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SPEEDING UP MONERO’S BALANCE

COMPUTATION

RAIMUNDO HERRERA SUFÁN
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ABSTRACT

Cryptocurrencies have established themselves as relevant digital assets that aim at be-

coming the main medium of exchange for the coming decades. With the fast adoption and

increased user base, usability and privacy have become crucial aspects for their success.

Monero is a digital currency that offers properties required for any asset to be considered

a viable money replacement, especially with regards to privacy and security. However,

to offer those features, Monero compromises usability in day-to-day operations, such as

the balance computation. This particular operation is slow due to the mandatory need

to scan the whole Monero blockchain in order to perform it. In this work, we provide

ways to decrease the time taken for the balance operation while minimally compromis-

ing non-critical private elements. Specifically, we first introduce a procedure to generate

multiple consolidation transactions that allow users to avoid a full scan of the blockchain

each time they need to retrieve their balance, reducing computation times significantly

by only spending minimal amounts of money. We also provide schemes that use index-

ing techniques to retrieve one user transaction history in less time and therefore enable to

compute the balance faster, only revealing the number of transactions to outside observers.

We finally show how to take advantage of the proposed schemes by outlining third-party

services and wallets that help the user offload part of the balance computation in new and

secure ways. Throughout all our work, we discuss the compromises and trade-offs in-

curred when modifying the current state of Monero’s protocol by introducing our various

improved proposals since we aim to keep most privacy guarantees while offering usability

improvements.

Keywords: Monero, balance, indexing, blockchain.
x



RESUMEN

Las criptomonedas se han establecido como activos digitales relevantes que apuntan a

convertirse en el medio de intercambio principal en las próximas décadas. Con la rápida

adopción y gran número de usuarios, la usabilidad y privacidad se han convertido en as-

pectos crı́ticos para su éxito. Monero es una moneda digital que ofrece propiedades re-

queridas por cualquier activo que pretende ser considerado un reemplazo viable del dinero,

especialmente respecto a la privacidad y seguridad. Sin embargo, para ofrecer esas carac-

terı́sticas, Monero compromete la usabilidad de ciertas operaciones de uso diario, como

el cálculo del balance de un usuario. Esta operación en particular es lenta debido a que

para realizarla es necesario escanear la totalidad del blockchain de Monero. En este tra-

bajo, presentamos diversas formas en las que disminuir el tiempo que toma el cálculo del

balance, comprometiendo mı́nimamente elementos privados no crı́ticos. Especı́ficamente,

introducimos un procedimiento para generar múltiples transacciones de consolidación que

permiten a los usuarios evitar escaneos completos del blockchain cada vez que necesiten

obtener su balance, reduciendo significativamente los tiempos de la operación gastando

mı́nimas cantidades de dinero. Además proporcionamos esquemas que usan técnicas de

indexación para obtener el historial de transacciones de un usuario en menos tiempo y que

por lo tanto posibilitan realizar el cálculo de balance más rápido, solamente revelando la

cantidad de dichas transacciones a observadores externos. Finalmente mostramos cómo

aprovechar las propuestas a través de la descripción de servicios y billeteras manejadas por

terceros que ayudan al usuario a ahorrarse parte del cálculo del balance de forma segura.

A lo largo de todo nuestro trabajo, discutimos las concesiones incurridas al modificar el

estado actual del protocolo de Monero e incorporar nuestras mejoras, dado que apuntamos

a mantener la mayor parte de las garantı́as de privacidad mientras ofrecemos mejoras en

usabilidad.

Palabras Claves: Monero, balance, indexación, blockchain.
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1. INTRODUCTION

Monero1 is a digital currency launched in 2014 and currently established as a top 30

cryptocurrency in terms of market capitalization2. It has a special focus in privacy, security

and untraceability. To achieve those features Monero relies heavily on advanced cryptog-

raphy, enabling users to safely spend their money without revealing sensitive information

from their transaction history. Namely, users do not disclose who they have received

money from, who they have sent money to, or the amounts transferred. However, in order

to do so, daily operations that users must perform have their efficiency compromised.

This special focus in privacy differentiates Monero from other currencies. By spending

Monero, users can rest assured that no unintended party can observe how much money

they own or how they decide to use it. Unlike other currencies, Monero uses a distributed

ledger of transactions –the blockchain– that is opaque, which ensures that even when funds

are verifiable and secure, the anonymity of users is still guaranteed. Because Monero is

private, coins can not be traced, which in turn makes the currency fungible3, one of the

main properties desired for currencies.

In any cryptocurrency, computing the balance is a crucial and frequent task for users.

In Monero, nonetheless, as its aim is to keep every user-related piece of information con-

cealed from unwanted observers, that operation requires a full scan of the network trans-

action history4. This brings the inconvenience of performing time extensive operations,

which presents the user with an explicit trade-off between speed and privacy.

1https://www.getmonero.org/.
2According to https://coinmarketcap.com/ as of June 2021.
3Fungibility is the property of a currency where two units can be mutually substituted and the substituted
currency is equal to another unit of the same size, regardless of its origin or any other characteristics
(Moneropedia: Fungibility, n.d.).
4A partial scan can be performed if the user knows the date of creation of the wallet and can therefore limit
the scan to that particular moment. However, since that point, a full scan of every transaction is needed.
Moreover, if the date of creation is unknown, a full transaction of the whole blockchain is required.

1

https://www.getmonero.org/
https://coinmarketcap.com/


Monero’s privacy centric approach implies that this trade-off becomes relevant. In

other cryptocurrencies without focus in privacy, like Bitcoin, the time and space require-

ments for computing a user’s balance can be delegated to external services, commonly

referred as third-party wallets. Users can then use these wallets to access their transaction

history without the need for any complex operation at all. Unfortunately, in Monero there

is currently no way of delegating this computation without revealing information that is in-

tended to be private. Because of the heavy focus in privacy, Monero wallets are designed

to be used locally in a device the user trusts. Moreover, the community recommends

(Reddit, 2018d) running Monero nodes locally and never trusting remote wallets unless

extremely necessary (Reddit, 2019b; Monero-Hax123, 2018), because using them implies

giving away keys that are sensitive or exposing to tracing (Tramèr, Boneh, & Paterson,

2020). Following those crucial recommendations entails a slow balance computation.

Our work focuses on both providing ways to compute the balance for a user faster,

and describe ways to further granularize permissions in Monero to avoid compromising

privacy, while leveraging third parties and services to perform day-to-day Monero tasks.

We focus on two challenges that make the user experience in Monero greatly improv-

able, firstly the inability to compute the balance quickly and directly in user wallets, and

secondly, the inability to rely on third parties that can speed up those operations without

compromising privacy (Reddit, 2018f, 2019c; Alex & Herrera, 2020).

Our contribution is composed by three separate parts to tackle the described problem:

(i) Our first approach is to shorten the transaction history scan by using a procedure

known as churning. This approach is handled at a wallet level without modifying

the Monero protocol and achieves significant improvements in the time spent to

compute the balance5.

5We contribute a Monero fork with our modifications for the wallet available in https://github.com/
rjherrera/monero/tree/consolidation-tx.

2
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(ii) Our second approach is to modify the Monero protocol to index transactions

and use searchable encryption. We discuss their practicality, impact and reper-

cussions in the privacy and speed trade-off.

(iii) Our third approach shows applications that take advantage of the proposed mod-

ifications to the protocol as third party services and wallets. We explicitly outline

how a user could take advantage of them in the Monero scenario to gain speed

and usability in the balance task.

Additionally our contribution provides an analysis of the trade-off incurred by the

application of our proposals. While the main focus of Monero is to provide untraceability

and privacy to users, we show how to accelerate operations without compromising that

main focus majorly.

The three main approaches we provide to solve the problem affect the trade-off dif-

ferently. In the first proposal, we gain efficiency from a practical standpoint while not

improving in time complexity. However, we do not compromise privacy. Our second

proposal sacrifices minor user elements that are currently kept private in order to achieve

significant time gains in terms of complexity. Our third approach compromises even less

privacy and gains efficiency both in practice and in terms of complexity, but also deliv-

ers new ways to interact with third parties that move the weight of the trade-off from the

protocol, to the interactions with them.

With those three contributions we provide new ways to improve Monero’s protocol

while also providing implementable solutions. Our proposals can help users obtain their

balance faster, allow them to have more portable wallets and leverage third-party software

without majorly compromising privacy by further dividing responsibilities in information

safeguarding. In addition, our contribution is not only directed to the Monero community.

Over the last few years, we have seen more popular cryptocurrencies like Bitcoin adopt

techniques6 already applied in smaller yet more private currencies like Monero, making

6Schnorr signatures is a notable example, as it is used widely in the Monero protocol whereas it is set to be
adopted in Bitcoin after consensus is met (Shinobi & Folkson, 2021).

3



our contribution –and most investigations in Monero– potentially beneficial for the whole

community.

1.1. Problem statement

The main problem that guides our work is the BALANCE problem. We give a general

outline for this problem and the guarantees that should be met in order for a solution to be

viable. We further refine this problem in the following sections.

In Monero, a user Alice with a view key pair (kv, Kv) and a spend key pair (ks, Ks),

can compute her balance B. To this end, we assume the current state of Monero is given

by a blockchain B containing blocks b1, . . . , bm.

Computing the balance for Alice involves searching for the following transactions:

(i) Every transaction directed to an address derived from Alice’s public keys.

(ii) Every transaction that uses Alice’s outputs as real inputs for other transactions.

The first set of transactions corresponds to every transaction directed to Alice, the

incoming funds, while the second set corresponds to every transaction that the user has

sent, the outgoing funds. Subtracting the second set amounts to the first set amounts yields

the user balance B.

Given those definitions, we can define the problem in which we focus as the following:

The BALANCE problem.
Input: The view key pair (kv, Kv), the spend key pair (ks, Ks).

Output: The balance B for the user designated by Kv.

