Session 8: Blockchain Security

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

On The Unforkability of Monero

Dimaz Ankaa Wijaya"
Monash University
Melbourne, Australia
dimaz.wijaya@monash.edu

Dongxi Liu
Data61, CSIRO
Sydney, Australia
dongxi.liu@data61.csiro.au

ABSTRACT

Monero, ranked as one of the top privacy-preserving cryptocur-
rencies by market cap, introduced semi-annual hard fork in 2018.
Although hard fork is not an uncommon event in the cryptocur-
rency industry, the two hard forks in 2018 caused an anonymity
risk to Monero where transactions became traceable due to the
problem of key reuse. This problem was triggered by the existence
of multiple copies of the same coin on different Monero blockchain
branches such that the users spent the coins multiple times without
preemptive action. We investigate the Monero hard fork events by
analysing the transaction data on three different branches of the
Monero blockchain. Although we have discovered an insignificant
portion of traceable inputs compared to the total available inputs
in our dataset, our analyses show that the scalability of the event
depends on external factors such as market price and market avail-
ability. We propose a cheap, easy to implement strategy to prevent
the problem of key reuse, should in the future stronger Monero
forks emerge in the market.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and untrace-
ability;

KEYWORDS

Monero, key reuse, hard fork, traceability, anonymity, ring signa-
ture, cryptocurrency

ACM Reference Format:

Dimaz Ankaa Wijaya, Joseph K. Liu*, Ron Steinfeld, Dongxi Liu, and Jiang-
shan Yu. 2019. On The Unforkability of Monero. In ACM Asia Confer-
ence on Computer and Communications Security (AsiaCCS ’19), July 9-12,
2019, Auckland, New Zealand. ACM, Auckland, New Zealand, 12 pages.
https://doi.org/10.1145/3321705.3329823

*Also with Data61, CSIRO, Melbourne, Australia. * Corresponding author..

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AsiaCCS °19, July 9-12, 2019, Auckland, New Zealand

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6752-3/19/07...$15.00
https://doi.org/10.1145/3321705.3329823

Joseph K. Liu*
Monash University
Melbourne, Australia
joseph.liu@monash.edu

621

Ron Steinfeld
Monash University
Melbourne, Australia
ron.steinfeld@monash.edu

Jiangshan Yu
Monash University
Melbourne, Australia
jiangshan.yu@monash.edu

1 INTRODUCTION

Cryptocurrency has become a global phenomenon. The first of
its kind, Bitcoin, was created by Satoshi Nakamoto [22]. Bitcoin
was launched in 3 January 2009 as a peer-to-peer payment system
employing a shared ledger called blockchain, where a consensus
method is employed such that the system is not controlled by any
central party. In the published whitepaper, Satoshi describes Bitcoin
as an anonymous, where no information links the public keys to
the real identity of the owners [22]. However, the anonymity of
the public keys is insufficient to protect the privacy of the users.
Researchers have developed analysis methods to reveal informa-
tion about the users from external sources [18]. The transparent
blockchain data was also utilised to reveal the transaction patterns
such that the users’ behaviours are identified [27].

Much research has been conducted in the blockchain privacy
area, where privacy-preserving cryptocurrencies such as Monero
try to address the problem. Monero is one of the most successful
privacy-preserving cryptocurrencies and has been one of the most
valuable cryptocurrencies according to Coinmarketcap.com'. Mon-
ero is based on CryptoNote protocol [34], where the untraceability
of the sender and the unlinkability of the receiver are protected
by cryptographic methods such as Linkable Ring Signature (LRS)
and one-time public key (OTPK) which makes transactions more
anonymous compared to other cryptocurrencies such as Bitcoin
[34]. Although anonymity features were implemented, research
results show that the transactions in Monero can still be traced due
to the problem of zero mixin transactions [14, 21].

In a blockchain ecosystem, a fork is an event where the proto-
col changes [40]. Zamyatin et al. [40] classified the changes into
several possibilities: protocol expansion, reduction, conflicting (bi-
lateral), and conditionally reduction (velvet). There are generally
two types of blockchain fork, namely hard fork and soft fork. Hard
fork is related to either protocol expansion or bilateral which results
in a blockchain split or chain split. Soft fork, including protocol
reduction and velvet, does not produce any chain split [40].

Blockchain fork in the cryptocurrency setting usually benefits
the users financially [26]. For example, a user had one Bitcoin
before the Bitcoin Cash fork. After the forking event happened, the
same user will double his/her money: one Bitcoin in the original
blockchain and one Bitcoin Cash in the newly created blockchain

!The total market cap for Monero is US$1.7B on 26 October 2018

https://doi.org/10.1145/3321705.3329823
https://doi.org/10.1145/3321705.3329823

Session 8: Blockchain Security

4 October 2018

1,546,000
. Monero6
1,564,966

=!I

Figure 1: The Monero hard fork timeline which shows two
hard forks resulting in three different chains by October
2018.

Genesis

Monero7

MoneroV

branch. The price of Bitcoin was US$2,808 (open price)® while
Bitcoin Cash was traded at the rate US$555.89 (open price) each?,
so the user received a coin worth US$555.89 for every bitcoin he/she
held by doing nothing.

As a part of the attempt to keep its system updated, Monero has
a regular hard fork which is scheduled semi-annually. The hard
fork of Monero mostly aims to improve the privacy solutions. How-
ever, Monero also aims to become an ASIC-proof cryptocurrency,
where the software developers discourage the development of ASIC
machines for participating in Monero mining through the existing
Proof-of-Work (PoW) mechanism [6, 34]. For this purpose, on 6
April 2018 Monero updated its mining algorithm to render exist-
ing ASIC machines’ efficient computing void. The event created a
new Monero fork as Monero upgraded from protocol version six to
version seven.

The hard fork happened due to the incompatibility between two
protocol versions. The protocol version seven started from block
number 1,546,000* which was on 6 April 2018. There were several
independent parties claiming that they still wanted to run version
six protocol. These independent parties rebranded the blockchain
system running Monero protocol version six into three different
names: Monero Original (XMO), Monero 0 (Monero Zero or ZMR),
and Monero Classic (XMC)[19]. Although there are three different
names, in reality there is only one blockchain [2]. After the Monero
hardfork, another project was also forked from the Monero ver-
sion seven, called MoneroV (XMV), starting from block number
1,564,966° which was on 3 May 2018. MoneroV runs a modified
version of protocol seven. One of the modifications on MoneroV’s
protocol from Monero version seven is the reduction of the decimal
places from 12 to 11. This causes all coin values to be multiplied
ten fold. The fork history is shown in Figure 1.

Similar to other blockchain fork events, the Monero users dou-
bled their Monero coins on each event, where they receive the same
amount or even more coins in the newly created cryptocurrencies.
However, when the users decide to use the same coins without extra
caution, the anonymity of the transactions is potentially reduced.

