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1. Motivation and Context

Divergences between probability measures are widely used in statistics and data
science in order to perform inference under models of various kinds; parametric or semi-
parametric, or even in non-parametric settings. The corresponding methods extend the
likelihood paradigm and insert inference in some minimum “distance” framing, which
provides a convenient description for the properties of the resulting estimators and tests,
under the model or under misspecification. Furthermore, they pave the way to a large
number of competitive methods, which allows to trade-off between efficiency and robust-
ness, among other things. Many families of such divergences have been proposed, some of
them stemming from classical statistics (such as the Chi-square divergence), while others
have their origin in other fields, such as information theory. Some measures of discrepancy
involve regularity of the corresponding probability measures while others seem to be
restricted to measures on finite or countable spaces, at least when using them as inferential
tools, henceforth in situations when the elements of a model have to be confronted with
a dataset. The choice of a specific discrepancy measure in specific context is somehow
arbitrary in many cases, although the resulting conclusion of the inference might differ
accordingly, above all under misspecification.

The goal of this paper is explained shortly. The current literature on risks, seen from
a statistical standpoint, has developed in two main directions, from basic definitions and
principles, following the seminal papers [1,2].

A first stream of papers aims to describe classes of discrepancy indices (divergences) as-
sociated with invariance under classes of transformations and similar properties;
see [3–5] for a review.

The second flow aims at making use of these indices for practical purposes under
various models, from parametric models to semi-parametric ones, mostly. Also the litera-
ture in learning procedures makes extensive use of divergence-based risks, with a strong
accent on the implementation issues. Following the standard approach, their properties
are mainly considered under i.i.d. sampling, providing limit results, confidence areas, etc;
see [6,7] and references therein for review and developments, and the monographs [8,9].
Also comparison among discrepancy indices are considered in terms of performances
either under the model, or with respect to robustness (aiming at minimizing the role of
outliers in the inference by providing estimators with redescending influence function), or
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with respect to misspecification, hence focusing on the loss in estimation or testing with
respect to the distance from the assumed model to the true one.

This literature, however, rarely considers the rationale for specific choices of indices
in relation with the concepts which define statistics, such as the Bayesian paradigm or
the maximum likelihood (ML) one; for a contribution in this direction for inference in
models defined by linear constraints, see [10]. In [11], we could prove that minimum
divergence estimators (in the class of the ones considered in the present paper) coincide
with MLEs under i.i.d. sampling in regular exponential models (but need not, even in
common models such as mixtures). Here it is proved that minimum divergence estimators
are indeed MLEs under weighted sampling, instead of standard i.i.d. one, commonly met
in bootstrap procedures which aim at providing finite sample properties of estimators
through simulation.

This paper considers a specific class of divergences, which contains most of the
classical inferential tools, and which is indexed by a single scalar parameter. This class of
divergences belongs to the Csiszar-Ali-Silvey-Arimoto family of divergences (see [4]), and
is usually referred to as the power divergence class, which has been considered by Cressie
and Read [12]; however this denomination is also shared by other discrepancy measures of
some different nature [13]. We will use the acronym CR for the class of divergences under
consideration in this paper.

Section 2 recalls that the MLE is obtained as a proxy of the minimizer of the Kullback-
Leibler divergence between the generic law of the observed variable and the model, which
is the large deviation limit for the empirical distribution. This limit statement is nothing
but the continuation of the classical ML paradigm, namely to make the dataset more
“probable” under the fitted distribution in the model, or, equivalently, to fit the most “likely”
distribution in the model to the dataset.

Section 3 states that given a divergence pseudo distance φ in CR the Minimum
Divergence Estimator (MDE) is obtained as a proxy of the minimizer of the large deviation
limit for some bootstrap version of the empirical distribution, which establishes that the
MDE is MLE for bootstrapped samples defined in relation with the divergence. This fact
is based on the strong relation which associates to any CR φ-divergence a specific RV
W (see Section 1.1.2); this link is the cornerstone for the interpretation of the minimum
φ-divergence estimators as MLEs for specific bootstrapped sampling schemes where W
has a prominent rôle. Some specific remark explores the link between MDE and MLE in
exponential families. As a by product, we also introduce a bootstrapped estimator of the
divergence pseudo-distance φ between the distribution of the data and the model.

In Section 4, we specify the bootstrapped estimator of the divergence which can be
used in order to perform an optimal test of fit. Due to the type of asymptotics handled in
this paper, optimality is studied in terms of Bahadur efficiency. It is shown that tests of fit
based on such estimators enjoy Bahadur optimality with respect to other bootstrap plans
when the bootstrap is performed under the distribution associated with the divergence
criterion itself.

