
ar
X

iv
:2

10
1.

12
33

2v
2

 [
cs

.C
R

]
 2

 F
eb

 2
02

1

Atomic Swaps between Bitcoin and Monero

Philipp Hoenisch1,2 and Lucas Soriano del Pino1,2

1 COMIT, {firstname}@comit.network
2 CoBloX Pty Ltd, {firstname}@coblox.tech

Abstract. Due to the evergrowing blockchain ecosystem, interoperabil-
ity has become a matter of great importance. Atomic swaps allow con-
necting otherwise isolated blockchains while adhering to the core prin-
ciples of censorship resistance and permissionlessnes. Up until recently,
atomic swap protocols have mostly relied on complex script support, ex-
cluding certain types of blockchains. With advances in cryptography, it
is now possible to build a bridge between almost any two blockchains.
In this work, we give an explanation of one such protocol which applies
adaptor signatures on Bitcoin to procure atomic swaps between Monero
and Bitcoin. We dive into the cryptographic details, discuss its limita-
tions and give an outlook on our current work where we use adaptor
signatures on the Monero signature scheme.

Keywords: Blockchain · Atomic Swap · Bitcoin · Monero · Adaptor
Signatures.

1 Introduction

Since the birth of Bitcoin in 2008[11], many other cryptocurrencies have been in-
troduced. It is without a doubt that this flourishing ecosystem has evolved into an
enormous financial market. Cryptocurrencies are traded against fiat (e.g. USD,
AUD, EUR) or against each other. However, due to the lack of interoperability
between different blockchains, most of the trades are executed on centralized
exchanges. Due to regulations, these centralized exchanges have integrated com-
plex KYC (Know Your Customer) procedures where traders have to go through
lengthy processes to prove their identity. In addition, traders give up control
over their hard-earned coins by depositing them in the exchange so that they
can execute trades. The trader now has to trust the exchange to manage their
funds according to the highest standards, to protect them against thieves or not
lose them otherwise. This trust was misused more than once in the past and
billions of dollars in user funds have been lost[5].

One could say that these centralized exchanges are now a relic of the past.
A new era of decentralized exchanges has started, adhering to the core idea of
Bitcoin: censorship resistance at all levels.

Decentralized exchanges powered by atomic swaps, first introduced in 2015
by TierNolan[17], can now promise more guarantees in terms of security and
privacy to traders.

http://arxiv.org/abs/2101.12332v2

2 Hoenisch et al.

The original idea of atomic swaps uses HTLCs (Hash Time-Lock Contracts),
imposing certain requirements on the underlying blockchains: (1) they must
support scripts so that one can build hash locks; and (2) they must support
timelocks.

Technology has evolved and, with advances in cryptography, a new way of
cross-chain atomic swaps using adaptor signatures is gaining traction.

Atomic swaps using adaptor signatures (also referred to as Scriptless Scripts)
have several advantages over traditional atomic swaps using HTLCs: (1) contrary
to HTLCs where the same hash has to be used on each chain, transactions
involved in an atomic swap using adaptor signatures cannot be linked; and (2)
since no script is involved, the on-chain footprint is reduced which makes the
atomic swap cheaper.

Within this work we present our current efforts on cross-chain atomic swaps
using adaptor signatures. In particular, we show how adaptor signatures can be
employed to swap between Monero and Bitcoin. Notably, the former does not
support scripts or timelocks.

2 HTLC-based Atomic Swaps

Replacing centralized exchanges by decentralized ones is not new. The idea of
using HTLCs for atomically swapping two assets across two chains has been
around for a while[17]. Various companies have used this technology in their
products and protocols for cross-chain trading[1, 6]. Moreover, HTLCs are also
used in the Lightning Network for multi-hop payments[15].

In a nutshell, an HTLC-based atomic swap protocol works like this: we as-
sume two parties, Alice and Bob found each other somehow and agreed on the
amounts and assets (e.g. bitcoin and ether) which the two parties want to ex-
change. Alice generates a random secret s and uses a cryptographic hash function
to generate hash h. She then creates an HTLC using h and locks up the bitcoin.
These coins can either be redeemed (spent) using the secret s or are returned
to her after time t has passed. Bob does the same thing on the other chain: he
locks up his ether in an HTLC using the same hash h.

Since Alice knows the original secret s that was used to produce the hash h,
she can redeem the ether from Bob’s HTLC. By doing so, she reveals the secret
s to Bob who can then take the bitcoin, completes the swap.

