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Abstract
The Bitcoin P2P network currently represents a reference benchmark for modern cryptocurrencies. Its underlying protocol 
defines how transactions and blocks are distributed through all participating nodes. To protect user privacy, the identity of 
the node originating a message is kept hidden. However, an adversary observing the whole network can analyze the spread 
pattern of a transaction to trace it back to its source. This is possible thanks to the so-called rumor centrality, which is caused 
by the symmetry in the spreading of gossip-like protocols. Recent works try to address this issue by breaking the symmetry 
of the Diffusion protocol, currently used in Bitcoin, and leveraging proxied broadcast. Nonetheless, the complexity of their 
design can be a barrier to their adoption in real life. In this work, we propose Clover, a novel transaction relay protocol that 
protects the source of transaction messages with a simple, yet effective, design. Compared to previous solutions, our protocol 
does not require building propagation graphs, and reduces the ability of the adversary to gain precision by opening multi-
ple connections towards the same node. Experimental results show that the deanonymization accuracy of an eavesdropper 
adversary against Clover is up to 10 times smaller compared to Diffusion.
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1 Introduction

Over the past few years, Bitcoin [1] has risen to an unprece-
dented level of popularity. Although many users still believe 
this system to be anonymous, studies showed how it is rela-
tively easy to link transactions to real identities [2–4]. Most 
deanonymization techniques work by tracing transactions on 
the blockchain and combining them with publicly available 
knowledge [5–7].

However, a less-known approach is to link transaction 
messages to their originating node in the underlying P2P 
network [8–10]. This approach is based on the observation 
that the first device to broadcast a transaction in the network 
is likely the one that created it. To implement this approach, 
an adversary typically deploys one or more nodes connecting 

to all reachable peers in the network, and listens for incom-
ing transaction messages [11]. Transactions are then linked 
to their source by using an estimation strategy. This type of 
adversary is known as the eavesdropper adversary.

A recent work by Fanti et al. [12] shows that the Diffu-
sion protocol, currently used in Bitcoin, has poor anonymity 
guarantees against this adversary. In particular, an attacker 
can obtain high levels of precision even when controlling 
just few nodes in the network and using a naive estimation 
strategy. The authors identify the problem in the symme-
try of the spreading pattern: since transactions spread from 
each node to all its peers, it is always possible to determine 
the approximate point in the network where the propagation 
started. This phenomenon is known as rumor centrality and 
is specific to all gossip-like systems [13, 14].

Following these findings, few solutions have been pro-
posed that reduce the ability of the adversary to identify 
the source of a transaction [15, 16]. These proposals break 
the symmetry in the propagation pattern by having nodes 
delegate the broadcast of new transactions to other nodes 
of the network. In particular, transactions are first propa-
gated (or proxied) linearly over a path of nodes, and then 
broadcast using the Diffusion protocol. The way nodes are 
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chosen during this initial phase is defined by the protocol, 
and determines the security and complexity of the solution. 
In Dandelion [15], reachable nodes in the network build a 
propagation graph passing through every node (i.e., an Ham-
iltonian Circuit) and always propagate new transaction over 
the same path. Given the risk of the adversary learning the 
topology of such graph, a new graph has to be built peri-
odically. In [16], the initial phase alternates reachable and 
unreachable nodes with the goal of concealing the propaga-
tion process from the adversary. Since the adversary can 
control multiple unreachable peers for any given node, the 
authors suggest the use of bucketing [17] to mitigate her 
ability of tracking transactions.

While these solutions sensibly improve the anonymity 
properties of transaction propagation, their adoption is hin-
dered by their complexity. Additionally, in both protocols, 
the adversary can gain an advantage by learning sensitive 
information on the initial phase, such as the nodes in the 
propagation path (in Dandelion) or the transactions being 
proxied (in [16]).

In this paper, we propose a new propagation protocol that 
breaks the symmetry by separating inbound and outbound 
connections in the relay pattern. Our design is simpler than 
previous solutions, making its analysis and implementation 
easier. Additionally, we minimize security concerns by lim-
iting the ability of the adversary to learn sensitive infor-
mation: our protocol does not require build a propagation 
graph, and prevents the adversary from tracking transactions 
by isolating inbound connections. We formally analyze our 
protocol and experimentally evaluate it by using a proof of 
concept in a simulated environment. Our results show that, 
compared to Diffusion, our protocol reduces the deanonymi-
zation precision for the eavesdropper adversary from 0.6 to 
just 0.05, in the best case, and from 0.7 to 0.3 in the worst 
case.

2  Background

2.1  The Bitcoin P2P network

The Bitcoin P2P network is composed of nodes randomly 
connected among each other. Peers of a node are distin-
guished between outbound, whose connection was opened 
by the node, and inbound, from which the node accepted an 
incoming connection. According to the Bitcoin reference 
client, each node establishes and maintains 8 outbound con-
nections and, if reachable, up to 117 inbound connections. 
Thus, reachable nodes can have up to 125 connections, while 
unreachable nodes are limited to 8.

However, this limit is not enforced, making nodes able 
to establish as many connections as needed. This is particu-
larly useful for measuring tools that connect to all reachable 

nodes, as well as for the so-called supernodes, which are 
often used by mining pools to maximize their connectiv-
ity with the network. At the same time, malicious actors 
can exploit this feature to improve the effectiveness of their 
attacks.

2.2  Transaction propagation

A transaction tx is transmitted from a node A to a node B 
following a three-step process: 

1. Node A announces tx to node B by sending an INV mes-
sage, containing the hash of the transaction (h(tx));

2. If h(tx) is unknown, node B requests tx to node A by 
sending a GETDATA  message is sent, containing h(tx);

3. Node A sends tx to node B via a TX message.

This announcement-based propagation mechanism is used to 
avoid transmitting a transaction twice to the same node. To 
optimize network data consumption, INV messages usually 
aggregate multiple transaction hashes.

