ (v(2),1) -
Spub (T, ¢, 1) = [npup (2, g, t)|§ +2t° |a\(21 + Z f’ — Ajx?t?
j=0
P(Ia q, t) = Spub(xa Q7t)G + <npub(x; q, t)ﬂ G>

16

With this definition of the public terms, the error terms are

€0 = |S|3

e =2(s,m),
€2 = [mlf] +2(s, (el +d) + Q 'v(x)),

€5 =2 (<s, r+Q u(z)), + (m, (el +d) + Q_lv(m)>q)

er=d[] +2(e1+Q 'v(x),d) +2(s,c(z)) +2(m,r+ Q 'u(x))
e = 2(d, c(z)) + |r]2 + 2 (r, u(z))

er = 2(r,c(x))

q

The reciprocal range proof uses the blinding protocol with three commitments, one for the multiplic-
ities, one for the digits, and one for the reciprocals. The protocol is organized to multiply the digits plus
e by the reciprocals. This yields a total of 11 blinding values and places the degree 7 error term in the
blinding vector for R. The scalar component of the Bulletproof commitments will be used to store the
degree 0 error terms.

Algorithm 3 Inline Reciprocal Range Proof
Require: A; <v; < B;
function INLINEPROVER((b;, A;, B;, C; = Com (v;)) : 1)
commit M = BLINDIPTERM(3,1, Compp (m, G))
commit D = BLINDIPTERM(3,2, Compp (d, G))
query e, z,r9 < F,
commit R = BLINDFINALIPTERM(3, €7, Compp (r, G))
query ¢ = ¢, + F,
commit B = IPBLINDING(3,¢, M, D, R, C)
quert ¢ < I,
C'=P(w,q.t) + B+tM + 12D+ 3R+ 265 35 227+2C;
L =rori(y,y% % y*/r1,9°)
NorRMARGUMENT(1,1,1, ¢, g5, 1., C)
end function

5.4 Shared Digits

There are two versions of the shared digit protocol. In the first, all the multiplicities are shared and
the multiplicity commitment M can be completely eliminated. The shared multiplicities are committed
to in the D commitment instead. This reduces the number of error terms from 7 to 4 and the number
of commitments by 1. The other version combines the inline and shared multiplicity range proofs. The
structure of the error terms is the same as that of the inline proof, and the D commitment still commits
to the shared multiplicities. The blinding protocol is generic in the number of commitments, which
makes especially clear the commonalities between the two range proofs.

For ranges with shared digits, the m will be zeroed. The shared multiplicity vector m(®) will contain
the sum of the multiplicities for each base. In a multiparty proof, this sum can be computed without
revealing the private multiplicities of each prover by simply adding their commitments. The c coefficients
will similarly be zeroed for shared multiplicity digits and the shared coefficients ¢(*) will contain the
coeflicient, as defined before, for each shared multiplicity.

5.4.1 Shared Multiplicity Protocol

The exclusively shared base protocol places the digits on the ¢ term and the reciprocals on the ¢? term.
This alters the error terms and the public constants in a predictable manner. Note that the blinding for
the linear terms must be accounted for as well in €3

17

2
€0 = |sn|q

e =2(sp, el +d+ Q71V($)>q
2 =[d2 +2 (5,0 +Q Mu(a)), + (s1,¢))
e = [rf2+2(r,v(z))

With public constants

npun(2,0,1) = el + Q7 1v(@) + £2Q u(x)

k
v(z),1 ;
Spub(Z, ¢,) = |npus(z, g, t)|§ + 283 |a\z + % — Ajz?it?
7=0

P(x,q,t) = Szmb(x’qvt)G + <npub(xaQ7t)a G>

Algorithm 4 Shared Reciprocal Range Proof

Require: A; <v; < B;

function SHAREDPROVER((b;, A;, B;, C; = Com (v;)) : %)
commit D = BLINDIPTERM(2, 1, Compp (m®), H,d, G))
query e,z < [,
commit R = BLINDFINALIPTERM(2, Compp (r, G))
query ¢ =¢2,ro «+ F,
commit B = IPBLINDING(2,¢, D, R, C)
quert t « I,
C'=P(z,q,t) + B+tD + >R+ 263 Y5 2%+2C;
1. = ro(t, t2,t%) @ t2c®)
NoOrRMARGUMENT(1,1,1,¢,gs,1.,C)

end function

5.4.2 Inline and Shared Multiplicity Protocol

The combined inline and shared multiplicity protocol will use the same public values as the inline protocol
and the same D commitment with the shared multiplicities as the shared protocol. The error terms will
be the same as the inline protocol with the exception of the degree 3 error term which must compensate

for the linear blinding values as the degree 2 error term did in the shared protocol.

