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Abstract. The Inner-Product Argument (IPA) is a subroutine of well-known
zero-knowledge proof systems, such as Bulletproofs and Halo. These proof sys-
tems are then applied in large cryptographc protocols for anonymous and private
transactions in the public blockchain. Despite its trustless nature and logarith-
mic communication efficiency, IPA suffers from low computational efficiency.
While not specifically aimed at optimizing the IPA, Attema et al. propose the
compressed Z-protocol theory. Their intuition is simple: the prover provides an
argument for a single committed vector to the verifier, whose commitment satis-
fies an arbitrary linear relation. We follow this intuition, but instead we provide
an argument for two vectors committed under a single compact commitment, sat-
isfying a linear form that is the inner-product relation. Hence, we propose the
compressed Z-protocol version of the original IPA, namely the compressed Z-
Inner-Product Argument (2-IPA). To this end, we prove security and provide a
Z-IPA that is complete and has soundness in standard DLOG setting. Finally, we
conduct an efficiency analysis showing that our IPA reduces the computational
complexity of prover and verifier algorithms by a factor of 2 compared to the
original IPA.

Keywords: Inner-Product Argument - X-protocols - Zero-knowledge -
Bulletproofs - Blockchain

1 Introduction

The Inner Product Argument (IPA) is an interactive proof between prover P and veri-
fier 7/, which engage an argument of knowledge of two vectors of scalars satisfying an
inner product relation. Bootle et al. in [4] introduce the Inner Product Argument secure
under discrete logarithm (DLOG) assumptions. Later, Biinz et al. in [7] propose Bullet-
proofs (BPs), that are arguments of knowledge for range proofs and general arithmetic
circuits and use the IPA as a subroutine. The authors also optimize the IPA using a
folding strategy with recursive composition, so that the resulting proof has logarithmic
size as the size of the statement behind the inner product relation increases. Another
interesting property of the BP argument of knowledge is that it does not come with
trusted setup, which makes it attractive for trustless cryptographic protocols. From this
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result, BP has become widely adopted, especially in public blockchain cryptographic
protocols, such as anonymous and private transactions. In these contexts, it is worth
mentioning Quisquis [12] and Zether [6], which propose private transactions using BP
to prove that amounts and balances are non-negative. Similarly, Lelantus [14] and Mon-
ero [1] hide the values of input coins, and prove that the outputs in a spend transaction
are in the range of admissible values. However, the trade-off of gaining a trustless pro-
tocol results in worse scalability and higher fees. This is because trustless comes with
non-constant size of the proofs and linear verification time. An amortization strategy
is proposed in ZeroMT [10] and in MTproof [17]. Here, the transaction fees can be
amortized by performing multiple transfers in a single transaction equipped with an
aggregate Zero-Knowledge proof (ZK-proof), obtained by combining the aggregation
technique of BP and Z-protocol theory. Hence, the cost that a private transaction would
have for a single transfer is now spread across multiple transfers. However, it turns out
that the IPA subroutine still weighs significantly on the overall ZK-proof verification
time. With the aim of optimizing the IPA’s verification time, some proposals arises such
as the one of Bowe et al. in [5]. Here, the authors introduce a new inner-product relation
which leads to an argument for polynomial commitment evaluation. Along the same
lines, Biinz et al. in [8] propose an amortized succinctness introducing accumulators
for polynomial commitment schemes. Applying this technique to the IPA, the verifier
asymptotically results in a logarithmic cost barring a single linear time check. In [18],
the new inner-product relation is directly applied to the BP, landing into constant-size
proofs. In another line of research, there are proposals for the IPA based on pairing-
friendly groups, landing into the inner-pairing product [9,11,15]. However, they may
result in expensive pairing operations once applied. While not specifically aimed at
optimizing the IPA, closely related is the compressed X-protocol theory of Attema et
al. [2,3]. In their notable works, the authors reconcile the BP compression mechanism
with the Z-protocol theory. This allows the design of RPs or arithmetic circuits within
an established theory and in DLOG assumptions, with the same communication com-
plexity of BPs. Their intuition is simple: a prover P provides a proof of knowledge
of a committed vector x to a verifier 7/, whose commitment satisfies an arbitrary and
public linear relation L(x). We follow this intuition, but in our case we want that P
and 7V engage a proof of knowledge of two secret vectors committed under a single
compact Pedersen commitment, satisfying a public linear form corresponding to the
inner-product relation. Therefore, our specific instantiation of compressed Z-protocol
lies on the problem that the IPA tries to solve. Finally, with respect to the original IPA,
we observe that our interactive proof algorithms require fewer expensive computations
at the same communication complexity. This leads to a more computationally efficient
IPA for prover and verifier algorithms.

