
1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

1

MProve+: Privacy Enhancing Proof of Reserves
Protocol for Monero

Arijit Dutta, Suyash Bagad, and Saravanan Vijayakumaran

Abstract—Proof of reserves protocols enable cryptocurrency
exchanges to prove solvency, i.e. prove that they have enough
reserves to meet their liabilities towards their customers. MProve
(EuroS&PW, 2019) was the first proof of reserves protocol
for Monero which provided some privacy to the exchanges’
addresses. As the key images and the addresses are inherently
linked in the MProve proof, an observer could easily recognize
the exchange-owned address when a transaction spending from it
appears on the blockchain. This is detrimental for an exchange’s
privacy and becomes a natural reason for exchanges to not adopt
MProve. To this end, we propose MProve+, a Bulletproofs-
based (S&P, 2018) NIZK protocol, which unlinks the key images
and the addresses, thus alleviating the drawback of MProve.
Furthermore, MProve+ presents a promising alternative to
MProve due to an order of magnitude smaller proof sizes along
with practical proof generation and verification times.

Index Terms—Cryptocurrency, Monero, Proof of Reserves

I. INTRODUCTION

The business of a cryptocurrency exchange is primarily built
on buying coins from the miners and selling them to non-
miners. They also provide custodial wallets to their customers
which has a two-fold advantage to the customers. Firstly, by
means of these wallets, the customers can outsource to the
exchange the cumbersome task of keeping the secret keys safe
without them being stolen or forgotten. Using these wallets,
the customers can also trade various cryptocurrencies among
themselves. These trades are fast and efficient as they are
handled internally by the exchange instead of having to publish
them on the blockchain. In spite of the above advantages,
exchanges are risky for customers as they are prone to hacking
and exit scams [1]. This leads to a loss of customers’ money
and raises severe concerns. To alleviate customer concerns and
regain their trust, proof of reserves protocols are proposed for
cryptocurrency exchanges.

A proof of reserves protocol proves that an exchange is in
possession of a certain amount of cryptocurrency. For example,
in 2011, the Mt. Gox cryptocurrency exchange published a
transaction on the Bitcoin blockchain transferring 424,242
bitcoins from its wallets to a previously revealed Bitcoin
address [2]. This transaction might be considered as a proof
of reserves proving that Mt. Gox indeed possessed a certain
amount of bitcoins. In 2019, Blockstream released a tool for
Bitcoin exchanges which generates a transaction including all
unspent transaction outputs (UTXOs) of an exchange revealing
the total reserves amount [3]. It also includes an invalid input

Arijit Dutta and Saravanan Vijayakumaran are with the Depart-
ment of Electrical Engineering, Indian Institute of Technology Bombay.
Suyash Bagad is with Aztec protocol. Email ids: arijit.dutta@iitb.ac.in,
suyash@aztecprotocol.com, sarva@ee.iitb.ac.in

to make the transaction invalid. This is to prevent the exchange
reserves from being spent. However, these techniques reveal
the total reserves amount of the exchange and all the owned
Bitcoin addresses. This is crucial business information which
an exchange might not want to reveal.

To address the privacy concerns of exchanges, several
privacy preserving proof of reserves protocols have been
proposed. Decker et al. [4] proposed a protocol for Bitcoin
exchanges which only produces a binary output indicating
whether the exchange has more reserves of bitcoins than the
amount of bitcoins it has sold to its customers (also called the
total liabilities) or not. This is known as a proof of solvency.
Although the proposed protocol was privacy preserving, it is
based on a trusted platform module.

Dagher et al. [5] proposed a proof of solvency protocol for
Bitcoin exchanges called Provisions. It was the first scheme
which required no trusted setup and was based only on
cryptographic assumptions. The protocol has three stages. In
the first stage, a privacy preserving proof of reserves protocol
generates a Pedersen commitment Cres to the total reserves
amount of bitcoins (say ares). To generate Cres, an anonymity
set is used which contains all the exchange-owned Bitcoin
addresses and some cover addresses. Thus the protocol hides
the total reserves amount in a commitment and blends all the
exchange-owned Bitcoin addresses in an anonymity set. The
associated zero-knowledge proof proves that Cres is indeed a
commitment to the total reserves amount ares.

In the second stage, a protocol called proof of liabilities
generates a proof from which a Pedersen commitment Cliab
is generated. The commitment Cliab commits to the total
amount of bitcoins that the exchange has sold to its customers
(say aliab). Here for each customer, the exchange publishes
a commitment for each bit of the customer’s amount. It also
gives a proof that it knows the corresponding blinding factor
and that the committed value is either 0 or 1. These proofs
along with the fact that the number of such bit commitments
for a particular customer is no more than 51 verify that each
customer’s amount lies in the range {0, 1, . . . , 251 − 1}. Here
251 is a bound on the maximum number of bitcoins that could
exist. This range proof is necessary to show that the exchange
is not reducing its liabilities by using a very large number
which acts as a negative number in modular arithmetic.

By using some information provided by the exchange, a
customer can (a) secretly find out her entry in the list of
total liabilities, (b) verify that the commitment allotted to her
commits to the amount she paid to the exchange. She can
further verify the proofs associated with the bit commitments
of other customers to verify the range proofs corresponding

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

2

to their amounts. Multiplying the amount commitments of all
customers including hers, she computes Cliab. Computing Cliab
after checking the range proofs for each customer can also be
done by an auditor instead of any individual customer. Finally
to prove that the exchange is solvent, the exchange provides a
range proof to prove that CresC−1

liab commits* to a non-negative
number.

The proof of reserves protocol in Provisions [5] is specific
to Bitcoin. Motivated by the general structure of Provisions,
some proof of reserves protocols for other cryptocurrencies
have been proposed e.g. MProve [7] for Monero [8], Revelio
[9] for Mimblewimble [10] [11], and Nummatus [12] for
Quisquis [13]. All these protocols generate Cres i.e. a Pedersen
commitment to the total reserves amount without revealing the
exchange-owned addresses/accounts. This Pedersen commit-
ment Cres can be used with the proof of liabilities protocol
proposed by Provisions [5]. In Provisions’ proof of liabilities
protocol, if a customer fails to check whether her amount
is accounted in Cliab, the exchange could possibly omit that
amount, effectively reducing its liabilities. Recently, Chalkias
et al. [14] proposed a scheme called Distributed Auditing
Proofs of Liabilities (DAPOL) which addresses this concern.
The authors proposed to remove the limitation of Provisions’
proof of liabilities by using private information retrieval to
view the inclusion proof by the customers. All the above proof
of reserves protocols including MProve+ can work along with
DAPOL for proof of solvency. The commitment to the total
reserves can also be used in a range proof to show that the
total reserves of the exchange is more than a base amount
which can be estimated from the trade volume data published
by the exchange [15]. If exchanges publish proofs of reserves
periodically, loss of assets by an exchange can be detected
early.

Our contribution. MProve [7] is a proof of reserves proto-
col for Monero exchanges. When a Monero exchange spends
from a one-time address which was used in MProve, it is re-
vealed that the one-time address is the source of the transaction
and it belongs to the exchange. In particular, the transaction
becomes a zero-mixin† transaction. This is a significant privacy
limitation since it not only affects the exchange privacy but
also affects the privacy of other Monero transactions. If such
one-time addresses are used as cover addresses in the rings of
other transactions, it not only reduces the effective anonymity
of the source address in those transactions but could also lead
to traceability of other inputs via the cascade effect [16], [17].
The main contributions of this paper are as follows.

(i) We propose MProve+, which removes the above men-
tioned drawback of MProve using techniques from
Bulletproofs [18] and Omniring [6].

(ii) We give a detailed analysis of the security properties
of the MProve+ protocol and explain how it affects the

*In this paper we follow multiplicative notation to be consistent with
Omniring [6], which motivates our protocol.

†A zero-mixin transaction in Monero is a transaction which does not have
any decoy addresses in the ring. When a one-time address used in MProve
proofs is spent, it is explicitly revealed that the address is being spent and
other decoy addresses in the ring of the transaction become useless. Hence
the transaction is effectively a zero-mixin transaction.

privacy features of the Monero scheme.
(iii) We have implemented both MProve and MProve+ in

Rust and compared their performance. The simulations
show that MProve+ is practical to be adopted by
Monero exchanges.

The organization of the paper is as follows. Section II
discusses the preliminary concepts, the MProve protocol and
its drawback, and those aspects of Bulletproofs [18] and
Omniring [19] using which we constructed the MProve+
protocol. In Section III, we describe the construction of the
MProve+ protocol. In Section IV, we present the security
properties of the MProve+ protocol and discuss how it affects
the privacy features of Monero. Section V discusses the major
contributions of the paper. Section VI gives the performance
comparison of the MProve+ and MProve protocol. We draw
conclusions in Section VII.

II. BACKGROUND

A. Notation and Preliminary Concepts

In this paper, we consider a cyclic group G of prime order q
with generator G where the decisional Diffie Hellman (DDH)
problem is assumed to be hard. They are represented by the
tuple G = (G, q,G). All group elements are denoted by upper
case letters. All scalars in Zq are denoted by lower case letters.
As G is of prime order, every non-identity element of G is
a generator. Let H ∈ G be another random generator of G
such that the discrete logarithm relation between G and H
is not known i.e. x is not known where H = Gx . A Pedersen
commitment [20] C to an amount a is defined as GyHa, where
y ∈ Zq is a randomly sampled blinding factor.

Let Gn and Znq be the n-ary Cartesian products of sets G and
Zq respectively. Bold fonts denote vectors. Inner product of
two scalar vectors a, b ∈ Znq is defined as 〈a, b〉 B

∑n
i=1 ai ·bi

where a = (a1, . . . , an), b = (b1, . . . , bn). Hadamard and
Kronecker products are defined respectively as, a ◦ b B
(a1 ·b1, . . . , an ·bn) ∈ Znq , a ⊗ c B (a1c, . . . , anc) ∈ Znmq
where c ∈ Zmq . The concatenation of vectors a and b is
denoted as a‖b B (a1, . . . , an, b1, . . . , bn). For a base vector
G = (G1, . . . ,Gn) ∈ G

n, vector exponentiation is defined
as Ga B

∏n
i=1 Gai

i ∈ G. For a scalar u ∈ Zq \ {0},
we denote its consecutive powers in the form of a vector
un B (1, u, u2, . . . , un−1). We represent exponentiation of all
components of a vector a by the same scalar k ∈ Zq by
a◦k B (ak

1, a
k
2, . . . , a

k
n). Hadamard inverse of a vector is defined

as a◦−1 B (b1, b2, . . . , bn) where bi = a−1
i if ai , 0 and bi = 1

otherwise. If an element a is chosen uniformly from a set A,
such a choice is denoted by a $← A. For a positive integer N ,
[N] denotes the set {1, 2, . . . , N}.

