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Abstract

Cryptocurrencies are one of the most popular and valuable digital cur-

rency using as a medium for the financial transaction. There are several

cryptocurrencies such as Bitcoin, Ethereum, Ripple, Litecoin, etc. But

the main issue of those is the anonymity within a transaction. Consid-

ering Bitcoin, every transaction on the blockchain is broadcast publicly

and visible for all entities in the network, but the owner of each wallet

is unknown. Every transaction is bind with the owner’s public address.

If the owner’s public address reveals the transaction’s anonymity also

reveals. This is the term called pseudo-anonymity.Monero is a one of

a cryptocurrency found for the solution of the problem in anonymity.

Monero has a set of inbuilt privacy features than Bitcoin. Monero de-

velopers have ensured this privacy feature by addressing the main two

properties. Unlinkability and untraceability. But some researchers have

found some issues of Monero unlinkability and untraceability guarantees

by making some attacks for the Monero. But anyone hasn’t verified or

evaluate those attacks because for the Monero it has no optimized en-

vironment to analyze, explore or query the blockchain.

In this dissertation, has proposed an optimized environment to explore

and analyze the Monero blockchain called MoneroSci which perform

queries faster than existing tools and has verified the existing traceabil-

ity attacks conducted by the past researchers. And has extended the

attack to analyze the linkability guarantee in Monero. During the study,

it has evaluated the performance of MoneroSci Parser and Analysis Li-

brary. MoneroSci loads the whole blockchain data in 15 seconds for the

analysis. And it quantified the 87% of transactions are traceable based

on the attacks.

Keywords - Cryptocurrency, Monero, MoneroSci, Traceability, Linka-

bility, Blockchain, Analysis-platform
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Preface

An optimized environment to explore, analyze and query for the Monero

blockchain called MoneroSci has introduced in this dissertation. Mon-

eroSci is special because this is the only tool that can be used as an

analysis tool or forensic tool to the law enforcement duties for the Mon-

ero blockchain. On top of the MoneroSci, the dissertation has evaluated

the existing traceability attacks conducted by some researchers. And

also includes key findings of Monero linkability analysis using the ex-

isting research concepts, heuristics and own opinions of myself. This

linkability analysis is special because no one has addressed this scope in

Monero yet. MoneroSci includes three main models. MoneroSci parser,

Core Blockchain Data and MoneroSci Analysis Library. The develop-

ment of MoneroSci parser was solely my own work and has not been

proposed in any other study related to blockchain analysis platforms.

It developed as a multithreaded application which is operated function

parallelly to gain better performance. Core Blockchain Data and Mon-

eroSci Analysis Library are based on the concept of BlockSci which is

existing blockchain analysis platform. To implement the traceability at-

tacks in the existing research I have referred the algorithms researchers

mentioned and used to build those attacks.
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Chapter 1

Introduction

Nowadays cryptocurrency is one of the most popular digital asset designed to play

the role of exchanges. It uses strong cryptographical techniques such as encryp-

tion and decryption to secure the financial transaction. The major benefit of using

cryptocurrency is that there is no trusted third-party involvement to control you

within the transaction. When considering the cryptocurrencies Bitcoin, Ethereum,

Ripple, Litecoin, and Monero are the most popular and trending cryptocurrencies

in the digital market.

Monero is a leading privacy cryptocurrency using the digital market as well as

dark web markets due to its privacy features than the other coins. Due to that

reason, there were some cyber-attacks based on Monero payments. Here privacy is

an most important topic in digital cryptocurrencies. It is not a secret that, every-

one needs privacy because of neither organisations or individuals want to broadcast

their private data and identities onto a public blockchain which can easily access

by anyone without getting permission from them or without any restrictions. To

address this issue Monero developers have added inbuilt privacy features for the

Monero to support the private transactions. To ensure the inbuilt privacy features

developers have concerned about two main properties. Unlinkability and Untrace-

ability.

While Monero does the explaining and providing such privacy features in theo-

retically some researchers have focused on Monero privacy features in practically.

Based on their observations there are some issues in unlinkability and untraceability

properties in Monero. But the main problem of analyzing these unlinkability and

untraceability properties is there is no optimized environment to query the Monero

blockchain. Analyzing blockchain is not an easy task because blockchain includes

a set of blocks, transactions, inputs, and outputs which are more than 60GB size
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storage. Therefore, for the Monero, it should need to have an optimized tool for the

researchers or the interested parties to analyze the Monero blockchain to quantify

these privacy properties and reduce the issues in Monero. As well as it can be used

as a tool for law enforcement duties to track the attackers who doing malicious

works with the Monero.

1.1 Background to the Research

Cryptocurrency was born out of the need for secure communication between payer

and payee. There is no any third-party involvement for the transactions and no need

of trust-based model for each transaction. Cryptocurrencies allow fast, inexpensive

payments and from anyone to anywhere in the world. Nowadays there are more

than 1500 different types of cryptocurrencies in the digital market and most of the

coins are mainly used by people due to their features. Cryptocurrency term was

got popular after Satoshi Nakamoto’s Bitcoin white paper [1]. Because it has been

a successful implementation of the concept of peer to peer electronic cash system

and it has proposed a better solution to the double-spending problem in the digital

currency. Thereafter, bitcoin caught the market capital with more than USD 300B.

Now Bitcoin is the most popular decentralized cryptocurrency in the world. But

the most critical flaw in bitcoin is its lack of privacy as evidence of several analysis

in the past [2, 3, 4, 5].

Privacy and anonymity are very important facts in the uses of cryptocurrencies.

When considering the bitcoin, every transaction on the blockchain is broadcast

publicly and visible for all entities in the network, but the owner of each wallet

is unknown. Every transaction’s output is bind with the user’s public electronic

address. Tying these public addresses to real-world identities is now relatively easy,

because bitcoin user has to cash out somewhere, and that usually involves linking

bitcoin addresses to bank accounts. Because of that in bitcoin user’s identity de-

pends on their bitcoin transaction address. This is the reason of Bitcoin provides

pseudo anonymity to their users [6, 7].

Privacy in a transaction is more important to make sure that cryptocurrency is

fungible. Which means is all the coins are the same. With privacy, it’s hiding the

history of the coin. That is important for the scalability of the blockchain and every

person doesn’t want to use a currency that shows the history of all the transactions

ever done.
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In light of the privacy issues in Bitcoin, a new cryptocurrency called Monero (XMR)

was launched on April 18th 2014. Monero is a privacy-centric cryptocurrency which

allows users to make transactions without exposing the financial and private details

to the public. Nowadays Monero is a popular, trending and leading privacy coin

in the cryptocurrency market. Due to that, it has a market capitalization of USD

2.2B [8]. Monero Blockchain and transactions are working similarly as Bitcoin’s

peer to peer electronic cash network. But according to the Monero research lab

papers, there are more additional features in Monero which guarantee the privacy

in Monero more than Bitcoin.

In Monero, the main privacy ensuring methods is called “mix-ins”. Monero has

inbuilt mix-in mechanism. And also, Monero uses complex and new cryptographic

methods like Ring Signatures, Stealth Addresses, Ring Confidential Transactions

(RingCT) and KOVRI I2P protocol to ensure the privacy of their end users.

Ring signature is the method to make sure a transaction can’t be tied back to

a specific individual. First presented by D. Chaum and E. van Heyst [9]. This

method uses other transaction’s outputs as mix-ins to hide the actual input of the

transaction. This is the method that Monero uses for untraceability feature [10, 11].

Stealth address is the method using for transactions unlinkability. In stealth ad-

dresses, transactions are not directly coming to the user’s public address. It gener-

ates a one-time public address for each transaction. Ring confidential transaction

is the way of hiding the transaction’s amount. This feature was not obligatory at

the beginning of introducing in January 2017, but after September 2017 it is oblig-

atory for every Monero transaction. Therefore, Monero blockchain transactions can

seperate into two main transactions called, RingCT-transactions and non-RingCT

transactions. KOVRI I2P protocol provides the additional security layer in the

network layer. It hides internet traffic such as passive network monitoring by en-

crypting and route through the I2P nodes. These are very strong privacy features in

theoretically but practically Monero developer team have not proven these concepts

are robust to any attack develop by malicious attackers or other data miners.

For other cryptocurrencies such as Bitcoin, Litecoin, Namecoin etc. there are tools

to analyze the whole blockchain in quick. But Monero it doesn’t. More details about

the analysis tools are discussed in chapter two. Analysis of blockchain data is very

important and useful for both scientific and commercial purposes. Blockchains are
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very large and growing quickly. Therefore, it must need to have an optimized en-

vironment which can be used to analyze the blockchain data to find hidden data

patterns, find security and privacy threats, etc.

1.2 Research Problem and Research Questions

According to the Monero [12], they have provided strong privacy features to their

end users to protect the user’s privacy within the transactions. But, while Mon-

ero does the explaining and providing strong privacy features in theoretically, some

researchers have focused on Monero untraceability and unlinkability guarantee in

practically. From their research, they have observed some issues in unlinkability and

untraceability guarantees of Monero. Therefore, the main problem of the Monero

is that, does Monero really ensure unlinkability and untraceability privacy features

for their end users?

Another problem for Monero is, there is no optimized data analysis platform yet

to analyze the whole blockchain. When considering Bitcoin and some trending

cryptocurrencies like Litecoin, Namecoin, and Zcash there is a tool for expressive

analysis and explore the blockchain data called BlockSci [13]. In Monero, there

are some tools to retrieve Monero data from the blockchain via JSON readers, but

those tools do not perform well for analysis scenarios. The main limitation of the

BlockSci is, it is not supported for Monero due to the different structure of the

blockchain compared with the Bitcoin and others. Mainly, Monero doesn’t follow

the “one-input, one-output” paradigm. In other words, the transaction graph con-

tains an additional type of node, called the mix-ins. Analysis of blockchain data is

very important and useful for scientific researches and commercial applications to

find the gaps and improve the performance further comparing to the exists.

Considering this research problem, the generated research questions are as follows:

• Can verify proposed traceability attacks conducted by Amrit Kumar et al.

and Malte Möser et al. for Monero blockchain?

• Is there any optimized way to analyze the whole Monero blockchain?

• Develop a tool for exploring and analyzing linkability and traceability of Mon-

ero blockchain and transactions
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1.3 Research Aim and Objectives

The main aim of the research is to create an optimized environment to explore and

analyze the Monero blockchain called MoneroSci and quantify the unlinkability and

untraceability guarantee in Monero on top of it.

The objectives of the research are as follows:

• Find an optimized way to explore and analyze the Monero blockchain.

• Deploy MoneroSci tool as a forensic tool for law enforcement duties.

• Propose new techniques to quantify the efficacy of untraceability and unlink-

ability in Monero transactions.

• Create a tool called MoneroSci for Monero blockchain to explore, analyze and

trace the transactions’ traceability and linkability based on currently existing

attacks for Monero.

• Share research findings with the Monero development team and the general

community.

• Publishing a research paper based on “MoneroSci: Linkability and Traceabil-

ity Analysis of Monero Blockchain”.

1.4 Justification for the Research

Monero is a leading privacy coin in the cryptocurrency market with growing market

capitalization of USD 2.2 billion. Nowadays users are dropping Bitcoin due to their

lack of privacy features and moving to new privacy coins like Monero due to their

inbuilt privacy features.

But there are several attacks and criminal uses in Monero, because of its popu-

larity and privacy. Some of Monero attacks are “Monero mining malware targeting

Android users in the name of fake Google Play update”, “Cryptocurrency mining

botnet malware called Smominru”, “Monero mining malware on Jenkins servers”.

