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ABSTRACT
Payment channels have been a promising solution to blockchain

scalability. While payment channels for script-empowered

blockchains (such as Bitcoin and Ethereum) have been well studied,

developing payment channels for scriptless blockchains (such as

Monero) is considered challenging. In particular, enabling bidirec-

tional payment on scriptless blockchains remains an open chal-

lenge.

This work closes this gap by providing AuxChannel, the first

bi-directional payment channel protocol for scriptless blockchains,

meaning that building payment channels only requires the support

of verifiably encrypted signature (aka adaptor signature) on the

underlying blockchain. AuxChannel leverages verifiably encrypted

signature to create a commitment for each off-chain payment and

deploys a verifiable decentralised key escrow service to resolve

dispute. To enable efficient construction of AuxChannel, we intro-

duce a new cryptographic primitive, named Consecutive Verifiably
Encrypted Signature (CVES), as a core building block and it can also

be of independent interest for other applications. We provide and

implement a provably secure instantiation on Schnorr-based CVES.

We also provide a formal security analysis on the security of the

proposed AuxChannel.
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1 INTRODUCTION
Payment channel [21] is a promising solution to improve the limited

throughput of blockchain (in particular, Proof-of-Work blockchain

such as Bitcoin). It allows users to make multiple transactions with-

out committing all of them on-chain. In a typical payment channel,

only two transactions, namely the first one representing the initial

state and second one representing the final state of all transactions

in between, are added to the blockchain while a large number of

intermediate transactions can be executed between the participants

without needing to be recorded on-chain. This greatly improves

the blockchain throughput as only two transactions (representing

a large number of transactions) need to go through the slow and

expensive process of the distributed blockchain consensus [29].

Payment channels can be uni-directional or bi-directional. A

uni-directional payment channel only enables one party to pay the

other within a limited lifespan, whereas a bi-directional payment

channel allows duplex payments. Thus, the uni-directional payment

channel will be closed if the payer’s balance is insufficient to make

a new payment. In contract, bi-directional payment channels are

more flexible, as it allows parties to pay each other and rebalance

the channel.

Deploying either type of payment channels requires the un-

derlying blockchain to support script. For unidirectional payment

channel, the script is mainly used to unlock the payer’s fund when

the payee is not responding.

In particular, with unidirectional payment channel, as a payer

performs incremential payment to a payee (by creating a transaction

signed by the payer), the payee always has an incentive to close the

channel with the latest state (where the payee has largest balance)

by cross-signing the received payment. However, it is possible that

the payee is not responding the request to close the channel, for

example when the payee has never received any payment. In this

case, the payer’s balance is locked. To resolve this issue, a timelock

function is desired to unlock the payer’s deposit. Time-lock function

(such as hashed time lock [30]) defines a timer, such that upon

timeout the payer will get full refund of its channel balance unless

the payee has reacted to it by closing the channel before timeout.

However, time lock is not sufficient to resolve dispute in bidirec-

tional payment channels. Suppose Alice and Bob are establishing

a bidirectional payment channel together. Initially, both parties

deposit 5 coins in the channel respectively. After several sessions of

payments, Alice has 10 coins and Bob has 0 coin. To close the chan-

nel, the final state (Alice has 10 coins and Bob has nothing) should

be posted on chain. Two misbehaviours could happen: (1) if closing

a channel requires the permission from both parties, Bob can refuse

to close the channel, as he loses nothing but Alice would lose all

the money; and (2) if it only requires a single side permission, Bob

has the motivation to close the channel by using a revoked state (a

state is revoked by another successful channel update triggered by

a transaction within the channel), where Bob has more coins than

his final balance at the closing state. A script contract to specify

dispute policy is required to resolve the above cases.

Nevertheless, some blockchains do not support script language,

and therefore cannot implement such dispute mechanism. We call

such blockchains scripless blockchains. Deploying a bi-directional
payment channel on scritpless blockchains, such as Monero and

ZCash [43], remains an open challenge.



Our Contributions. Our papers contains the following merits:

(1) We proposeAuxChannel in enabling efficient bi-directional

payment channel for scriptless blockchains with unlimited

lifespan. AuxChannel guarantees that neither parties can
prevent the channel from closing or steal coins from the coun-
terpart. We facilitate this by a secret release mechanism on

a script-enabled blockchain. Namely, both parties commit

their secrets to the script-enabled blockchain. When a party

is not following the protocol, the counterpart can request

the script-enabled blockchain to obtain the other’s secret to

recover the full signature for validating the payment. This

naive approach is still not practical, as it not only incursO(n)
(where n is the number of off-chain transactions) communi-

cation complexity with the script-enabled blockchain, but

also requires both parties to update their secrets for each new

payment through the smart contract on the script-enabled

blockchain, thus making it expensive, slow, and non-scalable.

We reduce the communication complexity to O(1) and does

not need the on-chain update for each payment by using

novel cryptographic techniques. In AuxChannel, both parties

only need to commit their initial secrets on the script-enabled

blockchain. Later if a party is not following the protocol, the

counterpart can request for the initial secret and self-derive

the latest state to recover the full signature and thus validate

the payment and close the channel.

(2) In order to construct AuxChannel, we further propose a new

cryptographic primitive called Consecutive Verifiably En-
crypted Signature (CVES) (as known as Consecutive Adap-
tor Signature). CVES allows a signer to encrypt his signa-

tures by using a sequence of his encryption keys. These

encrypted signatures are verifiable, and more importantly

the encryption-decryption key-pairs are consecutive, which

means the latest key-pairs are derived from their previous

session (consecutive). A verifier can ensure both the correct-
ness of the encrypted signature and the consecutiveness of
signer’s encryption keys. The key generation function is

one-way, meaning that the previous key-pairs can be used to

generate the next one but not the opposite flow. (We remark

that CVES can be also regarded as the consecutive version
of adaptor signature [18], in which a new “adapted secret”

can be generated in a verifiable and consecutive way from

its ancestor.) CVES is not just the core building block of Aux-

Channel but we believe it is also of independent interest for

further research.

2 RELATEDWORK
This work focuses on the payment channel scheme, and intro-

duces a new bi-directional payment channel protocol for scriptless

blockchains. We then summarize some works related to payment

channel protocols below.

Existing payment channel protocols for scriptless
blockchain. While providing bi-directional payment chan-

nels on scriptless blockchains remains unsolved, ways to provide

unidirectional payment channel for scriptless blockchain have been

explored.

Currently there are three attempts to provide unidirectional pay-
ment channel for scriptless blockchain, namely the use of time proof

(e.g. DLSAG [28] and Z-Channel [44]) and timed commitment (e.g.

PayMo [38]), as all of them provide the time-lock function without

requiring the support of script language.

Both DLSAG channel for Monero and Z-Channel for Zerocash

deploy time proof, which is a verifiable commitment as a predefined

timelock. It is contained in the input of a transaction. The output of

the transaction can only be spent after the predefined time proof. To

avoid repetition, we use DLSAG channel as an example to specify

how the time commitment works in a payment channel.

DLSAG channel makes it possible for Monero to support pay-

ment channels, while it has the limited lifespan which means a

channel has to be closed within a predefined time. This limits the

number of transactions that can be processed in the channel. Fur-

ther, it only supports one-way payment. This may exhaust the

balance in the channel quickly (even before the predefined channel

lifespan) and the channel parties will have to close and re-establish

a channel between them. Also, this solution requires an update on

the mining software, which means a hard fork in the blockchain is

needed to support time-proof verification. Thus it makes it difficult

for being adopted in Monero. Even for that, it is only designed

specifically for Monero, but not other scriptless blockchains.

Another approach is timed commitment. PayMo uses timed com-

mitment to provide payment channel for Monero users. A user

creates a timed commitment transaction such that the receiver of

the commitment can force the opening of the commitment and

learn the signature only after a pre-specified time. PayMo has ex-

tra computation requirement for opening the timed commitment,

while it can be mitigated by a third party service [36]. Thus PayMo

is fully compatible with the transaction in Monero. However, it still

has limited lifespan and supports one-way payment only.

Existing bi-directional payment channel protocols for
blockchains with limited scripts. Bolt [20], a bi-directional pay-
ment channel protocol, focuses on solving the linkability issues in

channels and can be built on ZCash. Deploying Bolt requires that the

zero-knowledge proof can be verified on the underlying blockchain,

which is not compatible with other scriptless blockchains, such

as Monero. A recent work from Aumayr et al. [2] formalizes the

generalized payment channel for Blockchains with limited scripts,

which requires the underlying blockchain to support adaptor sig-

nature scheme, relative time-lock and constant number of Boolean

operations. Another recent work, Sleepy Channels [4], supports

bi-directional payment channel with limited life-span, and also

have the requirement of supporting time-lock on-chain. In addition,

running Sleepy Channels between untrusted parties requires extra

collateral, which could be equal to the channel capacity for each

channel party, to guaranteed the secure and fast channel closure.

While our work focuses on building bi-directional payment chan-

nels with unlimited lifespan for scripltess blockchains, such that

building payment channels only requires the underlying blockchain

to support verifiably encrypted signature (aka adaptor signature).

Other related works. In 2013, Satoshi Nakamoto, the author

and creator of Bitcoin whitepaper and project, described a high-
frequency transactions technique in a personal email [32]. Partici-

pants can close the channel with any intermediate state and double-

spend the off-chain funding input. According to its design, this
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technique only works on a strong assumption that all participants

follow the protocol honestly. This idea is considered as the proto-

type of payment channel schemes. This is the first off-chain trans-

action idea on blockchain with obvious disadvantages, which has

no punishment and on-chain deposit designed. At the same year,

Spilman-styled payment channel [34] was proposed to fill the inse-

cure design in Satoshi’s high-frequency transactions technique idea.
This protocol makes a secure two-party off-chain trades without

the honest players assumption. While this protocol only allows

the uni-directional coin transfer with limited channel lifetime, this

design increases the cost of creating a payment channel and is not

desirable in real payment scenarios. Duplex Channel [40] is a simple

attempt of bi-directional payment channel, which is consisted of

two opposite directional Spilman-styled payment channels between

two channel parties. This is not only quite straightforward, but also

inherits the design of limited channel lifetime. While the direction

of designing a bi-direction payment channel protocol is worth to do

a depth-in research. In 2016, Poon-Dryja channel [30] realizes un-

trusted bi-directional payment channel without limited lifetime on

Bitcoin. The well-known payment channel network project, Light-

ning Network, is implemented based on the Poon-Dryja channel

protocol. The core technique of Poon-Dryja channel, Hash-Time

Lock Contract (HTLC), is widely adopted in many protocols. HTLC

is a useful technique among on-chain, off-chain and cross-chain

applications, and requires a programmable language supporting

by its underlying blockchain. After Poon-Dryja channel, there are

two worth mentioned payment channel protocols, Eltoo [15] and
Generalized Bitcoin-Compatible Channels [2]. These two protocols

are also based on the HTLC technique.