The discussion held in this paper pertains to parametric estimation in a model PΘ
whose elements Pθ are probability measures defined on the same finite space
Y := {d1, . . . , dK}, and θ ∈ Θ is an index space; we assume identifiability, namely different
values of θ induce different probability laws Pθ’s. Also all the entries of Pθ will be positive
for all θ in Θ.

1.1. Notation
1.1.1. Divergences

We consider regular divergence functions ϕ which are non negative convex functions
with values in R+ which belong to C2 (R) and satisfy ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) = 1;
see [3,4] for properties and extensions. An important class of such functions is defined
through the power divergence functions
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ϕγ(x) :=
xγ − γx + γ− 1

γ(γ− 1)
(1)

defined for all real γ 6= 0, 1 with ϕ0(x) := − log x + x − 1 (the likelihood divergence
function) and ϕ1(x) := x log x− x+ 1 (the Kullback-Leibler divergence function). This class
is usually referred to as the Cressie-Read family of divergence functions (see [12]). It is a
very simple class of functions (with the limits in γ→ 0, 1) which allows to represent nearly
all commonly used statistical criterions. Parametric inference in commonly met situations
including continuous models or some non-regular models can be performed with them;
see [6]. The L1 divergence function ϕ(x) := |x− 1| is not captured by the CR family of
functions. When undefined the function ϕ is declared to assume value +∞.

Associated with a divergence function ϕ, φ is the divergence between a probability
measure and a finite signed measure; see [14].

For P := (p1, . . . , pK) and Q := (q1, . . . , qK) in SK, the simplex of all probability
measures on Y , define, whenever Q and P have non-null entries

φ(Q, P) :=
K

∑
k=1

pk ϕ

(
qk
pk

)
.

Indexing this pseudo-distance by γ and using ϕγ as divergence function yields the

Kullback-Leibler divergence KL(Q, P) := φ1(Q, P) := ∑ qk log
(

qk
pk

)
, the likelihood or

modified Kullback-Leibler divergence

KLm(Q, P) := φ0(Q, P) := −∑ pk log
(

qk
pk

)
,

the Hellinger divergence

φ1/2(Q, P) :=
1
2 ∑ pk

(√
qk
pk
− 1
)2

,

the modified (or Neyman) χ2 divergence

χ2
m(Q, P) := φ−1(Q, P) :=

1
2 ∑ pk

(
qk
pk
− 1
)2( qk

pk

)−1
.

The χ2 divergence

φ2(Q, P) :=
1
2 ∑ pk

(
qk
pk
− 1
)2

is defined between signed measures; see [15] for definitions in more general setting, and [6]
for the advantage to extend the definition to possibly signed measures in the context of
parametric inference for non-regular models. Also the present discussion which is restricted
to finite spaces Y can be extended to general spaces.

The conjugate divergence function of ϕ is defined through

ϕ̃(x) := xϕ

(
1
x

)
(2)

and the corresponding divergence φ̃(P, Q) is

φ̃(P, Q) :=
K

∑
k=1

qk ϕ̃

(
pk
qk

)
which satisfies

φ̃(P, Q) = φ(Q, P)
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whenever defined, and equals +∞ otherwise. When ϕ = ϕγ then ϕ̃ = ϕ1−γ as follows by
substitution. Pairs

(
ϕγ, ϕ1−γ

)
are therefore conjugate pairs. Inside the Cressie-Read family,

the Hellinger divergence function is self-conjugate.
For P = Pθ and Q ∈ SK we denote φ(Q, P) by φ(Q, θ) (resp φ(θ, Q), or φ(θ′, θ), etc.

according to the context).

1.1.2. Weights

This paragraph introduces the special link which connects CR divergences with
specific random variables, which we call weights. Those will be associated to the dataset
and define what is usually referred to as a generalized bootstrap procedure. This is the
setting which allows for an interpretation of the MDE’s as generalized bootstrapped MLEs.

For a given real valued random variable (RV) W denote

M(t) := log E[exp(tW)] (3)

its cumulant generating function which we assume to be finite in a non-void open neigh-
borhood of 0. The Fenchel Legendre transform of M (also called the Chernoff function) is
defined through

ϕW(x) = M∗(x) := sup
t
(tx−M(t)). (4)

The function x → ϕW(x) is non-negative, is C∞ and convex. We also assume that
EW = 1 together with VarW = 1 which implies ϕW(1) =

(
ϕW)′(1) = 0 and

(
ϕW)′′(1) = 1.

Hence ϕW(x) is a divergence function with corresponding divergence φW . Associated with
ϕW is the conjugate divergence φ̃W with divergence function ϕ̃W , which therefore satisfies
φW(Q, P) = φ̃W(P, Q) whenever neither P nor Q have null entries.

