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A B S T R A C T   

Ring signature, introduced by Rivest et al. [Asiacrypt’01], allows a person to sign a document on behalf of an ad- 
hoc group (or ring) while hiding the identity of the actual signer. But the anonymity provided by the ring 
signature scheme can be used to conceal a malicious signer and put other ring members under suspicion. 
Fortunately, Park et al. [Crypto’19] proposed a repudiable ring signature scheme which can overcome this 
disadvantage. However, the construction of Park et al. [Crypto’19] is not compact, in other word, the size of 
signatures and repudiations in their scheme increases with the square of the ring size. 

In this paper, we propose the first logarithmic-size repudiable ring signature scheme, which means the size of 
signatures and repudiations grows only logarithmically in the ring size. Moreover, in terms of security model, we 
present a new requirement (repudiation-unforgeability), which requires ‘no one can forge a valid repudiation’. 
Our scheme is the first repudiable ring signature scheme satisfies this new requirement.   

1. Introduction 

Ring signature, introduced by Rivest et al. [1], is a variant of digital 
signature which can certify that one among a particular set of parties has 
signed a particular message, without reveal who the signer is. This 
particular set is called a ‘ring’. More specifically, the signing algorithm 
of a ring signature scheme takes as additional input a list of verification 
keys R and outputs a signature. Such a signature can be verified given 
the ring R. The feature of interest of the ring signature scheme is that 
given such a signature, no one can tell which signing key was used to 
compute this signature. 

The original motivation for the ring signature scheme was anony
mous leakage of secrets. Suppose a high rank officer wants to leak some 
sensitive document to a journalist without revealing its identity. To to 
so, he signs this document using a ring signature scheme where the ring 
R contains all other high rank officers. Then the journalist is convinced 
that some high rank officer signed this document, but he has no clue who 
the signer is. 

More recently, the ring signature scheme has also found some ap
plications in the construction of confidential transactions for crypto
currencies. In a usual (non-anonymous) transaction, a user computes a 
signature that assesses if he is allowed to spend coins. In 

cryptocurrencies like Monero [2], a user forms a ring R from verification 
keys in the blockchain to issue a ring signature on the transaction. 
Thereby, the anonymity property of the ring signature scheme guaran
tees the confidentiality of the transaction. Currently, Monero uses a 
setup-free Schnorr based ring signature scheme [3]. 

However, providing a complete anonymity in the ring signature 
scheme may not always be desirable. Ring signature scheme may be 
open to abuse, where a malicious signer can use the anonymity to supply 
false information and puts other ring members under suspicion [4–7]. 

Deniable ring signature, introduced by Komano et al. [4], can slightly 
overcome this disadvantage. But the deniable ring signature scheme is 
an interactive protocol. Interactivity means that the confirmation and 
disavowal algorithms in the deniable ring signature scheme are two 
interactive protocols executed between a ring member and a verifier. 
But the interactive protocol is undesirable in most applications.1 

Fortunately, Park et al. [7] proposed a repudiable ring signature 
scheme which can overcome these disadvantages. Repudiable ring 
signature is an extension of the concept of ring signature which allows a 
non-signer to prove to others that some signature was not generated by 
him. More specifically, the repudiable ring signature scheme is a ring 
signature scheme equipped with an additional pair of algorithms 
(Repudiate, VerRepud), where Repudiate is an algorithm which can create 
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1 Although Gao et al. made the first attempt on the non-interactive deniable ring signature scheme in [6], Jia et al. recently demonstrated in [8] that the ring 
signature scheme in [6] is insecure. 
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a repudiation ξ for any signature σ with respect to any non-signer, and 
VerRepud is an algorithm which can verify whether ξ is a valid repudi
ation. The Repudiate and VerRepud algorithms are two non-interactive 
algorithms. 

The repudiability for a ring signature scheme is a necessary property 
in some situations. For example, if we use a completely anonymous ring 
signature scheme in the blockchain, we will get a completely Decen
tralized Anonymous Payment (DAP) system, such as Monero [2,9]. But 
this system can be exploited by criminal activities [10], such as money 
laundering, payment of ransom for ransomware, online extortion, etc. 
Lin et al. [10] introduced the first Decentralized Conditional Anonymous 
Payment (DCAP) system to strike a balance between privacy protection 
and regulation. Their DCAP scheme is based on a Conditional Anonymous 
Payments (CAP) scheme. It looks like that if we use a repudiable ring 
signature scheme in the blockchain, we can also get a new DCAP system. 
This new DCAP system can be achieved by simply replacing the ring 
signature component of the existing DAP systems. This is our future 
work. 

Although the repudiable ring signature scheme is very useful, the 
existing repudiable ring signature scheme still has some shortcomings. 
First, the security model of the repudiable ring signature scheme pro
vided in the prior work [7] seems somewhat weak, in their paper they 
did not consider the unforgeability of the repudiation. Namely, the prior 
scheme may allow an adversary to forge a repudiation on behalf of some 
honest ring members. This is obviously unfair to the honest ring mem
ber, who may not be willing to generate this repudiation. Second, the 
size of signatures and repudiations of the prior scheme increases with 
the square of the number of ring members. This means as the number of 
ring members grows, the size of signatures and repudiations increases 
dramatically. So how to design a sub-linear repudiable ring signature 
scheme is also an urgent problem to be solved. 

1.1. Our contributions 

In this paper, we solve the existing problems mentioned above. In 
particular, we present a stronger security model for the repudiable ring 
signature scheme and construct a more efficient repudiable ring signa
ture scheme that satisfies this stronger security. 

In terms of security model, we propose the first formal definition of 
repudiation-unforgeability. Repudiation-unforgeability means that no one 
can produce a valid repudiation on behalf of any ring member, as long as 
he does not have the corresponding signing key. At first glance, this 
property seems to be included in the anonymity property,2 it actually 
requires more in some aspects than the anonymity property. To illustrate 
this, let us consider the following specific setting. Suppose an adversary 
knows the identity of the real signer of a certain signature by some 
method (such as side-channel attacks, corrupt the signer, etc.). At this 
time, the anonymity of this signature no longer exists, but repudiation- 
unforgeability still guarantees that the adversary cannot generate a 
repudiation for other ring members. Although it is not clear the impact 

about the forgeability of the repudiation in practice, it is believed that 
the weaker ability the adversary has, the higher security the scheme 
guarantees, since this ability might be leveraged by the adversary to 
launch some potential attacks. We leave the impact about the forge
ability of the repudiation in practice as an open problem. 

Furthermore, Park et al. used the notion adaptive anonymity against 
adversarially chosen keys in [7]. Unfortunately, we find their construction 
cannot satisfy this property. We can give an attack for their scheme, 
namely there exist an adversary that can get who the actual signer is, the 
algorithm is given in the Appendix B. To rule out this attack, we need to 
limit the ability of the adversary slightly. Our modification is that, we do 
not allow the adversary to ask its repudiation oracle OR(⋅) for (⋅,m,R, ⋅)
after the adversary gives the challenge information (i0, i1,m,R) to the 
experiment. Their repudiable ring signature scheme satisfies this 
modified anonymity, so does our scheme.3 

In terms of construction, we give the first logarithmic-size repudiable 
ring signature scheme which does not rely on a trusted setup or the 
random oracle model. To do this, we use a somewhere perfectly binding 
hash family (SPB)[12] to compress the ring R, and then use the digest of R
to calculate signatures and repudiations. Our repudiable ring signature 
scheme is also the first scheme which satisfies repudiation-unforgeability. 
To ensure this, we make evaluations of verifiable random function (VRF) 
as part of repudiation, and use the pseudorandomness of VRF to conceal 
the valid information. 

1.2. Comparison to previous work 

In this section, we compare our new scheme with the construction 
that was presented in [7]. To do this, we briefly review their repudiable 
ring signature construction and compare it to our work. For a more 
detailed exposition on their scheme, please refer to [7]. We summarize 
our comparisons in Table 1. We denote the size of the ring R by n and the 
security parameter by λ. 

Construction in [7]. From a high level, the signature in [7] consists 
of every ring member’s ZAP proofs which prove that some VRF values in 
the signature are correct. The repudiation for individual i consists of 
every ring member’s ZAP proofs which prove that some VRF values in 
the signature are different from the values for party i’s VRF evaluated at 
the message. Since the size of the witness for the membership proofs is 
linear in n, every signature and repudiation consist of n ZAP proofs, the 
signature and repudiation are size n2⋅poly(λ). Besides, they did not 
consider repudiation-unforgeability in their paper, i.e. their scheme may 
allow adversary to generate repudiation on behalf of some honest ring 
members. 