Transactions are spread from a node to its peers follow-
ing a gossip-like protocol known as Diffusion, which works 
this way: when a new transaction is created or received by a 
peer, it is announced to all connected peers; before sending 
the INV message, an individual random delay is applied to 
each peer.

2.3  Deanonymization strategies

In Bitcoin, the broadcast and relay operations follow the 
same rules. Therefore, when nodes create a transaction, they 
propagate it the same way as transactions received from their 
peers. This approach is used to prevent leaking the identity 
of the node that originates the transaction. However, as we 
already mentioned, it is possible to determine the source 
of a transaction by observing its propagation through the 
network.

In particular, an eavesdropper adversary, which connects 
to all reachable nodes in the network, can adopt different 
strategies to estimate the source of a transaction. The sim-
plest method, called first-timestamp or first-spy estimator, 
consists in linking each transaction to the first node that 
announces it (to the adversary). The rationale behind this 
method is that the first node to announce a transaction in the 
network is likely the one that generated it. By connecting 
to all nodes, the adversary is always likely to receive each 
transaction from its source. This strategy has been proved 
to reach very high levels of accuracy against Diffusion, even 
when the adversary controls only few nodes [12]

More advanced techniques are theoretically possible 
when the adversary knows the network topology [12]. These 
techniques take into account the propagation of transactions 
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to exploit the rumor-centrality property of the Diffusion 
protocol. In particular, these techniques are based on the 
observed order in which nodes announce the transaction. 
The underlying assumption is that nodes that are (topologi-
cally) closer to the source will announce the transaction ear-
lier than those that are farther away. Although these methods 
are theoretically more precise than the first-spy estimator, 
their adoption is conditioned to the knowledge of the net-
work graph, which is currently obfuscated by the Bitcoin 
protocol.

3  Adversarial model

We consider the eavesdropper adversary defined in [12], 
which is based on practical attacks such as [8] and [9]. 
This adversary makes use of a supernode that connects to 
all reachable nodes in the network. For each node, multiple 
connections can be established by using different IP:port 
addresses, making them look as coming from different 
entities. In particular, the adversary can fill up all unused 
inbound slots of a target node.

Additionally, we extend this adversary by letting it deploy 
an arbitrary number of reachable nodes with the objective 
of being selected as an outbound peer by other nodes. This 
extension allows the adversary to improve precision against 
our protocol.

The goal of the adversary is to determine the source node 
for all received transactions. To this purpose, adversarial 
nodes listen to all messages relayed by their peers, logging 
their content and timestamp. We assume the adversary has a 
unified view of the logs from all the nodes under its control. 
Furthermore, for each honest node, the adversary maintains a 
deanonymization set, which contains all the transactions that 
have been possibly generated by that node. To deanonymize 
transactions, the adversary adopts the first-spy estimator: 
each transaction is linked to the first node that announces it 
(to any of the nodes controlled by the adversary).

4  The clover protocol

In this section, we describe Clover, our new transaction 
propagation protocol. We detail and motivate its design with 
reference to the adversary model.

4.1  Protocol overview

Similar to previous solutions [15, 16], Clover protects the 
source of a transaction by means of proxying. This consists 
in delegating the broadcast of new transactions to other 
nodes. Specifically, when a node creates a new transaction, 
it selects one of its peers and sends it the transaction. The 

selected node, called proxy, is then responsible for broad-
casting the transaction to the rest of the network. Proxying 
allows moving the apparent origin of the propagation of a 
transaction from its source to a different node of the network.

Note that proxying drastically reduces the effectiveness 
of the first-spy estimator approach, since it is highly unlikely 
for the eavesdropper adversary to receive a transaction from 
its source. However, if the adversary controls the selected 
proxy, she could be able to distinguish a proxied transaction 
and simply link it to the sender node (i.e., deanonymize it).

To mitigate this risk, we use transaction mixing. This con-
sists in making nodes proxy their new transactions along 
with transactions created (and proxied) by other nodes. 
This strategy reduces the ability of an adversarial node of 
determining whether a proxied transaction was created by 
the sender or a different node. In particular, the more the 
transactions used for mixing, the lower the precision of the 
adversary. We call mixing set the set of transactions used by 
a node for mixing.

To enable mixing, new transactions are proxied over mul-
tiple nodes before being broadcast (multi-hop proxying). In 
other words, a new transaction propagates in two phases: the 
proxying phase, in which the transaction is relayed through 
a number of proxy nodes, and the diffusing phase, where the 
transaction is broadcast and propagated following the Diffu-
sion protocol. The switch between the proxying phase and 
the diffusing phase can occur at any hop, and it is determined 
probabilistically by the node that receives it. Specifically, 
when a node receives a transaction in the proxying phase, it 
decides whether to relay it to another proxy (thus keeping it 
in the proxying phase) or broadcast it with Diffusion (thus 
switching to the diffusing phase). We call proxy transaction 
a transaction in the proxying phase, and diffused transaction 
a transaction in the diffusing phase.

To improve anonymity, only proxy transactions are used 
for mixing. This is motivated by the observation that dif-
fused transactions are likely to be known by the adversary. In 
fact, by connecting to all reachable nodes, an eavesdropper 
adversary is always among the first to receive such transac-
tions. As such, the adversary is able to distinguish diffused 
transactions and exclude them from the deanonymization 
set, thus improving precision. This means that diffused trans-
actions do not actually contribute to mixing. On the other 
hand, proxy transactions are likely unknown to the adversary 
and are thus ideal for mixing. In particular, when receiving 
a proxy transaction from a node, the adversary is not able 
to determine whether it was created by such node or by one 
of its peers. Hence, the anonymity of the mixing set solely 
depends on the number of proxy transactions it contains. 
Therefore, we maximize anonymity by having nodes include 
only proxy transactions in their mixing set.

In order to make nodes able to distinguish proxy trans-
actions, we propagate them using a separate protocol 
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message, called PTX. Instead, diffused transactions will 
be transmitted using the standard TX message.