B. Monero

Monero [8], based on the CryptoNote protocol [21], is a
privacy focused cryptocurrency. It preserves the privacy of the
receiver, the sender, and the amount in a transaction by means
of three techniques, namely, one-time addresses, linkable ring
signatures, and confidential transactions. In Monero, a user
who wishes to receive funds publishes a public key pair. For

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

3

example, let (Bvk, Bsk) ∈ G
2 be the public key pair of Bob.

The keys Bvk and Bsk are called the view public key and
spend public key respectively. The corresponding secret keys,
bvk, bsk ∈ Zq such that Bvk = Gbvk and Bsk = Gbsk , are called
the secret view key and secret spend key. Bob can share his
public view key Bvk and public spend key Bsk with anyone
who wants to pay him. Multiple one-time addresses can be
created using this public key pair.

Suppose in a Monero transaction txn, Alice wants to transfer
the coins associated with one of her own one-time addresses
to Bob. She creates a one-time address for Bob as follows.
First, she chooses a random scalar r from Zq and computes
the destination one-time address P′ = GHs (B

r
vk) ·Bsk, where

Hs : G 7→ Zq is a hash function which maps group
elements to scalars‡. Alice also computes the group element
R′ = Gr and includes it in txn. Subsequently, txn containing
(P′, R′) is added to the blockchain. For every (P, R) in every
transaction in the blockchain, Bob computes a group element
P′′ = GHs (R

bvk) ·Bsk. To compute P′′, only the knowledge of
secret view key bvk is required. For (P′, R′) in txn, P′′ will be
equal to P′ as,

P′′ = GHs (R
′bvk) ·Bsk = GHs (G

rbvk) ·Bsk = GHs (B
r
vk) ·Bsk = P′.

The above equality holds because Br
vk = Gbvkr = R′bvk . By

verifying the above equality Bob can identify P′ as his own
one-time address. The secret key x ′ of the one-time address
P′ is Hs(R′bvk) + bsk because,

P′ = GHs (B
r
vk) ·Bsk = GHs (R

′bvk) ·Gbsk = GHs (R
′bvk)+bsk .

So the knowledge of bvk is needed to identify that P′ belongs
to Bob. In this way, the fact that P′ belongs to Bob is hidden.

Let the source one-time address from which Alice pays Bob
in txn be P and x be its secret key i.e. P = Gx . Using a
linkable ring signature [22], Alice hides the fact that P is
the source of txn. Linkable ring signature is a cryptographic
primitive which forms a ring (collection) of one-time addresses
and proves that the signer knows the secret key of exactly
one address in the ring. For example, Alice forms the ring as
{P1, P2, . . . , P, . . . , Pn} and generates a linkable ring signature.
Here P1, P2, . . . are some one-time addresses taken from the
Monero blockchain. They basically serve as cover addresses to
hide the source of txn i.e. P. Linkable ring signatures further
generate a group element which is called the key image. It
is a deterministic function of the secret key (x in this case)
corresponding to the one-time address which is owned by the
signer of the linkable ring signature. The key image is defined
as I B Hp(P)x , where Hp is a hash function which generates
a group element. In Monero, group elements are elliptic curve
points, hence the subscript p is used. This key image I is used
to determine whether the actual source of txn i.e. P is already
spent or not. For this, the Monero blockchain maintains the
set of already appeared key images, say, I. If P is a spent
address, then I would have already been in I. This is because
to spend from P = Gx , a linkable ring signature has to be
signed with x which generates the same I. In such case, txn

‡We ignore the concatenation of output index while generating the one-
time address for the ease of representation.

would be rejected by the Monero network. The name linkable
ring signature comes from this linking feature of key images
which helps detect double spending.

Finally, using confidential transactions, the amount (a ∈
{0, 1, 2, . . . , 2β − 1}, β = 64) associated with P′ is hidden by
the Pedersen commitment C = GyHa where y $← Zq is called
the blinding factor. Bob needs to know a, y to verify txn and
spend from P′ in future. To communicate a and y, Alice stores
the following quantities in txn,

a′ = a ⊕ HK (HK (Br
vk)) (1)

y′ = y ⊕ HK (Br
vk), (2)

where HK is the Keccak hash function which maps group
elements to scalars. Only Bob can recover a and y from a′

and y′ as follows.

a = a′ ⊕ HK (HK (R′
bvk)) (3)

y = y′ ⊕ HK (R′
bvk). (4)

The above equations hold again because Br
vk = Gbvkr = R′bvk .

So knowledge of (R′, bvk) is needed to recover a, y from txn
whereas we need the knowledge of (bvk, bsk) to generate the
secret key x ′ of the one-time address P′ (R′ can be obtained
from the Monero blockchain using bvk as discussed above).
To spend from P′, Bob can sign a linkable ring signature with
x ′. The ability to generate x ′ implies the ability to generate
a, y.

From the above discussion it is clear that proving knowledge
of x such that P = Gx is enough to prove the ownership of
the one-time address P. More details on the above Monero
technologies can be found in [7], [23].

C. MProve and Its Drawback

The first proof of reserves protocol for Monero was pro-
posed and implemented by Stoffu Noether [24]. However, this
scheme reveals the exchange-owned one-time addresses, their
corresponding amounts, and the corresponding key images.
MProve [7] is a proof of reserves protocol for Monero
exchanges which provides some privacy by not revealing the
exchange-owned addresses, their corresponding amounts and
the total reserves amount. It generates a Pedersen commitment
Cres to the total reserves amount of a Monero exchange. It
also obfuscates all the exchange-owned one-time addresses by
publishing a larger anonymity set. We give a brief summary
of the MProve protocol below.

1) A summary of the MProve Protocol: In the MProve
protocol, the exchange creates an anonymity set of one-time
addresses i.e. Panon = {P1, P2, . . . , Pn} of which it knows
the secret keys corresponding to some addresses. Let Pown ⊂

Panon be the set of exchange-owned one-time addresses. For
each Pi ∈ Panon, the corresponding commitments to the
amount i.e. Ci = Gyi Hai can be read from the blockchain.
Apart from publishing a Pedersen commitment to the total
reserves i.e. Cres, the exchange also publishes a group element
C ′i for each Pi ∈ Panon such that the following equation holds.

Cres =

n∏
i=1

CiC ′−1
i . (5)

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

4

To satisfy equation (5), C ′i s should be constructed as

C ′i =

{
Gzi if Pi ∈ Pown

GziCi if Pi < Pown,
(6)

where zis are some randomly chosen scalars from Zq . So the
verifier of the proof will check the equality of equation (5)
with {Ci,C ′i }

n
i=1, and Cres published by the exchange. Now

one needs to ensure that the following statements hold.
S1. Set Pown does not contain any already spent one-time

address.
S2. The exchange indeed followed the definition given in

equation (6) while calculating C ′i s.
To ensure that the above statements hold, the exchange pub-
lishes the following.

1) n linkable ring signatures {σi}
n
i=1, verifiable by a pair

of group elements (Pi,C ′iC
−1
i).

2) n ring signatures {γi}ni=1, verifiable by a pair of group
elements (C ′i ,C

′
iC
−1
i).

A ring signature [25] scheme is a predecessor of linkable ring
signature scheme which does not have the key image feature.
For example, for some i ∈ [n], ring signature γi proves that the
exchange knows zi such that either C ′i = Gzi or C ′iC

−1
i = Gzi .

Linkable ring signature σi proves that the exchange knows xi
or zi such that Pi = Gxi or C ′iC

−1
i = Gzi . It additionally reveals

Ii which is equal to either Hp(Pi)
xi or Hp(C ′iC

−1
i)

zi . Notice
that when σi is generated using the secret key corresponding
to Pi , the key image of Pi is revealed. Any verifier can then
check whether Pi is spent or not by checking if Ii is an element
in the set of key images I from the Monero blockchain.

For Pi ∈ Pown, the exchange can generate σi using either the
secret key corresponding to Pi or C ′iC

−1
i . But if the exchange

chooses to use the secret key corresponding to C ′iC
−1
i , CiC ′−1

i
must be of the form G−zi for some zi . So for this particular
i, there will be zero contribution (no H term) of amount to
Cres owing to the equation (5). Therefore the exchange has
to generate σi using the secret key corresponding to Pi to
include ai in Cres. Then the key image of Pi i.e. Ii = Hp(Pi)

xi

is revealed. Any verifier can now check if Pi is already spent
or not i.e. Ii is an element in the set of key images I or not.
In this way the validity of statement S1 given above can be
verified. Both σis and γis are used to validate statement S2.
Therefore, ring signatures γis and linkable ring signatures σis
serve dual purposes. They validate both statements S1 and S2.
Also for i ∈ [n], they hide whether Pi ∈ Pown or Pi < Pown.

Drawback of MProve§: Suppose a Monero exchange Ex
uses an owned one-time address Pj to generate an MProve
proof. Then Ex has to publish the key image of Pj i.e. Ij in the
proof as a part of the linkable ring signature σj . Suppose at a
later point of time, Ex creates a transaction txn to spend from
Pj . In txn, Ex forms the ring of the linkable ring signature
containing Pj and some other cover one-time addresses to
obfuscate the source of txn. However in the linkable ring
signature of txn, Ij appears again. When txn appears in the
blockchain, an adversary can match Ij as a key image of txn

§The drawback of the MProve protocol is discussed in more detail in
Section IV.C.1.

and a part of the MProve proof published by Ex. Essentially
she comes to know of the following statements.

1) As Ij appearing in txn has already appeared in an Ex
generated MProve proof, Ex is spending in txn.

2) As Ij comes from σj which contains Pj as the only
valid one-time address in the ring, Pj is owned by Ex.

