
Bulletproofs++ review

Cypher Stack∗

March 29, 2024

This report describes the findings of a review of the Bulletproofs++ IACR
preprint1. It reflects a limited scope and represents a best effort; as with any
review, it cannot guarantee correctness or security, or that the preprint is oth-
erwise free of errors. Further, it cannot guarantee that any particular imple-
mentation of the Bulletproofs++ protocols is correct, secure, or suitable for
intended use cases. The author asserts no warranty and disclaims liability for
its use. The author further expresses no endorsement of any kind. This report
has not undergone any further formal or peer review.

Contents

1 Executive summary 2

2 Findings 3
2.1 Section 1: introduction . 3
2.2 Section 2: preliminaries . 4
2.3 Section 3: technical overview . 5
2.4 Section 4: norm linear argument 5
2.5 Section 5: arithmetic circuits . 6
2.6 Section 6: reciprocal argument 7

2.6.1 Lemma 1 . 8
2.7 Section 7: implementation and benchmarks 8
2.8 Appendix C: theorems and proofs 9

2.8.1 Lemma 5 . 9
2.8.2 Theorem 1 . 11
2.8.3 Lemma 6 . 14
2.8.4 Lemma 7 . 16
2.8.5 Theorem 2 . 16
2.8.6 Theorem 3 . 20

∗https://cypherstack.com
1https://eprint.iacr.org/archive/2022/510/20230717:163509

1

https://cypherstack.com
https://eprint.iacr.org/archive/2022/510/20230717:163509

1 Executive summary

Bulletproofs++ provides a collection of protocols that can be used for range
proving and arithmetic circuit satisfiability proving. While parts of the tech-
niques are inspired by those of Bulletproofs2 and Bulletproofs+3, the overall
design differs significantly due to the use of several novel techniques that must
be carefully integrated. Both Bulletproofs and Bulletproofs+ describe general
techniques for proving arithmetic circuit satisfaction, but they provide range
proving systems using optimizations that do not directly use circuit proofs. In
contrast, Bulletproofs++ builds its generic range proofs more directly using
circuit proofs, albeit with some modifications.

The preprint is organized in a manner that builds the necessary tools and
frameworks incrementally, sometimes providing intermediate or “toy” versions
to demonstrate techniques or improve clarity. Protocols are generally expressed
directly and indicate the relevant proving relations, both of which are important
for analysis.

However, we find that security proofs, which generally show properties like
computational witness-extended emulation or special honest-verifier zero knowl-
edge for protocols, and supporting results often lack sufficient clarity that in-
troduces questions to their validity. We also find some notation to be informal
or unclear, particularly with respect to aspects like vector or matrix dimensions
that are necessary to ensure consistency and certain proof or technique validity.
As noted in the findings of this report, we observe two common issues:

• Unclear notation. Protocols and proofs often use notation that is nonstan-
dard, inconsistent with other portions of the preprint, or undefined. This
makes analysis challenging, and requires that the reader make assumptions
about the intent, which may not be correct.

• Insufficient clarity. Several proofs aim to define extractors that are used to
show computational witness-extended emulation for protocols, and simula-
tors that are used to show special honest-verifier zero knowledge. Perhaps
because of the complexity of the protocols, these proofs often make claims
about these and other properties that do not provide sufficient explanation
of the underlying reasoning, or introduce them only informally. We were
able to show that many of these claims are valid, but for some we were
unable to do so in the scope available for this review. Lack of assertion
of validity for a claim should, however, not be interpreted as an assertion
that the claim is invalid.

Aside from issues specific to security proofs, we generally observe a higher
degree of protocol complexity compared to other range proving systems like
Bulletproofs and Bulletproofs+ used in production systems. While this more
complex design provides benefits in terms of computational and communication

2https://eprint.iacr.org/2017/1066
3https://eprint.iacr.org/2020/735

2

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2020/735

efficiency, it is likely to increase engineering risk, and should be taken carefully
into account for any considered deployment.

2 Findings

We present findings from the review. Note that some findings comprise er-
rors and issues, but others include explanatory material that may be useful for
inclusion in future revisions to aid the reader.

Generally, review was conducted in a “bottom-up” manner. That is, we
reviewed results from base protocols initially, as these affect all protocols and
results relying on them. We then moved toward higher-level protocols.

Findings are organized according to the relevant sections and results from
the preprint. They reflect the portions of the preprint that were subject to
review. Notably, the material on multi-asset confidential transactions (in Sec-
tion 6.5 and elsewhere) was considered out of scope, as were the discussion
in Appendix A describing a technique for binary range proofs with small range
and the discusison in Appendix B relating to curve-specific scalar multiplication
optimization.

We reached out to the preprint authors with initial questions relevant to
some of these findings prior to the release of this report, in order to obtain
better understanding about them. The preprint authors responded with helpful
information and explanation about errors and omissions. We appreciate the
authors’ time and effort in this regard. However, we note that because this
review was not conducted on behalf of the authors, the presence of findings in
this report should not imply any endorsement or agreement by them.

2.1 Section 1: introduction

The preprint discusses several important features common to Bulletproofs and
Bulletproofs+ that it claims extend to Bulletproofs++. These include batch
verification and multiparty computation.

Batch verification allows a verifier to take a collection of arbitrary proofs and,
by applying a random weighting of the corresponding verification equations,
verify the entire collection at once. This can be done much more efficiently
than verifying each proof in the collection separately. The reason for this is
twofold. First, verification of a proof in Bulletproofs and Bulletproofs+ can be
reduced to checking that a single multiscalar multiplication evaluation vanishes,
which can be done efficiently using a variety of techniques. Second, because
all proofs in the collection can share many globally-fixed generators, random
weighting of each proof’s multiscalar multiplication evaluation can share these
generators, resulting in a single linear combination evaluation across all proofs
that minimizes the computational complexity. The preprint claims that this is
possible with Bulletproofs++, and includes a separate short discussion later.
However, it does not provide full detail of this in the same manner as, say,
Bulletproofs.

3

Multiparty computation in the context of range proofs typically refers to
aggregated range proofs, which are proofs making range assertions for multiple
commitments in the same proof. When applied to confidential transaction pro-
tocols, this means that a transaction with multiple output commitments requires
only a single range proof, which for Bulletproofs and Bulletproofs+ inherits loga-
rithmic size scaling. Multiparty computation allows a set of mutually-untrusting
parties, each of which knows the opening to a separate commitment, to produce
such an aggregated range proof collaboratively. In Bulletproofs, this is done by
taking advantage of certain linearity properties involved in the proving process,
and does not leak the openings. In Bulletproofs+, a similar approach is pos-
sible, but leaks the value component of each opening; this is due to a subtle
but important change to the structure of an internal inner-product argument.
The preprint claims that this is possible with Bulletproofs++, and includes a
separate short discussion later. However, it does not provide full detail of this,
and is informal without proof.

