
https://doi.org/10.1007/s12083-021-01241-z

Clover: An anonymous transaction relay protocol for the bitcoin P2P
network

Federico Franzoni1 · Vanesa Daza1

Received: 18 December 2020 / Accepted: 30 August 2021
© The Author(s) 2021

Abstract
The Bitcoin P2P network currently represents a reference benchmark for modern cryptocurrencies. Its underlying protocol
defines how transactions and blocks are distributed through all participating nodes. To protect user privacy, the identity of
the node originating a message is kept hidden. However, an adversary observing the whole network can analyze the spread
pattern of a transaction to trace it back to its source. This is possible thanks to the so-called rumor centrality, which is caused
by the symmetry in the spreading of gossip-like protocols. Recent works try to address this issue by breaking the symmetry
of the Diffusion protocol, currently used in Bitcoin, and leveraging proxied broadcast. Nonetheless, the complexity of their
design can be a barrier to their adoption in real life. In this work, we propose Clover, a novel transaction relay protocol that
protects the source of transaction messages with a simple, yet effective, design. Compared to previous solutions, our protocol
does not require building propagation graphs, and reduces the ability of the adversary to gain precision by opening multi-
ple connections towards the same node. Experimental results show that the deanonymization accuracy of an eavesdropper
adversary against Clover is up to 10 times smaller compared to Diffusion.

Keywords Blockchain · Bitcoin · Anonymity · Data propagation

1 Introduction

Over the past few years, Bitcoin [1] has risen to an unprece-
dented level of popularity. Although many users still believe
this system to be anonymous, studies showed how it is rela-
tively easy to link transactions to real identities [2–4]. Most
deanonymization techniques work by tracing transactions on
the blockchain and combining them with publicly available
knowledge [5–7].

However, a less-known approach is to link transaction
messages to their originating node in the underlying P2P
network [8–10]. This approach is based on the observation
that the first device to broadcast a transaction in the network
is likely the one that created it. To implement this approach,
an adversary typically deploys one or more nodes connecting

to all reachable peers in the network, and listens for incom-
ing transaction messages [11]. Transactions are then linked
to their source by using an estimation strategy. This type of
adversary is known as the eavesdropper adversary.

A recent work by Fanti et al. [12] shows that the Diffu-
sion protocol, currently used in Bitcoin, has poor anonymity
guarantees against this adversary. In particular, an attacker
can obtain high levels of precision even when controlling
just few nodes in the network and using a naive estimation
strategy. The authors identify the problem in the symme-
try of the spreading pattern: since transactions spread from
each node to all its peers, it is always possible to determine
the approximate point in the network where the propagation
started. This phenomenon is known as rumor centrality and
is specific to all gossip-like systems [13, 14].

Following these findings, few solutions have been pro-
posed that reduce the ability of the adversary to identify
the source of a transaction [15, 16]. These proposals break
the symmetry in the propagation pattern by having nodes
delegate the broadcast of new transactions to other nodes
of the network. In particular, transactions are first propa-
gated (or proxied) linearly over a path of nodes, and then
broadcast using the Diffusion protocol. The way nodes are

 * Federico Franzoni
 fed.franzoni@gmail.com

 Vanesa Daza
 vanesa.daza@upf.edu

1 Department of Information and Communication
Engineering, Universitat Pompeu Fabra, Roc Boronat, 138,
Barcelona 08018, Spain

/ Published online: 6 October 2021

Peer-to-Peer Networking and Applications (2022) 15:290–303

http://orcid.org/0000-0001-6697-5431
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01241-z&domain=pdf

chosen during this initial phase is defined by the protocol,
and determines the security and complexity of the solution.
In Dandelion [15], reachable nodes in the network build a
propagation graph passing through every node (i.e., an Ham-
iltonian Circuit) and always propagate new transaction over
the same path. Given the risk of the adversary learning the
topology of such graph, a new graph has to be built peri-
odically. In [16], the initial phase alternates reachable and
unreachable nodes with the goal of concealing the propaga-
tion process from the adversary. Since the adversary can
control multiple unreachable peers for any given node, the
authors suggest the use of bucketing [17] to mitigate her
ability of tracking transactions.

While these solutions sensibly improve the anonymity
properties of transaction propagation, their adoption is hin-
dered by their complexity. Additionally, in both protocols,
the adversary can gain an advantage by learning sensitive
information on the initial phase, such as the nodes in the
propagation path (in Dandelion) or the transactions being
proxied (in [16]).

In this paper, we propose a new propagation protocol that
breaks the symmetry by separating inbound and outbound
connections in the relay pattern. Our design is simpler than
previous solutions, making its analysis and implementation
easier. Additionally, we minimize security concerns by lim-
iting the ability of the adversary to learn sensitive infor-
mation: our protocol does not require build a propagation
graph, and prevents the adversary from tracking transactions
by isolating inbound connections. We formally analyze our
protocol and experimentally evaluate it by using a proof of
concept in a simulated environment. Our results show that,
compared to Diffusion, our protocol reduces the deanonymi-
zation precision for the eavesdropper adversary from 0.6 to
just 0.05, in the best case, and from 0.7 to 0.3 in the worst
case.

2 Background

2.1 The Bitcoin P2P network

The Bitcoin P2P network is composed of nodes randomly
connected among each other. Peers of a node are distin-
guished between outbound, whose connection was opened
by the node, and inbound, from which the node accepted an
incoming connection. According to the Bitcoin reference
client, each node establishes and maintains 8 outbound con-
nections and, if reachable, up to 117 inbound connections.
Thus, reachable nodes can have up to 125 connections, while
unreachable nodes are limited to 8.

However, this limit is not enforced, making nodes able
to establish as many connections as needed. This is particu-
larly useful for measuring tools that connect to all reachable

nodes, as well as for the so-called supernodes, which are
often used by mining pools to maximize their connectiv-
ity with the network. At the same time, malicious actors
can exploit this feature to improve the effectiveness of their
attacks.

2.2 Transaction propagation

A transaction tx is transmitted from a node A to a node B
following a three-step process:

1. Node A announces tx to node B by sending an INV mes-
sage, containing the hash of the transaction (h(tx));

2. If h(tx) is unknown, node B requests tx to node A by
sending a GETDATA message is sent, containing h(tx);

3. Node A sends tx to node B via a TX message.

This announcement-based propagation mechanism is used to
avoid transmitting a transaction twice to the same node. To
optimize network data consumption, INV messages usually
aggregate multiple transaction hashes.

Transactions are spread from a node to its peers follow-
ing a gossip-like protocol known as Diffusion, which works
this way: when a new transaction is created or received by a
peer, it is announced to all connected peers; before sending
the INV message, an individual random delay is applied to
each peer.

2.3 Deanonymization strategies

In Bitcoin, the broadcast and relay operations follow the
same rules. Therefore, when nodes create a transaction, they
propagate it the same way as transactions received from their
peers. This approach is used to prevent leaking the identity
of the node that originates the transaction. However, as we
already mentioned, it is possible to determine the source
of a transaction by observing its propagation through the
network.