To date, these attacks have reportedly managed to mine more than 10,000 Monero,

or about USD 3 million. This is a considerable security threat and no one has

addressed yet to trace these attacks in Monero transactions.

In 2017 there had been three widely public scenarios of criminal activity involving
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Monero transactions. First, the popular darknet market called AlphaBay began

accepting Monero deposits in July 2016. In July 2017, US law enforcement raided

an AlphaBay server and seized 12,000 Monero (worth around $500,000) [14].

Second, the Shadow Brokers a notorious hacking group, from June 2017 onwards

offered to accept Monero payments for subscription access to zero-day vulnerabili-

ties and exploit tools. They have advised their hopeful subscribers to publish their

email addresses in the Monero blockchain, this leading to these transactions being

identified [15].

Third, WannaCry ransomware operators received Bitcoin ransomware payments,

to a common address. Then they have exchanged Bitcoin for Monero using the

Swiss exchange service ShapeShift due to the Bitcoin’s privacy issues. The Swiss

exchange subsequently announced their cooperation with US law enforcement and

began blacklisting Bitcoin ransoms. However, $36,922 have already been exchanged

for Monero [16].

If there is a way to link and trace the Monero transactions using an optimized

environment, it is possible to reduce the motivation of doing attacks like these. So

far, there is no any tool available to explore and analyze such crimes for Monero

which can use for law enforcement duties and studies about Monero blockchain for

researchers.
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1.5 Methodology

The main goal and significance of this research is to create an optimized environ-

ment to explore and analyze the Monero blockchain called MoneroSci and use this

tool as a forensic tool for law enforcement duties. Currently, there is no any tool

for Monero to explore and analyze the whole blockchain data at the same time of

increasing various types of cryptocurrency crimes. Figure 1.1 represents a high-level

diagram of the proposed research methodology.

Raw Blockchain Data

Core Blockchain Data

Evaluate MoneroSci Tool

Analyze Attack Results

Evaluation of Attacks

Parse data using MoneroSci parser

Data retrieve from Analysis Library

Develop attacks on top of MoneroSci

Attacks extend approach

Figure 1.1: Proposed research methodology

During the research, public Monero blockchain will be used as the data set of the

research. But it cannot directly use as the data set because of the on-disk format

of blockchains is highly inefficient. As the purpose of this research to create an
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optimized environment, there should be a way to explore and analyze the on-disk

formatted blockchain data in an efficient way.

To achieve this goal, the number of techniques will be used to optimize the speed of

access to Monero blockchain data. First, replace hash pointers with IDs to shrink

the data structure and optimize linkage. Reason for this is accessing these IDs are

never performance critical in scientific analysis instead of using hashes. Second, de-

duplicate public address/hashes data. This will be achieved using a data structure

called Bloom Filter. Bloom filter is a data structure designed to find, whether an

element is present in a memory or not in memory-efficiently. Therefore, bloom fil-

ter can be used to optimize the searching mechanism. Third, link stealth addresses

(outputs) to the ring members of input (mix-ins) that spend them in order.

In MoneroSci parsing is sequential. The blockchain must be processed sequentially

because it maintains an index for every element in the blockchain. Such as for

blocks, transactions, stealth-addresses, ring members and key images. The parser

is required to transform the raw blockchain into the MoneroSci analysis data format

(Core blockchain data). The parser will be developed as multi-threading applica-

tion which similar to the producer-consumer scenario. Parsing raw blockchain data

into MoneroSci analysis format is required only one time.

To analyze the transformed raw blockchain data (MoneroSci core blockchain data),

MoneroSci exposes a python wrapper interface (MoneroSci Analysis Library). Which

include several classes and methods for blocks, transactions, ring members and

stealth addresses to retrieve data from blockchain in an object-oriented way. The

analysis of Monero blockchain will be done in a statistical way to find how the Mon-

ero guarantees their unlinkability and untraceability features to their end users.

The evaluation of this methodology will be a quantitative approach as it focuses

on to verify the existing attacks on top of MoneroSci which used to quantify the

efficacy of Monero’s untraceability guarantee developed by Amrit Kumar, Shruti

Tople, Clément Fischer, Prateek Saxena from National University of Singapore [17]

and Malte Möser*, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat

Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and

Nicolas Christin [18] by using MoneroSci core blockchain data. It needs to imple-

ment a relevant algorithm for each existing attack on the MoneroSci exploring and

analyzing tool.
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MoneroSci analysis tool performance evaluation is focused on two ways. Perfor-

mance of the MoneroSci Parser and performance of MoneroSci Analysis Library.

Based on the results of untraceability attacks, new techniques for quantifying the

efficacy of unlinkability in Monero transactions has considered. This part is exper-

imental research of this research.

1.6 Outline of the Dissertation

The dissertation is structured as follows. Chapter two describes the theory based on

the CryptoNote protocol and the related works which are observed the vulnerabil-

ities in Monero blockchain. Chapter three elaborates the proposed research design

and methodology. The potential way of addressing the research problems of this

research is discussed in this chapter. Chapter four discusses the implementation de-

tails of the proposed research design and the methodology. Chapter five presents the

results and evaluation model of the proposed approaches. The last chapter, chapter

six discusses the conclusion of the thesis and outlines the future work which can

use for any researcher who interests and willing to extend this research.

1.7 Delimitations of Scope

1.7.1 In-Scope

The following will fall within the scope of the project in its current study:

• MoneroSci (exploring and analyzing tool) is developed for all types of coins

in CryptoNote cryptocurrency family.

• Up to April 6th 2018 (block height 1546000) public Monero blockchain data

chosen as the data set.

• Only Monero blockchain analysis will be considered in the current study.

• MoneroSci parser will be proposed for Monero current block-height.

• Existing traceability attacks conducted by Amrit Kumar et al. and Malte

Möser et al. will be considered for Monero blockchain.
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1.7.2 Out-Scope

The following will not be covered under this project in its current study:

• Monero mining pool analysis will not be covered in the current phase.

• MoneroSci will not be tested for all types of coins in CryptoNote cryptocur-

rency family.

1.8 Summary

Monero is one of a popular cryptocurrency uses for private transactions. People

need privacy because of neither organizations or individuals want to broadcast their

private financial transactions to the outside world. Nowadays Monero is the most

popular cryptocurrency for the malicious attackers due to its inbuilt privacy features

than comparing other cryptocurrencies such as Bitcoin and Ethereum. Therefore,

dark web markets like AlphaBay also now allowing the payments based on Monero.

Still, there is no optimized environment to analyze such thing and explore the

Monero blockchain efficient way. Considering the Monero inbuilt privacy features

practically, some researchers have observed issues in unlinkability and untraceability

guarantees. The research objectives mainly focus to develop optimized analyzing

environment called MoneroSci and quantify the unlinkability and untraceability

guarantee in Monero blockchain on top of it.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, fundamental concepts of Monero transaction, related works on Mon-

ero untraceability features and related works on blockchain analysis platforms are

provided. Section 2.2 focuses on the CryptoNote protocol which is Monero using

as its protocol, Section 2.3.1 focuses on the related works on Monero untraceabil-

ity features and Section 2.3.2 focuses on the related works on blockchain analysis

platforms. In section 2.4 focuses on the overall summary of the literature review

chapter.

2.2 CryptoNote 2.0 Protocol

Monero is a fork of the Bytecoin. Bytecoin is the first real-life implementation of

CryptoNote. Currently, Monero is running on CryptoNote 2.0 protocol. According

to the CryptoNote white paper [19], Monero is a solution to the main deficiencies of

Bitcoin. In Bitcoin, the most critical flaw is its lack of privacy. When considering

the blockchain technology, blockchain is a distributed database with the immutable

dataset. That means is data in the blockchain cannot be updated or deleted and

it only allows the data read and write. Due to that reason, the privacy issue is

occurred from data reading from the blockchain. In whitepaper of CryptoNote

[19], they have stated that how the Monero aims to address this privacy issue by

considering two properties. Firstly, Untraceability: for each incoming transaction,

all possible senders are equiprobable. Secondly, Unlinkability: for any two outgoing

transactions, it is impossible to prove they were sent to the same person. An

introduction to the Literature Review, this is the standard transaction sequence of

CryptoNote [19] transactions.
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1. Payer wants to send payment for the payee (know his Monero address), the

first payer unpacks payee address and gets payee public key (A, B).

2. Payer generate random r value and compute a one-time public key

P=Hs(rA)G + B.

3. Payer use P as a destination key for output and packs value R=rG somewhere

into the transaction.

4. Payer sends the transaction.

5. Payee checks every passing transaction with his private key (a,b) and com-

putes P’ = Hs(aR)G + B. If payee verifies that transaction belongs to him if

and only if P’ = P.

Figure 2.1: Standard transaction structure [19]

6. The payee can recover the corresponding one-time private key x=Hs(aR)G +

b, so P=xG. Here (a,b) are the private key pair of Payee. He can send this

output at any time by signing the transaction with x.

Hs: cryptographic hash function (A,B): payee’s public keys r: random value

P/P’: one time public key (a,b): payee’s private keys G: a base point
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Figure 2.2: Incoming transaction check [19]

2.3 Related Works

This section discusses the related works on Monero untraceability features and

blockchain analysis platforms.

2.3.1 Monero untraceability guarantee

Most of the researchers motivated by two prior works on privacy analysis of Mon-

ero: MRL-001 [20] and MRL-004 [21] research papers authored by Surae Noether*,

Sarang Noether and Adam Mackenzie and Monero Core Team [22]. This prior works

reported on the theoretical possibility of mounting the attacks for Monero. But the

research gap of this is the impact of the attacks in real-world scenarios. Reason

for this is, they have an only concern about these attacks in theoretically. In [20],

the researchers describe a plausible attack on a ring-signature based anonymity

system. But they have only considered an active attacker that must own coins

used in previous transactions. In [21], researchers have discussed a passive attack

scenario and provided a simulation analysis predicting that the mandatory 2-mixin

minimum (implemented in version 0.9) would “allow the system to recover from a

passive attack quite quickly”. Here also have the same research gap of they have

not measured the impact of the attacks in real-world scenarios.

Due to providing these research gaps from Monero research team and core de-

velopers, some researches have tried to fill this gap by quantifying the existing and

past threat on the blockchain data. They provide some attacks to show the risk of

using no mix-ins in practice, how often the risk may arise, how the impact evolved

the overtime and how far cascade effect can propagate.
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A Traceability Analysis of Monero’s Blockchain [17] research paper has

evaluated the deducibility attack in Monero to fill the above research gap. Au-

thors of this paper are Amrit Kumar, Shruti Tople, Clément Fischer, Prateek Sax-

ena from the National University of Singapore. In this research paper, they have

quantified the efficacy of three attacks on Monero’s untraceability guarantee, which

promises to make it hard to trace the origin of a received fund, by analyzing Monero

blockchain data. They have used publicly available Monero blockchain data from

the first transaction on April 18th 2014 up to the transaction on February 6th 2017

as the sample data set. In [17], researchers have developed three attacks routines

which gives statistically how much transactions are traceable. Their observations

are based on these three attacks.

Attack I: Leveraging Zero Mix-ins-

Attack I presence of inputs spent using zero mix-ins. According to their obser-

vations over 65% of data set inputs used zero mix-ins (anonymity set size of one)

and are trivially traceable. Overview of attack I routine is as follows,

Figure 2.3: Attack I: Cascade effect due to zero mix-ins [17]

Each transaction has only one input (left of the transaction) and one output (on

the right). The number of mix-ins used increases from left to right. Dashed lines

represent the input keys identified as a mix-in. Lines in bold are the real input

keys being spent. According to figure 2.3, from left to right mix-ins are cascade

for right side transactions. This cascade gives traceability of another 22% of the

inputs, leading to a total of 87.9% of traceable inputs.
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Attack II: Leveraging Output Merging-

Attack II functions under the assumption that while creating a transaction, it is

unlikely to choose several mix-ins that are outputs of a single previous transaction.