We observe throughout the preprint, including in this section, that left quo-
tation marks do not render. This is likely due to the use of incorrect symbols
in the document’s source LATEX.

2.2 Section 2: preliminaries

Notation and conventions for the tensor product of vectors are introduced.
These are important, as this is used several times later in the preprint. The
notation is introduced using the single example

n⊗
i=0

(1, xi) =

(
1, x0, x1, x0x1, x2, . . . ,

n∏
i=0

xi

)
which, while useful for specific use cases, is not particularly enlightening to show
the case of vectors of arbitrary length. Specifically, the convention is such that
for vectors v⃗ and w⃗ = (w0, . . . , wn−1) (for some n > 0) we have the following:

v⃗ ⊗ w⃗ = w0v⃗∥w1v⃗∥ · · · ∥wn−1v⃗

This helps to show why the useful identity

e⃗ab(µ) = e⃗a(µ)⊗ e⃗b(µ
a) = (1, µ, . . . , µab−1)

holds, which we prove here for completeness.

Proof. We have the following, using the above notation and convention:

e⃗a(µ)⊗ e⃗b(µ
a) = (1, µ, . . . , µa−1)⊗ (1, µa, . . . , µ(b−1)a)

= (1, . . . , µa−1)∥µa(1, . . . , µa−1)∥ · · · ∥µ(b−1)a(1, . . . , µa−1)

= (1, . . . , µa−1)∥(µa, . . . , µ2a−1)∥ · · · ∥(µab−a, . . . , µab−1)

= (1, µ, . . . , µab−1)

= e⃗ab(µ)

4

A minor typo exists in the discussion of the commitment function Com. It
is claimed that the generators H0, . . . ,H7 are not used in the function, when in
fact it is only the generators H1, . . . ,H7 that are unused.

2.3 Section 3: technical overview

In the technical overview of Section 3, several definitions and corresponding
notation are introduced. Specifically, a particular structure related to a multiset
is defined; in such a multiset, multiplicities are field elements, and the structure
may contain multiple copies of a value with arbitrary multiplicities. Such a
structure A is defined to contain pairs of the form (m, v), where m and v are
field elements.

When the notation
m̂v =

∑
(m′,v′)∈A:v=v′

m′

is introduced, the simplification m̂v has not yet been defined. This should be
replaced with m̂v(A) instead.

Later, when discussing how to apply this concept to range proofs, such a
structure is instantiated as A = {(−1, vi) : i} ∪ {(mj , tj) : j}. While it can be
inferred how standard set notation can be reinterpreted to the requirements of
these collections, it would be helpful to the reader to be more specific; this is
especially true since the authors then make conclusions about vanishing total
multiplicities that rely subtly but importantly on this notation.

2.4 Section 4: norm linear argument

The norm linear argument presented in Section 4 includes statement and wit-
ness reductions that are essential for logarithmic scaling. Correctness requires
asserting that the reductions are defined properly. Showing this relies on a
somewhat non-obvious weighted inner-product identity that is tightly linked to
the interleaved vector splitting used in the argument, and which differs from the
splitting technique used in earlier work.

We present the identity here for clarity, along with a short proof.

Identity. Let x⃗ and y⃗ be arbitrary vectors of length 2n for some n > 0 such that
their inner product is defined, and let µ be a nonzero scalar. Then the identity

⟨x⃗, y⃗⟩µ = µ−1⟨[x⃗]0, [y⃗]0⟩µ2 + ⟨[x⃗]1, [y⃗]1⟩µ2

holds.

Proof. Using the weighted inner product and vector-splitting notation, we have

5

the following:

⟨x⃗, y⃗⟩µ =

2n−1∑
i=0

xiyiµ
i+1

=

n−1∑
j=0

(
x2jy2jµ

2j+1 + x2j+1y2j+1µ
2j+2

)
= µ−1

n−1∑
j=0

x2jy2j(µ
2)j+1 +

n−1∑
j=0

x2j+1y2j+1(µ
2)j+1

= µ−1⟨[x⃗]0, [y⃗]0⟩µ2 + ⟨[x⃗]1, [y⃗]1⟩µ2

The weighted norm linear relation requires a statement value µ ∈ F, from
which a value ρ is derived such that ρ2 = µ; ρ is used for vector reduction
when performing the protocol’s recursive step. This means that µ must be a
square, which does not hold in general for a finite field. Further, because the
reduction also uses ρ−1, we must have ρ ̸= 0 and therefore µ ̸= 0. Neither of
these conditions is specified in the relation; they arise only when examining the
protocol steps.

Fortunately, in practice the arithmetic circuit protocol described later in
the preprint, which uses the weighted norm linear argument as a subprotocol,
samples ρ ∈ F uniformly at random (as a verifier challenge) and sets µ = ρ2, so
both conditions on µ are satisfied (except if ρ = 0 with negligible probability).

Because the definition and security proofs for the protocol are presented
independently of the arithmetic circuit protocol, it would be safer and more
clear to redefine the weighted linear relation statement in terms of ρ ̸= 0, from
which the protocol can derive µ to use for weighting purposes; this ensures that
the protocol is well defined.

In Equation 26, the sum

k−1∑
i=0

γiXi + (γ2
i − 1)Ri

is missing brackets and should read

k−1∑
i=0

[
γiXi + (γ2

i − 1)Ri

]
instead.

2.5 Section 5: arithmetic circuits

The arithmetic circuit relations and protocols specify several bounds on input
values. While they are directly specified in the circuit relation Rac, their rela-
tionships are not, which appears to lead to inconsistencies.

6

We first note a minor and trivial error, where it is listed that the matrix Wl,L

consists of the first Nm − 1 columns of the matrix Wl; to be properly defined,
this submatrix should contain the first Nm columns of its parent.

More notably, the relation provides for a k-vector V⃗ of group elements, each
of which has a corresponding vector opening v⃗i ∈ FNv for i ∈ [0, k) as part
of the witness (along with a separate mask). The vector w⃗V is defined as the
concatenation of all such v⃗i; this means in particular that w⃗V ∈ FkNv . Equation
30 requires that a valid instance of the relation have 0⃗ = Wlw⃗+flw⃗V + a⃗l, which
requires that kNv = Nl in order to be well defined. Similarly, since Equation 31
requires that the instance have w⃗L ◦ w⃗R = Wmw⃗ + fmw⃗V + a⃗m, we must have
kNv = Nm as well. However, in Section 5.2.1, circuit witness commitments
CL, CR, CO are defined such that (for X = L,R,O)

CX = rX,0G+ ⟨r⃗X,1:∥⃗lX , H⃗⟩+ ⟨n⃗X , G⃗⟩

for the witness tuple (r⃗X ∈ F8, l⃗X ∈ FNl , n⃗X ∈ FNm) and generators G ∈ G, H⃗ ∈
GNv+7, G⃗ ∈ GNm . This implies that Nl = Nv, which contradicts the above.