It is of interest to note that the classical power divergences ϕγ can be represented
through (4) for γ ≤ 1 or γ ≥ 2. A first proof of this lays in the fact that when W has a
distribution in a Natural Exponential Family (NEF) with power variance function with
exponent α = 2− γ, then the Legendre transform ϕW of its cumulant generating function
M is indeed of the form (1). See [16,17] for NEF’s and power variance functions, and [18]
for relation to the bootstrap. A general result of a different nature, including the former
ones, can be seen in [19], Theorem 20. Correspondence between the various values of γ
and the distribution of the respective weights can be found in [19], Example 39, and it can
be summarized as presented now.

For γ < 0 the RV W is constructed as follows: Let Z be an auxiliary RV with density

fZ and support [0, ∞) of a stable law with parameter triplet
(
− γ

1−γ , 0, (1−γ)−γ//(1−γ)

γ

)
in terms of the “form B notation” on p 12 in [20]; then W has an absolutely continuous
distribution with density

fW(y) :=
exp(−y/(1− γ))

exp(1/γ)
fZ(y)1[0,∞)(y).

For γ = 0 (which amounts to consider the limit as γ→ 0 in (1)) then W has a standard
exponential distribution E(1) on [0, ∞).

For γ ∈ (0, 1) then W has a compound Gamma-Poisson distribution

C(POI(θ), GAM(α, β))

where
θ =

1
γ

, α =
1

1− γ
, β =

γ

1− γ
.

For γ = 1, W has a Poisson distribution with parameter 1, POI(1).
For γ = 2, the RV W has normal distribution with expectation and variance equal to 1.
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For γ > 2, the RV W is constructed as follows: Let Z be an auxiliary RV with density

fZ and support (−∞, ∞) of a stable law with parameter triplet
(

γ
γ−1 , 0, (γ−1)−γ//(γ−1)

γ

)
in terms of the “form B notation” on p 12 in [20]; then W has an absolutely continuous
distribution with density

fW(y) :=
exp(y/(γ− 1))

exp(1/γ)
fZ(−y) ,y ∈ R.

2. Maximum Likelihood under Finitely Supported Distributions and Simple
Sampling
2.1. Standard Derivation

Let X1, . . . Xn be a set of n independent random variables with common probability
measure PθT and consider the Maximum Likelihood estimator of θT . A common way to
define the ML paradigm is as follows: For any θ consider independent random variables
(X1,θ , . . . Xn,θ) with probability measure Pθ , thus sampled in the same way as the Xi’s, but
under some alternative θ.

Denote

Pn :=
1
n

n

∑
i=1

δXi

and

Pn,θ :=
1
n

n

∑
i=1

δXi,θ

the empirical measures pertaining respectively to (X1, . . . Xn) and (X1,θ , . . . Xn,θ).
Define θML as the value of the parameter θ for which the probability that, up to a

permutation of the order of the Xi,θ’s, the probability that (X1,θ , . . . Xn,θ) coincides with
X1, . . . Xn is maximal, conditionally on the observed sample X1, . . . Xn. In formula

θML := arg max
θ

Pθ(Pn,θ = Pn|Pn). (5)

An explicit enumeration of the above expression Pθ(Pn,θ = Pn|Pn) involves
the quantities

nj := card
{

i : Xi = dj
}

for j = 1, . . . , K and yields

Pθ(Pn,θ = Pn,X |Pn,X) =
n!Pθ

(
dj
)nj

K
∏
j=1

nj!
(6)

as follows from the classical multinomial distribution. Optimizing on θ in (6) yields

θML = arg max
θ

K

∑
j=1

nj

n
log Pθ

(
dj
)

= arg max
θ

1
n

n

∑
i=1

log Pθ(Xi).

It follows from direct evaluation that

θML = arg inf
θ

KLm(Pθ , Pn).

Introducing the Kullback-Leibler divergence KL(Pn, Pθ) it thus holds

θML = arg inf
θ

K̃Lm(Pn, Pθ) = arg inf
θ

KL(Pn, Pθ).
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We have recalled that minimizing the Kullback-Leibler divergence KL(Pn, θ) amounts
to minimizing the Likelihood divergence KLm(θ, Pn) and produces the ML estimate of θT .

2.2. Asymptotic Derivation

We assume that
lim

n→∞
Pn = PθT a.s.

