
2

Misbehavior in Bitcoin: A Study of Double-Spending
and Accountability

GHASSAN O. KARAME, NEC Laboratories Europe
ELLI ANDROULAKI, IBM Research Zurich
MARC ROESCHLIN, ARTHUR GERVAIS, and SRDJAN ČAPKUN, ETH Zurich

Bitcoin is a decentralized payment system that relies on Proof-of-Work (PoW) to resist double-spending
through a distributed timestamping service. To ensure the operation and security of Bitcoin, it is essential
that all transactions and their order of execution are available to all Bitcoin users.

Unavoidably, in such a setting, the security of transactions comes at odds with transaction privacy. Moti-
vated by the fact that transaction confirmation in Bitcoin requires tens of minutes, we analyze the conditions
for performing successful double-spending attacks against fast payments in Bitcoin, where the time between
the exchange of currency and goods is short (in the order of a minute). We show that unless new detec-
tion techniques are integrated in the Bitcoin implementation, double-spending attacks on fast payments
succeed with considerable probability and can be mounted at low cost. We propose a new and lightweight
countermeasure that enables the detection of double-spending attacks in fast transactions.

In light of such misbehavior, accountability becomes crucial. We show that in the specific case of Bitcoin,
accountability complements privacy. To illustrate this tension, we provide accountability and privacy defi-
nition for Bitcoin, and we investigate analytically and empirically the privacy and accountability provisions
in Bitcoin.

Categories and Subject Descriptors: K.4.1 [Computers and Society]: Public Policy Issues—Privacy; K.4.4
[Computers and Society]: Electronic Commerce—Payment schemes, security

General Terms: Design, Economics, Experimentation, Security

Additional Key Words and Phrases: Monetization, distributed computing, security, privacy, Bitcoin, double-
spending

ACM Reference Format:
Ghassan O. Karame, Elli Androulaki, Marc Roeschlin, Arthur Gervais, and Srdjan Čapkun. 2015. Misbe-
havior in Bitcoin: A study of double-spending and accountability. ACM Trans. Info. Syst. Sec. 18, 1, Article 2
(May 2015), 32 pages.
DOI: http://dx.doi.org/10.1145/2732196

1. INTRODUCTION

First introduced in 2008, Bitcoin [Nakamoto 2009] is an emerging digital currency
that is currently integrated across a number of businesses [BitcoinTrade 2013] and
exchange markets (e.g., BitcoinCharts [2013]).

Bitcoin is a Proof-of-Work (PoW)-based currency that allows users to generate dig-
ital coins by performing computations. Users execute payments by digitally signing

Authors’ addresses: G. O. Karame, Security Group, NEC Laboratories Europe, 69115 Heidelberg, Germany;
email: ghassan.karame@neclab.eu; E. Androulaki, Storage Integrity Group, IBM Research Zurich, Switzer-
land; email: lli@zurich.ibm.com; M. Roeschlin, A. Gervais, and S. Čapkun, Department of Computer Sci-
ence, ETH Zurich, 8092, Zurich, Switzerland; emails: romarc@student.ethz.ch, {arthur.gervais, capkuns}@inf.
ethz.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1094-9224/2015/05-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2732196

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

http://dx.doi.org/10.1145/2732196
http://dx.doi.org/10.1145/2732196

2:2 G. Karame et al.

their transactions and are prevented from double-spending their coins (i.e., signing
over the same coin to two different users) through a distributed timestamping service
[Nakamoto 2009]. This service operates on top of the Bitcoin Peer-to-Peer (P2P) net-
work, which ensures that all transactions and their order of execution are visible to all
Bitcoin users.

Today, Bitcoin is increasingly used in a number of “fast payment” scenarios, where
the exchange time between the currency and goods is short. Examples include vending
machine payments and fast-food payments (recently featured in media reports on
Bitcoin [CNN 2011]), where the payment is followed by fast (in the order of a minute)
delivery of goods. The Bitcoin PoW-based timestamping mechanism is essential for the
detection of double-spending attacks (i.e., in which an adversary attempts to use some
of her coins for two or more payments), but it requires tens of minutes to verify a
transaction and is therefore inappropriate for fast payments. Since Bitcoin users are
encouraged to hold many accounts, there is only limited value in verifying the payment
after the user has obtained the goods (and left the store) or services (e.g., access to online
content). The developers of Bitcoin implicitly acknowledge the problem of verifying fast
payments and inform users that they do not need to wait for the payment to be verified
as long as the transaction has been released in the network [BitcoinFAQ 2013]. This,
however, as we show, does not prevent double-spending.

In this work, we start by analyzing double-spending attacks on fast Bitcoin pay-
ments and show that unless appropriate detection techniques are integrated in current
Bitcoin clients, double-spending attacks on fast payments succeed with overwhelming
probability and can be mounted against current Bitcoin clients at low cost. We further
show that the detection measures recommended by Bitcoin developers are not always
effective in detecting double-spending; we argue that even if those recommendations
are followed, double-spending attacks on Bitcoin are still possible. Leveraging our find-
ings, we propose and implement a modification to the current Bitcoin implementation
that ensures the detection of double-spending attacks against fast payments. A variant
based on our proposed technique is integrated in BitcoinXT [2014].

Given the increasing use of Bitcoin, misbehavior in Bitcoin is only expected to in-
crease. Motivated by our double-spending investigation, we then proceed to analytically
and empirically investigate the degree of privacy and accountability currently offered
by Bitcoin. Our investigation aims at determining (1) the extent to which misbehav-
ing users/profiles can be identified and (2) the privacy and accountability that Bitcoin
offers to its users.

This article extends and improves our prior work in Karame et al. [2012] and
Androulaki et al. [2013] with significant new material. More specifically, our contribu-
tions in this work can be summarized as follows:

—We measure and analyze the time required to confirm transactions in Bitcoin. Our
analysis shows that transaction confirmation in Bitcoin can be modeled with a shifted
geometric distribution with an average transaction confirmation time of 10 minutes
and a standard deviation of approximately 20 minutes. We argue that this hinders
the reliance on transaction confirmation when dealing with fast payment scenarios.

—We thoroughly analyze the conditions for performing successful double-spending
attacks against fast payments in Bitcoin. We then present the first realization of
double-spending attacks on fast payments in Bitcoin using a handful of hosts located
around the globe.1 Here, we extend our work in Karame et al. [2012] and show how
an adversary can exploit block forks and version changes in Bitcoin to perform such
double-spending attacks.

1In our experiments, we solely used Bitcoin wallets and accounts that we own; other Bitcoin users were not
affected by our experiments.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:3

—We explore the privacy and accountability provisions of Bitcoin. More specifically, we
adapt existing privacy notions to the Bitcoin context and investigate analytically and
experimentally the privacy and accountability provisions of Bitcoin. In this respect,
we extend our analysis in Androulaki et al. [2013] and collect statistics acquired from
the first 239,200 Bitcoin blocks using two of our proposed heuristics. We also extend
our simulation results to categorize the privacy leakage in Bitcoin with respect to
the user activity in Bitcoin (i.e., number of transactions performed by users). Finally,
we show that in the case of Bitcoin, accountability can be seen as the complement of
privacy.

The remainder of the article is organized as follows. In Section 2, we briefly describe
Bitcoin. In Section 3, we analyze and evaluate the security of fast payments with exist-
ing Bitcoin clients. In Section 4, we evaluate the privacy and accountability provisions
of the Bitcoin system. In Section 5, we overview related work. We conclude the article
in Section 6.

2. BACKGROUND ON BITCOIN

Bitcoin is a decentralized P2P payment system [Nakamoto 2009] that was introduced
in 2008. Electronic payments are performed by generating transactions that transfer
Bitcoin coins (BTCs) among Bitcoin peers. These peers are referenced in each transac-
tion by means of virtual pseudonyms—referred to as Bitcoin addresses. Each address
is mapped through a transformation function to a unique public/private key pair. These
keys are used to transfer the ownership of BTCs among addresses.

Peers transfer coins to each other by issuing a transaction. A transaction is formed by
digitally signing a hash of the previous transaction where this coin was last spent along
with the public key of the future owner and incorporating this signature in the coin
[Nakamoto 2009]. Transactions take as input the references to an output of another
transaction that spends the same coins, then outputs the list of addresses that can
collect the transferred coins. Any peer can verify the authenticity of a BTC by checking
the chain of signatures.

Transactions are included in Bitcoin blocks that are broadcasted in the entire net-
work. To prevent double-spending of the same BTC, Bitcoin relies on the synchronous
communication assumption along with a hash-based PoW concept. More specifically, to
generate a block, Bitcoin peers, or miners, must find a nonce value that when hashed
with additional fields (i.e., the Merkle hash of all valid and received transactions, the
hash of the previous block, and a timestamp), the result is below a given target value.
If such a nonce is found, miners then include it (as well as the additional fields) in a
new block, thus allowing any entity to verify the PoW. Upon successfully generating a
block, a miner is granted a number of BTCs (25 new BTCs since block 210,000). This
provides an incentive for miners to continuously support Bitcoin. The resulting block is
forwarded to all peers in the network, who can then check its correctness by verifying
the hash computation. If the block is deemed to be “valid,”2 then the peers append it
to their previously accepted blocks. Since each block links to the previously generated
block, the Bitcoin block chain grows upon the generation of a new block in the network.
Note that when miners do not share the same view in the network (e.g., due to network
partitioning), they might work on different block chains, thus resulting in “forks” in
the block chain. Block forks are inherently resolved by the Bitcoin system; the longest
block chain will eventually prevail. In rare occasions, the Bitcoin developers can force
one chain to be adopted on the expense of others [Gervais et al. 2014b]. Transactions
not appearing in blocks that are part of the main block chain (i.e., the longest) will

2That is, the block contains correctly formed transactions that have not been previously spent and has a
correct PoW.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:4 G. Karame et al.

be readded to the pool of transactions in the system and reconfirmed in subsequent
blocks.

The main intuition behind Bitcoin is that for peers to double-spend a given BTC,
they would have to replace the transaction where the BTC was spent and the corre-
sponding block in which it appeared; otherwise, their misbehavior would be detected
immediately. This means that for malicious peers to double-spend a BTC without being
detected, they would not only have to redo all of the work required to compute the block
where that BTC was spentbut also would have to recompute all subsequent blocks in
the chain. The older a Bitcoin transaction, and thus the deeper it is included in the
block chain, the harder it becomes to modify/double-spend the transaction.

Further details on Bitcoin can be found in Nakamoto [2009], BitcoinRules [2012],
and BitcoinProtocol [2013]. In what follows, we provide a summary (adapted from
Nakamoto [2009]) of the steps that peers undergo in Bitcoin when a payment occurs.

—New transactions are broadcasted by peers in the network.
—When a new transaction is received by a peer, it checks whether the transaction is

correctly formed and whether the BTCs have been previously spent in a block in the
block chain. If the transaction is correct, it is stored locally in the memory pool of
peers until it is included in a valid block. In the article, we refer to a transaction that
appears in the memory pools of peers as a zero-confirmation transaction.

—Miners work on constructing a new block. If they find a PoW, they include all of
the transactions that appear in their memory pool within the newly formed block.
Miners then broadcast the block in the network. Transaction that are included in
well-formed blocks are called confirmed transactions.3

—When peers receive a new block, they verify that the block hash is valid and that
every transaction included within the block has not been previously spent. If the
block verification is successful, miners continue working toward constructing a new
block using the hash of the last accepted block in the “previous block” field.

3. SECURITY ANALYSIS OF FAST BITCOIN PAYMENTS

In what follows, we analyze and evaluate the effectiveness of double-spending attacks
on fast Bitcoin payments (i.e., where the exchange between currencies and services
happens simultaneously). Leveraging our findings, we propose and implement a mod-
ification to the current Bitcoin implementation to accelerate the detection of double-
spending attacks against fast payments.

3.1. Model

Our system consists of a malicious client A and a vendor V connected through a Bitcoin
network. We assume that A wishes to acquire a service from V without having to
spend its BTCs. More specifically, A could try to double-spend the coin that she already
transferred to V. By double-spending, we refer to the case where A can redeem and use
the same coins with which she paid V so as to acquire a different service elsewhere.