To further mitigate the risk of selecting an adversarial 
proxy, we only relay new transactions to outbound peers. 
This strategy is motivated by the fact that the adversary 
can control an arbitrary number of inbound connections. 
Instead, she has limited influence on the outbound peers, 
which are chosen at random among all reachable nodes in 
the network.

Following the same reasoning, we exclude from the 
mixing set the transactions received from inbound peers. 
We do this to limit the ability of the adversary to track 
transactions in the mixing set of a node. In fact, an adver-
sary being used as a proxy by a node, and controlling many 
inbound connections towards the same node, can track all 
the transactions she relays through these connections and 
then exclude them from the corresponding deanonymiza-
tion set to improve precision. At the same time, to allow 
a correct propagation, we have nodes relay proxy transac-
tions from inbound peers to other inbound peers.

In summary, proxy transactions received from an out-
bound peer are relayed to another outbound peer, while 
proxy transactions received from an inbound peer are 
relayed to another inbound peer. We depict this scheme 
in Fig. 1. The name Clover has been chosen to recall the 
four-way pattern of our relay protocol.

4.2  Protocol design

In this section, we detail the Clover protocol design and 
describe the rules followed by network nodes.

4.2.1  Proxy transactions

We introduce a new protocol message PTX, used to propa-
gate proxy transactions. The PTX message has the same 
structure as TX and is only used to mark a transaction in 
the proxying phase. Like the TX message, the PTX mes-
sage contains the full transaction data.

During the proxying phase, transactions are propagated 
directly from one node to another, without previously 
announcing them via INV messages. In fact, the standard 
three-step transmission is meant to avoid sending a trans-
action twice to the same node, which is likely to occur 
in gossip-like protocols. However, since proxy transac-
tions are propagated over a linear path, nodes are rarely 
expected to receive them twice. Instead, the receiver of a 
proxy transaction is always expected not to know it.

An upside of this strategy is that it allows us to sub-
stantially reduce the propagation delay introduced by the 
proxying phase. Specifically, since each relay operation 
only requires one message instead of three, the delay is 
reduced by one third.

4.2.2  Transaction propagation

When a node creates a new transaction tx, it selects a ran-
dom proxy among its outbound peers, and sends it tx using 
a PTX message. This marks the beginning of the proxying 
phase for tx.

During this phase, at each hop, the transaction is 
relayed (re-proxied) to another node, or broadcast via Dif-
fusion. A node N can receive a proxy transaction tx from 
both outbound and inbound peers. When this occurs, N 
behaves like follows: if tx is received from an outbound 
peer, N relays it to another outbound peer, chosen at ran-
dom; if tx is received from an inbound peer, N broadcasts 
it with probability p, or relays it (with probability 1−p ) to 
an inbound peer, chosen at random. The probability p is 
defined at a global level, and determines the average num-
ber of hops through which a transaction is relayed during 
the proxying phase. When a transaction gets broadcast, it 
enters the diffusing phase and follows the standard Diffu-
sion protocol.

Note that the broadcast step can only occur when tx is 
received from inbound peers. In other words, proxy transac-
tions received from outbound peers are always re-proxied. 
This choice allows nodes to maximize their mixing set by 

N4N3

N1 N2

O

Fig. 1  The Clover relay protocol pattern: black arrows represent the 
direction of the connection; colored arrows represent relays of proxy 
transactions
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using all suitable transactions (i.e., those received from out-
bound peers).

4.2.3  Timeout

As the diffusion step is probabilistic, a transaction could be 
relayed too many times, producing an excessive delay in its 
propagation.

To mitigate this risk, when a node proxies a transaction, 
it sets a timeout to verify that it gets correctly diffused. To 
do so, the node monitors INV messages coming from their 
outbound peers. When the timeout expires, the node checks 
if the majority of the outbound peers has advertised the 
transaction. If so, the transaction is considered as correctly 
diffused; otherwise, the node broadcasts the transaction 
using Diffusion.

Again, we only consider outbound peers because they are 
the least likely to be controlled by the adversary. If we relied 
on inbound peers, an adversary, controlling the selected 
proxy and the majority of inbound peers, could trick the 
node by simply advertising the transaction from all such 
peers.

Note that the timeout is applied to all proxied transac-
tions, regardless of being new or relayed. This prevents the 
adversary from distinguishing the two cases, which could 
lead to deanonymization attacks.

A default value for the timeout can be defined after per-
forming experiments on the network. However, each node 
might choose its own value, depending on the desired secu-
rity level.

4.2.4  Clover procedures

We first define the proxy procedure as in Algorithm 1.

This procedure takes as inputs the transaction to be 
proxied (tx) and a set of peers (ProxySet) among which 
to choose the proxy. The procedure picks a random node 
from ProxySet and sends it a PTX message containing tx. 
If the transaction is being relayed, its sender is excluded 
from the candidates (to avoid sending the message back to 
the sender). After sending the PTX message, a timeout t is 
set. While t is not expired, the node collects INV messages 
from its outbound peers. When t expires, the node checks if 
the majority of outbound peers has announced tx. If so, the 

transaction is considered as diffused; otherwise, the transac-
tion is broadcast.

We then define the Clover propagation rules as in 
Algorithm 2.

When a node creates a new transaction tx, or receives 
PTX(tx) from an outbound peer, it runs Proxy(tx, Out-
Peers); if a PTX(tx) message is received from an inbound 
peer, the node runs Diffuse(tx) with probability p, and 
Proxy(tx, InPeers) with probability 1−p.

5  Discussion

In this section, we study the anonymity properties of the 
Clover protocol against an eavesdropper adversary using the 
first-spy estimator.

Notation. We use R to denote the set of reachable nodes 
in the network and S to denote the subset of reachable nodes 
controlled by the adversary (spies). Without loss of general-
ity, we let I and O represent the average set of inbound and 
outbound peers of a node in the network.