This holds for example when the Xi’s are drawn as an i.i.d. sample with common
law PθT which we may assume in the present context. From an asymptotic standpoint,
Kullback-Leibler divergence is related to the way Pn keeps away from Pθ when θ is not
equal to the true value of the parameter θT generating the observations Xi’s and is closely
related with the type of sampling of the Xi’s. In the present case, when i.i.d. sampling of
the Xi,θ’s under Pθ is performed, Sanov Large Deviation theorem leads to

lim
n→∞

1
n

log Pθ(Pn,θ = Pn|Pn) = −KL(θT , θ). (7)

This result can easily be obtained from (6) using Stirling formula to handle the factorial
terms and the law of large numbers which states that for all j’s, nj/n tends to PθT (dj) as
n tends to infinity. We note that the MLE θML is a proxy of the minimizer of the natural
estimator θT of KL(θT , θ) in θ, substituting the unknown measure generating the Xi’s by
its empirical counterpart Pn. Alternatively as will be used in the sequel, θML minimizes
upon θ the Likelihood divergence KLm(θ, θT) between Pθ and PθT substituting the un-
known measure PθT generating the Xi’s by its empirical counterpart Pn. Summarizing we
have obtained:

The ML estimate can be obtained from a LDP statement as given in (7), optimizing in
θ in the estimator of the LDP rate where the plug-in method of the empirical measure of
the data is used instead of the unknown measure PθT . Alternatively it holds

θML := arg min
θ

K̂Lm(θ, θT) (8)

with
K̂Lm(θ, θT) := KLm(θ, Pn).

This principle will be kept throughout this paper: the estimator is defined as max-
imizing the probability that the simulated empirical measure be close to the empirical
measure as observed on the sample, conditionally on it, following the same sampling
scheme. This yields a maximum likelihood estimator, and its properties are then obtained
when randomness is introduced as resulting from the sampling scheme.

3. Bootstrap and Weighted Sampling

The sampling scheme which we consider is commonly used in connection with the
bootstrap and is referred to as the weighted or generalized bootstrap, sometimes called wild
bootstrap, first introduced by Newton and Mason [21].

Let X1, . . . , Xn with common distribution P on Y := {d1, . . . , dK}.
Consider a collection W1, . . . , Wn of independent copies of W, whose distribution satis-

fies the conditions stated in Section 1. The weighted empirical measure PW
n is

defined through

PW
n :=

1
n

n

∑
i=1

WiδXi .

This empirical measure need not be a probability measure, since its mass may not
equal 1. Also it might not be positive, since the weights may take negative values.
Therefore PW

n can be identified with a random point in RK. The measure PW
n converges

almost surely to P when the weights Wi’s satisfy the hypotheses stated in Section 1.
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We also consider the normalized weighted empirical measure

PW
n :=

n

∑
i=1

ZiδXi (9)

where
Zi :=

Wi

∑n
j=1 Wj

(10)

whenever ∑n
j=1 Wj 6= 0, and

PW
n = ∞

when ∑n
j=1 Wj = 0, where PW

n = ∞ means PW
n (dk) = ∞ for all dk in Y .

3.1. A Conditional Sanov Type Result for the Weighted Empirical Measure

We now state a conditional Sanov type result for the family of random measures PW
n .

It follows readily from a companion result pertaining to PW
n and enjoys a simple form when

the weights Wi are associated to power divergences, as defined in Section 1.1.2. We quote
the following results, referring to [19].

Consider a set Ω in RK such that

clΩ = cl[Int(Ω)] (11)

which amounts to a regularity assumption (obviously met when Ω is an open set), and
which allows for the replacement of the usual lim inf and lim sup by standard limits in
usual LDP statements. We denote by PW the probability measure of the random family of
i.i.d. weights Wi.

It then holds

Proposition 1 (Theorem 9 in [19]). The weighted empirical measure PW
n satisfies a conditional

Large Deviation Principle in RK namely, denoting P the a.s. limit of Pn,

lim
n→∞

1
n

log PW
(

PW
n ∈ Ω

∣∣∣Xn
1

)
= −φW(Ω, P)

where φW(Ω, P) := infQ∈Ω φW(Q, P).

As a direct consequence of the former result, it holds, for any Ω ⊂ SK satisfying (11),
where SK designates the simplex of all pm’s on Y .

Theorem 1 (Theorem 12 in [19]). The normalized weighted empirical measure PW
n satisfies a

conditional Large Deviation Principle in SK

lim
n→∞

1
n

log PW
(
PW

n ∈ Ω
∣∣∣Xn

1

)
= − inf

m 6=0
φW(mΩ, P). (12)

A flavour of the simple proofs of Proposition 1 and Theorem 1 is presented in
Appendix A; see [19] for a detailed treatment; see also Theorem 3.2 and Corollary 3.3
in [22] where Theorem 1 is proved in a more abstract setting.

We will be interested in the pm’s in Ω which minimize the RHS in the above display.
The case when φW is a power divergence, namely φW = φγ for some γ enjoys a special
property with respect to the pm’s Q achieving the infimum (upon Q in Ω) in (12). It holds
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Proposition 2 (Lemma 14 in [19]). Assume that φW is a power divergence. Then

Q ∈ arg inf
{

inf
m 6=0

φW(mQ, P), Q ∈ Ω
}

and
Q ∈ arg inf

{
φW(Q, P), Q ∈ Ω

}
are equivalent statements.