This apparently simple process has a few drawbacks:

– The requirements on the underlying blockchains are high. A certain script
capability is required in order to support a hash function as well as timelocks.
While many blockchains support these two features, some lack either one
(e.g. Grin has no script support and hence no support for hash functions) or
both (e.g. Monero).

– By definition, the same hash has to be used on both chains. This allows
an independent third party to link those two transactions. Worse yet, since
blockchain transactions are publicly available to everyone, this onlooker can
now track where the parties move their newly acquired funds.

Atomic Swaps between Bitcoin and Monero 3

– The use of scripts (e.g. on Bitcoin, Litecoin, etc) or smart contracts (e.g. on
Ethereum) results in an increased on-chain footprint and higher transaction
fees in general.

With recent advancements in cryptography and the application of adaptor
signatures to atomic swaps, it is now possible to overcome almost all of the
aforementioned drawbacks. For example, Grin-Bitcoin swaps can be realized de-
spite Grin’s lack of a scripting language. Using Schnorr adaptor signatures and
timelocks, an atomic swap protocol can be executed[4].

Recently, Gugger, J. (aka h4sh3d) came up with a protocol which enables
atomic swaps between Monero and Bitcoin[10]. In the next section we discuss
this protocol in detail; in Section 4, we present our current work, motivated by
some of the limitations of [10].

3 BTC to XMR atomic swaps

The protocol described in this section is largely based on the work of Gugger[10].
We highlight key differences between the original and our instantiation of it[2]
throughout.

3.1 Situation

Alice and Bob have agreed to a trade in which Alice will send amtxmr to Bob,
and Bob will send amtbtc to Alice. They require this exchange to be atomic,
i.e. the change of ownership of one asset should effectively imply the change of
ownership of the other. Additionally, should the exchange not come to fruition,
they expect any committed assets to be returned to them.

3.2 Overview

Happy path After exchanging a set of addresses, keys, zero-knowledge proofs
and signatures, Bob locks up amtbtc in a Point Time Locked Contract (PTLC)[14]
locked using point Sbtc

a by publishing txbtc
lock. Being a PTLC, the output is also

spendable in an alternative manner after time t1.
Alice subsequently locks up amtxmr in a shared output with public spend key

Sxmr
a +Sxmr

b and public view key Va + Vb by publishing txxmr
lock. The relationship

between Sxmr
a and Sbtc

a is that they share the same secret key sa despite being
points on different elliptic curve groups. The same relationship applies to Sxmr

b

and Sbtc
b . This output will be owned by the party with knowledge of both sa and

sb.
Bob notices the publication of txxmr

lock and sends to Alice an adaptor signa-

ture[8] σ̂
Sbtc

a
,B

redeem which she is able to combine with sa producing σB
redeem. Provided

there is enough time until t1, she then publishes a txbtc
redeem signed with σB

redeem

and her own σA
redeem. Broadcasting this transaction moves amtbtc to an address

owned by Alice.

4 Hoenisch et al.

txbtc
lock

a ∧ b

txbtc
redeem

addrA
redeem

txbtc
cancel

a ∧ b

txbtc
refund

addrB
refund

txbtc
punish

addrA
punish

A,B

+t1

A,B

A,B

+t2

A,B

txxmr
lock

S
a
+ S

b

txxmr
redeem

Bob

txxmr
refund

Alice

sA, sB

sA, sB

Fig. 1. Transaction schema for BTC to XMR atomic swaps. Top: Transaction schema
for Bitcoin. Bottom: Transaction schema for Monero. Note: Monero view keys are omit-

ted for clarity.

Finally, Bob sees txbtc
redeem on the blockchain. He finds σB

redeem in the witness

stack and combines it with σ̂
Sbtc

a
,B

redeem to learn sa. With knowledge of both sa and
sb, Bob is the de facto owner of amtxmr, which he is able to move to a different
address of his at any time.

Cancel Once Bob has published txbtc
lock, if time t1 is reached, either party can

elect to publish txbtc
cancel, diverging from the “happy path”. The transaction txbtc

cancel

was constructed in such a way that it will only be mined after time t1. The use
of transaction-level timelocks is one of the ways in which this protocol deviates
from the original[10].

Refund: With txbtc
cancel confirmed on the blockchain, Bob should immediately

publish txbtc
refund to reclaim his amtbtc (minus some fees).