In order for the BALANCE problem to be solved satisfactorily, we impose requirements

or guarantees that need to be met as using the solution should not compromise Monero’s

granted privacy. The guarantees are the following:

G1 Only the owner or authorized third parties can obtain the balance.
4



G2 Only the owner or authorized third parties can obtain any feature of the sets used

to compute the balance, for example, the amount of incoming transactions or the

total number of them.

G3 Transaction addresses and the corresponding Kv can not be associated by un-

wanted third parties.

G4 Security guarantees provided by Monero, unrelated to the balance obtention,

must still stand.

1.2. Thesis outline and structure

In Chapter 2 we present the notation and definitions that will be used throughout the

whole work. We specify the basics from which our work will be built, specifically regard-

ing elliptic curve cryptography and Monero operations.

Through Chapter 3 we introduce the notion of Consolidation Transactions, we show

how to use them and how to approach the BALANCE problem with them. Additionally we

show a wallet implementation and the improvements achieved.

Chapter 4 proposes two techniques to approach a reduced version of the BALANCE

problem. We constructively present an indexing scheme for the problem, which entails

publicly indexing transactions without majorly compromising privacy. We also apply a

searchable encryption framework and adapt it to approach the problem. For both subjects

we provide a discussion for the security trade-offs.

In Chapter 5 we show concrete applications for both approaches presented in Chapter

4. We show how to build third party services that implement the techniques described in

that chapter and how users can benefit from them.

Finally Chapter 6 summarizes the results and contributions of this work and proposes

future lines of work.

5



2. PRELIMINARIES

2.1. General elliptic curve notation

As in Monero itself, in this work we use elliptic curve points and operate with them

constantly.

We largely follow the notation introduced by (Alonso et al., 2020) in From Zero to

Monero, therefore we refer to integers with lower case letters and to curve points with

upper case letters, for example k and K. At the same time, they are interpreted as the

private and public key from a pair, respectively.

We also use the curve generator G, the order l for the curve1 and sample integers

randomly from Z
l

2.

Furthermore, it is important to note that, as it is done in (Alonso et al., 2020), hash

functions are applied to points and integers. We denote hash functions mapping to integers

as H
n

and mapping to points as H
p

.

Any extra chapter specific notation will be introduced when necessary throughout this

work.

2.2. Monero keys and transaction scheme

2.2.1. Key pairs

In Monero our user Alice has two pairs of keys. The first pair is the view key pair, with

both a private and a public key (kv, Kv). They private view key allows Alice to observe

transactions and amounts directed to her. The second pair is the spend key pair, with both

1This means arithmetic between scalars is mod l.
2To sample an integer randomly from Z

l

is equivalent to sample it from {1, 2, 3, . . . , l � 1}, therefore Z
l

is
all integers (mod l).

6



a private and a public key (ks, Ks). As the name suggests, the private spend key allows

her to spend her funds, alongside checking if any funds have been already spent.

2.2.2. One Time Addresses

The public view key and the public spend key are both part of Alice’s address, but

when creating transactions, neither of them are exposed in the blockchain. Instead, Mon-

ero relies on One Time Addresses (OTA). An OTA is an address derived in a one-way

procedure from the receiver’s public view and spend key. This way OTAs are exposed in

the blockchain without revealing the public keys they came from.

OTAs are derived in a way that allows only the sender and receiver to create them.

They are built by the sender using a random number r, the public view key from the

receiver Kv, the curve generator point G and the public spend key from the receiver Ks,

as follows:

Ko = H
n

(rKv)G+Ks

2.2.3. Transactions directed to a user

In order for Alice to verify if a transaction OTA is addressed to her, she needs to create

a candidate OTA and check if they match. As r is never shared, she does that from her

keys and the transaction public key rG which is posted in the transaction by the sender.

Knowing that for any key pair (k, K) it stands that K = kG, Alice can recreate the

OTA using rG and her private view key kv as:

K 0o = H
n

(rkvG)G+Ks

7



It follows from the above that K 0o is the same OTA created by the sender, as rkvG =

rKv, therefore Ko = K 0o. An observer can not derive an OTA from Alice’s public keys

unless he knows r or kv

3.

2.2.4. Outputs spent by the user

To verify whether an output addressed to Alice has been spent, she needs to compute

a candidate key image and check if it matches any key image stored in the blockchain. A

key image is another public key of a transaction and it is used to verify double spend.

To compute the key image for an owned output, Alice needs the private pair of the

OTA Ko, namely ko, which is computed using both private keys and the transaction public

key, this way:

ko = H
n

(rkvG) + ks

The key image for that output is eKo = koH
p

(Ko). If eKo has appeared before in other

transactions available in the blockchain, then the transaction has been spent.

3Monero and its elliptic curve both rely heavily on the Discrete Logarithm Problem (DLP). While it stands,
it is infeasible for an observer to obtain r from rG and k

v from K

v (Alonso et al., 2020).

8



3. COMPUTING THE BALANCE THROUGH CONSOLIDATION TRANSAC-

TIONS
While the security provided by the current Monero protocol is one of its main features,

this comes at the expense of the efficiency of the balance computation problem. Indeed,

while users may expect the balance computation to happen at near-instant speed –as one is

accustomed to when dealing with banks, or even other cryptocurrencies–, this is generally

achieved using indexes or random accesses that cannot be immediately deployed in Mon-

ero due to its policy of obfuscating the amount, senders and receivers of each transaction.

In Monero, the balance computation is performed via a complete scan of the blockchain.

As illustrated in Figure 3.1, the blockchain B is a collection of n blocks b
i

containing m
i

transactions ti.

b1

t11

t12

. . .

t1
m1

Header

b2

t21

t22

. . .

t2
m2

Header

b
n�1

tn�1
1

tn�1
2

. . .

tn�1
m

n�1

Header

. . .

b
n

tn1

tn2

. . .

tn
m

n

Header

Figure 3.1. Blockchain with Alice’s transactions highlighted in green

To compute the balance, Alice needs to scan the blockchain and the scan depth is not

limited in any way1, as every block needs to be scanned for incoming or spent transactions,

as shown in Figure 3.2. Of course, Alice may decide to store her previously computed

balance or her unspent transactions in her wallet. This comes with the risk of storing

1In many wallet implementations (like the official one found in the monero-project repository), the user
is prompted for a date or a block height to avoid the full scan (Hyc, 2018). Typically users introduce the
estimated address creation date, however, if a user does not provide this information, the scan is full.

9



sensitive information on a device and with the inconvenience of relying on one specific

wallet in order to have fast answers for her queries.

b1

t11

t12

. . .

t1
m1

Header

b2

t21

t22

. . .

t2
m2

Header

b
n�1

tn�1
1

tn�1
2

. . .

tn�1
m

n�1

Header

. . .

b
n

tn1

tn2

. . .

tn
m

n

Header

balance scan depth

Figure 3.2. Scan depth for an uninformed balance computation

In this chapter we focus on the BALANCE problem by discussing one approach that

does not need any modifications to the underlying Monero protocol. The general proce-

dure to obtain the balance remains as is, but our user Alice is able to reduce the time spent

computing her balance, while not compromising her privacy or relying on the security of

trusted wallets.

Our approach uses the procedure known as churning to successfully escape the appar-

ent trade-off between keeping information private using the Monero balance computation

procedure as is, and accelerating it by storing private information in wallets. We discuss

churning and its security concerns in a later section.

3.1. Consolidation Transactions

The idea of a consolidation transaction (CT) is to aggregate each of Alice’s unspent

transactions into a fresh new transaction, which is then sent back to herself.

10



Once a CT is submitted by Alice to the network and verified by miners, it will be

included in a new block in the blockchain as displayed in Figure 3.32. This procedure

does not differ in any way to submit a normal transaction to the network.

b1

t11
t12
. . .

t1
m1

Header

b2

t21
t22
. . .

t2
m2

Header

b
n�1

tn�1
1

tn�1
2

. . .

tn�1
m

n�1

Header

. . .

b
n

tn1
tn2
. . .

tn
m

n

Header

b
n+1

tn+1
1

tn+1
2

. . .

tn+1
m

n+1

Header

Figure 3.3. Blockchain with Alice’s last CT highlighted in blue

If Alice remembers her last CT, she can successfully limit the scan depth needed to

compute her balance, as every transaction addressed to her before the CT was performed,

is already considered in it, making a further scan irrelevant and unnecessary3. Specifically,

in contrast to the normal and uninformed balance computation described in Figure 3.2,

there is no need to scan old Alice’s transactions t1 to t
m

n�1 , as all the funds have been

spent and are now completely available in the last consolidation transaction tn+1
1 . The new

scan depth for the described scenario with a new CT is illustrated in Figure 3.4.

3.2. Balance keys and wallet implementation

While Consolidation Transactions do not immediately reduce the time required for the

balance, one can speed up the process simply by noting down the hash of the most recent

CT, as this effectively limits the scan depth to every block which is newer than this CT

2Regardless of the highlighting and colouring, Alice’s transactions are actually not distinguishable from the
others included in every block.
3There is an edge case in which there are too many transactions in the pool, and a new transaction addressed
to Alice is added to a block preceding the block in which the CT is added but after the last block considered
to create the CT. To address this, users could remember the last CT before the one being performed.
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Figure 3.4. Scan depth for a CT-aided balance computation

(any unspent transaction older than this CT has already been consolidated into it). From

now on, we refer to this hash as the balance key of Alice.

Our proposal is to improve wallets, allowing them to receive a balance key that serves

to limit the scan depth of the blockchain. This is analogous to limiting the scan by intro-

ducing a date or a block height, which are already supported in the official Monero CLI

Wallet4.

The implementation receives a balance key as an input from the user, calculates the

block height corresponding to it, and use this height to limit the scan up to this point.

Further, Alice may decide to have multiple balance keys in order to split balance in more

than one CT5.

Our implementation is publicly available in our fork of the official Monero repository6.