Indeed Proposition 2 holds as a consequence of the following results, to be used later
on.

Lemma 1. For Q and P two pm’s such that the involved expressions are finite, it holds

(i) For γ 6= 0 and γ 6= 1 it holds that

inf
m 6=0

φγ(mQ, P) =
1
γ

[
1− (1 + γ(γ− 1)φγ(Q, P))−1/(γ−1)

]
.

(ii) infm 6=0 φ1(mQ, P) = 1− exp(−KL(Q, P)) = 1− exp(−φ1(Q, P)).
(iii) infm 6=0 φ0(mQ, P) = KLm(Q, P) = φ0(Q, P)

In the case where W is a RV with standard exponential distribution, then a link
between the present approach and Bayesian inference can be drawn, since the normalized
weighted empirical measure PW

n is a realization of the a posteriori distribution for the
Dirichlet prior on the non parametric distribution of X. See [23].

The weighted empirical measure PW
n has been used in the weighted bootstrap (or

wild bootstrap) context, although it is not a pm. However, conditionally upon the sample
points, its produces statistical estimators T(PW

n ) whose weak behavior (conditionally upon
the sample) converges to the same limit as does T(Pn) when normalized on the classical
CLT range; see eg Newton and Mason [21]. Large deviation theorem for the weighted
empirical measure PW

n has been obtained by [24]; for other contributions in line with
those, see [22,25]. Normalizing the weights produces families of exchangeable weights
Zi, and the normalized weighted empirical measure PW

n is the cornerstone for the so-
called non-parametric Bayesian bootstrap, initiated by [23], and further developed by [26]
among others. Note however that in this context the RV’s Wi’s are chosen distributed as
standard exponential variables. The link with spacings from a uniform distribution and
the corresponding reproducibility of the Dirichlet distributions are the basic ingredients
which justify the non parametric bootstrap approach; in the present context, the choice of
the distribution of the Wi’s is a natural extension of this paradigm, at least when those Wi’s
are positive RV’s.

3.2. Maximum Likelihood for the Generalized Bootstrap

Let’s turn back to the estimation of θT , assuming PθT the common distribution of the
independent observations X1, . . . , Xn. We will consider maximum likelihood in the same
spirit as developed in Section 2.2, here in the context of the normalized weighted empirical
measure; it amounts to justify minimum divergence estimators as appropriate MLEs under
such bootstrap procedure.

We thus consider the same statistical model PΘ and keep in mind the ML principle as
seen as resulting from a maximization of the conditional probability of getting simulated
observations close to the initially observed data. Similarly as in Section 2 fix an arbitrary θ
and simulate X1,θ , . . . , Xn,θ with distribution Pθ . Define accordingly PW

n,θ and PW
n,θ making

use of i.i.d. RV’s W1, . . . , Wn. Now the event PW
n,θ(k) = nk/n has probability 0 in most cases

(for example when W has a continuous distribution), and therefore we are led to consider
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events of the form PW
n,θ ∈ Vε(Pn) , meaning maxk

∣∣∣PW
n,θ(dk)− Pn(dk)

∣∣∣ ≤ ε for some ε > 0;
notice that Vε(Pn) defined through

Vε(Pn) :=
{

Q ∈ SK : max
k
|Q(dk)− Pn(dk)| ≤ ε

}
has non-void interior.

For such a configuration consider

PW(Pw
n,θ ∈ Vε(Pn)

∣∣X1,θ , . . . , Xn,θ , Pn
)

(13)

where the Xi,θ are randomly drawn i.i.d. under Pθ . Obviously for θ far away from θT the
sample (X1,θ , . . . , Xn,θ) is realized “far away ” from (X1, . . . , Xn), which has been generated
under the truth, namely PθT , and the probability in (13) is small, whatever the weights, for
small ε.

We will now consider (13) for large n, since, in contrast with the first derivation of the
standard MLE in Section 2.1, we cannot perform the same calculation for each n, which
was based on multinomial counts. Note that we obtained a justification for the usual MLE
through the asymptotic Sanov LDP, leading to the KL divergence and finally back to the
MLE through an approximation step of this latest. From Theorem 12 together with the a.s.
convergence of Pn to PθT in SK it follows that for some α < 1 < β

− inf
m 6=0

φW(mVαε(PθT ), θ) (14)

≤ lim
n→∞

1
n

log PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
≤ − inf

m 6=0
φW(mVβε(PθT ), θ)

where φW(Vcε(θT), θ) = infµ∈Vcε(PθT
)) φW(µ, θ).