Based on this assumption researchers have stated that Attack II has an overall true

positive rate of 87% to identify the real key being spent in the transaction due to

merging output concept. Overview of attack II routine is as follows,

Figure 2.4: Attack II: Leveraging Output Merging [17]

Tx-a is a transaction with one input that uses one mix-in. It has two outputs O1

and O2. Tx-b is another transaction that has two inputs I1 and I2. Each input

again has one mix-in. Both I1 and I2 include outputs of Tx-a. According to Attack

II, the input keys O1 and O2 represented using the dashed line are the real keys

being spent in Tx-b.

Attack III: Temporal Analysis-

Attack III leverages the fact that an output does not remain unspent for an in-

finite time. This is very accurate and very often the most recent output is the real

one being spent. And also, they have shown user spending patterns do not follow

the expected (variant of) triangular distribution by this attack.

According to the [17], researchers have done works to evaluate the Monero’s un-

traceability guarantee. But the research gap of here is that they have not provided

any method or way to verify these statistical results obtained by three attacks for

any other researcher. There is no any tool or method to verify these numbers. And

also, there are some limitations in [17]. Some attacks they have not tested in the

second generation of Monero called Monero RingCT transactions [23]. And also

they have stated that Attack II can be used to break the unlinkability guarantee
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in Monero. But they have not focused on this because of the entire paper have

focused only on traceability analysis of Monero blockchain.

An Empirical Analysis of Traceability in the Monero Blockchain [18]

research paper empirically evaluates weaknesses in Monero’s mixin sampling strat-

egy to fill the research gap of evaluating theoretical attacks in real-world scenarios.

Authors of this paper are Malte Möser*, Kyle Soska, Ethan Heilman, Kevin Lee,

Henry Heffan, Shashvat Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller,

Arvind Narayanan, and Nicolas Christin. They have used Monero blockchain data

from the first transaction on April 18th 2014 up to the transaction on February 6th

2017 as the sample data set of the research.

In [18], researchers have stated that they have evaluated the two weaknesses in

Monero mixin sampling strategy. First, about 62% of transaction inputs with one

or more mixins are vulnerable to chain-reaction analysis. That means is the real

input being spent can be deduced by the mixin elimination. Second, Monero mixins

are sampled in such a way that they can be easily distinguished from the real coin

by their age distribution. That means the real input being spent is usually the

newest input. For evaluation of the weaknesses [18], researchers have implemented

a Neo4j graph database including data up to block 1288774. Based on that they

have built iterative algorithms to deduce the actual input being spent. In the latter

part of the research paper [18] they have addressed on after removing mining pool

activity, there remains a large amount of potentially privacy-sensitive transactions

that are affected for weaknesses. But the current phase of this research mining pool

activities are not considered. Research gap of this paper [18] if that, there is no any

method or way to verify the results they have obtained during the research. The

main limitation of this paper [18] is they considered only about Monero’s mix-in

sampling strategy.
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2.3.2 Blockchain Analysis Platforms

When considering a tools that can be used for analyze and explore the blockchain

technology, BlockSci is the currently best performing analyzing and exploring tool

support for the different blockchains. Such as Bitcoin, Litecoin, Namecoin, and

Zcash. BlockSci has developed at Princeton University and they have published a

paper including its processes and performance of the BlockSci.

BlockSci: Design and applications of a blockchain analysis platform

[13] paper describe the functionality of BlockSci. In [13] the main limitation of this

is BlockSci is unsupported for some blockchains. Such as Monero and Ethereum.

In [13] authors have stated the reason for it is Monero and Ethereum does not

follow “one-input one-output” paradigm. Monero uses mix-ins for its transaction

inputs. Therefore, Monero internal structure is different with comparing to the

other blockchains’ internal structures.

Figure 2.5: Overview of BlockSci’s architecture [13]

According to the paper [13], their architecture has four main sections. First, Record-

ing and importing data. BlockSci uses the publicly available blockchain data and

it importing data by connecting to the blockchain network. Second, Parser. The

parser converts all the raw blockchain data into well-structured way (core blockchain

data) which can use for analyze the blockchain. Third, Core blockchain data, these

are the output of the parser which is the primary dataset for analysis. Fourth,
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BlockSci Analysis Library. BlockSci Analysis Library loads this data as an in-

memory database, which the user can either query directly or through a Jupyter

notebook interface.

Considering other blockchain analysis tools, some are special purpose blockchain

analysis tools and some are databases that have used for blockchain analysis. Ru-

bin presents BTCSpark [24] which is a distributed blockchain analysis platform

based on Apache Spark, Bartoletti et al. present a Scala-based blockchain analysis

library [25] are some blockchain analysis tool and most of these tools are developed

for analysing the Bitcoin blockchain. In [18], Malte Möser et al. have used Neo4j

graph database which includes 1288774 blocks (11.5GB of data in total) to extract

the relevant information from Monero blockchain. But they have not mentioned the

accuracy, performance details of the method they have used during the research.

Onion Monero Blockchain Explorer [26] is a tool, most of the users use to explore

the Monero blockchain. But it is a JSON API based data exploring tool and it is

not supported for querying, filtering and analyzing the Monero blockchain data.

2.4 Summary

This chapter mainly focused on fundamental concepts of Monero transactions based

on CryptoNote 2.0 protocol, related works of Monero untraceability guarantee and

related works of blockchain analysis platforms. Following table describes the sum-

mary of related works including the main limitations and key findings of each re-

search.
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Table 2.1: Related works on traceability analysis of Mon-
ero blockchain

Title Main focus Limitations Key Findings

Traceability
Analysis of
Monero’s
Blockchain [17]

Traceability
Analysis

Not consider
about unlinkability
in Monero.

Attacks are not
verified.

No any implementation
details about
the attacks.

Attack I: Leveraging
Zero Mix-ins finds
that over 65% of
inputs have zero
mix-in.

Attack I total
traceable transaction
percentage as 89%.

Attack II: Leveraging
Output Merging finds
87% transactions are
traceable.

Attack III: Temporal
Analysis finds the
most recent output
is the real one
being spent.

An Empirical
Analysis of
Traceability in
the Monero
Blockchain [18]

Traceability
Analysis

Not consider
about unlinkability
in Monero.

Attacks are not
verified.

No any implementation
details about
the attacks.

62% of transaction
inputs with one or
more mix-ins are
vulnerable to
“chain reaction”
analysis

Monero mix-ins are
sampled in such a
way that they can be
easily distinguished
from the real coins
by their age distribution.
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Chapter 3

Design

3.1 Introduction

This chapter provides the design methodology of the research project. It contains

the main two designs. The first design is the MoneroSci tool which is an optimized

environment for exploring and analyzing the Monero blockchain. The second design

is the attacks for quantifying unlinkability and untraceability guarantee of Monero

blockchain.

3.2 Design of MoneroSci Analysis Tool

Analysis of blockchain data is a very important and useful thing for both scientific

and industrial applications. MoneroSci is the optimized analysis platform which go-

ing to develop within this study, can be used to analyze the CryptoNote 2.0 protocol

base cryptocurrencies such a Monero, Bytecoin. As discussed in the methodology

in chapter one, MoneroSci tool consists of three main components. Parser, Core

Blockchain data and Analysis Library. MoneroSci uses two routes to import data

from the raw blockchain and it uses the parser to convert the raw blockchain data

into well-structured data called as Core Blockchain Data. Then Core Blockchain

Data is exposed to the users by using a data interface called MoneroSci Analysis

Library. Figure 3.1 shows the designed high-level architecture diagram of the Mon-

eroSci tool within this study.
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Figure 3.1: MoneroSci high-level architecture diagram

3.2.1 Importing Data

There are two main routes for importing raw blockchain data into the MoneroSci.

MoneroSci is directly connected with the Monero Daemon which is the software

that ships with the Monero tree developed by Monero developers. Monero daemon

handles the Monero blockchain and gets new block data from the Monero peer to

peer network if new blocks exist. And also, Daemon will be working as a synchro-

nizer between MoneroSci data and Monero network data. The duty of the Monero

daemon is getting block data from the network and storing them in the lmdb data

storage in the secondary storage. Therefore, MoneroSci has the ability to get Mon-

ero blockchain data in both ways. Directly from the Monero daemon or load data

from previously stored lmdb files.

3.2.2 Parser

Reading blockchain data of on-disk format is highly inefficient. Therefore, it needs

a single representation of the raw blockchain data can easily fit into the memory.

The parser does is convert raw blockchain data into the well-structured dataset

called Core Blockchain Data. Considering the structure of MoneroSci parser figure

3.2 shows an overview of it.
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Raw Blockchain Data

Block Data

Core Blockchain Data

Load Sequential way

Store parallel way

Figure 3.2: Overview of MoneroSci parser in multithreaded environment

Parsing the raw blockchain data is sequential. The blockchain must be processed

sequentially because parser maintains the indexes and blockchain IDs such as block

id, transaction id, input id, key image id, ring member id, and output id. Reason

for the maintain the indexes and ids is indexes and ids are the main key point of

performance. Currently, Monero blockchain has more than 1.6 million blocks, 4.1

million transactions, 20 million inputs and outputs. Therefore, It is impossible to do

the process of the whole blockchain in a sequential way. Because of that MoneroSci

parser has developed as a multithreaded application with the bunch of optimization

techniques.

• Replace hash pointers with IDs to shrink the data structure and optimize

linkage.

• De-duplicate public keys and hash data.

• Apply bloom filter to optimize the searching elements in the blockchain.

• Create indexes for every element in the blockchain.

Figure 3.3 shows the execution flow of the MoneroSci parser. One thread loads the

blockchain elements on by one into the main memory and other threads store the

blockchain elements such as blocks, transactions, inputs, outputs, mix-ins in the

database when the conditions are satisfied.

The multithreaded parser works as a producer-consumer. One thread act as the

producer. It loads the raw blockchain data block by block from the daemon or lmdb
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Figure 3.3: Execution flow of MoneroSci parser

data file into the main memory. It checks the all transactions of the block, all the

inputs and outputs of each transaction in that block and ring members(mix-ins) of

each inputs for each transactions in that block. Raw blockchain data means hard

disk data. If that thread loads the sufficient dataset with the indexes and ids into

the memory it signals the other consumer threads in the server. Consumer threads

store the loaded blockchain data in relevant data stores inside the Core Blockchain

Data.
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3.2.3 Core Blockchain Data

The output of the MoneroSci parser is the Core Blockchain Data, which is the

dataset for the analysis of Monero blockchain. It contains three main data sections.

• ID-Hash mapping - stores all the public keys and hashes of blockchain

elements with separate unique ID. As an example, Hash of 110th block save

as key value pair. Key is the Hash. Value is the id generated by the parser.

{ ”Element HASH” : ”Generated ID”}

• Monero-Indexes - stores all the blockchain elements’ indexes. It includes

all the generated elements ids in the relational database. It helps to query

the blockchain element data in faster.

• Monero-Data - stores all the details of blockchain elements in the relational

database.