Our Construction.It is clear that our repudiable ring signature 
construction is more efficient compared to the previous work. In 
particular, the signature and repudiation are size log(n)⋅poly(λ). 
Furthermore, our repudiable ring signature scheme satisfies repudiation- 
unforgeability. 

1.3. Related work 

After the initial work of Rivest et al. [1], a number of works provided 
constructions under various computational hardness assumptions. The 
scheme of Dodis et al. [13] was the first to achieve sublinear size sig
natures in the ROM. Libert et al. [14] constructed a scheme with loga
rithmic size ring signature from DDH in the ROM. Recently, Backes et al. 
[15] provided the first standard model construction with signatures of 
size log(n). 

Since the original proposal of ring signatures, various variant defi
nitions also have been proposed. For example, linkable ring signatures 

Table 1 
This table compares previous repudiable ring signature scheme from [7] with 
the construction of this paper. For notation, we denote the size of the ring R by n 
and the security parameter by λ.   

SignatureSize Repudiable RepudiationSize Repudiation- 
Unforgeability 

R-RS  
[7] 

n2⋅poly(λ) ✓  n2⋅poly(λ) ×

Ours log(n)⋅poly(λ) ✓  log(n)⋅poly(λ) ✓   

2 Since if an adversary can forge a repudiation for a ring member, then he 
must not be the signer. Thus the anonymity naturally involves a part of repu
diation-unforgeability. 

3 After we pointed out this problem, Park et al. also modified their anonymity 
definition in their updated version [11], their modified anonymity definition is 
the same as the anonymity definition given in our paper. 
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[16] allow identification of signatures that were produced by the same 
signer, without compromising the anonymity of the signer within the 
ring. Threshold ring signatures [17,18] can efficiently prove that a 
certain minimum number of users of a certain group must have actually 
collaborated to produce the signature, while hiding the precise mem
bership of the subgroup. Proxy ring signatures [19–21] which allow 
proxy signer to sign message on behalf of the original signer provide 
anonymity. Identity-based ring signcryption [21,22] which can simplify 
key management procedures. Another notion called traceable ring 
signature [23] considers a setting where signatures are generated with 
respect to ‘tags’ and each member may sign at most a single message 
with respect to a particular tag, or else his identity will be revealed. 
Accountable ring signatures [24,25] allow a signer to assign the power 
to deanonymize his signature to a specific publicly identified party. And 
recently, Park and Sealfon [7] proposed four new notions which are 
repudiable, unrepudiable, claimable and unclaimable ring signatures. 

2. Preliminaries 

Throughout the paper, let λ denote the security parameter and 
negl(λ) denote the negligible function. Denote by y←A (x; r) the 
execution of algorithm that A output y, on input x and random coins r. 
Write y←A (x), if the specific random coins used are not important. We 
denote by y = A (x), if the algorithm is deterministic. Let r←S denote 
that r is chosen uniformly at random from the set S. We use [n] to denote 
the set {1,⋯,n}. 

In the following, we will briefly review some building blocks, which 
are non-interactive witness-indistinguishable proof system (NIWI), verifiable 
random function (VRF) and somewhere perfectly binding hash function 
(SPB). For the formal definitions of the used building blocks, see 
Appendix A. 

2.1. Non interactive witness indistinguishable proof 

Let R be an efficiently computable binary relation, where for (x,w)

∈ R we call x is a statement and w is a witness of x. Moreover, let L R 

denote the language consisting of all statements in R , i.e. L R = {x|∃w :

(x,w) ∈ R } A non interactive witness indistinguishable proof system for 
language L R is a pair of PPT algorithms (Prove, Verify), satisfying 
completeness, soundness and witness indistinguishability. More specif
ically, Prove is a probabilistic algorithm that takes as input a security 
parameter 1λ, a statement x and a witness w, and return either a proof π 
or ⊥; Verify is a probabilistic algorithm that takes as input a statement x 
and a proof π, outputs either 0 or 1. Just like [15], we require the size of 
the proof π satisfies |π| = |Cx|⋅poly(λ), where Cx is a verification circuit 
for the statement x. 

NIWI can be constructed from NIZK proofs derandomization as
sumptions [26] [27], from indistinguishability obfuscation and one-way 
permutations [28] and from bilinear pairings [29]. 

2.2. Verifiable random function 

Let a : N→N ∪ { ∗ } and b : N→N be any two functions such that a(λ)
, b(λ) are both computable in time poly(λ), and they are both bounded by 
a polynomial in λ (expect when a(λ) takes on the value ∗).4 A verifiable 
random function VRF with input length a(λ), output length b(λ) consists 
of a tuple of polynomial-time algorithms (Gen, Eval,Prove,Verify), and 
satisfies completeness, uniqueness and pseudorandomness. More spe
cifically, Gen is a probabilistic algorithm that takes as input a security 
parameter 1λ, and outputs a pair of keys (pk, sk); Eval is a deterministic 
algorithm that takes as input a secret key sk and x ∈ {0,1}a(λ)

, and 

outputs y ∈ {0,1}b(λ); Prove is a probabilistic algorithm that takes as 
input a secret key sk and x ∈ {0,1}a(λ)

, and outputs a proof π; and Verify 
is a probabilistic algorithm that takes as input a public key pk, x ∈

{0,1}a(λ)
, y ∈ {0,1}b(λ)

, and a proof π, and outputs either 0 or 1. For 
simplicity, in this paper we assume that Eval takes inputs x of any length, 
i.e. a(λ) takes the value of ∗. 

The notion of VRF was introduced by Micali, Rabin and Vadhan [30]. 
Known constructions of VRFs are due to [30] based on strong RSA, [31] 
based on a strong version of the Diffie-Hellman assumption in bilinear 
groups, [32] based on the sum-free generalized DDH assumption, and 
[33] based on the bilinear Diffie-Hellman inversion assumption. 

2.3. Somewhere perfectly binding hash function 

The notion of somewhere perfectly binding hash function(SPB)5 was 
introduced by [15], which can be used to create a short digest h = Hhk(x)
of some long input x = (x[1],⋯, x[n]) ∈ Σn, where Σ is some alphabet. 
The hashing key (hk, shk)←Gen(i) can be generated by providing a 
special ‘binding index’ i and this ensures that the hash h = Hhk(x) is 
perfectly binding for the i’th symbol. In other words, even though h has 
many other preimages x′ such that Hhk(x

′

) = h, all of these preimages 
agree in the i’th symbol x′

[i] = x[i]. Moreover, we will be interested in 
SPB hash function with a ‘private local opening’ property that allows us 
to prove that i’th symbol of x takes on some particular value x[i] = u by 
providing a short opening π. 

A somewhere perfectly binding hash family with private local 
opening SPB is given by a tuple of algorithms (Gen,Hash,Open,Verify),
and satisfies correctness, somewhere perfectly binding and index hiding. 
More specifically, Gen is a probabilistic algorithm that takes as input a 
security parameter 1λ, a database size n and an index i, and outputs a 
hashing key hk and a private key shk; Hash is a probabilistic algorithm 
that takes as input a hashing key hk and a database x and outputs a 
digest h; Open is a probabilistic algorithm that takes as input a hashing 
key hk, a private key shk, a database x and an index j and outputs a 
witness π; and Verify is a probabilistic algorithm that takes as input a 
hashing key hk, a digest h, an index j, an alphabet u and a witness π, and 
outputs either 0 or 1. Just like [15], we also require the size of hash key 
hk and the witness π are log(n)⋅poly(λ). Moreover, Verify(hk, shk, i, x, π)
can be computed by a circuit of size log(n)⋅poly(λ). 

The notion of somewhere perfectly binding hash family with private 
local opening (SPB) was introduced by [15]. In that work, they give a 
simple black-box transformation from any SPB hash family to a SPB with 
private local opening. They also show that the DDH-based SSB con
struction of [12] can be proofed to be SPB hash family. 

3. Definitions of repudiable ring signatures 

In this section, we provide definitions of repudiable ring signatures, 
which have a stronger security compared with [7]. Specifically, we add a 
new security requirement for repudiable ring signatures, which called 
repudiation unforgeability. Besides, we modify the definitions of ano
nymity and repudiability slightly compared with [7]. 

Definition 3.1. (Repudiable ring signature) A repudiable ring signa
ture scheme is a tuple of PPT algorithms RRS = (Gen, Sign,Verify,
Repudiate,VerRepud), that satisfies correctness, anonymity, unforge
ability, repudiability and repudiation-unforgeability. The syntax of RRS 
follows: 

Gen(1λ): takes as input a security parameter 1λ, and outputs a pair 
(VK, SK) of verification and signing keys. 