The traceability could be compromised in a Monero hard fork
event. The hard fork event creates new coins which will be spend-
able by the pre-fork users. The problem occurs when the Monero

Zhttps://coinmarketcap.com/currencies/bitcoin/historical-
data/?start=20170723&end=20170723
3https://coinmarketcap.com/currencies/bitcoin-cash/historical-
data/?start=20170723&end=20170723
“https://github.com/monero-project/monero
Shttps://github.com/monerov/monerov

622

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

users spend the newly created coins, such that the traceability of the
transaction’s sender can be deduced. We denote this as the problem
of key reuse. The problem of key reuse reduces the anonymity of a
transaction because the users reuse the same keys when spending
the same coins. This traceability problem was known to Monero
developers [6], where the existing strategies are not sufficient to
completely mitigate the problem.
Contributions. We summarise our contributions as follows.

e We investigate the impact of two Monero hard forks which
occurred in 2018. We collected the data of each blockchain
branch and cross-reference the transaction data on all of
the blockchain branches to determine traceable inputs. We
discover over 55K distinct traceable inputs, where 90% of
them are found on two blockchain branches running version
six and seven. About 19% of all inputs in Monero version six
of our dataset are traceable. However, the percentage of the
traceable inputs is insignificant compared to the total inputs
in Monero version seven (or the main branch). Unlike exist-
ing attacks [14, 21, 35, 37, 39], the analysis on the problem
of key reuse is able to identify traceable inputs in Monero’s
RingCT. None of the traceable inputs of our findings can be
discovered by existing attacks.

e We analyse the correlation between the identified traceable
inputs and market prices by using statistical analyses, namely
correlation coefficients and linear regression. The results on
the correlation coefficients show that there is a strong corre-
lation (0.553 to 0.761) between the two factors in Monero6,
whereas a weak correlation (0.242 to 0.32) is found in Mon-
eroV. Likewise, the linear regression results show a medium
relationship in Monero6 but a small relationship in MoneroV.
A bigger support from cryptocurrency exchanges to Mon-
ero6 compared to the support to MoneroV also explains the
huge gap of traceable inputs on both blockchain branches.
These findings also show that the scalability of the problem
of key reuse depends on the identified external factors.

e We propose a mitigation strategy for the problem of key
reuse caused by hard forks in Monero. Scalable Bloom
Filters [1] provide an inexpensive checking mechanism
of existing key images and mixins. By adding the check-
ing mechanism prior submitting new transactions to the
network, transactions spending the same coins will main-
tain the same level of anonymity. A new service node called
joint node is proposed such that the mitigation strategy
can be deployed in the current Monero protocol without any
significant changes.

Organisation. The rest of the paper is organised as follows. Sec-
tion 2 contains technical background about Linkable Ring Signature
(LRS) and Monero protocol. In Section 3, related work about exist-
ing anonymity attacks to Monero, an alternative strategy to hard
fork, and replay protection. A threat model is presented in Section
4. Section 5 describes our analysis methods. Section 6 covers cur-
rent mitigation strategies to the identified problems, where our
mitigation strategy proposal is also presented in this section. Sec-
tion 7 provides discussions on the security and the performance
of the proposed mitigation strategy, while Section 8 concludes the
findings and describes future work.

Session 8: Blockchain Security

2 BACKGROUND

2.1 Linkable Ring Signature

Linkable Ring Signature (LRS) [15, 16] was developed based on Ring
Signature (RS) technique. LRS enables the users to take advantage of
RS.In RS, a signer cannot be identified over a set of potential signers
even if the signer creates many signatures, but in LRS, the signature
creator can only create one signature for every private key she
holds if she wants to maintain the signature anonymity. A tagging
system is employed in LRS. If the same signer reuses the same
private key to create more than one signature, then a verifier will
be able to link the signatures and determine that they are created
by using the same private key, because the same tag will appear
in both signatures. As the same tag is only known by the signer,
this implies that the signatures are created by the same person. LRS
limits the anonymity in RS. However, this limitation is useful in
many scenarios such as e-voting [5, 38] and cryptocurrency system
[31], where a double-vote or double-spending of a coin should be
prevented.

2.2 Monero Transaction Structure and Protocol

The structure of a Monero transaction is shown in Figure 2. An input
I contains a ring signature R which uses of an output set O of size
r. The output set O contains an output to be spent o; € O and r — 1
outputs as decoys. The decoys are usually chosen at random from
the public blockchain B such that the probability of guessing the
real output being spent is not more than !/,. A Monero transaction
can produce zero or more new outputs which will then be added to
the output database in the blockchain B. These new outputs will be
available to be spent or can also be chosen as decoys in the next
transactions.

Each output o in the blockchain B is associated with exactly one
secret key called key image. A key image k; needs to be published
in order to spend an output o;, however, by using a ring signature
scheme which contains a set of r outputs O = {og, . ..,0;,... }, the
output o; is indistinguishable from the decoys. An output cannot be
double-spent in the same blockchain. To enforce the rule, the spent
output’s associated key image k; is recorded in the blockchain. If
a new transaction is reusing the same key image k;, the system
will be able to detect the double spending effort and reject the new
transaction.

3 RELATED WORK
3.1 Monero Traceability Analyses

Monero implements anonymity technologies as its main features
over other cryptocurrencies such as Bitcoin. Linkable Ring Signa-
ture (LRS) provides the untraceability of the sender. Ring Confi-
dential Transaction (RingCT) [23] was implemented to support
encryption of the amount of coins being transacted from the payer
to the payee. One-time Public Key (OTPK) provides the unlinkabil-
ity of the receiver by forcing the sender to create a new destination
address for every new transaction on behalf of the receiver [34].
Despite the implementation of the mentioned features, researchers
developed analysis techniques to determine traceable inputs. LRS
uses decoys (the decoys are also called mixins) in the signature
to avoid detection of the real signer. Analyses showed that zero

623

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

03, 04, 05}

Transaction T
{o11, o12} <- T(I1.
Iz)

A 4

Figure 2: Input-output construction in a Monero transaction.
In a transaction, a set of inputs containing multiple existing
outputs produce a set of new outputs.

mixin transactions remove the untraceability of the sender [14, 21].
Although the weakness has been patched by not allowing trans-
actions without mixins, researchers found new ways to discover
the traceability of the sender through crafted transactions [35, 37]
or Monero’s Payment ID [37]. Closed set attack was introduced to
determine spent coins in Monero [39].

3.2 Velvet Fork

Velvet fork is a term coined by Kiayias et al. [12]. Rather than having
a hard fork which is considered as a risky event, the velvet fork
offers a new strategy where variables replace constant parameters
when changing the protocol. By using velvet fork, the hard fork
can be avoided. The past occurrence of velvet fork was further
investigated [40].

Although velvet fork is useful to avoid a hard fork that changes
parameters, the velvet fork is unusable when the change is in the
protocol layer. If the velvet fork technique is applied to Monero,
then increasing ring size would be extremely easy by modifying a
prepared variable holding the ring size value. However, protocol
layer changes such as modifying decoy selection method, adding
new signature features [30], or changing consensus method [6]
cannot be done by using velvet fork.

3.3 Replay Protection

Replay protection is a mechanism to avoid replay attack. The term
replay attack in cryptocurrency refers to retransmission of a valid
transaction data on a cryptocurrency to other compatible forks of
the cryptocurrency [17]. The result of the replay attack is that the
payee will get multiple payments in different cryptocurrencies such
that the payer suffers loss. The paper by McCorry et al. [17] de-
scribes several examples of replay protections being implemented

Session 8: Blockchain Security

in different cryptocurrencies, such as Chain ID, Transaction
Version, Check Block At Height, and Sighash Enum.

Chain ID has been implemented in Ethereum since Spurious
Dragon hard fork [4], while Transaction Version, Check Block
At Height, and Sighash Enum were proposed as alternative solu-
tions for replay protection in Bitcoin [17]. A new proposal intro-
duced new replay protection methods, namely Migration Input
and Hardfork Oracle [17]. Migration Input was proposed to be
implemented in Bitcoin protocol, where the input hash is modified
from 32 bytes to 41 bytes to accommodate extra information. By
having a different input hash scheme, the old protocol will not be
able to validate the transaction, and therefore only the new compat-
ible protocol validates the transaction [17]. Hardfork Oracle was
proposed to be implemented as an Ethereum smart contract which
is used for automatic detection of transactions from different forks.

There is no replay protection currently being implemented in
Monero protocol [25]. One of the ways to create a transaction with
a built-in replay protection is to include at least one output that
can only be found in the intended chain as one of the decoys in the
ring signature [32].