Our Contribution. In this paper, we propose a new argument to prove that two secret
vectors, which are committed under a single compact Pedersen commitment, satisfy the
inner-product relation. To this end, we develop the compressed X-Inner-Product Argu-
ment (Z-IPA) following the compressed X-protocols theory and the BP folding strategy.
We prove security and provide a X-IPA that is complete and has soundness in stan-
dard DLOG setting. Finally, we conduct an efficiency analysis showing that our IPA
reduces the computational complexity of prover and verifier algorithms by a factor of
2 compared to the BP’s IPA. The paper is organized as follows: Sect. 2 presents related
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work; Sect. 3 gives the cryptographic background; Sect. 4 provides an IPA with ineffi-
cient communication and related security proofs; Sect. 5 provides an IPA with logarith-
mic communication, improved computational cost and related security proofs; Sect. 6
analyzes the computational costs of the optimized IPA; Sect. 7 are the conclusions and
future work.

2 Related Work

Bootle et al. [4] propose an inner product argument where the soundness relies on dis-
crete logarithm assumption in prime order groups. The authors also present the notion of
witness extended emulation from which the security property of soundness for the IPA
is derived. Biinz et al. [7] optimizes the communication complexity of the IPA by a fac-
tor of 3, introducing a folding strategy in the recursive composition. The authors also
propose Bulletproofs (BPs), zero-knowledge arguments for range proofs and general
arithmetic circuits based on DLOG assumptions. Despite the proofs have logarithmic
size, verification time is linear with respect to the length of the witnesses. Bowe et al.
[5] propose an amortization strategy for the IPA verification time. This strategy follows
a different inner-product relation, which turns out to be satisfied by a polynomial eval-
uation argument. Biinz et al. [8] establish a generalized result from the previous one.
The authors demonstrate that any polynomial commitment scheme based on DLOG
assumption has an accumulation scheme. With an accumulation scheme, the IPA veri-
fier results in a logarithmic cost barring a final linear time opening check. Here, security
is based on random oracle model. In our previous work [18], we apply the new relation
of [5] to the IPA of BP and see that it could improve the communication complexity to
a constant size. The security inherits that of [5], however the analysis requires further
details. Another side of the research is devoted to the IPA based on pairing-friendly
groups and universal setup. In that direction, Daza et al. [11] achieve logarithmic veri-
fication complexity in the circuit size based on the work of [4]. Biinz et al. [9] achieve a
logarithmic-time verifier for a generalized IPA in pairing settings. Lee [15] proposes an
argument of knowledge from inner-pairing products with a transparent setup, where the
verifier has an asymptotic logarithmic time plus the cost for a number of pairings. How-
ever, pairing operations may result expensive once applied. Attema et al. [3] propose
compressed Z-protocols, reconciling the BPs compression mechanism with the theory
of Z-protocols and achieving the same communication complexity. The authors provide
a general relation for the proof of knowledge of a vector commitment with arbitrary lin-
ear form openings. In our work, we essentially develop a compressed X-inner-product
argument for the original inner-product relation of BPs, thus considering the security
properties from the theory of compressed X-protocols.