4 When a(λ) takes the value of ∗, it means the VRF is defined for inputs of all 
length. 5 This is a stronger notion, compare with SSB in [34]. 
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Sign(SK,m,R): takes as input a signing key SK, a message m and a ring 
R = (VK1,⋯,VKn), and outputs a signature σ. 
Verify(m,R,σ): takes as input a message m, a ring R and a signature σ,
and outputs either 0 or 1. 
Repudiate(SK,m,R,σ): takes as input a signing key SK, a message m,

a ring R and a signature σ, and outputs a repudiation ξ. 

VerRepud(VK, m, R, σ, ξ): takes as input a verification key VK, a 
message m, a ring R, a signature σ and a repudiation ξ, and outputs 
either 0 or 1. 

A repudiable ring signature scheme needs to satisfy five properties, 
expressed by Definition 3.2, 3.3, 3.4, 3.5, 3.6 below. In particular, cor
rectness, anonymity and unforgeability are the properties that the usual 
ring signature scheme should hold, repudiability and repudiation- 

Fig. 1. Anonymity experiment.  

Fig. 2. Unforgeability experiment.  

Fig. 3. Repudiability experiment.  

Fig. 4. Repudiation-unforgeability experiment.  

Fig. 5. L 1 Language.  
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unforgeability are the special properties that only repudiable ring 
signature schemes need to hold. Informally, unforgeability requires ‘no 
one can forge a ring signature’, repudiability requires ‘non-signer can 
repudiate’ and ‘signer cannot repudiate’, and repudiation-unforgeability 
requires ‘no one can forge a valid repudiation for others’. In particular, 
the unforgeability guarantees that a ring signature which can be verified 
must be generated by some ring member; the repudiability guarantees 
that for a ring signature that can be verified, members of the ring (except 
the signer) are allowed to prove to outside that they are not the signer by 
generating a repudiation when necessary;6 the repudiation-unforgeability 
guarantees that the repudiation must generated by himself, not forged 
by others. 

To give the formal definitions of these properties, we need to intro
duce three oracles first:  

• Corruption oracle: For a RRS scheme, the oracle OC(SK1 ,⋯,SKl) is 
defined to take as input an index i ∈ [l], and outputs a signing key SKi.  

• Signing oracle: For a RRS scheme, the signing oracle OS(SK1 ,⋯,SKl)

is defined to take as input an index i ∈ [l], a message m and a ring R,
and outputs a signature Sign(SKi,m,R).  

• Repudiation oracle: For a RRS scheme, the oracle OR(SK1 ,⋯,SKl) is 
defined to take as input an index i ∈ [l], a message m, a ring R and a 
signature σ, and outputs a repudiation Repudiate(SKi,m,R,σ).  

Remark 1. We allow the ring R may contain some maliciously chosen 
verification keys in above oracles, i.e., there might be some verification 
keys ṼKj1 ,⋯, ṼKjk ∈ R s.t. ṼKj1 ,⋯, ṼKjk ∕∈ {VK1,⋯,VKl}, where VKi is 
the verification key corresponding to SKi. 

In this paper, we use the same definition of correctness as in [7], 
which requires that verification can be successful for honestly generated 
signatures with respect to rings containing maliciously chosen verifi
cation keys. 

Definition 3.2. (Correctness) We say that a RRS scheme satisfies 
correctness, if for every security parameter λ every PPT adversary A ,

and every message m, we have the following formula holds. 

Pr

⎡

⎢
⎢
⎣Verify(m,R, σ) = 1

(VK, SK)←Gen
(
1λ)

(
m, R̃

)
←A

(
1λ,VK

)

R = VK ∪ R̃
σ = Sign(SK,m,R)

⎤

⎥
⎥
⎦ = 1.

In this paper, we refer to adaptive anonymity against adversarially 
chosen keys, which is slightly different from the previous one in [7]. In 

Fig. 6. L 2 Language.  

Fig. A.7. Pseudorandomness experiment.  

Fig. A8. Correctness experiment.  

Fig. A9. Index-hiding experiment.  

6 For example, a criminal used a ring signature scheme to create an anony
mous threat letter. Then other members in the ring can use their signing key to 
generate a repudiation to exclude suspicion. 
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(VK, SK)← RRS.Gen(1λ) :
1: Generate two VRF key pairs:

(pk0, sk0), (pk1, sk1)← V.Gen(1λ).
2: Output VK = (pk0, pk1), SK = (sk0, sk1,VK).1

σ← RRS.Sign(SK,m,R) :
1: Parse R as described above and SK = (sk0, sk1,VK), if VK < R output ⊥ and halt, else define i∗ ∈ [n] such that R[i∗] = VK.
2: Generate two SPB key pairs:

(hk0, shk0), (hk1, shk1)← S.Gen(1λ, |R|, i∗),
and compute two SPB hash values:

h0 = S.Hash(hk0,R), h1 = S.Hash(hk1,R),
then compute SPB proof η← S.Open(hk0, shk0,R, i∗).

3: Choose a random bit string r ← {0, 1}λ, and compute VRF evaluations:
y00 = V.Eval(sk

0, (h0,m; r)), y10 = V.Eval(sk
1, (h0,m; r)),

then compute proofs τ0 ← V.Prove(sk0, (h0,m; r)), τ1 ← V.Prove(sk1, (h0,m; r)).
4: Choose random bit strings y01, y

1
1 ← {0, 1}α(λ).

5: Set x = (m, r, y00, y
1
0, y

0
1, y

1
1, hk0, hk1, h0, h1), witness w = (VK, i

∗, η, τ0, τ1, 0), and then compute the proof π← N.ProveL1 (x,w).
6: The signature is σ = (r, y00, y

1
0, y

0
1, y

1
1, hk0, hk1, π).

b← RRS.Verify(m,R, σ) :
1: Parse σ = (r, y00, y

1
0, y

0
1, y

1
1, hk0, hk1, π).

2: Compute h0′ = S.Hash(hk0,R), h1′ = S.Hash(hk1,R).
3: Output the result:

N.VerifyL1 ((m, r, y
0
0, y

1
0, y

0
1, y

1
1, hk0, hk1, h0′, h1′), π).

ξ ← RRS.Repudiate(SK,m,R, σ) :
1: Parse R as above, SK= (sk0, sk1,VK) and signature σ = (r, y00, y

1
0, y

0
1, y

1
1, hk0, hk1, π), if VK < R output ⊥ and halt. Else compute

b = RRS.Verify(m,R, σ), if b = 0 output ⊥ and halt.
2: Compute h̃0 = S.Hash(hk0,R), h̃1 = S.Hash(hk1,R).
3: Compute VRF evaluations:

y0 = V.Eval(sk1, (h̃0,m; r)), y1 = V.Eval(sk1, (h̃1,m; r)).
If y0 = y10 or y1 = y

1
1, output ⊥ and halt.

4: Compute z0 = V.Eval(sk1, y0), z1 = V.Eval(sk1, y1), and then compute VRF proofs
τ00 ← V.Prove(sk1, (h̃0,m; r)), τ10 ← V.Prove(sk1, (h̃1,m; r)), τ01 ← V.Prove(sk1, y0), τ11 ← V.Prove(sk1, y1).

5: Set x = (VK,m, r, y10, y
1
1, h̃0, h̃1, z0, z1), witness w = (y0, y1, τ00, τ01, τ10, τ11), and then compute the proof π′ ← N.ProveL2 (x,w).

6: The repudiation is ξ = (z0, z1, π′).
b← RRS.VerRepud(VK,m,R, σ, ξ) :
1: Parse R as above, σ = (r, y00, y

1
0, y

0
1, y

1
1, hk0, hk1, π), and ξ = (z0, z1, π′).

2: If VK < R, output 1 and halt. Compute:
b = RRS.Verify(m,R, σ),

if b = 0 output ⊥ and halt.
3: Compute h̃0′ = S.Hash(hk0,R), h̃1′ = S.Hash(hk1,R).
4: Output N.VerifyL2 ((VK,m, r, y

1
0, y

1
1, h̃0′, h̃1′, z0, z1), π′).

Algorithm 1. RRS Protocol  

H
. Lin and M
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particular, we require the adversary cannot query its OR(⋅) oracle at (⋅,
m∗,R∗, ⋅), where m∗ and R∗ are the challenge message and ring in the 
following experiment. In fact, the R-RS scheme in [7] only satisfies our 
anonymity definition and does not satisfy the definition they proposed. 
We can give an attack for their construction, which is given in 
Appendix B. 