We assume thatA can only control few peers in the network (that she can deploy since
Bitcoin does not restrict membership) and does not have access to V ’s keys or machine.
The remaining peers in the network are assumed to be honest and to correctly follow
the Bitcoin protocol. In this article, we assume that A does not participate in the
block generation process. This also suggests that when a transaction is confirmed in a
block, this transaction cannot be modified by A. To hide her profile, we assume that A
generates a new Bitcoin address whenever it communicates with V.

3In current Bitcoin clients, a transaction has to receive six confirmations before it is added to the user’s
wallet.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:5

3.2. Transaction Confirmation Time

As described in Section 2, the most conventional way for a vendor V to accept a payment
made by a customer C is to wait until the transaction issued from C to V is confirmed
in at least one block before offering service to C. In what follows, we analyze the block
generation times in Bitcoin.

To generate a block, miners work on constructing a PoW. In particular, given the set
of transactions that have been announced since the last block’s generation, and the
hash of the last block, Bitcoin miners need to find a nonce such that

SHAd256{Bll || MR(TR1, . . . , TRn) || No} ≤ target , (1)

where SHAd256 is the SHA-256 algorithm applied twice, Bll denotes the last generated
block, MR(x) denotes the root of the Merkle tree with elements x, TR1 || . . . || TRn is
a set of transactions that have been chosen by the miners to be included in the block,4
No is the 32-bit nonce, and target is a 256-bit number. To generate the PoW, each miner
chooses a particular subset of the candidate solutions’ space and performs brute-force
search. It is apparent that the bigger the target , the easier it is to find a nonce that
satisfies the PoW.

In the following, we show (1) that the success of each miner in generating a block
within sufficiently small time intervals can be simulated as a Bernoulli trial and (2) that
the success probability of block generation within a sequence of small time intervals
corresponds to successive Bernoulli trials with substitution (which is also known as
shifted geometric distribution [ProofWiki 2013]). For the purpose of our analysis, we
note the following:

(1) The probability of success in a single nonce trial is negligible. Taking into con-
sideration that SHA-256 is a pseudorandom permutation function, each of the 232

nonces has
target
2256−1 probability of satisfying the PoW.

(2) Miners compute their PoW independently; as such, the probability that one of them
succeeds does not depend on the progress of PoW of the others.

(3) Miners frequently restart the generation of their PoW, and whenever a new trans-
action is added to the memory pool of a miner, the Merkle root (included in the
block) changes.

(4) For the sake of our analysis, we approximate the time interval between the an-
nouncement of successive transactions as follows. We extract the various block
generation times from the Bitcoin block explorer and assume that transactions are
announced uniformly at random between two successive block generations. Our
findings (Figure 1) show that the time interval between the announcement of most
pairs of successive transactions is less than 15 seconds. Therefore, we assume in the
sequel that the PoW for block generation is restarted approximately every dt ≈ 15
seconds.

Given the first two observations, the probability of a miner in succeeding in an indi-
vidual block generation attempt can be modeled as an independent Bernoulli process
with success probability ε = target

2256−1 . Based on the last observation, we claim that con-
secutive block generation attempts can be modeled as sequential Bernoulli trials with
replacement. Our claim for replacement is justified by the fact that maximum possible

4These transactions are chosen from the transactions that have been announced (and not yet confirmed)
since Bll ’s generation.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:6 G. Karame et al.

Fig. 1. Distribution of the announcement times of
transactions. We assume that transactions are an-
nounced uniformly at random within two succes-
sive blocks.

Fig. 2. Block generation times in Bitcoin. Assuming
a (time) bin size of 2 minutes, the block generation
function can be fitted to a shifted geometric distri-
bution with p = 0.19.

PoW progress performed by a miner (expressed as a number of hash calculations)
before its PoW resets is negligible in comparison to 2256 − 1. This is the case since the
PoW progress approximates 235 � 2256 − 1 given the computing power of most Bitcoin
miners [Mining 2013; MiningHardware 2013].

Let ni refer to the number of attempts that a miner mi performs within a time period
δ. Typically, δ is in the order of few minutes. The probability pi of mi finding at least
one correct PoW within these trials is given by pi = 1 − (1 − ε)ni . Since ε and ni are
small, pi can be approximated to pi = 1 − (1 − ε)ni ≈ niε.

Therefore, the set of trials of mi within δ can be unified to constitute a single Bernoulli
process with success probability niε.

Assuming that there are � miners, mi, i = 1 . . . � with success probability pi, i =
1 . . . � respectively, the overall probability of success in block generation can be approx-
imated to

pr ≈ 1 −
�∏

i=1

(1 − pi), or pr = 1 − (1 − p)� ≈ � · p.

This is true when p� � 1 and when the miners have equal computing power—that
is, pi = p, i = 1 . . . �.

We divide time into equal intervals of size δ; let t0 = 0 denote the time when the last
block was generated. Here, each miner can make up to ni trials for block generation
within each interval. Let the random variable Xk denote the event of success in the
time interval between tk and tk+1. That is,

Xk =
{

1 if a block is created between tk−1, and tk,
0 otherwise.

It is evident that Prob(Xk = 1) = pr. Conceivably, after a success in block generation,
miners stop mining for that particular block. We denote the number of attempts until
a success is achieved by another random variable Y:

Prob(Y = k) = Prob(Xk = 1)
k−1∏
i=1

Prob(Xi = 0) = pr(1 − pr)k−1.

Assuming a constant rate of trials per time window δ, the number of failures until a
success is observed in block generation is proportional to the time it takes for a block

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:7

to be generated. Let T denote the time period until a block is generated:

Prob(T = k · δ) = Prob(Y = k) = pr(1 − pr)k−1.

Given this, we conclude that the distribution of block generation times can be modeled
with a shifted geometric distribution with parameter pr [ProofWiki 2013].

In Figure 2, we confirm this analysis and show that (experimental) block generation
times in Bitcoin can be fitted to a shifted geometric distribution with p = 0.19.5 For
the purpose of our experiments, we considered δ to be 2 minutes. To measure the
generation time of existing Bitcoin blocks, we created a Python script that parses
the block chain of Bitcoin (up to June 2013) and extracts the time intervals between
the generation of consecutive blocks. Our findings show that although the average
block generation time is approximately 10 minutes (10 minutes and 2.66 seconds), the
standard deviation of the measurements is about 1241.3855 seconds, which corresponds
to almost 20 minutes.

This also shows that the time required to confirm transactions impedes the operation
of many businesses that are characterized by a fast-service time. As such, it is clear that
vendors, such as vending machines and take-away stores [BitcoinMyths 2013], cannot
rely on transaction confirmation when accepting Bitcoin payments. To address that,
Bitcoin encourages vendors to accept fast Bitcoin payments with zero confirmations as
soon as the vendor receives a transaction from the network transferring the correct
amount of BTCs to one of its addresses [BitcoinFAQ 2013; BitcoinMyths 2013].

3.3. Necessary Conditions for Successful Double-Spending

To perform a successful double-spending attack, the attacker A needs to trick the ven-
dor V into accepting a transaction TRV that V will not be able to redeem subsequently.

In this case, A creates another transaction TRA that has the same inputs as TRV
(i.e., TRA and TRV use the same BTCs) but replaces the recipient address of TRV—
the address of V—with a recipient address that is under the control of A. If both
transactions are sent at the same time, they are likely to have similar chances of getting
confirmed in an upcoming block. This is the case since Bitcoin peers will not accept
multiple transactions that share common inputs; they will only accept the version of the
transaction reaching them first that they will consider for inclusion in their generated
blocks and will ignore all subsequent transactions. Given this, a double-spending attack
can succeed if V receives TRV , and the majority of the peers in the network receive TRA
so that TRA is more likely to be included in a subsequent block.

Let tVi and tAi denote the times at which node i receives TRV and TRA, respectively. As
such, tVV and tAV denote the respective times at which V receives TRV and TRA. Given this,
we outline the necessary conditions for A’s success in performing a double-spending
attack.

Requirement 1—TRV is added to the wallet of V. If TRV is not added to the memory
pool of V, then V cannot check that TRV was indeed broadcasted in the network. Note
that for TRV to be included in V ’s wallet, then tVV < tAV ; otherwise, V will first add TRA
to its memory pool and will reject TRV as it arrives later.

Requirement 2—TRA is confirmed in the block chain. If TRV is confirmed first in the
block chain, TRA can never appear in subsequent blocks. In other words, V will not

5We acquired p = 0.19 by fitting the average and variance of block generation times that we acquired
experimentally from the block chain (up to June 2013) in a shifted geometric distribution [ProofWiki 2013].

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:8 G. Karame et al.

Fig. 3. Sketch of a double-spending attack on fast payments in Bitcoin. Here, the attacker A dispatches
two transactions that use the same BTCs in the Bitcoin network. The double-spending attack is successful
if the BTCs that A used to pay for V cannot be redeemed (i.e., when the second transaction is included in the
upcoming Bitcoin block).

have its BTCs back. Recall that the goal of A is to acquire a service offered by V without
having to spend her BTCs.

Requirement 3—V ’s service time is smaller than the time it takes V to detect misbe-
havior. Since Bitcoin users are anonymous and users hold many accounts, there is only
limited value in V detecting misbehavior after the user has obtained the service (and
left the store). As such, for V to successfully detect any misbehavior by A, the detection
time must be smaller than the service time. In Section 4, we investigate the linkability
of Bitcoin addresses in detail.

3.4. Performing Double-Spending Attacks in Bitcoin

In this section, we discuss how A can satisfy Requirements 1, 2, and 3. Table I sum-
marizes the notations used in Section 3.

Satisfying Requirement 1—TRV is added to the wallet of V. In the sequel, we
assume that A has access to a set of helper nodes, denoted by H. A and H do not
necessarily have to be on physically disjoint machines (e.g., H could run as a
thread/process on the same machine as A). We further assume that H never connects
directly to V in the Bitcoin P2P network.

As shown in Figure 3, A sends TRV to V at time τV and TRA to H at time τA such that
τA = τV + �. V and H relay the transactions that they received from A in the network.
Let δAHV refer to the time it takes TRA to propagate in the Bitcoin P2P network from
H to V and δVAV denote the time it takes TRV to reach V. In this case, tAV − tVV can be
estimated as follows:

tAV − tVV ≈ τA + δAHV − (
τV + δVAV

) ≈ � + δAVH − δVAV . (2)

Note that since H is never a neighbor of V, there is at least one hop on the path
between H and V. For simplicity, we assume that A connects directly to V. We acknowl-
edge that some vendors may not accept direct incoming connections [BitcoinWiki 2014]
or may be located behind Network Address Translators (NATs). In Section 3.5, we show
that our analysis can also apply in the case where A is not directly connected to V.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:9

Table I. Summary of Notations Used in Section 3

Notation Explanation

A Attacker machine
V Merchant machine
H Helper nodes colluding with A
TRx Transaction x
ni Number of attempts that a miner mi performs to find a PoW
pi Probability that mi finds a PoW after ni trials
pr Probability of success of all miners in finding a PoW
ηk
V The number of Bitcoin peers that received (and mine for) TRV

ηk
A The number of Bitcoin peers that received (and mine for) TRA

pV (k) Probability that a block containing TRV is generated within the time interval]tk, tk+1]
pA(k) Probability that a block containing TRA is generated within the time interval]tk, tk+1]
δAHV Propagation delay of TRA to reach the merchant
δVAV Propagation delay of TRV to reach the merchant
tgA Time required by miners to generate a block containing TRA
tgV Time required by miners to generate a block containing TRV
TRA Transaction double-spending coins to A’s addresses
TRV Original transaction destined to merchant
tVi Time at which node i receives TRV
tAi Time at which node i receives TRV
� Delay between the transmission of TRA and TRV
PS Probability that the double-spending attack succeeds
PD Probability that the merchant receives both TRA and TRV after waiting for 15 seconds

Since A is an immediate neighbor of V and assuming no congestion at network
paths, then δAVH > δVAV . In this case, tVV < tAV for reasonably chosen � (e.g., � ≥ 0), thus
satisfying Requirement 1.