3.4 Attacks on Monero Protocol Update

The asynchronous protocol update (i.e hard fork) on Monero can
also lead to attacks [36]. A research discovered that the nodes that
have not yet updated their applications to the latest version (which
run the latest protocol version) are prone to Denial of Service (DoS)
attack, where a large number of transactions can be created to flood
the nodes’ temporary storage txpool.

Furthermore, the DoS attack can be utilised to "announce" the
traceability of the inputs to public by submitting two different
transactions that spend the same coins, one transaction submitted
to the old nodes (which run the old protocol) and another to the
new nodes (wich run the new protocol). If the required condition
of the network holds, then the transactions that were sent to the
old nodes will never be confirmed to the network, hence the double
spending will never occur. However, since two coins appear twice
in different nodes (which run different protocols), then the real
inputs of the related transactions can be deduced.

4 THREAT MODEL

The untraceability in Monero requires that an observer cannot
guess the real output being spent in a ring construction R with a
probability of more than %, where r is the number of ring members.
In this case, the anonymity of the real output depends on the size
of r.

We define an input I; traceable to an output o; as follows. The
output o; is an output of a blockchain By in a linkable ring signature
Ry withaset of output O1 = {og, ...,0j,..., 07} asits ring members
and key image kj, such that Ry, kj, and Oy are parts of I;. The same
output o; appears on another blockchain Bz which is included
in another linkable ring signature Ry with a set of output Oy =
{om,, 0z} and key image k;. From this occurrence, it can
be concluded that the key image k; is associated to the output
0j. Therefore, the input I; is traceable to the output oj, because
the probability of guessing the real output is 1. This occurrence
also fulfills the linkable condition as described in Linkable Ring

., 0j,.

624

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Signature [16] as it can be concluded that the two ring signatures
R1 and Ry are created by the same person, assuming that the secret
key image k; is only known to the owner.

Anonymity reduction occurs when g members of a ring R can
be deduced since they are no longer fit as the candidate when
guessing the real output, therefore the anonymity r is reduced
by gq. We define a reduced anonymity input I; as an input of a
blockchain By in a linkable ring signature R3 with r as the ring size
using a set of output O3 = {op,.. .,0i,...,0m} and key
image kj,. The same key image kj, was found on a ring signature
R4 recorded on another blockchain By using a set of output O4 =
{oc, .. .,0i,...,0n} where at least two outputs {0, 0;} in
Ry fulfill the following criteria: {oe, 0;} € O4 and {0e, 0;} € O3.In
this scenario, it is inconclusive whether key image kj, is associated
to 0, or 0;. The example of a traceable output and an anonymity
reduction is shown in Figure 3.

We define passive attack and active attack in Monero. In the
passive attack, an attacker collects information from the public
blockchain(s) and conduct traceability analyses. In the active attack,
the attacker controls dishonest nodes which return false informa-
tion. By returning false responses of key image-related requests, the
dishonest nodes expect that the client suffer anonymity reduction
from the problem of key reuse, especially when a client spends the
same coins in different blockchains.

We assume that all cryptocurrency backers, including software
developers, community members, and users, desire the best privacy-
preserving features for their systems. However, there also exist
some users in the system who unknowingly spend identical coins in
multiple blockchains such that the traceability of those transactions
are revealed. The events cause "cascade effect” which make other
transactions traceable or suffer anonymity reduction [21]. It is
also assumed that the majority of the nodes in the system behave
honestly by sending the correct responses or information from any
requests.

It is assumed that the current system can only accept small
modifications which do not greatly affect how the whole protocol
is run. However, it is also assumed that hard forks can occur at
any given time such that the same unspent coins before the fork
can be spent multiple times on different blockchains after the fork.
Conducting a hard fork is incentivized financially as the newly
created coins can be sold in the markets.

., 0, ..

., 0, ..

5 ANALYSES
5.1 Analysis on Traceable Inputs

We collected all transaction data on three different blockchains,
which we called Monero6, Monero7, and MoneroV. We use the
term Monero6 to refer cryptocurrencies that are using the Monero
protocol version six: Monero Original, Monero 0, and Monero Clas-
sic. Monero7 is used to refer the Monero main blockchain which
runs protocol version seven (as of October 2018). MoneroV is a
self-explanatory, referring to the blockchain system which runs
MoneroV protocol.
A checking algorithm was constructed as follows.

(1) An array K, is initialised. It will be used to store the iden-
tified key images as the final result.
(2) For each key image k; € K do the following steps.

Session 8: Blockchain Security

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Blockchain B1

Transaction T1
{o11, 012} <-
T(I1, I2)

Blockchain B2

Transaction T2
{o20, 021} <-
T(I3. 14)

Figure 3: The inputs I; and I3 have two common similarities: the key image k; and the output o4. Both inputs I; and I3 are
traceable. The inputs I; and I4 contains the same key image k2, however there are two identical outputs in the ring, namely o7
and 010. Both inputs I; and I4 suffer anonymity reduction by three.

(a) Compute the total number of its occurrence in all three
blockchains and store the result in a variable, occ.

(b) Compute the number of unique transaction hash (txhash)
and store the result in another variable, ung.

(c) Execute a conditional statement as follows: if (occ > 1)
and (unq > 1) then K. < k;. The conditional statement
is required to filter out key replay cases as they do not
help identifying the real output to be spent.

(3) Return Kyes.

We have examined three blockchains by using the algorithm above
on a dataset we built by extracting non-coinbase transctions (trans-
actions that are not block reward) confirmed on block number
1,546,000 to 1,675,606 in Monero6 (181 days period), block num-
ber 1,546,000 to 1,675,303 in Monero7 (181 days period), and block
number 1,564,966 to 1,671,617 in MoneroV (152 days period). The
cut-off period for the data extraction is 4 October 2018. We also
have conducted a cascade effect analysis to determine how many
traceable inputs as the impact of the problem of key reuse on the
same dataset. The result is presented in the Table 1.

Based on the algorithm we developed, we discovered 52,924
traceable inputs on Monero6 (including the ones discovered us-
ing cascade effect method), 53,477 traceable inputs on Monero7,
whereas there are only 7,542 traceable inputs found on MoneroV.
Although there are only 29 days difference between MoneroV and
both Monero6 and Monero7, the traceable inputs found on Mon-
eroV is only around 14% of traceable inputs found on both Monero6
and Monero7. There is also an extreme difference on the num-
ber of non-coinbase transactions between Monero7 and the other
two cryptocurrencies. Monero7 has 810,409 transactions, where
Monero6 and MoneroV only contains 5% and 10% of Monero7’s
transactions respectively.

The traceable inputs in Monero6 are 19% of Monero6’s total
number of inputs in our dataset, whereas the traceable inputs in
Monero7 and MoneroV are only 2% of their total inputs. This shows
that the problem of key reuse has a more significant impact on

625

Monero6 than on Monero7 and MoneroV. Also, about 90% of all
traceable inputs are found among Monero6 and Monero7, whereas
only 6% of the traceable inputs are found on all three blockchain
branches. This shows that Monero6 is the greater source of the
problem of key reuse to Monero7 than MoneroV to Monero7.

5.2 Analysis on Anonymity Reduction

We also examined reduced anonymity as the side effect of the
traceable inputs and cascade effect. An input with a ring size of r is
deemed to suffer anonymity reduction if there are at most r — 2 ring
members that have been identified to be spent on other transactions.
By suffering reduced anonymity, the real output is still untraceable.
However, the probability of guessing the real output increases from
% to ﬁ where 1 < u < (r — 2) and u is the number of outputs
that have been known to be spent in other transactions.

We discovered 1,848 inputs in Monero6 that suffer anonymity re-
duction. Likewise, 2,819 inputs in Monero7 and 264 ring signatures
in MoneroV suffer anonymity reduction while still being untrace-
able. Figure 4 shows the trend of the anonymity reduction on all
three blockchain branches. About 95% of the anonymity reductions
have a reduction size u between 1 to 5.