To give a formal definition, we define a punctured signing oracle 
first. Let OR(m∗,R∗)

(SK1 ,⋯,SKl)
be a signing oracle which outputs ⊥ when it re

ceives both the ring R∗ and message m∗ as inputs, and otherwise gives 
the same response as OR(SK1 ,⋯,SKl). We refer to this oracle as “punctured 
at m∗ and R∗”. 

Definition 3.3. (Anonymity) We say a RRS scheme satisfies adaptive 
anonymity against adversarially chosen keys, if for every security 
parameter λ, every l = poly(λ) and every PPT adversary A , we have the 
formula (1) (Fig. 1) holds, where R̃ = {VK1,⋯,VKl},O 1 = (OC(SK1 ,⋯,SKl),

OS(SK1 ,⋯,SKl),OR(SK1 ,⋯,SKl)), O 2 = (OC(SK1 ,⋯,SKl),OS(SK1 ,⋯,SKl),OR(m∗ ,R∗)

(SK1 ,⋯,SKl)
)

and Q is the set of queries to OC. 

Remark 2. We allow the ring R∗ chosen by the adversary A 1 may 
contain maliciously chosen verification keys that were not generated by 
the challenger. 

We refer to unforgeable with respect to insider corruption, which is 
the same as the definition used in [7]. 

Definition 3.4. (Unforgeability) We say a RRS scheme is unforgeable 
with respect to insider corruption, if for every security parameter λ, every l =
poly(λ) and every PPT adversary A , we have the formula (2) (Fig. 2) holds, 
where R̃={VK1,⋯,VKl},O =(OC(SK1 ,⋯,SKl),OS(SK1 ,⋯,SKl),OR(SK1 ,⋯,SKl)),Q OC 

is the set of queries to OC and Q OS is the set of queries to OS. 

Repudiability requires two conditions, which are non-signer can 
repudiate and signer cannot repudiate. Intuitively, non-signer can repudiate 
captures the requirement that for any signature, a non signer can pro
duce a valid repudiation; signer cannot repudiate captures the require
ment that the signer cannot produce a valid repudiation. This 
requirement was proposed by [7] first. 

In our work, we use a slightly different variant of the repudiability 
property. We require the adversary cannot queries its OR oracle at (⋅,m∗,

R∗, ⋅) in the non-signer can repudiate experiment, where m∗ and R∗ are the 
challenge message and ring . 

Definition 3.5. (Repudiability) We say a RRS scheme satisfies repu
diability, if the following two conditions hold. 

1.(Non-signer can repudiate) For every security parameter λ and 
every PPT adversary A 1 we have the formula (3) (Fig.3) holds, where 
O 1 = (OSSK,ORVK), Q1 is the set of queries to OS and Q′

1 is the set of 
queries to OR. 

2.(Signer cannot repudiate) For every security parameter λ, every l =
poly(λ) and every PPT adversary A 2 we have the formula (4) (Fig. 3) 
holds, where R̃ = {VK1,⋯,VKl}, O 2 = (OS(SK1 ,⋯,SKl),OR(SK1 ,⋯,SKl)), Q2 is 
the set of queries to OS. 

Remark 3. Our definition of the repudiability property is slightly 
different from the previous one in [7]. We require the adversary cannot 
queries its OR oracle at (⋅,m∗,R∗, ⋅) in the experiment of “non-signer can 
repudiate”, where m∗ and R∗ are the challenge message and ring in the 
experiment. In fact, we find the R-RS scheme in [7] does not satisfy the 
definition they proposed or at least their proof is not correct(Lemma 

4.12 in [7]). The signing key of the R-RS scheme in [7] is SK = (sk
→

VRF,

VK) where sk
→

VRF = (sk1,⋯, sk4) are four VRF secret keys. The main idea 
of the proof of their “non-signer can repudiate” experiment is that, if 
there exists a PPT adversary A that breaks R-RS scheme in [7] (in the 
sense of non-signer can repudiate) with non-negligible advantage, then 
we have y3 = V.Eval(sk3, (R∗,m∗,φ)) or y4 = V.Eval(sk4, (R∗,m∗,φ))
with non-negligible probability, where y3, y4 are the part of signature. 
But in the experiment, the adversary can output a signature with y2 =

V.Eval(sk2, (R∗,m∗,φ)), and the rest of signature generated honestly, this 
type of adversary also has a non-negligible advantage to attack R-RS 
scheme. Because in the experiment, repudiation ξ = (ξ1,⋯, ξn) is 
generated by the challenger, the witness used to generate proof ξ is w =

(i∗,y′

1,y
′

2,⊥,⊥,τ′

1,τ
′

2,⊥,⊥,γ). But w is not a valid witness, thus there are 
non-negligible probability such that ξ cannot pass the verifying. But this 
type of adversary is not considered in [7]. 

Furthermore, we also need that no one can produce a valid repudi
ation on behalf of other people, as long as he does not have signing key. 
We call this requirement repudiation unforgeability, this is a new 
requirement we proposed. 

Definition 3.6. (Repudiation-Unforgeability) We say that a RRS 
scheme satisfies repudiation unforgeability, if for every security 
parameter λ and every PPT adversary A , we have the formula (5) 
(Fig. 4) holds, where O = (OSSK,ORSK), Q is the set of queries to OS and 
Q′ is the set of queries to OR. 

4. Construction of repudiable ring signatures 

In this section, we describe our repudiable ring signature scheme 
which satisfies a stronger definition, has logarithmic-size signature and 
repudiation, and is based on general assumptions. To give a formal 
description, we define the following two languages first. 

Let L 1 denote the language (Fig. 5): In other word, (m, r, y0
0, y1

0, y0
1,

y1
1,hk0,hk1, h0, h1) ∈ L 1 iff either (hk0, h0) binds to a key VK, y0

0 and y1
0 

are evaluations of (h0,m; r) for sk0 and sk1 or (hk1, h1) binds to a key VK,
y0

1 and y1
1 are evaluations of (h1,m; r) for sk0 and sk1. This language is 

used to produce signature. 
Let L 2 denote the language (Fig. 6): In other word, (VK,m, r, y1

0, y1
1,

h̃0, h̃1, z0, z1) ∈ L 2 iff z0 and z1 are evaluations of y0 and y1 for sk1,

where y0 and y1 are evaluations of (h̃0,m; r) and (h̃1,m; r) for sk1, and 
y0 ∕= y1

0, y1 ∕= y1
1. This language is used to produce repudiation. 

4.1. Formal Description of RRS 

Let (S.Gen, S.Hash, S.Open, S.Verify) be a somewhere perfectly 
binding hash function with private local opening and (V.Gen, V.Eval, V. 
Prove, V.Verify) be a verifiable random function with input domain 
{0,1}∗, output range {0,1}α(λ). Let (N.ProveL 1 ,N.VerifyL 1

) be a NIWI- 

Table C.2 
B ’ answers in the “unforgeability” experiment  

1. If A makes a corruption query for i∗, then B outputs a random bit and aborts.  
2. If A queries its signing oracle OS(⋅) on (i,m,R), where i ∕= i∗, B faithfully 

answers:RRS.Sign(SKi,m,R) to A .If A makes a signing query for (i∗,m,R), then B 

runs the honest signing algorithm RRS.Sign with the following modification: in step 
3, instead of using sk to generate y0

0 and τ0, B generates these by invoking its VRF 
oracle.  

3. If A queries its repudiation oracle OR(⋅) on (j,m,R, σ), B faithfully answers RRS.
Repudiate(SKj ,m,R, σ) to A .   

Table C3 
B ’ answers in the “non-singer can repudiate” experiment.  

1.When A makes a signing query for (⋅,m,R), B runs the honest signing algorithm 
RRS.Sign with the following modification: in step 3, instead of using sk to generate 
y1

0 and τ1, B generates these by invoking its VRF oracle.  
2. When A makes a repudiation query for inputs (⋅,m,R, σ), B runs the honest 

repudiating algorithm RRS.Repudiate with the following modification: in step 3 and 
step 4, instead of using sk to generate y0, y1, τ00, τ10, z0, z1, and τ01, τ11, B generates 
these by invoking its VRF oracle.   