€3 =2 (<s7r + Q_lu(x)>q + (m, (el +d) + Q_lv(x)>q) - <sl, c(s)>

Algorithm 5 Combined Inline Shared Reciprocal Range Proof

Require: A; <v; < B;

function INLINESHAREDPROVER((b;, A;, B;, C; = Com (v;)) : %)
commit M = BLINDIPTERM(3, 1, Compp (m, G))
commit D = BLINDIPTERM(3,2, Compp (m*), H,d, G))
query e, x,rg < F,
commit R = BLINDFINALIPTERM(3, €7, Compp (r, G))
query ¢ = ¢, 11 + F,
commit B = IPBLINDING(3,¢, M, D, R, C)
quert ¢ < I,
C'=P(w,q,t) + B+tM+ 12D+ 3R+ 265 35 227+2C;
Lo = rory(t, 6%, 63,14 /r1,1%) @ t3c(®)
NorRMARGUMENT(1,1,1, ¢, gs,1., C)

end function

18

6 Confidential Transactions

Range proofs are typically used as part of a larger confidential transaction protocol. A confidential
transaction is one in which the amounts, types, and other transaction data are kept hidden and trans-
action validity is established with a zero knowledge proof. This is in contrast to ordinary transactions,
like Bitcoin and Ethereum, which do not hide the transaction data and anonymity oriented transaction
protocols like ZCash [11] and Monero [6], which also attempt to hide the inter-transaction metadata.
Anonymity oriented protocols usually also hide the transaction amounts, and in some cases include a
self contained confidential transaction protocol within the larger transaction protocol like Monero.

Confidential transaction protocols typically work by proving that the sum of the inputs equals the
sum of the outputs, called conservation of money, and that the outputs commit to positive integers much
smaller than the field characteristic. It is not necessary to prove range proofs for the inputs, as they
usually have already been proven to satisify the range proof constraint by the transaction which created
them.

6.1 Existing Conservation of Money

Conservation of money proofs can surprisingly lightweight, as in the case of Mimblewimble. In that case,
the Pedersen commitments to the inputs are subtracted from Pedersen commitments to the outputs,
and the result is opened to a commitment to zero. This net commitment is then added to the total net
commitment, which allows verification of the chain using only the unspent transaction outputs and the
openings from each transaction. Intermediate output commitments can be discarded.

Multitype conservation of money proofs are more complicated. Confidential assets [12] use a distinct,
uniformly randomly selected curve point to represent different types of currency. Netting these commit-
ments will produce a commitment to zero only if all the types net to zero, up to the hardness of finding a
discrete log relation between the random curve points. However, each output must also be shown to use
a curve point corresponding to a type of currency, which is done using ring signatures. This has similar
tradeoffs to Monero transactions between type privacy, i.e the number of types an output could be, and
transaction size which increases linearly in the number of potential types and the number of inputs.

Bulletproof based implementations of confidential assets like Cloak [4] use a combination of gadgets,
essentially small proof fragments, composed into an arithmetic circuit. These gadgets first shuffle the
inputs in zero knowledge, followed by a series of conditional mixing operations, followed by another
shuffle, followed by another series of splitting operations back out to the outputs of the transaction. The
shuffle is an implementation of the same polynomial based technique of [3].

This avoids many of the tradeoffs of confidential assets, but produces a fairly large circuit. Each
additional element in the shuffle uses a two multiplications and each mix uses one multiplication. Each
factor in the multiplication adds two additional scalars to the witness and each mix gate adds four
additional scalars to the witness. In total, the circuit seems to require 8(m — 1) multiplications and
20n — 14 scalars not counting the inputs or outputs, where n is the maximum of either the number
of inputs or the number of outputs. FEncoding this circuit using the Bulletproof arithmetic circuit
protocol directly will approximately duplicate the additional witness size as all of the multiplications are
sequential, so each value will appear twice, except for the factors in the shuffle polynomial which could
be linearly combined first.

This protocol also introduces a new problem: it does not efficiently support multiparty proving since
the permutation argument, as well as the mix gates, require multiplying the secrets of different provers.
This is not a problem faced by the original confidential assets protocol, as the linearity of Pedersen
commitments and the hardness of the discrete log problem of the bases for different currencies allow
the provers to simply add up the commitments. To capture the desirable properties of both protocols,
the prover wants a protocol that is linear in the permutation argument to support multiparty proving
and can be represented as a Bulletproof to support small proofs for arbitrary types of currency. The
reciprocal argument meets these criteria.

6.2 Argument

Given two sets I and O of pairs of amounts and types encoded as field elements, the inputs and outputs
respectively, the prover wants to show that the amounts of all the inputs of each type add up to the
same value as the amounts of all the outputs of the same type for all types. They can encode this as
a reciprocal relation by encoding the type as the symbol in the denominator and the amount as the

19

multiplicity in the numerator for a reciprocal term

v v
2 etrt > ert

(v,t)erl + (v,t)€O

While the reciprocal argument in the range proof is more efficient than the equivalent argument using
the preimages of the logarithmic derivative, i.e. polynomials, the multiplicities are small enough that it
could plausibly work without being prohibitively inefficient. In this case, the multiplicities are arbitrary
integers, typically around 64 bits in length, which would make the equivalent polynomial argument
prohibitively expensive.

Translating this into a system of constraints, the prover will follow the same recipe as the range
proofs, with a few modifications. The prover will commit to t and v, the verifier will choose e, and the
prover will commit to a vector of “reciprocals” such that

U;

€+ti

r, =

Because of the similarity in structure to the range proofs, the prover can actually prepend the t
vector to the vector of digits and the type reciprocals to the vector of digit reciprocals. These r; are
importantly different since their numerator is not one, so instead of checking that the product of the
digit vector and the reciprocal vector is one for these components

(6 + ti)ri = V;

To put the values in the proper place to balance this equation, the prover will scale the input
commitments by 220+1) 4 ¢2(+1) and let a be zero on the type reciprocals. These coefficients will also
scale the types in the input commitments, which the prover must show equal the types in the digit vector.
To do this, the prover will choose some value 2’ at the same time as ¢ and set the type component in
the linear vector to —z'.