Specifically, our approach prompts the user for a CT through a balance key. Once the wal-

let has that information, it obtains the transaction directly from the node with the already
4There is no official documentation for the official CLI wallet, however, unofficial documentation can be
found in https://monerodocs.org/interacting/monero-wallet-cli-reference.
5Splitting balance in multiple transaction is sometimes recommended across the community as there are
concerns of possible traceability issues for recurrent churning (Reddit, 2018a)
6The code for this implementation can be found in https://github.com/monero-project/
monero/compare/master...rjherrera:consolidation-tx.
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available procedure to retrieve a singular transaction in the Monero Wallet CLI, and ex-

tracts the block height. With the height, the wallet sets it as the limiting point following

the same procedure already implemented for dates and explicit block heights.

3.3. Improvements

In this section we discuss the gains obtained by using consolidation transactions. Im-

provements are evident in terms of balance computation time, but we also cover the

achievements in security and wallet portability. We additionally provide a cost analysis

for users frequently performing CTs.

In practice, our proposal removes the need of a full scan of the blockchain to obtain

the balance. This means that Alice, with an arbitrarily old address, can reduce the scan

time required to obtain her balance only using consolidation transactions. Reducing the

scan time then translates to a reduction in the time needed to compute the balance, which

can save up to 99% of the balance time for longstanding users7. A detailed analysis com-

prising experiments performed on an actual computer running the Monero official wallet

and node, comparing scans of different depths and longevity is provided in the appendix.

Several contributors to the Monero project (Reddit, 2018g, 2018e, 2018b, 2019a) have

indicated that creating this type of transactions –namely churning–, increases the mixing

factor of the blockchain therefore improving the security of the whole network. We discuss

the security concerns and implications of churning in the next section.

Wallets play a big role in the time spent by a user while performing daily operations.

Usually Alice depends on her cold wallet(s)8 to perform them. By doing so, her transaction

history and sensitive information is stored there. If the information is lost, a full scan is

7Depending on the device and the history of transactions, full scans to compute the balance can take up to
days. With a 2-days-old CT, the same result can be obtained with a sub 1 minute scan as we show in the
appendix.
8Cold wallet is the term used to refer to wallets that are not connected in any way to the internet and that
are used to safely store keys and relevant information, alongside signing transactions that are posted to the
network through hot wallets, connected to the internet.
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required to obtain the information again. Changing from a wallet to a new one only using

Alice’s private keys presents a time consuming operation, because she will no longer have

access to the unlocked information the wallet stored, therefore having to perform several

operations to rebuild her history.

With CTs, Alice can use her keys and the transaction identifier to initiate a completely

new wallet. This wallet can be used without the need of a full scan, because a partial scan

until the CT will suffice in order to obtain her balance and use her transaction to send

funds. This implies gain in terms of portability as instantiating new wallets and avoiding

the need of time consuming scans to do so, will effectively reduce the need of keeping

long-term wallets with pre-computed sensitive information in order to perform operations

quickly.

The only caveat of using CTs is that each CT entails the payment of the normal fee of

a transaction. This implies that Alice could potentially spend transaction fees for dozens

of transactions per year that do not carry out a funds exchange between users.

However, transaction fees in Monero have stayed in average under a tenth of a dollar

for the last few years9. In 2020 the average transaction fee was approximately 0.0296 USD

per transaction, fluctuating between 0.0072 USD and 0.0911, while not showing any trend

towards increasing or decreasing significantly (BitInfoCharts, 2021).

CTs are not mandatory, hence the cost should be perceived as a payment for improved

efficiency, reduced synchronization times and portability. We encourage wallets that im-

plement this solution to warn the user about the incurred costs and allow the user to fine

tune the CTs frequency as a function of not only time tolerance but of willingness to pay.

9Transaction fees dropped significantly in 2018 after the hard fork that introduced bulletproofs to the protocol
(O’Leary, 2018; Aki, 2018).
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3.4. Churning and security concerns

Using a single transaction to send all unspent outputs of a user to himself is not a

new proposal. In fact, churning has been widely discussed in the Monero community

(Reddit, 2019a), and it has been considered as a method to improve one user’s privacy

(Stackexchange, 2017b).

By churning, Alice mixes her incoming transactions –her unspent outputs–, with others

from the network as Monero uses ring signatures with randomly10 selected outputs to

obfuscate senders and make the sender indistinguishable between the chosen set (Alonso

et al., 2020).

Therefore, churning increases the amount of fresh outputs11 available to select as de-

coys for other transactions in the whole Monero network, and decreases the probability

for a given output to be identified as the real output being spent in a transaction (Reddit,

2018c; Alonso et al., 2020).

However, churning could be detrimental for privacy if used without care. Specifically,

if users establish repetitive patterns when churning, attackers could try and deduce which

outputs are the real ones used in transactions and void the objective of ring signatures

(Stackexchange, 2019).

To achieve this, an attacker can identify the pattern and flag repetitive transactions as

churning transactions12. Knowing which transactions are churning transactions can aid

an attacker to discover when funds are effectively sent out and not re-churned, as the

penultimate churning transaction would not appear in the last churning transaction as an

input, with high probability.

10Outputs are selected from a gamma distribution across the range of historical outputs, and they must
comply with a minimum amount of confirmations (Alonso et al., 2020).
11The random selection also considers a time frame, favouring newer transactions (Alonso et al., 2020).
12While doing this is not an easy task, it could be performed with statistical analysis (Möser et al., 2017). It
could also be done by guessing the interval and trying to identify outputs as inputs in a chain of transactions.
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The risk of churning transactions to be identified by attackers can be mitigated by using

irregular time intervals and splitting transactions into multiple churning transactions.

By using irregular and seemingly random time intervals, the pattern recognition needed

to flag transactions as churning becomes infeasible, as transactions would mimic normal

spending behaviour found in the network. Moreover, splitting the balance in multiple

churning transactions disallows the linearity of the analysis, as one normal transaction and

one churning transaction could both be used as inputs for multiple churning transactions.

Apart from the risks related to churning, there are minor concerns worth analyzing

raised by our balance key proposal. To effectively use CTs, Alice should keep track of a

new key, the balance key. This identifier is already available for any user and it references a

specific transaction, with obfuscated senders, recipients and amounts. If an attacker knows

that one specific balance key is associated to a user, he only knows that the transaction

holds balance, but does not know either the amount, nor the real inputs or outputs.

However, all of Alice’s coins are kept in one single transaction13 after the consolida-

tion, so using CT can be conceived as the introduction of a single point of failure. This

could be relevant as an informed attacker could target one transaction that holds all of

Alice’s balance, nevertheless, this transaction still complies with the security standards

of any other transaction, so the risk is minimal and it only becomes apparent when the

balance key is revealed, so, as any other key, the recommendation is to keep it private.

13Unless Alice follows the recommendation of creating more than one CT per churn. If Alice holds multiple
balance keys, she can input the oldest un-consolidated transaction to the wallet implementation provided, as
it will be the limiting block for the balance computation.
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3.5. Wallet Recommendations

Based on the the user’s waiting tolerance, consolidation transactions should be done

with a certain frequency. Wallets should optionally recommend the user to do a CT when-

ever the last transaction gets too old14. It is of high importance to be careful with the

recommendations to avoid exposing user patterns.

One way of doing this is for the wallet to ask Alice for a maximum amount per month

to spend in transaction fees. As CTs imply spending a transaction fee every time a new

one is performed, the wallet should estimate the amount of transactions that can be done

monthly to avoid going over the defined limit. This number can be obtained as:

d = 30 · f̄
l

where d is the amount of days that the wallet should wait from the last CT performed, f̄

the average transaction fee for the last month and l Alice defined expendable limit. How-

ever, we do not recommend to use d as a fixed interval, it should be used as a parameter

for a random distribution in order to obtain the next moment for a transaction. Further

improvements are encouraged in order to avoid pattern disclosure.

Another way is to allow Alice to input a maximum waiting time to compute her bal-

ance. This way, the wallet would need to keep track of the time spent computing the

balance every time the operation is performed in comparison to the amount of new trans-

actions. With that information then estimate the time that the operation of computing the

balance would take by observing the amount new transactions since the last synchroniza-

tion, and factoring it by the statistics gathered. One approach would be to compute:

n = l · nlast

t
last

14Monero Wallet CLI already implements sweep all and sweep single methods, that allow churning
(of every address or one address, respectively). Both methods can be leveraged in order to implement
consolidation transactions and recommendations.
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where n is the maximum amount of transactions that can be synchronized in the time limit

l Alice defined, n
last

is the amount of transactions synchronized in the last operation and

t
last

the time elapsed for the synchronization of those transactions. With n, the wallet can

then suggest the user to create a CT as a function of the transactions being added to the

blockchain.

Using the maximum waiting time strategy inherently yields a seemingly random pat-

tern for new CTs as it depends on the amount of transactions organically posted to Mon-

ero’s blockchain, however, the calculations could be reverse engineered by an attacker,

therefore we recommend introducing a random factor to shield against them.

Both strategies, and many others, can be used in order to notify the user whenever a

new CT should be made. This way, the periodicity of the operation is handled by the wal-

let, and the user always keeps his balance close to the present time, therefore the balance

retrieval times are bounded and manageable.
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4. INDEXING AND SEARCHABLE ENCRYPTION

We have already discussed how consolidation transactions can help to ameliorate the

range of a blockchain scan, but transactions after the last consolidation still need a full

scan. In this chapter we deal with the question: can we build additional data infrastructure

so that we can solve the BALANCE problem in sub-linear time?

CTs provided an approach that improved the average case for obtaining the balance

in its whole conception, as both the set of incoming and outgoing transactions can be

obtained faster when using CTs. However, in this chapter we propose a rather different

approach that implies modifications to Monero’s underlying protocol: we use indexing

techniques in order to retrieve transactions faster.