3 Preliminaries

Notation. We denote with A € N the security parameter, PPT means probabilistic

polynomial-time, and with s & S we indicate a random variable s uniformly sampled
from the set .S. We consider cyclic groups of large prime order p denoted with G, and
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|G| is the order of the group. In every occurrence, g or h are generators of a cyclic group
G. We use the group-generation function G on input the security parameter 1* (writ-
ten in unary) to generate the tuple (G, p,g) — G(1*). We use the multiplicative nota-
tion for group operations and scalar multiplications. Rings of integers modulo prime
p are denoted with Z,, and the invertible elements of Z,, are in Z;‘,. We denote vec-
tors in bold, e.g., a = (ai,...,a,) € Z), is a vector of scalars and g = (g1,...,gx) € G"

a vector of generators. We denote the inner-product between vectors of dimension n

with (a,b) =X | a;-b; € Z,. The hadamard-product between vectors of size n with
aob = (ay -by,...,a, by) € Z),. Let n be the size of a vector s, then s;, = (s1,...,5) of
size k and sj; = (Sg1,.--,8,) Of size n — k are vector slice operations.

Assumptions. We consider groups in which the discrete logarithm problem (DLOG
problem) is computationally intractable. The following definition is for the discrete
logarithm assumption.

Definition 1 (DLOG assumption). We say that the discrete-logarithm problem is hard
relative to G if for all PPT algorithm 4 there exists a negligible function negl such that

A S .
Pr (G-P-g)‘_g(l )1.)“_@’ :g-\‘zy gnegl(k)
x€Z,— AG,p.g.y)

An alternative definition is the non-trivial discrete-logarithm relation from [7].

Definition 2 (Non-trivial DLOG relation). For all PPT algorithm A4 and for all k > 2
there exists a negligible function negl such that

$ Axpy ek #0
G« G(lh)' h[,...,hk — G;

Pr : ko
XiyosXk € Zp — A(G by, b)) A Hll}': 1
i=1

< negl(})

We say that there is a non-trivial DLOG relation between uniformly random group
elements Ay, ..., h; when ]'[f‘zlhf" =1 and each xy,...,xx € Z, is non-zero. Thus, the

DLOG relation assumption states that it is hard to find a non-trivial relation between
randomly chosen group elements.

Commitments. We use the form of Pedersen commitments which can be defined over
prime order cyclic groups G. In particular, let g and & be two distinct generators and [3
a randomly chosen blinding factor, we compute a Pedersen commitment 7 to the value
teZyasT =g hP. We can also commit to multiple values at once using the Pedersen
vector commitment variant. Here, values and generators are gathered in vectors of size
n and the commitment is computed as T = g'hP = [T, ¢ - hP. Pedersen commitments
are computationally binding under DLOG assumption and perfectly hiding. Moreover,
Pedersen commitments are additive homomorphic.

Zero-knowledge Relations. In the following, we give a definition for zero-knowledge
relation and the relative notation.
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Definition 3 (Zero-knowledge relation). A relation is a binary relation & C X x W,
where X, W, and R_are finite sets. Elements x = {xi,...,x,} of X are called instances

and w= {wy,..., wy } of W witnesses. A relation K formally specifies some statements

as a function f(x,w) which are satisfied if and only if (x,w) € &. We use the notation
R:Axw)  f(x,w)}

to specify a relation for an interactive proof between prover P and verifier 7/, where
elements in x are public and are known to both P and ¥/, while those in w are only
known to P. We say that the relation is zero-knowledge if P convinces v/ that the
statements are true, without revealing information about w.