In particular, an eavesdropper adversary, which connects
to all reachable nodes in the network, can adopt different
strategies to estimate the source of a transaction. The sim-
plest method, called first-timestamp or first-spy estimator,
consists in linking each transaction to the first node that
announces it (to the adversary). The rationale behind this
method is that the first node to announce a transaction in the
network is likely the one that generated it. By connecting
to all nodes, the adversary is always likely to receive each
transaction from its source. This strategy has been proved
to reach very high levels of accuracy against Diffusion, even
when the adversary controls only few nodes [12]

More advanced techniques are theoretically possible
when the adversary knows the network topology [12]. These
techniques take into account the propagation of transactions

291Peer-to-Peer Networking and Applications (2022) 15:290–303

to exploit the rumor-centrality property of the Diffusion
protocol. In particular, these techniques are based on the
observed order in which nodes announce the transaction.
The underlying assumption is that nodes that are (topologi-
cally) closer to the source will announce the transaction ear-
lier than those that are farther away. Although these methods
are theoretically more precise than the first-spy estimator,
their adoption is conditioned to the knowledge of the net-
work graph, which is currently obfuscated by the Bitcoin
protocol.

3 Adversarial model

We consider the eavesdropper adversary defined in [12],
which is based on practical attacks such as [8] and [9].
This adversary makes use of a supernode that connects to
all reachable nodes in the network. For each node, multiple
connections can be established by using different IP:port
addresses, making them look as coming from different
entities. In particular, the adversary can fill up all unused
inbound slots of a target node.

Additionally, we extend this adversary by letting it deploy
an arbitrary number of reachable nodes with the objective
of being selected as an outbound peer by other nodes. This
extension allows the adversary to improve precision against
our protocol.

The goal of the adversary is to determine the source node
for all received transactions. To this purpose, adversarial
nodes listen to all messages relayed by their peers, logging
their content and timestamp. We assume the adversary has a
unified view of the logs from all the nodes under its control.
Furthermore, for each honest node, the adversary maintains a
deanonymization set, which contains all the transactions that
have been possibly generated by that node. To deanonymize
transactions, the adversary adopts the first-spy estimator:
each transaction is linked to the first node that announces it
(to any of the nodes controlled by the adversary).

4 The clover protocol

In this section, we describe Clover, our new transaction
propagation protocol. We detail and motivate its design with
reference to the adversary model.

4.1 Protocol overview

Similar to previous solutions [15, 16], Clover protects the
source of a transaction by means of proxying. This consists
in delegating the broadcast of new transactions to other
nodes. Specifically, when a node creates a new transaction,
it selects one of its peers and sends it the transaction. The

selected node, called proxy, is then responsible for broad-
casting the transaction to the rest of the network. Proxying
allows moving the apparent origin of the propagation of a
transaction from its source to a different node of the network.

Note that proxying drastically reduces the effectiveness
of the first-spy estimator approach, since it is highly unlikely
for the eavesdropper adversary to receive a transaction from
its source. However, if the adversary controls the selected
proxy, she could be able to distinguish a proxied transaction
and simply link it to the sender node (i.e., deanonymize it).

To mitigate this risk, we use transaction mixing. This con-
sists in making nodes proxy their new transactions along
with transactions created (and proxied) by other nodes.
This strategy reduces the ability of an adversarial node of
determining whether a proxied transaction was created by
the sender or a different node. In particular, the more the
transactions used for mixing, the lower the precision of the
adversary. We call mixing set the set of transactions used by
a node for mixing.

To enable mixing, new transactions are proxied over mul-
tiple nodes before being broadcast (multi-hop proxying). In
other words, a new transaction propagates in two phases: the
proxying phase, in which the transaction is relayed through
a number of proxy nodes, and the diffusing phase, where the
transaction is broadcast and propagated following the Diffu-
sion protocol. The switch between the proxying phase and
the diffusing phase can occur at any hop, and it is determined
probabilistically by the node that receives it. Specifically,
when a node receives a transaction in the proxying phase, it
decides whether to relay it to another proxy (thus keeping it
in the proxying phase) or broadcast it with Diffusion (thus
switching to the diffusing phase). We call proxy transaction
a transaction in the proxying phase, and diffused transaction
a transaction in the diffusing phase.

To improve anonymity, only proxy transactions are used
for mixing. This is motivated by the observation that dif-
fused transactions are likely to be known by the adversary. In
fact, by connecting to all reachable nodes, an eavesdropper
adversary is always among the first to receive such transac-
tions. As such, the adversary is able to distinguish diffused
transactions and exclude them from the deanonymization
set, thus improving precision. This means that diffused trans-
actions do not actually contribute to mixing. On the other
hand, proxy transactions are likely unknown to the adversary
and are thus ideal for mixing. In particular, when receiving
a proxy transaction from a node, the adversary is not able
to determine whether it was created by such node or by one
of its peers. Hence, the anonymity of the mixing set solely
depends on the number of proxy transactions it contains.
Therefore, we maximize anonymity by having nodes include
only proxy transactions in their mixing set.

In order to make nodes able to distinguish proxy trans-
actions, we propagate them using a separate protocol

292 Peer-to-Peer Networking and Applications (2022) 15:290–303

message, called PTX. Instead, diffused transactions will
be transmitted using the standard TX message.

To further mitigate the risk of selecting an adversarial
proxy, we only relay new transactions to outbound peers.
This strategy is motivated by the fact that the adversary
can control an arbitrary number of inbound connections.
Instead, she has limited influence on the outbound peers,
which are chosen at random among all reachable nodes in
the network.

Following the same reasoning, we exclude from the
mixing set the transactions received from inbound peers.
We do this to limit the ability of the adversary to track
transactions in the mixing set of a node. In fact, an adver-
sary being used as a proxy by a node, and controlling many
inbound connections towards the same node, can track all
the transactions she relays through these connections and
then exclude them from the corresponding deanonymiza-
tion set to improve precision. At the same time, to allow
a correct propagation, we have nodes relay proxy transac-
tions from inbound peers to other inbound peers.

In summary, proxy transactions received from an out-
bound peer are relayed to another outbound peer, while
proxy transactions received from an inbound peer are
relayed to another inbound peer. We depict this scheme
in Fig. 1. The name Clover has been chosen to recall the
four-way pattern of our relay protocol.

4.2 Protocol design

In this section, we detail the Clover protocol design and
describe the rules followed by network nodes.

4.2.1 Proxy transactions

We introduce a new protocol message PTX, used to propa-
gate proxy transactions. The PTX message has the same
structure as TX and is only used to mark a transaction in
the proxying phase. Like the TX message, the PTX mes-
sage contains the full transaction data.

During the proxying phase, transactions are propagated
directly from one node to another, without previously
announcing them via INV messages. In fact, the standard
three-step transmission is meant to avoid sending a trans-
action twice to the same node, which is likely to occur
in gossip-like protocols. However, since proxy transac-
tions are propagated over a linear path, nodes are rarely
expected to receive them twice. Instead, the receiver of a
proxy transaction is always expected not to know it.