Therefore in this chapter we only focus on transactions directed to the user’s Kv, that

is, the first group mentioned in the BALANCE problem definition. It is important to note

that the main improvements gained from solving the problem are located in this set of

transactions –the incoming ones–, and not the outgoing, as the latter are a subset of the

former1.

Hence we further refine the BALANCE problem defined previously, to focus on the

retrieval of incoming transactions directed to the user, as follows:

The partial BALANCE problem.
Input: The view key pair (kv, Kv).

Output: The set T of transactions in the blockchain that are directed to OTAs derived

from Kv.

1Because of how Monero –and most cryptocurrencies– work, every outgoing transaction has as input one
or more incoming transactions, as every piece of information in the Blockchain is a transaction. Even coins
obtained from mining are portrayed in the ledger as coinbase transactions directed to the user. This way
in order to obtain the set of outgoing transactions, one must retrieve incoming ones and check their spent
status.

19



Naturally, we want to do this without losing Monero’s privacy guarantees. Specifically,

we impose the same constraints G1 through G4 to our framework, as specified in the first

BALANCE problem.

Let us remark that solving this problem on Bitcoin, or any similar cryptocurrency, can

be carried out efficiently by means of standard index structures. Indeed, standard cryp-

tocurrencies without heavy cryptographic measurements to aid privacy, index transactions

not by means of an OTA Ko (for a key pair (kv, Kv)), but simply by posting the public key

Kv openly. Thus, for example, one can index each transaction by the public key to which

it is addressed, and mount a hash-index to retrieve the set of T transactions addressed to a

key Kv in time O(|T |) which is significantly faster than scanning the full blockchain.

For Monero, the problem is more complex, as each transaction is addressed to an OTA

which can only be derived to Kv by means of cryptographic operations. All of this means

that it is no longer possible to index Monero’s blockchain in a standard way, and currently

the only way of solving partial BALANCE problem is by a full scan on the blockchain.

Throughout this chapter we build an indexing scheme that in its most refined ver-

sion allows one user to obtain the desired set of transactions in sublinear time while only

leaking the amount of incoming transactions but not leaking any information about those

transactions in particular.

We also show how to cast this problem to the searchable encryption domain has abun-

dant oingoing research and in which sublinear search has been discussed but it is still an

open problem2. We adapt the partial BALANCE problem to the notion of a PEKS scheme

(Boneh, Di Crescenzo, Ostrovsky, & Persiano, 2004) that allows searching over encrypted

data in a public key scenario and we show the implications of this proposal.

2There is a sublinear search scheme in a deterministic scenario (Bellare, Boldyreva, & O’Neill, 2007) not
suitable for our problem but, to the best of our knowledge, the possibility for a scheme that allows sublinear
search in a non-deterministic scenario still remains.
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4.1. Indexing transaction hashes

The most straightforward way of hasting the balance calculation by solving the partial

BALANCE problem is to build a simple hash index that relates public keys of users with all

their transactions. Clearly this index is enough for our time requirements, but as expected,

it presents a number of security issues. Nonetheless, we go over this solution as it helps

us build the discussion on the time and security trade-offs of the solutions in this chapter.

The most basic index consists of a hash table, in which keys are the public view keys

of any user, and the values or contents of that entry in the table, are the hashes of the

transactions3 associated to those view keys, stored as an array.

Considering a standard hash table with its original operations insert(key, value)

and lookup(key), we characterize the table described above with the same operations:

• insert(public view key, transaction hash): value insertion of

the transaction hash in the entry array with the public view key as the entry key.

• lookup(public view key): key lookup with only the view key.

This a straight forward approach that yields a dictionary-like hash table that can be

used to access the list of one user’s transactions hashes in O(1), given its public view key.

This is enough for the partial BALANCE problem, as all we need to do is then iterating

over this list of transactions, which is clearly linear in the total number of transactions

(|T |) with OTAs directed to the user.

4.1.1. Issues, attacks and security concerns

It is clear that this approach does not comply with the security requirements needed in

order to consider this a viable solution to the partial BALANCE problem. Specifically we
3In the Monero blockchain, transactions are handled as hashes of the actual content of the transaction. In
turn, each transaction has the One Time Addresses of the destinations attached as keys available in the vout
field. We sometimes refer to the OTA as the whole transaction, even when a transaction can be directed to
multiple OTAs, because it is the output directed to the user what matters for the BALANCE problem.
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identify 3 issues and their respective attacks that would compromise privacy of the users

and the guarantees outlined in Chapter 1:

I1 Any observer could get every incoming transaction for any given user (I1), as

this hash table would serve as a direct association between transaction hashes

and public view keys. This goes directly against the purpose of one time ad-

dresses, revealing the public keys from which OTAs were derived. This yields

the first attack, the direct access attack, in which one observer can directly use

any user’s public view key and execute the operation lookup(public view key)

to immediately gain access to all his incoming transaction hashes.

I2 It follows from the above that an observer, besides associating transactions with

public view keys, can know the amount of transactions directed to a given user,

information that was previously unknown to him. Therefore the second at-

tack appears, the transactions count attack, in which an observer can use

lookup(public view key) and count the amount of transactions returned.

This attack seems irrelevant when I1 is still an issue, but with some improve-

ments it becomes clear that this attack can still be performed even when I1 no

longer applies.

This two issues forbid this approach from complying with G2 and G3, as unautho-

rized third parties can obtain the incoming transactions set and accordingly, features of it.

Additionally the last issue appears:

I3 The update of the hash table produces another issue. If the insertion of entries

to the hash table is not a validated procedure, anyone –not only the sender–

could add values to any entry in the table (I3) and pollute the information, thus

making the table useless. This yields the polluted entry attack, in which an

observer can execute insert(public view key, x) with x any random

transaction hash, effectively inserting unrelated information to the hash table

entry.
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Nonetheless, this approach does not compromise the funds integrity nor the ability to

spend them, which remains only possible with the possession of the user’s spend keys.

This way, G4, the guarantee about not compromising Monero features unrelated to the

balance calculation, is still met. Also, as this approach only modifies elements related to

the incoming transactions and not outgoing ones, it does not compromise the balance as a

whole, complying with G1.

4.2. Indexing encrypted transaction hashes

One straightforward improvement from the direct indexing proposal, is to store the

hashes of the transactions with encryption so that only the receiver can effectively discover

them.

This indexing procedure entails the same structure as before, with added encryption.

This way, the encryption is done with the public view key, so that the user can decrypt the

OTA with the corresponding private view key.

Considering the same standard hash table with its original operations specified be-

fore, insert(key, value) and lookup(key), we characterize the table described

above with the same operations:

• insert(public view key, encrypted transaction hash): value

insertion of the encrypted transaction hash to the entry array with the public view

key as the entry key.

• lookup(public view key): key lookup with only the view key.

Therefore, the sender needs to encrypt the transaction hash with a deterministic public

key encryption algorithm4 before posting it to the hash table. A user wanting to check his

4For this subsection we assume the algorithm used is deterministic and we discuss the drawbacks this de-
cision brings. Deterministic encryption in the public key scenario is discouraged as it can not comply with
strict notions of security. However, some deterministic schemes have been proposed specially for domains
in which the content entropy is considerable (Bellare et al., 2007; Brakerski & Segev, 2011).
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incoming transactions, would obtain the contents from the hash table, and decrypt each

value in order to obtain each transaction hash.

4.2.1. Improvements

The I1 issue is addressed with encryption, as an observer would need to decrypt the

values in order to associate addresses to the public view key. This means that, in order

to get transactions directed to a user, the private view key is needed, which is the same

requirement needed in Monero without the introduction of this hash table or any proposal.

In terms of time complexity, the partial BALANCE problem is still solvable in linear

time in the total number T of transactions directed to the user. Analogous to what we

described in the direct indexing approach, the access time for the entry is O(1) and to

iterate over the pointed list is O(|T |). However, the encrypted approach adds the need

of an extra step for each transaction. This does not penalize the time complexity of the

solution as it adds one constant step per transaction of the already retrieved transaction

list.

4.2.2. Remaining issues, attacks and security concerns

Even though the I1 issue is addressed with encryption, it is not solved completely. The

direct access attack is no longer possible, as one observer can obtain the list of Alice’s

encrypted transaction hashes, but can not decrypt them, however:

I4 The array of encrypted transaction hashes is still available for any observer, and

the method used for the encryption can be replicated and observed by attack-

ers. Therefore, there are two new attacks that enable an unwanted observer to

associate transactions to a public view key:

(a) Re-encryption attack: If one attacker encrypts every transaction hash avail-

able in the blockchain with Alice’s public view key, he can then compare
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the encrypted values with the encrypted transaction hashes found in the ta-

ble. The encrypted values would match as the encryption is made in the

same way as the sender did it originally5.

An attacker can execute encrypt(transaction hash, public view key)

with every transaction hash in the blockchain, or any subset of candidates he

deems probable, to then compare those encrypted results with those found

by executing lookup(public view key) with the user key.

(b) Time correlation attack: If one attacker watches the blockchain, he can

correlate the time in which a transaction is timestamped, with the time one

value is added to a specific entry in the hash table, therefore being able to

guess the owner of those transaction hashes by reducing the possible users

from the complete pool of users, to the ones involved in transactions in the

same time frame.

An attacker would repeatedly execute lookup(public view key) as

he observes new block additions to the blockchain, in order to try and guess

which transactions were posted to the blockchain at the same time as the

array in the entry grew.

This means this approach solves I1 but by doing so introduces issue I4 which means

the guarantees G2 and G3 are still not met. Additionally, the aforementioned I2 and I3

issues that appeared with the direct indexing proposal, both still remain, as the amount of

transactions keeps being publicly obtainable and entries can be polluted.

4.3. Indexing unforgeable encrypted transaction hashes

In order to avoid the re-encryption attack presented before, the ability for one out-

sider to re-encrypt any transaction hash with a user’s public view key and compare with

the ones available in the hash table entry, has to be disallowed.