The handling of the binary flags fl, fm ∈ {0, 1} is unspecified in Equation
29, which defines parameters. However, witness-extended emulation assumes
that flfm ̸= 0.

The statement of Theorem 2 specifies that the arithmetic circuit protocol
satisfies the property of perfect honest-verifier zero knowledge. Presumably
this should state that it has the property of perfect special honest-verifier zero
knowledge, as this is the phrasing specified in Definition 5 (and used elsewhere
in the literature).

The inner arithmetic circuit protocol listed in Section 5.3 specifies that the
polynomial f̂(T) ∈ F8[T], which implies that it is a vector; it is not, and should
be an element of F[T] instead.

The inner arithmetic circuit protocol defines the vector s⃗r ∈ F8 using nota-
tion that implies each element itself contains a vector. This notation is incorrect,
and should use non-bolded notation for each field element entry instead.

The inner arithmetic circuit protocol’s final step specifies that the prover
P and verifier V run the weighted norm linear argument ⟨Pnl,Vnl⟩ = b. This
bit-output notation, while consistent with its original presentation in Section
2.2, is inconsistent with similar notation used elsewhere in the protocol (and
other protocols in the preprint).

2.6 Section 6: reciprocal argument

The pole-related function notation wi,P (X) used occasionally in this section is
undefined, and is likely intended to be wP,i(X) instead.

The statement of Theorem 3 specifies that the reciprocal form protocol sat-
isfies the property of perfect honest-verifier zero knowledge. Presumably this
should state that it has the property of perfect special honest-verifier zero knowl-
edge, as this is the phrasing specified in Definition 5 (and used elsewhere in the
literature).

7

The statement of Theorem 4 has the typo “and zero knowledge arguments
of knowledge” instead of “are zero knowledge arguments of knowledge”.

2.6.1 Lemma 1

The statement of Lemma 1 is technically correct4 but is too restrictive. The
lemma states that if there exist 2|A| accepting reciprocal argument protocol
transcripts for a multiplicity collection A on distinct challenges, then A vanishes.

The proof assumes the existence of |V | distinct challenges that are not the
negative of any item in the value set V corresponding to A, and uses a Cauchy
matrix constructed from these values. The proof also notes that up to |V |
challenges do not meet this requirement and are invalid, since they cannot be
used in the Cauchy matrix construction.

Because all |V | of these invalid challenges could be part of provided tran-
scripts, it is necessary to have an additional |V | challenges to ensure the set of
valid challenges is sufficient to build the Cauchy matrix. This means that 2|V |
transcripts are required.

Since |V | ≤ |A| by definition, the existing requirement still holds, but is too
restrictive and can be reduced. We note that because the proof of Theorem 3
uses circuit-based encodings of multiplicity sets, the existing statement bound
is relevant.

2.7 Section 7: implementation and benchmarks

For the most part, we do not comment on the data in this section, as we did
not attempt to reproduce the benchmarks whose results are presented.

However, we do note that the proving and verification benchmarks are pre-
sented for four different setups:

• Bulletproofs++ over secp256k1, using the authors’ C implementation

• Bulletproofs+ over ristretto255, using a Rust implementation

• Bulletproofs over ristretto255, using a Rust implementation

• Bulletproofs over secp256k1, using a C implementation

In general, we caution against comparing the performance of cryptographic
libraries in this manner, as this is not always a good proxy for comparing the
theoretical efficiency of their corresponding protocols. Different elliptic curve
libraries often imply different performance, as do libraries written in different
languages and with different implementation goals and techniques.

It is the case that the preprint specifies that its comparisons are to particular
implementations, and discusses certain aspects of the timing differences relative
to things like expected elliptic curve library performance. However, we consider
it likely (and reasonable) that the reader may extrapolate the results to assume
they represent the underlying protocols more generally.

4The best kind of correct

8

Further, configuration and build conditions may be important for a fair com-
parison. As one example, the elliptic curve library used for the ristretto255-
based libraries supports different arithmetic backends (depending on processor)
whose performance variability is significant, and which depend heavily on com-
piler and build conditions that are unspecified here.

All three range proving systems (Bulletproofs, Bulletproofs+, and Bullet-
proofs++) support optimizations that can greatly affect their performance in
implementations. To ensure a fair comparison, it is important that all libraries
be sufficiently optimized (or not optimized) for comparative data to be rea-
sonably applicable. These optimizations might include variable-time verifier
operations (since the verifier holds no secrets), arithmetic optimizations, multi-
scalar multiplication batch weighting, and others. Additionally, it is often the
case that prover operations are not the focus of optimizations, since proving is
typically done infrequently and not in bulk; this can render prover comparisons
across libraries highly variable and fail to represent the complexity of a protocol
accurately. It is not clear that the libraries used in the benchmarks represent
these in a consistent way.

Typically, multiscalar multiplication evaluation dominates verification in all
three protocols (but we stress that important exceptions exist). While the
preprint does provide order-of-magnitude estimates for its multiscalar multi-
plication and scalar verification operations, it does not specify them directly.
It would be much more accurate to directly specify these values for all three
protocols, providing the reader with a generally implementation-independent
comparison of complexity.

Further, batch verification is possible in all three protocols. This is extremely
important for transaction protocol use cases where the verifier must handle many
proofs. Batch verification generally shifts the computational burden away from
multiscalar multiplication evaluation and toward scalar operations, which may
produce subtle and unexpected results. While not all existing libraries support
batch verification, it would be useful to provide at least theoretical complexity
for this as part of comparison data.

2.8 Appendix C: theorems and proofs

2.8.1 Lemma 5

In appendix C, Lemma 5 defines a round extractor that plays a key role in later
proofs relating to computational witness-extended emulation. The extractor is
intended to produce, under certain conditions, either a nontrivial discrete loga-
rithm relation or a set of vectors with other witness-related properties. However,
the lemma contains undefined notation, and neither the lemma’s statement nor
its proof appear valid as written.

Part of the lemma statement includes transcripts of the form (αj ∈ F, w⃗j ∈
Fk). However, the preprint does not define what, if any, additional requirements
exist for these transcripts, as the term “transcript” is defined only generically
in earlier security definitions. It is likely, inferring based on later context, that

9

each (distinct) αj in the transcript tuple corresponds to a verifier challenge,
and each w⃗j to a prover witness. However, this is never formalized or explicitly
defined.

