Concise RingCT Protocol Based on Linkable
Threshold Ring Signature

Junke Duan, Shihui Zheng, Wei1 Wang, Licheng Wang, Xiaoya Hu, and Lize Gu

Abstract—Ring Confidential Transactions (RingCT) is a typical
privacy-preserving protocol for blockchain, which is used for
the most popular anonymous cryptocurrency Monero in recent
years. RingCT provides the user’s identity anonymity based on
the linkable ring signature. At the cost of that, the transaction
size is increased linearly to the involved users. In this article, we
aim to overcome this inefficient aspect of RingCT by introducing
the linkable threshold ring signature (LTRS). We first propose
a construction of threshold ring signatures for homomorphic
cryptosystems, and present an efficient instantiation based on
the intractability assumption of the discrete logarithm problem.
Based on this framework, an efficient LTRS scheme and a novel
construction of the RingCT protocol are presented. Our proposed
RingCT protocol enables multiple payers to co-construct an
anonymous transaction without revealing their secret account
keys, and it is more concise under multiple input accounts. For
a transaction with a ring size of 100 and the input accounts
number of 64, the communication overhead is about 4% of the
original RingCT protocol.

Index Terms—ring signature, linkable threshold ring signature,
anonymity, RingCT, blockchain, cryptocurrency.

[. INTRODUCTION

LOCKCHAIN 1s a distributed public ledger. It was
initially proposed as the underlying storage technology

of Bitcoin [1]. Due to its features, such as decentrality and
immutability, blockchain has received more attention in recent
years. However, since transactions in blockchain need to be
publicly verified and stored, this leads to the disclosure of
users’ 1dentities, transaction contents, and other private infor-
mation. As a result, developing privacy-preserving technolo-
gies for blockchain has become a key research focus in recent
years. RingCT [2], zk-SNARKSs [3], and Coin Shuffle [4]
are representative privacy-preserving protocols for blockchain.
They apply to the well-known anonymous cryptocurrencies
Monero, Zcash, and Dash, respectively. This paper focuses on
the RingCT protocol and its underlying ring signature scheme.
Ring signature (RS) is a signature scheme with anonymity,
proposed by Rivest et al. [5]. It enables a signer to form a
temporary group of members, known as a “ring”, to sign a
message. The verifier can verify that the signer is one of

This work was supported by the National Key Research and Development
Program of China (2022YFB2702703), the National Natural Science Foun-
dation of China (NSFC) (62272040, 62232002), and BUPT Excellent Ph.D.
Students Foundation CX2022136.

Junke Duan, Shihui Zheng, Wei Wang, Xiaoya Hu, and Lize Gu are with
the State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China (e-mail:
{duanjunke,shihuizh,weiwangscsc huxiaoya,glzisc } @bupt.edu.cn)

Licheng Wang 1s with the School of Cyberspace Science and Tech-
nology of Beijing Institute of Technology Beijing 100081, China (e-mail:
lcwang @bit.edu.cn)

the ring’s members, but has no way of knowing which one
the signer is. Existing instantiations of RS include: RSA [6],
zero-knowledge proof [7], [8], bilinear pair [9]-[11], lattice
[12]-[15], etc. RS can be applied to anonymous identity
authentication [16], electronic voting [17], and anonymous
reporting [18]. However, the perfect anonymity of RS makes
it impossible for the verifier to distinguish whether the same
secret key signs two signatures. This limits the use of RS in
e-cash or anonymous cryptocurrencies. To solve this problem,
Liu et al. proposed the linkable ring signature (LRS) [19],
which allows the verifier to link two signatures signed using
the same secret key. This property ensures that the signer can
only use his secret key for a one-time signature. LRS is used in
RingCT protocol to implement anonymous transactions with
the prevention of double-spending attack'.

To anonymize the user’s identity in the transaction, the
additional communication overhead added by the RingCT
protocol is significant. In Bitcoin, the average transaction size
1s 250B, while a typical RingCT transaction has a transaction
size of around 2200B, nearly nine times the former. There are
some works to optimize the signature size in RingCT. Sun et
al. proposed RingCT 2.0 protocol based on the cryptographic
accumulator to reduce the ring size [21]. However, it requires
a trusted setup, which is unsuitable for the decentralized
blockchain. Jia et al. proposed a privacy-protecting payment
protocol PBT [22], which is based on one-to-many proofs
and a special multi-signature. This protocol offers practical
performance superior to RingCT 2.0 and does not require
a trusted setup. Yuen et al. proposed RingCT 3.0 protocol
to further reduce the signature size by combining the inner
product argument [23]. Goodell et al. proposed a concise LRS
scheme for RingCT [24], which reduces the signature size
by about 25% compared to [2]. However, the transaction size
in these improved protocols grows linearly with the number
of input accounts. To construct a more concise RingCT, we
inspire to hide multiple accounts within the same ring, thereby
ensuring that the number of rings does not depend on the
number of real input accounts.