Correspondingly, the prover will modify the u(z) to multiply the types in the norm vector by yz%+2+
yq** 2 to verify that these value are equal to the types in the commitments. They must also modify v(z)
so that input reciprocals and output reciprocals are scaled by opposite sign.

ui(z,y,q) = y2* " + yg* 2 and ¢;(z) = 0 for i = 0.k — 1

vi(z) =

x if commitment 4 is input
—x if commitment i is output

6.2.1 Multiparty Conservation of Money

In the same way as the reciprocal argument in the range proof, the reciprocal argument for typed values
is linear in the reciprocals. Since it is assumed that each type value pair is known to at least one of
the provers, as they are committed together, there are no multiplications of secret values from different
provers necessary to perform the reciprocal argument for typed inputs. This means the exact same
multiparty protocol as for reciprocal range proofs can be used for multiparty confidential transactions.

6.3 Protocol

For confidential transactions, one typically does not want to prove range proofs for the inputs. For
this purpose, each transaction input commitment will have a binary flag o; that is 1 for outputs and 0
for inputs. Technically, there is no reason why a transaction could not prove the inputs lie in ranges,
or remove the range proofs for outputs. However, most of the configurability of the protocol is not
important for correctness and this is the most common case.

For inputs, that is values with o; = 0, the prover will remove all the corresponding digit, multiplicity,
and reciprocal components for the witness. This results in several changes to the other public constants.
In particular, the protocol will not subtract A; if o; = 0 in the public constants and will modify the w;
for the type components. To support public inputs or outputs, for example to support fees, the public
constants will also be modified to subtract the associated reciprocals.

w; = 0i$/x2z+2 + xlq21

20

—1)%
Vpun(€, T, q, 1) = Z ()t where Pub is the set of public amounts
(v,t,0)€Pub ¢
2 o [a2 = (v(),1) 242
spub(€, 2, q,t) = [pus(e, 2, ¢, V)], + 27 | [aly — vpup(e, 2, q,t) + Z — - 0;A;jx
j=0
With these modifications, the protocol is essentially a super set of the inline and shared multiplicity
range proofs for the outputs.

Algorithm 6 Confidential Transactions
Require: A; <v; < B;, Ei:ti:t(—l)‘”vi =0 for all ¢
function INLINESHAREDPROVER((b;, 0;A;, B;, C; = Com (v;,t;)) : i)
commit M = BLINDIPTERM(3,1, Compp (m, G))
commit D = BLINDIPTERM(3,2, Compp (m®), H,d, G))
query e, z,79 < F,
commit R = BLINDFINALIPTERM(3, €7, Compp (r, G))
query ¢ = q3,y,m1 + F,
commit B = IPBLINDING(3, M, D, R)
quert t « I,
C'=P(z,y,q,t) + B+tM + 2D + 3R +2° " (0;2%+2 4 ¢%+2)C;
1. = rori(t, t2, 63, t*/r1, %) @ t3c¢®)
NoOrRMARGUMENT(1,1,1,¢,4s,1.,C)
end function

7 Arithmetic Circuits

Since the norm argument is equivalently powerful to the inner product argument, it is possible to adapt
the arithmetic circuit protocols of Bulletproofs and Bulletproofs+ to the norm linear arguments of
Bulletproofs++. The differences are relatively minor, although the witnesses are smaller than both and
the proofs can also be smaller. Given public constraints matrices A, B,C' € F;*™, public d € F}, and
matrix D € F*¥*™ with empty right null space, i.e. Dx = 0 only if x = 0, the prover wants to show

Aa+ Bb+Cc=Dv-+d a;b; = ¢;

For input commitments C; = Com (v;), the proof will use the same version of the blinding protocol
used by the reciprocal range proof, with a slight modification for the inputs and with fewer rounds since
there are no reciprocals to compute. After committing to the witness

Ca = Come (a) Ob = COme (b) CC = COme (C)

The verifier will then choose some r uniformly at random to construct the vector r given by r; = rit1,
The prover will left multiply all the constraint matrices by this vector to collapse the constraints into a
single vector constraint. By Schwartz-Zippel, this constraint is satisfied only if all the original constraints
are satisfied. The polynomial for the blinding protocol is then

p(y) =bl+yc+y*(a+Q 'B'r)+ ¥ (b+Q A r) +4*(Q Cr—1)

This places the constraints on the y° coefficient once again with public value C(q,r) = <BTI‘, ATr>1/q

[°] P2 =r" (Aa+ Bb+ Ce) + (a,b), — (1,¢), + C(q,7) = (r,d)

Given (k —1)2™ < len(a) < k2" where k = 2,3 this will use n rounds, and have a witness of
size (4 4+ 2n)g + (1 + k)s. In particular, this proof will be either one or two commitments smaller
than a comparable Bulletproof+ arithmetic circuit proof. Due to the shorter witness size, proving and
verification should also be faster.