We use the term source or origin of a transaction to indi-
cate the node that created it. Instead, we use the term sender 
to indicate the node that sends a specific message.

For the sake of readability, Table 1 summarizes all param-
eters used in this section.

5.1  Security

We consider an eavesdropper adversary A as described in 
Sect. 3. As we will show, A gains no advantage by con-
necting to all nodes, nor by establishing multiple connec-
tions towards the same node. In fact, in our protocol, new 
transactions are only relayed through outbound connec-
tions, making the inbound peers controlled by A irrelevant 
to deanonymization. Instead, A gains precision by deploying 
more reachable nodes, as this increases her chances of being 
selected as a proxy node for new transactions.

To analyze the anonymity properties of Clover, two 
important aspects must be studied first. On the one hand, 
we need to know the probability of selecting an adversarial 
node as proxy for new transactions. On the other hand, we 
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need to determine the size of the average mixing set for a 
single node.

With these values, we can calculate the precision of A in 
deanonymizing proxy transactions, as well as its overall pre-
cision against all new transactions. Note that A will mainly 
target proxy transactions, as other transactions are unlikely 
to be announced by their source, in the Clover protocol.

Proxy Selection For the sake of simplicity, we assume 
each reachable node has the same probability of being 
selected as outbound peer when a new node joins the 
network1.

Thus, we compute the probability of selecting an adver-
sarial proxy for a single transaction as follows:

Lemma 1 Let R be the set of reachable nodes, and S be the 
subset of nodes in R controlled by the eavesdropper adver-
sary A , then the probability PA of selecting an adversarial 
node as the proxy for a new transaction is:

Proof As each node establishes |O| outbound connections, 
the probability of selecting a node in R as an outbound 
peer is |O|/|R|. As the adversary controls |S| nodes in R, the 
probability of selecting a node in S as an outbound peer is 
|O||S|/|R|. Since new transactions are sent to a random node 
in O, the probability of selecting a node in S for a single new 
transaction is:

(1)PA =
|S|

|R|
.

  ◻

Therefore, in the current Bitcoin network, where 
|R| ≈ 10, 000 , A would have 1∕10000 = 0.0001 probability 
of being selected as a proxy when controlling a single node. 
On the other hand, when controlling 1000 nodes (10% of the 
reachable network) A would have 0.1 probability of being 
selected for each new transaction sent in the network.

Note that we are not taking into account other protective 
measures used by the Bitcoin client, such as the limitation 
in the number of peers from a single subnet, or the use of 
bucketing [17]. Since such measures are explicitly meant to 
reduce the probability of connecting to multiple adversarial 
nodes, it is likely that including these factors in the analysis 
would lower the value of PA.

5.1.1  Transaction mixing

To ease the analysis, we study the mixing property of a node 
over a period of time T. However, as we will see, results are 
independent from this value.

We want to calculate the average size of the mixing set of 
a node, which corresponds to the number of PTX messages 
received from outbound peers (i.e., nodes in O). In the fol-
lowing, we will use the word transaction as a synonym of 
PTX message.

We use �I and �I to denote the average number of transac-
tions received from and sent to each node in I, respectively. 
Similarly, we use �O and �O for transactions received from 
and sent to nodes in O.

We study the size of the average mixing set M for a 
node having a adversarial outbound peers. Note that, 
when all outbound peers are honest, the mixing set 

(2)PA =
1

|O|
⋅

|O||S|

|R|
=

|S|

|R|
.

Table 1  Parameter definitions Parameter Description

A The eavesdropper adversary
R Set of reachable nodes
O Average set of outbound peers of a node
I Average set of inbound peers of a node
p Probability of diffusion
S Set of nodes in R controlled by A
�
I

Average number of transactions received from an inbound peer
�
I

Average number of transactions sent to an inbound peer
�
O

Average number of transactions received from an outbound peer
�
O

Average number of transactions sent to an outbound peer
M Average mixing set of a node
a Adversarial outbound peers of a node
g Average number of transactions generated by a node

1 Although this assumption is theoretically sound, in the real Bitcoin 
network, well-established nodes tend to have more connections, espe-
cially compared to newly-joined nodes. This fact lowers the probabil-
ity of connecting to the adversary, unless she is in control of a large 
portion of well-established nodes.
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contains all transactions received from such peers (i.e., 
|M| = �O|O| ). However, if A controls one or more out-
bound peers, the transactions received from these nodes 
are not useful for mixing (since they are known to A ). 
Therefore, in this case, the size of the average mixing set 
is |M| = �O(|O| − a).

Given the above, the following equation holds:

Lemma 2 Let n be a generic node of the network, g be the 
average number of transactions generated by n, O be the set 
of outbound peers of n, a be the subset of O controlled by A , 
and p be the probability of Diffusion in Algorithm  1. Then, 
the cardinality of the mixing set M for a node n is:

Proof We consider the mixing set in the presence of a adver-
sarial nodes among the outbound peers: |M| = �O(|O| − a) . 
By definition, �O = �I . Given the rules defined in Algo-
rithm  2, transactions received from nodes in I ( �I ) are 
relayed, with probability 1 − p , uniformly at random among 
nodes in I. Thus, we have:

By definition, �I = �O . Let us assume each node gen-
erates an average of g transactions during T. Given that 
each node sends to nodes in O all of its transactions 
along with those received by other nodes in O, we have: 
�O = (g + �O|O|)∕|O|.

Given that �O = �I and �I = �O , we have:

Isolating �O , we get

On the other hand, as �O = �I = �I(1 − p) = �O(1 − p) , 
we obtain:

  ◻

Note that the size of the mixing set is inversely propor-
tional to p. In fact, the smaller this value, the longer a trans-
action will be relayed before being diffused. In turn, the 

(3)|M| =
g(1 − p)

p
⋅

|O| − a

|O|
.

(4)�I = (�I|I|(1 − p))∕|I| = �I(1 − p).

(5)�O =
(g + �O(1 − p)|O|

|O|
.