Satisfying Requirement 2—TRA is confirmed in the block chain. Since H and V
are highly likely to have different neighbors, the broadcasted transactions are likely to
spread in the network until the point where either (1) all Bitcoin peers accept in their
memory pools TRV or TRA or (2) TRV or TRA gets confirmed in a block.

In what follows, we estimate the probability that TRA is confirmed in a block first.
In our analysis, we denote by t0 the time at which both transactions TRA and TRV first
coexist in the network,6 and we assume that no block containing either one of them
has been generated until that time. We argue that this is a realistic assumption given
that TRA and TRV need to be typically broadcasted back to back given a small delay (in
the order of few seconds); it is therefore unlikely that one of them is confirmed within
the first few seconds in a new block. In the experiments in Section 3.5, we relax this
assumption and evaluate the general case where either TRA and TRV can be confirmed
immediately when they are broadcasted in the network.

We divide time into equal intervals of size δ such that the probability of successful
block generation in each δ can be modeled as a Bernoulli trial with success probability
η · p, where η is the number of peers that work toward block generation and p is the
success probability of a peer in generating a block within δ.7

6This does not necessarily mean that TRA and TRV are broadcasted at the same time.
7The probability that at least a miner succeeds in block generation within δ is the complement of the
probability that none of the peers who are working toward the block generation succeed and equals to
1 − (1 − p)η ≈ 1 − (1 − η · p) = η · p, where η · p � 1.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:10 G. Karame et al.

Let tk = k · δ + t0 and ηk
V and ηk

A denote the number of Bitcoin peers that received
(and mine for) TRV and TRA, respectively, until time tk. Each Bitcoin node will only
add to its memory pool the transaction that it receives first among TRV and TRA.
Since only the transactions that appear in the memory pool of peers are eligible to be
confirmed in subsequent blocks, the probability that TRV is included in a block within
time interval]tk, tk+1] is Prk

V = ηk
V · p.8 Similarly, for TRA, the corresponding probability

is Prk
A = ηk

A · p.9 Thus, the probability pV (k) that a block containing TRV is generated
within the time interval]tk, tk+1] is

pV (k) = Prk
V ·

k−1∏
i=0

(
1 − Pri

V
) = ηk

V p ·
k−1∏
i=0

(
1 − ηi

V p
)
.

Similarly, the probability that a block containing TRA is generated at the same time
interval is given by

pA(k) = Prk
A ·

k−1∏
i=0

(
1 − Pri

A
) = ηk

A p ·
k−1∏
i=0

(
1 − ηi

A p
)
.

If at time ts = s · δ + t0 every node in the network has received at least one of the
transactions TRV or TRA, the following holds:

ηk
A ≤ ηk+1

A and ηk
V ≤ ηk+1

V , if k < s

ηk
A = ηk+1

A = ηs
A and ηk

V = ηk+1
V = ηs

V , otherwise.

This suggests that ∀i ≥ s, ηi
V + ηi

A = ηs
V + ηs

A. To compute the probability of success
of the double-spending attack, we make the assumption that ∀k, ηk

V , and ηk
A do not

exchange their newly constructed blocks; in this way, the time tgV required by peers
that are mining in favor of TRV to generate a new block is independent of that required
by the peers that are mining in favor of TRA, tgA . Given this, the probability that
Requirement 2 is satisfied, PS

(2), is PS
(2) = Prob(tgA < tgV) + 1

2 Prob(tgA = tgV).
In other words, PS

(2) is composed of two components: one corresponds to the event
that the block containing TRA is first generated and the second to the event where the
blocks containing TRA and TRV are generated at the same time (i.e., tgA = tgV). In the
latter case, the probability that the block containing TRA is eventually adopted by the
Bitcoin peers is 0.5. Here, Prob(tgA < tgV) and Prob(tgA = tgV) are computed as follows:

Prob(tgA < tgV) =
∞∑

gA=0

pA(gA) · pV (gV > gA|gA) (3)

= η0
A p

(
1 − η0

V p
) +

∞∑
gA=0

η
gA
A p · (

1 − η
gA
V p

) ·
gA−1∏
j=0

(
1 − η

j
V p

)(
1 − η

j
A p

)
. (4)

Prob(tgA = tgV) =
∞∑

gA=1

p2η
gA
V η

gA
A ·

gA−1∏
j=0

(
1 − η

j
V p

)(
1 − η

j
A p

)
.

8This stems from the fact that the probability that at least one out of the ηk
V nodes succeeding in block

generation in the time interval between tk and tk+1 (each with success probability p in this time interval) is

given by Prk
V = 1 − (1 − p)η

k
V). Since ηk

V · p � 1, the previous equation can be written as Prk
V = ηk

V · p.
9Note that in this case, both ηk

V · p � 1 and ηk
A · p � 1; here, we assume that the time interval between tk

and tk+1 is short enough to satisfy these constraints.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:11

Fig. 4. PS
(2) with respect to various values of ηk

A and ηk
V . Here, p = 10−6, δ = 10 seconds, t0 = 0, ts = δ, and

the number of peers in the network is 60,000.

For the purpose of this analysis, we assume that ts = δ and that δ = 10 seconds. We
can therefore rewrite PS

(2) as follows:

PS
(2) = Prob(tgA < tgV) + 1

2
Prob(tgA = tgV).

Prob(tgA < tgV) = η0
A p

(
1 − η0

V p
) + η1

A p
(
1 − η0

A p
)(

1 − η0
V p

)(
1 − η1

V p
) ∞∑

gA=2

η1
A p

(
1 − η0

A p
)

×(
1 − η1

A p
)(gA−2) · (

1 − η0
V p

)(
1 − η1

V p
)(gA−1)

Prob(tgA = tgV) = η0
Vη0

A p2 +
∞∑

gA=1

η1
Vη1

A p2(1 − η0
V p

)

· (1 − η0
A p

)[(
1 − η1

V p
) · (

1 − η1
A p

)](gA−1)
. (5)

In Figure 4, we depict PS
(2) for various values of ηk

V , ηk
A, and p when δ = 10 seconds,

ts = δ, and the number of peers in the network is 60,000. Our analysis therefore shows
that A can maximize PS

(2) by increasing the number of peers that receive TRA, ηk
A,∀tk.

A can achieve this (1) by sending TRA before TRV and therefore giving TRA a better
advantage in spreading in the network and/or (2) by relying on multiple helpers to
spread TRA faster in the network. In the former case, A can delay the transmission
of TRV by a maximum of � = δAVH − δVAV (cf. Equation (2)) after sending TRA while
ensuring that V first receives TRV . In this way, Requirements 1 and 2 can be satisfied.

Satisfying Requirement 3—V ’s service time is smaller than the time it takes
V to detect misbehavior. As advocated in BitcoinMyths [2013], one possible way for
V to detect double-spending attempts is to adopt a “listening period,” of a few seconds,
before delivering its service to A; during this period, V monitors all of the transactions
that it receives and checks if any of them attempt to double-spend the coins that
V previously received from A. Note that V can also rely on additional nodes that it
controls within the Bitcoin network—“observers”—that would directly relay to V all of
the transactions that they receive.

These techniques are based on the intuition that since it takes every transaction a
few seconds10 to propagate to every node in the Bitcoin network, then it is highly likely
that V or its observers would receive both TRV and TRA within the listening period
(and before granting service to A).

10Our experiments in Section 3.5 show that the average time for a peer to receive both TRA and TRV is
approximately 3.354 seconds if both transactions were sent concurrently.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:12 G. Karame et al.

This detection technique can be circumvented by A as follows. A can attempt to
delay the transmission of TRA such that t = (tAV − tVV) exceeds the listening period
(Requirement 3) while TRA still has a significant chance of being spread in the network.
On one hand, as t increases, the probability that all immediate neighbors of V in the
Bitcoin P2P network receive TRV first also increases; when they receive TRA later on,
TRA will not be added to the memory pool of V ’s neighbors and as such TRA will not
be forwarded to V. On the other hand, A should make sure that TRA was received by
enough peers so that Requirement 2 can be satisfied. To that end, A can increase the
number of helpers that it controls.

It is interesting to note that a Bitcoin node located at http://blockchain.info/ keeps
track of all transactions exchanged in the system and attempts to identify double-
spending transactions [BlockChain 2013]). However, this information is not propagated
to peers in the network.

3.5. Experimental Evaluation

We now present the experimental results of double-spending experiments in the Bitcoin
network. Our experiments aim at investigating the satisfiability of the aforementioned
Requirements 1, 2, and 3.

Experimental setup. We adopt the setup described in Section 3.4 in which the attacker
A is equipped with one or more helper nodes H that help her relay the double-spent
transaction. In our experiments, we made use of 10 Bitcoin nodes located around the
globe; this serves to better assess the different views seen from multiple points in the
Bitcoin overlay network and to remove any bias that might originate from specific
network topologies.

To perform the attack, we modified the C++ implementation of Bitcoin client version
0.5.2. Conforming with our analysis in Section 3.4, our new client does the following:

—The attacker connects to the vendor’s machine. Here, we assume that V accepts direct
connections if it has fewer than 125 connections.11 If the connection is refused, A can
wait until a neighbor of V disconnects before attempting to connect again.

—The attacker creates transactions TRV and TRA spending the same coins. She sends
TRV using the Bitcoin network to the neighboring vendor and TRA to one or more
helper nodes with an initial delay � of –1, 0, 1, and 2 seconds. Here, � refers to the
time delay between the transmission of TRV and TRA by A.

—Upon reception of TRA, each helper node broadcasts it in the Bitcoin network.

With this setup, we performed double-spending attempts when the vendors are lo-
cated at four different network locations (two vendors were in North America, and
the remaining two were in Asia Pacific). In our experiments, A was located in Europe.
However, since A does not contribute in spreading any transaction herself, her location
does not affect the outcome of the attack. In other words, the sole role of A is to send
TRV to V using a direct connection in the Bitcoin network.

We conducted our experiments with a varying number of connections of the ven-
dor (8, 40, and 125 connections) and by varying the number of helper nodes (1 and
2). The helper nodes were connected to 125 other Bitcoin peers. Each data point
in our measurements corresponds to 10 different measurements, totaling approxi-
mately 500 double-spending attempts. We also created a Python script that, for each

11Note that the maximum number of connections can be modified using the “-maxconnections” command
[Connectivity 2013].

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

http://blockchain.info/

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:13

Fig. 5. PS versus � when V has 40 connections.
Here, the vendors are located at four different net-
work locations (Locations 1 and 2 are in North
America, and Locations 3 and 4 are in Asia Pacific).

Fig. 6. PS versus � when V has 125 connections.
Here, the vendors are located at four different net-
work locations (Locations 1 and 2 are in North
America, and Locations 3 and 4 are in Asia Pacific).

Fig. 7. Summary of results. Here, “Location” denotes the location of V, and “connections” denote the number
of V ’s connections.

conducted measurement, parses the generated logs along with the Bitcoin block ex-
plorer [BitcoinExplorer 2013] to check whether Requirement 2 is satisfied.

Satisfying Requirements 1 and 2. To assess the feasibility of double-spending in fast
Bitcoin payments, we evaluate empirically the success probability with respect to the
number of helper nodes, the number of connections of the vendor, and �.

Our experimental results, depicted in Figures 5, 6, and 7 show that irrespective
of a specific network topology, the probability that A succeeds in performing double-
spending attacks is significant. Confirming our previous analysis, PS decreases as �
increases. As explained in Section 3.4, this is because the higher is �, the larger is the
number of peers that receive TRV ; in turn, the probability that TRA is confirmed before
TRV decreases. As shown in Figures 5 and 6, this can be remedied if the number of
helper nodes that spread TRA increases. Our results show that even for a large � of
2 seconds, relying on two helper nodes still guarantees that double-spending succeeds
with a considerable probability; when � = 1 seconds, the attack is guaranteed to suc-
ceed (PS is close to 1) using two helpers. This is summarized in Figure 7. Generalizing
these results, it is clear that A succeeds, with high probability, in spending the same
coin to n ≥ 1 different recipients as long as the number of helpers that assist A in
spreading TRA is greater or equal to n. As we show in the previous section, the larger
is n, the higher is the probability that A’s misbehavior is detected.