5This happens when using deterministic encryption which is not a recommended procedure and we manage
this issue throughout the next subsection.
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To do that, the encryption can be done using non-deterministic techniques, or using

elements that are not publicly available i.e. a part of the addresses that is only known by

the sender and receiver. We describe both approaches.

4.3.1. Using non deterministic encryption

The most widely used public key encryption algorithms are non-deterministic as they

introduce some kind of randomness into the cipher text. To avoid the re-encryption at-

tack we need that the encryption algorithm does not yield identical ciphertexts for two

identical inputs. Any ELGAMAL-like asymmetric encryption system suited for elliptic

curves complies with this requirement.

Specifically, using a non-deterministic encryption system implies including additional

information to the entries in the hash table6, namely the parts of the algorithm needed

for the receiving user to reconstruct the plain decrypted message. We call the encrypted

transaction hash cipher ETHC.

Once again, the same standard hash table operations insert(key, value) and

lookup(key) are used to characterize the table for this proposal:

• insert(public view key, ETHC): value insertion of the encrypted trans-

action hash cipher (including scheme-specific extra cipher elements required)

with the public view key as the entry key.

• lookup(public view key): key lookup with only the view key.

Accordingly, the sender encrypts the transaction hash with Alice’s public view key

using a non-deterministic public key encryption algorithm, to then add it to the hash ta-

ble entry denoted by the same key. In order to check her incoming transactions, Alice

6In ELGAMAL, the ciphertext is a pair (c1, c2) and in more complex non-malleable encryption systems like
CRAMER-SHOUP, the ciphertext is the tuple (u1, u2, e, v) (ElGamal, 1985; Cramer & Shoup, 1998). In
both cases, every element is needed to reconstruct the original plain text and they play a role in making the
scheme secure.
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would obtain all her ETHCs from the contents of the entry, decrypt them and obtain each

transaction hash.

4.3.2. Using a shared secret

As explained previously, one OTA Ko is built by the sender using a random number

r, the public key from the receiver, Kv , the curve generator point G and the public spend

key from the receiver, Ks as follows:

Ko = H
n

(rKv)G+Ks

We stated that this address can be constructed only by the sender or reconstructed

by the recipient because knowledge of rKv is required for it. Both sender and receiver

involved in the transaction can unequivocally derive the OTA.

Our proposal uses rKv, which we call the shared secret, as the central piece to add

encrypted to the hash table entry. Once again, the same standard hash table operations

insert(key, value) and lookup(key) are used to characterize the table for this

proposal:

• insert(public view key, encrypted shared secret): value in-

sertion of the encrypted shared secret with the public view key as the entry key.

• lookup(public view key): key lookup with only the view key.

Accordingly, the sender encrypts the shared secret rKv with Alice’s public view key

using a public key encryption algorithm7, to then add it to the hash table entry denoted by

the same key. In order to check her incoming transactions, Alice would therefore obtain all

her rKvs from the entry, decrypt them, use her public spend key and standard operations

in order to obtain each OTA representing her transactions.

7This algorithm can be both deterministic and non deterministic, as there is minimal risk of a chosen plain
text attack because the content itself is seemingly random, therefore common attacks as dictionary ones are
useless.
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The Monero blockchain and its CLI implementations provide ways to obtain transac-

tions from their hash directly but there is no current implementation to retrieve a trans-

action by the One Time Addresses assigned as outputs of it. However, auxiliary data

structures could be publicly created in order to be able to access to a transaction hash

given its OTA.

4.3.3. Improvements

The first attack that appeared in the normal encryption approach, the re-encryption

attack, is handled by this approach. Now, an observer can not try and encrypt blockchain

values as he could before, in order to check whether the encrypted values match with the

values stored in the entry. This happens because (a) non-deterministic encryption systems

yield different ouputs for the same inputs, or (b) he can not obtain the plain values to try

with, because the rKvs are not published in any part of the transaction, so he can not

access the shared secret.

Time complexity remains the same as in the other approach, analogously, the partial

BALANCE problem can still be solved in linear time in the total number |T | of transac-

tions directed to the user. The access time remains O(1) and to iterate over the list is

O(|T |). The extra time spent for decryption depends on the the encryption system and the

transactions themselves, but not on the amount of transactions, keeping the algorithm time

linear.

4.3.4. Remaining Issues, attacks and security concerns

As explained, the re-encryption attack is addressed and solved by this approach

meaning that for I4, only the second attack remains. The time correlation attack can

still be done, however, correlation attacks can be performed to the original Monero proto-

col at the present time, and the guess work needed is still very ineffective8.

8In (Tramèr et al., 2020) an attack to reveal transaction payees by analyzing traffic over side-channels was
presented. It has subsequently been solved, but the possibility of those attacks can not be ruled out.
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This way the only important issues remaining are I2 and I3 with their respective at-

tacks.

4.4. Indexing recapitulation

So far, we have constructed a technique allowing senders to include transaction infor-

mation to a publicly available hash table. This enables users to retrieve the collection of

transaction hashes directed to them in linear time in respect to the amount of incoming

transactions.

In the first approach, indexing transaction hashes, we proposed to store transactions

hashes directly using the view key of the user as the key. This meant giving away the

link between one user and transactions, compromising privacy heavily, but delivering fast

access to transactions for a user.

For the second approach indexing encrypted transaction hashes, we introduced en-

cryption providing a layer of security, but as we discussed, it was still vulnerable to simple

guessing attacks. This meant that even though the link between a view key and a group of

transactions was not immediate, it did not guarantee privacy.

However, in our last approach, indexing unforgeable encrypted transaction hashes,

we explained how to properly use encryption in order to avoid the attacks that made the

previous approach useless. In this last proposal, users would only compromise the amount

of transactions directed to them and the possibility for unwanted users to add fake trans-

action hashes to the entries, but would not reveal their identity, the amounts of each trans-

actions, the spendable state of them nor compromise their ability to spend them.

All 3 approaches had a major issue related to the practicality of them, by relying on

senders to update the index entries related to a user, entries could be filled with noise and

the real purpose of the indexes would have been lost.
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In a later chapter of this work we propose services based on this proposals that address

the pollution issue I3 putting minimum trust in them and not majorly compromising pri-

vacy. As in all of our work, we touch on the trade-off between giving away different types

of information and being able to retrieve information fast.

4.5. Searchable encryption

One of the issues that remains unsolved using the indexing approach –even in the

encrypted version– is the capability of unwanted insertion to the hash table entries. An ap-

plication of a searchable encryption scheme provides a way around it and gives a different

framework to tackle the partial BALANCE problem.

Searchable encryption (SE), is an encryption scheme that supports searching keywords

over encrypted data without decrypting it, hence, not compromising privacy (Bösch, Har-

tel, Jonker, & Peter, 2014). The two most investigated SE techniques are Searchable

Symmetric Encryption (SSE) and Public Key Encryption with keyword search (PEKS).

For our work, the PEKS one is the evident choice.

Public Key Encryption with keyword Search (PEKS) was firstly introduced in (Boneh

et al., 2004) and it provides a mechanism that enables Alice to receive data in an out-

sourced server. Data can be sent from various other users encrypted with her public key

and can afterwards be searched using trapdoors generated with her private key.

Various aspects of the PEKS model have been studied by the community. In particular,

focus has mainly revolved around reducing keyword leakage9 (Arriaga, Tang, & Ryan,

2014; Nishioka, 2012), allowing flexibility in the search through multi-keyword, fuzzy

search, wildcards, subset queries, range queries, etc. (Boneh & Waters, 2007; Hwang &

9The original PEKS guarantees that a searchable ciphertext leaks no information about keywords, but it does
not give a guarantee concerning leakage of a keyword from the trapdoor (Nishioka, 2012).
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Lee, 2007), and reducing search time10 (Phan, Dang, & Nguyen, 2014; Chen, Zhang, Lin,

& Zhang, 2016; Zhang, Li, & Wang, 2019; Bellare et al., 2007).

4.5.1. PEKS scheme for Monero

To apply PEKS to the partial BALANCE problem we propose to use keys and trans-

action hashes as keywords and encrypted data respectively. Specifically, we propose to

use the PEKS scheme where each document contains a transaction hash and the receiver

public view key, encrypted11. The searchable keyword is the public view key and it would

only be accessible by those in possession of a trapdoor derived from the private key.

As outlined in (Boneh et al., 2004), the non-interactive PEKS scheme consists of the

following polynomial time randomized algorithms:

(i) KeyGen(s): Takes a security parameter, s, and generates a public/private key

pair A
pub

, A
priv

.

(ii) PEKS(A
pub

,W): for a public key A
pub

and a word W , produces a searchable

encryption of W .

(iii) Trapdoor(A
priv

,W): given Alice’s private key and a word W produces a

trapdoor T
W

.

(iv) Test(A
pub

, S, T
W

): given Alice’s public key, a searchable encryption S =

PEKS(A
pub

,W 0), and a trapdoor T
W

= Trapdoor(A
priv

,W), outputs ‘yes’

if W = W 0 and ‘no’ otherwise.

10Only one of the studied PEKS schemes achieves sublinear search time, the one presented in (Bellare et
al., 2007) but it does so by using deterministic encryption over the keywords, which is not suitable for our
solution. However, investigation in this field keeps appearing and the focus is still dedicated to improve that
particular issue.
11The PEKS scheme states that the document must be encrypted non-deterministically with the public key,
therefore for the partial BALANCE problem, the pair (tx id,K

v

), can be employed as the document. As
it is non-deterministic, including the public view key in the document itself does not introduce the risk of
re-encryption attacks.
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Therefore Alice runs the KeyGen algorithm to generate her public/private key pair12.

She uses Trapdoor to generate trapdoors T
W

for any keywords W that she wants to

enable search for. The server uses the given trapdoors as input to the Test algorithm to

determine whether a given document contains one of the keywords W specified by Alice.

For our problem it can be applied using each of the four algorithms with the correct

arguments as follows:

(i) KeyGen(s): Takes a security parameter, s, and generates a public/private key

pair A
pub

, A
priv

.