The result shows that a transaction having a ring size of 5 or less
is riskier than one having a ring size of more than 5. We calculated
the average ring size for the three blockchain branches starting
from the first block of the fork to the cut-off period on 4 October
2018, where Monero6, Monero7, and MoneroV have an average
ring size r of 5.07, 7.56, and 7.75 respectively. Having a bigger
ring size provides a better protection on the anonymity of the
input, although creating a transaction with a bigger ring size may
result in a more expensive transaction fee to be paid by a user.
Determining a bigger minimum ring size in the protocol level can
also be helpful to ensure that the users have a sufficient anonymity
in their transactions. While Monero6’s minimum ring size was five,
Monero7 and MoneroV has a minimum ring size of seven. Based
on the result, it is advisable to have ring size r > 5.

Session 8: Blockchain Security

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Table 1: The summary of traceable inputs from the problem of key reuse and the cascade effect it caused.

Blockchain Heicht Key Reuse Cascade Effect Dataset

& Traceable Input Tx.Count Traceable Input Tx.Count InputCount Tx.Count
Monero6 1,675,606 52,646 3,148 278 276 274,131 44,467
Monero7 1,675,303 53,162 5,680 315 312 1,876,341 810,409
MoneroV 1,671,617 7,542 888 0 0 269,335 84,053

ANONYMITY REDUCTION

1 2 3 5 6 7 8 910 21314151617 18245253561 64

REDUCTION SLZE

b — 5
10
l
)
12
o]

|
l
|
|
|

Figure 4: The summary of anonymity reduction as the result
of key reuse problem on Monero6, Monero7, and MoneroV.

5.3 Analysis on Key Reuse and Cryptocurrency
Market Price Correlation

We collected historical prices of Monero Classic and Monero Orig-
inal from Coinmarketcap.com (20 April 2018 to 3 October 2018),
while the prices of MoneroV were gathered from Coingecko.com (4
July 2018 to 3 October 2018). We calculated statistical data regarding
the market prices for Monero Classic, Monero Original, and Mon-
eroV. The summary of the market prices can be found on Table 2.
We identified that while the prices of Monero Classic and Monero
Original are in the average of US$4 (lowest at US$1 and highest
at US$27), the average price of MoneroV is extremely low, which
is at US$ 0.06 (lowest at US$0.02 and highest at US$0.26). If the
price of MoneroV is multiplied by ten, then the MoneroV price only
becomes US$0.6 in average, whereas the average price of Monero
Classic and Monero Original is seven times more expensive.

Based on the price information of Monero Classic (price at high,
low, and close), Monero Original (price at high, low, close), and
MoneroV (price at open and close), we studied the correlation be-
tween market prices and traceable input count as well as transaction
count by computing Kendall’s tau-b correlation coefficient and
Spearman’s rho correlation coefficient. The result is presented
in Table 3.

Cohen as cited by Sauro and Lewis [28] provided three inter-
pretations of correlation coefficient r as follows: r is small when
0.1 < r < 0.3, medium when 0.3 < r < 0.5, and large when r > 0.5.
Our results show that all coefficients for both Monero Classic and
Monero Original are in the range of 0.557 and 0.754, which indicates
a strong correlation between the price and key reuse in Monero
Classic and Monero Original. On the other hand, a small correlation
between the price and key reuse in MoneroV can be summarised

626

according to the result, where the coefficients are 0.242 and 0.32.
Based on this information, we deduct that the market price and
the number of traceable inputs are correlated, although the causal-
ity between the two parameters cannot be determined from the
statistical analyses performed.

The linear regression analysis of the dataset is shown in Figure 5.
The R-squared values are 0.180, 0.146, and 0.003 for Monero Classic,
Monero Original, and MoneroV respectively. The result shows a
medium relationship between the number of traceable inputs and
the market price on both Monero Classic and Monero Original, but
a small relationship among the two variables on MoneroV.

5.4 Analysis on Key Reuse and Coin
Availability

At the time of writing, cryptocurrency portal Coinmarketcap.com
lists Monero Classic (XMC) and Monero Original (XMO) as two
separate coins, although in reality these two cryptocurrencies are
in the same blockchain branch. Each of these cryptocurrencies are
being traded in different cryptocurrency markets. Monero Classic®
is traded at:

e Gate.io (XMC/USDT pair and XMC/BTC pair)
e HitBTC (XMC/BTC pair, XMC/USDT pair, and XMC/ETH
pair)

e TradeOgre (XMC/BTC pair)
Monero Original, on the other hand, is only available at HitBTC
(XMO/BTC pair, XMO/ USDT pair, and XMO/ETH pair). The other
Monero fork, MoneroV (XMV), is only available at TradeOgre
(XMV/BTC pair). On 4 April 2018, two days before Monero6 fork,
the top six most busy cryptocurrency exchanges serving Mon-
ero are HitBTC, Binance, Bitfinex, Poloniex, Kraken, and Livecoin,
which made 84.8% of the total daily Monero trading volume [37].
HitBTC has the largest portion of 37.68%, while Livecoin had the
lowest portion of 3.82% among the six exchangers [37]. Although
the Monero pre-fork trading information history in TradeOgre is
unavailable, it can still be deducted that the majority of the cryp-
tocurrency markets did not support MoneroV, therefore the Monero
users never received MoneroV from the cryptocurrency exchanges.
On the other hand, as Monero6 was supported by big exchanges
such as HitBTGC, it is assumed that the number of Monero6 coins
distributed to the users were larger than MoneroV coins.

The market availability is likely to be one of the factors that
cause the number of traceable inputs on MoneroV is only 14.3% of
Monero6’s traceable inputs. However, it is not possible to determine
how much coins were spent in the traceable inputs due to the

®Information about Monero Classic and Monero Original is taken from Coinmarket-
cap.com, while information about MoneroV is taken from Coingecko.com.

Session 8: Blockchain Security

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Table 2: The summary of market prices of Monero Classic, Monero Original, and MoneroV.

Monero Classic Monero Original MoneroV
Open High Low Close Open High Low Close Open Close
Max.Price 21.99 27.42 18.02 21.55 21.81 2436 14.88 20.75 0.26 0.26
MinPrice 1.20 1.29 1.04 120 125 129 122 123 0.02 0.02
Avg.Price 4.38 4.84 4.04 4.34 4.24 4.64 3.92 4.21 0.06 0.06

a). Monero Classic

20 200

Market Price
-

Market Price
.

1000

2000 3000 000 5000 5000 o 100000 200000

Traceable Input

Figure 5: The linear regression of the number of traceable inputs and market price

Original (figure b), and MoneroV (figure c).

Table 3: Correlation between the number of traceable input
and market price (open price) of Monero Classic, Monero
Original, and MoneroV

Correlation
Kendall’s Tau-b ~ Spearman’s Rho
Monero Classic 0.561 0.755
Monero Original 0.557 0.754
MoneroV 0.242 0.32

implementation of RingCT which obfuscates the amount of coins
involved in the transactions.
We also made several assumptions as follows.

(1) The users will be given free coins after a hard fork, as long
as they hold an amount of coins on the original blockchain
branch before the hard fork [9-11].

(2) The users prefer to get a maximum benefit by selling the
coins at a high price.

(3) If the users are using private wallets (either by using a com-
puter wallet, smartphone wallet, web wallet, or paper wallet),
then the users need to setup new wallet applications for the
new chains and import the information from their old wallet
before they can create transactions.

(4) If the users deposit their coins to cryptocurrency exchanges’
wallets before the hard fork, then it depends on the ex-
changes whether they are supporting the new coins; only
then the users will receive the new coins from the exchanges
which will be credited to their accounts on those exchanges
[9-11].

The assumption 1 and 2 motivate the users to redeem their new
coins, hence, the problem of key reuse potentially occurs. However,

b). Monero Original

300000

Traceable Input

627

c). MoneroV.