(6)�O =
g

|O|p
.

(7)

|M| = �O(|O| − a)

= �O(1 − p)(|O| − a)

=
g

|O|p
(1 − p)(|O| − a)

=
g(1 − p)

p
⋅

|O| − a

|O|
.

more a transaction is relayed, the more it contributes to the 
mixing of the other nodes.

5.1.2  Deanonymization precision

As previously mentioned, we expect A to mainly target 
proxy transactions, since it will be highly unlikely for her to 
receive diffused transactions from their source. Therefore, 
we first study the precision of A against the proxy transac-
tions she receives. Then, we compute the overall accuracy 
considering all transactions.

First, let us consider the precision against proxy transac-
tions coming from a single node. Note that this only applies 
to nodes that opened a connection towards an adversarial 
peer. We assume A does not know incoming proxy trans-
actions (although this might occasionally happen). As the 
first-spy estimator is used, each transaction is linked to the 
node that relayed it.

Let Dproxy be the average precision of A against proxy 
transactions coming from a single node. Then:

Lemma 3 Let n be a generic node of the network, O be 
the set of its outbound peers, a be number of peers in O 
controlled by the eavesdropper adversary A , and p be the 
probability of Diffusion in Algorithm  1. Then, the average 
precision of A against proxy transactions from a node n is:

Proof We consider a node n generating g transactions, and 
being connected to a outbound peers controlled by A . As 
both new and relayed transactions are distributed among 
nodes in O, each such node receives on average g/|O| new 
transactions plus |M|∕|O| mixing transactions. Since A 
associates all transactions to n, she will get g/|O| correct 
guesses over (g + |M|) transactions received.

By Lemma 2, we get:

  ◻

To calculate the overall precision, we consider a network 
of |N| nodes, |R| of which are reachable. Let Doverall be the 
overall precision of A against transactions generated by 
nodes in N. Then, the following equation holds:

(8)Dproxy =
p

1 −
a(1−p)

|O|

.

(9)

Dproxy = (g∕|O|)∕((g + |M|)∕|O|)

= g∕(g + |M|)

= g∕(g + g
1 − p

p

|O| − a

|O|
)

=
p

1 −
a(1−p)

|O|

.
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Lemma 4 Let R be the set of reachable nodes, and S be 
subset of adversarial nodes in R. Then, the overall aver-
age precision of the eavesdropper adversary A against new 
transactions in the network is:

Proof Let us consider all transactions generated by nodes 
in N, that is gN. By Lemma 1, each transaction is sent to an 
adversarial proxy with probability |S|/|R|. As such, A will 
receive gN(|S|/|R|) transactions from their source (thus guess-
ing them correctly). Dividing correct guesses over the total 
amount of transactions we have:

  ◻

Therefore, the overall precision only depends on the por-
tion of reachable nodes controlled by A.

5.2  Complexity and efficiency

As it can be seen by the Clover procedures (Algorithms 1 and 
2), the algorithm followed by network nodes has only plain 
instructions and if/then statements, without any loop. Since 
its complexity is constant (O(1)), Clover does not add any 
computational overhead to the Bitcoin protocol.

Similarly, there is no expected overhead in the number 
of exchanged messages. In fact, like in the Diffusion pro-
tocol, transactions are propagated through all nodes of the 
network, without repetitions (although this can occasionally 
occur in Clover). Instead, since transactions in the proxying 
phase are transmitted directly (without previously announc-
ing them), the total number of messages exchanged per node 
is expected to be lower than Diffusion.

On the other hand, like other similar solutions, the Clover 
protocol introduces a delay in the broadcast of a transaction. 
Specifically, this delay is proportional to the number of hops 
through which transactions go during the proxying phase.

In this respect, two factors must be considered: the num-
ber of messages needed for each hop, and the number of 
hops.

5.2.1  Hop delay

As described in Sect. 2, in the Bitcoin protocol, each transac-
tion propagation hop requires three messages: INV, GET-
DATA , and TX. This strategy is used in Diffusion to avoid 
sending transaction data to nodes that already have it.

(10)Doverall =
|S|

|R|
.

(11)
N ⋅

|S|

|R|
g

gN
=

|S|

|R|
.

In Clover, this is not needed, since proxy transactions are 
normally unknown to the recipient. Instead, transaction data 
is transmitted directly with a single PTX message. Therefore, 
only one extra message is needed for each hop in the proxy-
ing phase.

5.2.2  Proxy hops

As previously stated, a higher number of relays during the 
proxying phase corresponds to a bigger mixing set for nodes 
in the network (and hence, better anonymity). Neverthe-
less, if this number is too high, it can cause an excessive 
propagation delay. Therefore, it is essential to choose a tar-
get value that seeks a compromise between efficiency and 
effectiveness.

Note that the average number of hops directly depends 
on the probability p. In particular, the lower this value, the 
higher the number of hops. Therefore, we can choose p to 
obtain a target number of hops (h).

In Sect. 7, we calculate the relation between p and h, and 
experimentally evaluate the optimal target number of hops.

6  Comparison with state‑of‑the‑art 
solutions

We compare Clover with other known anonymity-preserving 
propagation protocols. To the best of our knowledge, the 
only similar solutions proposed to date are Dandelion [15] 
(extended with Dandelion++ [18]), and the one proposed 
by Franzoni and Daza [16].

We review the main differences with Clover, and compare 
their complexity, efficiency, and security.

Dandelion This protocol, proposed by Bojja Venkatakrishnan  
et al. in [15] and extended in [18], is the first solution to 
have tried protecting transaction anonymity by breaking the 
symmetricity of propagation. Similar to Clover, Dandelion 
consists of two phases: a first lineal relay phase, called stem,  
and a second broadcasting phase, called fluff, where trans-
actions are propagated using Diffusion. Transactions in the 
stem phase are relayed according to a propagation graph (a 
circle in Dandelion, and a 2-regular graph in Dandelion++), 
which is built by participating nodes prior to run the protocol. 
To that purpose each node selects one or two possible prox-
ies (depending on the protocol version) uniformly at random 
among their outbound peers. By using a limited set of prox-
ies, Dandelion aims at maximizing the mixing property since  
all transactions are relayed through the same path.