To this end, we introduce the threshold ring signature (TRS),
which 1s a threshold variant of RS proposed by Bresson
et al. [25]. A f-out-of-n TRS scheme allows { signers to
sign on behalf of a ring of size n, but does not expose
the identity of these signers. The instantiations of the TRS
scheme include: zero-knowledge proof [26], [27], bilinear pair
[28], and so on. Linkable threshold ring signature (LTRS)

' An attack on anonymous cryptocurrency in which the attacker reuses the
same token [20]



TABLE 1

COMPARISON OF THE OVERHEAD

()

Type Ref. Sten Compitatons Verify Signature/Transaction Size
[25] nlogn2' - E dlogn2' - E logn2' (n + t)|Z,|
[26] (2n —t)-FE 2n - E (2n —t + 1)|Z,)]
TRS [27] 3n- E n-E+(n+1)-P (n—t+ 1D[Z,] + (n+ 1)[G,]
28] Bnist+1) E E+(n+3) P 2n+ 2)[G,
Ours 2n - E (2n+1)-F (n+ 1)[Z,]
[29] (6n —2t) - E 6n - £ (3n — t+ 2)|Zy,| + n|G,|
LTRS [30] (On + 4t) - E 10n-E (An —t + 1)[Z,] + 3n|G,]
(311 | (8y/n+16)t)-E+t-P | 2t-E+ (8y/n+9)t- P t(6/n + 8)|G,
Ours (Bn+3t—2)-F (3n+1t) - E (n+ 1)|Z,| + t|G,
(2] (n(4t +2) —2t—1)-FE n(4t +2) - E (n(t+ 1) + 2)|Zp| + (n+ 1)t|G,|
RingCT | [24] (6n+3t—3) - E (6n+ 2t) - E (2n + 2)[Z,] + (n + 1)t[G,]
Ours (bn+3t+2)-E (bn+t+1)-E (2n +2)[Z,] + (n + 1)|G,

“E"” and “P” refer to the exponentiation and pairing operations respectively. “|G,|™" and “|Z,|" refer to the length of elements
in {z;, and Z, respectively. “n” and “t” refer to the ring size and number of signers secret keys respectively.

is a linkable variant of LRS. Existing LTRS schemes [29]-
[31] are respectively built based on the corresponding TRS
schemes [26]-[28]. In addition, Aranha et al. proposed a
TRS scheme with extendability [32]. Haque et al. proposed
a generic construction of TRS with logarithmic signature size
[33]. Unfortunately, existing (L)TRS schemes are unsuitable
for the RingCT protocol. The reason is that the verification step
in RingCT needs to compute the sum of all the input accounts,
which requires the verifier to know where the input accounts
are in the ring. This 1s contrary to existing (L)TRS schemes’
attribute to hide multiple signers’ identities. To resolve this
contradiction, we consider constructing an (L)TRS with a new
design idea so that it is suitable for improving the RingCT
protocol.

A. Our Contributions

We first propose a new construction of TRS, which is
suitable for all homomorphic cryptosystems. Based on it,
we propose efficient instantiations of TRS and LTRS under
discrete logarithm (DL) assumption, and then design the
threshold RingCT protocol. Specifically, our contributions are
as follows:

e Construction of TRS for homomorphic cryptosystems.
We propose a transformation method to convert a 1-
out-of-n. RS scheme into a f-out-of-n TRS scheme in a
homomorphic cryptosystem. We call it “sliding window
transformation” (SWT). Based on SWT, we propose a
construction of the TRS scheme and give its security
proofs.

« Efficient instantiation of TRS. We propose an efficient
instantiation of the TRS scheme based on SWT. It has
faster signing/verifying speed and a smaller signature
size than other schemes. We give the security proofs
of the scheme. By integrating the sum argument in
[34], we further reduce its signature size from linear to
logarithmic.

 Efficient instantiation of LTRS. We propose a linkable
ring signature scheme with double hash challenge (DC-
LRS). Based on it and SWT, we propose an efficient

LTRS scheme. It is more efficient than other schemes.
We give the security proofs of them.

e Threshold RingCT protocol. Based on our proposed
LTRS scheme, we present a threshold RingCT protocol.
Compared with the current RingCT protocol [24], our
design can significantly reduce the transaction size with
multiple account inputs. For a transaction with a ring
size of 100 and the input accounts number of 64, the
communication overhead of our protocol is about 4% of
[24]. In addition, our protocol enables multiple payers to
co-construct the anonymous transaction without revealing
their account keys, while other similar protocols cannot.

SWT TRS SA-TRS

DC-LRS LTRS

Threshold RingCT

Fig. 1. Relationship between our contributions.