21

7.1 Products in Linear Portion

Alternatively, if the structure of the protocol to generate the constraints permits, it is possible to commit
to portions of the ¢ vector in the linear portion of the commitments to a and b and move the constraints
such that they appropriate scale the halves of ¢ in each commitment

Ca = COme (CQ,H;a,G) CbZCOme (Cl,H;b,G)

1. =y! (Q_lc—rr — 1)1 + 42 (Q_lCTr — 1)O

This will save the commitment to ¢ and will in the worst case add an additional scalar to the reduced
linear vector so the proof size will remain the same. Typically, if the bit length of 5+ len (¢) is the same
as the bit length of len (c) this will save one scalar as compared to the original variant. This does increase
the witness size by half as compared to the other protocol, but it is still smaller than the Bulletproof+
witness.

8 Performance

There are three aspects of performance to compare: proof size, proving time, and verification time.
Proof size is easy to calculate for a particular configuration. Unfortunately, I have not yet completed
a competitive implementation of the range proofs which makes it hard to compare the proving and
verification times empirically. However, it is possible to estimate the amount of time proving and
verification would take by counting the number of elliptic curve scalar multiplications necessary to prove
or verify, as they are by far the most expensive operations.

8.1 Proving and Verification Time (Incomplete)

To estimate the differences in proving and verification time without a concrete implementation, it is
possible to count the number of elliptic curve scalar multiplications. Empirical comparisons will likely
be fairly similar, as the elliptic curve scalar multiplications make up the significant majority of the
computation. The function r(n) = 2 [log, n] will be used to count the number of rounds

8.1.1 Arguments

For a fixed vector length of n the norm argument will use approximately 3n scalar multiplications to
prove while the inner product argument will use 4n. This is because the inner product argument has
two vectors and each (L, R) commits to an amount of scalars equal to the length of the vectors, and
committing to X in the norm argument requires twice as many scalars as R. Taking the geometric sum
over all the rounds yields the total number of scalar multiplications.

8.1.2 Range Proofs

The blinding commitment will require one scalar multiplication per element of the witness as well as a
quadratic number in the number of terms. It is likely possible to reduce this, but the number of terms
is fixed per protocol. Reciprocals also require a scalar multiplication. The witness itself is negligible for
the purposes of this estimation, as the digits and multiplicities are small.

8.1.3 Proving

To estimate the cost of proving, I will count three quantities: the number of inner products P, the
number of scalar multiplications S, and the number of basis updates B. The logic here is that there is
a fixed cost per inner product and a fixed cost per scalar multiplcation. In reality, the cost can depend
on the number of scalar multiplications in an inner product. Basis updates are counted separately since
they can be performed more efficiently.

Since Bulletproofs+ blind after the inner product argument, they cannot support multiparty proving
without some modifications to blind before the witnesses from different provers are combined in the inner
product argument. For this reason, it is more appropriate to compare Bulletproofs++ to Bulletproofs as
they support an equivalent set of features. To convert from Bulletproofs to Bulletproofs+ it is sufficient
to subtract n + 2 scalar multiplications from the Bulletproof operation count.

22

I will consider three cases: n inputs of b bits each in a binary range proof, n inputs of 64 bits each
in an inline base 16 range proof, and n inputs of 64 bits each in a base 256 range proof. In all three
proofs, the number of basis updates and scalar multiplications performed as part of the arguments is
proportional to the witness size.

Table 1: Range Proofs Proving Using Norm Argument

Type ‘ Param ‘ BP++ ‘ BP ‘
Binary k=nb (4k+5)S + kB + (r(k) +2)P (6k +3)S + (2k)B + (r(k) +3)P
Base 16 Inline k=16n | (5k+34)S+ kB + (r(k)+4)P | (24k+3)S+ (8k)B + (r(4k) + 3)P
Base 256 Shared | k=8n | (bk+ 783)S + kB + (r(k)+3)P | (48k +3)S + (16k)B + (r(8k) + 3)P

8.1.4 Verification

In the case of verification, the verifier performs one inner product, so it is only necessary to count the
number of scalar multiplications. The verifier will perform one scalar multiplication per commitment,
one per input, one per element of the witness, and two per round. This is true for all three Bulletproof
protocols, which vary only in how many commitments are part of the transcript and how large the
witnesses are. For the purposes of comparison, Bulletproof and Bulletproof+ verification are essentially
the same complexity with Bulletproofs+ requiring one fewer scalar multiplication. For n inputs with
either b bits each, or 64 bits in the case of the latter two rows, the number of elliptic curve scalar
multiplications to verify is

Table 2: Range Proofs Verification EC Scalar Multiplications

Type ‘ BP++ ‘ BP+ ‘ Ratio n — oo ‘
Binary 24n+nb+rndb) | 5+n+2nb+r(ndb) | (1 +Db)/(1+2Dh)
Base 16 Inline | 7+ 17n + r(16n) 5+129n + r(128n) | 17/129 ~ 0.132

Base 16 Shared | 260 + 9n + r(8n) Same 9/129 ~ 0.0698

8.2 Proof Size

I will use the same three bases, binary, base 16 inline, and base 256 share, to compare proof size. There
is a much larger configuration space for Bulletproofs-++-, so if the range is not fixed externally it may be
possible to choose ranges that are slightly smaller or larger to save space by choosing a range divisible
by one minus the base.