B

Market Price

8
ol -8ggedegggengs cos g o v
¢

00000 00000 500000 20 E) 750 1000 1250

Traceable Input

of Monero Classic (figure a), Monero

assumption 3 becomes a barrier for the users, as setting up new
wallets by importing private keys from old wallets is not trivial and
requires a technical knowledge. In assumption 4, when the cryp-
tocurrency exchanges do not support the forked coins, then it is not
possible for the users to claim the newly created cryptocurrencies.

6 MITIGATION STRATEGIES

In this section, existing mitigation strategies for the problem of key
reuse are discussed. A new mitigation strategy is also proposed.

6.1 Current Mitigation Strategy

6.1.1 Not claiming the coins. There is a suggestion for Monero
users not to use the newly created coins they received for free [29].
The amount of coins received by the users vary depending on the
new systems. Monero6 provides 1:1 coin distribution. This means
each Monero holder receives the exact amount of coins on the new
blockchain branch. MoneroV offers 1:10 coin distribution, in which
the Monero holders receives ten times the amount of Monero they
have before the fork occurrs.

There are two identified problems in this method. Firstly, the
method is not preferable by the users, since they may lose potential
profits by not claiming coins. The free coins can be traded for other
cryptocurrencies or even local currencies. The suggestion is even
more unlikely to be followed by the users when the amount of
profit they can get by spending the coins is substantial. Secondly,
the method can only be effective if and only if all Monero users do
not redeem their new coins. If any of the Monero users redeem the
new coins, the redeeming transactions can potentially reduce or
even completely remove the anonymity of other users’ transactions
which make their transactions traceable.

6.1.2 Churning. Churning technique expands the output selection
by sending the users’ coin to their own addresses multiple times [13].

Session 8: Blockchain Security

By churning the coins, the number of ring members or decoys will
expand, which in turn makes it harder for an attacker to determine
the real outputs being used from multiple transactions created
during the churning process to trace the transactions. However,
churning technique is still prone to known attacks such as timing
attack and network attack which deduct real outputs based on the
origins of the transactions [29]. The effectiveness of churning to
mitigate the key reuse problem is also questionable [29].

6.1.3 Blackball tool. The Monero developers created a tool called
blackball. Blackball is a term originally coming from a docu-
ment that describes the first identified problem within Monero
system, where an adversary tries to add his/her own outputs to the
blockchain by creating as many transactions as possible [24]. The
outputs controlled by the adversary is called blackballs or black
marbles, while other outputs created by genuine users are white
balls or white marbles. Whenever the blackballs are included
in a transaction ¢ as members of the mixins, then the adversary
will be able to determine his/her blackballs as decoys and not the
real outputs being spent. Hence the anonymity level of the affected
transaction ¢ is reduced.

The blackball application created by the Monero developers
tries to blacklist known bad outputs; all outputs in the blacklist are
discouraged to be used by the users as mixins. The application is
not mandatory to be run by the users; the application was released
as a standalone application and it was not integrated in the official
Monero Node application nor Monero Wallet application as a part
of Monero protocol.

The problem with the blackball tool is that the users need
to have a full copy of each blockchain branch, which then the
tool will compare and extract the information from the blockchain
branches. However, assuming one blockchain branch requires 50GB
of storage space, then three blockchain branches will require at
least 150GB of storage space, just to keep their anonymity level
intact. Clearly, the blackball cannot be run on light hardware
such as smartphones, where space and computing power is limited.
Hence it is unlikely that all users can run blackball tool to make
their transactions safe. Other than the aforementioned blackball
tool, there are features in the default/official CLI-based Monero
wallet which can be used to reduce the problem of key reuse.

e To let users to manually set the mixins/decoys themselves.
This feature is implemented in set_ring command [33].

e To only use mixins that exist before fork. This feature is
implemented in segregate-pre-fork-outputs command
[33].

e To combine mixins from before fork and after fork. This fea-
ture is implemented in key-reuse-mitigation2 command
[33].

Having identical mixins in transactions that are being published
in multiple blockchain systems will prevent the passive attacker
to trace the transactions, because the anonymity level is not com-
promised. However, there is no sufficient solution to help the users
conducting the best practice in maintaining the anonymity of their
transactions.

628

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

6.2 Our Proposed Solution

Our proposed solution consists of three parts, namely hard fork
management, key image management, and joint nodes.

6.2.1 Hard Fork Management. We propose to add Chain_ID infor-
mation in every transaction, which will be useful for several reasons.
Firstly, the Chain_ID will be used for replay attack prevention, a
feature that does not exist in Monero yet. Secondly, the Chain_ID
will be an identifier when the users want to get information about
outputs (when they want to create new transactions) or existing
key images (which will be further described in the solution).

To complement the Chain_ID, a Fork_Point information also
needs to be managed. Fork Point is the first block height of a new
chain that has a different block hash compared to its parent, which
is similar to Ethereum’s FORK_BLKNUM [4]. Unlike Chain_ID, the
Fork_Point does not need to be embedded to transaction data. The
reason for not embedding the Fork_Point in the block or in the
transaction is to save space from less useful information. For this
requirement, a new database called Chain_Info will be created.
The new database contains both Chain_ID (as the primary key) and
Fork_Point.

Chain_Info. New chains produced from hard forks will need
to be registered in the database in a First-Come-First-Serve ba-
sis. The Chain_ID can be used to query the Fork Point from the
newly created Chain_Info database. The Chain_Info database will
be stored in the node’s blockchain database file. This approach is dif-
ferent compared to Ethereum’s method which stores the Chain_ID
information on a Github page [4], while Monero stored the history
information of its own hard fork by hardcoding it to the source
code”. However, this approach will be infeasible when dealing with
external hard forks, where the occurrences might not be known to
the Monero developers and Monero community.

6.2.2 Key Image Management. We have identified several issues
that need be addressed in relation to managing key image informa-
tion, including:
(1) Multiple blockchain branches having different block interval.
(2) Multiple transactions submission having identical key im-
ages in a short period of times
(3) Updatability of the key image ring members (e.g. member
addition).
(4) New transactions with ring members that are not available
in the parent chain where the key images were first recorded.
(5) New chains that are designed to have a lower mandatory
ring size compared to the parent chain.

Scalable Bloom Filter. Scalable Bloom Filters [1] is proposed
to solve the identified issues. Scalable Bloom Filters (SBF) is an
extended version of the original Bloom Filter [3] where scaling is
enabled by utilising multiple Bloom Filters instead of a single filter
as in the standard Bloom Filter (BF). Therefore, the capacity in SBF
can be expanded after initialisation, contrary to BF which cannot
exceed the predefined capacity. Similar to BF, an SBF can produce
false positive results where the filter detects that a data is in a set
where it should not. However, SBF also inherits the characteristics
of BF where false negative is negligible. False negative is when the

7https://github.com/monero-project/monero/blob/master/src/cryptonote_core
/blockchain.cpp#L120

Session 8: Blockchain Security

BF returns False (that the data is not in the set) when it is supposed
to be True (the data is actually in the set).

In our proposed solution, several SBFs are introduced. The first
SBF is used to filter key images, namely SBFy. Key images from re-
lated blockchains (parents, siblings, or child chains) will be included
to compute SBF}. By constructing SBFy, new key images can be
identified whether they have existed in any blockchains, such that
when the checking algorithm result is true, then the protocol raises
a flag to avoid the problem of key reuse. The second SBF is used to
filter hash values of key image-mixin tuples, namely SBFy,. Similar
to SBFy, SBFy, is constructed by collecting key image-mixin tuples
from all related blockchains. The purpose of SBFy, is to help the
system to identify whether an incoming key image-mixin tuple has
existed in one or more blockchains.