The relationship between our contributions is illustrated in
Figure 1, where the schemes at the arrowheads are built upon
the schemes at the arrow origins. The comparison of our TRS,
LTRS, and RingCT with other schemes in terms of overhead
is shown in Table I, and the comparison of signature sizes
between our SA-TRS and TRS is presented in Table IIL

B. Outline

The remainder of this paper is organized as follows. We
briefly introduce some preliminaries in Section II. We present
the formal definitions and security properties of our schemes
in Section III. We present the construction of the TRS scheme
based on SWT in Section IV. We propose the instantiations
and security proofs of our proposed TRS and LTRS schemes
in Section V and Section VI, respectively. Section VII shows
the design of our proposed threshold RingCT protocol. We
experimentally analyze the cost of our proposed schemes in

Section VIII. Finally, we make a brief conclusion in Section
IX.



[I. PRELIMINARIES

A. Notations

We list the symbols used in the following sections in Table
II. Note that except those in the oracles, the subscripts of all
elements are modulo n by default (e.g., Y5+ t(mod n) 1S simply
denoted as ys.¢).

TABLE 11
DESCRIPTION OF SYMBOLS

Symbol | Description
Gp Commutative group with the order p
Ly Modular p residue class
T,y Secret key and public key
Y Set with n public keys yo, .... Yyn—1
p; 4 Set with ¢ secret keys xg, ..., Tt -1
HylH, Hash function which outputs an element in Z,/(z,
HOG/HO, Hash oracle whose outputs are elements in Zp/p
Lpo/Lp, Set which stores the query-response pairs of HOoG/HO,
SO Signing oracle which inputs (Y, m), outputs a signature o
L Set which stores the query-response pairs of SO

B. Mathematical Assumptions

Discrete Logarithm (DL) Assumption. Let G, be a group
with the generator g and the order p. For any probabilistic
polynomial time (PPT) adversary A, it holds that

Priz « A(g,9)] < negl()

where g, g* € (.

Decisional Diffie-Hellman (DDH) Assumption. Let (o, be a
group with the generator g and the order p. For any PPT
adversary A which outputs 1/0, it holds that

! "'[1 — A(Qagaﬁgbagab)]
' ' ‘ ; < neqgl( \
—Pr[l « A(g,9% 9% 9°)]| ~ gl

where g, g%, g°, g¢ € G,

C. Key-Recovery under Key-Only Attack

The key-recovery under key-only attack (KR-KOA) [35] is
an attack targeting signature schemes or identification proto-
cols. It denotes that an adversary obtains the corresponding
secret key with only the public keys of the target scheme.
Formally, assuming there is a signature scheme with a setup
algorithm Setup(\) — pp and a key generation algorithm

KeyGen() — (y,x)). A signature scheme is secure against
KR-KOA if that

pp < Setup(\);
Pr |z =xz:(y,x) + KeyGen():
' AHO(y)

< negl(A).

We assume in the following context that all signature schemes
satisfy security under KR-KOA.

D. Signature of Knowledge

A zero-knowledge proof [36] protocol enables a prover to
prove to a verifier that he knows some knowledge, but does not
expose that knowledge. It can be converted to a non-interactive
zero-knowledge proof (NIZK) scheme [37] by the Fiat-Shamir
heuristic. A NIZK scheme can be converted into a signature
of knowledge (SoK) scheme [38] by adding message m to
the hash challenge. Formally, assuming R is a fixed NP-hard
relation, w is the witness of the knowledge, and S is a public
statement corresponding to w. An SoK scheme is used to prove
the following NP language:

Lim)={S|Jw: (w,S5) R} (1)

An SoK scheme contains the setup algorithm Setup(\) —
pp, the signing algorithm Sign(S,w,m) — o, and the
verifying algorithm Verify(S,o,m) — 0/1. It satisfies the
following security properties:

Completeness. The tuple (S,o, m) generated by the honest
prover can always be verified as valid.

Simulatability. The signature o does not reveal any informa-
tion about the witness w.

Extractability. If a PPT adversary A can generate a valid
signature o', then there is a PPT algorithm Ext which can
extract the witness w from A’s output.

E. Ring Signature

The ring signature (RS) scheme is an SoK scheme. It is
used to prove the following NP language:

Lrs(m) = {Y|Jzs,s € {0,....n — 1} : (z5,ys) € R}

An RS scheme contains the following algorithms:

(2)

Setup(\) — pp KeyGen() — (y,x)

RS ¢ . .
Sign(Y,z,m) = o Verify(Y,o,m) — 0/1

An RS scheme satisfies the following security properties:
Completeness. The signature generated by Sign must be valid.
Unforgeability. No PPT adversary can forge a valid signature
without the secret key x.

Perfect Anonymity. For a 1-out-of-n ring signature, the prob-
ability of guessing the signer’s public key is 1/n.

A linkable ring signature (LRS) scheme is a special RS
scheme. In addition to the completeness and unforgeability
mentioned above, it satisfies computational anonymity and
linkability, which are described as follows:

Computational Anonymity. For a 1-out-of-n. LRS scheme, the
advantage of a PPT adversary in guessing the signer’s public
key is negligible compared to 1/n.