An upside of this strategy is that it allows us to sub-
stantially reduce the propagation delay introduced by the
proxying phase. Specifically, since each relay operation
only requires one message instead of three, the delay is
reduced by one third.

4.2.2 Transaction propagation

When a node creates a new transaction tx, it selects a ran-
dom proxy among its outbound peers, and sends it tx using
a PTX message. This marks the beginning of the proxying
phase for tx.

During this phase, at each hop, the transaction is
relayed (re-proxied) to another node, or broadcast via Dif-
fusion. A node N can receive a proxy transaction tx from
both outbound and inbound peers. When this occurs, N
behaves like follows: if tx is received from an outbound
peer, N relays it to another outbound peer, chosen at ran-
dom; if tx is received from an inbound peer, N broadcasts
it with probability p, or relays it (with probability 1−p) to
an inbound peer, chosen at random. The probability p is
defined at a global level, and determines the average num-
ber of hops through which a transaction is relayed during
the proxying phase. When a transaction gets broadcast, it
enters the diffusing phase and follows the standard Diffu-
sion protocol.

Note that the broadcast step can only occur when tx is
received from inbound peers. In other words, proxy transac-
tions received from outbound peers are always re-proxied.
This choice allows nodes to maximize their mixing set by

N4N3

N1 N2

O

Fig. 1 The Clover relay protocol pattern: black arrows represent the
direction of the connection; colored arrows represent relays of proxy
transactions

293Peer-to-Peer Networking and Applications (2022) 15:290–303

using all suitable transactions (i.e., those received from out-
bound peers).

4.2.3 Timeout

As the diffusion step is probabilistic, a transaction could be
relayed too many times, producing an excessive delay in its
propagation.

To mitigate this risk, when a node proxies a transaction,
it sets a timeout to verify that it gets correctly diffused. To
do so, the node monitors INV messages coming from their
outbound peers. When the timeout expires, the node checks
if the majority of the outbound peers has advertised the
transaction. If so, the transaction is considered as correctly
diffused; otherwise, the node broadcasts the transaction
using Diffusion.

Again, we only consider outbound peers because they are
the least likely to be controlled by the adversary. If we relied
on inbound peers, an adversary, controlling the selected
proxy and the majority of inbound peers, could trick the
node by simply advertising the transaction from all such
peers.

Note that the timeout is applied to all proxied transac-
tions, regardless of being new or relayed. This prevents the
adversary from distinguishing the two cases, which could
lead to deanonymization attacks.

A default value for the timeout can be defined after per-
forming experiments on the network. However, each node
might choose its own value, depending on the desired secu-
rity level.

4.2.4 Clover procedures

We first define the proxy procedure as in Algorithm 1.

This procedure takes as inputs the transaction to be
proxied (tx) and a set of peers (ProxySet) among which
to choose the proxy. The procedure picks a random node
from ProxySet and sends it a PTX message containing tx.
If the transaction is being relayed, its sender is excluded
from the candidates (to avoid sending the message back to
the sender). After sending the PTX message, a timeout t is
set. While t is not expired, the node collects INV messages
from its outbound peers. When t expires, the node checks if
the majority of outbound peers has announced tx. If so, the

transaction is considered as diffused; otherwise, the transac-
tion is broadcast.

We then define the Clover propagation rules as in
Algorithm 2.

When a node creates a new transaction tx, or receives
PTX(tx) from an outbound peer, it runs Proxy(tx, Out-
Peers); if a PTX(tx) message is received from an inbound
peer, the node runs Diffuse(tx) with probability p, and
Proxy(tx, InPeers) with probability 1−p.

5 Discussion

In this section, we study the anonymity properties of the
Clover protocol against an eavesdropper adversary using the
first-spy estimator.

Notation. We use R to denote the set of reachable nodes
in the network and S to denote the subset of reachable nodes
controlled by the adversary (spies). Without loss of general-
ity, we let I and O represent the average set of inbound and
outbound peers of a node in the network.

We use the term source or origin of a transaction to indi-
cate the node that created it. Instead, we use the term sender
to indicate the node that sends a specific message.

For the sake of readability, Table 1 summarizes all param-
eters used in this section.

5.1 Security

We consider an eavesdropper adversary A as described in
Sect. 3. As we will show, A gains no advantage by con-
necting to all nodes, nor by establishing multiple connec-
tions towards the same node. In fact, in our protocol, new
transactions are only relayed through outbound connec-
tions, making the inbound peers controlled by A irrelevant
to deanonymization. Instead, A gains precision by deploying
more reachable nodes, as this increases her chances of being
selected as a proxy node for new transactions.

To analyze the anonymity properties of Clover, two
important aspects must be studied first. On the one hand,
we need to know the probability of selecting an adversarial
node as proxy for new transactions. On the other hand, we

294 Peer-to-Peer Networking and Applications (2022) 15:290–303

need to determine the size of the average mixing set for a
single node.

With these values, we can calculate the precision of A in
deanonymizing proxy transactions, as well as its overall pre-
cision against all new transactions. Note that A will mainly
target proxy transactions, as other transactions are unlikely
to be announced by their source, in the Clover protocol.

Proxy Selection For the sake of simplicity, we assume
each reachable node has the same probability of being
selected as outbound peer when a new node joins the
network1.

Thus, we compute the probability of selecting an adver-
sarial proxy for a single transaction as follows:

Lemma 1 Let R be the set of reachable nodes, and S be the
subset of nodes in R controlled by the eavesdropper adver-
sary A , then the probability PA of selecting an adversarial
node as the proxy for a new transaction is:

Proof As each node establishes |O| outbound connections,
the probability of selecting a node in R as an outbound
peer is |O|/|R|. As the adversary controls |S| nodes in R, the
probability of selecting a node in S as an outbound peer is
|O||S|/|R|. Since new transactions are sent to a random node
in O, the probability of selecting a node in S for a single new
transaction is:

(1)PA =
|S|

|R|
.

 ◻

Therefore, in the current Bitcoin network, where
|R| ≈ 10, 000 , A would have 1∕10000 = 0.0001 probability
of being selected as a proxy when controlling a single node.
On the other hand, when controlling 1000 nodes (10% of the
reachable network) A would have 0.1 probability of being
selected for each new transaction sent in the network.

Note that we are not taking into account other protective
measures used by the Bitcoin client, such as the limitation
in the number of peers from a single subnet, or the use of
bucketing [17]. Since such measures are explicitly meant to
reduce the probability of connecting to multiple adversarial
nodes, it is likely that including these factors in the analysis
would lower the value of PA.

5.1.1 Transaction mixing

To ease the analysis, we study the mixing property of a node
over a period of time T. However, as we will see, results are
independent from this value.

We want to calculate the average size of the mixing set of
a node, which corresponds to the number of PTX messages
received from outbound peers (i.e., nodes in O). In the fol-
lowing, we will use the word transaction as a synonym of
PTX message.

We use �I and �I to denote the average number of transac-
tions received from and sent to each node in I, respectively.
Similarly, we use �O and �O for transactions received from
and sent to nodes in O.