Alice would then spot txbtc
refund on the Bitcoin blockchain, giving her access to

σA
refund. Combining σA

refund with σ̂
Sbtc

b
,A

refund would leak sb to her. Knowing sa and sb,

Atomic Swaps between Bitcoin and Monero 5

Alice would effectively reclaim control over amtxmr, which she could eventually
move back to one of her wallet addressess.

Punish: Should Bob remain inactive after txbtc
cancel is published, Alice still has

a way to get compensation for the failed swap. After time t2, Alice can punish
Bob for not triggering the refund path in time by publishing txbtc

punish. With this
transaction Alice claims amtbtc. The amtxmr remains locked forever, but from
Alice’s perspective it is as if the trade went through.

The existence of txbtc
punish therefore incentivises Bob to publish txbtc

refund as soon
as possible. Either way, Alice, the party who has no agency on whether refund
will occur or not, remains protected.

3.3 Off-chain preparation

As hinted at in the previous section, before Alice and Bob can go on-chain they
must exchange some data.

For simplicity we assume a fixed fee for all Bitcoin transactions that must be
signed by both parties. In practice, the best way to handle transaction fees would
be to adopt a Child-pays-for-parent (CPFP)[13] strategy, so that the parties do
not have to commit to a particular fee rate ahead of time.

Key generation Firstly, they engage in a key generation protocol, as shown in
Fig. 2.

Alice sends to Bob a Bitcoin public key A; a Monero private view key va; a
Monero public spend key Sxmr

a ; a Bitcoin public key Sbtc
a ; and a Discrete Log-

arithm Equality (DLEQ) πsa proof between Sxmr
a and Sbtc

a . The characteristics
of this kind of proof will be explained in greater detail in Section 3.5.

Similarly, Bob sends to Alice a Bitcoin public key B; a Monero private view
key vb; a Monero public spend key Sxmr

b ; a Bitcoin public key Sbtc
b ; and a DLEQ

proof πsb between Sxmr
b and Sbtc

b .
If either party receives an invalid DLEQ proof, they must abort the protocol.

Address exchange Additionally, Alice sends to Bob two Bitcoin addresses
addr

A
redeem and addr

A
punish; and Bob sends to Alice one Bitcoin address addr

B
refund.

The amtbtc will end up in one of these depending on the protocol execution.

Expiries The value of the two timelocks t1 and t2 must be confirmed before
Alice and Bob can sign any transactions. Timelock t1 determines how long Alice
will have to publish and confirm txxmr

lock, and safely redeem txbtc
lock. Timelock t2

determines how long Bob has to refund his bitcoin after txbtc
cancel is published by

either party.
In this protocol we only use relative timelocks because they create consistent

windows of action no matter when txbtc
lock and txbtc

cancel are included in a block.

6 Hoenisch et al.

ΠKGen

Alice Bob

a←$Zq;A← aG

va ←$Zp

sa ←$Zp

S
btc
a ← saG;Sxmr

a ← saH

πsa ← PDLEQ((G,Sbtc
a

),(H,Sxmr
a

),sa)

(A, va, S
btc
a , S

xmr
a , πsa)

VDLEQ((G,Sbtc
a

),(H,Sxmr
a

),πsa
)

?
= 1

b←$Zq;B ← bG

vb ←$Zp

sb ←$Zp

S
btc
b ← sbG;Sxmr

b ← sbH

πsb ← PDLEQ((G,Sbtc

b
),(H,Sxmr

b
),sb)

(B, vb, S
xmr
b , S

btc
b , πsb)

VDLEQ((G,Sbtc

b
),(H,Sxmr

b
),πsb

)

?
= 1

return (a,A,B, va, vb, sa) return (b, A,B, va, vb, sb)

Fig. 2. Key generation protocol.

Signing phase This phase is a pre-requisite to Bob being able to lock up the
bitcoin safely. It also ensures that Alice can safely lock up the monero herself,
once she has confirmed that the bitcoin is on the blockchain.

Before either party can start signing the Bitcoin transactions, Bob must
define what txbtc

lock looks like. Given what they both already know, they can
construct the PTLC output: one which can be spent by providing signatures for
A and B. Bob builds the rest of the transaction using a Bitcoin wallet which will
contribute the necessary inputs and outputs. This is the first step of the signing
protocol, which is depicted in Fig. 3. Bob sends the unsigned txbtc

lock to Alice,
alongside the signatures σB

cancel and σB
punish. He can safely share these signatures

with Alice because txbtc
lock remains unpublished and unsigned.