The number of V ’s connections considerably affects PS especially whenA controls only
one helper; in the case where V has a similar number of connections when compared to
the number of connections of the helper, PS approaches 0.5. This corresponds to the case
where TRA and TRV are spread equally in the network (Figure 6). On the other hand,
as the connectivity of V decreases, TRA spreads faster in the network (cf. Figure 5).

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:14 G. Karame et al.

Table II. Example of Triplets (�, NH, C) Where PS > 0, PD = 0 and tAV − tVV = ∞

PS(%) PD(%) tAV − tVV (sec) Observed (%)

South America, 8 Connections, 3 Helpers, � = 2.5 7.7 0 ∞ 53
South America, 8 Connections, 4 Helpers, � = 3.0 13.33 0 ∞ 57
Asia Pacific, 8 Connections, 3 Helpers, � = 2.75 10 0 ∞ 57
Asia Pacific, 8 Connections, 3 Helpers, � = 2.75 5 0∗ ∞ 66
North America, 20 Connections, 3 Helpers, � = 2.75 5 0 ∞ 47
Asia Pacific, 60 Connections, 1 Helper, � = 3.00 10 0∗ ∞ 20

*In these cases, V never receives TRA and as such cannot detect double-spending attacks, even if it adopts
a very large listening period.

Table III. Example of Triplets (�, NH, C) Where PS ≥ PD

PS(%) PD(%) tAV − tVV (sec) Observed (%)

Europe, 8 Connections, 3 Helpers, � = 2.00 10 10 8.664 53
Europe, 8 Connections, 3 Helpers, � = 2.25 10 10∗ 5.65 47
South America, 8 Connections, 2 Helpers, � = 2.5 20 6.66∗ 3.749 62
Asia Pacific, 8 Connections, 2 Helpers, � = 1.75 55 20∗ 5.5 91
North America, 20 Connections, 5 Helpers, � = 3.00 11 11 3.208 46
North America, 20 Connections, 1 Helper, � = 1.25 30 30∗ 3.34 78
North America, 20 Connections, 4 Helpers, � = 2.00 82 63 2.85 78
North America, 20 Connections, 2 Helpers, � = 2.00 20 20∗ 4.79 60
North America, 20 Connections, 1 Helper, � = 1.50 40 30∗ 3.51 60
Europe, 20 Connections, 3 Helpers, � = 1.0 45 45∗ 3.844 87
Europe, 30 Connections, 1 Helper, � = 1.5 15 10∗ 3.412 42
Asia Pacific, 40 Connections, 1 Helper, � = 2.9 10 10∗ 4.946 42
Europe, 40 Connections, 1 Helper, � = 1.25 10 10 1.841 36
Europe, 40 Connections, 2 Helpers, � = 1.5 20 20%∗ 3.075 36
South America, 40 Connections, 1 Helper, � = 2.0 30 40 3.217 57
Asia Pacific, 80 Connections, 1 Helper, � = 3.7 10 20 5.04 18
Europe, 80 Connections, 1 Helper, � = 2.75 13.33 26.67 5.093 28
Asia Pacific, 100 Connections, 1 Helper, � = 1.5 80 80 2.807 88

*In these cases, V can detect double-spending attempts with some probability by adopting a listening
period, but since PS ≥ PD, then a number of A’s double-spending attempts will not be detected, which gives
her incentives to perform double-spending attempts.

Satisfying Requirement 3. In our experiments, we were looking for triplets (�, NH,
C), where NH is the number of helper nodes and C is the number of V ’ connections,
that minimize the probability PD that V receives TRA.

In Table II, we include a number of triplets (�, NH, C) for which PS > 0 and PD = 0
(i.e., t = tAV − tVV = ∞). These are instances of the case where all of the neighbors of V
receive TRV first and do not forward TRA. We point out that in this case, although PS is
modest, A has considerable incentives in performing double-spending attacks since the
probability that V detects her misbehavior is zero. In Table III, we show other instances
of (�, NH, C) for which PS ≥ PD. Here, although PD > 0, A still has an advantage in
performing double-spending attacks, as these attacks are more likely to succeed.

Our findings therefore show that even if V adopts a listening period of few tens of
seconds, double-spending is still possible. Our experiments also show that the triplets
(�, NH, C) resulting in PS ≥ PD do not depend on the location of H nor V nor on the time
of the measurements; as shown in Table III, the same triplets can be used repeatedly
by A to perform attacks at various times and in different network topologies.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:15

In addition, we evaluated this technique using up to five observers. Our findings in
Tables II and III show that this method can help in detecting double-spending, as all
double-spent transactions were received by at least one observer within a few seconds.
However, given that A delays the transmission of TRA, our results show that only a
subset of the observers receive TRA. As mentioned previously, this corresponds to the
case where all neighbors of these observers have received TRV first, and as such they
will not forward TRA back to the observers. Therefore, V needs to employ a considerable
number of observers (≈3) (that connect to a large number of Bitcoin peers) to ensure
that at least one observer detects any double-spending attempt; this, however, comes
at the expense of additional costs for V to maintain the observers in the network.

Clearly, in the general case where A attempts to n-times spend the same coins, the
larger is n, the bigger is the probability that this misbehavior is detected by fewer
observers in the network. Our results show that double-spending attacks can be suc-
cessfully mounted even when � > 1 second. This also suggests that A does not have to
be directly connected to V and may release TRV in the Bitcoin network � seconds be-
fore H releases TRA. In other words, when � is not small (e.g., � > 1), this also means
that (1) the merchant’s transaction will exhibit a comparable spread in the network
irrespective of whether A is directly connected to V or not,12 and (2) the probability that
the merchant receives TRV before receiving TRA is high. As shown in our experiments,
A can maximize its probability of success by relying on multiple helpers when � is
large.

3.6. Abusing Forks in Bitcoin

Our analysis in Sections 3.4 and 3.5 shows that double-spending fast transactions is
feasible during the normal operation of the Bitcoin system. In what follows, we discuss
double-spending attacks in the special case where Bitcoin is subject to block chain forks
[Decker and Wattenhofer 2013].

Block forks. During the normal Bitcoin operation, miners work on extending the
longest block chain in the network. If miners do not share the same view in the net-
work (e.g., due to network partitioning), they might work on different block chains,
thus resulting in “forks” in the block chain. As an example, in March 2013, due to a dif-
ference in how Bitcoin versions 0.7 and 0.8 handled the block chain database, a serious
block chain fork occurred (cf. Figure 8). The fork started at block-height 225,430, and at
block-height 225,451 the 0.8 fork exceeded the 0.7 fork by 13 blocks. The Bitcoin devel-
opers, however, decided to support the smaller chain supported by the Bitcoin version
0.7. During block forks, the adversary bears little risk in performing double-spending
attacks. Indeed, under such settings, the adversary can try to include TRV in one chain
and TRA in another [Finney 2013].

Double-spending using forks. In what follows, we present an exemplary double-
spending attack, which we tested in Bitcoin, that takes advantage of block forks. Our
attack leverages an exploit in Bitcoin that arises from the simultaneous adoption of
client versions 0.8.1 and 0.8.2 (or beyond) in the network. Starting from version 0.8.2,
Bitcoin clients no longer accept transactions that do not follow a given signature en-
coding. As we show, this incompatibility with prior client versions can potentially lead
to a double-spending attack in a fast payment setting in Bitcoin. The attack can only
work when V operates on any client version prior to 0.8.2.

12Indeed, since Bitcoin users will immediately broadcast transactions where they appear as senders or
recipients in the network, the merchant’s transaction will be almost directly broadcasted in the network
after it is received.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:16 G. Karame et al.

Fig. 8. Bitcoin chain fork in March 2013 due to concurrent adoption of client versions 0.7 and 0.8.

Up to version 0.8.1, a transaction signature could contain zero-padded bytes and the
signature check would still be valid. However, starting from version 0.8.2, transactions
with padding will no longer be accepted to the memory pool of nodes nor will they
be relayed to other nodes.13 This gives a considerable advantage for A to mount a
double-spending attack as follows:

(1) A sends a transaction TRV with a zero-padded signature to V.
(2) TRV will be relayed to the miners. Miners that use any Bitcoin version newer than

0.8.1 will not accept the transaction in their memory pool and thus will not include
it into a block. Miners with an older Bitcoin version will accept it.

(3) A waits for a small time t (e.g., 1 to 5 minutes), until she acquired service from the
merchant.

(4) Then, provided that TRV was still not included in a Bitcoin block, A sends another
transaction TRA that double-spends the inputs of TRV to the benefit of a new Bitcoin
address that is controlled by A. TRA is not padded with additional zeros.

(5) If most peers in the network use newer client versions than version 0.8.1, they will
accept TRA (and will reject TRV). The higher the fraction of peers that use version
0.8.2 (or beyond), the larger the likelihood that TRA is included in a block and that
the attack succeeds.

We implemented this double-spending attack in a private “test” Bitcoin network
comprised of two Bitcoin miners, a merchant, and the adversary’s machine. In our
setup, the merchant was running client version 0.8.1, and the miners were running
version 0.8.2. Our results show that such a double-spending attack succeeds with 100%
probability in the investigated setting.

We therefore hope that our findings increase the awareness within the Bitcoin com-
munity on the delicacy of version releases. Indeed, although block forks might “nat-
urally” occur from time to time in the network, such forks are unlikely to last for
more than few blocks, as the network views tend to naturally converge on the longest
block chain within few blocks. We argue that new version releases, on the other hand,
can cause more serious damages, as they might result in long-lasting block forks that
can only be stopped by manual intervention. Version releases should therefore be

13This applies to all Bitcoin versions starting from version 0.8.2 until the time of this writing (i.e., version
0.8.5).

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:17

carefully designed for backward compatibility; otherwise, the Bitcoin system might
witness severe misbehavior.

3.7. Countermeasure: Forwarding Double-Spending Attempts in the Network

To efficiently detect double-spending on fast Bitcoin payments, we propose that Bitcoin
peers forward transactions that attempt to double-spend the same coins in the Bitcoin
network. Namely, our technique unfolds as follows. Whenever a peer receives a new
transaction, it checks whether the transaction uses coins that have not been spent in
any other transaction that resides in the block chain and in their memory pool. If so,
then peers follow the current protocol of Bitcoin; peers add the transaction to their
memory pool and forward it in the network. If, on the other hand, peers detect that
there is another transaction in their memory pool that spends the same coins with
different recipients, then peers forward the transaction to their neighbors (without
adding the transaction to their memory pools).

The main intuition behind this technique is that although A might be able to prevent
V and a subset of V ’s observers from receiving TRA, a considerable number of Bitcoin
peers receive both TRA and TRV . If the majority of these peers are honest,14 both
transactions would eventually reach V within a few seconds. The double-spending of A
can be therefore detected before A actually receives the service from V. We emphasize
that our proposed technique does not change the spread of each transaction within the
memory pools of Bitcoin peers (as such, it does not affect the success probability of the
attack). Instead, this technique ensures that both transactions are received within a
few seconds by V and that any possible double-spending attempt is detected almost
immediately. This intuition is based on our previous measurements: our experiments
in Section 3.4 show that the average time for a transaction to be received by the vendor
is approximately 3.354 seconds after the transaction has been released in the Bitcoin
network.

We implemented this technique and integrated it with the official Bitcoin client. Our
modified Bitcoin client also keeps track of the number of established connections to
warn the user when this number drops below a threshold value (80 in our case) and uses
our proposed detection technique to (visually) alert the user when a double-spending
attempt was detected in any of its transactions. We have evaluated the performance of
our modified client by integrating it in the Bitcoin network for a period of 7 consecutive
days. During the evaluation period, our modified client was able to forward all double-
spent attempts (that we manually injected in the network) with a detection rate of
100%.

We acknowledge that this detection technique can result in the increase of the num-
ber of transactions circulating in the Bitcoin network and could be (ab)used to affect
the performance of the network (e.g., to conduct Denial of Service attacks [Bitcoin-
DoS 2013]). We argue, however, that peers can only forward the first double-spending
transaction attempt in the network and drop all subsequent double-spending of the
same coin. This variant ensures that all peers in the network can identify (and verify
the misbehaving address) and refuse to receive any subsequent payment/transaction
from this address. This variant detection technique is integrated in BitcoinXT [2014]; a
number of Bitcoin nodes already use this technique to report double-spending attempts
[DoubleSpending 2014].