Despite its scalability feature, SBF does not support data deletion.
Therefore, to mitigate different block intervals and block reorganisa-
tion where immature blocks can still be replaced by other stronger
blocks, temporary SBFs are introduced. These temporary SBFs,
namely tSBFy and tSBF,, are associated to key images and key
image-mixin tuples respectively. By using temporary SBFs, it means
new information in immature blocks and memory pools will not
go directly to the main SBFs but to tSBFs. After the information
is confirmed in mature blocks, the data can be stored to the main
SBFs. SBF} and SBF,;; can complement each other by the following
mechanism.

(1) The system checks a key image value in SBFy. If it does not
exist, then checking process complete, otherwise continue.
In this step, it is not known whether the checking result is a
false positive result or a genuine result.

(2) We define t as the threshold to be satisfied by new transac-
tions.

(3) For each ring signature R with a ring size r, there will be r
key image-mixin tuples. The system checks every key image-
mixin tuple if they exist in SBF,, and count the positive
results p. If p = r, then there is a possibility (due to SBF’s
false positive characteristic) that the input has the exact same
ring members as the existing input, and this is a desirable
occurrence. However, that might not always be the case. It is
possible that p < r, but as long as p can satisfy the threshold
t where t > 1, then t <= p <= r must be satisfied. Otherwise:

(a) If t = 0 then the transaction that contains the ring signa-
ture R can be accepted as it is a false positive caused by
SBFy.

(b) If t = 1 then the transaction that contains the ring signa-
ture R can be blacklisted as it can cause traceable output.

(4) To increase the probability of the new transactions using an
identical set of the existing ring members, the threshold ¢
canbe settot =rsuchthatt =p =r.

Blacklisting can be used as an option instead of rejecting the
transaction, as described in the step 3b, because transaction rejec-
tion might motivate users to recreate the transaction which will
make the new transaction traceable [20].

False Positive. The false positive rate is the trade-off for not
using the real transaction data in our solution, where SBFs are used
for a cost-efficient solution. The error rate in the original design

629

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

of SBF is expected to be between 0.0001% to 0.1% [1]. The use of
two different SBFs, namely SBFy and SBFy, is expected to greatly
reduce the false positive rate in the case of a new key image that
has never been spent, such that the false positive result indicates
otherwise.

We utilise a simple equation of probability of two independent
events P = p; X pp where p; and p; are the probabilities of the
first and the second event, respectively. By using the equation and
taking the largest error rate of SBF, the probability of a key image
that has never been spent to be detected as false positive in both
checks is 0.0001%.

SBF for Multiple Blockchain Branches. An SBF consists of
multiple Bloom Filters (BF) [1] where SBF = {BF;||BFs||...},
where the symbol || is a concatenation operation. An SBF can also be
constructed by concatenating multiple SBFs such that SBF, ¢, =
{SBF,||SBFp||...}. We denote Local SBFs (LSBFs) as a set of SBFs
which are created by using information from a single blockchain
branch. We also denote Global SBFs (GSBFs) as a set of SBFs which
are created by concatenating all Local SBFs. The GSBFs are used
to check the existence of a related information regardless in which
blockchain the information resides, while the LSBFs are used to
check information on a specific blockchain.

SBFChain. For accountability purposes of the created GSBFs, we
introduce SBFChain. SBFChain is a blockchain-like data structure
which maintains metadata about the GSBFs and tracks changes to
the GSBFs. Each entry in SBFChain is numbered. An entry e in
the SBFChain connects to the entry e,_; by adding the hash value
he,_, = H(ep—1) to the entry e,,. An entry is created on every period
of time, i.e. 4 minutes to show a gradual process of creating the
GSBFs. The structure of SBFChain is shown in Figure 6.

An entry e, contains the following information:

The hash value he,,_,.

The block number n.

A timestamp £sy,.

The hash values of the most recent GSBFs.
- hgsr, = H(GSBFy).

- hGsBF,, = H(GSBFp,).

e The metadata of all blockchain branches in which the infor-
mation is added to the most recent SBFs.
— Chain_ID.

- Block Height.

— Data Count.

By referring to the most recent entry e, one can determine which
information has been added to the recent GSBFs. The entry e will
also help reconstructing the GSBFs at any given time by referring
to information stored in the nearest entry e.

6.2.3 Joint Node. We coin the term joint node to describe a new
type of node, which stores and manages GSBFs and SBFChain. The
joint node will be operated under a collaboration between main-
tainers of multiple blockchain branches. The idea of the joint
node originally came from blackball databases, where the infor-
mation is collected from multiple parties [7]. At the same time, the
joint node also behaves similar to hardfork oracle [17], in which
information about multiple chain forks can still be managed in
one place. The joint node collects all related information from
different blockchain branches and constructs SBFs and SBFChain.

Session 8: Blockchain Security

SBFChain

Current data

Genesis

Figure 6: The structure of SBFChain.

The SBFChain can be used to synchronise SBFs maintained by
different joint nodes. It is assumed that there exists a simple con-
sensus method among the joint nodes to add new entries in the
SBFChain, where every information update in the SBFChain is fol-
lowed by all joint nodes as the members of the system.

The joint node will not cause any scalability issue to the main
application of each blockchain, especially related to providing nec-
essary storage and computing power to process requests and re-
sponses. Joint nodes form a new Monero subsystem which is
separated from the main system consisting of normal nodes run-
ning Monero protocols. Although joint nodes and normal nodes
are in different systems, it is assumed that there exists a mechanism
such that the nodes are able to exchange information.

RPC can be used as a communication scheme between normal
nodes and joint nodes as well as between joint nodes and
the SPV wallets on the client side. P2P communication scheme is
necessary for the joint nodes to update new information from the
network of multiple blockchains. The relationship between joint
nodes, normal nodes, and SPV wallets is shown in Figure 7.

The users’ wallets can also actively seek advice from the joint
nodes regarding the raw transactions the wallet create such that the
problems of key reuse can be prevented on early stage. However,
the normal nodes can utilise the SBFs maintained by the joint
nodes to perform a simple checking algorithm before processing
the transaction.

Although the joint nodes store the GSBFs, they are not au-
thenticated to extend any blockchains nor modify the information
that has been stored inside the blockchains. All updates on the
blockchains and memory pools will be inserted into the respective
LSBFs and GSBFs. We use the term service subsystem to refer a
network of joint nodes.

7 DISCUSSION

In this section, security analysis and performance analysis of our
proposed solution are discussed.

7.1 Security Analysis

7.1.1 Active Attack. We assume there exist dishonest joint nodes
in the service subsystem where the majority of the node members
are behaving honestly by following the protocol correctly. When
the dishonest joint nodes receive requests from the a client (either
a wallet or a normal node) to verify whether key images or key
image-mixin tuples are in the current SBFs, the dishonest joint
nodes will produce incorrect responses. To mitigate the problem,

630

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Joint Node 1 Joint Node 2

e
- -
P

®

Normal Node
Blockchain 1

Joint Node 3

%

SPV Wallet

Normal Node
Blockchain 3

Normal Node
Blockchain 2

Figure 7: Joint nodes can assist SPV wallets as well as normal
nodes of different blockchains.

the client can send the requests to multiple joint nodes in the
subsystem selected at random. Assuming that the majority of the
joint nodes in the subsystems are behaving honestly, the client
will find inconsistencies of the responses. The client then regards
the results as votes to distinguish the correct responses form the
incorrect ones, where the correct responses are likely become the
majority as honest joint nodes always return correct responses.

A dishonest joint node can also be detected by its peers. The
joint nodes validate each other’s SBFs files by confirming the
hash values of the SBFs and the hash values stored in the SBFChain.
If the information does not match, any nodes returning incorrect
information can be blacklisted. The blacklist information will be
published to all clients. Random requests can also be utilised for
checking mechanism to detect any dishonest joint nodes.