Linkability. Two signatures signed using the same secret key
can be identified.

F. Homomorphic Commitment

A commitment is a mapping M x R — C where M is the
message space, R is the random number space, and C is the
commitment space. A homomorphic commitment HCom is a
specific commitment scheme, which holds that

HCom(my,r)* HCom(mag,re) = HCom(m,ems,ryors)



where my;,me € M, ri,70 € R, % is the operation in
C, e is the operation in M, and o is the operation in R.
A homomorphic commitment needs to satisfy the following
security properties:

Hiding. Given a commitment C, the probability that a PPT
adversary gets the message m of it is negligible.

Binding. The probability that one commitment corresponds to
two different messages is negligible.

Pedersen commitment [39] 1s an instantiation of the ho-
momorphic commitment scheme, which sets M = Z, R =
Z,,C = G, with two generators g,h € (. It sets
HCom(m,r) = g"h™.

III. DEFINITIONS AND SECURITY PROPERTIES

A. Formal Definitions

Based on the definitions in [25], [29], [40], we give the
formal definitions of TRS and LTRS as follows.

TRS scheme 1s an SoK scheme. It is used to prove that the
signer knows the secret keys corresponding to ¢ of n public

keys, but does not reveal the ¢ public keys. A t-out-of-n TRS
scheme consists of the following PPT algorithms:
Setup(A) — pp. On input a security parameter A\, the
algorithm outputs the system parameter pp as a common input
to other algorithms.
KeyGen() — (y,x). The algorithm outputs a public key y
and its corresponding secret key x.
Sign(Y,X,m) — o. This is a possibly interactive procedure.
On input a public key set Y = {yg,....,yn—1}, a secret
key set X = {x4,..,2x5:¢+—1} which are corresponding to
Ysy -y Ys+t—1, and a message m, the algorithm outputs a
signature o;
Verify(Y,o,m). On input a public key set Y =
{yo,..., Yyn—1}, asignature o, and a message m, if the signature
is valid, the algorithm outputs 1, otherwise it outputs 0.
LTRS scheme is a modified TRS scheme, which contains
the same PPT algorithms as TRS, as well as the following
algorithm:
Link(oq, o1). On input two distinct signatures o, o1, if there
is the same secret key involved in generating both o and o,
the algorithm outputs 1, otherwise it outputs 0.

B. Security Properties

We give the security properties of TRS and LTRS as follows,
where Y, X, SO, HO are defined in Section II-A. Note that for
the following five properties, the TRS scheme satisfies the first
three properties, and the LTRS scheme satisfies all properties
except perfect anonymity.

Definition 1 (Completeness). A TRS/LTRS scheme satisfies
completeness if that

pp +— Setup(A);
Verify  Vie {0,...,n—1}:
(Y, a, ) =1 (yia:r'i) & KeyGen();
o« Sign(Y, X, )

— —

Definition 2 (/-Unforgeability wrt Insider Corruption). A
TRS/LTRS scheme satisfies t-unforgeability wrt insider corrup-
tion if for any PPT adversary A, it holds that

pp < Setup(A);
Verify vie {0,...n—1}:
Y Iy — 1 : (yia:ri) . KeyGen(),
( yO ) o 0’ . ASO,’Hc)
(PP, Y, }g\{rg}1 )

Definition 3 (Perfect Anonymity wrt Adversarial Keys). A
TRS scheme satisfies perfect anonymity wrt adversarial keys
if for any PPT adversary A, it holds that

Pr < negl(\)

pp < Setup(A);
vie {0,...,n —1}:
N s (wixi) « KeyGen(); N
Probi=b: 7 < sign(¥,X, ); -
o1 + SO(Y,-):be {0,1};
b < ASO’HO (pp! Ya Xa Th, ) i

B |

Definition 4 (Computational Anonymity wrt Adversarial
Keys). An LTRS scheme satisfies computational anonymity if
for any PPT adversary A, it holds that

pp < Setup(\);
vi e {0,...,n—1}:
(i, i) + KeyGen();
o« Sign(Y, X, -):
b — ASOHO (pp Y,
I X\{zs},0,-):b0" € {s,s+1}

Definition 5 (Linkability). An LTRS scheme satisfies linka-
bility if for any PPT adversary A, it holds that

Pr|b =s: < — +negl(A)

B | =

pp < Setup(\);
Vi € {0,....,n—1}:

Veri
(Y. o' ;‘y: 1 (i, z;) + KeyGen(),
Pr ,/\L’ink : o (yl, xl) + KeyGen(): < negl(\)
(0, 0./) - 0 g Sign(Y* Xﬁ )q

o' ASOHO(pp, YV X', -);
XNX' #10

I[V. CONSTRUCTION OF TRS

A. Design of SWT

We first introduce the design idea of SWT, which is the
comerstone of our subsequent (L)TRS schemes. Suppose there
is an ordered public key set of size n. By taking each ¢ adjacent
public keys of these n public keys, we get n sub-sets. Further,
by computing the “product™ of all the elements in each sub-set,
we get n “products”.