Atomic swap is one of the cross-chain coin swap protocols, which

also adopts HTLC technique as its core building block. Accord-

ing to its requirements of programmable language, atomic swap

has the same issues for privacy-preserving blockchains. BTC-XMR

atomic swaps [22] protocol enables the coins transfer between a

script-enabled blockchain and a scriptless blockchain. It requires

time-lock function only on Bitcoin side. Another recent cross-chain

coins swap protocol for scriptless blockchain, JugglingSwap [33],

introduces a trusted third party to control the time of secret re-

leasing. Comparing to this work, AuxChannel does not require the

involvement of the trusted third party for each off-chain payment

by using the CVES scheme.

The anonymous multi-hop locks (AMHLs) [24], which aims to

lock several atomic transactions among several users in a payment

path, is similar to the our proposed CVES. To derive all the decryp-

tion keys, AMHLs requires all the on-path users’ participation. Also,

the number of decryption keys is fixed at the setup phase. Thus,

under the bi-directional payment channel scenario, AMHLs cannot

prevent a malicious participant from locking the channel and also

suffers from a limited life cycle. The functionality of AMHLs dose

not satisfy the requirements of AuxChannel, while CVES does.

3 PRELIMINARY
This section gives the definitions of Verifiable Encrypted Signature

and One-time Verifiable Encrypted Signature, which are the two

preceding concepts of our new primitive Consecutive Verifiable

Encrypted Signature.

3.1 Verifiably Encrypted Signature
Verifiably encrypted signature (VES) [9, 13] scheme allows a signer’s

signature to be encrypted using a third party’s encryption key

(the third party is also known as adjudicator), and the resulting

ciphertext can be publicly verified that it is really an encryption of

the signer’s signature.

Note that VES is different from signcryption (sign-and-encrypt),

though they share a similar name. In VES scheme, a signature

is encrypted under the signer’s encryption key or a third party’s

public key.We refer the third party as the adjudicator, which follows

the term adopted in Boneh’s paper [9]. The encrypted signature

can be verified by others, and the corresponding signature can

only be revealed by the signer or the trusted third party. A similar

cryptographic primitive is signcryption, where a signer encrypts its

signature under the receiver’s public key. However, differ from VES

scheme, only the receiver can decrypt and verify this encrypted

signature.

An original VES scheme is defined with an ordinary underlying

signature scheme (Gen, Sign,Verify) and four additional algorithms:

EncGen is an algorithm to generate a (public key encryption) key

pair for the adjudicator; EncSign is an algorithm for generating

an encrypted signature from a message, the encryption key of

the adjudicator and the signing key of the signer; EncVerify is an
algorithm for convincing the verifier that the encrypted signature

of a message is valid by using the verification key of the signer and

the encryption key of the adjudicator; DecSig is an algorithm for

recovering the encrypted signature by using the decryption key of

the adjudicator. The formal definition of the verifiably encrypted

signature scheme is given as follows.

Definition 1. (Verifiably Encrypted Signature Scheme).Aver-

ifiably encrypted signature (VES) scheme is defined with an or-

dinary underlying signature scheme (Gen, Sign, Verify) and four

additional algorithms EncGen, EncSign, EncVerify, and DecSig:

• Gen(λ) → (sk,pk): a probabilistic key generation algorithm

which takes the input security parameter λ and outputs a

key pair (sk,pk), where sk is the signing key and pk is its

corresponding verification key.

• Sign(sk,m) → σ : a probabilistic signing algorithm that,

given a signing key sk and a message m, produces a sig-

nature σ .
• Verify(pk,σ ,m) → {0, 1}: a deterministic verification algo-

rithm that given a verification key pk , a signature σ and a

messagem, and returns 1 or 0.

• EncGen(λ) → (dk, ek): a probabilistic encryption key gener-

ation algorithm for adjudicator with an input, the security

parameter λ, and outputs a valid key-pair (dk, ek), such that

dk is the decryption key and ek is the corresponding encryp-

tion key.

• EncSign(sk, ek,m) → σ̂ : a probabilistic encrypted signing

algorithm, which on the input of the signer’s signing key sk ,
adjudicator’s encryption key ek and a messagem, outputs

an encrypted signature σ̂ .
• EncVerify(pk, ek, σ̂ ,m) → {0, 1}: a deterministic verification

algorithm that given the signer’s verification key pk , adjudi-
cator’s encryption key ek , an encrypted signature σ̂ and a

messagem, returns 1 or 0.
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• DecSig(dk, σ̂ ) → {σ ,⊥}: a deterministic signature decryp-

tion algorithm that given the ajudicator’s decryption key dk
and an encrypted signature σ̂ , outputs a decrypted signature
σ or ⊥. This process is also know as adjudication.

VES should satisfy three security properties: validity, unforge-

ability, and opacity, which are described as follows:

• Validity: It requires that for any message, if the encrypted

signature is generated by the EncSign, it should pass through
the verification of EncVerify. It also requires that for any

message, if the encrypted signature generated by the EncSign
is decrypted by DecSig, the resulting signature should pass

through the verification of Verify.
• Unforgeability: It is hard to forge a valid encrypted signa-

ture for any message from the verification key and encryp-

tion key only.

• Opacity: The signature for a message cannot be recovered

from an encrypted signature without the decryption key.

3.2 One-Time Verifiable Encrypted Signature
The one-time verifiably encrypted signature (one-time VES), as

known as Adapator Siдnature , is formalized by Fournier [18]. The

main difference for one-time VES over normal VES is that the

decryption key of one-time VES scheme can be recovered once the

original signature is revealed. Therefore the encryption-decryption

key pairs can be used once (and thus called “one-time" VES). We

also remark that in many context, one-time VES is more known as

adaptor signature (e.g. [3, 17, 31, 35]). Although the name of the

signature (and the names of the algorithms) are different, they are

exactly the same. We use the notion of one-time VES in the rest of

this paper, as this name reflects more the nature of its properties in

our context.

One-time VES scheme is defined under the basis of the original

VES scheme by adding two algorithms: RecKey and Rec. RecKey is

an algorithm for extracting the “recovery” key from the encrypted

signature, which is later used in Rec to recover the decryption key

from the decrypted signature. Here, we only give the two additional

algorithms, while referring readers to Section 3.1 for the rest of the

other 7 algorithms which are exactly the same as VES:

Definition 2. (One-time Verifiably Encrypted Signature). A
one-time verifiably encrypted signature (one-time VES) scheme

is a VES scheme (Gen, Sign, Verify, EncGen, EncSign, EncVerify,
DecSig) with two additional algorithms RecKey and Rec:

• RecKey(ek, σ̂ ) → rk : a deterministic recovery key extrac-

tion algorithm, which given the encryption key ek and an

encrypted signature σ̂ returns a recovery key rk .
• Rec(σ , rk) → dk : a deterministic decryption key recovery

algorithm, which given a signature σ and the recovery key

rk returns the decryption key dk .

The one-time VES scheme has the security properties, validity,
unforgeability and recoverability. The first two are the same as VES

and we omit here. Informally speaking, recoverability requires that

it is easy to recover a decryption key by knowing the encrypted

signature and its original signature.

4 CONSECUTIVE VERIFIABLY ENCRYPTED
SIGNATURE (A.K.A. CONSECUTIVE
ADAPTOR SIGNATURE)

4.1 Introduction of CVES
We propose a new cryptographic primitive, called Consecutive Veri-
fiably Encrypted Signature (CVES) (a.k.a Consecutive Adaptor Sig-
nature), which is a generalization of one-time VES such that CVES

enables a sequence of one-time encryption-decryption key pairs.

Given the initial decryption key, CVES is able to generate the next

encryption-decryption key pair and so on. But this process cannot

be reverted. That is, given the most updated decryption key only,

no one can compute its “ancestors”. More importantly, CVES allows

anyone to publicly verify that the new encryption key is correctly

generated by its immediate ancestor, from the proof given by the

owner of the corresponding decryption key.

CVES inherits all the algorithms defined in one-time VES and

introduces three additional algorithms: KeyUpdate generates a new
encryption-decryption key-pair by taking the previous decryption

key; ConsProof generates a proof from the knowledge of two con-

secutive decryption keys which can convince any verifier that

the corresponding encryption keys are consecutive (that is, the

new encryption key is well-formed or generated from KeyUpdate);
ConsVerify verifies the proof generated by ConsProof.

We now present the formal definition of CVES scheme. We

use (dk0, ek0) to denote the initiate decryption-encryption key

pair, while (dki , eki ) to denote the i-th key pair, after executing

KeyUpdate i times for any i > 0. We also use KeyUpdatei to denote
recursively executing KeyUpdate i times.

Definition 3 (Consecutive Verifiably Encrypted Signature). A con-

secutive verifiably encrypted signature (CVES) scheme is a one-

time VES scheme (Gen, Sign, Verify, EncGen, EncSign, EncVerify,
DecSig, RecKey, Rec) with three additional algorithms KeyUpdate,
ConsProof and ConsVerify:

• KeyUpdate(dki−1) → (dki , ˆdki , eki ): a deterministic algo-

rithm with an input, a decryption key dki−1 and returns its

successive decryption key dki , a truncated decryption key

ˆdki and the corresponding encryption key eki .
• ConsProof(dki−1,dki ) → P i : a probabilistic algorithm,

which on inputs two decryption keys dki−1 and dki , out-
puts a proof P i .
• ConsVerify(eki−1, eki , P i ) → {0, 1}: a deterministic algo-

rithm, which on inputs two consecutive encryption keys

eki−1, eki and a proof of consecutiveness P i , outputs 0 or 1.

We also note that there are some minor differences with one-

time VES for the other algorithms. In CVES, we only require Rec to
output the truncated decryption key

ˆdki instead of the full decryp-

tion key dki , as in one-time VES. Furthermore, EncGen is executed

only once to generate the initial decryption-encryption key-pair

((dk0, ˆdk
0

), ek0) including the truncated decryption key
ˆdk
0

, and

the subsequent decryption-encryption key-pairs can be generated

by executing KeyUpdate.
4



4.2 Security of CVES
CVES scheme inherits all the secure properties from one-time VES

scheme, i.e., validity, unforgeability, recoverability, along with three

additional properties, consecutiveness, consecutive verifiablity and

one-wayness. The informal definitions of the first three have been

given in the previous section, and the later three definitions are

described informally as follows:

• Consecutiveness: It requires that the decryption-

encryption key-pair used in the i-th session of CVES is

derived from the decryption key of the (i − 1)-th session

from KeyUpdate, where i > 0.