3.2.4 Analysis Library

The way of access Core Blockchain Data is using MoneroSci Analysis Library. It

contains a set of classes and methods for every element of the Monero blockchain

which can use for analyze and explore the Monero blockchain easily. It act as a

data interface for the out side. MoneroSci Analysis Library includes the following

main classes,

• Blockchain Class - contains blockchain analysis methods

• Block Class - contains block analysis methods

• Tx Class - contains transaction analysis methods

• Input Class - contains input analysis methods

• Output Class - contains output analysis methods

• Ring Class - contains rings(mix-ins) analysis methods
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Figure 3.4: Overview of MoneroSci Analysis Library

Blockchain class includes a set of methods and attributes for query the data con-

tains blockchain. It mainly includes general methods which applied for the whole

Monero blockchain. Block class contains a set of methods and attributes to query

the data of blocks in the blockchain. Tx class represents a transaction inside the

block. Input and Output classes represent inputs and outputs contain in the trans-

action and it also contains a set of methods and attributes to query the data of it.

Ring class is a special class which represents the mix-ins of the inputs. Analysis

Library contains some sort of methods which are made easier in analysis kinds of

stuff. For example, if someone wants to get transactions which are used more than

X value as transaction fee it can be done in one query. Therefore Analysis Library

exposes data retrieving and analyzing interface for the users.
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3.3 Designs of Unlinkability and Untraceability

Attacks

For quantifying the untraceability guarantee in Monero there are two main attacks

proposed by Amrit Kumar et al. Attack I: Leveraging Zero Mix-ins and Attack II:

Leveraging Output Merging [17].

3.3.1 Attack I: Leveraging Zero Mix-ins

This attack mainly looking for the traceability guarantee of non-RingCT transac-

tions in Monero blockchain. If a transaction uses zero mixin strategy that’s mean

in the transaction input it only includes actual inputs being spent, that transaction

is trivially traceable. And also, if that identified actual public key used for one

mixin strategy, that’s mean in the transaction input include two keys one as actual

key and one as a decoy, here actual key also traceable due to the cascade effect of

zero mixin to the one mixin strategy. Then one mixin identified keys are effect to

find actual keys in two mix-ins, two mix-ins identified keys are effect to find actual

keys in three mix-ins and so on. Finally, it finds set of traceable actual spent keys

due to this zero mixin strategy in non-RingCT transactions. Following algorithm

illustrate the design of attack I proposed in [17].

Algorithm: Heuristic I

n : the number of iterations
T : the maximum block height.
spentKeys = {}
# Each en t ry o f keysToAnalyze i s a l i s t o f keys .
keysToAnalyze = []

for height <= T do
# Ret r i e v e b l o c k wi th g i v en h e i g h t
block = getBlock(height)
# Ret r i e v e non−co inba se t r a n s a c t i o n s
transactions = getTransactions(block)
for tx in transactions do
# Ret r i e v e i npu t s in the t r an s a c t i o n
inputs = getInputs(tx)
for input in inputs do

# Ret r i e v e inpu t keys in t h i s inpu t
inKeys = getInputKeys(input)
# Add a l l keys as a l i s t
keysToAnalyze.add(inKeys)
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for n times or until spentKeys reaches stable point
for inKeys in keysToAnalyze do

# Store keys t h a t are note spen t .
untracedKeys = {}
for inKey in inKeys do
if inKey < spentKeys then
untracedKeys = untracedKeys + inKey

if | untracedKeys | = 1 then
spentKeys = spentKeys + untracedKeys
# Remove newly i d e n t i f i e d spen t key
# from each en t ry o f keysToAnalyze
keysToAnalyze.removeAll(untracedKeys)

# A s e t spentKeys o f spen t ou tpu t keys .
return spentKeys

3.3.2 Attack II: Leveraging Output Merging

Attack II runs under the heuristic of creating a new transaction it is unlikely to

choose more than one mix-ins (ring member) from a single previous transaction

which are outputs of it. In order to simplify the design, it defined two terms. One

is source transaction and second is destination transaction. Here destination trans-

action uses more than one output of source transaction as its input. Therefore to

find the source-destination transactions first, need to find all the outputs of the

Monero transactions on top of the MoneroSci. Then need to find what are the

inputs that these outputs act as ring members. In Monero output public keys and

input ring member, public keys are same. From that, it can find a set of transactions

these outputs use to spent or mix-in. Then can find what are the transactions used

more than two outputs of a single transaction outputs for its input ring. Following

algorithm illustrate the design of attack II proposed in [17].

Algorithm: Heuristic II

Data: T : the maximum block height to analyze.

candidateSets = {}
for height <= T do
block = getBlock(height)
# Ret r i e v e non−co inba se t r a n s a c t i o n s
transactions = getTransactions(block)
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for tx in transactions do
# Ret r i e v e ou t pu t s in the t r an s a c t i o n
outputKeys = getOutputKeys(tx)
# Invoke ana lyzeOutput ( , ) d e f i n e d be low
candidateSets = candidateSets +
analyzeOutput(height, outputKeys)

#A l i s t c and i d a t eS e t s o f l i n k e d i npu t s / ou t pu t s .
return candidateSets

def analyzeOutput(height1, outputKeys) as
candidateSets = {}
for height2 in [height1 + 1,T ] do
block = getBlock(height2)
# Ret r i e v e non−co inba se t r a n s a c t i o n s
transactions = getTransactions(block)
for tx in transactions do
nonEmptyIntersections = 0
candidateKeys = {}
for input of tx do

# Ret r i e v e inpu t keys in t h i s inpu t
inKeys = getInputKeys(input)
if inKeys and outputKeys , {} then

#add new cand ida t e keys
candidateKeys =
candidateKeys + (inKeys and outputKeys)

if 2 <= nonEmptyIntersections and
2 <= | candidateKeys | then
candidateSets.add(candidateKeys)

return candidateSets

3.3.3 Extend Attack II Design for Unlinkability

Based on the heuristic of Attack II, Attack II can extend for the quantify the

unlinkability guarantee of Monero blockchain. If one transaction uses more than

two outputs of a single previous transaction for its input ring members and observed

that those keys are the real ones being spent during the transaction, then those

outputs and inputs link the two transactions and they must belong to the same

Monero user. This attack generate two main link graphs for non-RingCT and

RingCT transactions. There after based on the graphs can do empirical analysis

about the unlinkability guarantee in Monero.
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Algorithm: Extended Heuristic II

Data: condidateSet #Candidate s e t r e tu rn from Attack I I
Data: ringctIdList #RingCT t r an s a c t i o n ID l i s t

ringct linkable set = dict()
nonringct linkable set = dict()

for set in condidateSet do
#Ret r i e v e cand ida t e s e t one by one
if set in ringctIdList then

#This i s a RingCT t r an s a c t i o n cand ida t e s e t
if set in ringct linkable set then

#Add cand ida t e s e t as RingCT
ringct linkable set[set] += condidateSet[set]

else:
ringct linkable set[set] = condidateSet[set]

else:
#This i s a non RingCT t r an s a c t i o n cand ida t e s e t
if set in nonringct linkable set then

#Add cand ida t e s e t as non RingCT
nonringct linkable set[set] += condidateSet[set]

else:
nonringct linkable set[set] = condidateSet[set]

#Two l i n k a b l e Graphs o f RingCT and non−RingCT Txes
return generateGraph(ringct linkable set),

generateGraph(nonringct linkable set)

def generateGraph(candidateSet) as
nodes = {}
relationships = {}

for set in candidateSet do
#Ret r i e v e key and va l u e s
nodes.add(set)
#load v a l u e s o f t he key
for value in candidateSet[set] do

relationships.add(set,value)

#I n i t i a l i z e graph i n s t anc e us ing nodes and r e l a t i o n s h i p s
graph = nx.Graph(nodes,relationships)

return graph
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Following figure illustrate the structure of generating linked transaction graphs us-

ing extended attack. Nodes(Tx) represents the transactions and edges(t) represents

the linkage between two transactions with timestamp as the weight of it.

Tx1

Tx2

Tx3

Tx4

Tx5 Tx6

Tx7

Tx8

t1

t2

t3

t4 t5

t6

t7

t8

Figure 3.5: Structure of the linked transaction graph

3.4 Summary

This chapter provided a detailed description on the research design. The research

design consists two main designs. First one is the design of the MoneroSci tool

which is an optimized environment to explore and analyze the Monero blockchain.

The second design consist set of attacks which can use to quantify the unlinkabil-

ity and untraceability guarantee in Monero blockchain. These attacks designs are

compatible to implement on top of the MoneroSci tool.
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Chapter 4

Implementation

4.1 Introduction

This section elaborates the implementation details of the proposed solution of opti-

mized environment to explore and analyze the Monero blockchain, implementation

of traceability attacks conducted by Amrit Kumar et al. [17] and implementa-

tion details of the extended attack to evaluate linkability guarantee of Monero

blockchain.

4.2 Software Tools

For the import Monero blockchain data to the parser, Monero Daemon uses for it.

Monero Daemon acts as the synchronizer between Monero peer to peer network and

the MoneroSci analysis tool. The proposed MoneroSci was implemented using C++

11 programming language, SQLite3 database management system and RocksDB an

embeddable persistent key-value storage. C++ 11 programming language was used

to develop whole the MoneroSci analysis tool including the MoneroSci parser and

MoneroSci Analysis Library. C++ Boost library was used to develop the python

interface of MoneroSci Analysis Library. C++ Boost library creates a shared library

for python called ”monerosci” which can import as a library in python to access

the MoneroSci Core Blockchain Data. RocksDB storage used to store the ID-Hash

mapping key-pair values in every element in the Blockchain as discussed in the

design chapter. Such as blocks, transactions, inputs, outputs, ring members and

last ids. SQLite3 was used to store all the data of the blockchain in a relational way.

It contains indexes databases and detail databases separately. Jupyter Notebook

uses to expose the analysis library for the end users. It compatible to works with

Python 2.x or 3.x versions.
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4.3 Implementation Details - MoneroSci Tool

As mentioned in chapter 3, MoneroSci tool consists of three main components.

MoneroSci parser, Core Blockchain Data and MoneroSci Analysis Library.

4.3.1 Parser

MoneroSci parser is a multithreaded application which connects with Monero Dae-

mon to retrieve the raw blockchain data from the Monero peer to peer network

or read the raw blockchain data from lmdb files. When running the parser, first it

checks the connection of Monero Daemon, if the daemon is not found parser proceed

ahead with the lmdb data storage. MoneroSci parser retrieves the raw blockchain

data as in JSON format by using C++ nlohmann::json structs. Following figures

illustrate the JSON format of block data, transaction data, output data and input

data retrieve from the Monero raw blockchain.

JSON format of block data:-

To retrieve the block data, it only requires the block height of block the block. To

retrieve the transaction data, it only requires the transaction hash of the transac-

tion.

32



JSON format of transaction data:-

Transaction dataset includes the details of key images (inputs), ring members (mix-

ins) and the stealth addresses (outputs).

JSON format of output data:-
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JSON format of input data:-

In the beginning, MoneroSci parser checks the number of cores available in the

server and divide workload among the cores by creating threads. To achieve this

task C++ threads are used. As discussed in design chapter, overall parser activity

is like as producer-consumer scenario.