Interactive Proofs and Z-Protocols. Let R be a relation and L the corresponding NP
language such that £L = {x | 3w: (x,w) € R }. An interactive proof between prover P
and verifier ¥ is a conversation where P tries to convince ‘¥ that an instance x belongs
to the language L according to the specified relation &. Such conversation is called
transcript of the interactive proof, and the verifier can accept or reject the transcript.
When the verifier V' outputs accept we call the conversation an accepting transcript
for x. An interactive proof also requires the parties to execute some algorithms, we call
these algorithms interactive protocol algorithms.

Z-Protocols are a class of interactive proofs well established also in the context of
zero-knowledge proofs. We now give a general definition for X-protocol:

Definition 4 (Z-protocol). Let X C X x W be a binary relation. A Z-protocol for R
is an interactive proof I1 = (P, V) where:

e P is an interactive protocol algorithm which takes as input an instance-witness pair
(x,w) € R.

e 7/ is an interactive protocol algorithm which takes as input an instance x € X and
outputs accept or reject.

e The interactive proof between P and ¥ is structured so that it always works as
follows:

— P starts the protocol by computing a message a, called announcement, and sends
atoV;

— Upon receiving P’s announcement a, ‘V chooses a challenge ¢ at random from
a finite challenge space C, and sends ¢ to P.

— Upon receiving V’s challenge ¢, P computes a response z, and sends z to V.

— Upon receiving ©P’s response z, V' outputs accept or reject. The 1’s output
must be computed strictly as a function of the instance x and the conversation
(a,c,z). In particular, all V/ computations are completely deterministic except
the random choice of the challenge.

We require that for all (x,w) € R, when P(x,w) and V(x) interact and follow the pre-
scribed protocol, V (x) always outputs accept.

Definition (4) highlights that 2-protocols are 3-round protocols. When we execute
multiple protocol instances, this leads to a multi-round Z-protocol. Interactions between
the 4 and an honest P produce accepting transcripts; this suggests how to verify the
correctness of a conversation between P and V. We can generalize the above concept
with the definition of perfect completeness for any Z-protocol.
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Definition 5 (Perfect completeness). Let (P, V) be a Z-protocol for relation K. If the
prover P follows the protocol then the verifier 7 will accept with probability 1.

Of course, non-accepting transcripts can occur if ¥/ interacts with a “dishonest”
P* who does not follow the protocol. To prevent this, we require the security proper-
ties of special-soundness. Furthermore, 2-protocols are often required to have a large
challenge space.

Definition 6 (k-Special-Soundness). Let IT= (P, V) be a Z-protocol for relation . C
X x W. We say that IT is k-special-sound if there exists a polynomial-time deterministic
algorithm ‘E, called witness extractor, which is given as input an instance x € X and
k accepting transcripts (a,c1,z1), ...,(a,ck,zx) with a the common first P’s message,
c1,...,cx pairwise distinct V’s challenges, z1, ..., z; the final P’s messages, and always

outputs a witness w € W satisfying (x,w) € R, i.e., w is a witness for x. When k = 2, it
is simply said that IT is special-sound.

Suppose [T = (P, V) is a special-sound Z-protocol that has a large challenge space,
we say that IT acts as a proof of knowledge. There are alternative notions of special-
soundness known in the literature: knowledge-soundness and witness extended emula-
tion [3,16]. In the knowledge-soundness the difference is that the extractor only has
oracle access to P*. In the witness extended emulation, the extractor with oracle access
to P* is also required to output a transcript that is indistinguishable from a conversa-
tion between P* and an honest V. In [4], it is shown that multi-round spacial-soundness
implies witness-extended emulation. Essentially, a multi-round X-protocol is a (2u+1)-
round interactive protocol where the verifier sends u challenges. The special-soundness
definition for multi-round XZ-protocol is a generalization of definition (6) and is given
below.

Definition 7 ((k;., ...,k,)-Special-Soundness). Let IT= (P, V) be a (2u+ 1)-round -
protocol with u verifier’s challenges and for relation ® C X x W. We say that IT is
(k1,...,k,)-special-sound if there exists a polynomial-time deterministic algorithm £,

called witness extractor, which is given as input an instance x € X and a (ky, ..., k,)-tree

of accepting transcripts and always outputs a witness w € W satisfying (x,w) € R, i.e.,
w is a witness for x.