• Consecutive verifiablity: Given two encryption keys and

the corresponding proof, anyone can be convinced if the

two keys are consecutive, meaning that the new encryption

key is generated from KeyUpdate taking the input of the

previous corresponding decryption key.

• One-wayness: given the i-th decryption key, no one can

derive any of the j-th decryption key, where 0 ≤ j < i .

We then give the formal definition of CVES security properties.

We first include the concept of validity, recoverability and consecu-
tiveness into a single definition of correctness, as defined below:

Definition 4 (Correctness of CVES). A CVES is correct if the

following properties hold. For any i > 0 and any messagemi
, we

require

(sk , pk ) ← Gen(λ)

(dk0, ˆdk0, ek0) ← EncGen(λ)

(dk i−1, ˆdk i−1, ek i−1) ← KeyUpdatei−1(dk0)

(dk i , ˆdk i , ek i ) ← KeyUpdate(dk i−1)

σ i ← Sign(sk ,mi )

σ̂ i ← EncSign(sk , ek i ,mi )

Pi ← ConsProof(dk i−1, dk i )

1← ConsVerify(ek i−1, ek i , P i )

1← EncVerify(pk , ek i , σ̂ i ,mi )

ˆdk i ← Rec(σ i , RecKey(σ̂ i ))

1← Verify(pk , DecSig( ˆdk i , σ̂ i ),mi )

(1)

Next, before giving the definition of unforgeability, we first intro-

duce two oracles below, which can be accessed by adversaries in

the unforgeability experiment.

Signing Oracle: Let O be a signing oracle, which takes the

verification key pk and the message m as inputs, and outputs a

signature σ such that 1← Verify(pk,σ ,m).
Encsigning Oracle: Let E be an encsigning oracle which takes

the verification key pk , the encryption key eki for session i and a

messagem as inputs, and outputs an encrypted signature σ̂ i such
that 1← EncVerify(pk, eki , σ̂ i ,m).

Definition 5 (Unforgeability of CVES). A CVES is unforgeable,

if the advantage Adv = Pr [Exp
unforgeability

A
= 1], where

Exp
unforgeability

A
is defined in Figure 1, of any PPT adversary

in forging a signature σ i given access to signing oracle O and enc-

signing oracle E is negligible. The probability is taken over the coin

tosses of the key generation algorithmGen and EncGen, the oracles
O and E. The adversary is additionally constrained thatm∗ , m,

wherem is an input to E and O accessed by the adversary.

Definition 6 (One-wayness of CVES). A CVES is one-way, if the
advantage Adv = Pr [Exp

one-way

A
= 1], where Exp

one-way

A
is

defined in Figure 1, of any PPT adversary in recovering dki−1 from
dki is negligible. The probability is taken over the coin tosses to

the reversion algorithm of the adversary.

Definition 7 (Consecutive Verifiability). A CVES is consecutive

verifiable, if the advantage Adv = Pr [Exp
cverifiability

A
= 1], where

Exp
cverifiability

A
is defined in Figure 1, of any PPT adversary in

yielding a proof of consecutiveness on two unconsecutive decryp-

tion keys is negligible. The probability is taken over the coin tosses

of the ConsProof algorithm and of the adversary.

The opacity property defined in VES guarantees that a decrypted

signature is unforgeable. Similar to one-time VES, CVES does not

have the opacity property as well, as the recoverability property

makes it possible to recover the i-th session decryption key once

the j-th session decryption key is revealed, where i > j ≥ 0.

A CVES is secure, if it satisfies the correctness, unforgeabiltiy,

one-wayness, consecutive verifiability defined in Definition 4, 5,6,7.

4.3 Schnorr CVES Construction
Overview Idea: Now we present a Schnorr-based CVES construc-

tion. The overview idea is like that. Our construction is motivated

by the Schnorr-based one-time VES of [18]. The main difference is

the consecutiveness of our construction, which requires two addi-

tional elements to achieve our purpose: 1) The design of a one-way

function is to derive the next decryption key from the previous one;

2) The proof to prove the correctness of the key generated, such

that the verification only takes the public information (encryption

keys).

Since our system is based on the Schnorr ecosystem, which is in

discrete logarithm (DL) setting, the first naive idea of constructing

such a one-way function and the corresponding proof, is to use

another DL proof system. Exponentiation function over a cyclic

group is already a popular one-way function, while it also provides

an efficient zero-knowledge proof for its input given the output.

Unfortunately, in our case it cannot be adopted in an efficient way.

The main reason is the difference of the domains of the input and

output of the exponentiation function. The input domain is usually

an integer, while the output domain is a group element (which is not

necessarily to be an integer). In our setting, we require the domain

of the input and output for the one-way function to be the same.

This is necessary because the one-way function is used to generate

the decryption key of the next session (from the decryption key of

the previous session), which obviously should lie within the same

domain of the previous decryption key. Although there are some

techniques to convert the output of the exponentiation function to

the same domain of the input element, they are not efficient when

a proof is also required.

To be exact, we need a one-way permutation with the ability

to construct an efficient proof for our scheme. Instead of using an

exponentiation function, we in turn use a square function over
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Exp Exp
unforgeability

A
(λ) :

(sk,pk) ← Gen(λ)
(dk0, ˆdk0, ek0) ← EncGen(λ)
(i, st) ← A0(pk, ek

0)

(dki−1, ˆdk
i−1
, eki−1) ← KeyUpdatei−1(dk0)

(dki , ˆdk
i
, eki ) ← KeyUpdate(dki−1)

P i ← ConsProof(dki−1,dki )

m∗ ← A
O(·),E(·)
1

(st,pk, eki )
σ̂ i∗ ← E(pk, eki ,m∗)
σ i∗ ← A2(st,pk, ek

i−1, eki , P i , σ̂ i∗)
If Verify(pk,σ i∗,m∗) = 1:

Return 1

Else Return 0

Exp Exp
one-way

A
(λ) :

(sk,pk) ← Gen(λ)

(dk0, ˆdk
0

, ek0) ← EncGen(λ)
(i, st) ← A0(pk, ek

0)

(dki , ˆdki , eki ) ← KeyUpdatei (dk0)
(dki−1

∗
,m∗) ← A1(st,dk

i )

(dki
∗
, ˆdki

∗
, eki

∗
) ← KeyUpdate(dki−1∗)

σ̂ i ← EncSign(sk, eki ,m∗)

σ i∗ ← DecSig( ˆdki
∗
, σ̂ i )

If Verify(pk,σ i∗,m∗) = 1:

Return 1

Else Return 0

Exp Exp
cverifiability

A
(λ) :

(sk,pk) ← Gen(λ)
(dk0, ˆdk0, ek0) ← EncGen(λ)
(i, st) ← A0(pk, ek

0)

(dki , ˆdk
i
, eki ) ← KeyUpdatei (dk0)

(dki+1
∗
, ˆdk

i+1∗
, eki+1

∗
,m∗, P∗) ← A1(st,dk

i )

σ̂ ∗ ← EncSign(sk, eki+1∗,m∗)

(dki+1, ˆdk
i+1
, eki+1) ← KeyUpdate(dki )

σ ← DecSign( ˆdk
i+1
, σ̂ ∗)

If ConsVerify(eki , eki+1∗, P∗) = 1 &&

Verify(pk,σ ,m∗) = 0

Return 1

Else Return 0

Figure 1: Experiments used to define unforgeability, one-wayness, and consecutive verifiability properties of CVES.

a modulus of a composite number n. If the factorization of n is

unknown, the square function is one-way. It is also nice that the

domain of both input and output is Zn .
The next and most challenging step is to construct an efficient

zero-knowledge proof over the square function modulus n, such
that both the input and output of the function are the secret to be
proven. We resolve this issue by using another group of unknown

order (modulus another composite integer N without knowing its

factorization).

The last step is to link all these groups together. Currently we

have three groups: the Schnorr prime order group Zp (for a cyclic

group with prime order p), the one-way function group Zn and

another group ZN with unknown group order which is used in the

zero-knowledge proof. We link these together in our proof used in

ConsProof.

Concrete Construction: Our scheme is constructed over a cyclic

group Gp with prime order p. Let N = p′q′, where p′,q′ are primes

with length λ1 which is a security parameter. It can be generated

in a trusted manner (e.g. using MPC such that no one knows the

factorization of N ). Z∗N is thus a group with unknown order ϕ(N ).
Let д,h be the group generators of Gp and Z∗N respectively, and

H : {0, 1}∗ → Zp be a hash function. Suppose that it is hard to

solve a discrete logarithm problem in the group Z∗N .

We now construct the one-way function for KeyUpdate. We use

the following settings: Let n = p′′q′′ for some primes p′′,q′′ with
length λ2 which is another security parameter. The order of the

group Z∗n is with unknown order ϕ(n) (again we can use MPC to

generate n such that no one knows its factorization). The one-way

function can be set as x 7→ x2 mod n.
The complete construction of Schnorr-based CVES scheme is

shown in Figure 2. (The detailed explanation and underlying instan-

tiation of the NIZK in the algorithms ConsVerify and ConsProof is
given in Appendix B.)

We also remark that N can be used as a system parameter (e.g.

used by a group of users) while n is used between the prover and

the verifier. In practice, we simply set N = n, if this number is

generated using MPC or other trusted method so that no one knows

its factorization.We then give the intuition of whywe can setN = n:

According to the algorithm KeyUpdate in Figure 2, the public key
used in zero-knowledge proof is constructed as Ỹ ′ = hỹ

′

mod N ,

where ỹ′ = ỹ2 mod n. Thus, the distribution of ỹ′, where ỹ′ ∈ [0,n),
would affect the distribution of Ỹ ′. Ideally, we hope Ỹ ′ is uniformly

distributed from Z∗N , which can be guaranteed when n = ϕ(N ),
where ϕ(N ) is the group order of Z∗N . As ϕ(N ) is unknown, to

ensure that (hỹ
′

mod N ) can cover all group elements in Z∗N , n
should be greater than ϕ(N ). Thus if we set n = N > ϕ(N ), and

when ỹ′ is from [0,n), andn = N is large enough, Ỹ ′ = (hỹ
′

mod N )
is statistically indistinguishable from Ỹ ′∗, which is uniformly in

Z∗N .

Theorem 1. The Schnorr CVES is correct, and satisfies the unforge-
ability, one-wayness, and consecutive verifiability, if the DL problem
and factorization problem are hard, and the underlying NIZK system
is correct and sound.

The proof is given in Appendix A.