The statement is incorrect relating to one possible set of vectors that the
extractor may be expected to produce. Specifically, the statement indicates
that the extractor may produce a set of vectors {x⃗i}n−1

i=0 in Fk such that the

vanishing
∑n−1

i=0 fi(X)x⃗i = 0⃗ holds. However, the set of polynomials {fi(X)}n−1
i=0

in F[X] is linearly independent by assumption. If the above sum holds, then
each polynomial component of the resulting k-vector vanishes in F[X], so linear
independence requires that each x⃗i = 0⃗. Since these vectors must also satisfy
Ci = ⟨x⃗i, G⃗⟩ for all i ∈ [0, n), this means each Ci = 0. While this could strictly
be valid (the extractor could instead output a discrete logarithm relation), it is
unlikely that this is the intent of the statement.

Separately, the proof is invalid as written.
To see why, first note that the authors implicitly treat vectors as column

vectors for the purpose of linear algebraic expression evaluation, though they
do not appear to state this directly (and such vectors are typically written as row
vectors when expressed elementwise). For example, the proof of the preceding
Lemma 4 defines an n×m matrix M and vector c⃗ ∈ Fn. It examines the product
M⊤c⃗, which is only well defined if c⃗ is treated as an n× 1 matrix.

The proof of Lemma 5 defines an m × k matrix W by setting each row
0 ≤ j < m to the vector w⃗j ∈ Fk. (Presumably this assumes each w⃗j is now
treated as a row vector for this purpose, which is inconsistent with the above
discussion and easily fixed by using w⃗j

⊤ instead.) It further defines the n×m
matrix M as in Lemma 4.

The proof then claims that WG⃗ = MC⃗, where G⃗ ∈ Gk and C⃗ ∈ Gn are
vectors of group elements specified in the statement of the lemma. While the
left side of the equality is a well-defined m× 1 column vector, the right side is
undefined due to a dimension mismatch. The equality does hold if it is replaced
by WG⃗ = M⊤C⃗.

The matrix product equality is then used with the Moore-Penrose inverse of
M as part of the extractor construction. However, there is an error; because
n ≤ m, M has full row rank and therefore its Moore-Penrose inverse is a right
inverse (not a left inverse). Fortunately, assuming the use of M⊤ as above fixes
this, as M⊤ has full column rank and therefore its Moore-Penrose inverse is a
left inverse and Equation 94 holds using M⊤ instead of M .

The proof’s claim in its first paragraph about the vanishing of X-related
polynomial evaluations is also incorrect, and presented with faulty justification
about vanishings.

We were informed by the authors of the intended statement of the lemma,
which differs from the preprint. Because of the errors in statement and proof,
we provide the corrected statement and fix the proof here.

Lemma (Lemma 5). For any k group elements G⃗ ∈ Gk and any n linearly-

independent polynomials f⃗ ∈ F[X]n of degree d < m, there exists an efficient

extractor χ such that for n commitments C⃗ ∈ Gn and m ≥ n tuples (αj ∈

10

F, w⃗j ∈ Fk)m−1
j=0 with distinct αj such that ⟨w⃗j , G⃗⟩ =

∑n−1
i=0 fi(αj)Ci for j ∈

[0, k), χ outputs either s⃗ ∈ Fk such that ⟨s⃗, G⃗⟩, or {x⃗i ∈ Fk}n−1
i=0 such that

Ci = ⟨x⃗i, G⃗⟩ for i ∈ [0, n) and w⃗j =
∑n−1

i=0 fi(αj)x⃗i for j ∈ [0,m).

Proof. Define an n ×m matrix M such that Mi,j = fi(αj). By Lemma 5, we
have rank(M) = n. Define an m× k matrix W such that each row j is the row

vector w⃗j
⊤. From these definitions, it holds by inspection that WG⃗ = M⊤C⃗.

Now consider the Moore-Penrose inverse (M⊤)+ of M⊤. Since M is of full
row rank, M⊤ is of full column rank and its Moore-Penrose inverse is a left
inverse. This means the following holds:

M⊤(M⊤)+WG⃗ = M⊤(M⊤)+M⊤C⃗

= M⊤C⃗

= WG⃗

Let W ′ = M⊤(M⊤)+W . If W ′ = W , then define X = (M⊤)+W . This
means that

M⊤X = M⊤(M⊤)+W

= W ′

= W

and, since

M⊤X =

 f0(α0) · · · fn−1(α0)
...

. . .
...

f0(αm−1) · · · fn−1(αm−1)

 x⃗0

...
⃗xn−1

=

∑n−1

i=0 fi(α0)xi,0 · · ·
∑n−1

i=0 fi(α0)xi,k−1

...
. . .

...∑n−1
i=0 fi(αm−1)xi,0 · · ·

∑n−1
i=0 fi(αm−1)xi,k−1

it follows that the rows {x⃗i}n−1

i=0 of X returned by the extractor satisfy Ci =

⟨x⃗i, G⃗⟩ for i ∈ [0, n), and that w⃗j =
∑n−1

i=0 fi(αj)x⃗i for j ∈ [0,m) as required.

Otherwise, if W ′ ̸= W , then we have W ′G⃗ = WG⃗, so (W ′−W)G⃗ = 0⃗. Since
W ′ ̸= W , the difference W ′ −W has a nonzero row vector s⃗ that is returned by
the extractor as the required discrete logarithm relation.

2.8.2 Theorem 1

In Appendix C.1, the proof of Theorem 1 aims to show that the weighted norm
linear argument protocol presented in Section 4.3 is perfectly complete and has
computatation witness-extended emulation.

Completeness, while somewhat tedious to show algebraically, holds. How-
ever, the proof for computational witness-extended emulation, which uses a

11

fairly standard special soundness rewinding technique, has unclear validity. The
preprint indicates that the rewinding technique is very similar to that of the
Bulletproofs inner-product argument, which also uses a recursive round-based
design.

The proof recursively fixes a round, which in turn fixes common inputs and
the round commitments X and R. It rewinds the transcript to obtain a set
{γi}3i=0 of four distinct challenges, and is able to use the subsequent responses
as supplied to the verifier in the reduced next round.

The notation used is unfortunately unclear, as it is inconsistent with that
of both the Bulletproofs inner-product argument’s proof and the preprint’s own
weighted norm linear argument protocol. In both of those, “non-primed” no-
tation (like µ) indicates a value from the current round of the protocol, and
corresponding “primed” notation (like µ′) indicates the value to be used in the
next round, where extraction is assumed to hold by recursion.