3) In txn, Pj is the source of the transaction.
All the three statements affect the privacy of the exchange.
However, the statements 2 and 3 are more crucial towards
the privacy of the exchange as well as the entire Monero
network because of the following reason. Pj is revealed as
exchange-owned and txn effectively becomes a zero-mixin
transaction. This increases traceability of transactions in the
Monero blockchain [16], [17]. To avoid the cascade effect, Pj

should be pruned from the set of UTXOs. The main reason
for this drawback is the association of Ij with Pj through
σj . MProve+ breaks this association using techniques from
Bulletproofs [18] and Omniring [19] which are discussed next.

D. Bulletproofs and Omniring

The current Monero implementation suffers from the fact
that the linkable ring signature size scales linearly with the size
of the ring. This is crucial because these signatures are part of
the transaction stored in the blockchain. As a consequence, it is
expensive to use a large ring size (higher transaction size costs
more transaction fees). Omniring [19] proposes a technique
where the proof of validity of the transaction is logarithmic in
the size of the ring. Omniring is motivated from Bulletproofs
[18] and does not require any trusted setup. Currently, for
Monero transactions with multiple sources, a separate ring is
chosen for each source one-time address. Omniring proposes
to use a single large ring for all source one-time addresses of
a transaction, hence the name.

Bulletproofs [18] gives a state-of-the-art range proof system
with logarithmic proof size. Here, given a Pedersen commit-
ment¶ C = GvHγ, a prover can prove that v ∈ {0, 1, . . . , N−1}
for some N = 2n ∈ Zq without revealing v. Currently,
Bulletproofs are used in a Monero transaction to prove that
all the output amounts in a transaction are in the right range.
In the following, we discuss some aspects of Bulletproofs and
Omniring that are relevant to us.

1) Range Proof Using Bulletproofs: In a range proof, a
prover needs to prove that v ∈ {0, 1, . . . , N − 1} for some
N = 2n ∈ Zq where the verifier only knows C which is equal to
GvHγ. To do so, v is represented in binary bits (say by binary
vector aL ∈ Z

n
2). The complement vector of aL , i.e. vector

1n − aL , is denoted by aR. The condition v ∈ {0, 1, . . . , N − 1}
is then equivalently represented by following three constraint
equations which use aL and aR.

〈aL, 2n〉 = v (7)
〈aL, aR ◦ yn〉 = 0 (8)

〈aL − 1n − aR, yn〉 = 0, (9)

¶In Monero, the amount is placed to the exponent of H and the blinding
factor is placed to the exponent of G. In case of Bulletproofs [18], it is the
opposite. However, this is just a difference in notation.

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

5

where the vector yn = (1, y, y2, . . . , yn−1) is constructed using
the consecutive powers of y $← Zq , a random challenge sent
by the verifier. Here equation (7) ensures that aL is the binary
representation of v, equation (8) ensures that the component-
wise product of aL with aR is always a zero vector, and
equation (9) ensures that aR is obtained by subtracting the
elements of aL from 1n vector. Both equations (8) and (9)
ensure that the elements of aL are either 0 or 1. Here the idea
is that if a polynomial evaluates to zero at a random evaluation
point chosen from a large set, then with high probability, the
polynomial is a zero polynomial. These constraint equations
are multiplied with powers of another random challenge
z $← Zq sent by the verifier and added to form a single inner
product as follows.

〈aL − z·1n, yn ◦ (aR + z·1n) + z2 ·2n〉 = z2 ·v + δ(y, z), (10)

where δ(y, z) is a function of y, z and can be calculated by
the verifier. Bulletproofs proposes an optimized inner product
proof with logarithmic proof size. However this inner product
proof is not zero-knowledge. As aL , aR are secret quantities,
this inner product proof cannot be applied directly to prove
equation (10). Thus the prover chooses two blinding vectors
sL, sR $← Znq and computes the following polynomials and
their inner product.

l(X) = aL − z·1n + sL ·X ∈ Znq[X]

r(X) = yn ◦ (aR + z·1n + sR ·X) + z2 ·2n ∈ Znq[X]

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 ∈ Zq[X],

where t0 = z2 ·v + δ(y, z). Then the prover and the verifier
engage in a zero-knowledge protocol. The prover sends a
commitment to aL , aR as A = HαGaL HaR , a commitment
to sL , sR as S = HρGsL HsR , and commitments to t1 and
t2 as T1 = Gt1 Hτ1 , T2 = Gt2 Hτ2 to the verifier where
α, ρ, τ1, τ2

$← Zq are random scalars and G,H $← Gn are
random base vectors. The verifier sends a random evaluation
point x $← Zq to the prover. Prover then evaluates l = l(x),
r = r(x), and t̂ = 〈l, r〉. Because of blinding vectors sL and
sR, the prover can use l, r in the inner product proof to prove
that t̂ = 〈l, r〉, without revealing aL and aR. Using C, A, S, T1,
T2, l, r, t̂, and other quantities sent by the prover, the verifier
verifies the following conditions.

i. t̂ ?
= t0 + t1x + t2x2.

ii. l ?
= aL−z·1n+sL ·x and r ?

= yn◦(aR+z·1n+sR ·x)+z2 ·2n.
iii. t̂ ?

= 〈l, r〉.
As x is chosen randomly, this is equivalent to checking
equation (10). However instead of sending l, r (size 2n)
directly, the prover uses the optimized inner product proof
of log2 n size to prove that t̂ = 〈l, r〉. Hence the range proof is
a logarithmic size range proof. Omniring and MProve+ follow
a similar idea as discussed above.

2) Omniring: For a single source transaction in Omniring
[19], we can prove the knowledge of the secret key correspond-
ing to one element in the ring P (represented by a vector)
by proving knowledge of a secret key (x ∈ Zq) and one
secret unit vector e such that Pe = Gx . The unit vector e
has zeros in n − 1 places and 1 in the location corresponding

to the source one-time address location in the ring. Therefore
e selects only the source address in the ring vector P. For a
multiple source transaction, separate unit vectors are needed.
The discrete logarithm relation can be alternatively represented
as

1g = G−xPe, (11)

where 1g is the identity element of the group G. The Omniring
authors called this equation the main equality. For a multiple
source transaction in Omniring, the secret vector is formed by
concatenating all the secret keys, unit vectors, output amounts,
and blinding factors. The constraint equations are formed to
ensure that the unit vectors contain zeros in all places except
a single 1 in the source address location, the output amounts
are in the right range, and the sum of input amounts is equal
to the sum of output amounts and transaction fees for the
transaction. The equations are added with blinding factors to
form a single inner product relation like Bulletproofs. Then
a technique similar to the Bulletproofs-based range proof is
followed except with the following difference.

Let us define the secret vector as a = (−x‖e). Then the main
equality (11) can be alternatively represented as

(G‖P)a = 1g . (12)

In the Bulletproofs-based range proof, to generate commitment
A to the secret vectors aL and aR, random base vectors
G and H are chosen by the prover. As they are randomly
generated, discrete logarithm relation between elements of the
base vectors are not known. This is necessary and used in the
extraction of the witnesses. In Omniring, from equation (12)
we observe that the base vectors to generate A must include
P to show that the main equality (11) holds. However, the
prover might know the discrete logarithm relation between
the elements of P especially when some of them are owned
by the prover. The authors mitigate this issue by replacing
the base vector G with Gw B ((G‖P)w ◦Q) where w, Q are
randomly chosen from Zq and Gn+1 respectively. They showed
that even if the discrete logarithm relation between elements
of P is known, it is computationally infeasible to compute a
discrete logarithm relation between elements of Gw . Further,
for w′ , w, it holds that Ga

w = Ga
w′ if the main equality

(11) holds. Recall that the same base G is used to generate
A and S in the Bulletproofs-based range proof. In Omniring,
G0 is used to generate A and Gw is used to generate S, where
w $← Zq is sent by the verifier after receiving A. The rest of
the protocol will work only if Ga

0 = Ga
w holds. In this way

the main equality (11) is implicitly verified. MProve+ follows
this technique.

III. MProve+ : AN IMPROVEMENT OVER MProve
In this section, we describe MProve+ which helps to remove

the drawback of MProve using the techniques of Bulletproofs
and Omniring.

A. Intuition

In both MProve and MProve+ schemes, a Monero ex-
change Ex reveals a list of one-time addresses Panon =

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

6

{P1, P2, . . . , Pn} as the anonymity set. Suppose in the set
Panon, Ex owns s one-time addresses which are to be used
as source addresses. In both our schemes, the key images
corresponding to the source addresses are published to show
that the source addresses are not spent yet. In the MProve
scheme, a key image (real or dummy) is published for each
one-time address in Panon. This is to hide if a particular
address in Panon is a source or not. However, this creates
the association of a key image with a unique address in the
anonymity set Panon and introduces the privacy issue discussed
in Section II.C.1. In the MProve+ scheme, we publish the key
images corresponding to only the source addresses in Panon,
without revealing the association between the key images and
their actual source addresses. An observer will be only able to
infer that each key image can be the key image of any address
in the set Panon. While this reveals the number of source
addresses s, the association of a key image with multiple one-
time addresses helps to remove the drawback of the MProve
scheme (as discussed in Section IV.C). Below we give an
overview of the MProve+ scheme.
• In the MProve+ scheme, Ex publishes a vector of one-

time addresses P = (P1, P2, . . . , Pn) which have Pedersen
commitments C = (C1,C2, . . . ,Cn) associated with them.
Ex also reveals a key image vector I = (I1, I2, . . . , Is) and
a Pedersen commitment Cres to the total reserves.

• First, Ex wants to prove that it knows the s secret keys
corresponding to some s of the n addresses in P. In
other words, it wants to prove that there are s distinct
indices {i1, i2, . . . , is} ⊂ {1, 2, . . . , n} such that it knows
{x1, x2, . . . , xs} where Pi j = Gx j for all j = 1, 2, . . . , s. Ex
does not want to reveal the indices.

• Second, Ex wants to prove that the key images I =
(I1, I2, . . . , Is) correspond to the same s indices. In other
words, Ij =

(
Hp(Pi j)

)x j

for j = 1, 2, . . . , s.
• Third, Ex wants to prove that for the same s indices

it knows|| the blinding factor rj ∈ Zq and the amount
aj ∈ {0, 1, . . . , 2β − 1} corresponding to the Pedersen
commitments Ci1,Ci2, . . . ,Cis .

• Finally, Ex wants to prove that the amount in Cres is
the same as the sum of the amounts in the Pedersen
commitments at the same s indices. In other words, if
Cres = Grres Hares and Ci j = Grj Ha j , then Ex wants to prove
that ares =

∑s
j=1 aj .