4. EVALUATING USER PRIVACY AND ACCOUNTABILITY IN BITCOIN

Our findings in Section 3 suggest that misbehavior in Bitcoin is inevitable and is only
expected to increase as the utility of the system increases. Currently, Bitcoin nodes

14This is the underlying assumption that ensures the correct operation of Bitcoin.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:18 G. Karame et al.

locally ban the IP address of the misbehaving user for 24 hours. Clearly, such an
approach is not sufficient to deter misbehavior, as malicious peers can, for example,
modify/spoof their IPs or even try to connect to and attack other peers, who still have
not blacklisted their IP address.

We argue that if Bitcoin is to sustain another decade of service, then it must incorpo-
rate accountability measures to ensure that a misbehaving user is indeed “punished.”
In this respect, one possible solution would be to enforce Bitcoin address blacklisting.
Here, the idea would be that Bitcoin addresses that have been found to misbehave
(e.g., double-spend) are added to a public blacklist. Ideally, the BTCs of the blacklisted
addresses will not be accepted by Bitcoin peers and will therefore lose their value.
Besides the concerns/issues related to the management and maintenance of such lists,
this approach is not sufficient, when used alone, to deter misbehavior, as misbehaving
users can be equipped with many addresses, each containing low balances.

Therefore, one natural question that emerges is whether it is possible to link dif-
ferent Bitcoin addresses of the same (misbehaving) user (address linkability). If such
linking were possible, misbehaving users could receive some degree of punishment for
their misbehavior by not being able to spend (a large fraction of) their funds. Clearly,
this comes at odds with user privacy, which is strongly coupled with the notion of ad-
dress unlinkability. More specifically, although privacy in Bitcoin reduces to activity
unlinkability, accountability is strongly coupled with the traceability of a user’s trans-
actions. In this section, we analyze the tension between privacy and accountability in
Bitcoin. Our analysis aims to answer the following question: to which extent can one
infer information about users in Bitcoin?

4.1. Methodology

We frame the preceding question by defining the information leakage using novel
privacy and accountability definitions of Bitcoin. More specifically, we observe the
public log of Bitcoin, denoted by pubLog, within a period of time �. During this period,
nU users, U = {u1, u2, . . . , unU}, participate in pubLog through a set of nA addresses:
A = {a1, a2, . . . , anA}. We assume that within �, nT transactions have taken place as
follows: T = {τ1(S1 → R1), . . . , τnT(SnT → RnT)}, where τi(Si → Ri) denotes a transaction
with (unique) ID number i and Si and Ri denote the sets of senders’ addresses and
recipients’ addresses, respectively. Given pubLog, we quantify and evaluate the privacy
and accountability provisions of Bitcoin. In the sequel, we assume a security parameter
κ; the security parameter can be seen as a measure of the running time of our adversary.

4.2. Quantifying Privacy and Accountability in Bitcoin

Activity linkability refers to the ability of an adversary A to link two different addresses
(address linkability) or transactions (transaction linkability) that pertain to the same
user of the system, and in this sense, activity unlinkability is strongly associated to
accountability. In other words, the more a third party, such as law enforcement, is
able to reconstruct the set of addresses or transactions of an individual, the easier it
is to make Bitcoin users accountable for any misbehavior. More specifically, fee-based
punishments for double-spending acts could be more effective, such as by blacklisting or
invalidating the BTCs of the addresses that are linked to the double-spender address.

However, activity linkability seems to contradict the privacy requirements of a pay-
ment system with public transaction logs as Bitcoin, where it is crucial to maintain the
confidentiality of each individual’s balance and transactions. Therefore, we see activity
unlinkability as the privacy-preserving complement of linkability.

We note that since two Bitcoin transactions are not more linkable than the ad-
dresses that participate in those transactions, we focus our analysis on unlinkability of
addresses. In particular, we define address unlinkability through the following AddUnl

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:19

game, and we quantify it by assessing the advantage of an adversary A in winning this
game over an adversary who responds to all game challenges with random guesses, AR.
We assume that A has access to pubLog and that both A and AR have gathered (the
same) a priori knowledge KA with respect to correlations of a subset of addresses. KA
can include any information related to address ownership, such as the identity of the
owner of the address, the transactional habits of the latter, and whether two specific
addresses are owned by the same individual. For simplicity, we assume in the follow-
ing that KA consists of a list of probabilities of correlating every pair of addresses in
pubLog; clearly, the correlation probability between addresses for which the adversary
has no prior knowledge about equals the default probability that the two addresses
are owned by the same individual (depending on the assumed game). The adversary
can gather this a priori knowledge, such as by interacting with users in the system
[Meiklejohn et al. 2013].

We construct the following address unlinkability game in Bitcoin, AddUnl, which
consists of an adversary A and a challenger C who knows the correct assignment of
addresses to Bitcoin entities. The adversary A chooses an address a0 chosen among the
addresses that appear in pubLog, but for which the adversary has no prior knowledge
(expressed in KA), and sends it to the challenger C. The challenger C chooses a bit
b uniformly at random. If b = 1, then C chooses another address a1 randomly from
pubLog such that a0, a1 belong to the same user; otherwise, C randomly chooses a1 such
that the two addresses are owned by different users. The challenger sends 〈a0, a1〉 to
A, who responds with her estimate b ′ on whether the two addresses belong to the same
user. A wins the game if she answers correctly (i.e., b = b ′). We say that Bitcoin satisfies
address unlinkability if for all probabilistic polynomial time (p.p.t.) adversaries A, and
∀〈a0〉, A has only at most a negligible advantage over AR in winning—that is, if

Prob[b ′ ← A(pubLog,KA, a0, a1) : b = b ′] − Prob[b ′ ← AR(KA, a0, a1) : b = b ′] ≤ ε,

where ε is negligible with respect to the security parameter κ.

Quantifying address (un)linkability. In what follows, we quantify the unlinkability
offered by Bitcoin by measuring the degree to which Bitcoin addresses can be linked
to the same user. To do so, we express the estimate of A through an nA × nA matrix,
Elink, where Elink[i, j] = {pi, j}i, j∈[1,nA]. In other words, for every address ai, A assesses
the probability pi, j with which ai is owned by the same user as every other address
aj in pubLog. Note that Elink incorporates KA and any additional information that A
could extract from pubLog (by means of clustering, statistical analysis, etc.). Similar
to Pfitzmann and Hansen [2008], we quantify the success of A in the AddUnl game as
follows. Let GTlink denote the genuine address association matrix—that is, GTlink[i, j] =
1 if ai and aj are of the same user and GTlink[i, j] = 0 otherwise for all i, j ∈ [1, nA].
For each address ai, we compute the error in A’s estimate—that is, the distance of
Elink[i, ∗] from the genuine association of ai with the rest of the addresses in pubLog,
||Elink[i, ∗] − GTlink[i, ∗]||, where || · || denotes the L1 norm of the corresponding row
matrix. Thus, the success of A in AddUnl, SuccA, can then be assessed through A’s
maximum error: max∀ai /∈KA (||Elink[i, ∗] − GTlink[i, ∗]||).

Similarly, we represent the estimate of AR in the AddUnl game for all possible pairs
of addresses by the nA × nA matrix ER

link, which is constructed as follows. ER[i, j] = πi, j

if 〈ai, aj〉 ∈ KA, and ER
link[i, j] = ρ + (1 − ρ) 1

2 otherwise. Here, πi, j represents the
probability that addresses ai aj correspond to the same user according to KA, and ρ is
the fraction of addresses that cannot be associated to other addresses (i.e., when their
owners have only one address). For pairs of addresses that are not included in KA, this
probability equals to 1

2 (1 + ρ)—that is, to the probability that at least one of the two

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:20 G. Karame et al.

Fig. 9. Number of addresses until June 2013 and the number of addresses per GA.

happens: (1) a0 is the only address of its owner or (2) AR did not succeed in guessing b
correctly.

Given this, we measure the degree of address linkability in Bitcoin by evaluating the
additional success that A can achieve from pubLog when compared to AR. We call this
advantage Linkabs

A = SuccA − SuccAR and its normalized version LinkA = SuccA−SuccAR
SuccAR .

Address unlinkability can then be measured by the normalized complement of
Linkabs

A , UnLinkA = 1 − SuccA−SuccAR
SuccAR .

4.3. Exploiting Existing Bitcoin Client Implementations

Current Bitcoin client implementations enable A to link a fraction of Bitcoin addresses
that belong to the same user.

Heuristic I—multi-input transactions. As mentioned earlier, multi-input transac-
tions occur when u wishes to perform a payment and the payment amount exceeds the
value of each of the available BTCs in u’s wallet. In fact, existing Bitcoin clients choose
a set of BTCs from u’s wallet (such that their aggregate value matches the payment)
and perform the payment through multi-input transactions. It is therefore straightfor-
ward to conclude that if these BTCs are owned by different addresses, then the input
addresses belong to the same user [Ron and Shamir 2013; Androulaki et al. 2013].

Heuristic II—“shadow” addresses. As mentioned earlier, the standard Bitcoin client
generates a new address, the “shadow” address [Bitcoin 2013], on which each sender
can collect back the “change” [Androulaki et al. 2013].

This mechanism suggests a distinguisher for shadow addresses. Namely, in the case
when a Bitcoin transaction has n output addresses, {aR1 , ·, aRn}, such that only one ad-
dress is a new address (i.e., an address that has never appeared in pubLog before),
and all other addresses correspond to an old address (an address that has appeared
previously in pubLog), we can safely assume that the newly appearing address consti-
tutes a shadow address for ai. Note that the official Bitcoin client started to support
transactions with multiple recipients since December 16, 2010.

Evaluating Heuristics I and II. In what follows, we evaluate the implications of these
heuristics on user privacy and accountability in Bitcoin. For that purpose, we modified
the blockchain parser in Znort987 [2013] to parse the first 239,200 blocks (June 2013).

Our modified C++ parser extracts all of the addresses in each block and categorizes
them in clusters of general addresses (GAs) given the two aforementioned heuristics.
The parser then outputs a list of addresses organized in different GAs. Our results are
depicted in Figures 9, 10, and 11.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:21

Fig. 10. Evolution of GA dynamics with time.

Fig. 11. Characterization of GAs obtained using Heuristics I and II.

As shown in Figure 9(a), our results show that the number of GAs considerably
increased over time since the genesis of Bitcoin. Our parser distinguishes almost
3,000,000 GAs, each comprising on average 4.5 addresses. Figure 9(b) depicts the
distribution of addresses per GA. More than 70% of GAs comprise of a single address;
we believe that these are addresses of “inactive” users in the system who only “mine”
and collect BTCs but rarely perform transactions in the system. Nevertheless, our
heuristics enable the linking of addresses of up to 30% of the GAs. Note that our
parser identified a number of very large GAs (i.e., comprising more than 50 addresses).
We believe that these are addresses of big players in the Bitcoin ecosystem, such as
GAs of electronic wallets, marketplaces, or mining pools. For example, we were able to

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:22 G. Karame et al.

distinguish 4,238,361 addresses belonging to one GA corresponding to the mining pool
deepbit [Deepbit 2011].

In Figure 10(a), we show the evolution of the average number of addresses per GA
with respect to time. Here, it is interesting to note that the number of addresses per GA
only started increasing 1 year after the genesis block. This supports our observation
that at the start, most Bitcoin users were inactive and simply were involved in the
mining process. Recall that our heuristics can only link addresses of active entities
that participate in Bitcoin transactions. In Figure 10(b), we depict the accumulated
balance per GA over time. Until the end of 2009, we can see that nearly no GA had
fewer than 50 BTCs. This is consistent with the fact that within the first 6 months
of Bitcoin’s existence, few transactions have been conducted and block generation was
awarded with 50 BTCs. On the other hand, our measurements in June 2013 show that
98% of the GAs have fewer than 2 BTCs. This is reminiscent to the fact that Bitcoin
users have become increasingly active and are spreading their coins across several of
their addresses, collecting transaction fees, and so forth.