To make comparisons independent of the elliptic curve, I will write them as a linear combination of g
and s for group element size and scalar size respectively. Common curve instantiations will be g = 32.125
and s = 32 bytes for p ~ 2256 and g = s = 32 for p ~ 22°°.

23

Table 3: Binary Range Proofs

Range ‘ BP++ ‘ BP+ ‘ A BP A

1x8 4g+4-5s 9g + 3s | 5g-2s | 10g + 5s | 6g

2x8 6g+5s 11g + 3s | 5g - 2s | 12g + 5s | 6g

3x8 8g+4s 13g +3s | 5g-s | 12g+ 5s | 6g + s

1x16 6g+95s 11g + 3s | 5g - 2s | 12g + 5s | 6g

2x16 8g+5s 13g + 3s | 5g - 2s | 14g + 5s | 6g

3x16 10g+4s | 15g + 3s | bg-s | 1l4g 4+ 5s | 6g + s

1x32 8g+5s 13g + 3s | 5g - 2s | 14g + 5s | 6g

2x32 10g+5s | 15g + 3s | 5g - 2s | 16g + 5s | 6g

3x32 12g+4s | 17g + 3s | g - s 16g 4+ 5s | 6g + s

Table 4: Inline Base 16 Proof Size

Range ‘ BP++ ‘ BP-+ ‘ A ‘ BP ‘ A

1x64 | 10g+3s | 15g + 3s | bg | 16g + 5s | 6g + 2s

2x64 | 10g+5s | 17g + 3s | 7g-2s | 18g + 5s | 8g

3x64 12g+4s | 19g + 3s | 7g-s | 20g + 5s | 8g + s

4x64 12g+5s | 19g + 3s | 7g-2s | 20g + 5s | 8g

5x64 14g+4s | 21g +3s | 7g-s | 22g + 55 | 8g + s

6x64 1l4g+4s | 21g +3s | 7g-s | 22g + 5s | 8g + s

7x64 14g+5s | 21g + 3s | 7g-2s | 22g 4 55 | 8g

8x64 14g+5s | 21g +3s | Tg-2s | 22g + 55 | 8g

Table 5: Shared Base Proofs Size

Range ‘ Base ‘ BP++ ‘ BP+ ‘ A ‘ BP ‘ A
32x64 64 17g+4s | 25g + 3s | 8g-s 26g + 5s | 9g + s
64x64 256 19g+4s | 27g 4+ 3s | 8g-s 28g + 5s | 9g + s
96x64 256 19g+5s | 29g + 3s | 10g - 2s | 30g + 5s | 1lg
128x64 | 256 19g+5s | 29g + 3s | 10g - 2s | 30g + bs | 1lg
192x64 | 256 19g+5s | 29g + 3s | 10g - 2s | 30g + 5s | 1lg
256x64 | 256 21g+5s | 31lg + 3s | 10g-2s | 32g + 5s | 11g
384x64 | 256 21g+5s | 31lg + 3s | 10g-2s | 32g + 5s | 11g

24

References

[15]

Benedikt Biinz et al. Bulletproofs: Short Proofs for Confidential Transactions and More. Cryptology
ePrint Archive, Report 2017/1066. https://ia.cr/2017/1066. 2017.

Heewon Chung et al. Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger. Cryp-
tology ePrint Archive, Report 2020/735. https://ia.cr/2020/735. 2020.

Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correctness of a Shuf-
fle”. In: Advances in Cryptology — EUROCRYPT 2012. Ed. by David Pointcheval and Thomas
Johansson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 263—280. I1SBN: 978-3-642-
29011-4.

Oleg Andreev and Andrei Ivasko. cloak. https://github.com/stellar/slingshot/blob/main/
spacesuit/spec.md.

Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology ePrint Archive,
Report 2016/260. https://ia.cr/2016/260. 2016.

Koe, Kurt M. Alonzo, and Sarang Noether. Zero to Monero: Second Edition. https ://www .
getmonero.org/library/Zero-to-Monero-2-0-0.pdf. 2020.

Tom Elvis Jedusor. MIMBLEWIMBLE. https://docs.beam.mw/Mimblewimble.pdf. 2016.
Grin. https://grin.mw/.
Beam. https://beam.mw/.

Jonathan Bootle et al. “Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete
Log Setting”. In: Advances in Cryptology — EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 327-357. ISBN: 978-3-
662-49896-5.

Nathan Wilcox Sean Bowe Taylor Hornby. Zcash Protocol Specification. https://github. com/
zcash/zips/blob/main/protocol/protocol.pdf. 2022.

Andrew Poelstra et al. Confidential Assets. https://blockstream.com/bitcoinl17-final4l.pdf.
2017.

Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryptography.
Springer Science & Business Media, 2006, pp. 126-127.

Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. “Faster Point Multiplication on
Elliptic Curves with Efficient Endomorphisms”. In: Advances in Cryptology — CRYPTO 2001.
Ed. by Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 190-200. 1SBN: 978-3-
540-44647-7.