With txbtc
lock Alice computes the signatures σA

cancel and σA
punish. She also com-

putes the adaptor signature σ̂
Sbtc

b
,A

refund , which Bob would need to decrypt if he ever
wants to refund his bitcoin. Using the corresponding decrypted signature σA

refund

to publish txbtc
refund would leak sb to Alice, allowing her to refund her own monero.

Alice sends back σA
cancel and σ̂

Sbtc

b
,A

refund to Bob.

All that remains is for Bob to compute his own σB
cancel.

Atomic Swaps between Bitcoin and Monero 7

ΠSig(A,B, amtbtc, t1, t2, fee)

Alice(a, Sbtc
b) Bob(b)

// Generating the Bitcoin lock transaction

txout
btc
lock ← TxOut(A+B, amtbtc)

tx
btc
lock ← walletbitcoin.fundrawtransaction(txoutbtc

lock)

tx← fundrawtransaction(txoutbtc
lock)

return tx

// Signing the cancel transaction

txout
btc
cancel ← TxOut(A+B, amtbtc − fee)

tx
btc
cancel ← Tx(txbtc

lock, txout
btc
cancel, t1)

σ
B
cancel ← ECDSA.Sig(b, txbtc

cancel)

// Signing the punish transaction

txout
btc
punish ← TxOut(addr

A
punish, amtbtc − 2 · fee)

tx
btc
punish ← Tx(txbtc

lock, txout
btc
punish, t2)

σ
B
punish ← ECDSA.Sig(b, txbtc

punish)

tx
btc
lock, σ

B
cancel, σ

B
punish

// Signing the cancel transaction

txout
btc
cancel ← TxOut(A+B, amtbtc − fee)

tx
btc
cancel ← Tx(txbtc

lock, txout
btc
cancel, t1)

σ
A
cancel ← ECDSA.Sig(a, txbtc

cancel)

// Generating adaptor signature for refund transaction

txout
btc
refund ← TxOut(addr

B
refund, amtbtc − 2 · fee)

tx
btc
refund ← Tx(txbtc

cancel, txout
btc
refund, ·)

σ̂
Sbtc

b
,A

refund ← ECDSA.EncSig(a, Sbtc
b , tx

btc
refund)

// Signing the punish transaction

txout
btc
punish ← TxOut(addr

A
punish, amtbtc − 2 · fee)

tx
btc
punish ← Tx(txbtc

lock, txout
btc
punish, t2)

σ
A
punish ← ECDSA.Sig(a, txbtc

punish)

σ
A
cancel, σ̂

Sbtc

b
,A

refund

// Signing the refund transaction

txout
btc
refund ← TxOut(addr

B
refund, amtbtc − 2 · fee)

tx
btc
refund ← Tx(txbtc

cancel, txout
btc
refund, ·)

σ
B
refund ← ECDSA.Sig(b, txbtc

refund)

return ((txbtc
cancel, σ

A
cancel, σ

B
cancel), return ((txbtc

cancel, σ
A
cancel, σ

B
cancel),

(txbtc
punish, σ

A
punish, σ

B
punish)) (txbtc

refund, σ̂
Sbtc

b
,A

refund , σ
B
refund),

tx
btc
lock)

Fig. 3. Signing protocol. Both parties must verify the signatures received, but this is
left out for clarity.

8 Hoenisch et al.

3.4 On-chain protocol

In Section 3.3 we have explained how Alice and Bob set the stage for the swap
to take place. The sequence diagram in Fig. 4 shows the rest of the steps towards
a successful atomic swap.

With the ability to broadcast signed versions of txbtc
cancel and txbtc

refund to take
his coins back, Bob can now proceed by publishing txbtc

lock. He uses his Bitcoin
wallet to sign each input and broadcasts it to the network.

Alice finds txbtc
lock on the blockchain by using the transaction ID which can

be deterministically computed from txbitcoin
lock . With enough confirmations on it

to consider it irreversible and sufficient time until t1, Alice publishes txxmr
lock. The

only requirement on this transaction is that it must pay amtxmr to the address
corresponding to the public spend key Sxmr

a + Sxmr
b and the public view key

Va + Vb. Bob does not need to know any other details, because the parties do
not need to sign transactions depending on txxmr

lock ahead of time.
Bob finds txxmr

lock on the blockchain by leveraging his knowledge of the private
view key va+vb. In Monero, only parties with knowledge of the private view key
are privy to transactions involving the matching address. Once Bob considers

that txxmr
lock has garnered enough confirmations, he proceeds by sending σ̂

Sbtc

a
,B

redeem to
Alice. This adaptor signature can be decrypted by Alice to grant her the ability
to redeem amtbtc.