In Figure 11, we capture the information leakage due to our heuristics from the
public Bitcoin log. Figure 11(a) depicts the relationship among various GAs; more
specifically, we show the number of different GA entities that send transactions to other
GAs. We refer to GAs that interact with each other as friends. Similarly, Figure 11(b)
shows the number of transactions captured within each GA; our results show that
almost 35% of the GAs did not participate in any transaction and as such were only
mining and collecting BTCs. On the other hand, most GAs that were captured by our
heuristics participated in fewer than five transactions. This is the case since our best-
effort heuristics could only track the transactions performed by GAs within the period
of few weeks; as shown in Figure 11(c), these heuristics were ineffective in tracking
the activity of GAs for longer periods. Finally, in Figure 11(d), we depict the average
transaction amount (in BTCs) per GA.

Clearly, our results in Figures 9, 10, and 11 hint that an adversary might be able
to win the AddUnl game with high probability. Indeed, simply by observing the public
Bitcoin log, the adversary can link some of the addresses and transactions of enti-
ties. However, our heuristics can only cluster a small number of addresses and link
addresses that perform transactions close in time. In Section 4.4, we show that the
advantage of the adversary in linking Bitcoin addresses can be significantly boosted
when combining the use of Heuristics I and II with standard clustering algorithms.

As an application of our analysis, we identified two Bitcoin addresses belonging to
Torservers.net (using information available from blockchain.info). Given the knowledge
of these two addresses, we were able to identify a total of 47 addresses, belonging to
the operator of Torservers, with a total balance of 498.20 BTC.

Note that it is not easy for the adversary to evade both Heuristics I and II. In other
words, to evade Heuristic I, the adversary should not combine its coins/addresses in
a single transaction; considering that it is unlikely that all payments made by the
adversary will exactly match the coins in her possession, a large number of shadow
addresses pertaining to the adversary will be created to collect the change. These
addresses can be subsequently captured by Heuristic II [Androulaki et al. 2013].

One way to evade Heuristics I and II would be for the adversary to rely on mixers,
such as Bitcoin banks, Web wallets, or CoinJoin [CoinJoin 2013]. These mixers shuffle
the coins of all of their customers, thus preventing an external entity to link between
the inputs and outputs of a transaction. Clearly, however, this strategy does not
protect against an honest but curious mixer and only provides a degree of anonymity
for the adversary against an external entity (e.g., which is not participating in the
CoinJoin protocol). Furthermore, it is not clear whether such mixing techniques (e.g.,
Bonneau et al. [2014], CoinJoin [2013], and Ruffing et al. [2014]) can completely hide

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

file:blockchain.info

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:23

the profiles of Bitcoin users. As we show in the following, the amounts in each payment
and the transaction times constitute a strong distinguisher for an adversary to cluster
the transactions/addresses of Bitcoin users.

4.4. Clustering Bitcoin Addresses

Besides exploiting current Bitcoin implementations, clustering techniques can also
be used to link different addresses. In what follows, we proceed to measure the
effectiveness of linking different addresses in Bitcoin using clustering algorithms
such as K-means clustering (KMC) and hierarchical agglomerative clustering (HAC)
algorithms. We also measure the degree of address unlinkability.

To evaluate the success of A in the AddUnl game, we simulate a realistic case of
using Bitcoin in the Department of Computer Science at ETH Zurich. Here, we assume
that the shops located around the university also accept BTCs as a currency. Given the
lack of details and statistics about the current use of Bitcoin, this was one of the few
“workable” uses of Bitcoin that we could try to accurately model and through which
we could evaluate the advantage of A in the system.

Experimental setup. To evaluate the privacy implications of using Bitcoin in a uni-
versity environment, we constructed a Bitcoin simulator and devised the setup shown
in Figure 12. Our Bitcoin simulator takes an XML configurations file as input and out-
puts: (1) a log that details the events that were simulated, the “ground truth,” as well as
(2) the resulting simulated public Bitcoin log, pubLog. The XML configurations file con-
tains all of the necessary parameters to run the simulator. These include the number
of users, the number of miners, the simulation time, the difficulty in block generation,
and usage configurations for creating user profiles and Bitcoin sellers/buyers.

Our simulator is round based; in each simulation round (defined as a “weekly
timestepping” interval), events are added to a priority queue with a probability dictated
by the configuration file. These events correspond to one of the following operations:

—Issue a new transaction: Users might issue new Bitcoin transactions whose time,
value, beneficiary, and purpose stem from the XML configurations file. The process
of transaction issuance in our simulator fully mimics its counterpart in the genuine
Bitcoin system.

—Generate a new Bitcoin address: Here, “privacy-aware” users might decide to manu-
ally generate a number of new addresses to further obfuscate their usage of Bitcoin
[Ron and Shamir 2013]. This captures the behavior of an adversary who tries to
prevent linking of its addresses by constantly creating new addresses.

Our Bitcoin simulator abstracts away network delays, congestion, jitter, and so forth.
We also assume that all transactions in the system are well formed, and we do not model
transaction fees that are incurred in the network. Moreover, our simulator relies on a
variant coin selection algorithm that approximates the algorithm used in Bitcoin for
coin selection; our greedy algorithm chooses the coins that will result in the smallest
number of inputs for any given transaction. Throughout our experiments, we assume
that new blocks are generated every 20 minutes on average; by doing so, we ensure
that the number of transactions confirmed within blocks generated by our simulator is
comparable to that of Bitcoin.

As shown in Figure 12, the outputs of our simulator are used to evaluate A’s suc-
cess. In fact, once the simulations terminate, a Perl-based parser uses the simulated
Bitcoin block as input and preclassifies the simulated addresses into GAs according to
Heuristics I and II. The resulting “prefiltered output” is then fed into our clustering
algorithms—the HAC and the KMC algorithms (both implemented in C). The output
of these algorithms is then compared using another Perl-based script with the ground
truth to evaluate the success of A.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:24 G. Karame et al.

Fig. 12. Experimental setup used throughout our simulations. The outputs of our Bitcoin simulator are
prefiltered according to Heuristics I and II and then fed as input to our clustering algorithm. The clustering
result is then compared with the “ground truth” that is emulated by our simulator.

We tuned our simulator to match a real-world scenario that reflects the actual behav-
ior of the staff and student members in a computer science department of a university
in the fall 2012 semester. In our setting, we consider a variable number of users, 5.2%
of which are “Professors,” 42.0% are “Staff,” and the remaining 52.8% are “Students.”
We consider a total of six events, each having several options: lunching/dining (12 op-
tions), buying groceries (2 options), buying from vending machines (4 options), online
shopping (5 options), purchasing books (2 options), and performing barters with other
users, totaling 25 different Bitcoin vendors present in our system. For each user, we
assign a probability that the user undergoes each of the possible options of each event.
These probabilities are assigned according to the “category” of the user—that is, if the
user is a “Professor,” then it is more likely that he or she would eat lunches at more
expensive restaurants compared to the case where the user falls in the “Student” cat-
egory. For each event, we specify in the XML configuration the following parameters:
the frequency of the event and the price range per option of the event. Note that each
option is assigned a rating that would reflect its popularity. The probability of perform-
ing an option is interpolated from the frequency of occurrence of the event per week
and from the rating of the option. To ensure a large variety of profiles in our user base,
we specify a minimum and maximum value for the frequency, rating, and price fields
in the XML configuration. These bounds depend on the category of the user, the event,
and option in question. At the start of our experiments, users originally have few (<10)
Bitcoin addresses; as they issue new transactions, new (shadow) addresses are created
in their wallets. In the XML file, we also model the behavior of “privacy-aware” users.
We assume that these users create new Bitcoin addresses in their wallets and send
some of their BTCs from their old to their new addresses.

Clustering addresses. We cluster addresses in our setting using the KMC, and the
HAC algorithms. The HAC algorithm assumes that initially each GA represents a
separate cluster ({zi = i}nGA

i=1) and computes similarity values for each pair of clusters.
Clusters with higher similarity value are combined into a single cluster, and cluster-
to-cluster similarity values are recomputed. The process continues until the number of
created clusters equals the number of users nU. KMC is then initialized using the output
of HAC and assumes that each user is represented by the center of each cluster. The
algorithm iterates assignments of GAs to clusters and aims at minimizing the overall

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:25

distance of GAs to the center of the cluster to which they have been assigned. The
centers of the clusters and the GA-to-cluster distances are recomputed in each round.

Let U be the set of users populating Bitcoin and (GA1, . . . , GAnGA) denote the GAs that
A has obtained by applying the two aforementioned heuristics on pubLog, respectively.
Given this, the goal of A is to output a group of clusters of addresses Eprof = {g1, . . . , gnU}
such that Eprof best approximates U. Since each GA is owned by exactly one user, the
estimate on the assignment of each GAi can be modeled by a variable zi such that zi = k
if and only if GAi belongs to gk. In our implementation, we represent each transaction
that appears within a GA using (1) the time at which the transaction took place,
(2) the indexes of the different GAs that appear within the transaction (as senders or
recipients), and (3) the values of the BTCs spent by the transaction. Let τx denote the
set of transactions of GAx. The degree of similarity between GAi and GA j , denoted by
Simhac(GAi, GA j), is then represented by the cosine similarity of lists τi and τ j—that

is, Simhac(GAi, GA j) =
∑

∀τ∈τi∩τ j
(f(τ,i)· f(τ, j))

‖τi‖·‖τ j‖ , where f(τ,i), f(τ, j) are the occurrences of item τ in
lists τi and τ j, respectively, and ‖X‖ denotes the L2 norm of vector X. Given this, the
resulting distance metric in KMC is Distkmc(GAi, gk) = 2

1+Simhac(GAi ,gk) − 1.
Our implementation also accounts for constraints that are posed in realistic deploy-

ments. Namely, since users cannot be physically located in two different places at the
same time, they cannot participate in two different (physical) exchanges of goods at
the same time. To account for this case, we apply different weighting for similarity of
GAs who participate in transactions concurrently.

We quantify the success of A in clustering addresses in Bitcoin by measuring
the similarity of A’s estimate Eprof from the genuine grouping of profiles GTprof ,
Sim(Eprof , GTprof), where the similarity function Sim ranges in [0, 1]. Similar to quan-
tifying address unlinkability, we assess the advantage of A in approximating GTprof

over AR by ProfA = Sim(Eprof , GTprof) − Sim(ER
prof , GTprof).

We evaluate Sim(Eprof , GTprof) and ProfA by relying on two commonly used entropy-
based distance metrics, namely the normalized mutual information (NMI) and the
adjusted mutual information (AMI). NMI assesses the similarity of two groupings of
the same items (in our case, Eprof and GTprof) and takes higher values (1) the more iden-
tical the groupings [Vinh et al. 2009, 2010]. On the other hand, given the two groupings
Eprof and GTprof , AMI approaches 0 when Eprof is close to random assignment of ad-
dresses/transactions to groups (i.e., ER

prof) and is 1 when Eprof matches GTprof [Vinh et al.
2009, 2010]. Assuming address-based profiles, NMI and AMI are computed as follows:

NMI = I(Eprof , GTprof)
max(H(Eprof), H(GTprof))

, AMI = I(Eprof , GTprof) − E
max(H(Eprof), H(GTprof)) − E ,

where

I(Eprof , GTprof) =
nU∑
i=1

nU∑
j=1

n(i, j)

nA
log

(
n(i, j) · nA

n(i,∗)n(∗, j)

)
,

H(Eprof) = −
nU∑
i=1

n(i,∗)

nA
log

(
n(i,∗)

nA

)
, H(GTprof) = −

nU∑
j=1

n(∗, j)

nA
log

(
n(∗, j)

nA

)
,

E =
nU∑
i=1

nU∑
j=1

∑
n∈M

n
nA

log
(

nAn
n(i,∗)n(∗, j)

)
n(i,∗)!n(∗, j)!(nA − n(i,∗))!(nA − n(∗, j))!

nA!(n(i,∗) − n)!(n(∗, j) − n)!(nA − n(i,∗) − n(∗, j) − n)!
.