For the definition of (k, ..., k,)-tree of transcripts we refer the reader to [3,4]. In this
paper, we focus on (k1 ..., k,)-special-soundness protocols with some u (challenges) and
some set of k;’s (transcripts). Then, from [4] it follows that our protocols are proof of
knowledge.

The following definition is useful when composing interactive proofs; the definition

is revised from [2].

Definition 8 (Composable interactive proofs). Let I1; for relation ®; and II, for
relation X, be two interactive proofs with 2y + 1 and 2u> + 1 rounds respectively.
Then, IT; and I, are composable if, for an efficient computation W, the transcript
(OU,€1,00,....Cu;, 04y +1) Of TI; for statement x; is accepting if and only if the

prover’s final message 0,1 is a witness for statement xo = (0, c1,00,...,¢y, ) and

(X210, 1) € Ry. If the verifier of I, accepts the proof for &, then the composition
IT =TI, ¢I1 is accepted.
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Moreover, if IT; is kj-special-sound and Il is kr-special-sound, where k; =
(ki,....ky, ) and ko = (k1,....ky, ), then IT =TT, o IT; is (k;,k2)-special-sound [2].

Z-protocols are commonly expected to be public-coin and special Honest-Verifier
Zero-Knowledge (sHVZK). In public-coin Z-protocols, all the messages sent by ¥V to
P are sampled uniformly at random and are independent of P messages. Moreover,
7 random choices are made public. In this paper, we deal with Z-protocols that are
not necessarily sHVZK and show only the interactive version of those protocols. Using
the Fiat-Shamir heuristic [13], it is possible to convert an interactive proof into a non-
interactive proof.

Inner-Product Argument relation. The inner-product relation follows the general def-
inition (3). The standard IPA protocol is an interactive proof for the following relation,
with g h, u, T public paramenters:

Ripa={(gheG" uTeG: abeZ) : T=g'h 4P} 1)

where g and h are vectors of (independent) generators, u is group element, 7 a vector
commitment and group element, a and b are vectors of scalar elements. The goal by
the prover is to convince the verifier that he knows the two vectors a and b for the
statement 7 = g*h® A c = (a,b), where c is the resulting value from the inner-product
of the two vectors a,b. Morever, this value c is given as a part of the vector commitment
T by means of the additional group element u. We refer the reader to [7] for the relation
where c is not given as a part of the vector commitment and call that relation Kpp.

4 Sigma Inner-Product with Constant Rounds

In this section we present a 3-move IPA protocol denoted by IT; with inefficient com-
munication complexity in protocol 1. Before engaging in I1;, the prover and verifier

+, both

. . $
run in a 2-move protocol Iy where, upon the verifier samples and sends y < Z,,,

compute
T' =T -w¢

with 7 = g*hP, ¢ = (a,b) and generators g, h public parameters. Then, prover and ver-
ifier engage in IT; with the inputs substitution ' — u and T’ — T, as specified in [7].

Protocol 1. Z-IPA IT; for relation 1
I: input: (g.h € G",u,T € G; a,b € Z))
2 P’s input: (g, h,u,T,a,b)
3: 1’s input: (g,h,u,T)
4: output: 1V accepts or rejects

‘P computes:
L=g 'h:):I'U ulanibo) € G
R=glo " - ulobn) € G
end P
P—V:LR

R e A
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0 Vixlz
11: V—-P:x

12: ‘P computes:

13: a' =x-ay,+ay € 2’

14: b =by, +x-by € Z?