We study the size of the average mixing set M for a
node having a adversarial outbound peers. Note that,
when all outbound peers are honest, the mixing set

(2)PA =
1

|O|
⋅

|O||S|

|R|
=

|S|

|R|
.

Table 1 Parameter definitions Parameter Description

A The eavesdropper adversary
R Set of reachable nodes
O Average set of outbound peers of a node
I Average set of inbound peers of a node
p Probability of diffusion
S Set of nodes in R controlled by A
�
I

Average number of transactions received from an inbound peer
�
I

Average number of transactions sent to an inbound peer
�
O

Average number of transactions received from an outbound peer
�
O

Average number of transactions sent to an outbound peer
M Average mixing set of a node
a Adversarial outbound peers of a node
g Average number of transactions generated by a node

1 Although this assumption is theoretically sound, in the real Bitcoin
network, well-established nodes tend to have more connections, espe-
cially compared to newly-joined nodes. This fact lowers the probabil-
ity of connecting to the adversary, unless she is in control of a large
portion of well-established nodes.

295Peer-to-Peer Networking and Applications (2022) 15:290–303

contains all transactions received from such peers (i.e.,
|M| = �O|O|). However, if A controls one or more out-
bound peers, the transactions received from these nodes
are not useful for mixing (since they are known to A).
Therefore, in this case, the size of the average mixing set
is |M| = �O(|O| − a).

Given the above, the following equation holds:

Lemma 2 Let n be a generic node of the network, g be the
average number of transactions generated by n, O be the set
of outbound peers of n, a be the subset of O controlled by A ,
and p be the probability of Diffusion in Algorithm 1. Then,
the cardinality of the mixing set M for a node n is:

Proof We consider the mixing set in the presence of a adver-
sarial nodes among the outbound peers: |M| = �O(|O| − a) .
By definition, �O = �I . Given the rules defined in Algo-
rithm 2, transactions received from nodes in I (�I) are
relayed, with probability 1 − p , uniformly at random among
nodes in I. Thus, we have:

By definition, �I = �O . Let us assume each node gen-
erates an average of g transactions during T. Given that
each node sends to nodes in O all of its transactions
along with those received by other nodes in O, we have:
�O = (g + �O|O|)∕|O|.

Given that �O = �I and �I = �O , we have:

Isolating �O , we get

On the other hand, as �O = �I = �I(1 − p) = �O(1 − p) ,
we obtain:

 ◻

Note that the size of the mixing set is inversely propor-
tional to p. In fact, the smaller this value, the longer a trans-
action will be relayed before being diffused. In turn, the

(3)|M| =
g(1 − p)

p
⋅

|O| − a

|O|
.

(4)�I = (�I|I|(1 − p))∕|I| = �I(1 − p).

(5)�O =
(g + �O(1 − p)|O|

|O|
.

(6)�O =
g

|O|p
.

(7)

|M| = �O(|O| − a)

= �O(1 − p)(|O| − a)

=
g

|O|p
(1 − p)(|O| − a)

=
g(1 − p)

p
⋅

|O| − a

|O|
.

more a transaction is relayed, the more it contributes to the
mixing of the other nodes.

5.1.2 Deanonymization precision

As previously mentioned, we expect A to mainly target
proxy transactions, since it will be highly unlikely for her to
receive diffused transactions from their source. Therefore,
we first study the precision of A against the proxy transac-
tions she receives. Then, we compute the overall accuracy
considering all transactions.

First, let us consider the precision against proxy transac-
tions coming from a single node. Note that this only applies
to nodes that opened a connection towards an adversarial
peer. We assume A does not know incoming proxy trans-
actions (although this might occasionally happen). As the
first-spy estimator is used, each transaction is linked to the
node that relayed it.

Let Dproxy be the average precision of A against proxy
transactions coming from a single node. Then:

Lemma 3 Let n be a generic node of the network, O be
the set of its outbound peers, a be number of peers in O
controlled by the eavesdropper adversary A , and p be the
probability of Diffusion in Algorithm 1. Then, the average
precision of A against proxy transactions from a node n is:

Proof We consider a node n generating g transactions, and
being connected to a outbound peers controlled by A . As
both new and relayed transactions are distributed among
nodes in O, each such node receives on average g/|O| new
transactions plus |M|∕|O| mixing transactions. Since A
associates all transactions to n, she will get g/|O| correct
guesses over (g + |M|) transactions received.

By Lemma 2, we get:

 ◻

To calculate the overall precision, we consider a network
of |N| nodes, |R| of which are reachable. Let Doverall be the
overall precision of A against transactions generated by
nodes in N. Then, the following equation holds:

(8)Dproxy =
p

1 −
a(1−p)

|O|

.

(9)

Dproxy = (g∕|O|)∕((g + |M|)∕|O|)

= g∕(g + |M|)

= g∕(g + g
1 − p

p

|O| − a

|O|
)

=
p

1 −
a(1−p)

|O|

.

296 Peer-to-Peer Networking and Applications (2022) 15:290–303

Lemma 4 Let R be the set of reachable nodes, and S be
subset of adversarial nodes in R. Then, the overall aver-
age precision of the eavesdropper adversary A against new
transactions in the network is:

Proof Let us consider all transactions generated by nodes
in N, that is gN. By Lemma 1, each transaction is sent to an
adversarial proxy with probability |S|/|R|. As such, A will
receive gN(|S|/|R|) transactions from their source (thus guess-
ing them correctly). Dividing correct guesses over the total
amount of transactions we have:

 ◻

Therefore, the overall precision only depends on the por-
tion of reachable nodes controlled by A.

5.2 Complexity and efficiency

As it can be seen by the Clover procedures (Algorithms 1 and
2), the algorithm followed by network nodes has only plain
instructions and if/then statements, without any loop. Since
its complexity is constant (O(1)), Clover does not add any
computational overhead to the Bitcoin protocol.

Similarly, there is no expected overhead in the number
of exchanged messages. In fact, like in the Diffusion pro-
tocol, transactions are propagated through all nodes of the
network, without repetitions (although this can occasionally
occur in Clover). Instead, since transactions in the proxying
phase are transmitted directly (without previously announc-
ing them), the total number of messages exchanged per node
is expected to be lower than Diffusion.

On the other hand, like other similar solutions, the Clover
protocol introduces a delay in the broadcast of a transaction.
Specifically, this delay is proportional to the number of hops
through which transactions go during the proxying phase.

In this respect, two factors must be considered: the num-
ber of messages needed for each hop, and the number of
hops.

5.2.1 Hop delay

As described in Sect. 2, in the Bitcoin protocol, each transac-
tion propagation hop requires three messages: INV, GET-
DATA , and TX. This strategy is used in Diffusion to avoid
sending transaction data to nodes that already have it.

(10)Doverall =
|S|

|R|
.

(11)
N ⋅

|S|

|R|
g

gN
=

|S|

|R|
.

In Clover, this is not needed, since proxy transactions are
normally unknown to the recipient. Instead, transaction data
is transmitted directly with a single PTX message. Therefore,
only one extra message is needed for each hop in the proxy-
ing phase.