H. Lin and M. Wang                                                                                                                                                                                                                           
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proof system for the language L 1 and (N.ProveL 2 , N.VerifyL 2
) be a 

NIWI-proof system for the language L 2. In the rest of this section, we 
use the following convention to parse a ring R, write R = {VK1,⋯,VKn},

and use R[k] denote k’th verification key VKk in R. Our repudiable ring 
signature scheme RRS is given in Algorithm 1.  

Note that the first three algorithms can be used as a general ring 
signature system alone. 

4.2. Efficiency 

We now show that our scheme has only logarithmic-size signatures 
and repudiations. For a signature σ = (r, y0

0, y1
0, y0

1, y1
1,hk0,hk1, π), the 

size of r, y0
0, y1

0, y0
1, y1

1 are poly(λ) and independent of the ring-size n. 
Since SPB is efficient, we have hk0,hk1 are bounded by log(n)⋅poly(λ). 
Also by the efficiency of SPB the size of the witness τ is log(n)⋅poly(λ)
and the SPB verification function S.Verify can be computed by a circuit 
of size log(n)⋅poly(λ). Therefore, the verification circuit Cx for the lan
guage L 1 and statement x = (m, r, y0

0, y1
0, y0

1, y1
1,hk0,hk1, h0, h1) has size 

log(n)⋅poly(λ). By the proof-size property of the NIWI proof it holds that 
|π| = |Cx|⋅poly(λ) = log(n)⋅poly(λ). Consequently, the size of signatures 
σ is log(n)⋅poly(λ). 

For a repudiation ξ = (z0, z1, π′

), the size of z0, z1 are poly(λ) and 
independent of the ring-size n. Using the same analysis we can also get 
that the size of proof π′ is log(n)⋅poly(λ). Consequently, the size of re
pudiations ξ is also log(n)⋅poly(λ). 

5. Security of RRS 

In this section, we present the security of our scheme. In particular, 
we prove that our RRS scheme satisfies five conditions which has been 
described in Section 3. 

5.1. Correctness 

We first prove our RRS scheme satisfies correctness when NIWI has 
completeness, VRF has completeness and SPB has correctness. 

Theorem 5.1. The repudiable ring signature scheme RRS satisfies cor
rectness, given that NIWI has completeness, VRF has completeness and SPB 
has correctness. 

Proof. Assume (VK, SK) is generated by RRS.Gen(1λ), signature σ = (r,
y0

0, y1
0, y0

1, y1
1,hk0,hk1, π) is the output of RRS.Sign(SK,m,R), where R =

(VK1,⋯VKn) is a ring generated by adversary, and R[i] = VK. We will 
show that it holds RRS.Verify(m,R,σ) = 1. First note that since S.Hash is 
a deterministic algorithm, it holds h′

0 = h0 and h′

1 = h1. According to the 
RRS.Sign algorithm and the correctness of SPB, there is a η, such that it 
holds that S.Verify(hk0,h0, i,VK,η) = 1. Moreover, by the completeness 
of VRF, there are τ0, τ1 such that it holds 

V.Verify(pk0, (h0,m; r), y0
0, τ0) = 1, V.Verify(pk1,(h0,m; r),y1

0,τ1) = 1. 
Therefore, (m, r, y0

0, y1
0, y0

1, y1
1,hk0,hk1, h0, h1) ∈ L 1 and (VK, i, η, τ0,

τ1, 0) is a witness for the membership. Thus, by the correctness of NIWI it 
holds that 

N.VerifyL 1
((m, r, y0

0, y1
0, y0

1, y1
1,hk0,hk1, h0, h1), π) = 1, and conse

quently RRS.Verify(m,R,σ) = 1.□ 

For the following four theorems, we only give the proof sketch here. 
Please refer Appendix C for the formal proof. 

5.2. Anonymity 

We now turn to establish the anonymity for our RRS scheme. 

Theorem 5.2. The repudiable ring signature scheme RRS satisfies ano
nymity against adversarially chosen keys, given that NIWI has witness 
indistinguishability, VRF has pseudorandomness, and SPB has index hiding. 

Proof Sketch The main idea of the proof is that, first move the index of 
hk1 from i0 to i1 and argue indistinguishability via the index-hiding 
property of SPB. Next we switch y0

1, y1
1 to the evaluation of (h1,m; r)

and (h1,m; r), where h1 is the digest of R for new key hk1. This modifi
cation will not be detected due to the pseudorandom property of VRF. 
Now, we can switch the NIWI witness to (VKi1 , ind1, η1, τ0

1, τ1
1, 1), and by 

witness indistinguishability of NIWI, this signature also satisfies indis
tinguishability. Then, we perform the first two changes above for hk0 

and y0
0, y1

0, switch the witness back to the witness for j = 0, and finally 
replace y0

1, y1
1 with a random string. The signature in the last experiment 

is now a real signature of m under VKi1 . 

5.3. Unforgeability 

We will turn to show that RRS is unforgeable. 

Theorem 5.3. The repudiable ring signature scheme RRS is unforgeable, 
given that NIWI has soundness, VRF has completeness, uniqueness and 
pseudorandomness, and SPB has somewhere perfectly binding. 

Proof Sketch The main idea of the proof is that, if A can forge a valid 
signature, then by soundness of NIWI, there exists a witness w = (VK, i,
η, τ0, τ1, j) s.t. we have 

S.Verify(hkj, hj, i,VK, η) = 1, V.Verify(pk0, (hj,m; r), y0
j , τ0) = 1, V.

Verify(pk1, (hj,m; r), y1
j , τ1) = 1, where VK = (pk0, pk1). Since SPB has 

somewhere perfectly binding, we have VK = R[i]. And by the 
completeness and uniqueness of the VRF, we have 

y0
j = V.Eval(pk0, (hj,m, r)), y1

j = V.Eval(pk1, (hj,m, r)), and by this 
we can attack the pseudorandomness of VRF. 

5.4. Repudiability 

We will turn to show that our RRS is repudiable. 

Theorem 5.4. The repudiable ring signature scheme RRS is repudiable, 
given that NIWI has completeness, soundness, VRF has completeness, 
uniqueness, pseudorandomness, and SPB has somewhere perfectly binding. 

Proof Sketch The main idea of the proof is that, by the definition of 
repudiability, we need to proof non-signer can repudiate and signer cannot 
repudiate separately. The proof of non-signer can repudiate is that, if 
there is an honest non-signer cannot repudiate, then by the soundness of 
NIWI, we have y0 = y1

0 or y1 = y1
1 hold, and by this we can attack the 

pseudorandomness of VRF. The proof of signer cannot repudiate is that, 
if A can produce a valid repudiation for himself, then by the soundness 
of NIWI, we can prove that the signature which A outputs is not 
generated by himself. And by this we can also attack the pseudor
andomness of VRF. 

5.5. Repudiation unforgeability 

We now turn to show that our RRS scheme satisfies repudiation 
unforgeability. 

Theorem 5.5. The repudiable ring signature scheme RRS satisfies repu
diation unforgeability, given that NIWI has soundness, VRF has complete
ness, uniqueness, and pseudorandomness. 

Proof Sketch The main idea of the proof is that, if A can forge a valid 
repudiation for other member, then by the soundness of NIWI, there 
must be y0, τ00, τ01, subject to 

V.Verify(pk1, (h0,m; r), y0, τ00) = 1, V.Verify(pk1,y0,z0, τ01) = 1. 
By completeness and uniqueness of VRF, we have y0 = V.Eval(sk1,

(h0,m; r)), and z0 = V.Eval(sk1, y0), and by this we can attack the 
pseudorandomness of VRF. 
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6. Conclusions 

Repudiable ring signature is an extension of the concept of ring 
signature, which allows non-signer to repudiate a signature that was not 
produced by him. Our work focuses on improving the security model of 
the repudiable ring signature as well as saving the size of signature and 
repudiation. In particular, we propose a new requirement for the repu
diable ring signature, which is repudiation unforgeability. In terms of 
design, we present a new scheme which beats the state-of-the-art. An 
interesting open question is whether the ability of forgery repudiation 
can be used to launch some attacks on the repudiable ring signature. 
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Appendix A. Formal Definitions of Some Building Blocks 

Definition A.1. (NIWI) A non interactive witness indistinguishable proof system NIWI for the language L R consists of two PPT algorithms (Prove, 
Verify) with the following syntax. 

Prove(1λ,x,w): takes as input a security parameter 1λ, a statement x and a witness w, and outputs either a proof π or ⊥. 
Verify(x,π): takes as input a statement x and a proof π, outputs either 0 or 1. 

We require it satisfies the following properties. 