4.4 Performance Evaluation of Schnorr CVES
We have instantiated and implemented the algorithms

KeyUpdate(·), ConsVerify(·) and ConsProof(·) (in Figure 2).

The detailed explanation and underlying instantiation of the

NIZK in the algorithms ConsVerify and ConsProof are given in

Appendix B.

Our implementation is based on a zero-knowledge library,

emmy [41]. For simplicity, we set n = N = p′q′, and

adopt an unknown group Z∗N and a cyclic group Gp with

the prime order p, where |N | = 2048 and p = 2
252 +

27742317777372353535851937790883648493.

Suppose a signer has generated an encryption-decryption key-

pair (eki−1,dki−1) and shared eki−1 with a verifier, where i ∈ N+.

He then performs (dki , ˆdk
i
, eki ) ← KeyUpdate(dki−1) to updates

the encryption and decryption keys. To convince the verifier that

dki−1 and dki are consecutive, the signer creates a proof P i ←
ConsProof(dki−1,dki ), and shares P i and eki with the verifier. Our

experiments are run on a macOS with processor 2.6 GHz 6-Core

Intel Core i7 and memory 16GB 2400 MHz DDR4. Each algorithm is

executed for 100 times. The result shows that on average it requires

about 33 ms to create the proof, and the corresponding verification
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Gen(λ)
x ← Zp ;X := дx ;
sk := (x,X );
pk := X ;

return (sk,pk)

Sign(sk,mi )

(x,X ) := sk ;
r ← Zp ;R := дr ;

c := H (mi | |R | |X );
s := (r + cx) mod p;
return σ i := (R, s)

Verify(pk,σ i ,mi )

X := pk ;
(R, s) := σ i ;
c := H (mi | |R | |X );

return R
?

:= дsX−c

EncGen(λ)
ỹ ← Zn ;
y := ỹ mod p;
Y := дy ;

Ỹ := hỹ mod N ;

dk0 := (ỹ,y,Y );
ˆdk0 := (y,Y )

ek0 := (Ỹ ,Y )

return (dk0, ˆdk0, ek0)

EncSign(sk, eki ,mi )

(x,X ) := sk ;
(Ỹ ,Y ) := eki

r̂ ← Zp ; R̂ := дr̂

R := R̂Y
c := H (mi | |R | |X )
ŝ := (r̂ + cx) mod p
return σ̂ i := (R̂, ŝ)

EncVerify(pk, eki , σ̂ i ,mi )

X := pk ; (Ỹ ,Y ) := eki

(R̂, ŝ) := σ̂ i

R := R̂Y
c := H (mi | |R | |X )

return R̂
?

= дŝX−c

DecSign( ˆdki , σ̂ i )

(R̂, ŝ) := σ̂ i

(y,Y ) := ˆdki

R := R̂Y
s := (ŝ + y) mod p
return σ i := (R, s)

RecKey(σ̂ i )

(R̂, ŝ) := σ̂ i

return rki := ŝ

Rec(σ i , rki )
(R, s) := σ i

ŝ := rki

y := (s − ŝ) mod p
Y := дy

return ˆdk
i
:= (y,Y )

KeyUpdate(dki−1)

(ỹ,y,Y ) := dki−1;
ỹ′ := ỹ2 mod n;
y′ = ỹ′ mod p;

Ỹ ′ := hỹ
′

mod N ;

Y ′ := дy
′

;

dki := (ỹ′,y′,Y ′);
eki := (Ỹ ′,Y ′);
ˆdk
i
:= (y′,Y ′);

return (dki , ˆdki , eki )

ConsProof(dki−1,dki )
(ỹ,y,Y ) := dki−1;
(ỹ′,y′,Y ′) := dki ;

Y := дy ; Y ′ := дy
′

;

P i ← PoK((ỹ, ỹ′,y,y′,k) :

{Y = дy ∧ Y ′ = дy
′

∧

Ỹ = hỹ mod N∧

Ỹ ′ = hỹ
′

mod N∧

Ỹ ′(hn )k = Ỹ ỹ mod N∧

Y = дỹ ∧ Y ′ = дỹ
′
∧

0 < ỹ′ < n})
return P i

ConsVerify(eki−1, eki , P i )
(Ỹ ,Y ) := eki−1;

(Ỹ ′,Y ′) := eki ;

χ := (Ỹ , Ỹ ′,Y ,Y ′);
return {0, 1} ← NIZK.Verify(χ, P i )

Figure 2: The construction of Schonrr-based CVES algorithms.

requires about 348 ms. The communication latency is transferring

16.9 KB data, including the required proof and encryption key

(P i , eki ).

5 OVERVIEW OF AUXCHANNEL
We propose AuxChannel, a bi-directional payment channel protocol

with unlimited life span for scriptless blockchains. We present the

basic idea of AuxChannel with a step by step approach, before

presenting it formally in Section 6.

5.1 Problem Statement
Recall the scenario we considered: two parties, Alice and Bob, estab-

lish a bi-directional payment channel over a scriptless blockchain.

Initially, each of them deposits 5 coins in the channel. After several

sessions of payments, Alice has 10 coins and Bob exhausted his

balance. To close the channel, the final state (Alice has 10 coins and

Bob has no coin) should be posted on the blockchain.

Depending on the rule of closing a channel, two misbehaviours

could happen: (1) if closing a channel requires the permission from

both parties, Bob can ignore the request as he loses nothing but

Alice would lose all 10 coins; and (2) if it only requires a single side

permission, Bob can close the channel by using a revoked state,

where Bob can claim more than his actual balance. To protect a

channel from being attacked by the two misbehaviours above, the

protocol should provide two guarantees, guaranteed channel closing
and guaranteed balance payout for channel parties [16].

Please note that the above challenge does not exist on uni-

directional channels, where a payer makes incremental payment to

a payee: allowing the payee to close a channel alone is sufficient as

the payee is incentivised to always close the channel (i.e., guaran-
teed channel closing) with the latest actual balance (i.e., guaranteed
balance payout).

As in other layer 2 solutions supporting bi-directional payments

(such as Lightning Network [30]), the key to address the above

challenges is to provide the ability to resolve dispute upon observing

the misbehaviours. Resolving disputes on the blockchain is easy for

blockchains supporting script language, but extremely challenging,

if not impossible, for scriptless blockchains.
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5.2 Strawman Design
One natural step is to leverage a script-enable blockchain (denoted

L2) to help the scriptless blockchain (denoted L1) to resolve any

dispute.

First attempt. This leads to the first attempt of our design,

where both channel parties lock enough funds on the script-enabled

blockchain as “insurance”. Upon the detection of any misbehavior,

the victim can resolve the dispute by claiming all insurance on L2.

As this only provides compensate to the victim on L2 rather than

correcting the misbehavior on L1, the victim will loss its fund on

L1 (regardless of requiring permissions from one or both parties

to close a channel) and the malicious attacker still gets the money

on L1 (if closing a channel only requires the permission from one

party). Thus, to deincentivise such misbehaviors, each party should

lock a fund as an insurance on L2, such that the locked amount is

no smaller than the channel capacity on L1 to cover the maximum

potential loss of a victim.

This approach has two issues. First, it requires (the smart con-

tract of) L2 to monitor all events on L1 and retrieve evidence to

resolve the dispute. While there are existing attempts to enable

communication across blockchains [1], they introduce significant

additional cost and with open challenges [42]. Second, it requires

additional deposit on L2 as insurance, where the total deposit is at

least twice as large as the channel capacity. In other words, chan-

nel parties have to lock 3C to establish a channel with capacity C ,
which greatly reduces the liquidity and makes it impractical.

Second attempt. In our second attempt, rather than locking the

deposit for covering the potential loss and deincentivise misbehav-

iors, we require both parties’ involvement to close a channel. In this

way, closing a channel requires the permission from both parties,

eliminating the possibility of claiming balances with a revoked state

and providing guaranteed balance payout. In addition, we envision

a distributed and verifiable “key escrow” service on L2 to keep and

release some secret (for example, by using [6]) required to close the

channel.

In particular, each payment in the channel is created through

a verifiable encrypted signature scheme, where the “key escrow”

service is leveraged to keep a secret to recover the full signature

for validating the payment. In the normal case, when both parties

are honest, they can cooperate to close the channel with the latest

state. In the case where one party is not responding to the request

of closing a channel, the “key escrow” service can help releasing

the secret to close the channel with latest channel state. Note that

each encrypted signature should use a unique encryption key, as

otherwise when an honest party releases the decryption key, the

malicious counterparty can decrypt and validate any past revoked

payment.

This approach still has some issues. While both parties only need

to pay a small fee to the distributed and verifiable key escrow service

(rather than locking additional significant amount of insurance),

channel parties need to interact with the key escrow service for each

payment. This not only incurs O(n) communication complexity

with the key escrow service, but also requires the channel parties to

update the secret for each new payment through the smart contract

on L2, making it expensive, slow, and non-scalable.

5.3 AuxChannel
We address the remaining challenges in our second attempt by

leveraging our newly introduced CVES as a core building block. In

particular, thanks to the consecutiveness property, both channel

parties only need to provide the initial secret to the key escrow

service (reducing the communication complexity to O(1)) when
establishing a channel, processing all payments without interacting

with the key escrow service, and only asking the key escrow service

to release the secret to close the channel when one party is not

cooperating.

For the ease of understanding, we only present the basic idea of

AuxChannel below and leave the formal and detailed presentation

to the next section. Loosely speaking, AuxChannel has four phases:

channel establishment, channel update, channel closure, and channel
dispute. For simplicity, we assume all the messages are correctly

verified before being accepted.

In the channel establishment phase, each channel party executes

EncGen(·) to generate a pair of decryption key and encryption

key, and share the output with the distributed and verifiable key

escrow service. The escrow service will include a commitment on

the received secret in its smart contract with the two channel parties

on L2.

Each of the channel parties performs EncSign(·) to create an en-

crypted signature on a mutually agreed transaction, such that the

full signature can be recovered by using the associated decryption

key kept by the escrow service onL2. To validate a transaction, one

recovers the full signature on the transaction from the encrypted

signature of its counterparty, and creates a mutually signed trans-

action by adding its own signature to the recovered full signature.

Each new payment redistributes the channel balance as agreed by

both parties. Payments can be performed via channel update phase,

where for each payment the payer updates the decryption and

encryption key pair by performing KeyUpdate(·), and creates an

encrypted signature on the new payment by performing EncSign(·)
with the signing key and the updated encryption key.

To close a channel, channel parties share their latest decryption

key with each other, perform DecSig(·) with the counterparty’s

decryption key, and validate the transaction representing the latest

state of the channel balance by creating a multi-signature on the

transaction.