On receiving σ̂
Sbtc

a
,B

redeem Alice first verifies that what she has received is useful

to her by executing ECDSA.EncVrfy(B,Sbtc
a , txbtc

redeem, σ̂
Sbtc

a
,B

redeem). This ensures that
the adaptor signature commits to a valid signature on B for the transaction
txbtc

redeem, encrypted by Sbtc
a . With knowledge of sa Alice decrypts it by calling

ECDSA.Dec(sa, σ̂
Sbtc

a
,B

redeem), obtaining σB
redeem.

Alice now has the means to publish txbtc
redeem, but she must only do so if there

is enough time to confirm the transaction before t1. Otherwise, Bob could front-
run her transaction with txbtc

cancel, ensuring his refund of amtbtc and still finding
txbtc

redeem in the mempool, with which he would be able to also claim the amtxmr.
Assuming there is enough time, she goes ahead and publishes txbtc

redeem, claiming
amtbtc.

Finally, Bob can use the information obtained by the publication of txbtc
redeem

to claim the amtxmr. He takes the transaction from the blockchain, extracts the

signature σB
redeem from it and calls ECDSA.Rec(σB

redeem, σ̂
Sbtc

a
,B

redeem) to obtain sa. As
the sole owner of both sa and sb, Bob is the only one capable of moving amtxmr

to a different address. He does so at his own convenience, so that he can safely
forget sa + sb.

3.5 Cross-chain DLEQ proof

The key generation phase depicted in Fig. 2 shows both Alice and Bob producing
a so-called cross-curve DLEQ proof. This construct is used to non-interactively
prove in zero-knowledge that the public key pair (Sbtc

a , Sxmr
a) has a common

secret key sa, and that the public key pair (Sbtc
b , Sxmr

b) has a common secret

Atomic Swaps between Bitcoin and Monero 9

Monero Alice Bob Bitcoin

txbtc
lock

look for txbtc
lock

txbtc
lock

txxmr
lock

look for txxmr
lock

txxmr
lock

σ̂
Sbtc

a
,B

redeem

ECDSA.DecSig(sa, σ̂
Sbtc

a
,B

redeem)

σB
redeem

txbtc
redeem

look for signature in txbtc
redeem

σB
redeem

ECDSA.Rec(σB
redeem, σ̂

Sbtc

a
,B

redeem)

sa

redeem using sa + sb

Fig. 4. Happy path on-chain protocol.

key sb. Without these proofs, there would be no guarantee that the adaptor

signatures σ̂
Sbtc

a
,B

redeem and σ̂
Sbtc

b
,A

refund which they later exchange actually commit to the
expected signature-secret pairs.

Conventionally, this kind of proof can only be constructed for points on
the same elliptic curve. The idea of proving discrete logarithm equality across
different groups comes from [12]. The algorithm proposed in [12] is used in the
original protocol by Gugger, but we elect to use something simpler based on
the original idea so that it can be argued secure by the composition of sigma
protocols[16].

We built an experimental implementation of this proof[3] to support our
proof-of-concept implementation of this protocol[2]. We also contributed to a
more general and efficient implementation of the same proof[9] which we intend
to use in the future.

4 XMR to BTC atomic swaps

In the section above we described an atomic swap protocol between Bitcoin and
Monero.

That protocol is appropriate for a use case in which the Service Provider
(SP) is in the role of Alice, i.e. she offers buying XMR for BTC to her customers.
Following the protocol as defined in Section 3, offering that kind of trade, allows

10 Hoenisch et al.

the SP to lock up amtxmr (by publishing txxmr
lock) only after the other party has

locked up amtbtc (by publishing txbtc
lock). This is safe for the SP as she knows that

she will either be able to redeem (publish txbtc
redeem) or refund.

However, using that protocol to swap in the opposite direction is not feasible
i.e. an SP should not offer buying BTC for XMR. The problem is that an SP (in
the role of Bob) could be easily attacked: the taker (in the role of Bob) could
agree on a trade with the SP, make him lock up funds on Bitcoin and then bail
out at no cost. The SP could always refund his locked up BTC after some time,
but he would have to pay for transaction fees to do so. The taker’s ability to
make the SP incur in transaction fees without penalty would expose the SP to
running out of funds over time, which is why we refer to this as a draining attack.