Completeness: for every λ and every (x,w) ∈ R , we have 

Pr
[
Verify(x, π) = 1

⃒
⃒π←Prove

(
1λ, x,w

)]
= 1,

where the probability is taken over the randomness of Prove and Verify algorithms. 
Soundness: for every λ, every x ∕∈ L R and every π ∈ {0,1}∗, we have 

Pr[Verify(x, π) = 1] ≤ negl(λ),

where the probability is taken over the randomness of Verify algorithm . 
Witness-Indistinguishability: for any sequence 

I = {(x,w0,w1) : (x,w0), (x,w1) ∈ R },

we have 
{

Prove
(
1λ, x,w0

)}
≈
c {

Prove
(
1λ, x,w1

)}
.

Definition A.2. (VRF) A verifiable random function VRF with input length a(λ), output length b(λ) consists of a tuple of polynomial-time algo
rithms (Gen, Eval,Prove,Verify) with the following syntax. 

Gen(1λ): takes as input a security parameter 1λ, and outputs a pair of keys (pk, sk), this algorithm is probabilistic. 
Eval(sk,x): takes as input a secret key sk and x ∈ {0,1}a(λ)

, and outputs y ∈ {0,1}b(λ)
, this algorithm is deterministic. 

Prove(sk,x): takes as input a secret key sk and x ∈ {0,1}a(λ)
, and outputs a proof π, this algorithm is probabilistic. 

Verify(pk,x,y,π): takes as input a public key pk, x ∈ {0,1}a(λ)
, y ∈ {0,1}b(λ)

, and a proof π, and outputs either 0 or 1, this algorithm is probabilistic. 

We require it satisfies the following properties. 
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Completeness: for every λ and every x ∈ {0,1}a(λ)
, we have the following formula holds, where the probability is taken over the randomness of 

Gen, Prove and Verify algorithms. 

Pr

⎡

⎣Verify(pk, x, y, π) = 1
(pk, sk)←Gen

(
1λ)

y = Eval(sk, x)
π←Prove(sk, x)

⎤

⎦ = 1.

Uniqueness: for every pk, x, y0, π0 and y1, π1 such that y0 ∕= y1, the following holds for either i = 0 or i = 1 :

Pr[Verify(pk, x, yi, πi)= 1]〈negl(λ),

where the probability is taken over the randomness of Verify algorithm. 
Pseudorandomness: for any PPT adversary A = (A 1,A 2) we have formula (A.1) (Fig. A.7) holds, where oracle O = (Eval(sk, ⋅), Prove(sk, ⋅)) and 
Q is the set of oracle queries made by A . 

Definition A.3. (SPB) A somewhere perfectly binding hash family with private local opening SPB is given by a tuple of polynomial-time algorithms 
(Gen,Hash, Open,Verify) with the following syntax: 

Gen(1λ,n, i):7 Takes as input a security parameter 1λ, a database size n and an index i, and outputs a hashing key hk and a private key shk. 
Hash(hk,x): Takes as input a hashing key hk and a database x and outputs a digest h. 
Open(hk, shk,x, j): Takes as input a hashing key hk, a private key shk, a database x and an index j and outputs a witness π. 
Verify(hk,h, j,u,π) Takes as input a hashing key hk, a digest h, an index j, an alphabet u and a witness π, and outputs either 0 or 1. 

We require the following properties for the SPB: 

Correctness: for every security parameter λ, every n = poly(λ), every database x of size n and every index i ∈ [n], we have formula (A.2) (Fig. A.8) 
holds, where the probability is taken over the randomness of Gen, Open and Verify algorithm. 
Somewhere Perfectly Binding: for every security parameter λ, every n = poly(λ), every database x of size n, every index i ∈ [n], every alphabet 
value u and every witness π, we have the following formula holds, where the hash key hk is generated by Gen(1λ,n, ind). 

Pr
[

i = ind, u = x[ind] h = Hash(hk, x)
Verify(hk, h, i, u, π) = 1

]

= 1.

Index Hiding: for any PPT adversary A = (A 1,A 2) we have formula (A.3) (Fig. A.9) holds. To simplify notion, we will not provide the block 
size of databases as an input to SPB.Gen but rather assume that the block size for the specific application context is hardwired. 

Remark 4. We can input any j ∈ [n] into Open algorithm, but the only j that was used to generate hashing key can produce a valid witness. 

Appendix B. An Attack on [7] 

In [7], they claim their repudiable ring signature scheme satisfies adaptive anonymity against adversarially chosen keys they proposed. But we find 
it is wrong, their construction can only satisfies anonymity (Definition 3.3) we proposed. Here, we will give an attack on the anonymity of their 
construction. 

Let R-RS be the repudiable ring signature proposed in [7], and let OR(⋅) be the repudiation oracle. 
Adversary A : given 1λ, VK1,⋯,VKl, and OR(⋅).  

1. The adversary A chooses (m,R, j0, j1) at random, and gives it to the experiment.  
2. The challenger gives A a signature σ, A parses signature σ = ((π1,⋯πn), (y1,⋯y4),φ), then A chooses y′←{0,1}l

, and generates new signature: 
σ′

= ((π1,⋯πn), (y1,⋯y3,y
′

),φ).  
3. The adversary A gives the input j0,m,R, σ′ to its repudiation oracle OR(⋅), and then get a repudiation ξ = (ξ1,⋯,ξn).  
4. The adversary A runs the honest verification algorithm R-RS.VerRepud and outputs the verification result R-RS(R,VKj0 , σ

′

, ξ) to the challenger. 

We find that if the challenger’s bit b = 0, then by the definition of R-RS.Repudiate, in this situation ξ cannot pass through the verification. When b 
= 1, since R-RS.Repudiate only use y1, y2, this change does not affect the generation of reputation, and ξ can pass through the verification. Therefore, 
A has non-negligible advantage in the experiment. 

7 Where we need i ∈ [n], the same thing has to be true for the following j. 
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Appendix C. Security Proofs of RRS 

Proof of Theorem 5.2.. Let A be a PPT adversary against the anonymity of RRS scheme. Assume that A makes at most q = poly(λ) queries for any 
oracle. Let in the following ind0 be the index of VKi0 in R, and ind1 be the index of VKi1 in R, where (m,R, i0, i1) is the challenge query of A . Now, 
consider the following hybrids: 

H 1: This is the real experiment with challenge bit b = 0. 
H 2: Same as H 1, except replace 

hk1 by (hk1, shk1) ←S.Gen(1λ,
⃒
⃒R
⃒
⃒, ind1). 

H 3: Same as H 2, except replace 
y1

1 by y1
1 = V.Eval(sk1

i1 , (h1,m; r)). 
H 4: Same as H 3, except replace y0

1 by 
y0

1 = V.Eval(sk0
i1 , (h1,m; r)). 

H 5: Same as H 4, except that we compute witness by 
η←S.Open(hk1, shk1,R, ind1), τ0←V.Prove(sk0

i1 , (h1,m; r)), τ1←V.Prove(sk1
i1 , (h1,m; r)),

and then use the witness w = (VKi1 , ind1, η, τ0, τ1, 1) to compute π. 

H 6: Same as H 5, except that we compute y0
0 and y1

0 by y0
0,y1

0←{0,1}α(λ). 
H 7: Same as H 6, except replace hk0 by 

(hk0, shk0) ←S.Gen(1λ,
⃒
⃒R
⃒
⃒, ind1). 

H 8: Same as H 7, except replace y0
0 and y1

0 by 
y0

0 = V.Eval(sk0
i1 , (h0,m; r)), y1

0 = V.Eval(sk1
i1 , (h0,m; r)). 

H 9: Same as H 8, except that we compute witness by 
η←S.Open(hk0, shk0,R, ind1), τ0←V.Prove(sk0

i1 , (h0,m; r)), τ1←V.Prove(sk1
i1 , (h0,m; r)),

and use the witness w = (VKi1 , ind1, η, τ0, τ1,0) to compute π. 

H 10: Same as H 9, except that we compute y0
1 and y1

1 by y0
1,y1

1←{0,1}α(λ). This is identical to the real experiment with b = 1. 

We will show indistinguishability of the hybrids via a sequence of claims. 
Claim 1 H 1 and H 2 are computationally indistinguishable, given that SPB is index hiding. More specifically, there exists a reduction R 1 such that 

AdvIndex− Hiding
(
R

A

1

)
= AdvH 1 ,H 2 (A ).