Both in Dandelion and Clover, transactions are propa-
gated only through outbound connections, minimizing the 
risk of proxying new transactions through adversarial nodes. 
However, Dandelion use transactions received from inbound 
peers for mixing, thus leaving space for the adversary to 
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improve precision by controlling a large portion of inbound 
connections. For instance, let us consider the case in which 
an adversarial node is selected as a proxy by a victim; when 
this occurs, the adversary can open as many inbound connec-
tions as possible towards the victim to improve her chances 
of being used as inbound peer in the propagation graph. 
Whenever the adversary controls both one or more inbound 
peers and one or more outbound peers of such graph, she 
will be able to track all transaction used for mixing, and thus 
easily detect those generated by the victim. In Clover, we 
prevent this risk by only mixing with transactions relayed by 
other outbound peers. In other words, the adversary cannot 
gain any precision by opening inbound connections towards 
a victim.

The use of a propagation graph in Dandelion not only 
increases the complexity of the protocol, but also intro-
duces an additional attack vector for the adversary, which 
can gain precision by learning the topology of such graph. 
To avoid this risk, such graph has to be renewed every 
ten minutes, thus further increasing the complexity of the 
protocol. Clover avoid these issues by making use of all 
connected peers, and selecting proxies at random for each 
relay operation.

With respect to the delay introduced by the initial proxy-
ing phase, Clover also outperforms Dandelion by transmit-
ting transactions directly, without using the three-step relay 
process described in Sect. 2.2. Roughly speaking, one hop 
in the stem phase of Dandelion introduces the delay of 
three hops in Clover. In other words, the delay introduced 
by each proxy hop in Clover is approximately one third 
than in Dandelion. Note that this allows for a longer proxy-
ing phase, which, in turn, means better anonymity proper-
ties (as the security of proxy transactions also depends on 
the average number of hops in such phase).

Finally, a major limitation of Dandelion is to be only 
compatible with reachable nodes, which represent only the 
10% of the whole Bitcoin network. This is due to the fact 
that it requires nodes to have inbound connections. Con-
versely, Clover can also works when only outbound con-
nections are available, thus being compatible with all nodes 
in the network.

Reachability-dependent Anonymous Propagtion (ReAP) 
Following an approach similar to Dandelion, Franzoni 
et al. [16] proposed an alternative protocol that breaks the 
symmetry of transaction propagation by leveraging unreach-
able nodes. We call this protocol Reachability-dependent 
Anonymous Propagation, or ReAP.

In ReAP, transactions are again propagated in two phases, 
the first one of which have them relayed linearly through a 
sequence of proxy nodes. In the initial phase transactions 
are relayed through an alternate sequence of reachable and 
unreachable nodes. In particular, reachable nodes proxy 
transactions via unreachable nodes, and viceversa. This 

strategy has a twofold goal: to improve the involvement of 
unreachable nodes in transaction propagation, and to limit 
the ability of the adversary to observe the propagation pat-
tern through the network. Their approach is based on the 
observation that the adversary is unable to open connec-
tions towards unreachable nodes, and hence cannot observe 
propagation through such nodes.

Similar to Clover, ReAP does not require building a 
graph, is compatible with unreachable nodes, and mini-
mizes delay by relaying transactions directly (i.e., without 
first announcing them) during the proxying phase. However, 
there are two major flaws in this protocol. First of all, reach-
able nodes require unreachable nodes to be connected in 
order to implement the protocol, which is not always the 
case. For instance, newly-joined nodes will likely have no 
inbound peers until their address is advertised to enough 
peers. Clover has no such limitation and can be readily be 
used by any node as soon as they connect to the network.

The second major issue in ReAP lies in the ability of the 
adversary to open multiple connections from unreachable 
nodes towards reachable ones, which increases her chances 
to be selected as proxy for new transactions. Furthermore, 
this allows her to track a many transactions in the mixing set 
of the target, which, in turn, helps her improve precision in 
deanonymization. In Clover, we prevent this issue by hav-
ing nodes mix only with transactions from other outbound 
peers, thus minimizing the ability of the adversary to track 
transactions in the mixing set of a target.

Finally, the ReAP design has to deal with the complexity 
of determine the reachability of each node. In fact, this infor-
mation is not explicit in the protocol and can only be inferred 
by probing the public listening address of a node. However, 
such address is not always advertised by nodes, making it 
hard to establish whether an inbound peer is reachable or 
not. Clover avoids such complexity by only differentiating 
between outbound and inbound connections, whose differ-
ence is well defined by the Bitcoin protocol and can be easily 
verified at any time.

Finally, different from ReAP, we prove the anonymity 
guarantees of our protocol, both by formal analysis and 
experimental results.

Summmary In the previous paragraphs, we compared Clo-
ver with state-of-the-art anonymous transaction propagation 
protocols. In particular, we discussed the complexity of their 
design, their scope, their security against the eavesdropper 
adversary, and the overhead introduced by the anonymity 
phase.

In Table 2, we summarize this comparison. As explained, 
both Dandelion/Dandelion++ and ReAP requires extra com-
putation in order to enable the protocol; in contrast, Clover 
can be used without any previous operation. As for the delay 
introduced by the proxying phase, we saw how Clover and 
ReAP both minimize it to one extra message per hop. For what  
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concerns the scope of the protocol, Clover is the only one 
that can be used by all nodes in the network, since Dande-
lion/Dandelion++ is only compatible with reachable nodes, 
while ReAP cannot be used by newly-joining reachable nodes. 
Finally, both Dandelion/Dandelion++ and ReAP allow the 
adversary to gain extra precision in deanonymization by means 
of side channels: in the first case, by learning the topology 
of the graph, and in the latter case, by connecting to a reach-
able node with multiple unreachable peers. On the contrary, an 
eavesdropper adversary can only gain precision against Clover 
by controlling a larger portion of reachable nodes.