In this proof, the notation does not follow this convention, and is also inter-
nally inconsistent. The proof specifies that the extractor obtains a set of values
{vi, l⃗i, n⃗i}3i=0 from rewinding such that

C ′
i = C + γiX + (γ2

i − 1)R

= viG+ ⟨l⃗i, [H⃗]0 + γi[H⃗]1⟩+ ⟨n⃗i, [G⃗]0 + γi[G⃗]1⟩

= viG+ ⟨l⃗i
′
, H⃗⟩+ ⟨n⃗i

′, G⃗⟩

holds for each i ∈ [0, 4). While it is not necessarily clear from inspection, the

rewound {vi, l⃗i, n⃗i}3i=0 are those from the subsequent round, not the current
round. The values {C ′

i}3i=0 are as defined, to be used in the subsequent round

(they are not separately extracted). The fixed common inputs µ, c⃗, C,G, G⃗, H⃗
are from the current round.

The vectors {l⃗i
′
, n⃗i

′}3i=0 from the above equality are not extracted from the
subsequent round via rewinding (as the notation might imply), but are instead
assumed to be defined such that the equality holds. The definitions allow for the
use of common generators G⃗ and H⃗ across rewindings, which is important for
later use of the round extractor; indeed, without these definitions, the generators
depend on the challenges and the extractor reasoning would not apply. It is not
necessarily obvious how these vectors should be defined, so we comment on this
here for clarity.

Suppose that G⃗ and H⃗ both have length 2N for some N > 0; this means
that each l⃗i and n⃗i has length N .

If we let l⃗i = (li,0, . . . , li,N−1) and define

l⃗i
′
= (li,0, γili,0, . . . , li,N−1, γili,N−1),

12

then we have

⟨l⃗i, [H⃗]0 + γi[H⃗]1⟩ =

N−1∑
j=0

li,j(H2j + γiH2j+1)

=

N−1∑
j=0

(li,jH2j + γili,jH2j+1)

= ⟨l⃗i
′
, H⃗⟩

as required. Further, since [l⃗i
′
]0 = l⃗i and [l⃗i

′
]1 = γi l⃗i, the required condition

γi[l⃗i
′
]0 − [l⃗i

′
]1 = 0⃗ immediately follows.

Before we show the analogous derivation of n⃗i
′, we first note an error in the

equality where it is introduced. The proof indicates that each

C ′
i = viG+ ⟨l⃗i, [H⃗]0 + γi[H⃗]1⟩+ ⟨n⃗i, [G⃗]0 + γi[G⃗]1⟩,

but the round transition is defined to require

C ′
i = viG+ ⟨l⃗i, [H⃗]0 + γi[H⃗]1⟩+ ⟨n⃗i, ρ[G⃗]0 + γi[G⃗]1⟩

instead (the proof is missing a factor ρ).
With this correction in place, if we let n⃗i = (ni,0, . . . , ni,N−1) and define

n⃗i
′ = (ρni,0, γini,0, . . . , ρni,N−1, γini,N−1),

then we have

⟨n⃗i, ρ[G⃗]0 + γi[G⃗]1⟩ =

N−1∑
j=0

ni,j(ρG2j + γiG2j+1)

=

N−1∑
j=0

(ρni,jG2j + γini,jG2j+1)

= ⟨n⃗i
′, G⃗⟩

as required. The proof implies, but does not specify, the relation between the
interleaved halves of each n⃗i

′. However, since [n⃗i
′]0 = ρn⃗i and [n⃗i

′]1 = γin⃗i, the
relation for n⃗i

′ is γi[n⃗i
′]0 − ρ[n⃗i

′]1 = 0⃗.

The proof constructs polynomials v(T), l⃗′(T), r⃗′(T) and notes that evaluation

at each T = γi gives vi, l⃗i
′
, r⃗i

′ respectively. While it is not specified in further
detail, presumably this is intended to follow directly by matching generators,
and from the assumption that if such polynomial evaluations did not hold, a
nontrivial generator discrete logarithm relation would result. It would be helpful
if this reasoning were made more clear, as the correctness of the evaluations is
necessary for the proof’s reasoning.

13

The proof then uses polynomial vanishing to assume construction of polyno-
mials l⃗(T) and n⃗(T) from tensor product representations of l⃗′(T) and n⃗′(T), and

then claims that a degree-1 expression of l⃗(T) = l⃗0 + l⃗1T leads to the following:

l⃗C = l⃗0∥⃗l1, l⃗X = l⃗1∥⃗l0, l⃗R = l⃗0∥⃗0

It is straightforward to use the tensor product representations to derive l⃗(T) and

n⃗(T), and to show the claims that l⃗(γi) = l⃗i and n⃗(γi) = n⃗i from the derivations

of l⃗i
′
and n⃗i

′ we show above. However, it is not clear how the expression of l⃗(T)

in terms of coefficients yields l⃗C , l⃗X , l⃗R as claimed; indeed, those values are never
defined (and similarly for n⃗(T), which is not written out explicitly).

2.8.3 Lemma 6

In Appendix C.2, the proof of Lemma 6 aims to show that a particular distri-
bution of values is uniformly distributed; this is used elsewhere in the preprint.

The language and notation used in the statement and proof of the lemma are
informal, particularly relating to descriptions of distributions. For example, the
statement describes the “uniform distribution of openings”, which presumably
assumes the definition of validity. However, the proof discusses the “uniform
distribution on (v, l⃗, n⃗)” without being specific about whether this assumes such
tuples are valid openings or merely contain uniformly-distributed field elements
and vectors. Crucially, it cannot be the case that all elements of a valid opening
are independently uniformly distributed at random due trivially to the validity
definition, which effectively defines v in terms of the fixed elements c⃗, µ and
tuple elements (⃗l, n⃗). This is important, as the lemma is used elsewhere in the
preprint to imply uniformly-distributed proof elements that must correspond
to valid openings to show a zero-knowledge property. One particular approach
would be to exclude v from such consideration altogether, as it is fixed when
the other aforementioned values are specified.

Further (and related to this), no definition of set membership or vector
lengths is provided, which renders the well-definedness and validity of the proof’s
reasoning unclear. In particular, the reader must determine the lengths of the
sub-vectors of c⃗ and l⃗. The statement requires that |⃗c| = |⃗l| to have a well-

defined inner product ⟨c⃗, l⃗⟩, so |ˆ⃗cr|+ |ˆ⃗cl| = |r⃗|+ |l⃗′|. However, from the proof we

must have |ˆ⃗cl| = |⃗l′| and |ˆ⃗cr| − 1 = |r⃗| for corresponding inner products, which
is a contradiction. It is not clear what was intended.