5.2.2 Proxy hops

As previously stated, a higher number of relays during the
proxying phase corresponds to a bigger mixing set for nodes
in the network (and hence, better anonymity). Neverthe-
less, if this number is too high, it can cause an excessive
propagation delay. Therefore, it is essential to choose a tar-
get value that seeks a compromise between efficiency and
effectiveness.

Note that the average number of hops directly depends
on the probability p. In particular, the lower this value, the
higher the number of hops. Therefore, we can choose p to
obtain a target number of hops (h).

In Sect. 7, we calculate the relation between p and h, and
experimentally evaluate the optimal target number of hops.

6 Comparison with state‑of‑the‑art
solutions

We compare Clover with other known anonymity-preserving
propagation protocols. To the best of our knowledge, the
only similar solutions proposed to date are Dandelion [15]
(extended with Dandelion++ [18]), and the one proposed
by Franzoni and Daza [16].

We review the main differences with Clover, and compare
their complexity, efficiency, and security.

Dandelion This protocol, proposed by Bojja Venkatakrishnan
et al. in [15] and extended in [18], is the first solution to
have tried protecting transaction anonymity by breaking the
symmetricity of propagation. Similar to Clover, Dandelion
consists of two phases: a first lineal relay phase, called stem,
and a second broadcasting phase, called fluff, where trans-
actions are propagated using Diffusion. Transactions in the
stem phase are relayed according to a propagation graph (a
circle in Dandelion, and a 2-regular graph in Dandelion++),
which is built by participating nodes prior to run the protocol.
To that purpose each node selects one or two possible prox-
ies (depending on the protocol version) uniformly at random
among their outbound peers. By using a limited set of prox-
ies, Dandelion aims at maximizing the mixing property since
all transactions are relayed through the same path.

Both in Dandelion and Clover, transactions are propa-
gated only through outbound connections, minimizing the
risk of proxying new transactions through adversarial nodes.
However, Dandelion use transactions received from inbound
peers for mixing, thus leaving space for the adversary to

297Peer-to-Peer Networking and Applications (2022) 15:290–303

improve precision by controlling a large portion of inbound
connections. For instance, let us consider the case in which
an adversarial node is selected as a proxy by a victim; when
this occurs, the adversary can open as many inbound connec-
tions as possible towards the victim to improve her chances
of being used as inbound peer in the propagation graph.
Whenever the adversary controls both one or more inbound
peers and one or more outbound peers of such graph, she
will be able to track all transaction used for mixing, and thus
easily detect those generated by the victim. In Clover, we
prevent this risk by only mixing with transactions relayed by
other outbound peers. In other words, the adversary cannot
gain any precision by opening inbound connections towards
a victim.

The use of a propagation graph in Dandelion not only
increases the complexity of the protocol, but also intro-
duces an additional attack vector for the adversary, which
can gain precision by learning the topology of such graph.
To avoid this risk, such graph has to be renewed every
ten minutes, thus further increasing the complexity of the
protocol. Clover avoid these issues by making use of all
connected peers, and selecting proxies at random for each
relay operation.

With respect to the delay introduced by the initial proxy-
ing phase, Clover also outperforms Dandelion by transmit-
ting transactions directly, without using the three-step relay
process described in Sect. 2.2. Roughly speaking, one hop
in the stem phase of Dandelion introduces the delay of
three hops in Clover. In other words, the delay introduced
by each proxy hop in Clover is approximately one third
than in Dandelion. Note that this allows for a longer proxy-
ing phase, which, in turn, means better anonymity proper-
ties (as the security of proxy transactions also depends on
the average number of hops in such phase).

Finally, a major limitation of Dandelion is to be only
compatible with reachable nodes, which represent only the
10% of the whole Bitcoin network. This is due to the fact
that it requires nodes to have inbound connections. Con-
versely, Clover can also works when only outbound con-
nections are available, thus being compatible with all nodes
in the network.

Reachability-dependent Anonymous Propagtion (ReAP)
Following an approach similar to Dandelion, Franzoni
et al. [16] proposed an alternative protocol that breaks the
symmetry of transaction propagation by leveraging unreach-
able nodes. We call this protocol Reachability-dependent
Anonymous Propagation, or ReAP.

In ReAP, transactions are again propagated in two phases,
the first one of which have them relayed linearly through a
sequence of proxy nodes. In the initial phase transactions
are relayed through an alternate sequence of reachable and
unreachable nodes. In particular, reachable nodes proxy
transactions via unreachable nodes, and viceversa. This

strategy has a twofold goal: to improve the involvement of
unreachable nodes in transaction propagation, and to limit
the ability of the adversary to observe the propagation pat-
tern through the network. Their approach is based on the
observation that the adversary is unable to open connec-
tions towards unreachable nodes, and hence cannot observe
propagation through such nodes.

Similar to Clover, ReAP does not require building a
graph, is compatible with unreachable nodes, and mini-
mizes delay by relaying transactions directly (i.e., without
first announcing them) during the proxying phase. However,
there are two major flaws in this protocol. First of all, reach-
able nodes require unreachable nodes to be connected in
order to implement the protocol, which is not always the
case. For instance, newly-joined nodes will likely have no
inbound peers until their address is advertised to enough
peers. Clover has no such limitation and can be readily be
used by any node as soon as they connect to the network.

The second major issue in ReAP lies in the ability of the
adversary to open multiple connections from unreachable
nodes towards reachable ones, which increases her chances
to be selected as proxy for new transactions. Furthermore,
this allows her to track a many transactions in the mixing set
of the target, which, in turn, helps her improve precision in
deanonymization. In Clover, we prevent this issue by hav-
ing nodes mix only with transactions from other outbound
peers, thus minimizing the ability of the adversary to track
transactions in the mixing set of a target.

Finally, the ReAP design has to deal with the complexity
of determine the reachability of each node. In fact, this infor-
mation is not explicit in the protocol and can only be inferred
by probing the public listening address of a node. However,
such address is not always advertised by nodes, making it
hard to establish whether an inbound peer is reachable or
not. Clover avoids such complexity by only differentiating
between outbound and inbound connections, whose differ-
ence is well defined by the Bitcoin protocol and can be easily
verified at any time.

Finally, different from ReAP, we prove the anonymity
guarantees of our protocol, both by formal analysis and
experimental results.

Summmary In the previous paragraphs, we compared Clo-
ver with state-of-the-art anonymous transaction propagation
protocols. In particular, we discussed the complexity of their
design, their scope, their security against the eavesdropper
adversary, and the overhead introduced by the anonymity
phase.

In Table 2, we summarize this comparison. As explained,
both Dandelion/Dandelion++ and ReAP requires extra com-
putation in order to enable the protocol; in contrast, Clover
can be used without any previous operation. As for the delay
introduced by the proxying phase, we saw how Clover and
ReAP both minimize it to one extra message per hop. For what

298 Peer-to-Peer Networking and Applications (2022) 15:290–303

concerns the scope of the protocol, Clover is the only one
that can be used by all nodes in the network, since Dande-
lion/Dandelion++ is only compatible with reachable nodes,
while ReAP cannot be used by newly-joining reachable nodes.
Finally, both Dandelion/Dandelion++ and ReAP allow the
adversary to gain extra precision in deanonymization by means
of side channels: in the first case, by learning the topology
of the graph, and in the latter case, by connecting to a reach-
able node with multiple unreachable peers. On the contrary, an
eavesdropper adversary can only gain precision against Clover
by controlling a larger portion of reachable nodes.