We need a different protocol to allow an SP to offer BTC/XMR buy trades,
since the original makes it a hard requirement for the party holding BTC to
move first. In the following sections we propose a new protocol which instead
requires the party holding XMR to move first. This depends on the development
of adaptor signatures based on Monero’s ring signature scheme, which is a work-
in-progress and whose details are left out of the scope of this work.

4.1 Protocol definition

XMRl

xA

XMRr

xB

XMRc

xA

SA, SB

SA, SB

1. Create [XMRl]

SA,vA
−−−→
SB,vB
←−−−

2. Create [XMRc]

No communication.

4. Sign [XMRl]

Alice Sig(sA, [XMRl])

5. Publish [XMRl]

3. Sign [XMRc]

RA
−−→

EncSig(sB ,RA,[XMRc])
←−−−−−−−−−−−−−

Fig. 5. Monero transaction schema.

Atomic Swaps between Bitcoin and Monero 11

BTCc

xB

BTCr

(xA ∧ xB)

BTCt

xA

BTCe

xB

BTCl

(xA ∧ xB)

+t1

pk
A
, pk

B

pk
A
, pk

B

+t2

pk
A
, pk

B

RA, pk
B

1. Create [BTCl]

pkA
−−→

pkB ,tidB
←−−−−−−

2. Create

[BTCc], [BTCr]

SA
−→
SB
←−

3. Create [BTCt]

No
communication.

4. Sign [BTCt]

sign(skB ,[BTCt])
←−−−−−−−−−

5. Sign [BTCc], [BTCr]

Sig(skA,[BTCc])
−−−−−−−−−→

EncSig(skB ,SA,[BTCr])
←−−−−−−−−−−−−−

6. Sign [BTCl]

Bob
Sig(skB, [BTCl])

7. Publish [BTCl]

Fig. 6. Bitcoin transaction schema.

Fig. 5 and Fig. 6 show the transaction schema for Monero and Bitcoin respec-
tively. These diagrams are used to illustrate the relationships between different
transactions on the same blockchain. Transactions are represented as rectangles
with rounded corners. Transaction outputs are depicted as boxes inside transac-
tions. The value of the output is written inside the output box and their spending
conditions are written above and below arrows coming out of the output. For
example, xA means the output holds x coins owned by party A and (xA ∧ xB)
means the output of amount x is controlled by party A and B.

With regard to the spending conditions, we define the following convention:
the public keys of all required signatures are listed below the arrow; other con-
ditions, such as timelocks, appear above the arrow.

4.2 Creating Monero transactions

The transaction schema for Monero can be found in Figure 5. Below we describe
the naive 5-step protocol to create all transactions. An optimized implementation
could reduce the number of steps by combining messages, but we refrain from
doing so in the interest of clarity.

12 Hoenisch et al.

Step 1: To construct the locking transaction XMRl the parties need to ex-
change some keys: Alice shares with Bob a public spend key SA and her private
view key vA, as well as her funding source tidA. Bob shares with Alice his public
spend key SB and his private view key vB . They can now create XMRl locally
with input tidA and an output with public spend key SA+SB, private view key
vA+vB. Notably, Alice does not sign the transaction yet. Both parties now have
a local copy of an unsigned XMRl which requires one signature from each party
to spend its output.

Step 2: Both parties create the refund transaction XMRc which spends from
XMRl and returns the funds back to Alice. Notably, they do not create the redeem
transaction XMRr in the same way, because they do not have to exchange any
signatures on it. The key idea is that Bob will learn sA later on if Alice publishes
BTCr, allowing him to construct, sign and publish the redeem transaction XMRr

by himself.
Step 3: Like in Section 3.3 for the old protocol, adaptor signatures are used

but this time on Bitcoin and Monero. Alice generates a keypair (rA, RA) and
constructs a DLEQ proof for it for the same reasons presented in Section 3.5. She
sends RA to Bob, which he uses as the encryption key to generate an adaptor
signature on the refund transaction XMRc. Bob sends this adaptor signature to
Alice. If she were to ever publish XMRc she would need to use this adaptor signa-
ture, leaking rA to Bob. This would allow him to execute an emergency refund
on Bitcoin if Alice were misbehaving by attempting to take both the bitcoin and
the monero.