The normal nodes of different blockchain branches can also
cooperate to verify the correctness of the SBFs maintained by the
joint nodes. However, this requires extra computing resources
by the normal nodes. The verification of the correctness of GSBFs
can be done in a two-stage reconstruction.

(1) Stage one: intrachain reconstruction. In this stage, the
normal nodes of each blockchain branch compute Local
SBFs (LSBFs) by using their own blockchain data accord-
ing to an agreed entry on the SBFChain. The reconstruction
of the Local SBFs can start from the Fork Point of that
blockchain branch instead from the genesis block (block
number zero). The correctness of the Local SBFs (LSBFs) de-
pends on the honesty of the normal nodes of the blockchain.
Assuming that the majority of the nodes behave honestly,
then the correct LSBFs can always be generated.

Stage two: interchain reconstruction. The nodes of dif-
ferent blockchain branches cooperate to generate a set of
Global SBFs (GSBFs). These GSBFs are created by concate-
nating all LSBFs. Assuming that all LSBFs are correct, then
the produced GSBFs are also correct.

@

~

Session 8: Blockchain Security

A dishonest normal node can also try to confirm transactions
that have problems of key reuse into new blocks it produces by
collaborating with miners that have a sufficient computing power.
In this case, other normal nodes can re-validate these transactions
with the help of joint nodes. When these transactions are proven
to be malicious, then the blocks containing these malicious trans-
actions can be ignored. Assuming that the majority of the nodes
behave honestly, then there will be a temporary fork which will re-
solve after several blocks according to the current Monero protocol.
Since the miners will suffer financial loss if the produced blocks
are removed, they are less motivated to behave dishonestly.

7.1.2 Passive Attack. In the passive attack, it is assumed that the
attacker has access to the public blockchains. The attacker develop
analytic tools to determine traceable transactions. The success of
the attack is determined by the number of traceable transactions
and the portion of the traceable transactions compared to the total
number of transactions in the system.

Since that the active attack can be prevented by using our pro-
posed solution, the passive attack can also be prevented. Passive
attacks analyse existing valid transactions that have been confirmed
in the blocks. With no malicious transaction being added to the
blocks, then the passive attack will not produce any expected out-
come, assuming no extra information is given to the attacker.

7.2 Performance Analysis

7.2.1 Hard Fork Management. We conducted experiments to cal-
culate the extra computing resource in managing the extra infor-
mation for hard fork management. The experiments used a Ubuntu
18.04 LTS virtual machine equipped with 8GB RAM and maximum
2 CPU cores. A new table called Chain_Info was created using
LMDB database system, which is the same database product that is
being used to store and manage the blockchain data of the current
version of Monero.

Two million Chain_ID - Fork_Point tuples were written to the
database and then read. The processes were then repeated 10,000
times. About 1.2MB storage was required to store the two million
records, while writing average time was 28.37 milliseconds and the
reading average time was 28.19 milliseconds. The detailed result
is shown in Figure 8. The experiment shows that the computing
resource for the required operations is small such that today’s
regular computers can afford it.

7.2.2 Joint Node Affordability. In our proposal, the GSBF will be
maintained by a special type of node called joint node. A joint
node maintains a set of GSBFs which is relevant to all existing or
future Monero blockchain branches.

An experiment was conducted to calculate the time and storage
needed to create an SBF. The experiment utilises Jay Baird’s Scalable
Bloom Filter Python library, pybloom®. The experiment used a
LARGE_SET_GROWTH setting to anticipate a large dataset growth.
In this setting, a surge jump in storage size will happen every time
the system hits its maximum capacity. The results as in Figure 9
show that the time required to create an SBF is linear to the number
of the data inserted in the SBF with the average of 17.308 data per
second. The file size, however, increased significantly every time

8https://github.com/jaybaird/python-bloomfilter

631

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

Writing Time

300 A

250

200 A

150 A

100 4

Time (milliseconds)

T T T T T
0 2000 4000 6000 8000 10000

Reading Time

800
7
€ 600
o
3
[T
w
= 400
E
g
£ 200+

0_ T T T T T T
0 2000 4000 6000 8000 10000
Index

Figure 8: The read-write processing time for Chain_Info
database using LMDB.

the capacity is full, according to the LARGE_SET_GROWTH algorithm.
Our experiment also showed that creating an SBF with 100 million
data produced 372.1MB of SBF file within around 96 minutes. Due to
the low resource requirement when creating the SBF, recalculating
the SBF will not be a problem.

7.3 Limitation

By mitigating the problem of key reuse, our solution is able to miti-
gate a passive attack which utilises analyses on public blockchains.
Our solution cannot prevent a passive attack on network level
which is still considered as one of the biggest privacy issues in cryp-
tocurrency [8]. Our solution is also prone to a passive attack con-
ducted by an honest-but-curious joint node, where the joint node
can potentially trace users’ transaction given enough information.
This problem, however, is not exclusive to our proposed system,
but also applies to all Monero nodes.

8 CONCLUSION AND FUTURE WORK

We investigate the problem of key reuse as an unwanted impact
of Monero hard forks. We build a dataset from three different
blockchain branches and determine the traceable inputs as the
result of the key reuse problem. We also identify the cascade effect
and the reduced anonymity as the side effects of the main problem.
Our analyses discover that the scalability of the problem of key
reuse is correlated to the market price of the respected coins and
the supports from cryptocurrency markets to the newly created
cryptocurrencies. We also propose a mitigation strategy in the form

Session 8: Blockchain Security

a). Time

700 4
600 4

0.0 0.2

06
1e8 b). File Size

Size (bytes)

o
~

]

0.0 0.2 0.4

e
°

0.6
Data Count

10

Figure 9: Part a) shows the creation time of SBF which is a
positive linear to the data size. Part b) shows the result’s file
size where the file size will be increased when the capacity
of the SBF is full.

of hard fork management and key image management, where joint
nodes play an important role in the proposed strategy.

For future work, we will investigate how our solution can be
implemented in different types of cryptocurrency. We will also
investigate different options in handling protocol-level changes to
avoid hard fork. The new method should be able to support funda-
mental changes in the system without creating a new blockchain
branch. This type of solution will be useful to be implemented in
systems with active development such as Monero. It is also inter-
esting to further investigate the correlation between cryptocrrency
market price and the number of transactions recorded in Monero
blockchain to uncover the actual behavior of Monero users and
how Monero is used in the real world.

ACKNOWLEDGMENT

The work of Ron Steinfeld and Joseph K. Liu was supported in part
by ARC Discovery Project grant DP180102199.

REFERENCES

[1] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguica, and David Hutchison.
2007. Scalable bloom filters. Inform. Process. Lett. 101, 6 (2007), 255-261.
BatmanLovesCrypto. 2018. Monero Classic and Monero Original on the same
blockchain? Help me understand. https://www.reddit.com/r/Monero/comments/
8eovv5/monero_classic_and_monero_original_on_the_same/

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Vitalik Buterin. 2016. Simple Replay Attack Protection.
ethereum/EIPs/blob/master/EIPS/eip-155.md

Sherman S. M. Chow, Joseph K. Liu, and Duncan S. Wong. 2008. Robust Receipt-
Free Election System with Ballot Secrecy and Verifiability. In NDSS.
dEBRYUNE. 2018. PoW change and key reuse. https://ww.getmonero.org/2018/
02/11/PoW-change-and-key-reuse.html

[7] Justin Ehrenhofer. 2018. Monero Blackball Site. https://monero-blackball.github.
io/monero-blackball-site/

Ryan Henry, Amir Herzberg, and Aniket Kate. 2018. Blockchain access privacy:
challenges and directions. IEEE Security & Privacy 16, 4 (2018), 38-45.

https://github.com/

(8]

632

—_

9]

[10

[11

[12]

(13

[15

[16

[17

[22

[23

[24

™~
2

[26

[27

(28]

[29

[30

[31

[32

[33

[34

(35]
[36]

(37]

(38]

[39

[40

AsiaCCS ’19, July 9-12, 2019, Auckland, New Zealand

HitBTC. 2018. The Monero Original Fork has happened. https://blog.hitbtc.com/
the-monero-original-fork-had-happened/

HitBTC. 2018. Statement on MoneroV fork.
statement-on-monerov-fork/

HitBTC. 2018. Statement on XMO Monero fork.
statement- on-xmo-monero-fork/

Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2017. Non-interactive
proofs of proof-of-work. Technical Report. Cryptology ePrint Archive, Report
2017/963, 2017. Accessed: 2017-10-03.

knaccc. 2017. Description of a potential privacy leak and recommenda-
tion to mitigate. https://github.com/monero-project/monero/issues/1673#
issuecomment-278509986

Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. 2017. A trace-
ability analysis of Monero's blockchain. In European Symposium on Research in
Computer Security. Springer, 153-173.

Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. 2014. Linkable Ring
Signature with Unconditional Anonymity. IEEE Trans. Knowl. Data Eng. 26, 1
(2014), 157-165.

Joseph K Liu, Victor K Wei, and Duncan S Wong. 2004. Linkable spontaneous
anonymous group signature for ad hoc groups. In Australasian Conference on
Information Security and Privacy. Springer, 325-335.

Patrick McCorry, Ethan Heilman, and Andrew Miller. 2017. Atomically trading
with roger: Gambling on the success of a hardfork. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 334-353.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. 2013. A Fistful of Bitcoins:
Characterizing Payments Among Men with No Names. USENIX ;login: (2013).
Monero. [n. d.]. Monero XMR Forks & Hard Forks. https://monero.org/forks/
monero hax123. 2018. Corrupt RPC responses from remote daemon nodes can
lead to transaction tracing. https://hackerone.com/reports/304770

Malte Méser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat
Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,
et al. 2018. An Empirical Analysis of Traceability in the Monero Blockchain.
Proceedings on Privacy Enhancing Technologies 2018, 3 (2018), 143-163.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Report.
http://bitcoin.org/bitcoin.pdf

Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions. Ledger
1(2016), 1-18.

Surae Noether, Sarang Noether, and Adam Mackenzie. 2014. MRL-0001: A note
on chain reactions in traceability in CryptoNote 2.0. Technical report2014 (2014).
propercoil. 2018. Replay protection? https://www.reddit.com/r/Monero/
comments/8agjfd/replay_protection/dx0lun4/

Bailey Reutzel. 2017. Logical or Not, Bitcoin’s Coming Fork Is Boosting Its Price.
https://www.coindesk.com/logical-not-bitcoins- coming-fork-boosting-price/
Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full bitcoin transac-
tion graph. In Financial Cryptography and Data Security. Springer, 6—24.

Jeff Sauro and James R Lewis. 2016. Quantifying the user experience: Practical
statistics for user research. Morgan Kaufmann.

sgp. 2018. How can individuals safeguard themselves and the community against
a key reusing fork? https://monero.stackexchange.com/a/7847

Riccardo Spagni. 2018. Monero 0.13.0 "Beryllium Bullet" Release. https://www.
getmonero.org/2018/10/11/monero-0.13.0-released.html

Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. 2017. RingCT 2.0: A
Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain
Cryptocurrency Monero. In ESORICS II (LNCS), Vol. 10493. Springer, 456-474.
user36303. 2017. Replay attack and Cryptonotes. https://monero.stackexchange.
com/a/5718

user36303. 2018. How can individuals safeguard themselves and the community
against a key reusing fork? https://monero.stackexchange.com/a/7844
Nicolas van Saberhagen. 2018. Cryptonote v 2.0, 2013.
https://cryptonote.org/whitepaper.pdf. White Paper. Accessed (2018), 04-13.
Dimaz A. Wijaya, Joseph Liu, Ron Steinfeld, and Dongxi Liu. 2018. Monero Ring
Attack: Recreating Zero Mixin Transaction Effect. In TrustCom. IEEE, 1196-1201.
Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, and Dongxi Liu. 2019. Risk of
Asynchronous Protocol Update: Attacks to Monero Protocols. (2019). to appear.
Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, Dongxi Liu, and Tsz Hon Yuen.
2018. Anonymity Reduction Attacks To Monero. In The 14th International Con-
ference on Information Security and Cryptology. Springer.

Bin Yu, Joseph K. Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba,
and Man Ho Au. 2018. Platform-Independent Secure Blockchain-Based Voting
System. In ISC (LNCS), Vol. 11060. Springer, 369-386.

Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat
Lau. 2019. New Empirical Traceability Analysis of CryptoNote-Style Blockchains.
In Financial Cryptography and Data Security.

Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar
Weippl, and W] Knottebelt. 2018. A wild velvet fork appears! Inclusive blockchain
protocol changes in practice. In 5th Workshop on Bitcoin and Blockchain Research,
Financial Cryptography and Data Security, Vol. 18.

https://blog.hitbtc.com/

https://blog.hitbtc.com/

URL:

https://www.reddit.com/r/Monero/comments/8eovv5/monero_classic_and_monero_original_on_the_same/
https://www.reddit.com/r/Monero/comments/8eovv5/monero_classic_and_monero_original_on_the_same/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://ww.getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
https://ww.getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
https://monero-blackball.github.io/monero-blackball-site/
https://monero-blackball.github.io/monero-blackball-site/
https://blog.hitbtc.com/the-monero-original-fork-had-happened/
https://blog.hitbtc.com/the-monero-original-fork-had-happened/
https://blog.hitbtc.com/statement-on-monerov-fork/
https://blog.hitbtc.com/statement-on-monerov-fork/
https://blog.hitbtc.com/statement-on-xmo-monero-fork/
https://blog.hitbtc.com/statement-on-xmo-monero-fork/
https://github.com/monero-project/monero/issues/1673#issuecomment-278509986
https://github.com/monero-project/monero/issues/1673#issuecomment-278509986
https://monero.org/forks/
https://hackerone.com/reports/304770
http://bitcoin.org/bitcoin.pdf
https://www.reddit.com/r/Monero/comments/8agjfd/replay_protection/dx0lun4/
https://www.reddit.com/r/Monero/comments/8agjfd/replay_protection/dx0lun4/
https://www.coindesk.com/logical-not-bitcoins-coming-fork-boosting-price/
https://monero.stackexchange.com/a/7847
https://www.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://www.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://monero.stackexchange.com/a/5718
https://monero.stackexchange.com/a/5718
https://monero.stackexchange.com/a/7844

	Abstract
	1 Introduction
	2 Background
	2.1 Linkable Ring Signature
	2.2 Monero Transaction Structure and Protocol

	3 Related Work
	3.1 Monero Traceability Analyses
	3.2 Velvet Fork
	3.3 Replay Protection
	3.4 Attacks on Monero Protocol Update

	4 Threat Model
	5 Analyses
	5.1 Analysis on Traceable Inputs
	5.2 Analysis on Anonymity Reduction
	5.3 Analysis on Key Reuse and Cryptocurrency Market Price Correlation
	5.4 Analysis on Key Reuse and Coin Availability

	6 Mitigation Strategies
	6.1 Current Mitigation Strategy
	6.2 Our Proposed Solution

	7 Discussion
	7.1 Security Analysis
	7.2 Performance Analysis
	7.3 Limitation

	8 Conclusion and Future Work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 27.25, 720.74 Width 550.17 Height 31.44 points
 Origin: bottom left

 1
 0
 BL

 7
 AllDoc
 7

 CurrentAVDoc

 27.2464 720.7402 550.168 31.4382

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 12
 11
 12

 1

 HistoryList_V1
 qi2base