In summary, Clover combines the strengths of previous
solutions while mitigating their limitations and security
risks. The resulting protocol has strong anonymity guaran-
tees for all nodes in the network, with a simple design and
minimum overhead.

7 Experimental results

To evaluate the effectiveness of our protocol against an
eavesdropper adversary, we performed a series of experi-
ments in a simulated environment. In each series, we varied
the portion of the network controlled by the adversary, so as
to study the resilience of the protocol.

We compare our results with those obtained using Dif-
fusion in the same simulation setting. Our results show that
Clover reduces the precision of the first-spy estimator up to
ten times in the best case, while significantly increasing the
cost of the attack for the adversary.

7.1 Proof of concept and simulation

We set our experiments in a private Bitcoin network using
the reference client (Bitcoin Core 0.20), which we modified
to implement the Clover protocol. For the experiments run-
ning the Diffusion protocol, we used the original implemen-
tation without modifications.

Setting To run the simulations we executed nodes in
Regtest (private) mode using Docker containers. Each test
was run on a network of 100 reachable nodes randomly con-
nected to each other. In each simulation, we had nodes ran-
domly generate transactions during 10 minutes. On average,
in each run we generated approximately 300 transactions,
with an average of 3 transactions per node. For each setting,
we run 3 simulations and then computed the average.

Being a simulated environment, our experimental setting
might not fully represent the actual Bitcoin network. In par-
ticular, unlike our simulation, connections in the real network
are not evenly distributed among nodes. Instead, stable nodes
often maintain more connections than others, while newly-
joined nodes typically require several hours before having a
stable number of inbound peers. This might be an advantage
for the adversary in the case it runs a well-known, stable node.
However, in the real network, the adversary will be likely
more limited than in our simulation, due to the fact that she
needs to deploy several nodes to perform the deanonymization
attack. In other words, deanonymization results in our simula-
tion are likely to be better than they would be in the real world.

Unlike the real Bitcoin network, our simulation main-
tains a stable topology during the experiments. The stabil-
ity of a controlled environment allows us to better evaluate
the effectiveness of our propagation protocol against dean-
onymization attacks. Moreover, it allows a more meaningful
comparison between Clover and Diffusion, since they can
be tested in similar conditions, without depending on the
randomness of the real network.

Due to technical reasons, we also exclude unreachable
nodes in our simulations. Note that this has no relevance for
Clover, since we showed in Sect. 5 how precision exclusively
depends on reachable nodes, but it might slightly affect
the results for the Diffusion protocol. However, although
unreachable nodes are theoretically relevant in Diffusion,
studies showed how their involvement in the transaction
propagation is extremely low compared to their number
[19], with as little as the 0.001% of nodes sending transac-
tion messages. We then consider this as a minor limitation.

Overall, despite the differences between our simulated envi-
ronment and the actual Bitcoin network, we believe our results
are proper indicator of the security gains of Clover over Diffusion.

Adversary We varied the number of adversarial nodes from 1
to 30, corresponding to a range between 1% and 30% of the
reachable network. These nodes are chosen randomly among
those already deployed, so that they are well connected to the
rest of the network. Note that this is the worst-case scenario
since it assumes the adversary controls well-established
nodes in the network. In addition, when testing against Dif-
fusion, each adversarial node connects to all reachable peers
(recall that this is not necessary when testing Clover, since it
does not improve the precision of the adversary).

Table 2 Comparison between Clover, Dandelion, and ReaP

Protocol Extra
Computation

Overhead Scope Extra
Precision

Dandelion [15]
Dandelion++
[18]

Yes 3 msg/hop Reachable
only

Yes

ReAP [16] Yes 1 msg/hop All except
new
reachable
nodes

Yes

Clover No 1 msg/hop All No

299Peer-to-Peer Networking and Applications (2022) 15:290–303

All adversarial nodes log incoming INV and PTX mes-
sages. At the end of the simulation, these logs are merged and
ordered by timestamp. Then, the first-spy estimator is applied,
linking each transaction to the first peer that advertised or
transmitted it to any of the adversarial nodes.

Timeout The diffusion timeout has been set to fit the local
simulation environment, where transactions are produced
and spread faster than the real network. In particular, verifi-
cation timeout has been set to 1 minute.

7.2 Simulation results

We evaluated precision against adversaries controlling 1%,
2%, 5%, 10%, 20%, and 30% of the network. Each adversary
is first tested against Diffusion, and then against Clover with
broadcast probability p equal to 0.2, 0.3, and 0.4. Overall
precision is calculated as the average among all tests with a
given adversarial power. Results are shown in Fig. 2.

In our simulations, the precision of the adversary against
Diffusion showed to be very high even controlling a small
portion of the network. In particular, when controlling from
1% to 5% of the reachable network, the adversary had a
precision as high as 0.6. This value raises to 0.7 when the
number of adversarial nodes reaches the 20% of the network.

On the other side, precision against Clover, although
growing faster in the number of adversarial nodes, showed
to be much lower than against Diffusion. Specifically, overall

precision is from 10 times smaller (0.05), for adversaries con-
trolling from 1% to 5% of the network, to 3 times smaller
(0.33), for adversaries controlling from 10% to 30% of the
network.

For what concerns precision against proxy transactions,
we have, as expected, better results for lower values of p. In
particular, with p = 0.3 , precision ranges from 0.16 to 0.4,
while, for p = 0.2 , the adversary showed an average precision
of 0.14 when the controlling 1-5% of the reachable nodes,
and up to 0.35 when controlling 30%. When setting p = 0.1
precision against proxy transactions gets as low as the overall
precision, indicating a near-optimum level of mixing.

Notably, the precision of the adversary against Clover
never exceeded that against Diffusion. This means that
Clover against a strong adversary controlling 30% of the
network outperforms Diffusion against the weakest adver-
sary controlling 1% of the network.

A major result of our experiments is that it shows how
attacking Clover is substantially more expensive for the adver-
sary (who need to deploy numerous nodes), compared to Dif-
fusion, without even reaching the same levels of accuracy.

Hops According to our experiments, the average number
of hops is inversely proportional to the probability p. In
particular, we found the following relation to hold:

(12)h ≈
(1 − p)

0.15
.

Fig. 2 Deanonymization preci-
sion against Clover

0 5 10 15 20 25 30
|A|/|R| (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Deanonymization Precision

Diffusion
Clover (proxy,p=0.1)
Clover (proxy,p=0.2)
Clover (proxy,p=0.3)
Clover (overall)

300 Peer-to-Peer Networking and Applications (2022) 15:290–303

For instance, with probability p = 0.1 , transactions are relayed
through an average of 6 hops, during the proxying phase.