(ii) PEKS(A
pub

, Kv): for a public key A
pub

and the keyword Kv, produces a search-

able encryption of Kv.

(iii) Trapdoor(A
priv

, Kv): given Alice’s private key and the public view key act-

ing as keyword, produces a trapdoor T
W

.

(iv) Test(A
pub

, S, T
W

): given Alice’s public view key, a searchable encryption

S = PEKS(A
pub

, K 0v), and a trapdoor T
W

= Trapdoor(A
priv

, Kv), outputs

‘yes’ if Kv = K 0v and ‘no’ otherwise.

Notably, the PEKS algorithm is called with Kv as a keyword. This allows searchability

using that view key, which is semantically concordant with the purpose of view keys in

the Monero protocol.

With PEKS in place, Alice can produce a trapdoor that enables searching for trans-

actions associated to her public key Kv, by using Trapdoor(A
priv

, Kv) and sending it

12The user would need to hold a new pair of keys besides the spend and view key pairs already existent.
This is due to the need of a suitable key pair for the encryption and posterior search. Boneh’s et al. proposal
(Boneh et al., 2004) includes the usage of bilinear maps, and the chosen keys must allow it efficiently. Due
to its characteristics, the Monero base elliptic curve Ed25519 is not suitable for use in bilinear maps as its
degree is too high (Lynn, 2007; Stackexchange, 2017a; Bernstein & Lange, 2013) and computation of the
mappings would be infeasible.
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to the server. The server would then test every document against the trapdoor in order to

know if the document must be returned13.

4.5.2. PEKS procedure in Monero

With the outlined algorithms and the usage of Monero pieces, we can further describe

the procedure for a normal transaction to include the information required, the responsi-

bilities and the way for Alice to retrieve her transactions.

(i) Sender:

(a) Create a Monero transaction (denoted by the hash tx hash) normally.

(b) Encrypt the document consisting of the pair d = (tx hash,Kv) obtaining

Enc
A

pub

(d).

(c) Generate the searchable keyword with PEKS(A
pub

, Kv).

(d) Include both elements in the transaction metadata14.

(ii) Miner:

(a) Post the encrypted document and searchable keyword to the document col-

lection15.

(iii) Receiver:

(a) Generate a trapdoor T
W

with Trapdoor(A
priv

, Kv).

(b) Query the collection with the generated T
W

.

We have found that the best way to apply such an scheme to the partial BALANCE

problem is to use a third party service as a transaction yielder that serves the encrypted

13This yields a time complexity of O(n) with n the amount of documents, which is not sublinear. We believe
sublinear search is not possible in this scheme, however, if discovered and applied to a PEKS scheme without
deterministic encryption for keywords, it could be of use for our scheme.
14In Monero it is possible to include additional information for each transaction in the tx extra field (Alonso
et al., 2020). However, by doing so, the amount of information included in every transaction increases and
the blockchain size also increases. We do not discuss this problem throughout our work, but it is a relevant
issue as keeping the blockchain size as low as possible is desirable. We believe that it is an acceptable
tradeoff, but we encourage further analysis.
15The location, behaviour and relevance of this collection is discussed in the last chapter as a third party
service proposal.
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collection of transaction identifiers and that is only searchable by those in possession of

adequate keys. We describe the details of this implementation in the last chapter.

4.5.3. Improvements

The proposed procedure addresses most of the issues outlined while building the in-

dexing proposal. I2 is no longer a problem as the public view key of one user is not

enough to obtain the amount of transactions, with a PEKS scheme like the one introduced,

an attacker needs A
priv

, which is not revealed in any moment.

Most notably, I3 is also solved with this procedure. As the entity responsible of adding

new entries to the document collection is the miner, there is no risk for attackers to intro-

duce unwanted information. Moreover, this procedure can be checked by the entity hold-

ing the collection as the document inserted in the collection is available in the blockchain.

The last remaining issue (I4) is also handled with this approach. While any user at-

tempting to discover whether a transaction is directed to Alice can encrypt a transaction

hash with her A
pub

, as the encryption is non-deterministic, the encrypted element included

in the transaction metadata can not be feasibly reproduced.

4.5.4. Remaining issues, attacks and security concerns

The first issue we observe when using the proposed PEKS scheme is that, as outlined

before, the search is not sublinear in every non-deterministic implementation yet (Bösch

et al., 2014; Wang, Wang, & Chen, 2016). We believe sublinear search is not possible in

this scheme, however, if discovered and applied to a PEKS scheme without deterministic

encryption for keywords, it could be adapted for our scheme16.

Secondly, the trapdoor generation proposed in (Boneh et al., 2004), is deterministic.

This enables the server being queried for the documents to store trapdoors for further use.

16Depending on the implementation, a sublinear scheme may or may not be adapted successfully to our
problem, as we require more conditions than only time related ones.
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Nonetheless, the only information the server gains is that for a given trapdoor there are

some associated documents, but it does not learn the public key employed as keyword nor

the transaction hash stored as content of the document. This implies that trapdoor privacy

is not completely achieved with this scheme17.

However, the PEKS procedure to append keywords to a document is not deterministic,

therefore the server is not able to guess the keyword content from any documents with the

same keyword, as all encrypted keyword material for the same keyword is different. This

means that even if the server holds a trapdoor, it is not able to associate it successfully to

a particular public key.

17There is investigation covering trapdoor privacy in PEKS schemes. In (Nishioka, 2012) and (Arriaga et
al., 2014), solutions and improvements are proposed, however implementations for our problem are not
straightforward.
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5. PRIVACY PRESERVING OUTSOURCED SERVICES

Although we have not provided solutions that allow sublinear time and complete secu-

rity, in this chapter we show how our solutions open up possibilities for what wallets can

do by leveraging third-parties in order to enable faster functioning times. We do so while

giving users the ability to compromise less security than giving away the private view key

as it happens currently.

While we provided an implementation that does not require any protocol modifications

to Monero in Chapter 3, our indexing and PEKS scheme proposals in Chapter 4, require

the introduction of new procedures for senders, receivers and miners. It becomes clear in

this chapter the practical usage of those modifications.

We have already approached the privacy and efficiency trade-off by discussing the way

transactions are built and retrieved in the protocol. Now we provide two third party ser-

vices that allow our user Alice to retrieve her transactions by offloading the time intensive

processing to the third party while minimally compromising privacy and minor elements

that were previously unknown to them.

The last version of our indexing protocol achieved the storage of transaction identi-

fiers unforgeably encrypted in a hash table for Alice to retrieve the identifiers in sublinear

time. However, the pollution issue remained unsolved and made futile any straightforward

implementation of that proposal. Similarly our proposal of a PEKS scheme implementa-

tion still needs a holder for the document collection containing the encrypted association

between keys and transactions.

We present a revocable indexing service allowing a third party to provide access to

one user’s transactions without compromising the user’s private view key. We also outline

how a third party could act as a trapdoor transaction yielder for a PEKS scheme, storing

the encrypted documents collection.
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5.1. Revocable indexing service

A revocable indexing service is a third party that obtains user authorization to store

indexed encrypted references to transactions for particular keys. It is revocable because

a user can decide to change keys and disallow the service for future indexing without the

need of changing view nor spend keys.

Users will need a third pair of keys which we call the index key pair with both a private

and a public index key (kx, Kx). This is a separated pair as it is used to allow the service

view access to transactions directed to the user, while not compromising the balance nor

the amounts of each transaction, information bound to the view key pair.

This pair works analogously to the view key pair. Senders will need the public index

key in order to correctly build a transaction directed to the owner of that key pair. Similarly,

a user in possession of the private pair will be able to access to all of the user transactions

signaled by those keys but will not be able to decode the amounts.

For the indexing service to work, both the sender and this new third party will have

specific responsibilities. The sender will need to provide new information in the transac-

tion for the service to recognize it and add it to the index.

5.1.1. Sender procedure

In order to send funds to Alice, the sender creates a transaction normally. Additionally

the sender needs to append a new element to the transaction derived from Alice’s index

key, the One Time Indexing Key (OTIK):

Kz = H
n

(rKx)G+Kv
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The sender builds it with the public keys of Alice, and the random r he computed for

the construction of the OTA1. Similarly, Alice, owner of the private index key, can recon-

struct this one time key by using her private key kx and the public key of the transaction

rG as follows:

K 0z = H
n

(rkxG)G+Kv

As rkxG = rKx stands, then Kz = K 0z, confirming it is the same OTIK created by

the sender.

Posting the OTIK and rG in the transaction enables any observer to try and verify if

the transaction is directed to Alice, but only a party owning the private index key will

successfully reconstruct the OTIK and match it.

Alongside the OTIK, for indexing purposes, the sender needs2 to create the same ele-

ment we described for Section 4.3. This is, he needs to include the encrypted shared secret

or the non-deterministic cipher in the transaction. However, it has to be encrypted once

again with the index key3. Without loss of generality, we will use the method proposed in

Section 4.3.1 featuring ETHCs:

index metadata = Enc
K

x(ETHC)

5.1.2. Indexing procedure

The third party will firstly enroll any user wanting the indexing service. For this, the

service will acquire Alice’s private index key kx. With this key the service will be able to

scan the blockchain in order to identify transactions directed to Alice.

1The procedure is the same as the one presented for OTAs. The relevant change is the usage of Kx and K

v

instead of Kv and K

s, respectively.
2The need of this information alongside the OTIK is important for a more trustless implementation of the
indexing service, which will be discussed in the following sections.
3The shared secret or cipher is encrypted with both the public view key and the public index key to allow
the service to decrypt the metadata. This prevents observers of watching the same element available in a
transaction to be seen in the index the service provides.
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Alongside getting the private index key, the service needs to create one unique key

in which the array of identifiers will be stored. This key has to be accessible to Alice

and has to appear to be seemingly random. As both Alice and the indexing service know

the private index key, we suggest this key to be derived from it and the public key of the

indexing service Kj as follows:

key = kxKj

This way, both parties can construct it only if they know the private index key of Alice.