The proof uses the vector notation v⃗ when the scalar v is intended.
The proof gives a claimed equivalent distribution that assumes ˆ⃗cr = 1, no-

tation which is undefined, unclear, and does not appear to lead to the claim.
Further, the lemma statement allows that c⃗ be any fixed vector; if the proof
intends that assuming a constant value for any part of c⃗ does not affect the
distribution results due to some kind of restriction, this should be carefully ex-
plained with valid notation. Interestingly, the use of the lemma elsewhere in the
preprint does involve an input value c⃗ whose initial term is 1, consistent with
such a restriction.

14

It also suggests that a uniform distribution can be obtained by sampling n⃗
and l⃗′, and then sampling v⃗ and r⃗ such that a valid opening is obtained. The
notation v⃗ should presumably be v; further, it cannot be sampled independently
of r⃗, as it is fixed once the other values are sampled. It is certainly possible
to use rejection sampling on (v, r⃗) until a valid opening is found; however, it is
also possible to sample r⃗ and merely define v to satisfy the required equality;
we note that this distinction is likely without difference, but it may be helpful
to be more clear in the proof about the relationship between sampled values.

When the proof describes the distribution of values offset by elements of s⃗
to achieve a uniform distribution, it sets r⃗ = r⃗+ s⃗1:, notation which is undefined
in this context. It is likely that r⃗ = r⃗′ + s⃗1: was intended instead. Further, the
requirement that s⃗ be sampled uniformly at random such that ⟨ˆ⃗cr, s⃗⟩ introduces
structure that could influence the proof’s conclusion of uniform distribution;
however, the fact that s0 only offsets v (which is already fixed by other values)
may allow for samplings that do meet the conclusion.

After contacting the authors about some of these inconsistencies and appar-
ent errors, it was implied that an off-by-one error was present, and that the
elements s0 and ˆ⃗cr,0 were intended to offset the v component of valid opening
tuples; however, detail was not provided at the time.

Given what we suspect this information implies, the statement of the lemma
still appears to be incorrect, as offsetting v (in reality, v̂) by s0 would not yield
a valid opening.

It is possible that the following corrected statement of the lemma was in-
tended by the authors; in the absence of further details, we state the proposed
correction here.

Lemma (Lemma 6). Let λr, λl, λn > 0 be integers, and let λ = λr + λl. For

fixed c⃗ ∈ Fλ and µ ∈ F, we say (v, l⃗, n⃗) ∈ F × Fλ × Fλn is a valid opening if

v = ⟨c⃗, l⃗⟩+ |n⃗|2µ.
Suppose l⃗ = r⃗||l⃗′ for r⃗ ∈ Fλr and l⃗′ ∈ Fλl , and suppose c⃗ = ˆ⃗cr||ˆ⃗cl for ˆ⃗cr ∈ Fλr

and ˆ⃗cl ∈ Fλl .
The distribution of valid openings (v, l⃗, r⃗) such that l⃗ and r⃗ are uniformly

distributed at random is the same as the distribution of valid openings (v̂ −
s0, (r⃗′ + s⃗1:)||l⃗′, n⃗) such that n⃗ and l⃗′ are sampled uniformly at random, v̂ and

r⃗′ are any values such that (v̂, r⃗′||l⃗′, n⃗) is a valid opening, s⃗1: ∈ Fλr is sampled

uniformly at random, and s0 = −⟨ˆ⃗cr, s⃗1:⟩ (so that ⟨1||ˆ⃗cr, s⃗⟩ = 0).

Note that the ordering of steps in this statement, while not specifically enu-
merated as such, is important. We require that c⃗ and µ be fixed before choosing
v̂ and r⃗′, which must occur before sampling s⃗1:. Otherwise, it could be the case
that r⃗′ is chosen adaptively in response to s⃗1: or the initial fixed parameters.

We now give a proof of the modified lemma.

Proof. Fix any c⃗ and µ according to the statement of the lemma, and sample n⃗
and l⃗′ uniformly at random.

15

Let v̂ and r⃗′ be values such that (v̂, r⃗′||l⃗′, n⃗) is a valid opening. That is:

v̂ = ⟨c⃗, r⃗′||l⃗′⟩+ |n⃗|2µ
= ⟨ˆ⃗cr||ˆ⃗cl, r⃗′||l⃗′⟩+ |n⃗|2µ
= ⟨ˆ⃗cr, r⃗′⟩+ ⟨ˆ⃗cl, l⃗′⟩+ |n⃗|2µ

Now sample s⃗1: uniformly at random, and set s0 = −⟨ˆ⃗cr, s⃗1:⟩ as specified.

To show that (v̂ − s0, (r⃗′ + s⃗1:)||l⃗′, n⃗) is a valid opening, we note that

v̂ − s0 = ⟨ˆ⃗cr, r⃗′⟩+ ⟨ˆ⃗cl, l⃗′⟩+ |n⃗|2µ − s0

= ⟨ˆ⃗cr, r⃗′⟩+ ⟨ˆ⃗cl, l⃗′⟩+ |n⃗|2µ + ⟨ˆ⃗cr, s⃗1:⟩

= ⟨ˆ⃗cr, r⃗′ + s⃗1:⟩+ ⟨ˆ⃗cl, l⃗′⟩+ |n⃗|2µ
= ⟨ˆ⃗cr||ˆ⃗cl, (r⃗′ + s⃗1:)||l⃗′⟩+ |n⃗|2µ
= ⟨c⃗, (r⃗′ + s⃗1:)||l⃗′⟩+ |n⃗|2µ

which satisfies the definition.
To show that the vector components of the opening are uniformly distributed

at random, we simply observe that n⃗ and l⃗′ are sampled uniformly at random
by hypothesis, and that s⃗1: is sampled uniformly at random after r⃗′ is fixed.

It is straightforward to generalize this construction such that the condition
⟨1||ˆ⃗cr, s⃗⟩ = 0 is relaxed to allow for any field element to prepend ˆ⃗cr by defining
s0 accordingly; however, this is not needed for the use of the lemma in the
preprint.

2.8.4 Lemma 7

In Appendix C.2, the proof of Lemma 7 asserts a property of uniform distribu-
tion relating to matrix multiplication.

For the purpose of this discussion, let M be an m× n matrix, so the linear
transformation in question is from Fn → Fm.

The reasoning of the proof is correct; however, it may be useful to provide a
more complete explanation of why the reasoning about null space membership
implies each preimage set Pb⃗ ⊂ Fn must have the same cardinality, as this is
important for the conclusion.