7.3 Comparison with dandelion++

To further demonstrate the benefits of Clover, we experi-
mentally compared its results against Dandelion++. To that
purpose, we run the same set of experiments, in the same
setting, using the official implementation of Dandelion++.
We compare its results against Clover when the probability
of diffusion is set to p = 0.1 , since this is also the value used
by Dandelion++. Results are shown in Fig. 3.

As shown in the graphic, the overall precision of the
eavesdropper adversary is comparable between Clover and
Dandelion++. In contrast, precision against transactions in
the proxying phase is visibly higher in Dandelion++. This
is probably due to the fact that Clover better utilizes avail-
able transactions for the mixing property. In particular, while
Clover distributes all incoming proxy transactions among all
proxy nodes, Dandelion++ links each outbound proxy to a
specific inbound peer. Additionally, all new transactions are
proxied through the same node (during one epoch).

For the same reason, the results we obtained for Dandelion++
against proxy transactions were highly variable within a single
setting. The irregularity of the corresponding line of the graphic
reflects this variability.

In summary, when compared to Dandelion++, Clover
shows a similar level of anonymity, but with better, and more
stable, results for transactions in the proxying phase.

8 Related work

Anonymity in Bitcoin has been widely addressed in research
[4]. In particular, two major directions have been explored
in relation to deanonymization.

On the one side, there is blockchain analysis [3, 5], which
aims at linking Bitcoin addresses (and all related transac-
tions) to real-world identities. This is done by crossing pub-
licly available information (e.g., known addresses or transac-
tions, known services, ...) with address clustering: since all
transactions are linked to each other, it is possible to trace
coins throughout the whole blockchain. To prevent this kind
of attack, users can use mix services, which allow them to
shuffle their coins with other users so as to prevent the pos-
sibility of tracing back coins in the blockchain.

On the other side, there is traffic analysis, which aims at
linking transactions to the IP address from which it originated,
which would likely reveal the owner of the coins spent by such
transactions. This is typically done by connecting to the whole
network and monitoring transaction messages. Note that these
attacks can go beyond the capacity of blockchain analysis, since
they do not take into account Bitcoin addresses but only network

Fig. 3 Precision against Clover
(p=0.1) and Dandelion

0 5 10 15 20 25 30
|A|/|R| (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pr
ec

is
io

n

Deanonymization Precision

Clover (overall)
Clover (proxy txs)
Dandelion (overall)
Dandelion (proxy txs)

301Peer-to-Peer Networking and Applications (2022) 15:290–303

packages. In other words, network analysis can deanonymize a
transaction even when this is anonymized through a mix service.
Although anonymity networks, like Tor or I2P, can be used to
protect from such attacks, these services are not commonly used
by Bitcoin users, and might even lead to other deanonymization
attacks [10]. Therefore, network-level anonymity is still a major
concern for Bitcoin users. In the following, we review the most
relevant works related to network-level deanonymization.

Network-Level Deanonymization Kaminsky [20] is the first
one to propose the general first-spy approach. Based on the
observation that nodes announce their transactions to all
peers, he proposes to connect to all nodes and simply associ-
ates each transaction to the first node that announces it.

Koshy et al. [9] are among the first ones to apply the first-
spy approach on the Bitcoin network. In their experiment,
they connect to all nodes during 5 months and analyze the
relay patterns of each transaction. Their results showed an
accuracy of around 20% using very conservative thresholds.

In [21], Biryukov et al. propose a novel deanonymiza-
tion technique targeting different cryptocurrency networks
based on propagation analysis. Their approach is based on
rumor centrality. According to their estimates, this technique
is feasible even for low-budget adversaries.

Differently from other works, which only apply to reacha-
ble nodes, Biryukov et al. [8, 10] specifically target unreach-
able nodes and nodes using Tor. Their approach is based
on fingerprinting techniques and reaches accuracy levels
between 11% and 60%, depending on the stealthiness of the
attacker. Since their technique only works during a single
session, [22] propose a complementary technique that allows
identifying unreachable nodes over multiple sessions.

In [12] and [11], Fanti et al. theoretically analyze the ano-
nymity properties of Trickle and Diffusion protocols against
an eavesdropper adversary using first-spy and rumor-central-
ity-based estimators. Their results show that both protocols
have poor anonymity guarantees and identify the symmetry
of the propagation pattern as the core issue.

9 Conclusion

Transaction anonymity is considered an essential feature of cryp-
tocurrencies. However, while great improvements have been
made at the application level, the network level is still vulnerable
to cheap and effective deanonymization attacks. Recent proposals
have identified and addressed the issues in the propagation proto-
col that lead to such attacks. Nonetheless, the complexity of the
proposed solutions might hinder their adoption in real networks.

In this paper, we proposed an alternative approach to
transaction propagation for the Bitcoin network, which
adopts a simple design that eases its analysis and implemen-
tation. We theoretically studied its anonymity guarantees
against powerful adversaries and experimentally evaluated

its effectiveness through simulations, comparing results with
the protocol currently used in Bitcoin.

Our experimental results show that the deanonymization
precision of the eavesdropper adversary adopting the first-spy
estimator is up to 10 times smaller in the best case. We believe
our solution can be easily adopted in real cryptocurrency net-
works and serve as a basis for future advances in the field.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash sys-
tem. Bitcoin. 4 https:// bitco in. org/ bitco in. pdf

 2. Androulaki E, Karame GO, Roeschlin M, Scherer T, Capkun S
(2013) Evaluating user privacy in bitcoin. In A.-R. Sadeghi, editor,
Financial Cryptography and Data Security, pp 34–51, Berlin, Hei-
delberg. Springer Berlin Heidelberg. ISBN: 978-3-642-39884-1

 3. Reid F, Harrigan M (2013) An Analysis of Anonymity in the
Bitcoin System. Springer New York, pp 197–223. ISBN: 978-1-
4614-4139-7 https:// doi. org/ 10. 1007/ 978-1- 4614- 4139-7_ 10

 4. Herrera-Joancomartí J (2015) Research and challenges on bit-
coin anonymity. In: Garcia-Alfaro J, Herrera-Joancomartí J, Lupu
E, Posegga J, Aldini A, Martinelli F, Suri N (eds) Data Privacy
Management. Autonomous Spontaneous Security, and Security
Assurance. Springer International Publishing, Cham, pp 3–16.
ISBN: 978-3-319-17016-9.

 5. Meiklejohn S, Pomarole M, Jordan G, Levchenko K, McCoy D,
Voelker GM, Savage S (2013) A fistful of bitcoins: Characterizing
payments among men with no names. In Proceedings of the 2013
Conference on Internet Measurement Conference, IMC ’13, pp
127–140, New York, NY, USA. ACM. ISBN: 978-1-4503-1953-
9. https:// doi. org/ 10. 1145/ 25047 30. 25047 47

 6. Nick JD (2015) Data-driven de-anonymization in bitcoin. Master’s
thesis, ETH-Zürich

 7. Neudecker T, Hartenstein H (2017) Could network information
facilitate address clustering in bitcoin? In: Brenner M, Rohloff
K, Bonneau J, Miller A, Ryan PY, Teague V, Bracciali A, Sala
M, Pintore F, Jakobsson M (eds) Financial Cryptography and
Data Security. pp. Springer International Publishing, Cham, pp
155–169. ISBN: 978-3-319-70278-0.