15: end P

16: P—V:a.p

17: 7 computes and checks:

18: T'=L-T*R" G
o1 Ll b
20: end V

The protocol IT; is inefficient since the communication cost is only reduced by a
factor of 2, i.e., the prover sends two vectors a’, b’ of size n/2 with respect to the witness
size of n. The protocol I1; is not required to be zero-knowledge, but it is complete and
special-sound as stated in Theorem 1.

Theorem 1 (2-1PA). The Z-protocol 11} is a 3-move perfectly complete and 3-special-
sound argument for the relation (1).

Proof. Completeness. Following the definition (5) of perfect completeness, if the
prover follows the protocol the proof is always accepted. Hence, it is sufficient to show
that the following holds: T’ = g?(: g,‘,‘," -h',"(l;' -h}:; @) — LY RY

3-Special-Soundness. We follow the definition (6) of k-special-soundness. Let
((L,R),x;, (a';,b';,)) fori = 1,...,3, be the accepting transcripts obtained by rewinding
the prover three times after the prover sends L, R. Assuming x,x2,x3 € Zj, are pairwise
distinct challanges, we can find three values vi,v2,v3 € Z), by inverting a Vandermonde
matrix with non-zero determinant. Thus, it can be shown that for each a’, b’ the tuples
a:=Y> (va,vxa), b:=3>  (vix;b',vb')andc=3> | v;- (a’,b') are valid extracted
witnesses for relation (1). Given that the statement g*h® - u¢ = T holds, this completes
the proof.

We now need one additional rewind for the 2-move protocol Ily. By the sound-
ness of protocol IT; the extractor can obtain witnesses a and b such that 7 - ¢ =
gahbuy'<a'b>. The extractor rewinds and runs the prover with a different challenge y/,
thus obtaining 7 - w' e = ga'hb'uy"@"b/). Then, by combining the two equalities we get
g"_a/hb_bl wab) =@ b) — e (0-Y) Hence, either we have found a non-trivial DLOG
relation from definition (2), or a = a’ and b = b’. In the latter case, it fallows that
u=y)@b) — =) which implies ¢ = (a,b). Hence, we have found valid witnesses
aand b for the statement 7 = g*hP Ac = (a,b).

5 Compressed Sigma Inner-Product with LOG Rounds

Following the definition (8) of composable proofs, it turns out that ITpoI1; is (2,3)-
special-sound for the X-IPA. However, the size of the proof is only reduced by a factor
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of 2. We can further reduce the proof to a logarithmic size with respect to the witness,
following the recursive composition of the folding strategy of BP. Furthermore, this is
a similar strategy that leads the standard X-protocols to the compressed form of Attema
et al. [2,3]. Thus, we can apply recursion multiple times until the two vectors a, b have
constant size. Such recursive composition is shown in protocol 2, denoted with I, and
considers vectors whose initial size is a power of two, i.e., n = 2* for some u € N.

Protocol 2. Compressed Z-IPA I1, for relation 1
I: input: (g,h € G",u,T € G; a,b € Z))
2 P’s input: (g,h,u,T,a,b)
3: 1s input: (g,h,u,T)
4: output: 1V accepts or rejects

5 ‘P computes:

6: n=2"eN

7: L] — gal” hlz" u<ahi'blu> (= G
8: Rl — ghia h[ hi u(a,(,.b,,,-) I G
9 end P

10: P — 'V LR,
11: vV :x & zZ,

12: V—-P: xl

13: P and V compute:

14: g( ) = gl,, og” € G"?

15: h® =h;! ohy < G"/?