Finally, to add an element to the entry, the service must scan the blockchain and con-

struct OTIKs for every transaction. Whenever a transaction is positively identified as

directed to Alice, then it must search in the transaction for the index metadata available

there, encrypted as Enc
K

x(ETHC). The service, who knows kx, can decrypt that infor-

mation in order to obtain the ETHC which is the same cipher discussed in Section 4.3.1.

This piece of information can be safely added to the hash table entry.

5.1.3. Service usage

Considering Alice is already enrolled to the service and therefore her index keys are

known by the indexing service, the steps needed for both sender and indexing service in

order to take advantage of it are:

Sender:

(i) Follows the normal transaction building procedure.

(ii) Computes the OTIK as: Kz = H
n

(rKx)G+Kv.

(iii) Computes the indexing information as: index metadata = Enc
K

x(ETHC).

(iv) Adds Kz and index metadata to the transaction data.

(v) Posts the transaction to the blockchain normally.

Indexing service:
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(i) Scans the blockchain for new transactions.

(ii) Computes a candidate OTIK for every new transaction using Alice’s private in-

dex key as K 0z = H
n

(rkxG)G +Kv using each transaction rG, Alice’s kx and

Kv.

(iii) Checks whether the OTIK contained in the transaction matches the one com-

puted Kz

?
= K 0z.

(iv) When a match is found, decrypts the index metadata in order to obtain the

ETHC.

(v) Computes the key for the entry kxKj and adds the ETHC to the entry.

After those steps, Alice is able to access the index4 and retrieve the content of the

entry labeled by kxKj . She can then proceed to use the ciphers obtained in order to get

her incoming transaction hashes.

5.1.4. Revoking access

One of the features this procedure provides is the ability to revoke access to any third

party acting as this indexing service. In order to do so, Alice can generate a new index key

pair. This is fundamentally different to generating a new view key pair5 as the index pair

is not used to generate the OTAs to which funds are addressed.

If Alice needs to deny the indexing service of further indexing, and eventually move

to another service provider, she could churn her funds into one transaction using her new

index key pair. This makes transactions indexed by the denied service no longer usable.6

4The hash table itself could be publicly available as nor the keys nor the content reveal information about
the user. The key is seemingly random and the content is encrypted.
5Currently in Monero Alice can generate subaddresses derived from her main address and direct funds dif-
ferentiating between them (Alonso et al., 2020). However, in order to allow someone to retrieve transactions
for her, she needs to give away private information about those addresses. If she wants to keep the subaddress
and disallow anyone in posession of the private view key, she cannot do that.
6The indexing service as described so far adds to every user entry an encrypted transaction hash which
cannot be read by the service. However, as the service is scanning the blockchain, it could maliciously store
the transaction hashes that matched the OTIKs elsewhere. This makes the trust in the third party crucial. We
tackle this issue in the next section.
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5.1.5. Trustless implementation

We have discussed so far an implementation that inserts an encrypted transaction hash

to the hash table entry assigned to a particular user. The encryption allows the element

to be safely posted in the blockchain and also allows for the hash table contents to be

publicly available. However, it does not prevent the indexing service to know exactly

which transactions belong to the user.

To make the indexing service more trustless, in practice, senders can incorporate de-

coys7 additional to the real OTIK when including it for each transaction. This way, the

service must check every OTIK in the transaction to add the corresponding metadata to

the entry, but only if any of the OTIKs matches the one generated from the enrolled user

index key.

The decoys work by adding valid OTIKs for other users. This part of the procedure

must be enforced widely, to ensure Alice appears in other transactions as a decoy. This

way, the entry for Alice will contain encrypted transaction hashes that are effectively di-

rected to her and ones that are not8. In terms complexity, if the amount of decoys is fixed9

and the algorithm employed to select decoys to obfuscate the real OTIK is adequately

uniform and does not favor or punish specific index keys, this will only increase the time

required to obtain the real transaction hashes by a constant10.

By introducing decoys, the service will now only know that the transactions that

matched the generated OTIKs are possibly owned by the enrolled user, but will not have

certainty, requiring less trust from the user.

7We do not provide a thorough investigation in the way this decoys should be selected. However, we believe
using a procedure similar to the one employed to select output decoys for ring signatures should be sufficient.
8Extra transaction hashes are added to the entry because valid OTIKs appeared as decoys in other transac-
tions. The indexing service will have found a matching OTIK and added the ETHC to the entry, without
being able to identify whether it was a decoy or not.
9We propose a similar number to Monero’s current ring size, which is 11 (Spagni, 2018).
10This is not a completely accurate description of time complexity for this method. However, based on a
uniform algorithm to select index keys as decoys, the chances for a specific user of appearing in transactions
as a decoy, is roughly proportional to the amount of decoys.
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5.1.6. Improvements

The revocable indexing service tackles most of the issues still present in our last in-

dexing proposal in Section 4.3. Firstly one observer is no longer able to perform the

transactions count attack as the key to access the entry holding the identifiers for trans-

actions is only obtainable by those in possession of the private index key. Even if the hash

table is public, the association between one user view key and the entry is not public.

Secondly as this index is managed by a third party that provides a service, there is no

risk of unwanted entry pollution. However, this means that by trusting a third party, the

integrity of the information retrieved relies in the service.

Thirdly, the time correlation attack is mostly addressed with the usage of the revoca-

ble indexing service. While an observer can still watch the blockchain and see the index

metadata, this metadata is not the same that gets posted into the entry in the index, because

it is firstly encrypted by the sender with the index key and afterwards it gets decrypted by

the indexing service. This implies an observer could only try and deduce whether some-

thing new was added to the index, but could not associate this addition to a particular user

or group of them11.

As explained earlier, the indexing service is revocable therefore Alice can decide to

stop using the indexing service without the need to renew her view or spend keys, and the

service will not be able to index new transactions for Alice. This allows to reduce the trust

needed towards the third party as the indexation can be done temporarily. Furthermore if

this approach is combined with churning, all previous indexed transactions can be deemed

as useless information, because the new ones with the real funds would be indexed under

another key.

11Without the index key encryption, an attacker could base his deduction on the fact that “a transaction
in this new block is addressed to a view key as the entry for that key had one transaction added in this
timeframe”. Whereas with the index key encryption, the fact becomes “a transaction in this new block is
addressed to one user of the indexing service as one entry for that key had one transaction added in the
timeframe” which is not useful enough for the attacker.
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In terms of time complexity the data structure used behind the indexing service is the

same as in the previous sections. The operation needed to be performed when a user

retrieves his list of identifiers is still a hash table entry lookup that takes linear time in the

number T of transactions. If we take into consideration the trustless decoys approach, the

complexity does not worsen but gains a constant factor.

This implementation touches the privacy and efficiency tradeoff we have discussed

throughout our work in a moderately compromising way. By giving away a private in-

dex key to a third party, in this case the service, it only gains the ability to inspect the

blockchain for transactions directed to the user, but it does not disclose the amount sent

in each transaction, as giving away the private view key does. Furthermore, in our trust-

less implementation, owning the private index key only enables the holder to associate a

group of transactions without specificity, because it contains the real group of transactions

alongside decoys, meaning the third party is no longer trusted fully.

Thus finally, while this approach implies willingly compromising the identifiers of

incoming transactions for Alice, it enables her to access transactions quickly without per-

forming a full scan of the blockchain and without having to compromise the amount re-

ceived. This can be seen as further granularizing the permissions scheme in Monero and

giving the user even more control over funds.

5.1.7. Remaining issues and security concerns

We have already addressed all the important issues that appeared in our theoretical

discussion of indexing implementations and discussed how the revocable indexing service

approached them at least partially and provided a practical implementation. However

there are two new considerations related to this proposal that make further improvement

possible.

In the first place, when a sender is building a transaction directed to Alice, he can

remember the encrypted transaction hash cipher before the index key encryption. This
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piece of information enables him to observe where that piece of information appears in

the indexing service if it is publicly available. By doing so, he can deduce the key of the

entry where transactions directed to Alice are stored. In previous implementations this was

not an issue as the key was directly the user view key, but now it is meant to be private.

This can be solved by the service performing a re-encryption of the ETHC.

In the second place, with our trustless approach, we introduced mixing by adding one

time indexing key decoys to the sender procedure. With the decoys used for the ring

signatures in Monero, care must be taken in order to avoid disclosing the real inputs,

in our case, we do not currently know if a particular algorithm for selecting decoys may

affect the obfuscating factor of using them. However, we believe that picking random ones

uniformly from any user does not imply a security risk, as they are not transactions but

index keys12, nevertheless, we encourage further investigation to confirm our hypothesis.

5.2. Trapdoor transaction yielder

A trapdoor transaction yielder is a third party that can store a collection of encrypted

documents containing the association between transaction hashes and user view keys. It

enables a user to generate a trapdoor from its view key and query the service for it to yield

the set of documents corresponding to the key.

In Section 4.5 we discussed the requirements and implications of leveraging a PEKS

scheme to tackle the partial BALANCE problem. However, in the current section, we

propose using it as a third party that yields transactions to any user regardless of sublinear

search requirements not being met.

Even with linear search times, the application of a PEKS scheme for our problem is

still useful. A third party can store the encrypted document collection and allow queries

over it to those in possession of trapdoors. This securely outsources the procedure and

12For ring signatures, outputs from the blockchain are used as decoys, this means that outputs could have
been spent, could be old, could be stale, etc. In our case decoys are formed by selecting index keys, which
are a user related piece of information, that does not depend on age nor spend status.
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moves the responsibility of the load-and-time-intensive scan from the user to a third party

that can optimize its resources for the task.

The compromise that a user makes in order to outsource the retrieval is giving away

a trapdoor, however, the trapdoor does not reveal information about the public view key

nor the transactions associated to it, therefore we consider the trade-off reasonable and

comparable to previous sections.