Steps 4+5: Alice could now sign the locking transaction XMRl and publish
it on the Monero blockchain with the assurance that she could get her funds
back at any point by publishing XMRl. But these steps are not carried out until
the two parties have collaborated on creating the Bitcoin transactions.

4.3 Creating transactions for Bitcoin

The transaction schema for Bitcoin can be found in Figure 6.
Step 1: To prepare the locking transaction BTCl, Alice shares a public

key pkA with Bob. Bob shares his funding source tidB with Alice as well as a
public key pkB . Both parties can now create BTCl which spends from tidB into
a multisignature output requiring two signatures: one for pkA and another one
for pkB.

Step 2: Knowing BTCl, both parties can construct BTCc, a transaction which
returns the bitcoin back to Bob after time t1. They also construct BTCr. This
transaction sets the stage for Alice to be able to take the bitcoin. It can be spent
in two ways: (1) Alice can claim the coins after time t2 by providing signatures
for pkA and pkB, and (2) Bob can still refund if he learns Alice’s refund secret rA
and uses it with his own public key pkB. Bob would learn rA if Alice publishes
BTCc, using the adaptor signature generated in step 3 of the Monero transaction
creation protocol above.

Step 3: Having constructed BTCr, both parties can create BTCt, which spends
from it and can be published after time t2 giving the funds to Alice.

Atomic Swaps between Bitcoin and Monero 13

Step 4: For safety purposes, transactions are signed in reverse order of
publication. To that end, Alice and Bob collaboratively sign BTCt. Only Bob
sends his signature to Alice because she is the one that would care to publish
this transaction, since it benefits her. There is no need to create BTCe which
would require a signature from RA and pkB . Bob will be able to create and sign
this transaction by himself if the situation allows.

Step 5: Alice and Bob sign BTCc collaboratively. Only Alice shares her
signature with Bob because he is the only one interested in ever being able
to take his bitcoin back. Bob also generates an adaptor signature on BTCr for
his public key pkB encrypted under SA and sends it to Alice. This adaptor
signature ensures the atomicity of the swap: if Alice publishes BTCr she will need
to decrypt and use the adaptor signature, leaking sA, which he would use to
take the monero.

Step 6+7: Bob is now ready to sign and publish BTCl. He still must wait
for Alice to lock her monero first by publishing XMRl, finishing steps 4 and 5 of
Section 4.2. Once Alice has committed her funds to the Monero blockchain, Bob
is safe to do the same on Bitcoin.

4.4 Protocol execution

The content of this section is still work-in-progress. Hence we do not delve deeper
into the cryptography which is needed to create adaptor signatures on Monero.
Instead, we continue describing things on a high level.

Scenario The motivation behind this protocol is to allow the party holding
XMR and wanting BTC to move first. In this scenario, Alice holds XMR and
wants to receive BTC. Conversely, Bob holds BTC and wants to receive XMR.

After successfully building and signing transactions following the steps out-
lined in Section 4.2 and Section 4.3, Alice and Bob are ready to go on-chain.

Happy path Alice publishes her locking transaction XMRl knowing that she
can always receive her funds back by cancelling the swap and publishing XMRc.
Once Bob is happy with the amount of confirmations on XMRl he follows suit and
publishes the locking transaction on Bitcoin BTCl. Given sufficient confirmations
on BTCl and enough time until t1, Alice publishes the redeem transaction BTCr.
In doing so, she leaks sA to Bob. Alice cannot immediately claim the bitcoin for
herself but has to wait until time t2. In the meantime, Bob has until time t2 to
safely take the monero by using sA to create and sign XMRr, and publishing it
on the blockchain. Once time t2 is reached. Alice can finally take the bitcoin by
publishing BTCt, completing the atomic swap.

One party is unresponsive At any point in time during the execution phase
either party could become inactive. In order to prevent money loss, both parties
have mechanisms at their disposal to refund.

14 Hoenisch et al.

For instance, Alice could publish her locking transaction XMRl and then see
that Bob never moves forward with the publication of his locking transaction
BTCl. As depicted in Fig. 5, XMRc requires signatures on SA and SB. Alice can
use her own secret key sA to produce one of the signatures, and decrypt Bob’s
adaptor signature using rA to produce the other. She would then publish XMRc,
taking back her monero.

Similarly, if Bob does publish BTCl, but Alice fails to continue by publishing
BTCr before time t1, Bob can then take his bitcoin by publishing BTCc, since he
either has or can produce or the signatures needed for it to be valid.