Note that the exchange is only trying to prove that Cres is
a commitment to a sum of amounts from addresses it owns.
To prove that it has enough reserves to meet its liabilities,
it has to generate another commitment Cliab to its liabilities
(using a protocol like DAPOL [14]) and show that CresC−1

liab is
a commitment to a non-negative amount (via a range proof).
To prove the above statements, Ex proceeds as follows.
• Ex proves knowledge of s secret keys, amounts, and

blinding factors by proving knowledge of s unit vectors
e1, e2, . . . , es , secret vectors x = (x1, x2, . . . , xs), a =

||To prove ownership, proving knowledge of the secret key is enough
(Section II.B). However, if we show the knowledge of the source amounts
and the blinding factors, then the commitment to the total reserves is more
efficiently computed giving better performance.

(a1, a2, . . . , as), and r = (r1, r2, . . . , rs) such that Pe j =

Gx j ∧Ce j = Grj Ha j holds for j = 1, 2, . . . , s. As discussed
in Section II.D.2, the jth unit vector ej is used to choose
the jth source address and its corresponding Pedersen
commitment in the vectors P and C respectively.

• As proving Ij =
(
Hp(Pi j)

)x j

is the same as proving

I
x−1
j

j = Hp(Pi j), Ex proves that the unit vectors e1, e2, . . . , es
and secret keys in the vector x = (x1, x2, . . . , xs) also

satisfy He j
p = I

x−1
j

j for all j = 1, 2, . . . , s, where Hp =(
Hp(P1),Hp(P2), . . . ,Hp(Pn)

)
is the vector of hashed one-

time addresses.
• Finally, Ex shows that ares =

∑s
j=1 aj by proving that there

exists a binary** vector b = (b0, b1, . . . , bβ−1) such that∑β−1
i=0 bi2i = ares ∧

∑β−1
i=0 bi2i =

∑s
j=1 aj holds.

All the above mentioned conditions for a proof of reserves
are accumulated in a main equality similar to Omniring [19].
All the elements in the exponents of the main equality form
the secret vector. To show that these elements of the secret
vector satisfy all the necessary conditions, some constraint
equations are formed. These equations collectively form a
single inner product relation. We use Bulletproofs to prove
that this inner product holds in zero-knowledge as discussed
in Section II.D.1. The main equality is also implicitly verified
during this inner product verification. This is similar to the
technique that Omniring uses and is discussed in Section
II.D.2. Below, we describe the MProve+ scheme in detail.

B. Construction of MProve+

The MProve+ protocol is constructed by modifying the
scheme given in Appendix F of the Omniring [19] paper.
Roughly speaking, a MProve+ proof is a giant Omniring
transaction with a single output commitment, namely, a com-
mitment to the total reserves. The differences between the
MProve+ protocol and the protocol given in Appendix F of
the Omniring paper [19] are as follows.

1) A one-time address is denoted as P = Hx in the
Omniring scheme. However it is denoted as P = Gx

in the MProve+ scheme.
2) A commitment is denoted as C = GaHr in the

Omniring scheme where a, r denote the amount and the
blinding factor respectively. However a commitment in
the MProve+ scheme is denoted by C = GrHa.

3) The number of outputs |τ | in the Omniring scheme
is 1 in the MProve+ scheme. Hence the binary vector
vec(B) of length β|τ | in cL is replaced by a binary
vector b of length β in the MProve+ scheme.

Below we give the language for the MProve+ protocol satis-
fying the requirements mentioned in Section III.A.

**This binary representation basically gives a range proof on ares and is
motivated from Omniring. In our case, ranges of a1, a2, . . . , as are already
verified in the blockchain. Therefore proving that ares is the sum of them
implicitly verifies its range. However it is observed that, using the binary
representation b instead of ares in the secret vector gives better performance.

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

7

Lcrs
MP+ =



(
P, C, Hp ,
{Ij}sj=1, Cres

)
���������������������

∃(x, e1, . . . , es, b, a, r, ares, rres)

such that each ej is a unit vector,
Pe j = Gx j , xj ∈ x,
Ce j = Grj Ha j , rj ∈ r, aj ∈ a,

He j
p = I

x−1
j

j ∀ j ∈ [s],
b is the binary representation
of ares of length β,
Cres = Gares Hrres ,∑
a j ∈a

aj = ares .


(13)

Here the common reference string crs specifies the necessary
details like description of the group, its generators, the hash
function Hp(·) to be used. We define (P,C,Hp, {Ij}sj=1,Cres)

as the statement stmt of the language. We also define
(x, e1, . . . , es, b, a, r, ares, rres) as the witness wit of the lan-
guage.

C. Forming the Main Equality

We define E as the s × n matrix containing e1, . . . , es as
the rows. We give the following definitions similar to the
definitions in Appendix F of the Omniring [19] paper. Here
u, v are public coin challenges sent by the verifier.

Ŷ B P ◦ C◦u ◦H◦u
2

p , (14)

Î B I◦−u
2vs , (15)

ê B vsE, (16)
ξ B −〈vs, u · a〉, (17)
η B −〈vs, x + u · r〉. (18)

The main equality is formed to verify the following repre-
sentations from the language given in (13).

G−x j Pe j = 1g, ∀ j ∈ [s], (19)
G−rj H−a j Ce j = 1g, ∀ j ∈ [s], (20)

I
−x−1

j

j He j
p = 1g, ∀ j ∈ [s], (21)

where 1g is the identity element of G. equations (19), (20),
and (21) represent s equations each. To combine all of them
together, we exponentiate the jth equation (j ∈ [s]) of (19),
(20), and (21) with v j−1, uv j−1, and u2v j−1 respectively.
Multiplying all these modified equations together gives us the
following equation.

HξGηŶêÎx
◦−1
= 1g . (22)

Equation (22) is called the main equality for MProve+.

D. Defining Secret Vectors and the Constraint Equations

Now we construct the secret vectors given in Figure 1. Here,
we essentially need to consider all the exponents in the main
equality (22). Additionally we need to consider vec(E) which
is a vector of length sn, formed by concatenating all the rows
of matrix E. Vector vec(E) is used to ensure that all the rows

of E are indeed unit vectors i.e. they contain a single 1 and
rest of the elements are 0. The vector cL has 2 scalars (ξ, η),
3 vectors (x◦−1, a, r) of length s, and 3 vectors (ê, vec(E), b)
of length n, sn, and β respectively. Hence the length of cL is
m = sn+n+3s+2+ β. Vector cR is an auxiliary vector of the
same length m used to prove the constraints on the witnesses.

Figure 2 gives some constraint vectors which are used to
select various parts of the secret vector and give a constraint
in terms of an inner product. All these inner product constraint
equations are given in Figure 4. Here equations (23) and (31)
verify that all elements of vec(E) and b are either 0 or 1.
equation (24) verifies that the (n + 2 + 1)th to (n + 2 + s)th
elements of cL and cR are inverses of each other. Equation (25)
verifies that b is the binary representation of ares. Equation (26)
verifies that each block of n elements of the vector vec(E)
contains a single 1 and the rest of the elements are 0 i.e. each
such block is a unit vector. Equations (27) and (28) verify
the definitions of ξ and η given in equations (17) and (18)
respectively. Equation (29) verifies the definition of ê given
in equation (16). Lastly, equation (30) verifies the equality∑β−1

i=0 bi2i =
∑s

j=1 aj . Notice that ares is not a member of

the secret vector and the verification Cres
?
= Grres Hares is not

done in the set of constraint equations. As we shall see, this
verification is done in the final verification equation (V3)
similar to the Omniring scheme.

cL B (ξ ‖ η ‖ ê ‖ x◦−1 ‖ vec(E) ‖ b ‖ a ‖ r)
cR B (02+n ‖ x ‖ 1sn − vec(E) ‖ 1β − b ‖ 02s)

Fig. 1: Honest encoding of witness.



v0
v1
v2
v3
v4
v5
v6
v7
v8
u5



B



· · · · ysn+β · ·

· · · ys · · · ·

· · · · · 2β · ·

· · · · ys ⊗ 1n · · ·

1 · · · · · uvs ·

· 1 · · · · · uvs

· · −yn · vs ⊗ yn · · ·

· · · · · 2β −1s ·

· · · · ysn+β · ·

· · · vs · · · ·


Fig. 2: Definitions of constraint vectors (Dots mean zero
vectors).

θ B v0 + z·v1, µ B
8∑
i=2

zi ·vi, ν = z8 ·v8, ω = z5 ·u5,

κ = z·〈1s, ys〉 + z3 ·〈1s, ys〉 + 〈1m, ν〉,

α = θ◦−1(ω + ν), β = θ◦−1 ◦ µ, δ = κ + 〈α, µ〉.

Fig. 3: Definitions of constraint vectors (continued).

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

8

EQ(γL, γR) = 0 ⇐⇒
〈γL, γR ◦ v0〉 = 0 (23)
〈γL, γR ◦ v1〉 = 〈1s, ys〉 (24)
〈γL, v2〉 = ares (25)
〈γL, v3〉 = 〈1s, ys〉 (26)
〈γL, v4〉 = 0 (27)
〈γL, v5〉 + 〈γR, u5〉 = 0 (28)
〈γL, v6〉 = 0 (29)
〈γL, v7〉 = 0 (30)
〈γL + γR − 1m, v8〉 = 0 (31)

Fig. 4: A system of constraint equations guaranteeing in-
tegrity of encoding of witness.

E. Combining All Constraint Equations in a Single Inner
Product

For a random scalar z ∈ Zq sent by the verifier, multiplying
equations (23) to (31) by consecutive powers of z namely
1, z, z2, . . . , z8 and adding them gives,

〈γL, γR ◦ θ + µ〉 + 〈ω + ν, γR〉 = κ + z2ares, (32)

where θ, ν, and κ are defined in Figure 3. To get a single inner
product, we modify (32) as follows,

〈γL, γR ◦ θ + µ〉 + 〈(ω + ν) ◦ θ
◦−1, γR ◦ θ + µ〉 (33)

= κ + 〈(ω + ν) ◦ θ◦−1, µ〉 + z2ares

=⇒ 〈γL + α, γR ◦ θ + µ〉 = δ + z2ares, (34)

where α and δ are defined in Figure 3.
In the following protocol, we prove the inner product given

in equation (34) using the Bulletproofs technique as discussed
in Section II.D.1. The main equality (22) is implicitly proved
using the technique followed in Omniring as discussed in
Section II.D.2.
MProve+ Protocol (ΠMProve+): Argument of knowledge for

Lcrs
MP+.