We will provide an informal description of R 1. The R 1 simulates H 1 faithfully, until A outputs a challenge query (m,R,i0,i1). Then R 1 gives (|R|,
ind0, ind1) to the SPB Index-Hiding experiment and receives a hashing key hk∗. R 1 continues the simulation of H 1 faithfully, except that in the 
challenge signature it sets hk1 = hk∗. In the end, R 1 outputs the output of A . 

Clearly, if the challenge bit of the Index-Hiding experiment is 0 then R 1 simulates H 1 perfectly. And if the challenge bit of the Index-Hiding 
experiment is 1 then R 1 simulates H 2 perfectly. The claim follows. 

Claim 2 We claim that H 2 and H 3 are computationally indistinguishable, given that the VRF is pseudorandom. More specifically, there exists a 
reduction R 2 such that 

q⋅AdvVRF
(
R

A

2

)
≥ AdvH 2 ,H 3 (A ).

The reduction R 2 receives as input a public key pk∗. R 2 simulates H 2 faithfully, except for the following. Before the simulation starts, R 2 chooses 
a random index i∗ and sets VKi∗ = (pk0

i∗ , pk∗), where pk0
i∗ is generated as in H 2 and pk∗ is the input of R 2. R 2 continues the simulation of H 2 until A 

announces (i0, i1,m,R). If it holds i1 ∕= i∗, R 2 outputs ⊥. Otherwise, R 2 continues the simulation of H 2 faithfully, except that instead of computing y1
1 

itself, R 2 sends (h1,m; r) to the VRF pseudorandomness experiment, the experiment return a value y, and R 2 uses y in the challenge signature. R 2 

continues the simulation and outputs whatever A outputs. 
Clearly, if the challenge bit of the VRF experiment is 0 then R 2 simulates H 2 perfectly, and if the challenge bit of the VRF experiment is 1 then R 2 

simulates H 3 perfectly. And since we require A can not query OR(⋅) with (⋅,m,R, ⋅), after A received a challenge signature, A cannot query the VRF at 
the challenge value. Therefore, H 2 and H 3 are computationally indistinguishable. 

Claim 3 We claim H 3 and H 4 are computationally indistinguishable, given that the VRF is pseudorandom. More specifically, there exists a 
reduction R 3 such that 

q⋅AdvVRF
(
R

A

3

)
≥ AdvH 3 ,H 4 (A ).

The proof follows analogously to the proof of Claim 2. 
Claim 4 We claim H 4 and H 5 are computationally indistinguishable, give that NIWI is computationally witness indistinguishable. More specif

ically, there exists a reduction R 4 against the witness indistinguishability of NIWI such that 

AdvWI
(
R

A

4

)
= AdvH 4 ,H 5 (A ).

The reduction R 4 simulates H 4 faithfully, until the challenge signature is computed. Instead of computing the proof π itself, R 4 sends the 
statement  

x = (m, r, y0
0, y1

0, y0
1, y1

1,hk0,hk1, h0, h1) and the witness w0= (VKi0 , ind0, η0, τ0
0, τ1

0,0) and w1 = (VKi1 , ind1, η1, τ0
1, τ1

1, 1) to the NIWI witness indis
tinguishability experiment. The experiment returns a proof π∗, and R 4 use the proof π∗ in the challenge signature. R 4 continues the simulation of H 4 
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faithfully and outputs whatever the simulated A outputs. 
Clearly, if the challenge bit of the witness indistinguishability experiment is 0, then R 4 simulates H 4 perfectly. On the other hand, if the challenge 

bit is 1, then R 4 simulates H 5 perfectly. Thus, the claim follows. 
Claim 5 H 5 and H 6 are computationally indistinguishable, given that the VRF is pseudorandom. The proof follows analogously to the proof of 

Claim 2. 
Claim 6 H 6 and H 7 are computationally indistinguishable, given that SPB is index hiding. The proof follows analogously to the proof of Claim 1. 
Claim 7 H 7 and H 8 are computationally indistinguishable, given that the VRF is pseudorandom. The proof follows analogously to the proof of 

Claim 2. 
Claim 8 H 8 and H 9 are computationally indistinguishable, give that NIWI is computationally witness indistinguishable. The proof follows 

analogously to the proof of Claim 4. 
Claim 9 H 9 and H 10 are computationally indistinguishable, given that VRF is pseudorandom. The proof follows analogously to the proof of Claim 

2.□ 

Proof of Theorem 5.3.. Assume there exists a PPT adversary A that breaks the unforgeability experiment with non-negligible probability. Then we 
will construct an adversary B that breaks the pseudorandomness of the underlying VRF scheme with non-negligible probability. 

Let pk∗ be the public key obtained from VRF challenger. B first runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index i∗ ∈ [l],
and set VKi∗ = (pk∗,pk1

i∗ ). Then B simulates unforgeability experiment faithfully and answers A ’s oracle queries as described in Table C.28. 
Let (m∗,R∗, σ) be the output of A . Then B computes t = RRS.Verify(m∗,R∗, σ). If t = 0, B outputs a random bit and aborts. Else B parses the 

signature as σ = (r, y0
0, y1

0, y0
1, y1

1,hk0,hk1, π), and computes h0 = S.Hash(hk0,R∗), h1 = S.Hash(hk1,R∗). Then B chooses a random bit k←{0, 1} and 
submits (hk,m∗; r) to the VRF challenger and then receives response y. If y = y0

k , B outputs 0. Otherwise, B outputs a random bit. 
It remains to show that B has non-negligible advantage to attack the pseudorandomness of VRF. First note that the distribution (i.e., verification 

keys and oracle responses) of the view of A is unaffected by B ’s choice of i∗, until the point at which A submits an oracle query to oracle OC for input 
i∗. Since i∗ is chosen at random by B , it follows that with probability at least 1l the adversary A does not trigger this abort. 

Now, we assume that A does not query OC oracle on i∗ and A wins the unforgeability experiment. Then σ is a valid signature of m∗ with respect to 
R∗, i.e. 

RRS.Verify(m∗,R∗,σ) = 1. 
Thus, by the soundness of NIWI, there exists a witness w = (VK, i, η, τ0, τ1, j), s.t. it holds 
S.Verify(hkj, hj, i,VK, η) = 1, V.Verify(pk0, (hj,m∗; r), y0

j , τ0) = 1, V.Verify(pk1, (hj,m∗; r),y1
j , τ1) = 1. 

Since SPB has somewhere perfectly binding, we have VK = R∗[i], and by the completeness and uniqueness of the VRF, we have 
y0

j = V.Eval(sk0, (hj,m∗; r)), y1
j = V.Eval(sk1, (hj,m∗; r)). 

When i = i∗ and j = k happened, we have y0
k = V.Eval(sk∗,(hk,m∗; r)). In this case, if the VRF challenger’s bit b = 0, then we have y = y0

k . Recall that 
this is the trigger condition for B to output 0. If the VRF challenger’s bit b = 1, then y is truly random strings. Thus, by the definition of B , B outputs a 
random bit with overwhelm probability. 

Now let us consider the probability that i = i∗ and j = k occurs condition on no abort happened. Since i∗ is chosen at random by B , it follows that 
with probability at least 1l , i = i∗ occurs. And since k is chosen at random by B , it follows that with probability at least 12, j = k occurs. 

Furthermore, since A cannot query its signing oracle OS(⋅) on (⋅,m∗,R∗), B has not previously made an oracle query on the VRF challenge message 
(hk,m∗; r) during the query phase. 

All together, we can conclude that 

AdvVRF(B ) ≥
1

8l2⋅Adv(A ).

This concludes the proof.□ 

Proof of Theorem 5.4.. We will prove each of the desired security properties in turn. Non-signer can repudiate Assume there exists a PPT adversary A 

that breaks our RRS scheme (in the non-singer can repudiate experiment) with non-negligible probability. Then we will construct an adversary B that 
breaks the pseudorandomness of the underlying VRF scheme with non-negligible probability. 