As ε→ 0 , by continuity it holds that

lim
ε→0

lim
n→∞

1
n

log PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
(15)

= − inf
m 6=0

φW(mPθT , θ).

The ML principle amounts to maximize

PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
(16)

over θ. Whenever Θ is a compact set we may insert this optimization in (14) which yields,
following (15)

lim
ε→0

lim
n→∞

1
n

log sup
θ

PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
= − inf

θ∈Θ
inf

m 6=0
φW(mPθT , θ).

We consider weights W’s such that there exists a power divergence function ϕγ

satisfying (4), which amounts to φW = φγ; by the results quoted in Section 1.1.2 this holds
when γ ∈ (−∞, 1] ∪ [2,+∞).

By Proposition 2 the argument of the infimum upon θ in the RHS of the above
display coincides with the corresponding argument of φW(θT , θ), which obviously gets θT .
This justifies to consider a proxy of this minimization problem as a “ML” estimator based
on normalized weighted data.
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A further interpretation of the MDE in the context of non-parametric Bayesian proce-
dures may also be proposed; this is postponed to a next paper.

Since
φW(θT , θ) = φ̃W(θ, θT)

the ML estimator is obtained as in the conventional case by plug in the LDP rate.
Obviously the “best” plug in consists in the substitution of PθT by Pn, the empirical measure
of the sample, since Pn achieves the best rate of convergence to PθT when confronted to any
bootstrapped version, which adds “noise” to the sampling. We may therefore call

θW
ML := arg inf

θ∈Θ
φ̃W(θ, Pn) := arg inf

θ∈Θ

K

∑
k=1

Pn(dk)ϕ̃W
(

Pθ(dk)

Pn(dk)

)
(17)

= arg inf
θ∈Θ

K

∑
k=1

Pθ(dk)ϕW
(

Pn(dk)

Pθ(dk)

)

the MLE for the bootstrap sampling; here φ̃W (with divergence function ϕ̃) is the conjugate
divergence of φW (with divergence function ϕ). Since φW = φγ for some γ, it holds
φ̃W = φ1−γ.

We can also plug in the normalized weighted empirical measure, which also is a proxy
of PθT for each run of the weights. This produces a bootstrap estimate of θT through

θW
B := arg inf

θ∈Θ
φ̃W(θ,PW

n ) := arg inf
θ∈Θ

K

∑
k=1

PW
n (dk)ϕ̃W

(
Pθ(dk)

PW
n (dk)

)
(18)

= arg inf
θ∈Θ

K

∑
k=1

Pθ(dk)ϕW
(
PW

n (dk)

Pθ(dk)

)

where PW
n is defined in (9), assuming n large enough such that the sum of the Wi’s is not

zero. Whenever P(W = 0) > 0 , these estimators are defined for large n in order that
PW

n (dk) be positive for all k. Since E(W) = 1, this occurs for large samples.
For a given weighted bootstrapped sample with weights W1, . . . , Wn leading to the

weighted normalized empirical measure PW
n , θW

B is the MLE in the sense of (16), hence
defined as a proxy of the maximizer of

PW′
(
PW ′

n,θ ∈ Vε(P
W
n )|X1,θ , . . . , Xn,θ ,PW

n

)
where the vector

(
W ′1, . . . , W ′n

)
is an independent copy of (W, . . . , Wn). This estimator

usually differs from the bootstrapped version of the MLE based on Pn (see (8)) which is
defined for n large enough through

θB
ML := arg inf

θ
KLm(θ,PW

n ).

When Y is not a finite space then an equivalent construction can be developed based
on the variational form of the divergence; see [6].

Remark 1. We may also consider cases when the MLE defined through θW
ML defined in (17) coincide

with the standard MLE θML under i.i.d. sampling, and when its bootstrapped counterparts θW
B

defined in (18) coincides with the bootstrapped standard MLE θb
ML defined through the likelihood

estimating equation where the factor 1/n is substituted by the weight Zi. It is proved in Theorem 5
of [11] that whenever PΘ is an exponential family with natural parametrization θ ∈ Rd and
sufficient statistics T

Pθ

(
dj
)
= exp

[
T(dj)

′θ − C(θ)
]
, 1 ≤ j ≤ K
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where the Hessian matrix of C(θ) is definite positive, then for all divergence pseudo distance φ
satisfying regularity conditions (including therefore the present cases), θW

ML equals θML, the classical
MLE in PΘ defined as the solution of the normal equation

1
n ∑ T(Xi) = ∇C(θML)

irrespectively upon φ. Therefore on regular exponential families, and under i.i.d. sampling, all
minimum divergence estimators coincide with the MLE (which is indeed one of them). The proof
of this result is based on the variational form of the estimated divergence Q → φ(Q, P), which
coincides with the plug in version in (17) when the common support of all distributions in PΘ is
finite. Following verbatim the proof of Theorem 5 in [11] substituting Pn by PW

n it results that
θW

B equals the weighted MLE (standard generalized bootstrapped MLE θb
ML) defined through the

normal equation
n

∑
i=1

ZiT(Xi) = ∇C(θb
ML),

where the Zi’s are defined in (10). This fact holds for any choice of the weights, irrespectively on
the choice of the divergence function ϕ with the only restriction that it satisfies the mild conditions
(RC) in [11]. It results that for those models any generalized bootstrapped MDE coincides with the
corresponding standard bootstrapped MLE.