Setup (λ,L):

crs = (G, q,G,H,Hp(·)).
Generate: rres

$← Zq, ares =
∑

a j ∈a aj,Cres = Grres Hares,

b = (b0, b1, bβ−1), such that
∑β−1

k=0 bk2k = ares,P =
{Pj}

n
j=1,C = {Cj}

n
j=1,Hp = {HP(Pj)}

n
j=1, I = {Ij}

s
j=1 =

{Hp(Pj)
x j }s

j=1
Output: stmt = (P,C,Hp, I,Cres), wit =
(x, e1, . . . , es, b, a, r, ares, rres)

〈P(crs, stmt,wit),V(crs, stmt)〉 :

V: u, v $← Z, F $← G,Q $← G2+n+s,G′ $←
Gm−n−s−2,H $← Gm

V −→ P: u, v, F,Q,G′,H
P, V:

1) Compute Ŷ = P ◦ C◦u ◦H◦u
2

p and Î = I◦−u
2vs

2) For w ∈ Zq , denote
Gw B

[(
(H‖G‖Ŷ‖Î)◦w ◦Q

)
‖G′

]
(35)

P:
1) rA $← Zq

2) A B FrAGcL
0 HcR

Note: GcL
w = GcL

w′ ∀w,w′ ∈ Zq since

HξGηŶêÎx
◦−1
= 1g by the main equality (22).

Thus A = FrAGcL
w HcR ∀w ∈ Zq

P −→ V: A

V: w $← Zq

V −→ P: w

P:
1) rS $← Zq, sL $← Zmq , for sR ∈ Zmq s.t. for j ∈ [m]

sR[j] =

{
sj $← Zq, for cR[j] , 0
0, for cR[j] = 0

2) S = FrS GsL
w HsR

P −→ V: S

V: y, z $← Zq

V −→ P: y, z

P:
1) Define the following polynomials (in X):

l(X) B cL + α + sL · X ∈ Zmq [X]

r(X) B θ ◦ (cR + sR · X) + µ ∈ Zmq [X]

t(X) B 〈l(X), r(X)〉 = t2X2 + t1X + t0 ∈ ZNq [X]

for some t2, t1, t0 ∈ Zq . In particular,

t0 = z2ares + δ

2) τ1, τ2
$← Zq

3) T1 = Ht1Gτ1,T2 = Ht2Gτ2

P −→ V: T1,T2

V: x $← Zq

V −→ P: x

P:
1) l B l(x) = cL + α + sL · x ∈ Zmq
2) r B r(x) = θ ◦ (cR + sR · x) + µ ∈ Zmq
3) t̂ B 〈l, r〉 ∈ Zq

4) τ B z2rres + τ2x2 + τ1x

5) r B rA + rS x

P −→ V: l, r, t̂, τ, r

V: Checks if the following relations hold:

(V1) t̂ ?
= 〈l, r〉

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

9

(V2) FrGl
wHθ◦−1◦r ?

= ASxGα
wHβ

(V3) H t̂Gτ ?
= HδCz2

resT x
1 T x2

2

Verification equations (V1) and (V2) need l, r ∈ Zmq
which requires O(m) size communication from the prover.
Instead, we can use the inner product protocol which is used
in Bulletproofs [18] and Omniring [19]. The inner product
argument is expressed by the following language.

LIP =

{
P ∈ G, c ∈ Zq

����� ∃(a, b) such that
P = UcGaHb ∧ c = 〈a, b〉.

}
(36)

where a, b ∈ Z |a |q , G,H $← G |a |, U $← G. In our case, the
verifier sets c = t̂. Apart from the prover, the verifier can
also compute the Pedersen commitment P to l and r without
knowing l and r as

P = U t̂Gl
w(H

′)r = U t̂ (F)−r ASxGα
wHβ, (37)

by verification equation (V2), where H′ = Hθ◦−1
. With this, the

prover and the verifier engage in the inner product argument
to prove verification equations (V1) and (V2). So the prover
does not send l and r in the previous step reducing the com-
munication cost to O(log2(m)). The inner product argument
is public coin, so it can be non-interactively generated and
verified using the Fiat-Shamir heuristic. We have the following
theorems which come directly from Theorem F.2 and F.3 of
the Omniring paper [19], hence their proofs are omitted.

Theorem 1: The argument presented in ΠMProve+ is public-
coin, constant-round, perfectly complete and perfect special
honest-verifier zero-knowledge.

Theorem 2: Assuming the discrete logarithm assumption
holds over G, ΠMProve+ has computational witness-extended-
emulation for extracting a valid witness wit.

F. Proof Generation and Verification

The exchange follows the ΠMProve+ protocol and publishes
(P, I,Cres) and a ΠMProve+ proof. The verifier of ΠMProve+
protocol does the following verification steps.

1) Computes Hp using the hash function Hp(·). Reads C
by looking at the Monero blockchain and using P.

2) Checks that no element in I appears in the set of key
images I. If this is not the case then double spending
is detected.

3) Checks that all the elements in I are distinct. This is to
ensure that no source amount is used more than once
in calculating the total reserves.

4) Checks the proof of ΠMProve+ as discussed above.
5) Checks that no element in I appears in the MProve+

proofs generated by another Monero exchange. If this is
not the case then address sharing collusion is detected.

The verifier rejects the proof if any of the above steps fails.
Otherwise she accepts the proof. For faster verification, we
have done some optimization as discussed below.

Faster Verification: The cost of verifying an MProve+ proof
is largely determined by the verification of the argument
of knowledge ΠMProve+. A verifier checks the validity of
ΠMProve+ by checking the verification equation (V3) and the
inner product argument. As noted in [18], an inner product ar-
gument ΠIP =

({
Lj, Rj

}log2m

j=1 ∈ G, a, b ∈ Zq
)

for the language
in (36) can be verified in a single multi-exponentiation check
as

Ga ·s ·Ha ·s◦−1
·Ua ·b = P ·

log2m∏
j=1

L
x2
j

j · R
x−2
j

j . (38)

where s = {si}mi=1, si =
∏log2m

j=1 xb(i, j)j such that b(i, j) is 1
if the j-th bit of (i − 1) is 1, and −1 otherwise. Note that
s depends only on the challenges {xj}

log2m
j=1 . For the inner

product argument associated with ΠMProve+, substituting the
expression of P from (37), we get

Ga ·s
w ·H

b ·(θ◦s)◦−1
·Ua ·b =

(
U t̂ (F)−r ASxGα

wHβ
)
·

log2m∏
j=1

L
x2
j

j ·R
x−2
j

j .

Moving everything to the LHS, we get

Ga ·s−α
w ·Hb ·(θ◦s)◦−1−β ·Ua ·b−t̂ · (F)r ·

A−1 · S−x ·
log2m∏
j=1

L
−x2

j

j · R
−x−2

j

j = 1. (39)

Furthermore, we merge the verification equation (V3) in (39)
using a random scalar c← Zq .

Ga ·s−α
w ·Hb ·(θ◦s)◦−1−β ·Ua ·b−t̂ · (F)r · A−1 · S−x ·

log2m∏
j=1

L
−x2

j

j · R
−x−2

j

j ·

(
H t̂−δGτC−z

2

res T−x1 T−x
2

2

)c
= 1. (40)

Therefore, the verification of an MProve+ boils down to a
single multi-exponentiation check of size O(2m+2log2m+9).

IV. SECURITY PROPERTIES

The MProve+ protocol has the following security properties.

A. Inflation Resistance

We say that the MProve+ scheme is inflation resistant if no
probabilistic polynomial time (PPT) exchange can generate an
accepting MProve+ transcript committing to an amount a′res ,∑s

j=1 aj as the reserves amount. This is similar to proving
that in an Omniring transaction, the sum of inputs is equal to
the sum of outputs. Hence the inflation resistant property for
MProve+ follows directly from the balance property given in
Theorem 4.2 of the Omniring [19] paper.

B. Collusion Resistance

In the MProve+ protocol, for each owned address P, the
exchange has to publish a key image I such that the following
relation holds,

P = Gx ∧ I = (Hp(P))x, (41)

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

10

where x is the secret key corresponding to P. Note that for a
given P, the key image I in equation (41) is unique. Hence
if two PPT exchanges use a common one-time address as
a source address to generate reserves proofs, the key image
corresponding to that one-time address will appear in both
the reserves proofs. Thus a verifier can easily detect collusion
between exchanges. If we assume the exchanges are PPT,
then they can generate different key images for the same
source address only with a negligible probability. This follows
from the unforgeability of the argument of knowledge of the
MProve+ protocol.

C. Privacy

A privacy focused proof of reserves protocol should pre-
serve the privacy of the exchange which it enjoys in the under-
lying cryptocurrency. The protocol should not also violate the
privacy of the entire cryptocurrency network. In the following,
we describe how the publication of multiple MProve+ proofs
affects the privacy of the exchange as well as the entire Monero
network.
Explicit revelation of key images.

A fundamental requirement for a Monero proof of reserves
protocol is to show that the source addresses that are used in
the proof are not spent already. The simplest way to do it is to
reveal the key images corresponding to the source addresses.
Any verifier can then check whether the source addresses are
unspent by checking if the key images have appeared in the
set of already appeared key images I. The reserves proof
proposed by Stoffu Noether [24], MProve [7], and MProve+
follow this method. As we discuss below, the privacy of the
entire Monero network including the exchange gets affected
by this explicit revelation of key images of unspent source
addresses. To address this issue with the proof of reserves
protocols for Monero, a primitive called UnspentProof was
proposed by Koe et al. [23, Section 8.1.5]. UnspentProof
proves that a one-time address is not spent without revealing
the corresponding key images. In the extended version of the
paper [26], we discuss the difficulties in using UnspentProof in
a privacy focused proof of reserves protocol. We also discuss
the other challenges in hiding the key images corresponding
to the source addresses.
Privacy implications of publishing a polynomial number
of MProve+ proofs.

The MProve+ protocol publishes the key images of the
source addresses explicitly. Let f (λ) denote a polynomial of
the security parameter λ. Suppose a Monero exchange has
generated f (λ) MProve+ proofs with the anonymity sets and
the key image sets {P(i)} f (λ)

i=1 and {I(i)} f (λ)
i=1 respectively. Let

the corresponding cardinalities of those sets be {ni}
f (λ)
i=1 and

{si}
f (λ)
i=1 respectively.