The main thread went through all the blocks, transaction, inputs, outputs and

ring members and its loads the data into the buffers. MoneroSci parser maintains a

set of buffers to store the blocks, transactions, inputs, key images, stealth addresses

and ring members data in the memory. If the buffer filled with the relevant data,

main thread signals for the particular thread which is responsible for that buffer to

consume the data from the buffer and store the data inside the SQLite database

as batch insert mechanism. Each thread stores the ID-Hash mapping of each ele-

ment by giving a unique ID for each item. Those ID-Hash key-value pairs stored in

the persistent key-value storage called RocksDB developed by Facebook. Following

code segment illustrate the process of the main thread.
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1 void mainFunction ( page& monerosci , i n t s tar tBlock , i n t endBlock , u i n t 64 t
b l k he i gh t ) {

2 // load l a s t i d s to g l oba l v a r i a b l e s
3 ge tLa s t IdL i s t ( ) ; // load the l a s t b lockcha in i d s
4 t ime t Start , End ; // i n i t i a l i z e the s t a r t and end time

va r i a b l e s
5 time (& Star t ) ; // s e t s t a r t time
6

7 i n t x ;
8 //Load the data s e q u e n t i a l l y in to the memory
9 f o r ( x = sta r tB lock ; x <= endBlock ; x++){

10 xmrProcessor ( monerosci , t o s t r i n g (x ) ) ; // cur rent block .
11 cout << ”MoneroSci−par s e r has parsed b lockcha in data o f ”+
12 std : : t o s t r i n g (x )+ ”/” << b l k he i gh t << endl ;
13

14 //benchmark the performance a f t e r 1000 b locks completed
15 i f ( x%1000 == 0) {
16 time (& End) ;
17 double timeUsage = d i f f t im e (End , Star t ) ;
18 // t r a c e benchmarks
19 performanceAnalyser ( timeUsage ) ;
20 }
21 }
22

23 // s t o r e the l a s t id in rocksdb hash−id mapping
24 s t o r eLa s t I dL i s t ( ) ;
25 // c l o s e the bloom− f i l t e r r i ng member connect ion
26 ringMemberHashMap . c l o s e ( ) ;
27

28 // p r in t the p rog r e s s o f the par s e r
29 showCurrentStatus ( x ) ;
30 // p r in t the performance benchmarks o f the par s e r
31 pr intPer formance ( ) ;
32 // i nd i c a t e a l l the b locks are loaded to the memory f o r the

s l a v e s
33 i sAl lBlockDone = true ;
34 }

4.3.2 Core Blockchain Data

Core Blockchain Data is the output of the MoneroSci parser. It is the dataset of

MoneroSci which are used to analyze and query the Monero Blockchain. SQLite and

RocksDB hard disk data storages are used to store the parsed blockchain data. Core

Blockchain Data has three main data sections. ID-Hash mapping, Monero-indexes

and Monero-data.
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Figure 4.1: Structure of Core Blockchain Data

In above diagram, ”blockchain-xmr” is the root directory of Core Blockchain Data.

ID-Hash mapper contains a unique id for every element in the blockchain. Gener-

ating a unique id for every element is doing by MoneroSci parser. In the analysis,

MoneroSci Analysis Library first finds the id for a given hash or public key to reduce

the complexity of the query. That approach makes analysis much easier than using

long cryptographic hashes. The interface of the ID-hash mapper as follows,
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1 us ing namespace std ;
2

3 namespace hashmapper {
4

5 c l a s s idHashMapperDB{
6 // a t t r i b u t e s
7 s t r i n g homeDirName ;
8 s t r i n g subDirName ;
9 s t r i n g storeDirName ;

10 s t r i n g f i na lPa th ;
11 rocksdb : :DB∗ db ;
12 rocksdb : : Options opt ions ;
13 rocksdb : : Status s t a tu s ;
14

15 pub l i c :
16 // cons t ruc to r
17 idHashMapperDB( s t r i n g homePath , s t r i n g subDir , s t r i n g s t o r eD i r )

;
18

19 //methods
20 void insertKey ( s t r i n g key , s t r i n g value ) ;
21

22 s t r i n g getValueFromKey ( s t r i n g key ) ;
23

24 void deleteFromKey ( s t r i n g key ) ;
25

26 s t r i n g i sKeyExist ( s t r i n g key ) ;
27

28 void c l o s e ( ) ;
29 } ;
30 }

This contains set of methods to add new hash-id map, get value from hash, delete

key-value pair and check if the hash is already exist in the database. Considering

the monero-indexes and monero-data, SQLite database is used. It contains a set of

tables which are used to store the data separately. SQL queries of those tables as

follows,

1

2 // block d e t a i l t ab l e
3 char const ∗ b lockDeta i l sTab l e = ”CREATE TABLE IF NOT EXISTS BLOCKDATA

( DATA ID INT PRIMARY KEY NOT NULL,HEIGHT INT NOT NULL,HASH TEXT
NOT NULL, TIMESTAMP INT NOT NULL, TIMESTAMPUTC TEXT NOT NULL, SIZE
INT NOT NULL,TXCOUNT INT NOT NULL, NONCE INTEGER, PREV HASH TEXT,
NEXT HASH TEXT) ; ” ;

4 // block index tab l e
5 char const ∗blockIndexTable = ”CREATE TABLE IF NOT EXISTS BLOCK INDEX(

ID INT PRIMARY KEY NOT NULL,HASH ID INT NOT NULL,DATA ID INT NOT
NULL) ;CREATE INDEX blk index ON BLOCK INDEX (HASH ID) ; ” ;
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6

7 // s t ea l th−address t ab l e
8 char const ∗ saDeta i lTab le = ”CREATE TABLE IF NOT EXISTS SA DATA (

DATA ID INTEGER PRIMARY KEY NOT NULL,P KEY TEXT NOT NULL, AMOUNT
TEXT,AMOUNT INDEX TEXT,OUTPUT IDX TEXT,NUMOUTPUTS INTEGER) ; ” ;

9

10 // s t ea l th−address t ab l e
11 char const ∗ saIndexTable = ”CREATE TABLE IF NOT EXISTS SA INDEX (

DATA ID INT PRIMARY KEY NOT NULL,BLOCK ID INT NOT NULL,TX ID INT
NOT NULL, HASH ID INT NOT NULL) ;CREATE INDEX output index ON
SA INDEX (HASH ID) ; ” ;

12

13 // r ing−member d e t a i l t ab l e
14 char const ∗ rmDetai lTable = ”CREATE TABLE IF NOT EXISTS RMDATA (

DATA ID INTEGER PRIMARY KEY NOT NULL,P KEY TEXT NOT NULL,
MIX BLOCK HEIGHT INT , MIX IDX TEXT, TX HASH TEXT, MIX TIMESTAMP
TEXT, OUTPUT INDEX INT ,MIX AGE TEXT) ; ” ;

15

16 // r ing−members index tab l e
17 char const ∗ rmIndexTable = ”CREATE TABLE IF NOT EXISTS RM INDEX (

DATA ID INT PRIMARY KEY NOT NULL,BLOCK ID INT NOT NULL,TX ID INT
NOT NULL, KEY IMAGE INT NOT NULL,HASH ID INT NOT NULL) ;CREATE INDEX

input index ON RM INDEX (HASH ID) ; ” ;
18

19 // tx d e t a i l s t ab l e
20 char const ∗ txDeta i l sTab l e = ”CREATE TABLE IF NOT EXISTS TXDATA(

DATA ID INTEGER PRIMARY KEY NOT NULL, COIN BASE INT NOT NULL,HEIGHT
INT NOT NULL,HASH TEXT NOT NULL, CONFIRMATIONS INT , EXTRA TEXT,

INPUT COUNT INT NOT NULL, MIXIN INT , OUTPUTCOUNT INT NOT NULL,
PAYMENT ID TEXT, RCT TYPE INT , TX FEE TEXT,TX VERSION INT ,XMR INPUT
TEXT, XMROUTPUT TEXT, TIMESTAMP INT NOT NULL,TIMESTAMPUTC TEXT

NOT NULL, SIZE TEXT NOT NULL, IS RINGCT INT , TX PUB KEY TEXT,
TX PREFIX HASH TEXT) ; ” ;

21

22 // tx index tab l e
23 char const ∗ txIndexTable = ”CREATE TABLE IF NOT EXISTS TX INDEX (

DATA ID INT PRIMARY KEY NOT NULL,BLOCK ID INT NOT NULL,HASH ID INT
NOT NULL ) ;CREATE INDEX t ran sa c t i on i ndex ON TX INDEX (HASH ID) ; ” ;

24

25 char const ∗keyImageTable = ”CREATE TABLE IF NOT EXISTS KI DATA (
DATA ID INTEGER PRIMARY KEY NOT NULL,K HASH TEXT NOT NULL,BLOCK ID
INT NOT NULL,TX ID INT NOT NULL,INPUTAMOUNT TEXT, INPUT IDX TEXT,

MIXIN COUNT INT) ; ” ;
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4.3.3 Analysis Library

MoneroSci Analysis Library is a python interface for analyzing the CBD. C++

Boost mainly used to implement this library. It creates a shared library called ”mon-

erosci” which can import to python interpreters to analyze the Monero blockchain

data as discussed in design chapter. Analysis library contains six classes to access

the CBD.

Blockchain class interface -

1 c l a s s Blockchain {
2

3 pub l i c :
4 // Constructor
5 Blockchain ( std : : s t r i n g u r l ) ;
6

7 // Methods
8 i n t blockCount ( ) ;
9

10 i n t txCount ( ) ;
11

12 i n t keyImageCount ( ) ;
13

14 i n t k ey image range to ta l ( i n t fromBlock , i n t toBlock ) ;
15

16 boost : : python : : l i s t b locks ( ) ;
17

18 boost : : python : : l i s t range ( i n t from , i n t to ) ;
19

20 Tx tx with hash ( s t r i n g hash ) ;
21

22 Tx tx wi th index ( i n t index ) ;
23

24 boost : : python : : l i s t i nput s w i th mix in s ( i n t mix number ) ;
25

26 boost : : python : : l i s t a l l o u t pu t s ( i n t s tar tBlk , i n t endBlk ) ;
27

28 boost : : python : : d i c t output s w i th spent s ( i n t sBLock , i n t eBlock ) ;
29

30 boost : : python : : l i s t a l l i n p u t s ( i n t s tar tBlk , i n t endBlk ) ;
31

32 boost : : python : : l i s t a l l k ey image s ( i n t s tar tBlk , i n t endBlk ) ;
33

34 boost : : python : : l i s t a l l r ingCT ( i n t s tar tBlk , i n t endBlk ) ;
35

36 boost : : python : : d i c t a l l t x e s t ime s t amps ( i n t s tar tBlk , i n t endBlk ) ;
37

38 } ;
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Block class interface -

1 c l a s s Block{
2

3 pub l i c :
4 // a t t r i b u t e s
5 i n t he ight ;
6 s t r i n g hash ;
7 s t r i n g timestamp ;
8 s t r i n g timestamp utc ;
9 i n t s i z e ;

10 i n t tx count ;
11 i n t b lock index ;
12 i n t nonce ;
13 s t r i n g prev b lock hash ;
14 s t r i n g next b lock hash ;
15

16 // Constructor
17 Block ( ) ;
18 Block ( std : : map<s t r i ng , s t r i ng> blockData ) ;
19 Block ( i n t index ) ;
20 Block ( s t r i n g hashVal ) ;
21

22 // Methods
23 s t r i n g s t r ( ) ;
24 Block next b lock ( ) ;
25 Block prev b lock ( ) ;
26 boost : : python : : l i s t c o inba s e tx ( ) ;
27 long double f e e ( ) ;
28 boost : : python : : l i s t txe s ( ) ;
29

30 } ;

Tx class interface -

1 c l a s s Tx {
2

3 pub l i c :
4 // a t t r i b u t e s
5 bool i s c o i n b a s e ;
6 i n t b l o ck he i gh t ;
7 s t r i n g hash ;
8 i n t con f i rmat ion ;
9 s t r i n g ext ra ;