In the case where one party is not responding to the channel

closure request, the other party can resolve the dispute by asking

the key escrow service to release the secret required to close the

channel. Thanks to the consecutiveness property of our introduced

CVES, if the initial secret shared with the escrow service by one

party is released, the other party can derive the latest secret recover

the full signature to close the channel, presenting a neat and efficient

solution to the guaranteed channel closing.

As a malicious party may request the secret to be released for

a revoked state in order to get more coins than its actual balance,

it is important for the key escrow service to give enough time for

the counterparty to verify and react to the secret releasing request

on L2. This can be achieved by using standard solutions, such as a

time-lock contract. We defer more details to the next section.
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6 FORMAL AUXCHANNEL DESCRIPTION
6.1 System Model
We consider two blockchains, L1, which does not support script

language, and L2, which is script-enabled. For simplicity, we as-

sume that if a valid transaction is propagated to the blockchain

network, it cannot be censored and will be immediately included

in the “permanent” part of the blockchain.

Two participants want to establish a payment channel on L1.

Once a channel is established, the two participants become “channel

parties". For simplicity, this paper always uses channel parties to

refer to them. We assume that both channel parties have accounts

with sufficient coins onL1 andL2 in participating AuxChannel.We

assume that they are always online, even though this assumption

can be removed by deploying watchtower-like services [5, 21, 26].

We assume a distributed and verifiable key escrow service (KES),

such as [6], on L2. The KES keeps secret keys for its clients and

releases the key when a pre-defined condition is met. We assume

that the communication channels among channel parties and the

Key Escrow Service (KES) are authenticated e.g. through crypto-

graphically secure digital signature.

6.2 Formalized AuxChannel
Let PA and PB be the two channel parties with signing-verification

key-pairs (skA,pkA) and (skB ,pkB ) on L1, and (sk
′
A,pk

′
A) and

(sk ′B ,pk
′
B ) on L2, respectively, and they have exchanged public

keys with each other. Let Tx := In | |Out be the construction of

the transaction on L1, where In denotes the input of Tx and Out
denotes the output ofTx . We present AuxChannel with four phases,

namely establishment, update, closure, and dispute.

Establishment To establish a channel, two channel parties col-

lectively create a funding transaction Txf to make their deposit

on L1. To initialise the establishment, each of the parties gener-

ates initial decryption keys (dk0
P
, ˆdk

0

P ) and encryption key ek0
P
by

executing EncGen(λ), where P ∈ {A,B}. They then interact with

KES to share their (cid,dk0
P
, ek0
P
), where cid is a unique identifier

of the channel. KES verifies the received messages and records

(cid, ek0A, ek
0

B ) on L2 as a confirmation of providing key escrow

service to both parties. The conditions to release decryption keys

by the KES will be presented in the dispute phase. Upon seeing the

confirmation from KES:

(1) both channel parties create a funding transaction

Txf := (pkA : bal0A,pkB : bal0B )| |(pkM : balM )

to transfer their balance (bal0P of address pkP ) to a multi-

signature account (identified by using pkM ), where the

balance balM is the capacity of the to be established

channel. They also create an encrypted signature σ̂ 0

P
←

EncSign(skP , ekiP ,Tx
0

c ) over a newly created commitment

transaction

Tx0c := (pkM : balM )| |(pkA : bal0A,pkB : bal0B ).

They keep the funding transaction private and exchange σ̂ 0

P
with each other.

(2) If the received σ̂ 0

P
passed the verification

EncVerify(pkP , ek0P , σ̂
0

P
,Tx0c ), they exchange locally

signed Txf and post the cross-signed Txf on L1 indicating

the completion of channel establishment.

Update To update a channel from the channel state index i − 1
to i , where i ∈ N+, both channel parties agree on the commitment

transaction Tx ic and their encryption keys (ekiA, ek
i
B ). The update

phase is presented as follows:

(1) Both channel parties update their decryption keys

(dki
P
, ˆdk

i
P ) and encryption key eki

P
by executing

(dki
P
, ˆdk

i
P , ek

i
P
) ← KeyUpdate(dki−1

P
). They also cre-

ate the proof of encryption keys’ consecutiveness

P i
P
← ConsProof(dki−1

P
,dki
P
), an encrypted signature

σ̂ i
P
← EncSign(skP , ekiP ,Tx

i
c ) over a newly created

commitment transaction

Tx ic := (pkM : balM )| |(pkA : bal iA,pkB : bal iB ),

and exchange message (eki
P
, σ̂ i
P
, P i
P
);

(2) If the received (eki
P
, σ̂ i
P
, P i
P
) passed the two

verifications EncVerify(pkP , ekiP , σ̂
i
P
,Tx ic ) and

ConsVerify(eki−1
P
, eki
P
, P i
P
), where eki−1

P
is received

and stored from the counter-party at the previous state, they

create and exchange a signature σ ′i
P
over the channel state

index i and both channel parties’ encryption keys (ekiA, ek
i
B )

by using sk ′
P
.

Closure The channel can be closed collectively by the two

parties. Both parties exchange their latest decryption keys,

dkiA and dkiB , and derive the corresponding signature σ i
P
←

DecSign( ˆdk
i
P , σ̂

i
P
) on Tx ic , where

ˆdk
i
P is the truncated dki

P
(de-

fined in Section 4). Thus, either of them can close the channel with

a latest state by posting a cross signed Tx ic .
Dispute Both channel parties resolve their dispute through L2

and the KES will release the secret per their predefined condition,

as follows.

In the predefined condition, any channel party can request the

KES to release the counter-party’s initial decryption key by up-

loading a trigger transaction to L2, which starts a timer for the

counter party to react before timeout. Assuming that PB triggers

the timer by posting a trigger transaction Tx itr ,B , which includes

the decryption key dkiB and the message (σ ′iA ,σ
′i
B , i, ek

i
A, ek

i
B ).

Before the timeout occurs, if the index i represents the latest
state of the channel, PA releases her decryption key dkiA by post-

ing a release transaction Tx ir ,A; otherwise, PA uploads an update

transactionTx
j
up,A, where j > i , and KES releases dk0B onL2. Upon

timeout, if PA did not have any response, KES releases dk0A.

If PA has released her decryption key dkiA within the timer, PB

can perform DecSign( ˆdk
i
P , σ̂

i
P
) to derive the commitment transac-

tion Tx ic signed by PA. Similarly, as dkiB is already posted on L2,

PA can also derive the commitment transaction Tx ic signed by PB .

Thus, either of them can close the channel with the latest state by

posting a cross signed Tx ic .
If the KES has released dk0

P
(for P ∈ {A,B}) on L2 according to

the conditions above, then the corresponding counter party can de-

rive the decryption keys (dki
′

P
, ˆdk

i′
P ) of any state i ′ ∈ [1, j] through
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(dki
′

P
, ˆdk

i′
P , ek

i′
P
) ← KeyUpdate(dk(i

′−1)

P
), and then derive the com-

mitment transaction Tx i
′

c signed by P. This enables the counter

party to close the channel with any channel state. In other words,

when a party is not following the protocol, the counter party is able

to close the channel at any chosen state (to its advantage) with the

help of KES. This is considered a punishment to the misbehaved

party.

6.3 Security Analysis
Similar to Perun [16], we also employ the following security goals
of AuxChannel:

(1) Guaranteed channel closing: a channel can be closed by any

of the channel parties;

(2) Guaranteed balance payout for end users: when a channel

is closed, either both channel parties retrieve their latest

balances or the honest party obtains no less than his latest

balance.

As AuxChannel employs Schnorr CVES scheme to update chan-

nel party’s decryption keys and encrypted signatures at each state,

we reduce the security of AuxChannel to the security of CVES

scheme in Theorem 2.

Theorem 2. AuxChannel achieves the two security goals if the un-
derlying CVES scheme is secure.

We present the proof sketch of Theorem 2 as follows:

Proof . We prove it by contradiction. Let PA be the adversary A,

who has the ability to break the security goals of AuxChannel, we

can make use of PA to break the security of Schnorr-based CVES

scheme.

For the first security goal: guaranteed channel closing. As we

assume that PA has the ability to prevent the channel from closing,

PA would not release any of her decryption keys. Thus, KES sends

the initial decryption keys dk0A to PB . As PA has the ability to

prevent the channel from closing, thedk0A cannot helpPB to recover

a valid σ i
′

A at any intermediate state i ′, where i ′ ∈ [0, i]. Thus, the
channel cannot be closed without PA’s cooperation.

We can make use of PA to generate a proof P i
′+1∗
A on two de-

cryption keys dki
′

A and dki
′+1∗
A , where:

(dki
′+1∗
A , ˆdk

i′+1∗
A , eki

′∗
A ) ← A0(dk

i′
A),

(dki
′+1
A , ˆdk

i′+1
A , eki

′

A) ← KeyUpdate(dki
′

A),

σ i
′+1∗
A ← EncSign(skA, ek

i′+1∗
A ,Tx i

′+1∗
c ),

P i
′+1∗
A ← A1(dk

i′
A,dk

i′+1∗
A ),

1← EncVerify(pkA, ek
i′+1∗
A ,σ i

′+1∗
A ,Tx i

′+1
c )

1← ConsVerify(eki
′

A, ek
i′+1∗
A , P i

′+1∗
A ),

σ i
′+1∗
A ← DecSign( ˆdk

i′+1
, σ̂ i

′+1∗
A ),

1 ↚ Verify(pkA,σ
i′+1∗
A ,Tx i

′+1
c ).

Or we can also make use of PA to create a valid encrypted

signature σ̂ i
′+1∗
A , but PB cannot derive a valid σ i

′+1
A from σ̂ i

′+1∗
A ,

where:

(dki
′

A,
ˆdk
i′
A, ek

i′
A) ← KeyUpdatei

′

(dk
j
A)j ∈[0,i′−1],

(dki
′+1
A , ˆdk

i′+1
A , eki

′+1
A ) ← KeyUpdate(dki

′

A),

P i
′+1
A ← ConsProof(dki

′

A,dk
i′+1
A ),

1← ConsVerify(eki
′

A, ek
i′+1
A , P i

′+1
A ),

σ̂ i
′+1∗
A ← A(skA, ek

i′+1
A ,Tx i

′+1
c ),

1← EncVerify(pkA, ek
i′+1
A , σ̂ i

′+1∗
A ,Tx i

′+1
c ),

σ i
′+1∗
A ← DecSign( ˆdk

i′+1
A , σ̂ i

′+1∗
A ),

1 ↚ Verify(pkA,σ
i′+1∗
A ,Tx i

′+1
c ).