Now let us consider the information revealed to a PPT
adversary who observes

{
P(i), I(i)

} f (λ)

i=1 together. First, consider
only the ith MProve+ proof. When (P(i), I(i)) is revealed
together, then it is revealed is that any key image in I(i)

Fig. 5: Illustration of Example 1.

could have originated†† from any one-time address in P(i).
This information can be represented by a complete bipartite
graph‡‡ with the disjoint sets of vertices (P(i), I(i)) and the
edge set P(i) × I(i). Here an edge between a one-time address
P ∈ P(i) and a key image I ∈ I(i) denotes that I could have
originated from P.

Now consider the case when f (λ) MProve+ proofs are
published and

{
P(i), I(i)

} f (λ)

i=1 are revealed. The information in
the individual bipartite graphs can be combined to identify
the set of one-time addresses which could have originated a
particular key image. For a key image I ∈ {I(i)} f (λ)

i=1 , let Porig(I)
denote the set of one-time addresses of minimal cardinality
which could have originated I, from the perspective of a PPT
adversary which has access to the Monero blockchain and the
MProve+ proofs. We call Porig(I) the originating set for I.
Suppose I has appeared in j1th, j2th,. . ., jr th proofs among
the overall f (λ) MProve+ proofs. Then it is obvious that,

Porig(I) ⊂
r⋂

k=1
P(jk). (42)

Consider the following example.
Example 1: Suppose the adversary observes three MProve+

proofs. The anonymity sets and the key image sets are as
follows.

P(1) = {P1, P2}, I(1) = {I1},

P(2) = {P1, P2}, I(2) = {I2},

P(3) = {P1, P2, P3}, I(3) = {I3}.

As there are 3 MProve+ proofs, there are 3 corresponding
complete bipartite graphs as shown in stage 1 of Figure 5. If
we use the intersection formula for Porig(·) as given in equation
(42), then we get

Porig(I3) ⊂ P(3) = {P1, P2, P3}.

But one can see that P3 is the only possible one-time address
which could have possibly originated I3. This is because
{P1, P2} together have to originate {I1, I2}

§§. This makes P3 as
the only member of P(3) which could possibly originate I3. To

††The statement that the key image I has originated from the one-time
address P implies that there exists a scalar x ∈ Zq such that P = Gx ∧ I =
(Hp (P))

x holds.
‡‡This formulation was introduced in [27].
§§The set {P1, P2 } is termed as closed set in [28]. This kind of structure

makes some cover addresses useless in the anonymity sets/rings of transac-
tions.

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

11

get a precise definition of the originating set, we construct the
simple¶¶ bipartite graph (U,V, E), using the f (λ) anonymity
sets and key image sets. Here U,V are the disjoint vertex sets
given by

U =
f (λ)⋃
i=1

P(i), V =
f (λ)⋃
i=1

I(i),

and E is the edge set given by

E =
f (λ)⋃
i=1

(
P(i) × I(i)

)
.

Since we are requiring the graph to be simple, the edge set
E will not have multiple edges. If an edge appears in both
P(i)× I(i) and P(j)× I(j) for i , j, then we include it only once.
The bipartite graph (U,V, E) corresponding to Example 1 is
shown in stage 2 of Figure 5. Here the orange edges, blue
edges, and green edges of E come from the first, second, and
the third proof respectively.

A matching on a graph is a subset of the edge set such that
the subset elements have no common vertices [29]. We give
the following definition for Porig(I).

Definition 1: Let M be the set of all maximum cardinality
matchings on the bipartite graph (U,V, E) induced by the f (λ)
MProve+ proofs such that for each M ∈ M the set of edges
M

⋂ (
P(i) × I(i)

)
is a maximum cardinality matching in the

bipartite graph
(
P(i), I(i),P(i) × I(i)

)
for all i = 1, 2, . . . , f (λ).

We define Porig(I) for a key image I in
⋃ f (λ)

i=1 I(i) as

Porig(I) =

{
P ∈

f (λ)⋃
i=1

P(i)
����(P, I) belongs to a matching in M

}
.

The above definition gives Porig(I1) = Porig(I2) = {P1, P2}
and Porig(I3) = {P3} as desired. Now we give the following
theorem which is proved in the extended version of the paper
[26].

Theorem 3: The only information that a PPT adversary can
obtain from the f (λ) MProve+ proofs is the f (λ) bipartite

graphs
(
P(i), I(i),P(i) × I(i)

) f (λ)
i=1

.
Even if we were to disregard the edges in the graph, the key

image sets {I(i)} f (λ)
i=1 can affect the privacy of the exchange. For

example, when a PPT adversary observes only {I(i)} f (λ)
i=1 , the

following information is revealed to her.
1) The number of source addresses used in the proofs

(cardinalities of I(i)s, i.e. sis).
2) The number of new source addresses used in the (i +

k)th proof (k ≥ 1) which were not there in the ith proof
(the number of new key images in I(i+k) which were
not there in I(i)).

3) The number of source addresses in the ith proof which
were removed from the (i + k)th proof (the number of
key image in I(i) which are not there in I(i+k)).

4) The number of source addresses which are being used
repeatedly. For example, consider a key image I which

¶¶By a simple graph, we mean undirected graph with no loops or multiple
edges.

has appeared in I(i), removed in I(i+1) onwards, and
appears again in I(i+k). Then the appearance of I reveals
that a source address was used in the ith proof, not in
use from the (i + 1)th proof to the (i + k)th proof, and
was used again in the (i + k)th proof.

Further privacy concerns arise when source addresses are
spent in future Monero transactions. We discuss this in the
next section.
Implication of MProve+ proofs when source addresses are
spent in future Monero transactions.

Example 2: Consider a Monero transaction txn where a
Monero exchange Ex is spending from a one-time address
P. Before this transaction, the exchange has published some
reserves proofs where P has been used as a source address.
As a result, the corresponding key image (say I) of P has
appeared in those reserves proofs. When P is being spent in
txn, the same key image I will appear again in txn. As the
same I has appeared in the reserves proofs published by Ex
and in txn, the fact that Ex is spending in txn is revealed. This
is a privacy drawback from which the exchange as well as the
entire Monero network suffer.

The drawback shown in Example 2 exists in every proof of
reserves protocol which has to reveal the key images of the
source addresses explicitly to prove that they are not spent.
The proof of reserves protocol proposed by Stoffu Noether
[24], MProve [7], and MProve+ are some examples. Removing
this drawback is an open problem because of the challenges
discussed in the extended version of the paper [26]. We discuss
the case when MProve is used in Example 2. Then we discuss
about the improvement we gain when MProve+ is used in
place of MProve in Example 2.

1) Effect of MProve on Monero transactions: Example
2 for the case of the MProve protocol has already been
considered in Section II.C.1 and the implications have been
discussed***. In Figure 6, we consider a single MProve proof
where there are n key images i.e. {I1, I2, . . . , In} corresponding
to the n linkable ring signatures, where n is the size of the
anonymity set. Among these key images, some are real key
images (originated from a one-time address) and some are
dummy key images (originated from a group element which
is not a one-time address). Consider the key image Ij , j ∈ [n]
which is generated from a one-time address Pj . For the PPT
adversary A who observes this MProve proof, Ij could have
originated either from Pj or from a group element C ′jC

−1
j .

So in this case we have Porig(Ij) = {Pj,C ′jC
−1
j }. When the

exchange spends from Pj in a future Monero transaction txn,
Ij appears again. Let the ring of txn be R(txn). The set R(txn)
must contain Pj as Pj is the source of txn. However the group
element C ′jC

−1
j cannot be an element in the set R(txn) as it is

not a valid one-time address. The view of A in this situation
is shown in terms of bipartite graphs in stage 1 of Figure 6.
As any maximum matching on this graph has to match Ij to
Pj , A successfully links Ij with Pj . This has been shown in
stage 2 of Figure 6. So the probability that A successfully

***P and I in Example 2 are replaced by Pj and Ij respectively in Section
II.C.1.

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

12

Fig. 6: Linking key image for MProve when a source address
is spent.

Fig. 7: Linking key image for MProve+ when a source address
is spent.

outputs P as the originating address for I is,

Pr[A(Ij,Porig(Ij),R(txn)) = Pj] = 1. (43)

2) Effect of MProve+ on Monero transactions: Now we
consider the case when MProve+ is used in Example 2.
Suppose Ex has used P as a source address in some of the f (λ)
published MProve+ proofs and I has appeared in some sets in
{I(i)} f (λ)

i=1 . As discussed above, each MProve+ proof induces a
complete bipartite graph. This is shown in stage 1 of Figure
7. From this f (λ) MProve+ proofs, the originating set for I
i.e. Porig(I) is revealed. Let A be a PPT adversary which wants
to obtain the originating address of I (here P) from Porig(I).
If A is a participant in the Monero network, then it might
have the side information that some addresses in

⋃ f (λ)
i=1 P(i)

do not belong to Ex and are definitely cover addresses. We
model this side information by the set Pother ⊂

⋃ f (λ)
i=1 P(i). A

is given access to the set Pother. Now consider the scenario just
before a source address spending transaction txn appears on
the Monero blockchain. A knows that any address in Pother
cannot be the originating address for I. If we ignore negligible
probabilities, the probability that A successfully outputs P as
the originating address for I is given by,

Pr[A(I,Porig(I),Pother) = P] =
1��Porig(I) \ Pother

�� . (44)

Next, txn appears in the Monero blockchain with key image I
and ring R(txn). The view of A in this situation is shown in
stage 2 of Figure 7. With this additional information, A knows
that any address in the set

(
Porig(I) \ Pother

) ⋂
R(txn) could be

the originating address corresponding to I. The intersection of
the corresponding graphs is shown in stage 3 of Figure 7. Let
InfoMPP denote the inputs to A in this case i.e.,

InfoMPP = (I,Porig(I),Pother,R(txn)). (45)

The equation (44) is modified as follows to give the probability
that A successfully links P with I.

Pr[A(InfoMPP) = P] =
1�� (Porig(I) \ Pother

) ⋂
R(txn)

�� . (46)

It is desirable for Ex that the probability given in equation
(46) is as low as possible. Assuming that Ex does not have the
knowledge of Pother, a strategy for Ex to reduce the probability
in equation (46) is as follows.