Intuitively, suppose the signer knows the secret keys cor-
responding to ¢ adjacent public keys. In that case, he also
knows the secret key corresponding to the “product™ of these
public keys. The signer can use this “product™ and other n — 1
“products” to construct a l-out-of-n ring signature. In other
words, 1If one can construct a valid ring signature in the way
described above, it is proved that one knows the secret keys
corresponding to 7 adjacent public keys out of the n public
keys.



pk;.‘['l pkgz pkgS pkd" pkl-z
P P P Pm D
A N ~ N '
\\ 'I \\ ’I \\ \\ II
N Vi \ / \ \ /
\\»’, \\ ", \\‘ \\V’;
P Pm P P
1,

pkf’ -pk;"‘ pkfz -pk:s pk;‘3 -pk,f'1 pka ‘Y’I‘f:

Fig. 2. Example of computing a “product”™ with t = 2, where “-” denotes the
group operallon (e.g., modular multiplication), and d; denotes lhe hash value
of pky||...||pkn|lz, 2 € [1, n].

However, the above design cannot resist the adversary
forging signatures through rogue key attacks. For instance, as-
suming that an adversary has a key pair (pk’, sk’) and obtains
public keys pks, ..., pk,,, then he can construct pk; = pk'-pky !
such that pk, - pko = pk’. This results in the adversary using
sk’ and pky, ...pk, to forge a 2-out-of-n TRS.

To counter this weakness, our solution is to introduce
distinct hash challenges for each public key, thereby preventing
the adversary from constructing a new public key that satisfies
a specific relation based on the existing public keys. As illus-
trated in Figure 2, it first computes d; < Hq(pk1||...||pknl|7)
for each i € [1, n], then uses all pkf‘ as Inputs for computing
“product”. Because the hash challenges are unpredictable and
generated from the input of all the public keys involved in
the signature, the adversary cannot generate rogue public keys
based on a subset of the existing public keys. Specifically,
regarding the attack method mentioned in the previous para-
graph, the adversary needs to compute pk, = (pk'-pk, d’)l/ dy
such that pk?* - pk2 = pk’. However, d,,ds are unknown
because they are calculated from pk,, therefore the rogue key
pk; cannot be constructed.

We introduce how to construct a TRS using SWT and RS
with a simple example. Assume we aim to construct a 2-out-
of-4 TRS scheme. The secret and public keys are denoted
as x;,y; where y; = ¢*,i € {1,2,3,4}. The signer has
the secret keys x;,x2 of y;,y2. According to SWT, he first
computes d; = H(,(y1||...||y4J|i) foreach i € {1,2,3,4}, then
he computes y; ; = yf* -yjj where i,7 € {1,2,3,4}, and
computes x; 2 = x1d; + x2ds. Then he executes Abe’s RS
signing algorithm using these precomputed results as inputs.
For clarity, We divide the signing steps into the following sub-
functions:

e A(r): ¢g" — R is a exponent operation.

e B(y,r,c):g"-y° — L is a pedersen commitment.

e R(x,r",¢):r"—x-c— risa function to reconstruct the
commitment L.

The steps of signing is shown as follows:

(1) The signer chooses a random number ' and computes
the challenge co3 < Ho(A(r] 5)||m), where m is the
message. |

(2) The signer picks 73 3 randomly and computes the chal-
lenge ¢34 < Ho(B(y2.3,72.3,c2.3)||m), then he computes
C4,1,C1.,2 §1m11arly

(3) The signer computes 712 < R(x12,7],,¢1,2) and out-

puts a signature 0 = (r12,...,74.1,C1.2)-

When verifying the signature o, the verifier first com-
putes ¥ 2, ..., Y41 like the signer, then he computes ¢, ;
H()(B(ylfz, ry.2, (11,2)“771) and computes (1334, (,{1"1, (1,1,2 Slml-
larly. If ¢} , = ¢1 .2, then the signature is valid.

In addition to the aforementioned examples, our construc-
tion is supported by a wide range of existing cryptosystems.
These include well-established cryptographic schemes like
RSA, Elgamal, and elliptic curves. The compatibility of our
construction with such diverse cryptosystems underscores its
versatility and potential for integration into existing systems.

B. Construction of TRS

Formally, we construct our TRS scheme as follows, building
upon the intuitive description provided earlier. Given two
algebraic systems (A;,+) and (A, ), let f: A; — A, be a
homomorphism with the following cryptographic properties:
One-wayness. For a given z, it is easy to compute f(x). On
the contrary, it is hard to compute x for given f(x).
Trapdoor. Knowing a trapdoor 7' makes it easy to compute
x for given f(x).

Then we can build our construction of the TRS scheme in
Algorithm 1.