10 i n t input count ;
11 i n t mixins ;
12 bool i s r i n g c t ;
13 i n t output count ;
14 s t r i n g payment id ;
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15 double f e e ;
16 i n t v e r s i on ;
17 double xmr input ;
18 double xmr output ;
19 i n t timestamp ;
20 double s i z e ;
21 i n t tx index ;
22 s t r i n g p r e f i x ha sh ;
23 s t r i n g pub l i c key ;
24

25 // Constructor
26 Tx( ) ;
27 Tx( std : : map<s t r i ng , s t r i ng> txData ) ;
28 Tx( i n t index ) ;
29 Tx( s t r i n g hashVal ) ;
30

31 // Methods
32 s t r i n g s t r ( ) ;
33 boost : : python : : l i s t outputs ( ) ;
34 boost : : python : : l i s t inputs ( ) ;
35 Block blockObj ( ) ;
36

37 } ;

Input class interface -

1 c l a s s Input {
2

3 pub l i c :
4 // a t t r i b u t e s
5 i n t b lock index ;
6 s t r i n g pub l i c key ;
7 i n t tx index ;
8 i n t key image index ;
9 i n t mixin count ;

10 double amount ;
11

12 // Constructors
13 Input ( i n t key image id ) ;
14 Input ( std : : map<s t r i ng , s t r i ng> inputData ) ;
15 Input ( s t r i n g key image key ) ;
16

17 // Methods
18 s t r i n g s t r ( ) ;
19 boost : : python : : l i s t r i n g s ( ) ;
20 } ;
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Output class interface -

1 c l a s s Output{
2

3 pub l i c :
4 // a t t r i b u t e s
5 i n t b lock index ;
6 s t r i n g pub l i c key ;
7 double amount ;
8 i n t tx index ;
9 i n t output index ;

10 i n t output idx ;
11 s t r i n g rm key id ;
12

13 // Constructors
14 Output ( i n t r eq tx index , i n t r eq output index ) ;
15 Output ( std : : map <s t r i ng , s t r i ng> outputData ) ;
16

17 // Methods
18 s t r i n g s t r ( ) ;
19 boost : : python : : l i s t mix ing txes ( ) ;
20 void setRmKey( s t r i n g key ) ;
21 } ;

Ring class interface -

1 c l a s s Ring{
2

3 pub l i c :
4 // a t t r i b u t e s
5 s t r i n g pub l i c key ;
6 i n t b lock index ;
7 i n t tx index ;
8 i n t mix b lock index ;
9 s t r i n g mix tx hash ;

10 s t r i n g timestamp ;
11 i n t mix output index ;
12 s t r i n g mix age ;
13 i n t r i ng i ndex ;
14 i n t key image index ;
15 i n t r i n g da t a i d ;
16

17 // con s t ru c t o r s
18 Ring ( i n t k i i d , i n t rm id ) ;
19 Ring ( std : : map<s t r i ng , s t r i ng> rmData ) ;
20

21 // Methods
22 s t r i n g s t r ( ) ;
23 Tx o r i g i n t x ( ) ;
24 } ;
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All these classes defined inside the PYTHON MODULE method of C++ boost

library. Boost enables to create python data structures in C++. Therefore, library

methods can return data compatible with python environment.

4.4 Implementation Details - Traceability Attacks

As mentioned in chapter 3, there are two main attacks used to quantify the un-

traceability guarantee in Monero proposed by Amrit Kumar et al. [17].

4.4.1 Attack I: Leveraging Zero Mix-ins

Attack I has implemented using MoneroSci tool. This attack has two main phases.

The first phase is finding the percentage of zero mix-ins in the Monero blockchain.

The second phase is finding the cascade effect of zero mix-ins for the other mix-in

strategies which reveal the actual key being spent in the transaction. Finally get

the total of zero mixin percentage and percentage of cascade effect of zero mix-ins.

Following code, segment illustrate the way of finding zero mixin percentage using

MoneroSci analysis environment. Between block 1 to block 1240503.

1 import monerosci
2 from future import division
3

4 chain = monerosci.Blockchain("location to CBD")
5

6 mixin zero inputs = chain.inputs range mixins(0,1,1240503)
7 count mixin zero inputs = len(mixin zero inputs)
8 total inputs = chain.key image range total (1,1240503)
9

10 zero mixin percentage=(count mixin inputs ∗100)/
total inputs

11 print("Zero mixin percentage−%f" %zero mixin percentage)+"
%"

To calculate the cascade effect of zero mix-ins its need to get other mix-in inputs. In

[17], it only finds the results up to 10 mix-in inputs. Retrieve inputs which include

1 mixin to 10 mixin from MoneroSci as follows,
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1 import monerosci
2 chain = monerosci.Blockchain("location to CBD")
3

4 all inputs = []
5 for x in range(10):
6 mixin inputs = chain.inputs range mixins((x+1)

,1,1240503)
7 all inputs.insert(x,mixin inputs)
8 print str(x+1)+"−mixin input count−"+ str(len(

mixin inputs))

Implementation of finding the cascade effect of zero mix-ins to other mixin levels

as follows,

1 def find cascade effect mixins():
2 p = 1−5 loop number
3 #iteration of 1−10 mixin inputs
4 for x in range(len(not traceable inputs[p])):
5 current input set = not traceable inputs[p][x]
6 #print len(current input set)
7 current not traceable inputs = []
8 traceable count = 0
9

10 #selected mixin−value public−key iteration
11 for y in range(len(current input set)):
12 get all ring members = current input set[y].rings()
13 public keys = []
14

15 for z in range(len(get all ring members)):
16 current pub key = get all ring members[z].public key
17 if current pub key in traceable inputs:
18 public keys.insert(z, 1)
19 else:
20 public keys.insert(z, 0)
21 sum public keys = sum(public keys)
22 if sum public keys == (x+1):
23 spent key index = public keys.index(0)
24 traceable inputs
25 [get all ring members[spent key index].public key]=z
26 traceable count = traceable count + 1
27 else:
28 current not traceable inputs.append
29 (current input set[y])
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30

31 current loop not traceable set.insert
32 (x,current not traceable inputs)
33 traceable counts[x][p] = traceable count
34 current percentage = 0
35

36 if (p==0):
37 current percentage = (traceable count∗100/
38 len(not traceable inputs[0][x]))
39 overall percentage[x][p] = current percentage
40 else:
41 current percentage = overall percentage[x][p−1] +
42 (traceable count∗100/len(not traceable inputs[0][x]))
43 overall percentage[x][p] = current percentage
44

45 print "Traceable percentage for"+str(x+1)+"−mixin is−"
46 +str(current percentage)+"%"
47

48 not traceable inputs.insert((p+1),not traceable set)
49 return overall percentage

As shown in above, attack II loop 5 times to find the cascade effect of zero mix-ins

with other mix-in values. In each iteration it prints the traceability percentage in

each mix-in value.

4.4.2 Attack II: Leveraging Output Merging

Attack II functions under a heuristic of while creating a transaction, it is unlikely

to choose more than one mix-ins that are outputs of a single previous transaction.

The simple meaning of that is if there is a transaction used two or more outputs

of same previous transaction as its inputs, those inputs can not be act as mix-ins.

Therefore, the main objective of this attack is to find the set of transactions which

are connected with more than one output as inputs. To move forward with the

attack, it needs to retrieve all the outputs and inputs using MoneroSci.

1 def get inputs outputs():
2 all inputs = chain.all inputs(1,1240503)
3 all outputs = chain.all outputs(1,1240503)
4

5 return all inputs ,all outputs
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Here all the inputs and all the outputs have bind with the public key which can use

to link inputs and outputs together. Therefore, next step is for each output txes,

find txes which are used outputs of a particular tx as its input. From this method,

can construct a dictionary including output tx id as its key and list of used input

txes of each output as the value. After that can use Counter library to count the

number of inputs in the value section of the dictionary. After that can use this

dictionary to find inputs and outputs which linked more than once to obtained the

results of heuristic II.

1 from collections import Counter
2

3 def heuristic attack():
4 total txes = 0
5 source to destination = dict()
6 sourceTx to destinationTx = dict()
7 destination counts = dict()
8

9 for key in texes combination:
10 currentList = Counter(texes combination[key])
11

12 more than two destinations = 0
13 hasDestination = False
14 valid tx = []
15 current destinations = dict()
16

17 #check the inputs with Counter which has more than 2
18 for x in currentList:
19 if(currentList[x] >=2):
20 hasDestination = True
21 more than two destinations =
22 more than two destinations + 1
23 valid tx.append(x)
24 current destinations[x] = currentList[x]
25

26 #check output has a destination
27 if(hasDestination):
28 total txes = total txes + 1
29 destination counts[key] = current destinations
30

31 if(len(valid tx) > 0):
32 sourceTx to destinationTx[key] = valid tx
33

34 #calculate source and destination transaction counts
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35 if more than two destinations in
source to destination:

36 source to destination[more than two destinations
]=

37 source to destination[more than two destinations]+1
38 elif more than two destinations > 0:
39 source to destination[more than two destinations

]=1
40

41 #return dictionary of source and destination txes
42 #source as the key of the dictionary
43 #destinations list as the value of the dictionary
44 return source to destination

4.4.3 Extend Attack II for Unlinkability

Attack II is based on a heuristic which can use to analyze about the linkability

of two transactions in Monero. In the attack II it only concerned about to find

the real key being spent within the input transaction. But when thinking more

about this situation, attack II can extend to track transaction links. To do that,

extended attack used source and destination transaction dictionary as for it input

data. Then attack decomposed the source and destination dictionary into two main

datasets. One for RingCT transaction and another for non RingCT transactions.

Then attack generate separate graph data structures for both type to do analysis

on it. Due to large number of nodes and relationship it is hard to do it with normal

graph databases such as Neo4j. Therefore used Gephi graph tool and Networkx

python library to generate graphs via CSV files.

1 import csv
2

3 def generateGraphCSV(sourceTx to destinationTx):
4 nodes = []
5 relationships = []
6 current nodes = dict()
7 increment id = 0
8 nodes.append(["ID","Label"])
9 relationships.append(["Source","Target","Timestamp"])

10

11 for key in sourceTx to destinationTx:
12 current key id = 0
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13 current key = []
14 if key in current nodes:
15 current key id = current nodes[key]
16 else:
17 increment id += 1
18 current nodes[key] = increment id
19 current key id = increment id
20

21 #check if the tx is in RingCT
22 if key in ringct txes:
23 nodes.append([increment id , "RINGCT"])
24 else:
25 nodes.append([increment id , "NON−RINGCT"])
26

27 #get values of output tx
28 values = sourceTx to destinationTx[key]
29 for value in values:
30 current val id = 0
31

32 if value in current nodes:
33 current val id = current nodes[value]
34 else:
35 increment id += 1
36 current nodes[value] = increment id
37 current val id = increment id
38

39 #check if the tx is in RingCT
40 if key in ringct txes:
41 nodes.append([increment id , "RINGCT"])
42 else:
43 nodes.append([increment id , "NON−RINGCT"

])
44

45 #add current relationship
46 relationships.append([current key id ,

current val id ,txes timestamps[current key id]])
47

48 #generate CSV files
49 with open("nodes.csv", "wb") as f:
50 writer = csv.writer(f)
51 writer.writerows(nodes)
52

53 with open("edges timestamp.csv", "wb") as f:
54 writer = csv.writer(f)
55 writer.writerows(relationships)
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Based on the generated graphs by the extended attack can analyze the linkability

of Monero transactions. And can quantify how much of non-RingCT and RingCT

transaction can be linked by the extended attack. Also can identify patterns and

reactions of linked transactions over the time.

4.5 Summary

In this chapter, describes the implementation details of the optimized environment

to analyze and explore the Monero blockchain called MoneroSci and attacks for

quantifying untraceability and unlinkability guarantee of Monero blockchain. Im-

plementation of MoneroSci tool includes details of the main three components.