In summary, Clover combines the strengths of previous 
solutions while mitigating their limitations and security 
risks. The resulting protocol has strong anonymity guaran-
tees for all nodes in the network, with a simple design and 
minimum overhead.

7  Experimental results

To evaluate the effectiveness of our protocol against an 
eavesdropper adversary, we performed a series of experi-
ments in a simulated environment. In each series, we varied 
the portion of the network controlled by the adversary, so as 
to study the resilience of the protocol.

We compare our results with those obtained using Dif-
fusion in the same simulation setting. Our results show that 
Clover reduces the precision of the first-spy estimator up to 
ten times in the best case, while significantly increasing the 
cost of the attack for the adversary.

7.1  Proof of concept and simulation

We set our experiments in a private Bitcoin network using 
the reference client (Bitcoin Core 0.20), which we modified 
to implement the Clover protocol. For the experiments run-
ning the Diffusion protocol, we used the original implemen-
tation without modifications.

Setting To run the simulations we executed nodes in 
Regtest (private) mode using Docker containers. Each test 
was run on a network of 100 reachable nodes randomly con-
nected to each other. In each simulation, we had nodes ran-
domly generate transactions during 10 minutes. On average, 
in each run we generated approximately 300 transactions, 
with an average of 3 transactions per node. For each setting, 
we run 3 simulations and then computed the average.

Being a simulated environment, our experimental setting 
might not fully represent the actual Bitcoin network. In par-
ticular, unlike our simulation, connections in the real network 
are not evenly distributed among nodes. Instead, stable nodes 
often maintain more connections than others, while newly-
joined nodes typically require several hours before having a 
stable number of inbound peers. This might be an advantage 
for the adversary in the case it runs a well-known, stable node. 
However, in the real network, the adversary will be likely 
more limited than in our simulation, due to the fact that she 
needs to deploy several nodes to perform the deanonymization 
attack. In other words, deanonymization results in our simula-
tion are likely to be better than they would be in the real world.

Unlike the real Bitcoin network, our simulation main-
tains a stable topology during the experiments. The stabil-
ity of a controlled environment allows us to better evaluate 
the effectiveness of our propagation protocol against dean-
onymization attacks. Moreover, it allows a more meaningful 
comparison between Clover and Diffusion, since they can 
be tested in similar conditions, without depending on the 
randomness of the real network.

Due to technical reasons, we also exclude unreachable 
nodes in our simulations. Note that this has no relevance for 
Clover, since we showed in Sect. 5 how precision exclusively 
depends on reachable nodes, but it might slightly affect 
the results for the Diffusion protocol. However, although 
unreachable nodes are theoretically relevant in Diffusion, 
studies showed how their involvement in the transaction 
propagation is extremely low compared to their number 
[19], with as little as the 0.001% of nodes sending transac-
tion messages. We then consider this as a minor limitation.

Overall, despite the differences between our simulated envi-
ronment and the actual Bitcoin network, we believe our results 
are proper indicator of the security gains of Clover over Diffusion.

Adversary We varied the number of adversarial nodes from 1  
to 30, corresponding to a range between 1% and 30% of the 
reachable network. These nodes are chosen randomly among 
those already deployed, so that they are well connected to the 
rest of the network. Note that this is the worst-case scenario  
since it assumes the adversary controls well-established 
nodes in the network. In addition, when testing against Dif-
fusion, each adversarial node connects to all reachable peers 
(recall that this is not necessary when testing Clover, since it  
does not improve the precision of the adversary).

Table 2  Comparison between Clover, Dandelion, and ReaP

Protocol Extra 
Computation

Overhead Scope Extra 
Precision

Dandelion [15]  
Dandelion++ 
[18]

Yes 3 msg/hop Reachable 
only

Yes

ReAP [16] Yes 1 msg/hop All except 
new 
reachable 
nodes

Yes

Clover No 1 msg/hop All No
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All adversarial nodes log incoming INV and PTX mes-
sages. At the end of the simulation, these logs are merged and 
ordered by timestamp. Then, the first-spy estimator is applied, 
linking each transaction to the first peer that advertised or 
transmitted it to any of the adversarial nodes.

Timeout The diffusion timeout has been set to fit the local 
simulation environment, where transactions are produced 
and spread faster than the real network. In particular, verifi-
cation timeout has been set to 1 minute.

7.2  Simulation results

We evaluated precision against adversaries controlling 1%, 
2%, 5%, 10%, 20%, and 30% of the network. Each adversary 
is first tested against Diffusion, and then against Clover with 
broadcast probability p equal to 0.2, 0.3, and 0.4. Overall 
precision is calculated as the average among all tests with a 
given adversarial power. Results are shown in Fig. 2.

In our simulations, the precision of the adversary against 
Diffusion showed to be very high even controlling a small 
portion of the network. In particular, when controlling from 
1% to 5% of the reachable network, the adversary had a 
precision as high as 0.6. This value raises to 0.7 when the 
number of adversarial nodes reaches the 20% of the network.

On the other side, precision against Clover, although 
growing faster in the number of adversarial nodes, showed 
to be much lower than against Diffusion. Specifically, overall 

precision is from 10 times smaller (0.05), for adversaries con-
trolling from 1% to 5% of the network, to 3 times smaller 
(0.33), for adversaries controlling from 10% to 30% of the 
network.

For what concerns precision against proxy transactions, 
we have, as expected, better results for lower values of p. In 
particular, with p = 0.3 , precision ranges from 0.16 to 0.4, 
while, for p = 0.2 , the adversary showed an average precision 
of 0.14 when the controlling 1-5% of the reachable nodes, 
and up to 0.35 when controlling 30%. When setting p = 0.1 
precision against proxy transactions gets as low as the overall 
precision, indicating a near-optimum level of mixing.