Algorithm 1 Construction of TRS

1: Setup(A) Return pp +— RS.Setup(A):
2: KeyGen() Return (y,z) + RS.KeyGen():
3: Sign(Y,X,m)

4: For 7 in range [0,n — 1]:

5: Compute d; + Ho( yoll Ul/n 1[2):

6: Compute y; H}. iy :

7T Set ¥’ + {y0,.... ¥yn—-1} Compute Xs € D po. ti-1 Th * Cy4s
8: Return o < RS. Slgn(Y' Xg, M):

9: Verify (Y, o,m)

10: For 7 in range [0,n — 1]:

11: Compute d; « Ho( y0|| uyn 1]]2):

12: Compute y; 1_[' = :

13: Set V' < {y0,.... ¥n— 1}, Relum RS Verify (Y', o, m);

The operations in line 5 of Algorithm | require ¢ secret keys.
[f they belong to the same signer, then Algorithm 1 is executed
as usual. A typical scenario of this condition is the cryptocur-
rency based on the unspent transactions outputs model (e.g.,
Bitcoin, Monero, Zcash), where a user has multiple one-time
public keys to avoid trace analysis [41]. The other case is that
the 7 secret keys come from different signers. In this case,
preserving each user’s secret key is necessary. One method is
shown as follows, where P, ..., P, are denoted as t signers
with secret keys xq, ..., x;_1, respectively.

(1) Py computes zg < xg+ ro where rq 1s a random number.
Py sends zy to P;. For each 7 € [1,t — 1], P; chooses
random number r;, computes z; < z;_1 + x; + r; and
sends z; t0 Piii(mod t)-

(2) P, computes z|, < z;_1 —rp and sends z{, to P,;. For each
i € [1,t — 1], P; computes 2. < z!_, —r; and sends z;
to })i+1(1110d t)-

(3) Py gets z{_, = Yi—g .

Note that in Step (1), since the signers add random numbers
to their own secret keys, the secret key of each signer will not
be disclosed, even if other malicious signers collude. In Step



(2), it requires collusion of at least £ — 1 malicious signers to
steal the secret key of the remaining signer.

Another method is that each signer constructs his signa-
ture shardings. All signature shardings can be combined to

generate a complete signature. It requires only two rounds of

interaction, but needs to be designed based on the specific
underlying RS scheme. We present an instantiation of this
method in Section VI-C.

C. Security Proofs

Theorem 1. The proposed TRS scheme satisfies t-
unforgeability wrt insider corruption if the underlying RS
scheme is unforgeable and secure against KR-KOA.

Proof. Assume that the simulator § is given a public key y~.
We will prove that if A can break the t-unforgeability wrt
insider corruption of our scheme, then § can break security
against KR-KOA or unforgeability of RS by invoking A.
Setup. S runs Setup(\) — pp. Foreach i € [1,n—1], S runs
KeyGen() — (yi,x;). S sets ygp < y*, Y < {yo, ..., Yn—1}
and X* < {xy,...,74_1}, and sends (pp, Y, X") to A.
Query. A can adaptively query the oracles SO, HO respec-
tively. If Yy in the A-th query to SO is equal to Y, the game
aborts, else SO returns a valid signature o to A. For the k-th
query my to HQOjy, it returns a hash value ¢ to A.
Challenge. A generates a signature ¢’ and sends (o', m) to
S. If Verify(Y,o',m) = 1, then A wins the game.

Given that Y' = {yg,...,¥n—1} where y; = ;':;tz— y,‘f‘
for each i € [0, n — 1], if A wins, then there are two cases as
follows:

Case 0. A has already obtained the secret key corresponding to
one of the public keys in Y’, allowing it to execute RS.Sign

to generate a valid signature o’. A has a 1/n probability of

obtaining the secret key corresponding to yq. Without loss
of generality, we assume ¢ = 2, then it has y, = y*% J;ll.
According to the extractability of SoK, there is an extractor
that can extract the secret key x’ used in RS.Sign. Then S
can get the secret key =™ = % This is contrary to the
security against KR-KOA of RS.

Case 1. A did not obtain the secret key corresponding
to any of the public keys in Y’. In other words, A can
construct the signature ¢’ using only A and m such that
RS .Verify (Y, o', m) = 1. It is contrary to the unforgeability

of RS. ]

Theorem 2. The proposed TRS scheme satisfies perfect
anonymity wrt adversarial keys if the underlying RS scheme
satisfies perfect anonymity.

Proof. We will prove that if A can break perfect anonymity
wrt adversarial keys of our scheme, then there 1s a simulator
S, which can break perfect anonymity of RS by invoking A.
Setup. & generates the system parameter pp by running
Setup(\), generates (y;,x;) for each i € {0,....n — 1},
and sets Y = {yo,...,¥Yn-1}, X = {Zg, ..., Tss¢_1}. S sends
(pp, Y, X) to A. Then S flips a coin to choose b € {0,1}.
If b =0, S returns oy + Sign(Y, X, m) to A; if b =1, S
returns 0; < SO(Y,m) to A.