For a given source address P with the associated key image
I, Ex should choose anonymity sets in such a way that Porig(I)
becomes as large as possible. Later when Ex spends from P
in txn, Ex should choose R(txn) as a proper subset of Porig(I).

Now observe equation (43) and (46). For MProve, no matter
how the anonymity set and the ring of the transaction are
chosen, the linking probability is always 1. When P is linked
with I, it cannot act as a decoy address for any Monero
transaction. This is detrimental to the privacy of the entire
Monero network because P is still a member of the Monero
blockchain from which the cover addresses for a transaction
are chosen [23]. When txn appears in the blockchain, the
effective ring size of every transaction using P as a cover
address reduces by one. However for MProve+, the exchange
can choose the anonymity sets and the ring of the transaction
carefully and keep the linking probability away from 1. Hence
we conclude that MProve+ is better than MProve when the
privacy of the entire Monero network including the exchange
is of concern.
MProve+ proofs and untraceability property of Monero.

One of the design goals for Monero is to achieve untrace-
ability. Roughly speaking, untraceability means that given a
transaction ring, no PPT adversary should be able to de-
termine which address in the ring is actually being spent
[21]. Now consider a key image I which has appeared across
multiple MProve+ proofs. As discussed in Section IV.C.2,
when I appears in the source spending transaction txn, it
is linked with the source one-time address P if the set(
Porig(I) \ Pother

) ⋂
R(txn) becomes a singleton set containing

only P. The exchange can plausibly avoid this by choosing the
ring R(txn) properly. Hence we conclude that the MProve+
protocol does not preserve the untraceability property of
Monero in general. But unlike MProve, it does not always
reveal the true source address in a source spending transaction.
MProve+ proofs and the amount confidentiality property

of Monero.
From Theorem 3, it is verified that the MProve+ proto-

col does not reveal the amounts corresponding to the ad-
dresses in the anonymity sets or the total reserves amount.
However, the amount confidentiality is affected when a

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

13

source spending transaction txn appears in the blockchain.
As discussed above, in the extreme scenario when the set(
Porig(I) \ Pother

) ⋂
R(txn) becomes a singleton set, then the

transaction txn becomes traceable. Then the amount confiden-
tiality of the other transactions containing P (the source of txn)
in their rings are affected. To make the discussion concrete,
suppose the transaction txn′ spends from a single input using
the ring of m one-time addresses (P, P1, P2, . . . , Pm−1) with
corresponding Pedersen commitments (C,C1,C2, . . . ,Cm−1).
For simplicity, suppose txn′ has a single output represented
by a one-time address P′ and Pedersen commitment C ′.
Before it was revealed that P was spent in transaction txn,
the upper bound on the amount in the commitment C ′ is
given by the maximum of the amounts in the commitments
(C,C1,C2, . . . ,Cm−1) minus the transaction fees. This is be-
cause any of the ring members could have been the true source
of funds in the transaction. Once P has been revealed as
spent in txn, it cannot be the source of funds in txn′. Thus
the upper bound on the amount in the commitment C ′ is
given by the maximum of the amounts in the commitments
(C1,C2, . . . ,Cm−1). As this list of commitments is smaller, the
upper bound can only be more restrictive.

One might argue that the amounts in the Pedersen com-
mitments are not known. But the amounts in coinbase com-
mitments in Monero are revealed to ensure that miners are
creating valid blocks. While the amounts in non-coinbase com-
mitments are not known exactly, they can be upper bounded
by identifying the coinbase commitments which could have
potentially contributed funds to them. Such an analysis has
been demonstrated for the Pedersen commitments in Grin [30].

Even if the set
(
Porig(I) \ Pother

) ⋂
R(txn) is not a singleton

set, its size might be less than that of the ring R(txn). Then
it is known that any of the one-time addresses in the set
R(txn) \

((
Porig(I) \ Pother

) ⋂
R(txn)

)
cannot be the source of

the transaction txn. Then the amount confidentiality of the
transaction txn is affected in the way as described above.
Hence we conclude that the MProve+ protocol does not
preserve the amount confidentiality property of Monero in
general.
MProve+ proofs and the unlinkability property of Monero.

Another design goal for Monero is to achieve unlinkability.
The unlinkability property of Monero implies that a PPT
adversary can link a one-time address with its corresponding
public key pair only with a negligible probability [21]. Let
{Mλ} denote a sequence of Monero-like systems whose group
sizes (q) and the hash functions (Hs(·)) depend on the security
parameter λ. We consider one such particular system Mλ

from the sequence and define the following MoneroLink
experiment to precisely characterize the unlinkability property
of Monero.

1) An experimenter chooses some scalars
x0, y0, x1, y1, r $← Zq . She sets two public key
pairs (X0 = Gx0,Y0 = Gy0), (X1 = Gx1,Y1 = Gy1), and a
random point R = Gr .

2) The experimenter selects a bit b $← {0, 1}. Then she
generates a one-time address P = GHs (X

r
b
) ·Yb .

3) The experimenter sends (X0,Y0, X1,Y1, R, P) to a PPT
adversary A. The adversary A outputs b̂ as a predic-

tion of b. A wins if b̂ = b.

Owing to the unlinkability property of Monero, we have the
following lemma.

Lemma 1: For every PPT adversary A in the MoneroLink
experiment, there exists a negligible function negl(λ) of the
security parameter λ such that the following inequality holds.��� Pr[A(X0,Y0, X1,Y1, R, P) = b] −

1
2

���≤ negl(λ). (47)

Next, we propose the following MPPLink experiment for the
MProve+ protocol.

1) An experimenter chooses some scalars
x0, y0, x1, y1, r $← Zq . She sets two public key
pairs (X0 = Gx0,Y0 = Gy0), (X1 = Gx1,Y1 = Gy1) and a
random point R = Gr .

2) The experimenter selects a bit b $← {0, 1}. Then she
generates a one-time address P = GHs (X

r
b
) ·Yb . The

secret key is x = Hs(Xr
b
) + yb .

3) The experimenter produces f (λ) MProve+ proofs
MPPact using the singleton set {P} as the anonymity
set in all of them. The proofs contain the key image
I = Hp(P)x .

4) The experimenter sends (X0,Y0, X1,Y1, R, P,MPPact) to
a PPT adversary B. B outputs b̂ as a prediction of b.
B wins if b̂ = b.

Now we give the following definition.
Definition 2: The MProve+ protocol is said to preserve the

unlinkability property of Monero, if for every PPT adversary B

in the MPPLink experiment, there exists a negligible function
negl1(λ) of the security parameter λ such that the following
inequality holds.��� Pr[B(X0,Y0, X1,Y1, R, P,MPPact) = b] −

1
2

���≤ negl1(λ).
(48)

We give the following theorem which is proved in the extended
version of the paper [26].

Theorem 4: The MProve+ protocol preserves the unlinka-
bility property of Monero in the random oracle model under
the DDH assumption and given that Lemma 1 holds.

V. SUMMARY OF CONTRIBUTIONS

Omniring proposes a transaction scheme for Monero with
improved proof size based on the technique from Bulletproofs.
The key insight of our paper is that the same technique
can remove the privacy drawback of the MProve protocol to
some extent. Since it may appear that we have constructed
the MProve+ protocol by simply modifying the Omniring
protocol, we briefly describe our attempts to construct an even
simpler protocol. Instead of the language in equation (13), our
first attempt for MProve+ was based on the following language

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

14

27 29 211 213 215 217
100

101

102

103

104

105

Anonymity set size (n)

(a) Proof size in KB for s = 100 (log-log)

MProve+
MProve

27 29 211 213 215 217
2−11

2−8

2−5

2−2

21

24

27

Anonymity set size (n)

(b) Running times in min, s = 100 (log-log)

MProve+ Gen

MProve+ Ver

MProve Gen

MProve Ver

25 26 27 28 29 210 211 212
2−6

2−3

20

23

26

29

Number of exchange-owned addresses (s)

(c) Running times in min, n = 5000 (log-log)

MProve+ Gen

MProve+ Ver

MProve Gen

MProve Ver

Fig. 8: Performance comparison of MProve+ and MProve for G = Ristretto elliptic curve.

where G1 is a group element with unknown discrete logarithms
with respect to G and H.

L =


©­«

P, C, Hp ,
{Ij}sj=1, Cres,

G1

ª®¬

��������������

∃(x, e1, . . . , es, γ) such
that each ej is a unit vector,
Pe j = Gx j ,

He j
p = I

x−1
j

j ∀ j ∈ [s],

Gγ
1

s∏
j=1

Ce j = Cres.


In L, Cres is of the form Gγ

1Gares Hrres . Unlike our current
proposal, an argument of knowledge for L does not prove
knowledge of the binary representation of ares. It also does not
prove the knowledge of the source amounts and blinding fac-
tors. Instead, it proves that if a commitment in C contributes to
ares then the prover knows the private key of the corresponding
address in P (through the use of the unit vectors ej). The Gγ

1
term in Cres is introduced to prevent observers from estimating
the unit vectors. However, the proof generation and verification
times for this simpler language turned out to be worse than
our present proposal. So we chose the language in equation
(13) as the basis for MProve+. We count this exploration of
the space of possible languages for MProve+ as our primary
contribution.

Our other contribution is a precise characterization of the
information revealed by the MProve+ protocol, as stated in
Theorem 3. While the notion of the originating set of a key
image has appeared in previous work, it had not been explicitly
defined as we have done in Definition 1.

Finally, we explain the effect of the MProve+ protocol
on the privacy of Monero. We highlight that an exchange
using MProve+ must choose the rings of the source spending
transactions carefully to avoid affecting transaction untrace-
ability. The interaction between untraceability and amount
confidentiality is not well known. Even though Pedersen
commitments are perfectly hiding, we explain how a reduction
in the effective ring size also reduces the maximum amount
of coins which can be stored in the transaction outputs.

VI. PERFORMANCE

We compare our proof of reserves protocol MProve+ with
MProve [7] which is the first and only proof of reserves
protocol for Monero that attempts to provide some privacy to
the exchange. In both MProve and MProve+, the anonymity
set P is to be revealed as a part of the proof. Suppose the
anonymity set size is n and the number of owned addresses is
s. The proof sizes of MProve+ and MProve are respectively
(n+s+2dlog2me+4) group elements, 5 scalars and 3n+2 group
elements, 6n scalars. Here m denotes the length of the witness
vectors defined in Figure 1. Figure 8(a) shows the growth of
proof sizes with anonymity set size for s = 100. Although the
proof sizes of both MProve+ and MProve grow linearly, proof
size of MProve+ is typically an order of magnitude smaller.
For anonymity set size n = 105 and the number of owned
addresses s = 103, an MProve+ proof size is 3MB as against
29MB for MProve. The difference in proof sizes increases as
n grows. If exchanges are required to publish frequent proofs
of reserves on a blockchain, protocols with smaller proof sizes
will be preferred.