MoneroSci parser, Core Blockchain Data and MoneroSci Analysis Library with

details of software tools used and code segments. Evaluation model of this imple-

mentations will be described in Chapter 5. More details about the methods and

attributes of MoneroSci Analysis Library classes are attached in Appendix A, figure

A.1-A.9. It include the implemented documentation for the MoneroSci which can

use as a analysis tool for any of interest user.
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Chapter 5

Results and Evaluation

5.1 Introduction

This chapter describes how results are evaluated and the success level of the pro-

posed analysis tool and traceability and linkability attacks. As mentioned in the

research methodology, there are two phases of evaluations in this research. The first

phase is evaluating MoneroSci tool which is an optimized environment for exploring

and analyzing the Monero blockchain. The second evaluation phase is based on the

existing research untraceability attacks and its results presented by Amrit Kumar

et al. [17] for the Monero blockchain developed on top of MoneroSci.

5.2 Evaluation Model

5.2.1 Performance of MoneroSci Parser

MoneroSci parser uses to parse the whole Monero blockchain data into Core Blockchain

Data. Parsing the blockchain requires to be done only one time upon the configu-

ration of the MoneroSci. The parser has been configured and tested on 8 vCPUs,

52 GB memory VM instance in Google Cloud Platform. Here 8 vCPU means only

have 8 cores. This configured instance cost in GCP is $295.20 per month and $0.404

per hour. If it possible to increase the number of CPUs in the instance can increase

the performance of the parser. But it increases the cost of the instance too. In

the first stage of evaluation, it evaluates the performances of MoneroSci parser at-

tributes such as parsing speed(time), consumption of virtual memory, consumption

of physical memory and CPU utilization. For the moment, MoneroSci parser is the

only parser for the Monero blockchain. Therefore performance has been illustrated

as benchmark data.
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5.2.2 Performance of MoneroSci Analysis Library

To access the Core Blockchain Data it needs the MoneroSci Analysis Library im-

plemented using python and Boost. As mentioned in implementation section, Mon-

eroSci Analysis Library includes many of syntax to access the Monero blockchain

data. Such for access block data, transaction data, input data, output data and

mixin data. As the part of the evaluation it considered the access time and the

accuracy of retrieved data by MoneroSci Analysis Library. MoneroSci Analysis Li-

brary has been compared with the existing Monero data retrieving tool as part of

the evaluation. And also test cases have run to validate the data retrieve from

Analysis Library. Here access time means how much of time it required to retrieve

the whole blockchain data.

5.2.3 Monero Traceability and Linkability Guarantee

In the second phase of the evaluation, Existing untraceability attacks have been eval-

uated. Attack I and attack II in [17] have been developed on top of the MoneroSci

tool. Those attack results have compared and evaluated with past researcher’s re-

sults. Here attack I results have been used as the ground truth data for the attack

II because attack I and attack II both are developed to quantify the guarantee of

Monero traceability. All the results compared as the percentages. To evaluate the

attack II results accuracy, following terms are defined same as in [17].

• True positive (TP): An input creates a true positive if: Attack II identifies

a unique key as the one being spent in the input and, the key is the same as

the one identified by Attack I. The two attacks are hence in agreement with

the conclusion

• False positive (FP): An input creates a false positive if all the keys identified

as being spent by Attack II were actually found to be spent in a different.

• Unknown positive (UP): An input creates an unknown positive if at least

one of the keys identified by Attack II could not be identified as being spent

in any input (of any transaction) by Attack I. The uncertainty comes from

Attack I as it does not give ground truth for all inputs.

For the extended unlinkability attack for the Monero has been evaluated by gen-

erating a graph and this is the first study of research has been done for Monero

linkability. Non-RingCT transactions have been verified using the attack I ground

truth data.
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5.3 Results

5.3.1 Performance of MoneroSci Parser

MoneroSci parser connects with Monero daemon to retrieve the raw Monero blockchain

data into the local machine. Monero daemon stores blockchain data in the lmdb

data files inside the .bitmonero directory. Monero Daemon takes several hours to

download the blockchain data. Due to this reason initialization step is getting slow.

But this is a one-time requirement. Then MoneroSci parser connected with lmdb

file and parsed the raw blockchain data into the Core Blockchain Data. As men-

tioned in Evaluation model, MoneroSci parser has been configured in 8 vCPUs, 52

GB memory VM instance in Google Cloud Platform. It resulted in the runtime of

around 50 hours (182714 seconds) to complete the whole Monero blockchain (up to

1546000 blocks). Following figure illustrate the final outputs preview of the Mon-

eroSci parser.

Figure 5.1: Output of the MoneroSci parser

As results of the MoneroSci parser, it parsed entire history from the first transaction

on April 18th 2014 up to April 06th 2018 including 1,546,000 blocks, transactions,

key images, stealth addresses and ring members. Table 5.1 shows the details of

parsed blockchain data counts.
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Table 5.1: Parsed Blockchain Data Counts

Blockchain Data Count

Blocks 1,546,000

Transactions 4,181,134

Stealth Addresses (outputs) 27,017,571

Key-Images (Inputs) 23,222,077

Ring Members (mixins) 40,389,128

Parsing the blockchain needs to be done only one time upon installation. Parser

performance depends on the number of cores available in the server. While pars-

ing, MoneroSci parser able to track the performance it using. Observed MoneroSci

parser performance in consumption of physical memory, CPU utilization and speed

illustrate on following Table 5.2. These values illustrate that how much of perfor-

mance required when the parser parsing 100,000 of block ranges.

Table 5.2: Performance evaluation of MoneroSci Parser

Block Number
Physical Memory

Usage (Gega Byte)
CPU Utilization

(%)
Time

(seconds)

100,000 21.621 80.403991 10210

200,000 32.422 85.488091 21271

300,000 34.665 87.485082 28095

400,000 36.291 88.622890 33074

500,000 37.924 89.513443 37737

600,000 39.023 90.144637 41560

700,000 40.189 90.713677 45457

800,000 41.421 91.197647 49174

900,000 42.491 91.626652 52833

1,000,000 43.897 92.153302 57878

1,100,000 46.999 93.139972 69430

1,200,000 45.326 94.304827 88404

Continued on next page...
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Table 5.2: continued from previous page.

Block Number
Physical
Memory

Usage (Gega Byte)

CPU
Utilization

(%)

Time
(seconds)

1,300,000 47.750 95.044464 105300

1,400,000 50.699 96.021972 137297

1,500,000 50.740 96.700470 171386

Following figures illustrate the monitored performance of MoneroSci Parser using

above performance values.

Figure 5.2: Memory usage of MoneroSci Parser
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Figure 5.3: CPU Utilization of MoneroSci Parser

Figure 5.4: Block parsing time of MoneroSci Parser
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5.3.2 Performance of MoneroSci Analysis Library

Comparing the MoneroSci analysis tool with other existing Monero data explorers,

MoneroSci takes a very low amount of time to retrieve the whole blocks data from

the blockchain. Following Figure 5.5 and 5.6 illustrate the block access time of the

existing tool vs MoneroSci tool.

Figure 5.5: MoneroSci vs Onion Monero Blockchain Explorer block ranges access
time

Figure 5.6: MoneroSci vs Onion Monero Blockchain Explorer cumulative block
access time

Above diagrams show that existing Monero explore tool (Onion Monero Blockchain

Explorer) requires more than 400 seconds to retrieve 100,000 blocks in any block
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range. But every 100,000 block ranges MoneroSci tool only requires less than 2 sec-

onds to retrieve 100,000 blocks. Considering the overall access times, Onion Mon-

ero Blockchain Explorer needs 25604 seconds (around 7.1 hours) to retrieve whole

blockchain and MoneroSci only requires 15 seconds to retrieve whole blockchain.

In figure 5.5 clearly indicates that after 1 million blocks Onion Monero Blockchain

Explorer requires more than 1100 seconds to retrieve data than previously block

ranges. Main reason for this is Monero developers have maximized the block size

after 1009827 block to force the transaction minimum mix-in value as 3 (hard fork).

In data analyzing scenarios, loading blockchain data in faster way is very important

because blockchain contains a huge number of data. Therefore, analyzing tool needs

to perform very fast. Following Figure 5.7 illustrates the code segment and it result

of how the MoneroSci performs to retrieve all the blocks in Monero blockchain.

Figure 5.7: Retrieving all block data by MoneroSci

To validate the data of the MoneroSci Analysis Library it has been tested and

evaluated with Onion Monero Blockchain Explorer existing tool. Following are the

some of test cases used to compare and verify the reliability of blockchain data

between the two tools.
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Test Case I - Retrieving Block Data

Retrieving Block 110 data using Onion Monero Blockchain Explorer

Retrieving Block 110 data using MoneroSci

Test Case II - Retrieving Transaction Data

Retrieving Transaction with hash

”beb76a82ea17400cd6d7f595f70e1667d2018ed8f5a78d1ce07484222618c3cd” data us-

ing Onion Monero Blockchain Explorer
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Retrieving Transaction with hash

”beb76a82ea17400cd6d7f595f70e1667d2018ed8f5a78d1ce07484222618c3cd” data us-

ing MoneroSci

In above both test cases MoneroSci perform 100% accurately. MoneroSci retrieved

true data without retrieving false data for every test cases.

5.3.3 Monero Traceability with Mix-ins

In Monero, traceability is directly link with the mix-in strategy of the transactions.

Therefore how transactions used mix-in strategy has been evaluated using Mon-

eroSci tool. Figure 5.8 shows the how many transactions used each mix-in values

in Monero up to 10.

Figure 5.8: Monero mix-ins with frequencies
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Based on the above illustration, can construct cumulative frequency table for mix-

ins values in Monero blockchain.

Table 5.3: Monero mix-ins with cumulative frequencies

Mix-in Number Frequency (inputs)
Cumulative

Frequency (in %)

0 12209849 52.57

1 707788 55.62

2 4496449 74.98

3 1486633 81.39

4 3287350 95.54

5 322845 96.93

6 438574 98.82

7 22147 98.92

8 30385 99.05

9 18259 99.13

10 114672 99.62

From the above table of figure, can observed that first transaction on April 18th

2014 up to and including the last transaction on April 6th 2018, most of them are

used 0 to 10 mixin values. It means 99.62% of transactions used 0 to 10 mixin

values within the transaction. The main reason could be for it is the transaction

fee. If mixin value increases, it increase the transaction fee. And also more than

50% transactions are used 0 mixin which transactions are trivially traceable.

5.3.4 Traceability Attack I: Leveraging Zero Mix-ins

As mention in chapter 3 and chapter 4, existing traceability attacks conducted by

Amrit Kumar et al. [17] and Malte Möser et al. [18] have implemented on top of

the MoneroSci. In attack I, Amrit Kumar et al. have used the blockchain range

of 1 to 1240503. First transaction on April 18th 2014 up to and including the last

transaction on February 6th 2017. In [17], they mentioned that Monero blockchain

includes 65.9% of inputs do not use any mix-ins and trivially traceable. It has been

verified using MoneroSci by developing that statement on top of it.
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Figure 5.9: Results of finding zero mixin percentage

And later part of the attack I, they have mentioned zero mix-in cascades to trace-

ability of another 22% of the inputs, leading to a total of 87% of traceable inputs.