Query. A can adaptively query the oracles SO, HO respec-
tively. For the k-th query (Yg,-) to SO, it returns a valid
signature o to A. For the k-th query m to HOy, it returns
a hash value c¢;. to A.
Guess. A returns a guess b’ to S. If the probability that b" = b
is greater than 1/2, then A wins the game.

If A wins, then for the signatures oy and o; of (Y',m)
where Y’ is computed as line 4-5 in Algorithm 1, S can use
b’" as the guess to break the perfect anonymity of RS. ]

The anonymity of our TRS scheme is equivalent to the
anonymity of its underlying RS scheme, where the number
of possible combinations of the signers’ public keys is n.

V. INSTANTIATION OF TRS

In this section, we first give an efficient instantiation of
TRS and its security proofs. Then we give an optimization
function of our instantiation to further reduce the signature
size to logarithmic.

A. Instantiation

Based on SWT and the DualRing (DR) RS scheme [34],
we propose the instantiation of TRS in Algorithm 2. It is used
to prove the following NP language:

. B X = {xg, ..., Tsst-1}:
Lrrs(m) = {Y} Va; € X, g% € Y )

Algorithm 2 Instantiation of TRS

1: Setup())

2: Initialize (Gp, g) < A, Hp : {0,1}" —

3: Return pp + (G, g, Ho, H1):

4: KeyGen()

5: Choose = € Z;,: Compute y = g“: Return (y, x);

6: Sign(VY,X,m)

7: For each i in range 0,n - 1]:

8: Compute d; < Ho( yoll Jljn 1[2):

0: Compute y; 1_[' “ :

10: Choose z € Zj: Compule VA <— g=;

11: For each 7 in range [s + 1, 9+n—1] Choose ¢; € Zj:
12: Compute ¢ <= Ho(Z - []; ., ¥i'|Im), s = ¢ =30, ., ci
13: Computer(—z— ZA Fe-1 g - dy:

14: Return o « (r,¢co..... cn— 1)

15: Verify (Y, o,m)

16: Parse o0 = (r,cp, ..., Cn—1):

17: For each 7 in range [0,n — 1]:

18: Compute d; < Hp( y0|| Uyn 1]]2):

19: Compute y; l_[' = :
20: If Z:l_ol ci = Ho(g" -1_[! 0 y *||m), then return 1;
21: Else return (:

B. Security Proofs of TRS

We give the security proofs of the above scheme as follows,
where the instantiation of the signing oracle SO¢ is shown
in Algorithm 3.

Theorem 3. The proposed TRS scheme satisfies -
unforgeability wrt insider corruption if the DL assumption
holds.

Proof. Assume that there is a simulator § which is given
a DL problem instance (g,¢g“). We will prove that if a



Algorlthm 3 Oracle SO¢(Y,m)

For each ((Y m;),o;) inLg: if ¥; =Y Am; = m, return o;;
For each 7 in range [0,n — 1]
Compute d; + HOO yn|| ||yn 1]2):

Compute y; l_[k -1 yk :
Choose 7, ¢cg..... Cn—1 E Z‘ randomly;

Set Ly, + ]th, U {(g H;:_é yk" ||m,
,Cn_]_), I[J_-,' — H.AS U{

r o ck) b

,m),o)}: Return o;

i AJ O Sy

Set o + (r,cp, ...

PPT adversary A can break the f-unforgeability wrt insider
corruption of our scheme with a non-negligible probability,
then § can resolve the DL problem instance by invoking A.
Setup. S runs Setup(A) — pp and chooses s € {0,...,n—1}
randomly. For each i € {0,...,n — 1}, if i = s, then § sets
y; < g%, otherwise & computes (y;,z;) + KeyGen(). S
sets Y < {yo, ey Yn—1}, X5 ¢ {Ts11,..., 25141} and sends
Y, X* to A.
Query. A can adaptively query the oracles SO¢, HOy re-
spectively. For SO¢, if the k-th query Y, = Y, then the
game aborts, otherwise SO« returns a valid signature o to
A. For the k-th query my to HOy, it returns a hash value ¢
to A.
Forgery. A generates a signature o' = (7', ¢, ...,
sends it to S. If Verify (Y, o', ) = 1, then A wins the game.
If A wins, then it has 1/n probability that ' = z'—¢ (ad s+
Z:Z:i x;d;). According to the forking lemma, S rewinds the
game and invokes A to generate another valid signature o”

(r",cl....c!_,) such that v’ = 2" — ' (ad, + 30717 xd,; )

where " #r' ! # ¢ Then S can get the discrete logarithm
a of g by computing that:

¢! ) and

J ;
r' —r 1‘-s+1ds+1 + o+ Toyi1deq i1

:; . ")d d.