16: =L T‘(l RI eG

17: end ? and V

18: ‘P computes:

19: a?) = X1-a,,+ay € Z"/z

20: b =by, +x1 by € Z’,’,

21: end P

2

23: ‘P computes:

24: a i=al-l p :=pk-De72

25: g =gl )h’—h“‘)eGIZ
26: L= g/a hi h/ll;lo @) e G
27 R/J = g/kf’lu h/ hi | < i, b'y) cG
28: end P

29: P — 'V Ly 1,Ry
30: V:xy & zZ,

31: V—P: x“

32: P and V compute

33: g:= g(") g,,,og,“ eG
34: h:=hW =1 “oh',,, eG
35: T,,_L,,IT“ y_leG

36: end ? and V
37: ‘P computes:
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38: a:=a® =xy-ajp+a'y €Ly
39: b:=bW =bjy+x, by €Z,
40: end P

41: P—V:ab

42: 7 computes and checks:

43: c=(a,b)

44: ];1 = g*- W ouc

45: end V

The protocol I is efficient in terms of communication costs, thatis, itisa (2u+1)-
round protocol with u = log>(n) and n is the witness length. This implies the proof is
logarithmic-sized considering that the prover exchanges (Li,R;)...(Ly—1,R,—1) group
element and 2 elements of Z,, with the verifier, while the verifier sends log> (n) elements
of Z,. The protocol Il is complete (3,...,3)-special-sound argument, always satisfying

relation (1) as stated in theorem 2, but this time with halved-size witnesses in each
round.

Theorem 2 (Compressed X-IPA). The E-protocol Ty is a (2u+ 1)-move perfectly
complete and (3, ...,3)-special-sound argument for the relation (1).

Proof. Completeness. It follows directly.

(3,...,3)-Special-Soundness. Following the definition (7), it can be shown that IT, is

(ky,...,ky)-special-sound, where k; = 3 for all i € [1,u]. That is a generalization of the
extractor analysis of IT;, where now we have u = logy(n). It follows that we can use
the same extractor, but this time it takes in total a 3-ary tree of accepting transcripts of

depth logy(n), thus it runs in polynomial time in n. This complete the proof.

We now can replace the IT; protocol with I, and compose I ¢ I, to obtain a
(2u+3)-move complete and (2,3, ..., 3)-special-sound IPA with logarithmic-size proof.
From definition (8) of composable proofs, the composition is well-defined: the tran-
script (y, (a,b)) for ITy on public input (g,h,u, T, ¢), is accepting if and only if the tuple
(a,b) is a witness for statement x = (g, h,u,T,c,y) — (T - u¥°) with y an efficient
computation, and thus (x; (a,b)) € Kgp. Similarly, [T has an efficient computation /'
and considers accepting transcripts if and only if the witnesses (a,b) belong to a new
relation R;py (1) with halved-size witnesses at each recursive step.

6 Efficiency Analysis

We now give an analysis of the efficiency of Z-protocols I} and I (protocol 1 and 2
respectively) with regards to communication and computational complexity. The pro-

tocol I} has constant rounds but inefficient communication complexity. Indeed, prover

sends to the verifier: 2 elements of G and 2 elements of Z',',/ ? of size n /2 with respect to

the witness size n. The verifier sends only 1 element of Zj, to the prover. The protocol
I, reduces the communication complexity to logarithmic. Indeed, the prover sends to
the verifier: 2 - (log(n) — 1) elements of G and 2 elements of Z,, with respect to the
witness size n. The veirifer sends log(n) elements of Z,, to the prover. Finally, protocol
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I, improves the computational complexity of the BP’s IPA by a factor of 2. Indeed, our

. . logy(n . e . .
prover and verifier algorithms execute 3. ; :gf( ) 57-7 exponentiations and 0 inversions for

computing the new generators g, h in each j-th round. Instead, prover and verifier algo-

rithms of the BP’s IPA execute Y, joff(") 23—1’, exponentiations and 2 inversions in each
Jj-th round.

7 Conclusions and Future Work

In this paper, we propose compressed X-IPA, an argument of knowledge of two com-
mited vectors following the compressed X-protocols theory and the original IPA rela-
tion. Our Z-IPA maintains the same logarithmic communication complexity of the orig-
inal IPA, while reducing the computational complexity by a factor of 2. As a future
work, we want to introduce accumulators to enhance the overall verification time with
logarithmic efficiency.
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