Example 1. A-When W has a standard Poisson POI(1) distribution then the resulting estimator
is the minimum modified Kullback-Leibler one. which takes the usual weighted form of the standard
generalized bootstrap MLE

θ
POI(1)
B := arg sup

θ

K

∑
k=1

(
∑n

i=1 Wi1k(Xi)

∑n
i=1 Wi

)
log Pθ(k)

which is defined for n large enough. Also in this case θW
ML coincides with the standard MLE.

B-If W has an Inverse Gaussian distribution IG(1,1) then ϕ(x) = ϕ−1(x) = 1
2 (x− 1)2/x

for x > 0 and the ML estimator minimizes the Pearson Chi-square divergence with generator
function ϕ2(x) = 1

2 (x− 1)2 which is defined on R.
C-If W follows a normal distribution with expectation and variance 1, then the resulting

divergence is the Pearson Chi-square divergence ϕ2(x) and the resulting estimator minimizes the
Neyman Chi-square divergence with ϕ(x) = ϕ−1(x).

D-When W has a Compound Poisson Gamma distribution C(POI(2), Γ(2, 1)) distribution
then the corresponding divergence is ϕ1/2(x) = 2

(√
x− 1

)2 which is self conjugate, whence the
ML estimator is the minimum Hellinger distance one.

4. Bahadur Efficiency of Minimum Divergence Tests under Generalized Bootstrap

In [27] Efron and Tibshirani suggest the bootstrap as a valuable approach for testing,
based on bootstrapped samples. We show that bootstrap testing for parametric models
based on appropriate divergence statistics enjoys maximal Bahadur efficiency with respect
to any bootstrap test statistics.

The standard approach to Bahadur efficiency can be adapted for the present general-
ized Bootstrapped tests as follows.

Consider the test of some null hypothesis H0: θT = θ versus a simple Hypothesis H1
θT = θ′.

We consider two competitive statistics for this problem. The first one is based on the
bootstrap estimate of φ̃W(θ, θT) and

Tn,X := Φ̃
(

θ,PW
n,X

)
= T

(
PW

n,X

)
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which allows to reject H0 for large values since limn→∞ Tn,X = 0 whenever H0 holds. In the
above display we have emphasized in PW

n,X the fact that we have used the RV Xi’s. Let

Ln(t) := PW(Tn,X > t|X1, . . . , Xn).

We use PW to emphasize that the hazard is due to the weights. Consider now a set of
RVs Z1, . . . , Zn extracted from a sequence such that

lim
n→∞

Pn,Z = Pθ′

a.s; we have denoted Pn,Z the empirical measure of (Z1, . . . , Zn); accordingly define
PW ′

n,Z, the normalized weighted empirical measure of the Zi ’s making use of weights(
W ′1, . . . , W ′n

)
which are i.i.d. copies of (W1, . . . , Wn), drawn independently from

(W1, . . . , Wn). Define accordingly

Tn,Z := Φ̃
(

θ,PW ′
n,Z

)
= T

(
PW ′

n,Z

)
.

Define
Ln(Tn,Z) := PW(Tn,W > Tn,Z|X1, . . . , Xn)

which is a RV (as a function of Tn,Z). It holds

lim
n→∞

Tn,Z = Φ̃
(
θ, θ′

)
a.s

and therefore the Bahadur slope for the test with statistics Tn is Φ(θ′, θ) as follows from

lim
n→∞

1
n

log Ln(Tn,Z) = − inf
{

Φ(Q, θT) : Φ̃(θ, Q) > Φ̃
(
θ, θ′

)}
= − inf

{
Φ(Q, θT) : Φ(Q, θ) > Φ

(
θ′, θ

)}
= −Φ

(
θ′, θ

)
If θT = θ. Under H0 the rate of decay of the p-value corresponding to a sampling

under H1 is captured through the divergence Φ(θ′, θ).
Consider now a competitive test statistics S

(
PW

n,X

)
and evaluate its Bahadur slope.