Ivan Bjerre Damgard and Gudmund Skovbjerg Frandsen. “Efficient algorithms for the ged and
cubic residuosity in the ring of Eisenstein integers”. In: Journal of Symbolic Computation 39.6
(2005), pp. 643-652. 1SSN: 0747-7171. DOI: https://doi.org/10.1016/j.jsc.2004.02.006. URL:
https://www.sciencedirect.com/science/article/pii/S0747717105000362.

Daniel Lichtblau. “Half~-GCD and fast rational recovery”. In: Proceedings of the 2005 international
symposium on Symbolic and algebraic computation. 2005, pp. 231-236.

damiano and Pete L. Clark. Quadratic forms over finite fields. https://mathoverflow . net/
questions/17103/quadratic-forms-over-finite-fields. 2010.

25

9 Proofs

There are three portions to this section. The first deals with the new norm argument and shows its
soundness in a manner basically identically to the inner product argument. The responses in the norm
argument are not blinded and are not zero knowledge. The essential property that guarantees this section
is the linear independence as e polynomials of the C, X, and R coefficients.

The second section shows the SHVZK, CWEE, and soundness of the blinding procedure. In this
section, all commitments are shown to be blinded by the leftover degrees of freedom from the error term
blinding, or an additional linear blinding value if these are insufficient.

Given these two sections, the correctness of each protocol follows from merely showing that arguments
are sound, in particular the reciprocal argument, and that it is possible to extract openings for the inputs
to the proofs. The soundness arguments basically all follow from multiple applications of the Schwartz-
Zippel lemma and extraction of the inputs from the linear independence, as polynomials in x, of the
input coefficients.

9.1 Norm Arguments

The norm arguments are not zero knowledge, so it is sufficient to show that they are sound and that
there exists an extractor for the witnesses. In the case of reduction to the inner product argument, it is
sufficient to show that the change of basis is invertible. This implies that no known discrete log relations
can be known about the new basis, as they would imply discrete log relations in the old basis. The
soundness follows from simplification of the algebra.

9.1.1 Norm Argument

To extract the witness for the new norm argument, it is sufficient to show an extractor for a single round
of the argument and apply this extractor repeatedly. The existence of the extractor follows directly from
the invertibility of the matrix of challenge functions evaluated at three points. These points are distinct
with overwhelming probability, and the matrix of challenge functions is

1 €o ed —1 1 0 -1
1 e1 e2—1| =V(e) |0 1 0
1 e e3—1 0 0 1

Where V (e) is the Vandermonde matrix, which is invertible if all the challenge points are distinct.
Inverting this matrix allows extracting the witness from three evaluations of one round of the argument.
Soundness follows from the Schwartz-Zippel lemma applied to the polynomial relation.

9.2 Blinding

The generic blinding protocol does much of the heavy lifting for the range proofs. In particular, apart
from the inputs, it is sufficient to show that there exists an extractor for the blinding procedure to extract
the witnesses for all the particular proofs. Also, it is sufficient to show that the blinding procedure is
SHVZK to show that all the other protocols are as well.

9.2.1 Soundness

The soundness of the blinding protocol follows directly from the computations describing the blinding
protocol. That is, expanding the coefficient 2n — 1 or 2n depending which version is used yields an
expression that is, with overwhelming probability, zero only if the system of constraints is satisfied.

9.2.2 Witness Extraction

To extract the witnesses of all the commitments C; and B, note that each component of C' is a ¢
polynomial in the witnesses of C; and B, as well as “the” input. For the purposes of the blinding
argument, the protocol assumes that there is only one input and leaves it up to the specific protocols to
handle multiple inputs.

Given a total of n 4+ 2 commitments, the emulator n + 2 will be run times on ¢, construct the
Vandermonde matrix, and with overwhelming probability invert this matrix. Applying this to the matrix
of openings yields the witnesses for all the commitments.

26

9.2.3 Zero Knowledge

To show that the protocol is SHVZK, it is sufficient to show that given a transcript and witness there
exists blinding values which open the commitments of the transcript to the given witness.

The total number of blinding values in commitment 1 is 2n — 2 and in commitments i = 2..n it is
2n — 1. This makes the total number of blinding values

" 1
dim(b) = ~1+ Y 2n —i=2n? - <”; >1
=1

Each commitment constrains the blinding values, as does each opening of the blinding values. There
are n 4+ 1 commitments and 2n openings for a total number of constraints

dim(c) =3n+1

The proof transcript corresponds to a matrix of constraints M dependent on the discrete logs of the
basis points and the ¢ coefficients. This matrix satisfies

Mb=c

For the proof to be zero knowledge, there must exist a b for every c. The space of possible ¢ values
is constrained by one dimension, as in every valid proof the blinding values cancel in the evaluation of
the error polynomial. So, in order for b to exist for every ¢ coming from a valid proof, M must have
rank 3n.

It is assumed that the constraints coming from the discrete log problem are linearly independent
from the ¢ constraints, since otherwise the prover would have randomly sampled a discrete log relation
among the basis points which occurs only with negligible probability. These constraints are also linearly
independent of each other, so they can be safely removed from consideration. It is sufficient to show that
the remaining constraints have rank 2n — 1.