Thus, PA breaks the consecutive verifiability and the correctness
of Schnorr CVES scheme.

For the second security goal: guaranteed payout of channel

parties. We assume that PA has the highest balance at an interme-

diate channel state i ′, and she has the ability to close the channel

at state i ′ with an non-negligible possibility. That is PA can derive

σ i
′

B , and post a cross-signedTx
i′
c on L1. Thus, she steals coins from

PB .

Thus, we can make use of PA to forge a valid signature σ i
′

B by

using pkB , ek
i′
B , σ̂

i′
B , and the proof P i

′

B , where:

σ i
′

B ← A(pkB , ek
i′
B , σ̂

i′
B , P

i′
B ),

1← Verify(pkB ,σ
i′
B ,Tx

i′
c ).

We can also make use of PA to reverse dki
′

B from dkiB , where

dki
′

B ← A(dk
i
B ),

σ i
′

B ← DecSign( ˆdk
i′
A, σ̂

i′
B ),

1← Verify(pkB ,σ
i′
B ,Tx

i′
c ).

No matter which scenario happens, PA breaks unforgeability or

one-wayness of Schnorr CVES scheme.

In summary, if one of the channel parties can break the secu-

rity goal, either guaranteed channel closing or guaranteed payout
of channel parties, of AuxChannel, it also breaks the security of

CVES scheme, which is contradict to the assumptions. Theorem 2

is proved then. □

7 DISCUSSION AND CONCLUSION
Payment channel networks (PCN) enable offchain payments be-

tween users that have not established a payment channel between

them, by routing payments via a path of payment channels. This sec-

tion provides an intuition on how to make a payment via multiple-

hop AuxChannel.

Normally, when making a payment via multi-hop channels, two

core requirements should be met. First, all payments in the path

should be atomic, meaning that either they all succeed or they

all failed. For Bitcoin-compatible blockchains, atomicity is usually

guaranteed by using Hash-time Lock Contract (HTLC) [30], the

coins locked in HTLC can only be released when some conditions

are met. Second, all the on-path channels are unlockable even

when the parties involved are crashed or malicious [27, 39], This

is normally guaranteed by making penalty for the malicious [25],

which is used for compensating parties who incurred loss by locking

funds.
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Assuming that Alice (A) has a channel with Bob (B), who has a

channel with Carol (C), who has a channel with Dave (D), the path

of these channels could be considered like: A↔ B ↔ C ↔ D. The
multi-hop payment from A to D requires that each intermediate

channel, namely the channels between A and B, B and C, and C

and D, to lock a payment. Such that once D unlocks the payment

from C, C can unlock the payment from B, and B can unlock the

payment from A. Thus, A obtains a witness as receipt of paying to

D. Otherwise, B and C can unlock their payments (between (A and

B) and (B and C)) after a pre-defined time, and A obtain the receipt

as well. Under this scenario, A can still prove that she has paid to D

by using the receipt, and D has motivation to unlock the payment

from C, or he never get paid. Thus, all the intermediate payments

are atomic and unlockable.
Supporting payment channel network in AuxChannel requires

addressing two challenges: first, how to lock an encrypted signature

within a channel; second, for B and C, how to unlock the locked

signatures when D does not cooperate to unlock his payment for

whatever the reason.

For the first challenge, we give the informal definition of locked
signature below. Using Schnorr signature as an example, let σ =
(R, s) be the full signature in AuxChannel, where s = x ·H (X | |R | |m)+
(r̂∗ + y + z), x is the signing key, X = дx is the corresponding

verification key, r̂∗ is a random value, y is the decryption key, z is

the locking key, and R := дr̂
∗+y+z

. Let σ̂ = (R̂, ŝ) be the encrypted
signature, where ŝ = x · H (R | |m) + (r̂∗ + z) and R̂ := дr̂

∗+z
. Let

σ̂ ∗ := (R̂∗, ŝ∗) be the locked signature, where ŝ∗ = x · H (R | |m) + r̂∗

and R̂∗ := дr̂
∗

. Unlocking a locked signature means revealing the

encrypted signature ŝ .
For the second challenge, in a scriptless blockchain, each inter-

mediate unlocking key is locked by a timed commitment [36, 37],

such that the receiver of each payment can force the opening of the

commitment and learn the unlocking key only after a pre-specified

time.

Suppose that Alice wants to pay x coins to Dave via the path of

AuxChannel: A↔ B ↔ C ↔ D. The multi-hop payment has two

rounds. First, all intermediate channels are locked from Dave to

Alice sequentially. For the channel between Dave and Carol:

• Dave produces an unlocking-locking key pair (zD ,ZD ),
where ZD = дzD and a timed commitment CommD on zD ,
and forwards (ZD ,CommD ) to Carol, such that Carol can

force open CommD and obtain zD after a pre-specified time

tD .
• Dave and Carol make locked signatures σ̂ ∗D and σ̂ ∗C on their

newest channel balances by using same locking key ZD
respectively.

• Dave and Carol make their signatures σ ′D and σ ′C on the mes-

sage i | |ekiC | |ek
i
D , where i is the newest channel state index,

by using their signing keys on the script-enabled blockchain

respectively, and exchange EncZD (σ
′
D ) and EncZD (σ

′
C ),

where EncZD (·) can be any encryption algorithms w.r.t to

the encryption key ZD , such that σ ′D = DeczD (EncZD (σ
′
D )),

where DeczD is the corresponding decryption key w.r.t the

decryption key zD .

Carol picks zC and produces the locking key ZC = д
zD · дzC , and

repeats the above procedure with Bob, who then picks zB and

produces the locking key ZB = дzD · дzC · дzB , and repeats the

above procedure with Alice.

Second, Dave releases his encrypted signature σ̂D , and Carol

calculates zC = σ̂ ∗D−σ̂D and produces σ̂C = σ̂ ∗C+zD . Dave andCarol
obtain σ ′C = DeczD (EncZD (σ

′
C )) and σ ′D = DeczD (EncZD (σ

′
D ))

respectively, and the channel between Dave and Carol is updated.

Carol then unlocks the payment and updates the channel with Bob,

who then unlocks the payment and updates the channel with Alice.

Under the worst case that Dave does not release his encrypted

signature σ̂D , Carol can force open CommD and obtain zD after

the time tD . As Carol is paid from Bob, she is motivated to release

her encrypted signature σ̂C ′ to Bob; Otherwise, Bob and Alice can

force openCommC andCommB and obtain zC and zB after the time

tC and tB respectively to unlock their payment and update their

channel.

However, there are still some issues when running payment chan-

nel network for scriptless blockchain. For example, some privacy

issues on Lightning Network [30], the payment channel network

of Bitcoin, has been exploited by some recent works [7, 23], while

most scriptless blockchains have privacy functionality, such asMon-

ero, these issues may prevent payment channel network from been

deployed on the privacy-preserving blockchains. These issues are

non-trivial and require depth-in analysis. We put them as open

questions for future work.

In conclusion, we propose AuxChannel, the first bi-directional

payment channel protocol for scriptless blockchains. It supports

duplex payments in a channel with unlimited lifespan. The design

concept is also a new direction for enabling payment channel with

scriptless blockchains. We also see CVES as an independent interest

as this may be applied to other applications.
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A SUPPLEMENTARY OF CVES
This section gives the security analysis of our proposed Schnorr-

based CVES scheme in Section 4.3.

Lemma A.1. The Schnorr CVES is correct.

Proof . In our Schnorr CVES (Figure 2), we have that sk is (x,X ),

and the corresponding verification key pk is X := дx . A decryp-

tion key dki is (ỹ,y,Y ) w.r.t the encryption key eki := (Ỹ ,Y ),

where y := ỹ mod p and Ỹ := hỹ mod N ,Y := дy . Since дŝX−c =

дŝ−cx = д(r̂+cx )−cx = дr̂ = R̂, c := H (mi | |R̂Y | |X ), and R̂ = дr̂ ,
it implies that EncVerify(pk, eki , σ̂ i ,mi ) = 1. Similarly, as R = дr ,

c := H (mi | |R | |X ) and дsX−c = дs−cx = д(r+cx )−cx = дr = R,
Verify(pk,σi ,mi ) = 1 always holds. Thus the encrypted signature

σ̂i := (R̂, ŝ) and the original signature σi := (R, s) are valid.
As an encrypted signature σ̂ i is (R̂, ŝ), the corresponding trun-

cated decryption key
ˆdk
i
is (y,Y ), and the original signature σi

is (R, s) = (R̂Y , ŝ + y), we have s = ŝ + y, y = s − ŝ = ŝ + y − ŝ ,

and Y = дy = дŝ+y−ŝ . Thus Rec(σ , σ̂ ) outputs ˆdk
i
= (y,Y ) always

holds. That is the Schnorr CVES is recoverable.

Also, the i-th decryption key dki is (ỹ,y,Y ) and (i + 1)-th de-

cryption key dki+1 is (ỹ′,y′,Y ′) = (ỹ2 mod N ), ỹ′ mod p,дy
′

) and

encryption key eki+1 is ( ˜Y ′,Y ′) = ((hỹ
′

mod N ), (дy
′

)). According

to our Schnorr CVES construction in Figure 2, the NIZK system

proves the following proof-of-knowledge:

PoK((ỹ, ỹ′,y,y′,k) : {Y = дy ∧ Y ′ = дy
′

∧ Ỹ = hỹ mod N∧

Ỹ ′ = hỹ
′

mod N ∧ Ỹ ′(hn )k = Ỹ ỹ mod N∧

Y = дỹ ∧ Y ′ = дỹ
′
∧ 0 < ỹ′ < n})

in Appendix B, our instantiation simply sets n = N = p′q′.
Since ỹ′ = ỹ2 − kN (or ỹ′ = ỹ2 mod N ) and

Ỹ ′(hn )k = Ỹ ′(hNk ) = Ỹ ′(hỹ
2−ỹ′) = Ỹ ′(hỹ

2−(ỹ2
mod N ))

= (hỹ
′
mod N )(hỹ

2−(ỹ2
mod N ))

= hỹ
2

mod N = (hỹ mod N )ỹ mod N = Ỹ ỹ mod N

, it implies that ConsVerify(eki , eki+1,ConsProof(dki ,dki+1)) = 1.

That is the Schnorr CVES is consecutive.

Lemma A.2. Assuming that the discrete logarithm (DL) problem
is hard and the underlying NIZK system is secure, the Schnorr CVES
scheme is unforgeable under the random oracle model.