5.2.1. Procedure

Both the scheme and the procedure outlined in 4.5 remain the same for senders and

receivers. Namely, the sender must (a) create a transaction, (b) encrypt the PEKS docu-

ment, (c) generate the searchable keyword and (d) include the elements in the metadata,

whereas the receiver must (a) generate a trapdoor and (b) query the collection.

This way, our user Alice needs a new pair of keys suitable for the scheme, making the

public key available. Senders following the procedure will generate transactions with the

metadata for Alice and then Alice will generate trapdoors in order to query the third party,

that is populated with the metadata or document collection.

The entity that holds the document collection acts as the third party and in the previous

chapter the collection update responsibility relied on the miner, however, it is optional. In

a competing environment, multiple third parties could act as transaction yielders for this

scheme, therefore the are new requirements for miners.

If the miner needs to post new information to the third party transaction yielder, users

would need to signal in the transactions which third parties are to be notified13. However,

a more robust scheme dispenses the need of miners involvement altogether and allows

for the third party to search for transaction metadata in already mined transactions. This

13This implies including even more information in the metadata, which is not encouraged as it increases
transaction sizes which is mainly avoided by the community. Also this could leak innecessary information
to both the transaction yielder and the sender.
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implies storing it proactively instead of needing miners to signal, allowing a third party to

provide the service to any user at any time yet it implies high space requirements14.

By storing the document collection the third party only retrieves information spread

through the blockchain, and does not gain any extra information that was not already

available in the blockchain by posting the metadata. Therefore this collection has the

security characteristics we discussed in Section 4.5, but those are not affected in any way

by the goodwill of the thirdparty15.

5.2.2. Volatile wallets

One upside of using this approach, as with our indexing service, is the possibility for

users to leverage them in order to avoid performing time intensive scans in their devices.

Users can rely on those third parties and securely retrieve their transactions allowing them

to compute their balance quickly. With normal wallets, there is currently the possibility to

use third party nodes and even third party wallets. With the former our user Alice trusts

the node to give reliable information and to have secure up-to-date software when being

queried for information16. In the latter, Alice directly compromises her private view or

spend keys, making both approaches inadvisable.

With third party transaction yielders, wallets can communicate with them in order to

retrieve an encrypted collection of identifiers only giving away keyword trapdoors. Then,

Alice can use the retrieved set in order to obtain the decrypted transactions and compute

the balance locally and safely in her device.

14Storing proactively every transaction metadata would yield collections with size proportional to the
amount of transactions in the blockchain, however, the amount of data stored per transaction is small and
dependant of the encryption algorithm for both the document and keywords.
15If a user Bob does not use the service but transactions directed to him comply with the PEKS scheme
required metadata, he does not compromise information that was not compromised before the application of
this protocol modification proposal, even when metadata is stored by the third party.
16Bugs related to accessing third party nodes in which the node could obtain information about the user
querying have been fixed in the official implementation of the monero wallet (Tramèr, 2019; Moneromooo-
monero, 2019; Tramèr et al., 2020), however, by design, remote nodes require trust (Monero-Hax123, 2018;
Tramèr et al., 2020).
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Wallets implementing such an approach could be created without the need of storing

identifiers themselves or processing raw data obtained from nodes17, and be recreated in

various devices, without needing to perform scans in each of them. As with the indexing

service, our user Alice can decide whether to use or not the described services, but by

doing so she can take advantage of reduced time for balance computation.

17When using a remote node, users get the stream of transactions and analyze them in order to check if
directed to them. This means that even though the blockchain is not stored in the device, the processing of
each transaction happens in it.
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6. CONCLUSIONS

In this work, we provided different ways to speed up the balance computation in Mon-

ero without compromising crucial privacy elements nor funds integrity. The balance com-

putation in Monero is a time intensive operation as it requires complete blockchain scans

due to the obfuscated addresses used to conceal identities. Currently, users have to choose

between enduring the process and circumventing it by compromising their privacy which

deteriorates the user experience and weakens Monero’s main features. Our contribution

offers users the ability to obtain shorter balance computation times by introducing con-

solidation transactions and wallet implemented modifications to shorten the blockchain

scan.

We also provided schemes for indexing transactions. Enabling users to access indexes

of transactions allows them to compute the balance quicker, as the retrieval of incoming

transactions is not linear in the total amount of existing transactions. We analyzed dif-

ferent approaches for indexing and their implications in user privacy. Our most refined

indexing scheme achieved transaction retrieval in sublinear time, which enables the user

to obtain their balance quickly. Additionally, we provided a PEKS scheme adaptation

to the BALANCE problem in Monero, which in turn encourages further investigation in

that area. We expect that future investigation about PEKS schemes could allow sublinear

transaction search with our adaptation.

Finally, we described the application of the proposed indexing techniques in order to

create third parties that can offload the balance computation securely. We outlined an

indexing service that could serve transactions to any user enrolled, introducing indexing

keys that gave users the ability to revoke access if needed. This allowed wallets to rely

on third parties without compromising their private view keys in order to retrieve balance

faster. This, in turn, enables the user to have volatile wallets with less setup and less trust.
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We look forward to further study the implications of the decisions taken for building

the third party indexing services, such as the trustless implementation and the use of de-

coys. While there is ample evidence of how decoys perform in the obfuscation of senders

in Monero, we would like to investigate them in the context of indexing transactions. We

would also like to investigate the theoretical limits in the complexity of PEKS schemes.

Finding a sublinear PEKS scheme and applying it to Monero would open the possibilities

for implementations like ours with even faster computation times.
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A. SYNCHRONIZATION TIMES FOR MONERO BLOCKCHAIN SCANS

We provide the timing data to compare between bounded and unbounded blockchain

scans. While limiting the depth of a scan is already possible by means of providing a

block height, with consolidation transactions we provided a way of limiting the depth by

supplying wallets with a balance key, therefore the following experiments are useful for

both approaches, but explicitly show the statistics for our proposal.

A.1. Computer specifications

The following measurements were performed in a standard unmodified 13” Early 2015

MacBook Air with 8GB LPDDR3 1600MHz RAM, 128GB PCIe-based flash storage and

1.6GHz dual-core Intel Core i5-5250U(MacBook Air (13-inch, Early 2015) - Technical

Specifications, 2021), running Ubuntu 20.04.02 LTS. Tests were executed while connected

via ethernet to a 900Mb/s fiber optic internet service. The computer was connected at all

times to the Mac power adapter.

A.2. Syncronization times

The main focus of the proposal presented in Chapter 3, is to improve synchronization

times by avoiding full blockchain scans without compromising privacy. To help gauge

the magnitude of the problem, Table A.1 displays a list of syncronization attempts made

using the standard Monero CLI wallet connected to a local up-to-date full node1 using an

address and its keys, asking the wallet to synchronize from specific dates in the past.

We use our private keys as inputs for the CLI wallet in order to restore the required

information and compute the balance. Therefore, we are recreating a scenario where the

wallet does not have any information stored about the address, hence it needs to retrieve

1For mobile wallets this is not a likely scenario, access to a remote node would probably be required and
therefore introducing the querying latency into consideration. We do not consider that extra time in our tests.
This test can be considered as a best case scenario for the specified hardware.
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everything from the blockchain. We only limit the scan by providing a date, which is

translated by the CLI into a block height from which the scan begins.

We show the amount of days between the provided date and the date of the experiment,

the block height for the starting date and the current date, the time taken for the scan and

the speed in blocks per second in Table A.1.

Synchronized

days

Initial block

height

Final block

height

Number of

blocks

Time (s) Blocks per

second

2 2380459 2382787 2328 5.58 417.58

3 2379295 2382787 3492 8.78 397.86

7 2375805 2382787 6982 17.27 404.24

15 2371151 2382787 11636 29.41 395.69

30 2359516 2382787 23271 69.05 337.0

60 2338573 2382787 44214 138.86 318.41

180 2251312 2382787 131475 350.13 375.5

270 2187322 2382787 195465 468.99 416.78

365 2118677 2382787 264110 564.61 467.78

Table A.1. Synchronization times for wallet restauration with given initial
block heights.

As we can observe in the 30 day experiment, it takes more than a minute to synchronize

1 month of transactions.

It is important to note that in Monero the amount of new blocks added per month to

the blockchain does not fluctuate majorly. Using data from a block explorer2 we observe

that in the period between December 2019 and May 2021, the amount of blocks ranged

2This data is publicly available in https://localmonero.co/blocks/stats/transactions/
m/20 accessed on June 2021.
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from a minimum of 20187 to maximum of 22652 blocks, while not showing any evident

upward or downward trend, as shown in Figure A.1.
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Figure A.1. Blocks per month between December 2019 and May 2021

This behaviour is not an accident. By design, the mining difficulty set by the network

aims to achieve a time of 120 seconds in order to mine a block, and it adjusts automatically

to keep around that time. This means the amount of blocks per month has remained and

should remain around the 22000 mark3.

However, transactions do not follow the same rule. In the same period, the amount of

transactions –and consequently transactions per block– does vary significantly. In fact, it

presents an upward trend as shown in Figure A.2.

3One month has approximatedly 44000 minutes.
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Figure A.2. Average transactions per block for the months between De-
cember 2019 and May 2021

The above is relevant because Monero wallets require to scan every transaction, there-

fore the amount of blocks being added is not as relevant as the amount of transactions.

Thus, even when our experiments for time spent to synchronize yielded no significant up-

ward or downward trend4, the time spent synchronizing could vary significantly. Firstly

because the time spent could increase due to a growth in the amount of transactions, and

secondly because it could decrease due to improvements in the code required to process

every transaction.

4Our experiments yielded a weighted average of 413.25 blocks per second. The first 4 experiments gave
averages of around 400 blocks per second and it decreased for the 30, 60 and 180 days experiments, however,
it increased again in the 270 and 365 days experiments. We conclude it is not possible to determine with our
experiments an evident trend.
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