Here, nA is the number of Bitcoin addresses, n(i, j) is the number of ui ’s addresses,
which are assigned to group g j , and n(i,∗) and n(∗, j) are the number of addresses of ui

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:26 G. Karame et al.

Table IV. Clustering Results in the “Partial Knowledge” and “No Knowledge” Scenarios

Partial Knowledge 100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)

LinkA 0.91 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01
Prof a

A NMI 0.76 ± 0.01 0.87 ± 0.01 0.79 ± 0.01 0.70 ± 0.01 0.80 ± 0.01
AMI 0.75 ± 0.01 0.86 ± 0.01 0.77 ± 0.01 0.68 ± 0.01 0.77 ± 0.01

Prof τ
A NMI 0.68 ± 0.01 0.73 ± 0.02 0.70 ± 0.01 0.65 ± 0.01 0.72 ± 0.01

AMI 0.67 ± 0.01 0.72 ± 0.01 0.69 ± 0.01 0.63 ± 0.01 0.70 ± 0.01

No Knowledge 100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)

LinkA 0.90 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01
Prof a

A NMI 0.79 ± 0.01 0.89 ± 0.01 0.79 ± 0.01 0.71 ± 0.02 0.80 ± 0.01
AMI 0.78 ± 0.02 0.88 ± 0.01 0.78 ± 0.02 0.69 ± 0.02 0.78 ± 0.01

Prof τ
A NMI 0.69 ± 0.01 0.73 ± 0.03 0.69 ± 0.03 0.65 ± 0.01 0.72 ± 0.01

AMI 0.68 ± 0.01 0.72 ± 0.01 0.68 ± 0.03 0.63 ± 0.01 0.70 ± 0.01

Note: A column entitled X (Y%) denotes an experiment featuring X users among which Y %
are privacy aware. Each data point in our plots is averaged over five rounds of experiments;
we also present the corresponding 95% confidence intervals (shown after the “±” sign).

and g j , respectively. E reflects the expected mutual information between GTprof and
a random grouping of addresses (ER

prof). In addition, M = [max(n(i,∗) + n(∗, j) − nA, 0),
min(n(i,∗), n∗, j)]. Similar calculations can be derived to compute NMI and AMI for
transaction-based profiles.

Experimental results. Throughout our experiments, we emulated two different sce-
narios for each simulation round. In the first scenario, denoted by “Partial Knowledge,”
we assume that A is aware of the location/service of all Bitcoin vendors and as such
can distinguish whether a transaction was performed in exchange of a physical good.
In this case, we include the vendors’ addresses in the prior knowledge of A when com-
puting LinkA; we also assume that A can tune the clustering algorithm to take into
account that the same user performing this transaction cannot appear in other trans-
actions that take place at the same time. This case emulates the realistic setting where
A can extract a subset of the addresses owned by geographically co-located Bitcoin
users/vendors from the overall public Bitcoin log; for example, A can extract from the
Bitcoin log all addresses that interact with a known address of a vendor located within
the university environment. In the second scenario, denoted by “No Knowledge,” we
consider the case where A does not know the location or service of the vendors, and as
such does not have any prior knowledge, but assumes that up to 10% of the transactions
are performed in exchange of goods delivered over the Internet.

Given this setup, we evaluate the metrics LinkA, Profa
A (for address-based profiles),

and Prof τ
A (for transaction-based profiles) with respect to (1) the fraction of “privacy-

aware” users and (2) the number of users nU. By privacy-aware users, we refer to
users that manually generate new Bitcoin addresses (following a configuration in the
XML file) to enhance their privacy in the system. Table IV depicts our findings. Our
results show that both the “Partial Knowledge” and the “No Knowledge” configurations
exhibited comparable results.

In the first round of experiments, we evaluate the success of A with respect to
the fraction of privacy-aware users. More specifically, we run our clustering and
accountability (privacy) evaluation algorithm in a setting featuring 200 users, among
which 0%, 50%, and 100% of the users are privacy aware. The table shows LinkA,
Profa

A, and Prof τ
A with respect to the fractions of privacy-aware users. Here, we use a

normalized version on LinkA.
The advantage of A is only negligibly affected by the fraction of the privacy-aware

users in the system. More specifically, we can see that our adversary outperforms AR

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:27

Fig. 13. The case where A cannot accurately estimate nU. We assume the “Partial Knowledge” case where
nU = 200.

by almost 90%. On the contrary, Profa
A and Prof τ

A show a better dependency on the
fraction of privacy-aware users. When none of users in the system are privacy aware,
the performance of our clustering algorithms is high. In particular, in both configura-
tions, ProfAa (NMI and AMI for addresses) range within 0.87 to 0.89, whereas Prof τ

A
(NMI and AMI for transactions) are 0.73. However, as the fraction of the privacy-aware
users increases, the performance of A drops and results in Prof τ

A and Profa
A of 0.70 and

0.63, respectively. This mischief can be explained by the fact that privacy-aware users
add noise to the Bitcoin log. However, the fact that AMI values remain consistently
far from 0 and close to 1 indicates that A performs much better than AR and that
the estimate chosen by A is close to the genuine assignment of users to clusters. We
therefore conclude that the privacy of users in Bitcoin can still be compromised even
if users manually create new addresses to prevent the linking of their addresses [Ron
and Shamir 2013]. Furthermore, our results show that A’s advantage over AR is not
significantly affected by the number of participant users in the case of address un-
linkability. Profa

A and Prof τ
A increase from 0.76 and 0.68 to 0.80 and 0.72, respectively,

as the number of users increases from 100 to 400. This is mostly because when the
number of users increases, the assignment of addresses (or transactions) into groups of
users (AR) performs worst. In Figure 13, we evaluate the case where A does not have
an accurate estimate of the number of users in the university setting. Our findings
show that even if A’s estimate of the number of users is not accurate, the privacy of a
considerable fraction of users is still compromised.

In our simulation environment, the number of transactions performed by users
largely depends on their budget and “hobbies,” which results in a considerable va-
riety of frequency of transactions per user. In Figure 14, we assess the advantage of A
with respect to different classes of users and different privacy-awareness levels. Here,
we throttle the average number of transaction per user to 30%, 50%, 90%, and 100% of
the total possible transactions to which all users would commit (as defined in their pro-
file within the simulator); by doing so, we simulate cases where the network features
various levels of transactional traffic. In each investigated setting, we classify the pro-
files of Bitcoin users into three groups based on the number of transactions in which
they were involved (i.e., groups were divided according to their 3-quantiles) and mea-
sure the overall fraction of user profiles (measured by means of the similarity of trans-
actions appearing in a user’s wallet and the corresponding cluster) that are captured
by A in each case. Our results in Figure 14 show that in the case of nU = 200 users with

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:28 G. Karame et al.

Fig. 14. Fraction of transactions captured by our clustering algorithms in the “No Knowledge” case and 200
users in the system.

0% privacy awareness and 100% transactional traffic, almost 42% of the users have
their profiles captured with 80% accuracy. In the case featuring 100% privacy-aware
users, this fraction drops to 35% of the users whose profile was correctly clustered with
an accuracy of at least 80%. In summary, our results suggest the following:

—The profile leakage is larger when users participate in a large number of transactions
and decreases as the number of transactions performed by the user decreases. This
is mainly because users who participate in more transactions can be more easily
profiled compared to those users who only participate in few transactions.

—The overall number of transactions exchanged in Bitcoin has little impact on the
profile leakage of users in the system. Our results show that even when the network
features 70% fewer transactions, the fraction of captured transactions per user does
not decrease significantly—irrespective of the activity level of each user.

It is straightforward to see that accountability provisions in Bitcoin become
strongeras the privacy provisions of Bitcoin become weaker. Notably, the less untrace-
able the user activity is within Bitcoin log, and therefore the more accountable the sys-
tem, the more individual privacy, such as activity unlinkability, is compromised. This
tension is also depicted in our metrics; the higher is LinkA, the smaller is UnLinkA.

Our results suggest that the privacy provisions of Bitcoin are not strong, which opens
the door to the integration of accountability measures in the system.

As mentioned earlier, the manual creation of new addresses can only partly conceal
the profiles of users who participate in a small amount of transactions. Such a counter-
measure, however, does not increase the privacy of users who are active in the network
and participate in a large number of transactions. Moreover, protocols that mix the
inputs and outputs of transactions cannot fully prevent clustering analysis, as they
do not hide the amounts and times of payments. Transaction amounts and times can

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:29

be hidden, such as by using the protocols in Ben-Sasson et al. [2014] and Androulaki
and Karame [2014], and by randomizing the time of sending transactions in the net-
work. However, such protocols incur considerable computational overhead and require
modifications to the Bitcoin protocol.

5. RELATED WORK

In what follows, we overview related work in the area. Elias [2011] investigates the
legal aspects of privacy in Bitcoin. Reid and Harrigan [2011] explore user anonymity
limits in Bitcoin. Babaioff et al. [2011] address the lack of incentives for Bitcoin peers to
include recently announced transactions in a block. Ron and Shamir [2013] analyze the
behavior of users (i.e., how they acquire and how they spend their BTCs) and investigate
how users move BTCs between their various accounts to better protect their privacy. To
our knowledge, their analysis was only based on Heuristic I (cf. Section 4.3) and did not
take into account classifying addresses using our second heuristic. Meiklejohn et al.
[2013] try to identify big players in the Bitcoin system by leveraging our Heuristics
I and II presented in Section 4.3; notably, the authors perform transactions with big
vendors, such as Mt. Gox, and use our heuristics to identify a bigger cluster of addresses
particular to such vendors. Our analysis in Section 4.3 explores the information leakage
due to the public Bitcoin block chain and reveals the first comprehensive clustering
results of all Bitcoin addresses using our two heuristics. Decker and Wattenhofer [2013]
investigate transaction and block propagation time in Bitcoin. Koshy et al. [2014]
investigate the possibility of linking addresses of the same user together by utilizing
the Bitcoin peers network address information (IPs). The authors identified (in terms
of IP) certain addresses whose behavior deviated from the average address behavior
in the Bitcoin network but did not perform any generic analysis covering all Bitcoin
addresses. Gervais et al. [2014a] show that the reliance on Bloom filters within existing
SPV clients leaks considerable information about the addresses of Bitcoin users.

To enhance user privacy in Bitcoin, mixing transactions emerges as an effective
technique to hide the linkability between inputs and outputs of Bitcoin transactions.
Existing solutions (e.g., Bonneau et al. [2014] and CoinJoin [2013]) rely on a mix-
ing server to harden the tracing of coin expenditure in the network; here, the mixing
server still needs to be trusted to ensure anonymity, since it learns the mapping of
coins to addresses. Ruffing et al. [2014] propose a mixing protocol that does not require
any centralized mixing server. Miers et al. [2013] introduce ZeroCoin, a cryptographic
extension to Bitcoin that augments the protocol to prevent the tracing of coin expendi-
ture. In this work, we have shown that standard clustering algorithms can be used to
acquire considerable information about the user profiles in Bitcoin. These algorithms
mainly leverage user spending patterns, such as transaction amounts and transaction
times, to profile users. Clearly, ZeroCoin and existing mixing protocols can impede, to
some extent, the linkability of transactions belonging to the same address. In these
schemes, the advantage of our adversary in linking addresses is likely to be reduced;
nevertheless, it is not clear whether clustering analysis can be completely deterred
in ZeroCoin and in mixing protocols, as the transaction times, transaction amounts,
and address balances can still be derived from the block chain. Garman et al. [2014]
briefly describe a ZKPoK-based technique that enables the construction of transactions
between anonymous coins in ZeroCoin. ZeroCoin was later extended in Androulaki and
Karame [2014] and Ben-Sasson et al. [2014] to hide the transaction values and address
balances in the system.

Syed and Syed [2011] propose a user-friendly technique for managing Bitcoin wal-
lets. Gervais et al. [2014b] analyze the limits of decentralization in Bitcoin and show
that the vital operations and decisions that Bitcoin is currently undertaking are not
decentralized. Finney [2013] describes a double-spending attack in Bitcoin where the

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

2:30 G. Karame et al.

attacker includes in her generated blocks transactions that transfer some coins be-
tween her own addresses; these blocks are only released in the network after the at-
tacker double-spends the same coins using fast payments and acquires a given service.
Barber et al. [2012] analyze possible ways to enhance the resilience of Bitcoin against
a number of security threats; they do not, however, analyze the security of fast Bitcoin
payments.