Alice tries to cheat There exists an edge case in which Alice can attempt to
take both assets. This is possible after both parties have published their respec-
tive locking transactions XMRl and BTCl. Alice may attempt to redeem the bitcoin
by publishing BTCr and refund the monero by publishing XMRc. Fortunately, the
publication of XMRc would leak sA to Bob which would allow him to create, sign
and publish BTCe to execute an emergency refund, at least until time t2. The
result would be equivalent to having executed a normal refund. Bob therefore
remains protected, but this possibility imposes a strong requirement for him to
stay online at all times.

5 Conclusion

Atomic swaps constitute the main mechanism to bridge the gap between unre-
lated blockchains without violating the core principles of censorship resistance,
permissionlessness and pseudonymity originally championed by Bitcoin. Up until
recently, their application was believed to be exclusive to blockchains with very
particular characteristics. Advances in cryptography have lowered the barrier to
entry, allowing for new protocols to be devised in order to connect blockchains
that were originally thought to be incompatible. One such example is the Bit-

coin–Monero Cross-chain Atomic Swap by Gugger[10], which has inspired the
development of applications such as [7] and [2].

In this work, we give a high-level sketch of a new protocol which expands
on the ideas of the original to serve a new use case. In particular, by applying
adaptor signatures to the Monero signature scheme, we make possible atomic
swaps in which the party holding BTC is no longer the one vulnerable to draining
attacks. A real-world service provider could therefore leverage both protocols to
put up buy and sell BTC/XMR offers as a market maker.

This proposal hinges on the viability of using adaptor signatures on Monero,
a topic which we do not discuss here, but one which is being researched at the
time of writing.

References

1. COMIT: Comit. https://github.com/comit-network/comit-rs (2018), accessed:
2021-01-13

Atomic Swaps between Bitcoin and Monero 15

2. COMIT: Bitcoin-monero cross-chain atomic swap. https://github.com/comit
-network/xmr-btc-swap/tree/91fe18a79657e7d8ee100c931a2b2fcce0f1cd0f

(2020), accessed: 2021-01-27
3. COMIT: Cross-curve dleq. https://github.com/comit-network/cross-curve

-dleq/tree/eddcdea1d1f16fa33ef581d1744014ece535c920 (2020), accessed:
2021-01-27

4. COMIT: Grin-bitcoin atomic swap. https://github.com/comit-network/grin-
btc-poc/tree/38cf690fa65d115db7354bee1905cb2c694308fc (2020), accessed:
2021-01-27

5. CryptoSec: Crypto exchange hacks. https://cryptosec.info/exchange-hacks/
(2021), accessed: 2021-01-13

6. ExchangeUnion: Opendex. https://opendex.network/ (2020), accessed: 2021-01-
13

7. Farcaster: Farcaster project. https://github.com/farcaster-project/RFCs

(2020), accessed: 2021-01-27
8. Fournier, L.: One-time verifiably encrypted signatures a.k.a adaptor signatures.

https://github.com/LLFourn/one-time-VES/blob/master/main.pdf (2019)
9. Fournier, L.: Sigmafun! https://github.com/LLFourn/secp256kfun/tree/fa25

e7ee0b7bcc5d6d12550b8def9ab798dbadca (2020), accessed: 2021-01-27
10. Gugger, J.: Bitcoin–monero cross-chain atomic swap. https://eprint.iacr.org/

2020/1126.pdf (2020)
11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.

org/bitcoin.pdf (2008), accessed: 2021-01-13
12. Noether, S.: Discrete logarithm equality across groups. https://web.getmonero.

org/es/resources/research-lab/pubs/MRL-0010.pdf (2018)
13. Optech, B.: Child-pays-for-parent (cpfp). https://bitcoinops.org/en/topics/c

pfp, accessed: 2021-01-27
14. Optech, B.: Point time locked contracts (ptlcs). /https:/bitcoinops.org/en/top

ics/ptlc, accessed: 2021-01-27
15. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments (2016)
16. Schoenmakers, B.: Lecture notes cryptographic protocols. https://www.win.tue.

nl/~berry/CryptographicProtocols/LectureNotes.pdf (2020)
17. TierNolan: Atomic swaps - bitcointalk forum. https://bitcointalk.org/index.

php?topic=193281.msg2224949\#msg2224949 (2013), accessed: 2021-01-13