Let pk∗ be the public key obtained from VRF challenger. B first runs RRS.Gen(1λ) to generate a pair of keys, and set VK = (pk0, pk∗). Then B 

simulates “non-singer can repudiate” experiment faithfully and answers A ’s oracle queries as described in Table C.3. 
Let (m∗,R∗, σ) be the output of A . Then B computes t = RRS.Verify(m∗,R∗,σ). If t = 0, B outputs a random bit and aborts. Else B parses signature 

as σ = (r, y0
0, y1

0, y0
1, y1

1,hk0,hk1, π), and computes SPB hash value h0 = S.Hash(hk0,R∗), h1 = S.Hash(hk1,R∗). Then B chooses a random bit k←{0,1}
and submits (hk,m∗; r) to the VRF challenger and then receive responses y. If y = y1

k , B outputs 0. Otherwise, B outputs a random bit. 
It remains to show that B has non-negligible advantage to attack the pseudorandomness of VRF. Assume A wins the experiment, then we have 

VerRepud will reject an honestly generated repudiation ξ which generated by VK, i.e. RRS.VerRepud(VK,m∗,R∗, σ, ξ) = 0, where ξ← 
RRS.Repudiate(SK,m∗,R∗,σ). Since ξ is honestly generated with respect to VK, and by the definition of RRS.Repudiate and RRS.VerRepud, we have 
there exist j ∈ {0,1} s.t. yj = y1

j , where yj = V.Eval(sk∗,(h̃j,m∗; r)). Since if the above formula are not true, then by the completeness of the NIWI and 
the completeness of the VRF, we have RRS.VerRepud(VK,m∗,R∗,σ,ξ) = 1. 

When j = k happens, we have 
y1

k = V.Eval(sk∗, (hk,m∗; r)). 
In this case, if the VRF challenger’s bit b = 0, then we have y = y1

k . Recall that this is the trigger condition for B to output 0. If the VRF challenger’s 
bit b = 1, then y is truly random strings. Thus, by the definition of B , B outputs a random bit with overwhelm probability. Since k is chosen at random 
by B , it follows that with probability 12, j = k occurs. 

8 Since sk is not used by RRS.Repudiate, B does not need to invoke the VRF oracle when A queries its repudiation oracle OR(⋅). 
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Furthermore, since A cannot query its signing oracle OS(⋅) on (⋅,m∗,R∗) and cannot query its repudiation oracle on (⋅,m∗,R∗, ⋅), B has not 
previously made an oracle query on the VRF challenge message (hk,m∗; r) during the query phase. 

Besides, when A does not win the experiment, by the soundness of NIWI, we have y ∕= y1
k . In this case, B outputs a random bit. 

All together, we can conclude that 

AdvVRF(B ) ≥
1
8

⋅Adv(A ).

This concludes the proof of non-signer can repudiate. 
Signer cannot repudiate Assume there exists a PPT adversary A that breaks our RRS scheme (in the signer cannot repudiate experiment) with non- 

negligible probability. Then we will construct an adversary B that breaks the pseudorandomness of the underlying VRF scheme with non-negligible 
probability. 

Let pk∗ be the public key obtained from the VRF challenger. B first runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index i∗ ∈
[l], and set VKi∗ = (pk∗,pk1

i∗ ). Then B simulates “signer cannot repudiate” experiment faithfully and answers A ’s signing oracle OS(⋅) and repudiation 
oracle OR(⋅) queries in the same way as in the “unforgeability” experiment (Table C.2). 

Let (m∗,R∗, σ, {ξi}VKi∈R∗\R̃
) be the output of A . B runs the verifying algorithm t0 = RRS.Verify(m∗,R∗, σ) and ti = RRS.VerRepud(VKi,m∗,R∗, σ, ξi)

for all VKi ∈ R∗\R̃. If there exists a ti = 0, B outputs a random bit and aborts. Else B parses σ = (r, y0
0, y1

0, y0
1, y1

1,hk0,hk1, π), and computes h0 =

S.Hash(hk0,R∗), h1 = S.Hash(hk1,R∗). Then B chooses a random bit k←{0,1} and submits (hk,m∗; r) to the VRF challenger and then receives response 
y. If y = y0

k , B outputs 0. Otherwise, B outputs a random bit. 
It remains to show that adversary B has non-negligible advantage to attack the pseudorandomness of VRF. First note that the distribution (i.e., 

verification keys and oracle responses) of the view of A is unaffected by B ’s choice of i∗. Assume that A wins the experiment, then σ is a valid 
signature of m∗ with respect to R∗. By soundness of NIWI, there exists a witness w = (VK, i, η, τ0, τ1, j), s.t. it holds S.Verify(hkj,hj, i,VK,η) = 1,

V.Verify(pk0, (hj,m∗; r), y0
j , τ0) = 1, V.Verify(pk1, (hj,m∗; r), y1

j , τ1) = 1, where VK = (pk0,pk1). By somewhere perfectly binding of SPB, we have VK 
= R∗[i]. By the completeness and uniqueness of the VRF, we have y0

j = V.Eval(sk0, (hj,m∗; r)) and y1
j = V.Eval(sk1, (hj,m∗; r)). 

We now show that we have VK⊂R̃, i.e. VK is generated by B . Since if VK⊂R∗\R̃, then ξi is a valid repudiation with respect to VK. By soundness of 
NIWI, there exists a witness w′

= (y0, y1, τ00, τ01, τ10, τ11), s.t. it holds 
V.Verify(pk1, (h0,m∗; r), y0, τ00) = 1, V.Verify(pk1, (h1,m∗; r),y1, τ10) = 1. 
By completeness and uniqueness of VRF, we have y0 = V.Eval(pk1, (h0,m∗; r)) and y1 = V.Eval(pk1, (h1,m∗; r)). Therefore, by the uniqueness of 

VRF, we have 
(y0 = y1

0) ∨ (y1 = y1
1) with overwhelm probability. This is contradictory to the soundness of NIWI. 

When VK = VKi∗ and j = k happens, we have y0
k = V.Eval(sk∗,(hk,m∗; r)). In this case, if the VRF challenger’s bit b = 0, then we have y = y0

k . Recall 
that this is the trigger condition for B to output 0. If the VRF challenger’s bit b = 1, then y is truly random strings. Thus, by the definition of B , B 

outputs a random bit with overwhelm probability. Since i∗ is chosen at random by B , it follows that with probability at least 1l , VK = VKi∗ occurs. And 
since k is chosen at random by B , it follows that with probability at least 12, j = k occurs. 

All together, we can conclude that 

AdvVRF(B ) ≥
1
8l

⋅Adv(A ).

This concludes the proof of signer cannot repudiate.□ 

Proof of Theorem 5.5.. Assume there exists a PPT adversary A that breaks the repudiation unforgeability experiment with non-negligible prob
ability. Then we will construct an adversary B that breaks the pseudorandomness of the underlying VRF scheme with non-negligible probability. 

Let pk∗ be the public key obtained from VRF challenger. B first runs RRS.Gen(1λ) to generate a pair of keys, and set VK = (pk0, pk∗). Then B 

simulates “repudiation unforgeability” experiment faithfully and answers A ’s signing oracle OS(⋅) and repudiation oracle queries in the same way as 
in the “non-singer can repudiate” experiment (Table C.3). 

Let (m∗,R∗, σ, ξ) be the output of A . B computes 
b = RRS.Verify(m∗,R∗, σ), b′

= RRS.VerRepud(VK,m∗,R∗,σ,ξ). 
If b = 0 or b′

= 0, B outputs a random bit and aborts. Else B parses σ = (r, y0
0, y1

0, y0
1, y1

1,hk0,hk1, π) and ξ = (z0, z1, π′

), and computes h0 =

SPB.Hash(hk0,R∗). B queries its oracle Eval(⋅) on (h0,m∗; r) and get x, then B submits x to the VRF challenger and then receives a response y. If y = z0,

B outputs 0. Otherwise, B outputs a random bit. 
It remains to show that adversary B has non-negligible advantage to attack the pseudorandomness of VRF. Assume A wins the experiment, then ξ 

will be a valid repudiation of VK respect to σ, i.e. 
RRS.VerRepud(VK,m∗,R∗,σ,ξ) = 1. 
Thus, by the soundness of NIWI, there must exist y0, and τ00, τ01, s.t. we have V.Verify(pk, (h0,m∗; r), y0, τ00) = 1 and V.Verify(pk,y0,z0,τ01) = 1. 

And since VRF has completeness and uniqueness, we have 
y0 = V.Eval(sk, (h0,m∗; r)), z0 = V.Eval(sk,y0). 
In this case, if the VRF challenger’s bit b = 0, then we have y = z0. Recall that this is the trigger condition for B to output 0. If the VRF challenger’s 

bit b = 1, then y is truly random strings. Thus, by the definition of B , B outputs a random bit with overwhelm probability. 
Furthermore, since A cannot query its signing oracle OS(⋅) on (⋅,m∗,R∗) and cannot query its repudiation oracle on (⋅,m∗,R∗, ⋅), B has not 

previously made an oracle query on the VRF challenge message x during the query phase. 
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All together, we can conclude that 

AdvVRF(B ) ≥
1
4

⋅AdvReun1(A ).

This concludes the proof.□ 
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