Proof . Assuming that there exists an adversaryA who can break

the unforgeability, then given a DL problem instance (X ,д) ∈ Gp ,
we can construct a simulator S3 who can make use of A to output

an integer x such that X = дx .
S3 picksX from the problem instance (while its DLx is unknown)

and sets pk := X . For the initial and later stage decryption and

encryption key-pairs and the proof on two consecutive decryption

keys,S3 generates according to the algorithms EncGen,KeyUpdate
and ConsProof. S3 gives (pk, eki , P i ,д) to A.

The game of forging a valid signature runs in three stages

by A: first A0 chooses a certain session and records the pub-

lic keys (pk, eki , P i ,д), and then A1 chooses a message m, fi-

nally A2 outputs a forged signature σ := (R, s) on m, such that

R = дsX−H (m | |R | |X ), where X is the pk given to A. Remark that

m was not queried to O before and that signature is valid.

S3 simulates the randomoracleH as normal (keep a table tomake

the consistency of input and output), and the encsigning oracle E

(with input the public keys pk, eki , and the chosen messagem) as

follows:

• Extract X and Y from pk and ek i ;
• Pick c ∈ Zp and ŝ ∈ Zp randomly;

• Set R̂ := дŝX −c and R = R̂Y ;
• Assign c to the value of the output of the random oracle query

H (m | |R | |X );
• Output σ̂ = (R̂, ŝ).

Similar to the simulation of E, S3 also simulates the signing

oracle O (with input the public keys pk and the chosen messagem)

as follows:

• Extract X and Y from pk and ek i ;
• Pick c ∈ Zp and ŝ , s ∈ Zp randomly;

• Set R̂ := дŝX −c , Y := дs−ŝ and R = R̂Y ;
• Assign ŝ to the value of output encsigning oracle query E(X , Y ,m)
and c to the value of the output of the random oracle query

H (m | |R | |X ), if H (m | |R | |X ) has not been queried or assigned any

value before in other oracles. Otherwise, repeat the process by choos-

ing another different c ;
• Output σ = (R, s).

A can query the random oracle for qH times, the encsigning

oracle for qE times, and the signing oracle for qS times. At the end,

A outputs a forged signature σ ∗ := (R∗, s∗) on its chosen message

m∗, wherem∗ is inputted to encsigning oracle, but not inputted to

the signing oracle.

S3 then rewinds the random tape to the point that A is making

the random oracle query for the value c∗ = H (m∗ | |R∗ | |X ), and use

another random tape to supply a different value c̃∗ = H (m∗ | |R∗ | |X ),
so thatA outputs a different signature σ̃ ∗ = (R∗, s̃∗). [This is called
the Forking Lemma.]

Now there are two forged signatures ofm∗ outputted byA: σ ∗ =
(R∗, s∗) and σ̃ ∗ = (R∗, s̃∗) and they both satisfy the equation R∗ =

дs
∗

X−c
∗

, R∗ = дs̃
∗

X−c̃
∗

respectively. Then we have the following

equations: r∗ = s∗ + c∗x mod p and r∗ = s̃∗ + c̃∗x mod p for two

unknowns r∗ andx , where R̂∗ = дr̂
∗

. By solving these two equations,

S3 can output x which is the solution for the DL problem instance.

□

Lemma A.3. Assuming that the SQROOT problem is hard, the
Schnorr CVES scheme satisfies one-wayness.

Proof . We prove this lemma by contradiction. Assuming that

there exists an adversary A who can break the one-wayness of

Schnorr CVES scheme. Given a SQROOT problem instance (φ,N ),

where φ ∈ QN , we can construct a simulator S4 who can make use

of A to output an integer ỹ such that φ = ỹ2 mod N .

S4 picks φ from the SQROOT problem instance (φ,N ) and sets

dki := (φ,y′,Y ′), where y′ = φ mod p and Y ′ = hy
′

mod p, and
the corresponding encryption key is eki := (Ỹ ′,Y ′). For the signing
key and verification key-pair (sk,pk), where sk := (x,X ) and pk :=

X , the initial and later stage decryption and encryption keys, S4

generates according to the algorithmsGen, EncGen andKeyUpdate.
S4 then gives (sk,dki ,д,h,N ) to A.
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The game of reversing a decryption key from it previous session

runs in two stages: first, A0 chooses a certain session to attack

and records the decryption key dki = (φ,y′,Y ′) and encryption

key eki := (Ỹ ′,Y ′) (while the decryption key dki−1 = (ỹ,y,Y ) is
unknown, such that ỹ := φ mod N , y := ỹ mod p, and Y := дy ),

where Ỹ ′ := hφ mod N , then A1 outputs dki−1
∗
:= (ỹ∗,y∗,Y ∗),

which satisfies:

(dk i∗, ˆdk
i∗
, ek i∗) ← KeyUpdate(dk i−1∗) (2)

σ̂i ← EncSign(sk , ek i ,m∗) (3)

σ ∗i ← DecSign( ˆdk
i∗
, σ̂i ) (4)

1← Verify(pk ,m∗, σ ∗i ) (5)

where dki∗ := (ỹ
′∗,y

′∗,Y
′∗), ˆdk

i∗
:= (y

′∗,Y
′∗), ek

′∗
:= (Ỹ

′∗,Y
′∗),

σ̂i := (R̂, ŝ) and σ ∗i := (R∗, s∗). Let R̂ = дr̂ . We can imply that

y′∗ = ỹ′∗ mod p (from 2)⇒ y′∗ = (ỹ∗
2

mod N ) mod p.
Let R = дr , then R = R̂Y ′ (from 3) ⇒ r = (r̂ + y′) mod p, ŝ =
(r̂ + cx) mod p (from 3) ⇒ ŝ = (r − y′ + cx) mod p, where c =
H (m∗ | |R | |X ).

As all the inputs of equation 3 are generated according to the

algorithms Gen, EncGen and KeyUpdate, according to the correct-

ness of Schnorr we have 1← EncVerify(pk, eki , σ̂ ), which implies

that R̂ = дŝX−c . Thus, R∗ = R̂Y ′∗ (from 4)⇒ R∗ = дŝX−cдy
′∗

On

the other side, R∗ = дs
∗

X−c
∗

(from 5) ⇒ R∗ = дŝ+y
′∗

X−c
∗

From

the above equation, we have R∗ = дŝX−cдy
′∗

= дŝ+y
′∗

X−c
∗

⇒ c =
c∗ ⇒ H (m∗ | |R | |X ) = H (m∗ | |R∗ | |X ).

Remark that, for the same input, the hash function H () produces
a same output. Thus, if c = c∗, it implies thatm∗ | |R | |X =m∗ | |R∗ | |X .

We then have:

R = R∗ ⇒ R̂Y ′ = R̂Y ′∗ ⇒ y′ = y′∗

⇒φ mod p = ỹ′∗ mod p = (ỹ∗
2

mod N ) mod p

That is S4 can output ỹ∗, which is the solution for the SQROOT

problem instance (φ,N ). □

Lemma A.4. Assuming that the underlying NIZK system used
in our ConsProof and ConsVerify is secure, the Schnorr CVES is
consecutive verifiable.

Proof . We prove this lemma by contradiction. Assuming that,

for a session i with the decryption key dki and encryption key

eki , there exists an adversary A who can break the consecutive

verifiability of Schnorr CVES scheme.

We can construct a simulator S5 who can make use of A to

output a proof on a chosen NIZK problem instance (χ ,w), which in-

cludes a chosen NP problem instance χ := (Ỹ , Ỹ ′∗,Y ,Y ′∗) and a five-
element tuplew := (ỹ, ỹ′∗,y,y′∗,k), such that NIZK.Verify(χ, P) =
1, where ỹ′∗,y′∗, Ỹ ′∗,Y ′∗ are chosen by A.

S5 picks ỹ,y, Ỹ ,Y from an NIZK problem instance (χ ,w), where
χ := (Ỹ , Ỹ ′∗,Y ,Y ′∗), andw := (ỹ, ỹ′∗,y,y′∗,k), then sets decryption
key dki := (ỹ,y,Y ) and the corresponding encryption key eki :=
(Ỹ ,Y ). For the signing and verification key-pair (sk,pk), where
sk := (x,X ) and pk := X , the initial and later decryption keys , S5

generates according to the algorithmsGen, EncGen andKeyUpdate.
S5 then gives (dki , eki ,k) to A.

The game of breaking the consecutive verifiablility of the

Schnorr CVES scheme is defined in three stages: first A0

chooses a certain session and records the useful intermediate

variable, then A1 outputs a decryption and encryption key-

pair ({dki+1∗}, { ˆdk
i+1∗
}, {eki+1∗}), where dki+1∗ := (ỹ′∗,y′∗,Y ′∗),

ˆdk
i+1∗

:= (y′∗,Y ′∗), eki+1∗ := (Ỹ ′∗,Y ′∗), y′∗ = ỹ′∗ mod p, Y ′∗ =

дy
′∗

, Ỹ ′∗ = hỹ
′∗

mod N , on the input the decryption key dki , finally
A2 outputs a proof P

∗
on dki and dki+1∗. These outputs satisfy:

(dk i+1, ˆdk
i+1

, ek i+1) ← KeyUpdate(dk i ) (6)

σ̂ ∗ ← EncSign(sk , ek i+1∗,m∗) (7)

σ ← DecSign( ˆdk
i+1

, σ̂ ∗) (8)

1← ConsVerify(ek i , ek i+1∗, P ∗) (9)

0← Verify(pk ,m∗, σ ) (10)

where dki+1 := (ỹ′,y′,Y ′), ˆdk
i+1

:= (y′,Y ′), eki+1 := (Ỹ ′,Y ′),
σ̂ ∗ := (R̂∗, ŝ∗), σ := (R, s), andm∗ is an arbitrary message.

We can imply that ỹ′ = ỹ2 mod N ,y′ = ỹ′ mod p,Y ′ =

дy
′

; (from 6). Let R̂∗ = дr̂
∗

, we can also imply that

R∗ = R̂∗Y ′∗, c∗ = H (m∗ | |R∗ | |X ), ŝ∗ = (r̂∗ + c∗x) mod

p, (from 7), R = R̂∗Y ′, s = (ŝ∗ + y′) mod p (from 8), 1 ←
NIZK.Verify(eki , eki+1∗, P∗) (from 9) and c = H (m∗ | |R | |X ), R ,
дsX−c (from 10).