Further, it may also be helpful to note that the collection {Pb⃗ : b⃗ ∈ Fm}
partitions Fn, which makes it clear that the mapping of a vector a⃗ ∈ Fn to a
preimage set Pb⃗ is a well-defined operation.

2.8.5 Theorem 2

In Appendix C.2.1, the proof of Theorem 2 aims to show that the arithmetic
circuit protocol described in Section 5.3 has the desired properties of perfect
completeness, perfect special honest-verifier zero knowledge (SHVZK), and com-
putational witness-extended emulation.

16

Showing perfect SHVZK requires constructing a simulator that, when given
a statement and randomly-sampled verifier challenges, can produce a verifying
proof transcript distributed identically to that from a real (non-simulated) valid
proof.

We note the important point that the proof of the inner arithmetic circuit
subprotocol calls into the weighted norm linear argument, which is not perfect
SHVZK. This means that the simulator does not need to simulate the transcript
of this argument; given its witness, it simply runs the argument itself. Even
though the argument witness is not strictly part of the overall proof transcript,
it suffices for the simulator to simulate this witness in a distribution identical
to that used by the prover in a real proof.

The proof claims that perfect SHVZK follows by showing that the weighted
norm linear argument prover input (v, l⃗, n⃗) = (v(τ), l⃗(τ), n⃗(τ)) be “distributed
uniformly at random among valid openings” as defined in Lemma 6, clarifying
this to mean that the opening is distributed uniformly at random.

This is not strictly correct, as v is uniquely determined by l⃗ and n⃗ given fixed
parameters c⃗ and µ and cannot be independently sampled. However, despite
this (and despite similar language in the statement and proof of Lemma 6), this
is easily addressed. All that must be shown instead for these particular witness
elements is that l⃗ and n⃗ be distributed uniformly at random using the argument
of Lemma 6, and that v be chosen accordingly to ensure that the “full” witness
(v, l⃗, n⃗) is a valid opening.

It is also important to ensure that the conditions of (the modified) Lemma 6
hold relating to the order in which related values are fixed or otherwise chosen
or sampled. Otherwise, it may be possible that they are adaptively chosen such
that the intended distribution does not hold, which would render the simula-
tor invalid. Neither the proof nor the statement of Lemma 6 addresses this
explicitly.

The proof does not fully provide the correspondence between arithmetic
circuit protocol elements and those required by Lemma 6. It does indicate that
vectors l⃗′ and n⃗ are distributed uniformly at random. However, there is no l⃗′

vector defined in the arithmetic circuit protocol. It is likely that the authors

intended the vector
ˆ⃗
l(τ) instead (and n⃗(τ)), and that these are intended to

correpond to Lemma 6’s l⃗′ and n⃗ vectors.

The vector
ˆ⃗
l(T) in the arithemtic circuit protocol (evaluated at T = τ)

contains as a summand T−1 l⃗S , where l⃗S is sampled uniformly at random by
the prover, and where τ is subsequently sampled uniformly at random by the
verifier. Further, all other summands are defined in advance of these values, so
the overall vector is distributed uniformly at random.

Similarly, the vector n⃗(T) in the protocol contains ˆ⃗n(T) as a summand.
This in turn contains T−1n⃗S as a summand, where n⃗S is sampled uniformly
at random by the prover, and where τ is subsequently sampled uniformly at
random by the verifier. All other summands are defined in advance of these
values as well, so the overall vector is distributed uniformly at random.

17

The proof specifies that (f̂0, β
−1 ˆ⃗f1:) constitutes the “primitive witness” from

Lemma 6. This term is undefined, and is ambiguous since the structure of
Lemma 6 does not directly admit a witness. It is likely that this tuple is intended
to play the role of (v̂, r⃗′) in the lemma.

The proof then indicates that it must be shown that the values (vb, r⃗b) =

(s0 = r0 − f̂0, s⃗1: = r⃗1: −
ˆ⃗
f1:), are distributed uniformly at random. However,

the notation (vb, r⃗b) is undefined, both within the arithmetic circuit protocol
and Lemma 6, leaving the reader again to divine the intent. It may be the case
that the intent was (v, r⃗) from the last paragraph in the original Lemma 6, but
this does not appear to be consistent with the subsequent definition in terms of
s0 and s⃗1:, which are presumably intended to correspond to the vector s⃗ from
the lemma.

The proof observes that the vector s⃗ defined in the protocol (which is to
be shown to be comprised of uniformly-distributed elements) is itself a linear
combination of the vectors r⃗L, r⃗R, r⃗O, r⃗V . To show the desired distribution,
it claims to suffice to show that an undefined matrix has rank 7 with image
dimension 8. It may be the case that the matrix is intended to be constructed
with each of the above vectors as row vectors; however, this is not specifically
described. Further, while it is known that random matrices have full rank, it
is not clear why this rank argument must result in a random matrix. While
it is the case that each of the above vectors is used in the linear construction
of s⃗, they are not the only such vectors: according to a possible interpretation
of the incomplete notation, the vector r⃗s may also need to be included, which
is not accounted for. Additionally, the proof claims that the construction of
the unspecified matrix is such that ⟨ˆ⃗cr, s⃗⟩ = 0 by Lemma 7. This appears to
be an intended consequence of Corollary 1; however, such an application of the
corollary requires that ˆ⃗cr generate the left null space of the matrix, which the
proof does not show.

The proof then specifies that the simulator choose the opening (v, l⃗, n⃗) and
all commitments aside from CS uniformly at random, and then define CS to
satisfy Equation 34. These transcript elements are CL, CR, CO. As noted, the
opening cannot fully be sampled uniformly at random due to the structure of
v; this is a minor oversight. The claim regarding Equation 34 is incorrect,
as this equation does not involve CS . It is likely that the authors intended
this to refer to Equation 15, which defines the weighted norm linear argument
relation, instead. That is, once the simulator has sampled l⃗, n⃗, CL, CR, CO,
it computes v and CS directly according to the relation, which results in an
accepting transcript.

To show computational witness-extended emulation, the proof informally
describes the outline of an extractor that, given a suitable tree of transcripts,
claims to extract a valid witness. It does so primarily by invoking the round
extractor defined in Lemma 5. However, it does not specifically identify the
means by which the round extractor is to be instantiated, nor does it assert the
validity of the round extractor (which has specific requirements on its inputs).
This is unfortunate, as the proof elements used in such a construction are subject

18

to several layers of definitional indirection that leave the reader to discern the
extractor’s construction.