To show this, it is sufficient to demonstrate the existence of 2n — 1 linearly independent vectors in the
image of M. There are 2n — 2 vectors that come from zeroing all the blinding except for each component
in the first commitment. That is

v; such that v;; =t¢, v; ;41 = —1 where ¢ # 2n — 2,2n

All lie in the image of the matrix M by setting the ¢ blinding value in C; to 1. The final basis element
can be constructed from Csy
w such that w,,_s = t2, w, = —1

Since all of the v; are zero on the n component, w is linearly independent of them. Since it is also in
the image, the image must have dimension at least 2n — 1. Since the image was already shown to have
at most dimension 2n — 1, the dimension of the image must be exactly 2n — 1 so long as there are at
least two commitments. In the case of 1 non-blinding commitment, it is sufficient to simply add another
blinding component with coefficient 0.

In the case of a square, the basic argument remains the same with some slight adjustments to the
structure of the image and number of blinding values. The number of blinding values in commitment C;
is 2n — ¢ for all the commitments, and the image can be constructed purely from the first commitment.
However, the number of blinding values is still insufficient in the case of n = 1.

9.3 Specific Protocols

I will show witness extraction and soundness for three protocols: the binary range proof, confidential
transaction proof, and arithmetic circuit proof. The other reciprocal range proof variants follow trivially
from the confidential transaction proof proof by simply not using various features of the larger typed
protocol and potentially using a different version of the blinding protocol.

These proofs will deal only with extraction of the input commitments and soundness of the protocols.
Zero knowledge follows from the zero knowledge property of the blinding portion of the protocol, detailed
in the previous section, and the fact that each input is also blinded. The witness extraction for all three
protocols will use the following Vandermonde argument.

27

Given a set of witness n vectors w; from each input commitment, and an opening of

The emulator will be run n times to obtain n evaluations of the above vector valued polynomial.
Let the matrix W'(x) have the vectors w’(z;) as its rows, where z; is the j challenge. The modified
Vandermonde matrix

Vij(x) = 2t

Takes a vector of coefficients and evaluates them as a polynomial at the point x;, in this case with
0 constant term, For distinct values of x; not equal to zero this matrix is invertible. Letting W be the
matrix w; as its rows

W(x)=VW W=V """k

So, after n calls to the random oracle, the emulator can invert the Vandermonde matrix with over-
whelming probability and solve for the openings of the inputs. Note that this is true for witnesses of any
structure, including witnesses with only a value and blinding or witnesses also including a type.

9.3.1 Binary Range Proof

Extraction of the inputs proceeds according to the Vandermonde extractor applied to the challenge value
x in the protocol. It is applied to witness vectors containing the blinding term on the first component
of the linear vector of the bulletproof and the value term on the scalar component of the bulletproof.

Soundness of the protocol, following the application of the blinding argument, follows from the
expansion of the t? term in the blinding polynomial. This system of constraints encodes the quadratic
constraints

(x—1/2)2-1/4=x(x—1)

Which are zero only on binary digits. The computation of the base values ensures that all the
representable values lie in the desired range. Therefore the proof is sound.

9.3.2 Typed Reciprocal Range Proof

Extraction in the typed reciprocal range proof invokes the Vandermonde extractor using the challenge
value z from step 7 of the protocol. The witness vectors have the type values on the first linear component
of the bulletproof, blinding values on the second linear component of the bulletproof, and amounts on
the scalar component.

Soundness of the protocol follows from the expansion of the central coeflicient properly encoding the
constraints and then from the soundness of the reciprocal system of constraints. The soundness of the
reciprocal system of constraints follows from the soundness of the reciprocal argument, shown below,
and the fact that all the bases represent every value in the range, which also shown.

9.3.3 Reciprocal Argument

Here I show the soundness of the following general version of the reciprocal argument: the prover commits
to v of numerators and t of roots of the denominators, the verifier chooses e, and the prover commits to
the vector r of rational functions. Assuming that the prover shows

(e—l—ti)ri:vi Zri:O

It follows that all of the sums of v; with the same denominator equal zero
S0
t=t;

Since all of the multiplicative constraints hold, it must be the case that either

Vi
€+ti

r; = e+t; =0,v,=0

28

The latter case is equivalent to the challenge e being a root of the polynomial
[Te+t)=g()=0
i

Which occurs with negligible probability by the Schwartz-Zippel lemma. Therefore, with overwhelm-
ing probability the r; are equal to the correct rational functions. Given this, the sum of r; is

v f'(e)
Ze+n— — fle)

%

Since g(e) | f(e) and g(e) = 0 with negligible probability, this expression is zero only if f/'(e) = 0.
Once again, this polynomial is zero at a uniformly random e with negligible probability by the Schwartz
Zippel lemma. Therefore, if this sum is zero the rational function must be identically zero. This can
only all the values with common denominators cancel, as each distinct reciprocal monomial is linearly
independent over base field.

9.3.4 Arithmetic Circuit

Given that D is of full column rank, multiplication by D is invertible in the sense that there exists a D’
such that
D'(Dx) =x

When invoking the Vandermonde extractor in this case, the matrix will also be multiplied by the
matrix D’ to extract the witness vectors. The witnesses in the arithmetic circuit protocol consist of a
blinding value on the first linear term and a value in the scalar component of the bulletproof vectors.
The challenge will be the value 7 such that r; = r*t!. The extracted witnesses will satisfy

W' (x)=V(x)DW W =D'V(x)"'W'(x)

The soundness of the protocol follows from algebraic simplification of the central coefficient. Whether
the system of constraints given by A, B, C, and D actually encode the problem they are intended to
is outside the scope of this protocol, although there do exist automated conversion tools from certain
classes of programs to arithmetic circuits which are provably correct [1].