We have implemented MProve+ in Rust over the Ristretto
elliptic curve. We demonstrate how Ristretto encoding of
existing addresses in Monero could be computed, ensuring
adaptability to the existing Monero framework [31]. For fair
comparison, we have also implemented MProve over Ristretto.
All experiments were run on a 2.6 GHz Intel Core i7 desktop
with 8GB RAM. Our code is open-sourced on GitHub [32],
[33].

Figure 8(b) shows the proof generation and verification
times of MProve+ and MProve. For a constant s, we see a
linear growth of proof generation and verification times of
MProve as well as MProve+ with the anonymity set size n.
Since the inner product protocol requires witness sizes to be
a power of 2, the witness vectors of MProve+ in Figure 1 are
appended with 0’s to convert their size to the next power of 2.
For witness sizes m1 , m2 such that dlog2m1e = dlog2m2e, the
timings in the two cases will not be much different. Therefore,
we observe a step-wise increment in the generation and
verification timings of MProve+. An exchange owning 1000
addresses and wishing to have 49000 cover addresses would

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

15

spend about 150 minutes in a MProve+ proof generation and
the proof verification would take 20 minutes. An MProve proof
of same configuration would take a minute for generation
and verification each. Although the proof generation time for
MProve+ is significantly higher than that of MProve owing to
the greater number of group operations, the timings are not
unreasonable for practical deployment. The verification of an
MProve+ proof is around 8 times faster than its generation
because it can be verified using a single multi-exponentiation
of size O(2s·n + 2log(s·n)) as explained in Section III.F.
Faster verification enables customers of an exchange to verify
the proofs without much computational cost and specialized
hardware. From the perspective of an exchange, the privacy
benefits combined with the smaller proof sizes of MProve+
overshadow the higher computational cost in using it.

A notable difference between the MProve+ and MProve
protocol is that in MProve+, we reveal the number of addresses
an exchange owns. While this may seem like a privacy
concern, an exchange can create some addresses which have
zero amount in them for the purpose of padding the number
of owned addresses. An implication of revealing the number
of owned addresses s is that the proof size as well as
generation and verification times depend on the number of
exchange-owned addresses. Figure 8(c) shows the dependence
of generation and verification timings of MProve+ and MProve
with respect to the number of owned addresses and for a
constant anonymity set size. While timings for MProve remain
constant, MProve+ timings grow linearly with s.

VII. CONCLUSION

We present the MProve+ protocol which gives better privacy
than the MProve protocol using techniques of Bulletproofs
and Omniring. The MProve+ protocol provides a significant
improvement in terms of proof size over the MProve protocol.
The performance of the MProve+ protocol is also practical
in terms of the proof generation time and verification time.
Like the MProve protocol, when an exchange spends from a
source address used in MProve+ proofs, it is revealed that the
exchange is spending in the transaction. This is because of the
explicit revelation of the key images of the source addresses.
Removing this drawback remains as a open problem because
of the challenges discussed in the extended version of the pa-
per [26]. However, unlike the MProve protocol, the MProve+
protocol does not let a source spending transaction become
a zero-mixin transaction given that the exchange chooses the
ring of the transaction carefully. Hence the MProve+ protocol
does a better job than the MProve protocol in preserving the
privacy of the exchange as well as the entire Monero network.

VIII. ACKNOWLEDGMENTS

We acknowledge the support of the Bharti Centre for
Communication at IIT Bombay. We thank the reviewers for
their comments which resulted in an improved version of the
argument of knowledge.

REFERENCES

[1] IDEX blog. A complete list of cryptocurrency exchange hacks.
[Accessed 27-MAY-2021]. [Online]. Available: https://blog.idex.io/
all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated

[2] Wikipedia contributors. Mt. Gox — Wikipedia, the free encyclopedia.
[Accessed 27-MAY-2021]. [Online]. Available: https://en.bitcoin.it/wiki/
Mt._Gox

[3] Proof-of-Reserves tool for Bitcoin. [Online]. Available: https://github.
com/ElementsProject/reserves

[4] C. Decker, J. Guthrie, J. Seidel, and R. Wattenhofer, “Making bitcoin
exchanges transparent,” in 20th European Symposium on Research in
Computer Security (ESORICS), 2015, pp. 561–576.

[5] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provi-
sions: Privacy-preserving proofs of solvency for Bitcoin exchanges,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (ACM CCS), New York, NY, USA, 2015, pp.
720–731.

[6] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan,
and J. Wang, “Omniring: Scaling private payments without trusted
setup,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 31–48.
[Online]. Available: https://doi.org/10.1145/3319535.3345655

[7] A. Dutta and S. Vijayakumaran, “MProve: A proof of reserves protocol
for Monero exchanges,” in 2019 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), June 2019, pp. 330–339.

[8] Monero website. [Online]. Available: https://getmonero.org/
[9] A. Dutta and S. Vijayakumaran, “Revelio: A MimbleWimble proof of

reserves protocol,” in 2019 Crypto Valley Conference on Blockchain
Technology (CVCBT), June 2019, pp. 7–11.

[10] T. E. Jedusor, “Mimblewimble,” 2016. [Online]. Available: https:
//download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[11] A. Poelstra, “Mimblewimble,” 2016. [Online]. Available: https:
//download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[12] A. Dutta, A. Jana, and S. Vijayakumaran, “Nummatus: A privacy
preserving proof of reserves protocol for Quisquis.” in In: Hao F.,
Ruj S., Sen Gupta S. (eds) Progress in Cryptology – INDOCRYPT
2019. INDOCRYPT 2019.Lecture Notes in Computer Science, vol 11898.
Springer, Cham, 2019, pp. 195–215.

[13] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new
design for anonymous cryptocurrencies,” Cryptology ePrint Archive,
Report 2018/990, 2018, https://eprint.iacr.org/2018/990.

[14] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed au-
diting proofs of liabilities,” Cryptology ePrint Archive, Report 2020/468,
2020, https://eprint.iacr.org/2020/468.

[15] “CoinMarketCap Markets.” [Online]. Available: https://coinmarketcap.
com

[16] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of Monero’s blockchain,” in European Symposium on Research in
Computer Security – ESORICS 2017, 2017, pp. 153–173.

[17] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin,
“An empirical analysis of traceability in the Monero blockchain,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3, pp.
143–163, 2018.

[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.
315–334.

[19] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan,
and J. Wang, “Omniring: Scaling up private payments without trusted
setup - formal foundations and constructions of ring confidential transac-
tions with log-size proofs,” Cryptology ePrint Archive, Report 2019/580,
2019, https://eprint.iacr.org/2019/580.

[20] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Advances in Cryptology — CRYPTO ’91.
Springer, 1992, pp. 129–140.

[21] N. v. Saberhagen, “CryptoNote v 2.0,” White paper, 2013. [Online].
Available: https://cryptonote.org/whitepaper.pdf

[22] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” Cryptology ePrint Archive, Report
2004/027, 2004, https://eprint.iacr.org/2004/027.

[23] Koe, K. M. Alonso, and S. Noether, “Zero to Monero: Second
Edition,” The Monero Project Library, April 2020. [Online]. Available:
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://en.bitcoin.it/wiki/Mt._Gox
https://en.bitcoin.it/wiki/Mt._Gox
https://github.com/ElementsProject/reserves
https://github.com/ElementsProject/reserves
https://doi.org/10.1145/3319535.3345655
https://getmonero.org/
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://eprint.iacr.org/2018/990
https://eprint.iacr.org/2020/468
https://coinmarketcap.com
https://coinmarketcap.com
https://eprint.iacr.org/2019/580
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2004/027
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3088035, IEEE
Transactions on Information Forensics and Security

16

[24] S. Noether. (2018) Reserve proof pull request. [Online]. Available:
https://github.com/monero-project/monero/pull/3027

[25] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures from a
variety of keys,” in Advances in Cryptology — ASIACRYPT 2002.
Springer, 2002, pp. 415–432.

[26] A. Dutta, S. Bagad, and S. Vijayakumaran, “MProve+: Privacy Enhanc-
ing Proof of Reserves Protocol for Monero,” https://arijitdutta67.github.
io/homepage/paper/MProvePlus.pdf.

[27] J. Yu, M. H. A. Au, and P. Esteves-Verissimo, “Re-thinking untrace-
ability in the CryptoNote-style blockchain,” Cryptology ePrint Archive,
Report 2019/186, 2019, https://eprint.iacr.org/2019/186.

[28] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F. Lau, “New empirical
traceability analysis of CryptoNote-style blockchains,” in Financial
Cryptography and Data Security, I. Goldberg and T. Moore, Eds. Cham:
Springer International Publishing, 2019, pp. 133–149.

[29] R. Diestel, “Graph Theory,” Springer, 3rd edition, 2005.
[30] S. Bagad and S. Vijayakumaran, “On the confidentiality of amounts

in Grin,” in 2020 Crypto Valley Conference on Blockchain Technology
(CVCBT), 2020, pp. 78–82.

[31] Ristretto Encoding of Monero public key. [Online]. Avail-
able: https://github.com/suyash67/curve25519-dalek/blob/ddbffc9/src/
edwards.rs#L1167

[32] MProve+ simulation code. [Online]. Available: https://github.com/
suyash67/MProvePlus-Ristretto

[33] MProve simulation code. [Online]. Available: https://github.com/
suyash67/MProve-Ristretto

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on July 04,2021 at 06:03:36 UTC from IEEE Xplore. Restrictions apply.

https://github.com/monero-project/monero/pull/3027
https://arijitdutta67.github.io/homepage/paper/MProvePlus.pdf
https://arijitdutta67.github.io/homepage/paper/MProvePlus.pdf
https://eprint.iacr.org/2019/186
https://github.com/suyash67/curve25519-dalek/blob/ddbffc9/src/edwards.rs#L1167
https://github.com/suyash67/curve25519-dalek/blob/ddbffc9/src/edwards.rs#L1167
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProve-Ristretto