Notably, the precision of the adversary against Clover 
never exceeded that against Diffusion. This means that 
Clover against a strong adversary controlling 30% of the 
network outperforms Diffusion against the weakest adver-
sary controlling 1% of the network.

A major result of our experiments is that it shows how 
attacking Clover is substantially more expensive for the adver-
sary (who need to deploy numerous nodes), compared to Dif-
fusion, without even reaching the same levels of accuracy.

Hops According to our experiments, the average number  
of hops is inversely proportional to the probability p. In 
particular, we found the following relation to hold:

(12)h ≈
(1 − p)

0.15
.

Fig. 2  Deanonymization preci-
sion against Clover
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For instance, with probability p = 0.1 , transactions are relayed 
through an average of 6 hops, during the proxying phase.

7.3  Comparison with dandelion++

To further demonstrate the benefits of Clover, we experi-
mentally compared its results against Dandelion++. To that 
purpose, we run the same set of experiments, in the same 
setting, using the official implementation of Dandelion++. 
We compare its results against Clover when the probability 
of diffusion is set to p = 0.1 , since this is also the value used 
by Dandelion++. Results are shown in Fig. 3.

As shown in the graphic, the overall precision of the 
eavesdropper adversary is comparable between Clover and 
Dandelion++. In contrast, precision against transactions in 
the proxying phase is visibly higher in Dandelion++. This 
is probably due to the fact that Clover better utilizes avail-
able transactions for the mixing property. In particular, while 
Clover distributes all incoming proxy transactions among all 
proxy nodes, Dandelion++ links each outbound proxy to a 
specific inbound peer. Additionally, all new transactions are 
proxied through the same node (during one epoch).

For the same reason, the results we obtained for Dandelion++ 
against proxy transactions were highly variable within a single 
setting. The irregularity of the corresponding line of the graphic 
reflects this variability.

In summary, when compared to Dandelion++, Clover 
shows a similar level of anonymity, but with better, and more 
stable, results for transactions in the proxying phase.

8  Related work

Anonymity in Bitcoin has been widely addressed in research 
[4]. In particular, two major directions have been explored 
in relation to deanonymization.

On the one side, there is blockchain analysis [3, 5], which 
aims at linking Bitcoin addresses (and all related transac-
tions) to real-world identities. This is done by crossing pub-
licly available information (e.g., known addresses or transac-
tions, known services, ...) with address clustering: since all 
transactions are linked to each other, it is possible to trace 
coins throughout the whole blockchain. To prevent this kind 
of attack, users can use mix services, which allow them to 
shuffle their coins with other users so as to prevent the pos-
sibility of tracing back coins in the blockchain.

On the other side, there is traffic analysis, which aims at 
linking transactions to the IP address from which it originated, 
which would likely reveal the owner of the coins spent by such 
transactions. This is typically done by connecting to the whole 
network and monitoring transaction messages. Note that these 
attacks can go beyond the capacity of blockchain analysis, since 
they do not take into account Bitcoin addresses but only network 

Fig. 3  Precision against Clover 
( p=0.1 ) and Dandelion
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packages. In other words, network analysis can deanonymize a 
transaction even when this is anonymized through a mix service. 
Although anonymity networks, like Tor or I2P, can be used to 
protect from such attacks, these services are not commonly used 
by Bitcoin users, and might even lead to other deanonymization 
attacks [10]. Therefore, network-level anonymity is still a major 
concern for Bitcoin users. In the following, we review the most 
relevant works related to network-level deanonymization.

Network-Level Deanonymization Kaminsky [20] is the first  
one to propose the general first-spy approach. Based on the 
observation that nodes announce their transactions to all 
peers, he proposes to connect to all nodes and simply associ-
ates each transaction to the first node that announces it.

Koshy et al. [9] are among the first ones to apply the first-
spy approach on the Bitcoin network. In their experiment, 
they connect to all nodes during 5 months and analyze the 
relay patterns of each transaction. Their results showed an 
accuracy of around 20% using very conservative thresholds.

In [21], Biryukov et al. propose a novel deanonymiza-
tion technique targeting different cryptocurrency networks 
based on propagation analysis. Their approach is based on 
rumor centrality. According to their estimates, this technique 
is feasible even for low-budget adversaries.

Differently from other works, which only apply to reacha-
ble nodes, Biryukov et al. [8, 10] specifically target unreach-
able nodes and nodes using Tor. Their approach is based 
on fingerprinting techniques and reaches accuracy levels 
between 11% and 60%, depending on the stealthiness of the 
attacker. Since their technique only works during a single 
session, [22] propose a complementary technique that allows 
identifying unreachable nodes over multiple sessions.

In [12] and [11], Fanti et al. theoretically analyze the ano-
nymity properties of Trickle and Diffusion protocols against 
an eavesdropper adversary using first-spy and rumor-central-
ity-based estimators. Their results show that both protocols 
have poor anonymity guarantees and identify the symmetry 
of the propagation pattern as the core issue.

9  Conclusion

Transaction anonymity is considered an essential feature of cryp-
tocurrencies. However, while great improvements have been 
made at the application level, the network level is still vulnerable 
to cheap and effective deanonymization attacks. Recent proposals 
have identified and addressed the issues in the propagation proto-
col that lead to such attacks. Nonetheless, the complexity of the 
proposed solutions might hinder their adoption in real networks.

In this paper, we proposed an alternative approach to 
transaction propagation for the Bitcoin network, which 
adopts a simple design that eases its analysis and implemen-
tation. We theoretically studied its anonymity guarantees 
against powerful adversaries and experimentally evaluated 

its effectiveness through simulations, comparing results with 
the protocol currently used in Bitcoin.

Our experimental results show that the deanonymization 
precision of the eavesdropper adversary adopting the first-spy 
estimator is up to 10 times smaller in the best case. We believe 
our solution can be easily adopted in real cryptocurrency net-
works and serve as a basis for future advances in the field.
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