29

10 Appendix
10.1 Half GCD for Euclidean Domains

Both of the most common complex multiplication endomorphism rings, given by extensions by a* = 1

and o = 1, form Euclidean domains, which means the extended euclidean algorithm works over these

rings. Some other CM discriminants yield Euclidean domains, like o = /=7, but in general they do

not. Rather than finding a short rational representation of the field elements, the prover can first write

the field element as linear combination of the CM endomorphism and then apply the extended euclidean

algorithm, or a suitable half gcd algorithm, to find a short rational representation over the CM field.
To begin, the prover must first find a factorization of the modulus over the CM field as

p=u-+va* a*z—% mod p
This computation can be carried out once, ahead of time, for the field. Then, to reduce a general
e € F, one can compute the reduced representation by “dividing” by the factorization of p, rounding
the resulting components to integers, multiplying by the p factorization, and finally subtracting it from
the original value. The subtracted value is divisible by p, so the result is congruent to the original value
mod p.
e (eu) ev

—Y =t —a=q+qo

u + va* D D
e—([qo] + afqo])(u+va™) =eg +era=e mod p

This optimization is well known [13] and related to GLV [14] techniques for scalar multiplication. Up
to sign, eg and e; are half the field length. Then, the protocol can use a half gcd algorithm for the CM
field to find a small rational reconstruction for the reduced representation of e.

There are several techniques for faster gcd, and related euclidean type computations like residue sym-
bols, for the euclidean fields given by small roots of unity [15], but apparently no specialized algorithms
for the extended euclidean algorithm or half ged. I think it is possible to use generic half ged algorithm
like [16] with quotient computations substituted for the above quotient operation. The only additional
complication is splitting the numbers in half in a manner guaranteed to produce the minimal solution.

10.2 General Sum of Squares to Inner Product

It is possible to transform a sum of squares to an inner product in a finite field where —1 is not a
quadratic residue, although it is not possible via a simple scaling of the inputs as it is in the case when
—1 is a quadratic residue. Recall that every quadratic form @Q(x) has an associated symmetric bilinear
form B(x,y) such that

Q(x) =B(x,x) 2B(xy) =Q(x+y)-Q(x) - Q(y)

This form is sufficient expand @Q(x) evaluated over linear combinations of vectors as

Q <Z aiui> = ZCL?Q(UI) + Z 2aiajB(ui, Uj)

i<j

Given vectors where Q(u;) = 0, the expanded expression will have only with cross terms. If it is also
possible make all but adjacent cross terms cancel, the transformation will have taken the sum of squares
to an inner product. This procedure follows that discussed here [17]. To begin, note that every quadratic
form in at least three variables is isotropic, i.e. has a nontrivial zero, over a finite field.

Rather than considering the entire quadratic form together, it can instead be broken down into three
dimensional quadratic subforms. Since the sum of squares is symmetric, given a solution for the ternary
sum of squares

Q3(xay7 Z) =z’ + y2 + 2

The same solution will work for all the subforms. To solve the three dimensional case, one will first
find linearly independent vectors Q3(u) = Q3(v) = 0 where Bs(u,v) = 1. Let w span the complement of
u and v. By elementary linear algebra, the kernel of x — Bs(u,x) is at least two dimensional, contains
u, and does not contain v. Therefore, it must contain w. Likewise, for v and u. Therefore

Bs(u,w) = B3(v,w) =0

30

The change of variables by these vectors yields
Qs3(au + bv + cw) = ab + *Q3(w)

For a sum of squares, these vectors can be concretely instantiated given a solution z? + y2 + 12 = 0,
which is given by normalizing any solution so z = 1. Then

u=(z,y,1) v =(-y,z,1) w=(z—y,x+y,1)

Which yields @Qs3(w) = —1. Returning to the original quadratic form Q(x), the variables can be
partitioned into groups of three, plus at most two remaining squares. Letting T" apply the above linear
transformation to each pair, given the number of squares 3n + r

r n—1
2 2
Q(Tx) = E T3p45 Tt E T3iT3i+1 — T334-2
=0 i=0

Pairing up the remainder terms with two of the negated squares, these differences can be factored
into products and the procedure repeated on the the remaining n — r values. In the worst case, the final
round of the protocol will either include one or two squares, which can be written as the value times
itself for one square or a sum of squares

(a® +b%) = (1/2)(a +b)(a +b) + (1/2)(b — a)(a — b)

Each round has a corresponding linear transformation of the basis vectors by the inverse transpose of
the witness transformation. Because each transformation is the same, except for the remained terms, and
is only applied locally, the transformation can use a similar technique to the fast scalar multiplications
in the norm arguments. The total length of the inner product vectors is given by the geometric sum of

thirds times the length n, or
n/3 n

1-1/3 2

Up to the remainder terms. Then same sort of transformation can be applied to arbitrary quadratic
forms, but it is not possible in general to handle all triples of variables simultaneously, and the change
of basis operation will generally require much more computation.

31