Anonymity and unlinkability have been explored in different contexts by the research
community. More specifically, Pfitzmann and Hansen [2008] define unlinkability and
privacy for pseudonymous systems in high level. Diaz et al. [2002] and Steinbrecher
and Koepsell [2003] model and measure anonymity and unlinkability in communi-
cation systems. Malin [2008] provides a model the unlinkability of distributed data,
whereas Franz et al. [2007] investigate how important the context is for the unlinka-
bility provisions of a system and provide metrics for that.

Micropayments [Rivest 2004; Androulaki et al. 2008; Karame et al. 2011] is an ef-
ficient payment scheme aiming primarily at enabling low-cost transactions. Here, the
payer provides signed endorsements of monetary transfers on the vendor’s name. Digi-
tal signatures in these systems constitute the main double-spending resistance mecha-
nism. ECash [Chaum et al. 1990; Brands 1995; Camenisch et al. 2005] and anonymous
credit cards were the first attempts to define privacy-preserving transactions. Privacy
in ECash consists of user anonymity and transaction unlinkability; by relying on a
set of cryptographic primitives, ECash ensures that payments pertaining to the same
user cannot be linked to each other or to the payer, provided that the latter does not
misbehave.

6. CONCLUSION

Bitcoin has already witnessed a wider adoption and attention than any other digital
currency proposed to date. One of the main reasons for such a broad adoption of
Bitcoin has been a promise of a low-cost, anonymous, and decentralized currency that
is inherently independent of governments and any centralized authority.

In this article, we analyzed and evaluated the double-spending resilience of Bitcoin in
fast payments. We showed that not only do these attacks succeed with overwhelming
probability, but they also—contrary to common beliefs- do not incur any significant
overhead on the attacker. We also proposed a lightweight countermeasure that enables
the detection of double-spending attacks in fast transactions.

Motivated by our analysis, we then analytically and empirically investigated the
privacy and accountability provisions in Bitcoin. Our findings show that the public
transaction log of Bitcoin leaks considerable information about user profiles in Bitcoin.
This information can be used to link different Bitcoin addresses pertaining to Bitcoin
users to implement accountability measures within the system (e.g., “blacklist” linked
addresses from the network) within the Bitcoin system. We therefore hope that our
findings motivate further research in this area.

ACKNOWLEDGMENTS

The authors would like to thank Matthias Herrmann and Hubert Ritzdorf for collecting various measure-
ments in the Bitcoin network, and Tobias Scherer for the help in implementing the HAC and KMC algorithms.
The authors also thank the anonymous reviewers for their valuable feedback and comments.

REFERENCES

Elli Androulaki and Ghassan Karame. 2014. Hiding transaction amounts and balances in Bitcoin. In Pro-
ceedings of the International Conference on Trust and Trustworthy Computing (TRUST).

Elli Androulaki, Ghassan Karame, and Srdjan Capkun. 2013. Evaluating user privacy in Bitcoin. In Pro-
ceedings of Financial Crypto 2013. http://eprint.iacr.org/2012/596.pdf.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

http://eprint.iacr.org/2012/596.pdf

Misbehavior in Bitcoin: A Study of Double-Spending and Accountability 2:31

Elli Androulaki, Mariana Raykova, Shreyas Srivatsan, Angelos Stavrou, and Steven M. Bellovin. 2008.
PAR: Payment for anonymous routing. In Proceedings of the 8th International Symposium on Privacy
Enhancing Technologies (PETS’08). 219–236.

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2011. On Bitcoin and red balloons. ACM
SIGecom Exhanges 10, 3, 5–9.

Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. 2012. Bitter to better—how to make Bitcoin a
better currency. In Financial Cryptography and Data Security. Lecture Notes in Computer Science,
Vol. 7397. Springer, 399–414.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. 2014. Zerocash: Practical decentralized anonymous e-cash from Bitcoin. In Proceedings of the 2014
IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA.

Bitcoin. 2013. Introduction. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Introduction.
BitcoinCharts. 2013. Bitcoin Charts. Retrieved April 2, 2015, from http://bitcoincharts.com.
BitcoinDoS. 2013. Weaknesses. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Weaknesses.
BitcoinExplorer. 2013. Bitcoin Block Explorer. Retrieved April 2, 2015, from http://blockexplorer.com.
BitcoinFAQ. 2013. FAQ. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/FAQ.
BitcoinMyths. 2013. Myths. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Myths#Point_of_sale_

with_bitcoins_isn.27t_possible_because_of_the_10_minute_wait_for_confirmation.
BitcoinProtocol. 2013. Protocol Documentation. Retrieved April 2, 2015, from https://en.bitcoin.it/

wiki/Protocol_specification.
BitcoinRules. 2012. Protocol Rules. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Protocol_rules.
BitcoinTrade. 2013. Trade. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Trade.
BitcoinWiki. 2014. Double-Spending. Retrieved April 2, 2015, from https://en.bitcoin.it/Double-spending.
BitcoinXT. 2014. Bitcoin XT. Retrieved April 2, 2015, from https://github.com/bitcoinxt/bitcoinxt.
BlockChain. 2013. 200 Double Spends. Retrieved April 2, 2015, from https://blockchain.info/double-spends.
Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll, and Edward W. Felten.

2014. Mixcoin: Anonymity for Bitcoin with accountable mixes. In Proceedings of Financial Crypto 2014.
Stefan Brands. 1995. Electronic cash on the Internet. In Proceedings of the Symposium on Network and

Distributed System Security. 64–84.
Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact e-cash. In Advances in

Cryptology—EUROCRYPT 2005. Lecture Notes in Computer Science, Vol. 3494. Springer, 302–
321.

David Chaum, Amos Fiat, and Moni Naor. 1990. Untraceable electronic cash. In Proceedings of Advances in
Cryptology (CRYPTO’88). 319–327.

CNN. 2011. CNN: Bitcoin’s Uncertain Future as Currency. Retrieved April 2, 2015, from https://www.youtube.
com/watch?v=75VaRGdzMM0.

CoinJoin. 2013. CoinJoin: Bitcoin Privacy for the Real World. Retrieved April 2, 2015, from https://bitcointalk.
org/index.php?topic=279249.0.

Connectivity. 2013. Satoshi Client Node Connectivity. Retrieved April 2, 2015, from https://en.bitcoin.it/
wiki/Satoshi_Client_Node_Connectivity.

Christian Decker and Roger Wattenhofer. 2013. Information propagation in the Bitcoin network. In Proceed-
ings of the 13th IEEE International Conference on Peer-to-Peer Computing.

Deepbit. 2011. Deepbit. Retrieved April 2, 2015, from https://deepbit.net.
Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. 2002. Towards measuring anonymity. In

Proceedings of the Privacy Enhancing Technologies Workshop (PET’02).
DoubleSpending. 2014. Observed Double-Spends. Retrieved April 2, 2015, from http://respends.thinlink.com.
Elias. 2011. Bitcoin: Tempering the Digital Ring of Gyges or Implausible Pecuniary Privacy. Retrieved April

2, 2015, from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1937769.
Finney. 2013. Weaknesses. Retrieved April 2, 2015, from https://en.bitcoin.it/wiki/Weaknesses#The_.

22Finney.22_attack.
Matthias Franz, Bernd Meyer, and Andreas Pashalidis. 2007. Attacking unlinkability: The importance of

context. In Privacy Enhancing Technologies. Lecture Notes in Computer Science, Vol. 4776. Springer,
1–16.

Christina Garman, Matthew Green, Ian Meiers, and Aviel Rubin. 2014. Rational zero: Economic security for
zerocoin with everlasting anonymity. In Proceedings of the Financial Cryptography and Data Security
Conference.

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

https://www.youtube.com/watch?v=75VaRGdzMM0
https://www.youtube.com/watch?v=75VaRGdzMM0
http://respends.thinlink.com.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id$=$1937769.

2:32 G. Karame et al.

Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber. 2014a. On the privacy provisions
of Bloom filters in lightweight Bitcoin clients. In Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC’14). 326–335. DOI:http://dx.doi.org/10.1145/2664243.2664267

Arthur Gervais, Ghassan Karame, Srdjan Capkun, and Vedran Capkun. 2014b. Is Bitcoin a decentralized
currency? IEEE Security and Privacy 12, 3, 54–60.

Ghassan Karame, Aurelien Francillon, and Srdjan Čapkun. 2011. Pay as you browse: Microcomputations
as micropayments in Web-based services. In Proceedings of the 20th International Conference on World
Wide Web (WWW’11). 307–316.

Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-spending fast payments in Bitcoin.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS’12). ACM, New
York, NY, 906–917. DOI:http://dx.doi.org/10.1145/2382196.2382292

Philip Koshy, Diana Koshy, and Patrick McDaniel. 2014. An analysis of anonymity in Bitcoin using p2p
network traffic. In Proceedings of Financial Crypto 2014.

Bradley Malin. 2008. K-unlinkability: A privacy protection model for distributed data. Data and Knowledge
Engineering 64, 1, 294–311.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker,
and Stefan Savage. 2013. A fistful of Bitcoins: Characterizing payments among men with no names.
In Proceedings of the Internet Measurement Conference (IMC’13). ACM, New York, NY, 127–140.
DOI:http://dx.doi.org/10.1145/2504730.2504747

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin: Anonymous distributed
e-cash from Bitcoin. In Proceedings of the IEEE Symposium on Security and Privacy.

Mining. 2013. Comparison of Mining Pools. Retrieved April 2, 2015, from https://en.bitcoin.it/
wiki/Comparison_of_mining_pools.

MiningHardware. 2013. Mining Hardware Comparison. Retrieved April 2, 2015, from https://en.bitcoin.it/
wiki/Mining_hardware_comparison.

Andreas Pfitzmann and Marit Hansen. 2008. Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management: A consolidated proposal for terminology. Fachtermi-
nologie Datenschutz und Datensicherheit 2008, 111–144. http://dud.inf.tu-dresden.de/literatur/Anon_
Terminology_v0.18.pdf.

ProofWiki. 2013. Definition:Geometric Distribution/Shifted. Retrieved April 2, 2015, from https://
proofwiki.org/wiki/Definition:Geometric_Distribution/Shifted.

Fergal Reid and Martin Harrigan. 2011. An analysis of anonymity in the Bitcoin system. arXiv:1107.4524.
Ronald Rivest. 2004. Peppercoin micropayments. In Financial Cryptography. Lecture Notes in Computer

Science, Vol. 3110. Springer, 2–8.
Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full Bitcoin transaction graph. In Proceedings

of Financial Crypto 2013.
Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShuffle: Practical decentralized coin mixing

for Bitcoin. In Computer Security—ESORICS 2014. Lecture Notes in Computer Science, Vol. 8713.
Springer, 345–364.

Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved April 2, 2015, from
https://bitcoin.org/bitcoin.pdf.

Sandra Steinbrecher and Stefan Koepsell. 2003. Modelling unlinkability. In Privacy Enhancing Technologies.
Lecture Notes in Computer Science, Vol. 2760. Springer, 32–47.

Syed and Syed 2011. Bitcoin Gateway, A Peer-to-Peer Bitcoin Vault and Payment Network. Retrieved April
2, 2015, from http://arimaa.com/bitcoin/.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2009. Information theoretic measures for clusterings
comparison: Is a correction for chance necessary? In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML’09).

Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research 11, 2837–2854.

Znort987. 2013. Znort987/Blockparser. (2013). Retrieved April 2, 2015, from https://github.com/znort987/
blockparser.

Received December 2013; revised December 2014; accepted February 2015

ACM Transactions on Information and System Security, Vol. 18, No. 1, Article 2, Publication date: May 2015.

http://dx.doi.org/10.1145/2664243.2664267
http://dx.doi.org/10.1145/2382196.2382292
http://dx.doi.org/10.1145/2504730.2504747
http://dud.inf.tu-dresden.de/literatur/AnonTerminologyv0.18.pdf
http://dud.inf.tu-dresden.de/literatur/AnonTerminologyv0.18.pdf