The proof indicates that after using the weighted norm linear argument
extractor χnl to extract a weighted norm linear argument witness (v, l⃗, n⃗), it can
again apply the round extraction technique from Lemma 5 to obtain openings for
CS , CO, CL, CR, V̂ . While the proof does not specify details, this is presumably
done using the known linear combination

C(T) = P (T) + T−1CS + δCO + TCL + T 2CR + T 3V̂ ,

where C(T) = v(T)G + ⟨⃗l(T), H⃗⟩ + ⟨n⃗, G⃗⟩ via the weighted norm linear ar-
gument, and where P (T) is computed by the verifier using ps(T) and p⃗n(T)
defined earlier in the protocol. To apply the round extraction technique from
Lemma 5, it must be the case that the witness element inner products be a
linear combination of linearly-independent polynomials. This is nearly the case
for the linear combination comprising C(T) relative to the intended commit-
ments; that is, C(T) directly contains proof elements multiplying polynomials
in the linearly-independent set {T−1, 1, T, T 2, T 3}. However, this alone does
not account for P (T), which contains terms of conflicting degree. Strictly, the
extractor is able to produce the desired openings only with an offset applied via
each corresponding degree component of P (T); it would be useful for the proof
to explain this, as it may not be obvious to the reader why this is possible due
to the presentation of C(T). (As an example, if the corresponding opening to
P (T) were not known to the verifier, this technique would not be possible.)

The proof has a minor typo and related lack of clarity, stating that “poly-
nomial f̂(T) terms for -2 through 6, and g(T) has terms for -2 through possible

10” instead of the more clear and correct “polynomial f̂ has terms for degrees
-2 through 6, and g(T) has terms for degree -2 through (possibly) 10”. Inter-
estingly, the proof differentiates the highest-degree (nonzero) term between the
two polynomials, despite this not being necessary for the subsequent vanishing
argument to hold.

The proof does not detail the derivation of Equation 96, which relates to
the discussion of Equation 34 for producing the necessary connection to circuit
satisfiability in the sense of Equations 30 and 31. In Equation 96, the notation
n⃗V̂ used in a specified inner product is undefined. The subsequent discussion of
value term challenge “unwinding” does not detail the terms it references.

The proof again invokes the round extractor of Lemma 5, using the structure
of V̂ as a linear combination of {Vi} weighted by powers of λ or µ (depending
on the corresponding binary flags fl, fm). In the case where exactly one of
fl, fm is nonzero, the validity of the round extractor argument (implicitly, but
not explicitly, defining V̂ as a polynomial evaluated at this challenge) seems
straightforward. However, the proof is unclear in the case where flfm = 1 about
the nature of the round extractor, as V̂ would be presumably be represented in
this case by a multivariate polynomial such that Lemma 5’s conditions would
not hold.

The remainder of the discussion of the extractor in the proof is informal

19

and lacks detail about the precise definition and operation of the extractor; this
aspect of the proof is critical to establishing witness-extended emulation and
showing the protocol is sound.

2.8.6 Theorem 3

In Appendix C.3, the proof of Theorem 3 aims to show that the reciprocal
form protocol described in Section 6.3 has the desired properties of complete-
ness, perfect special honest-verifier zero knowledge (SHVZK), and computa-
tional witness-extended emulation.

The correctness discussion correctly identifies that the protocol does not
have perfect correctness, as the challenge α may be such that (α + wD,i)

−1 is
undefined for some i; it informally notes that this occurs only negligibly. This
claim does certainly hold in the case whereNP (the number of poles) is negligible
in the order of the challenge codomain, but the requirement that this be the
case does not appear to be specified outside of the proof. Even though this
will hold for any reasonable range proving application that uses the protocol, it
need not hold generally. It may be helpful to make this clear, either when the
relation Rrf is introduced in Equation 71 or in the statement of Theorem 3.

To show perfect SHVZK, the proof merely notes that the simulator may
sample the verifier challenge α uniformly at random and then run the arithmetic
circuit protocol simulator from the proof of Theorem 2 on the corresponding
circuit.

This is intuitive, especially given the discussion in Section 6.2 that describes
the relationship between the reciprocal form and arithmetic circuit protocols.
However, it is informal and not strictly correct. Effectively, the reciprocal
form protocol separates the corresponding arithmetic circuit protocol’s first
round into two rounds: instead of running CommitOL and CommitR to obtain
CO, CL, CR to send to the verifier in one round, the prover first runs CommitOL
to obtain (among other values) CO, CL. It sends these values to the verifier,
obtains a challenge α, and then computes inputs to CommitR, which it runs to
obtain CR. The prover then sends CR to the verifier and computes witnesses
that it uses as inputs to the inner arithmetic circuit protocol.

Technically, the inner arithmetic circuit protocol invocation duplicates the
prover’s communication to the verifier: its first step is to send CO, CL, CR. In
the reciprocal form protocol, these values have already been sent to the verifier,
in part to obtain the initial challenge α. This is mostly a technicality, but does
highlight that the simulator for the arithmetic circuit protocol (which uses the
inner arithmetic circuit protocol as a subprotocol) does not trivially apply. It
also may be useful to modify one or more of the protocol definitions to correct
this discrepancy.

In the arithmetic circuit protocol simulator construction from the proof of
Theorem 2, it is easy to show that CO, CL, CR may be independently sampled
uniformly at random because of the construction of (and inputs to) CommitOL
and CommitR. This reasoning does extend to the initial two rounds of the
reciprocal form protocol simulator due to its invocations of these subprotocols,

20

meaning its simulator can in fact sample CO, CL, CR as in the arithmetic circuit
protocol simulator.

It may be useful to adjust the proof’s discussion of the simulator to note that
it is not strictly an invocation of the arithmetic circuit protocol simulator, but
that similar reasoning applies to produce an effectively parallel construction.

To show that the protocol has computational witness-extended emulation,
the proof invokes the arithmetic circuit protocol extractor χac defined in the
proof of Theorem 2. Similarly to the above simulator analysis, it is not strictly
valid to invoke χac as the reciprocal form protocol does not directly invoke the
arithmetic circuit protocol in its definition. However, the subsequent analy-
sis assumes a fixed challenge value α in order to extract an arithmetic circuit
protocol witness. Because the openings of CO, CL, CR in the arithmetic cir-
cuit protocol rely only on rewinding the transcript at the τ challenge point,
the analysis should be valid here, as the reciprocal form protocol fixes these
commitments before invoking the inner arithmetic circuit protocol where this
challenge point occurs.

21

	Executive summary
	Findings
	Section 1: introduction
	Section 2: preliminaries
	Section 3: technical overview
	Section 4: norm linear argument
	Section 5: arithmetic circuits
	Section 6: reciprocal argument
	Lemma 1

	Section 7: implementation and benchmarks
	Appendix C: theorems and proofs
	Lemma 5
	Theorem 1
	Lemma 6
	Lemma 7
	Theorem 2
	Theorem 3