From the above equations, the following always hold: R =

R̂∗Y ′ , дsY−c ⇒ R̂∗Y ′ , дŝ
∗+y′Y−c ⇒ r̂∗ + y′ , ŝ∗ + y′ − cx ⇒

r̂∗ , (r̂∗ + c∗x) mod p − cx ⇒ cx , c∗x mod p ⇒ c , c∗ ⇒
H (m∗ | |R | |X ) , H (m∗ | |R∗ | |X ). Remark that, for the same input, the

hash function H () produces a same output, otherwise, it yields

the different output. Thus, if c , c∗, it implies that m∗ | |R | |X ,
m∗ | |R∗ | |X . We then have: R , R∗ ⇒ R̂∗Y ′ , R̂∗Y ′∗ ⇒ Y ′ , Y ′∗ ⇒
y′ , y′∗ ⇒ (ỹ2 mod N ) mod p = ỹ′ mod p , ỹ′∗ mod p, which
implies that, ỹ′∗ , ỹ2 mod N .

According to the above inference, for the NIZK instance (χ,w),
where χ := (Ỹ , Ỹ ′∗,Y ,Y ′∗) and w := (ỹ, ỹ′∗,y,y′∗,k) and the rela-

tion R, where R is defined as: R = PoKCV ES = {(ỹ, ỹ
′∗,y,y′∗,k) :

Ỹ = hỹ mod N∧Ỹ ′∗ = hỹ
′∗

mod N∧Ỹ ′(hN )k = Ỹ ỹ mod N∧Y ′∗ =
дỹ
′∗

∧ 0 < ỹ′∗ < N }, which implies that ỹ′∗ = ỹ2 − kN or

(ỹ′∗ = ỹ2 mod N ), there exist a proof P∗ satisfies the equation

NIZK.Verify(χ , P∗) = 1, where (χ,w) < R, and

Pr [NIZK.Verify(χ, P∗) = 1] > neдl(ξ ),

It is contradict to the NIZK soundness [8, 19]. That is S5 can output

a proof P∗ on the chosen NIZK instance (χ,w), which breaks the

soundness property of the NIZK system. □
According to Lemma A.1, A.2, A.3, A.4, Theorem 1 is proved.

B INSTANTIATION AND IMPLEMENTATION
OF SCHNORR-BASED CVES

B.1 Instantiation
We give the instantiation of the algorithms KeyUpdate(·),
ConsVerify(·) and ConsProof(·) (in Figure 2). For simplicity, we

set n = N = p′q′, and let dki := (ui , ti ,Ti ) and ek
i = (Ui ,Ti ) in the

following proof, where i is the session number. Let ui ∈ [0,N − 1]
and (ui−1,ui ) satisfy: ui = u

2

i−1 mod N .
Observe that Ui−1,Ui ,Ti−1,Ti are public elements. We denote

PoKCV ES the proof-of-knowledge for CVES scheme. Then we

construct a zero-knowledge proof-of-knowledge system for ui−1,

14
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ui , ti−1, ti and k , which can be abstracted as follow:

PoK1

CV ES = {(ui−1,ui , ti−1, ti ,k) : Ui−1 = h
ui−1

mod N∧

Ui = h
ui

mod N ∧Ui (h
N )k = Uui−1

i−1 mod N ∧Ti = д
ui }.

PoK1

CV ES implies thatui = u
2

i−1−kN (orui = u
2

i−1 mod N ) and

ti = ui mod p.
Also, we need to prove ui is from 0 to N − 1. This can be done

with any range proof technique. Thus, we have the second part for

PoKCV ES :

PoK 2

CV ES = {(ui ) : Ui = h
ui

mod N ∧ 0 < ui < N }, (11)

The construction of PoKCV ES has two parts as described above.

They are constructed separately, but can be executed in parallel in

its actual implementation. First, we present the proof system for

PoK1

CV ES . Let λ3, λ4 be some security parameters which determine

the soundness and (statistical) zero-knowledgeness of the proof.

Define a cryptographic hash function H : {0, 1}∗ → {0, 1}λ3 . The

first part of the zero-knowledge proof is constructed as follows:

• (Commitment). In a session i , the prover chooses ρui−1 , ρui ,

ρk uniformly at random from [0, 2 |N |+λ3+λ4−1], and com-

putes four commitments:

Yi ,1 = дρui , Yi ,2 = hρui−1 mod N , Yi ,3 = hρui mod N , and

Yi ,4 = U
ρui−1
i−1 (h

−N )ρk mod N .

• (Challenge). The verifier picks a λ3-bit challenge uni-

formly at random. In the non-interactive form, the λ3-
bit challenge can be computed as the hash of the

commitments and the public parameters, i.e, ωi =

H (д,h,Ti−1,Ti ,Ui−1,Ui ,Yi ,1,Yi ,2,Yi ,3,Yi ,4).
• (Response). The prover computes the response:

(zui−1 = ρui−1 −ωi ·ui−1, zui = ρui −ωi ·ui , zk = ρk −ωi ·k)
as the proof.

• (Verify). The verifier outputs 1 if it holds that:

Yi ,1 = h
zui−1Uωi

i−1 mod N ;Yi ,2 = д
zuiTωi

i ;

Yi ,3 = h
zuiUωi

i mod N ;Yi ,4 = (h
−N )zkU

zui−1
i−1 Uωi

i mod N .

Completeness: if zui−1 = ρui−1 −ωi ·ui−1, zui = ρui −ωi ·ui , and
zk = ρk − ωi · k , then Yi ,1 = дρui = дzuiTωi

i , Yi ,2 = hρui−1 mod

N = hzui−1Uωi
i−1 mod N , Yi ,3 = hρui mod N = hzuiUωi

i mod N

and Yi ,4 = U
ρui−1
i−1 (h

−N )ρk mod N = U
zui−1
i−1 Ui

ωi (h−N )zk mod N .

Zero Knowledge: for every д ∈ Gp and h ∈ Z∗N , let P be the proof

andV be the verify algorithm, the output of the simulator needs

to be indistinguishable from the distribution of the transcripts:

V iewV (P(ui−1, ui ) ↔ V(д, h,Ui−1,Ui ,Ti−1,Ti ))

= {(дρui , hρui−1 mod N , hρui mod N ,U
ρui−1
i−1 (h−N )ρk ,

ωi , ρui−1 − ωi · ui−1, ρui − ωi · ui , ρk − ωi · k ) :

ωi = H (д, h,Ui−1,Ui ,Ti−1,Ti , Yi ,1, Yi ,2, Yi ,3, Yi ,4),

(ρui−1 , ρui , ρk ) ← [0, 2
|N |+λ3+λ4 − 1]}

= {(Yi , Yi ,2, Yi ,3, Yi ,4, ωi , zui−1 , zui , zk ) :

Yi ,1 = дzui T
ωi
i , Yi ,2 = hzui−1U

ωi
i−1 mod N ,

Yi ,3 = hzui U
ωi
i mod N , Yi ,4 = U

zui−1
i−1 Uiωi (h−N )zk mod N }

(12)

We construct a simulator S that outputs the same distribution by

running the protocol “in reverse”:

S (д, h,Ui−1,Ui ,Ti−1,Ti ):

zui−1 , zui , zk ← [0, 2
|N |+λ3+λ4 − 1];

ωi ← [0, 2λ3 − 1];
Yi ,1 ← дzui Tωi

i ;

Yi ,2 ← hzui−1U ωi
i−1 mod N

Yi ,3 ← hzui U ωi
i mod N

Yi ,4 ← U
zui−1
i−1 Uiωi (h−N )zk mod N

Since ωi is chosen from at random [0, 2λ3 ], and zui−1 , zui and

zk are chosen at random from [0, 2 |N |+λ3+λ4 ], then the resulting

Yi ,1, Yi ,2, Yi ,3 and Yi ,4 are random, and the output is distributed

statistically close to the real transcript.

Soundness: Let I∗ be a (possible malicious) prover that convinces

the verifier with probability 1−neдl(ξ ′), where neдl() is a negligible
probability with ξ ′-bit inputs. We construct the extractor as follows:

ϵP
∗
(h):

1: Run the prover I ∗ to obtain an initial message tuple (Yi ,1, Yi ,2, Yi ,3, Yi ,4)
and compute the first challenge ωi ,a using the two tuple. Then we have a

response tuple (zaui−1 ,z
a
ui ,z

a
k )← [0, 2

|N |+λ3+λ4 − 1];

2: Rewind the prover I ∗ to its state after the first message;

3: Run the prover I ∗ to obtain the second challenge ωi ,b by using (Yi ,1,
Yi ,2, Yi ,3, Yi ,4), and get second response tuple (zbui−1 ,z

b
ui ,z

b
k );

4: Compute and output ui =
zaui −z

b
ui

ωi ,b−ωi ,a
(in Z), ui−1 =

zaui−1−z
b
ui−1

ωi ,b−ωi ,a
(in Z).

It remains to argue that ωi ,b − ωi ,a |zaui − z
b
ui (resp. ωi ,b − ωi ,a |z

a
ui−1 −

zbui−1 ) so that the extractor can compute this without knowing ϕ(N ).

We sketch the proof that ωi ,b − ωi ,a |z
a
ui − z

b
ui under the strong

RSA assumption. First, we haveYi ,3 = h
zauiU

ωi ,a
i mod N andYi ,3 =

hz
b
uiU

ωi ,b
i mod N . Thus, we havehz

a
uiU

ωi ,a
i = hz

b
uiU

ωi ,b
i ( mod N )

Denote by α and β the values zaui − z
b
ui and ωi ,b − ωi ,a , thus, we

have hα = U
β
i (modN ).

Suppose on a contrary, β does not divide α . Let f = gcd(α, β)
and α = f α ′ and β = f β ′ for some α ′, β ′ , 1.

This implies hα
′

= U
β ′
i (modN ) (otherwise we can setup N as

a product of two safe-primes and f would help factorising N . In

other words, we should choose N such that it is a product of two

safe primes.)

Since gcd(α ′, β ′) = 1, there exists integers X ,Y such that Xα ′ +

Yβ ′ = 1. Therefore, h = hXα ′+Y β ′(modN ) = (UX
i hY )β

′

(modN ).

Therefore, (UX
i hY ), β ′) is a solution to the strong RSA problem

on (N ,h). In other words, if ωi ,b − ωi ,a |z
a
ui − z

b
ui , we can solve the

strong RSA problem.

The proof that ωi ,b − ωi ,a |z
a
ui−1 − z

b
ui−1 is exactly the same and

is thus omitted.

The extraction then fails if zaui−1 = zbui−1 or zaui = zbui which

happens with probability
1

2
λ
3

. Therefore, the knowledge error here

is neдl(ξ ′) = 1

2
|N |+λ

3
+λ

4

.

The second part PoK2

CV ES requires that at each session, the

prover proves that his/her updated decryption key uP,i lies in
the interval [0,N − 1]. This proof can be done by various exist-

ing range proof systems, for example [10–12, 14]. As the second

part PoK2

CV ES is not the contribution of the paper, we omit the

inistantiation of proving uP,i lies in the interval [0,N − 1].
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