Therefore, the cascade effect of the zero mix-ins has been evaluated using Mon-

eroSci. Attack used 5 iterations(n) as they done in [17]. It gave the results as

follows,

Table 5.4: Attack I zero mixin cascade effect in percent-
age

Mixin Number
Percentage of traceable inputs in nth iteration (in %)

n = 1 n = 2 n = 3 n = 4 n = 5

1 82.11 87.03 87.58 87.65 87.66

2 45.67 56.72 58.51 58.80 58.85

3 58.75 67.51 68.82 69.04 69.08

4 42.17 50.37 51.90 52.18 52.23

5 42.33 48.35 49.26 49.38 49.41

6 43.31 50.46 51.58 51.76 51.79

7 30.16 35.77 36.79 36.96 37.01

Continued on next page...
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Table 5.4: continued from previous page.

Mixin Number
Percentage of traceable inputs in nth iteration (in %)

n = 1 n = 2 n = 3 n = 4 n = 5

8 27.26 35.00 36.52 36.83 36.90

9 26.61 33.86 35.31 35.64 35.72

10 19.79 25.43 26.53 26.7 26.76

Here can observed that after some iteration level traceable inputs almost reaches

a constant value. After first iteration (n=1) the number of traceable inputs of one

mix-in reaches the values as 82%. After fifth iteration (n=5) this percentage be-

comes 87% like Amrit Kumar et al observed. Above table shows that the cascade

effect for using high number mix-in value such as 10 also have a considerable per-

centage of traceable inputs. 27% after fifth iteration. End of the attack, observed

that almost 22% of inputs are traceable due to the cascade effect and it leading to

a total of 87% of traceable inputs.

5.3.5 Traceability Attack II: Leveraging Output Merging

As discussed in the implementation chapter this attack is based on a heuristic.

Based on that heuristic attack observed these results. It found 882,102 differ-

ent source transactions connects with one or more destination transactions. Here

881,079 source transactions were non-RingCT and 1023 transactions were RingCT.

Considering the non-RingCT transactions 75% of all source transactions have only

one destination. There were two transaction which had 147 destinations as the max-

imum number of destinations. Other source transaction destination counts varied

between 1 and 147. Following figure illustrate the source and destination counts of

transactions found by attack II.
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Figure 5.10: Result of employing Attack II on non-RingCTs

To evaluate the attack II, it used the results obtained by attack I that yield as

ground truth. As discussed in the evaluation model it calculated the true positive,

false positive and unknown positive rates of non-RingCT source transactions. The

calculated results shows attack II has an overall true positive rate of 74.6% and

0.83% rate as false positive. 22.2% of unknown positive rate.

Figure 5.11: Attack II: Overall observed percentage of TP, FP and UP
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5.3.6 Extend Attack II for Unlinkability

As discussed in design and implementation sections, this attack is based on the same

heuristic used for the attack II: leveraging output merging. This attack was extend

to the block height 1546000 which include first transaction on April 18th 2014 up

to and including the transaction on April 6th 2018. This attack has been generated

two main graphs. One for non-RingCT and one for RingCT. First considering the

non-RingCT transaction graph, it is a linked non-RingCT transaction graph with

1036758 nodes and 1921216 edges.

For the analysis of this graph, created a graph using NetworkX and plotted trans-

actions degree distribution. For the degree distribution it considered the in-degree,

out-degree and overall degree counts for each node.

Figure 5.12: Degree distribution of non-RingCT linked graph
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Considering the RingCT transaction graph, it is a linked RingCT transaction graph

with 89251 nodes and 123578 edges. The one of main observation here is, RingCT

transitions are the second level transactions which are now mandatory to use in

Monero transactions. But those transactions also give results to this attack by join-

ing with linked transaction graph.

For the analysis of this graph, created a graph using NetworkX and plotted trans-

actions degree distribution. For the degree distribution it considered the in-degree,

out-degree and overall degree counts for each node.

Figure 5.13: Degree distribution of RingCT linked graph

For the further analysis of this RingCT linked transaction graph, checked the link-

ability over the time. The time series used for the analysis are follows,
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• Time Series 1 - Tuesday, 31-Oct-17 00:00:00 UTC (1509408000)

• Time Series 2 - Thursday, 30-Nov-17 00:00:00 UTC (1512000000)

• Time Series 3 - Sunday, 31-Dec-17 00:00:00 UTC (1514678400)

• Time Series 4 - Wednesday, 31-Jan-18 00:00:00 UTC (1517356800)

• Time Series 5 - Wednesday, 28-Feb-18 00:00:00 UTC (1519776000)

• Time Series 6 - Saturday, 31-Mar-18 00:00:00 UTC (1522454400)

For the above time series, the attack has been generated sub linked transaction

graphs and analyzed the node-edges changes and degree distribution of nodes. From

these plots can be observed that over the time series linked transaction graph edges

and nodes count are getting increased and degree distribution is getting decreased.

Following figures 5.14 and 5.15 elaborate the results over the time series.

Figure 5.14: Number of nodes and edges in RingCT linked graph over the time.
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Figure 5.15: Degree distribution in RingCT linked graph over the time.

5.4 Summary

This chapter elaborated on the evaluation model of optimized environment for an-

alyzing and exploring the Monero blockchain called MoneroSci and traceability

attacks presented by Amrit Kumar et al. and Malte Möser et al. The results

obtained for the MoneroSci showed that the proposed tool performs well over the

existing tools. It only needs 15 seconds to load the whole blocks in the blockchain.

And MoneroSci verified the existing attack results conducted in [17] as 87% non-

RingCT transactions are traceable to attack I and 75% non-RingCT transactions are

traceable to attack II. Extended attack shows that both non-RingCT and RingCT

transactions can be linked using it and over the time linking nodes and edges are

getting increased.
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Chapter 6

Conclusions

6.1 Introduction

This chapter includes a conclusion about the research aims and objectives, research

problems, limitations of the current work and implications for further research.

6.2 Conclusions about research questions

(aims/objectives)

As discussed in research methodology and the design, the main aim of the re-

search was to create an optimized environment to explore and analyze the Monero

blockchain called MoneroSci and quantify the unlinkability and untraceability guar-

antee of Monero on top of it. Therefore, MoneroSci were introduced during this

study with set features can use to analyze and query the Monero blockchain faster

than existing data retrieving tools. As mentioned in Chapter 2, MoneroSci is the

only Monero blockchain analysis platform currently exists. Most of the Bitcoin re-

searchers use BlockSci [13] but the main limitation of it is it does not support for

the Monero due to the difference in blockchain structure. Introduced MoneroSci

analysis tool includes three main components to achieve the optimized environment.

MoneroSci Parser converts the raw blockchain data into the well-defined data struc-

ture by using several optimization techniques as discussed in chapter 3 and 4. Core

Blockchain Data is the store of blockchain data. MoneroSci Analysis Library is a

data interface which use Core Blockchain Data for the analysis queries. Analysis

library includes a set of classes and attributes which can use for analysis scenar-

ios such as for retrieving any of blockchain element data or query the blockchain

elements in easy. As shown in chapter 5, MoneroSci analysis tool achieved faster

performance than existing tools. It can loads the whole Monero blockchain in 15

seconds instead existing tool requires more than 7 hours. As defined two research
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questions of this study, Is there any optimized way to analyze the whole Monero

blockchain? and Develop a tool for exploring and analyzing linkability and trace-

ability of Monero blockchain and transactions? yes, MoneroSci is the proposed

solution for this. As one of the objectives of this study, MoneroSci tool is developed

as a free and open source tool and anyone can refer the source code and improve

the performance of it. Appendix A listed the documentation of MoneroSci and it

includes the how to configure the parser and analysis tool in any Linux server and

details of analysis library class methods which are useful for any of interest person

who willing to set up and learn about the MoneroSci. And also, MoneroSci tool

ready to deploy as a forensic tool for the law enforcement duties.

As mentioned in chapter 2, Monero untraceability attacks presented by Amrit Ku-

mar et al.[17] and Malte Möser et al.[18] are developed and verified on top of the

MoneroSci. It verifies the one of a research question, Can verify proposed traceabil-

ity attacks conducted by Amrit Kumar et al. and Malte Möser et al. for Monero

blockchain? in this study. MoneroSci gained results for the attack I: Leveraging zero

mix-ins as 87% of non-RingCT transactions were traceable due to the zero mix-ins

as observed in [17]. For the attack II: Leveraging output merging it gained results

as 75% of non-RingCT transactions traceable due to the heuristic. In attack II it

finds more transactions than the [17]. Then attack II has extended to analyze the

linkability of Monero transactions as one of an objective of this study. It concludes

that 1036758 non-RingCT transactions and 89251 RingCT transactions linked to-

gether. Thus, it can be concluded that the proposed MoneroSci analysis tool can

be used as an optimized environment for analyze the Monero blockchain and im-

plemented attacks can be used to quantify and analyze the Monero untraceability

and unlinkability guarantee.

6.3 Conclusions about research problem

This study introduced an optimized analysis environment for Monero blockchain

as a solution to the problem of the research. Based on the observations in chapter

5, MoneroSci performs faster than existing data retrieving tools. It only needs 15

seconds to load the whole Monero blockchain data into the memory and it has an

analysis interface with a set of methods and attributes. One of the main problems

for the Monero blockchain researchers and law enforcement parties was the lack of a

tool to analyze the blockchain. Therefore, it increases attacks and criminal uses in

Monero as discussed in chapter one. This study contributed to the domain of these
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situations by introducing MoneroSci Analysis Tool. The study also contributed

to the domain of Monero blockchain privacy by quantifying the unlinkability and

untraceability guarantees of it.

6.4 Limitations

During the research, it only used the publicly available Monero blockchain data

for the study and it not used any of user data bind with the malicious attacks to

reveals user identities. And also this study used fix height of Monero blockchain data

from block number 1 to block number 1546000 because public Monero blockchain

growing faster in every moment. And, in this study, it only considers the analysis

of blockchain data and mining pool analysis not been covered. Developed proposed

optimized environment, MoneroSci Analysis tool not tested for all types of coins in

CryptoNote cryptocurrency family.

6.5 Implications for further research

Considering the overall study of this research, there are main key points can be con-

sidered as future works. In the linkability analysis of Monero, the extended attack

resulted from a graph with linked transactions. It shows that Monero transactions

can be linked together to analyze the history of transactions. But it not linked

those transaction chains to a specific user public address. This can be considered

as future work of this study. How can we trace a user in pseudo-anonymously using

linked transactions? And also as discussed in chapter 2, BlockSci [13] is the one of

the popular and mostly using blockchain analysis platform among the researchers,

but it does not support for Monero. Therefore MoneroSci tool can be integrated

into the BlockSci as a new additional layer as a future work after done by some

research on compatibility. Through this research, it introduced MoneroSci analy-

sis tool which include the main three components. Here MoneroSci parser is the

key component because it deals with the raw blockchain data. Therefore improv-

ing performance in speed or memory consumption of MoneroSci parser also can be

considered as a future work of this study.
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Appendix A

MoneroSci Documentation

Figures A.1 - A.9 showcases the MoneroSci Documentation created including the all

the information about MoneroSci parser, Analysis Library and configuration steps

of it.

Figure A.1: Homepage of the MoneroSci documentation
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Figure A.2: Configuration details of MoneroSci parser in the documentation

Figure A.3: Configuration details of MoneroSci Analysis Library in the documen-
tation
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Figure A.4: Blockchain class of MoneroSci Analysis Library in the documentation

Figure A.5: Block class of MoneroSci Analysis Library in the documentation
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Figure A.6: Tx class of MoneroSci Analysis Library in the documentation

Figure A.7: Input class of MoneroSci Analysis Library in the documentation
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Figure A.8: Output class of MoneroSci Analysis Library in the documentation

Figure A.9: Ring class of MoneroSci Analysis Library in the documentation
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