 8. Biryukov A, Khovratovich D, Pustogarov I (2014) Deanonymisa-
tion of clients in bitcoin p2p network. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pp 15–29, New York, NY, USA. ACM. ISBN:
978-1-4503-2957-6. https:// doi. org/ 10. 1145/ 26602 67. 26603 79

302 Peer-to-Peer Networking and Applications (2022) 15:290–303

http://creativecommons.org/licenses/by/4.0/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2660267.2660379

 9. Koshy P, Koshy D, McDaniel P (2014) An analysis of anonymity
in bitcoin using p2p network traffic. In Financial Cryptography
and Data Security, pp 469–485, Berlin, Heidelberg. Springer Ber-
lin Heidelberg

 10. Biryukov A, Pustogarov I (2015) Bitcoin over tor isn’t a good idea.
In 2015 IEEE Symposium on Security and Privacy. pp 122–134.
https:// doi. org/ 10. 1109/ SP. 2015. 15

 11. Fanti G, Viswanath P (2017) Deanonymization in the bitcoin p2p net-
work. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems30, pp 1364–1373. Curran Associates, Inc.
https:// papers. nips. cc/ paper/ 6735- deano nymiz ation- in- the- bitco in- p2p-
netwo rk. pdf

 12. Fanti GC, Viswanath P (2017) Anonymity properties of the bit-
coin P2P network. CoRR, abs/1703.08761

 13. Shah D, Zaman T (2012) Rumor centrality: A universal source
detector. In Proceedings of the 12th ACM SIGMETRICS / PER-
FORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS’12, pp 199–210.
New York, NY, USA. Association for Computing Machinery.
https:// doi. org/ 10. 1145/ 22547 56. 22547 82

 14. Shah D, Zaman T (2011) Rumors in a network: Who’s the culprit?
IEEE Trans Inf Theory 57(8):5163–5181. https:// doi. org/ 10. 1109/
TIT. 2011. 21588 85

 15. Bojja Venkatakrishnan S, Fanti G, Viswanath P (2017) Dandelion:
Redesigning the bitcoin network for anonymity. Proc ACM Meas
Anal Comput Syst 1(1):22:1–22:34. https:// doi. org/ 10. 1145/ 30844 59

 16. Franzoni F, Daza V (2020) Improving bitcoin transaction propaga-
tion by leveraging unreachable nodes. arXiv:2010.15070 [cs.NI]

 17. Bitcoin Wiki. Bitcoin core 0.11 (ch 4): P2p network. Last
Accessed: 01/04/2021. https:// en. bitco in. it/ wiki/ Bitco in_ Core_0.
11_ (ch_ 4):_ P2P_ Netwo rk

 18. Fanti G, Venkatakrishnan SB, Bakshi S, Denby B, Bhargava S,
Miller A, Viswanath P (2018) Dandelion++: Lightweight crypto-
currency networking with formal anonymity guarantees. Proc ACM
Meas Anal Comput Syst 2(2). https:// doi. org/ 10. 1145/ 32244 24

 19. Wang L, Pustogarov I (2017) Towards better understanding of
bitcoin unreachable peers. CoRR, abs/1709.06837

 20. Kaminsky D (2011) Black ops of tcp/ip. Black Hat USA, 44
 21. Biryukov A, Tikhomirov S (2019) Deanonymization and linkability

of cryptocurrency transactions based on network analysis. In 2019
IEEE European Symposium on Security and Privacy (EuroSP) pp
172–184. https:// doi. org/ 10. 1109/ EuroSP. 2019. 00022

 22. Mastan ID, Paul S (2018) A new approach to deanonymization
of unreachable bitcoin nodes. In: Capkun S, Chow SSM (eds)
Cryptology and Network Security. pp. Springer International Pub-
lishing, Cham, pp 277–298. ISBN: 978-3-030-02641-7

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Federico Franzoni is a researcher
in the WiSeCom group at Uni-
versitat Pompeu Fabra. He did
his PhD in the Department of
Information Technologies and
Communications at Pompeu
Fabra University, Barcelona,
Spain. He received his B.Sc.
degree in Information Technol-
ogy and his M.Sc. degree in
Computer Science from La Sapi-
enza University in Rome, Italy.
His research interests include

security, operating systems, networking and blockchain technologies.

Vanesa Daza is an Associate Pro-
fessor at Pompeu Fabra Univer-
sity, Barcelona, Spain since
2012. She received a Bachelor’s
Degree in Mathematics from
Universitat de Barcelona, and a
Ph.D. degree in Mathematics
from Universitat Politécnica de
Catalunya. She have both worked
as a researcher in the industry
(Scytl, Spain) as well as aca-
demia (Rovira i Virgili Univer-
sity, Spain). She have co-
authored more than 30 papers,
including international journals

and top conferences of cryptography and cybersecurity. Her research
interests deal with the use of distributed cryptographic techniques to
enhance security and privacy to secure emerging technologies, with
special emphasis on blockchain technology. She is an Associate Editor
of IEEE Transactions on Information Forensics and Security and IEEE
Transactions on Dependable and Secure Computing. Among other
positions serving UPF, she chaired the Information and Communica-
tion Technologies Department at Pompeu Fabra University.

303Peer-to-Peer Networking and Applications (2022) 15:290–303

https://doi.org/10.1109/SP.2015.15
http://papers.nips.cc/paper/6735-deanonymization-in-the-bitcoin-p2p-network.pdf
http://papers.nips.cc/paper/6735-deanonymization-in-the-bitcoin-p2p-network.pdf
https://doi.org/10.1145/2254756.2254782
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1145/3084459
https://en.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_4):_P2P_Network
https://en.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_4):_P2P_Network
https://doi.org/10.1145/3224424
https://doi.org/10.1109/EuroSP.2019.00022

	Clover: An anonymous transaction relay protocol for the bitcoin P2P network
	Abstract
	1 Introduction
	2 Background
	2.1 The Bitcoin P2P network
	2.2 Transaction propagation
	2.3 Deanonymization strategies

	3 Adversarial model
	4 The clover protocol
	4.1 Protocol overview
	4.2 Protocol design
	4.2.1 Proxy transactions
	4.2.2 Transaction propagation
	4.2.3 Timeout
	4.2.4 Clover procedures

	5 Discussion
	5.1 Security
	5.1.1 Transaction mixing
	5.1.2 Deanonymization precision

	5.2 Complexity and efficiency
	5.2.1 Hop delay
	5.2.2 Proxy hops

	6 Comparison with state-of-the-art solutions
	7 Experimental results
	7.1 Proof of concept and simulation
	7.2 Simulation results
	7.3 Comparison with dandelion++

	8 Related work
	9 Conclusion
	References