Similarly as above it holds, assuming continuity of the functional S on SK

lim
n→∞

1
n

log PW
(

S
(
PW

n,X

)
> S

(
PW

′

n,Z

)∣∣∣∣X1, . . . , Xn

)
= − inf

{
Φ(Q, θT) : S(Q) > S

(
θ′
)}

≥ −Φ
(
θ′, θT

)
as follows from the continuity of Q→ Φ(Q, θT). Hence the Bahadur slope of the test based
on S

(
PW

n,X

)
is larger or equal Φ(θ′, θ).

We have proved that the chances under H0 for the statistics Tn,X to exceed a value
obtained under H1 are (asymptotically) less that the corresponding chances associated
with any other statistics based on the same bootstrapped sample; as such it is most specific
on this scale with respect to any competing ones. Namely the following result holds:

Proposition 3. Under the weighted sampling the test statistics T
(
PW

n,X

)
is the most efficient

among all tests which are empirical versions of continuous functionals on SK.
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Appendix A

A Heuristic Derivation of the Conditional LDP for the Normalized Weighted Empirical Measure

The following sketch of proof gives the core argument which yields to Proposition 1; a
proof adapted to a more abstract setting can be found in [22], following their Theorem 3.2
and Corollary 3.3, but we find it useful to present a proof which reduces to simple argu-
ments. We look at the probability of the event

PW
n ∈ V(R) (A1)

for a given vector R in RK, where V(R) denotes a neighborhood of R, therefore defined
through

(Q ∈ V(R))⇐⇒ (Q(dl) ≈ R(dl); 1 ≤ l ≤ k)

We denote by P the distribution of the RV X so that Pn converges to P a.s.
Evaluating loosely the probability of the event defined in (A1) yields, denoting PXn

1
the conditional distribution given (X1, . . . , Xn)

PXn
1

(
PW

n ∈ V(R)
)
= PXn

1

(
K⋂

l=1

(
1
n

n

∑
i=1

WiδXi (dl) ≈ R(dl)

))

= PXn
1

(
K⋂

l=1

(
1
n

nl

∑
i=1

Wi,l ≈ R(dl)

))

=
K

∏
l=1

PXn
1

(
1
nl

nl

∑
i=1

Wi,l ≈
n
nl

R(dl)

)

=
K

∏
l=1

PXn
1

(
1
nl

nl

∑
i=1

Wi,l ≈
R(dl)

P(dl)

)

where we used repeatedly the fact that the r.v’s W are i.i.d.. In the above display, from the
second line on, the r.v’s are independent copies of W1 for all i and l. In the above displays
nl is the number of Xi’s which equal dl , and the Wi,l are the weights corresponding to these
Xi’s. We used the convergence of nl/n to P(dl) in the last display.

Now for each l in {1, 2, . . . , K} by the Cramer LDP for the empirical mean, it holds

1
nl

log P

(
1
nl

nl

∑
i=1

Wi,l ≈
R(dl)

P(dl)

)
≈ −ϕW

(
R(dl)

P(dl)

)
i.e.,

1
n

log P

(
1
nl

nl

∑
i=1

Wi,l ≈
R(l)
P(l)

)
≈ −R(dl)

P(dl)
ϕW
(

R(dl)

P(dl)

)
as follows from the classical Cramer LDP, and therefore
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1
n

log PXn
1

(
PW

n ∈ V(R)
)

≈ 1
n

log PXn
1

(
K⋂

l=1

(
1
n

nl

∑
i=1

Wi,l ≈ R(dl)

))

→ −
K

∑
l=1

ϕW
(

R(dl)

P(dl)

)
P(dl) = −φW(R, P)

where the limit in the last line applies to the case where we let n→ ∞ .
A precise derivation of Proposition 1 involves two arguments: firstly for a set Ω

⊂ RK a covering procedure by small balls allowing to use the above derivation locally, and
the regularity assumption (11) which allows to obtain proper limits in the standard LDP
statement.

The argument leading from Proposition 1 to Theorem 1 can be summarized now.
For some subset Ω in SK with non-void interior it holds

(
PW

n ∈ Ω
)
=
⋃

m 6=0

((
PW

n ∈ mΩ
)
∩
(

n

∑
i=1

Wi = m

))

and
(

PW
n ∈ mΩ

)
⊂ (∑n

i=1 Wi = m) for all m 6= 0. Therefore

PXn
1

(
PW

n ∈ Ω
)
= PXn

1

 ⋃
m 6=0

(
PW

n ∈ mΩ
).

Making use of Proposition 1

lim
n→∞

1
n

log PXn
1

(
PW

n ∈ Ω
)
= −φW

 ⋃
m 6=0

mΩ, P

.

Now

φW

 ⋃
m 6=0

mΩ, P

 = inf
m 6=0

inf
Q∈Ω

φW(mQ, P).

We have sketched the arguments leading to Theorem 1; see [19] for details.
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