=

[t 1s contrary to the DL assumption.
L]

Theorem 4. The proposed TRS scheme satisfies perfect
anonymity wrt adversarial keys if the simulation is indistin-
guishable from reality.

Proof. We will prove the theorem by constructing a simulator
S, which generates a valid signature using only the public key
set. The adversary A cannot distinguish it from reality.
Setup. & generates the system parameter pp by running
Setup(\), generates (y;, x;) for eachi € {0,n—1}, sets ¥ =
{voy oy Yn—1}, X = {x4,..., x54¢—1}, and sends (pp,Y,X) to
A. Then S flips a coin to choose b € {0,1}. If b = 0, then §
runs Sign(Y, X, -) and returns signature o to A, else S runs
SO¢(Y, ) and returns signature o; to A.
Query. A can adaptively query the oracles SO, HO, respec-
tively. For the k-th query (Yy,-) to SO¢, it returns a valid
signature o to A. For the k-th query my to HOy, it returns
a hash value ¢ to A.
Guess. A returns a guess b’ to S. If the probability that b’ = b
is greater than 1/2, then A wins the game.

Since the simulator has been successfully constructed, and
the signatures generated by both Sign and SO are valid, the
two signatures are indistinguishable to the adversary A. [

C. Logarithmic Optimization

By introducing the sum argument (SA) scheme [34], we can
further reduce the signature size of Algorithm 2 to logarithmic.
Compared to Algorithm 2, this optimization offers advantages
in scenarios where it is necessary to ensure a small signature
size and limited network bandwidth, such as in mobile devices
and sensor networks.

The SA scheme is a variant of the well-known inner product
argument [42]. It is used to prove the following NP statement:

HC—{('(),.. Cn— 1}1
Rt

P = l—[z 0 Yi €= Z:ilz—ol
where P € (3 and ¢ € Zp.

The SA scheme contains two algorithms
Prove(Y, P,¢,C) — m and Verify(Y, P,¢,m) — 1/0,
where the size of the proof w is 2logn|G,| + 2|Z,|. The
details of these instantiations are in [34]. It can be seen iIn
Algorithm 2 that the signature output by Algorithm Sign
contains the random numbers cq, ..., ¢, —1. Also, in Algorithm
Verify, [[', v and 3.7 ¢ need to be calculated.
This matches the zero-knowledge statement proved by SA.
Therefore, we can use the Prove in SA to construct the
statement P and proof m of ¢y, ...,c,,—1. Formally, we give
the instantiation of TRS optimized by SA in Algorithm 4.

Lgg = {(Y, P, c)

Algorithm 4 SA-TRS

I: Setup and KeyGen are the same as in Algorithm 2.
2: Sign(Y,X,m)

3: Run TRS.Sign(V, X, m) — (r,co,....cn—1):
4: Get (yo,---s¥n—1) generaled in TRS. Slgn'
5: Compute P « []1) yit e« S0 e

6: Set C + {co, .c.cn-1 1 Y + {yo...c.¥n-1}:
7: Run SA.Prove(Y', P,c,C) = m

8: Return o + (r, P - g", m);

9: Verify (Y, o,m)

10: Parse o = (r,Q, ):

11: For each 7 in range [0,n — 1]:

12: Compute d; < Ho( UO” IIUn 1]2):

13: Compute y; H' o=, k :

14: Set ¥ + {yo, .. )’n—l}

15: Compute ¢ - H() (Q|m), P+ Q-g "
16: Return SA Verify (Y', P,c, m):

D. Security Proofs of SA-TRS

Theorem 5. SA-TRS satisfies unforgeability wrt insider cor-
ruption if the underlying TRS satisfies unforgeability wrt
insider corruption.

Proof. We will prove that if a PPT adversary A can break the
unforgeability wrt insider corruption of SA-TRS, then there is
a simulator § which can break the unforgeability wrt insider
corruption of the underlying TRS by invoking A.

Setup. It is the same as the setup phase in the proof of
Theorem 3.

Query. When A sends the k-th query (Y}, -) to the signing
oracle, if YV = Y, then the game aborts, otherwise & runs
SOc(Yg,-) = (rg,copy ooy Cn—1, ), then § runs line 2-7 in
Algorithm 4 and returns o} to A.

Forgery. A generates a signature o’ = (7', @', 7") and sends
it to S. If Verify(Y,o',-) = 1, then A wins the game.



TABLE III
COMPARISON OF SIGNATURE SIZE BETWEEN DR-BASED TRS AND
SA-TRS (KB)
Ring Size
Scheme 10 20 40 80 160
DR-based TRS 0.375 | 0.688 1.313 | 2.563 | 5063
SA-TRS 0.281 0.319 | 0.357 | 0.394 | 0432

If A wins, by the statistical witness-extended emulation of
SA [34], S can run an emulator £ to get (rf, ¢4, ...sCh_1).
Then S runs line 4-6 in Algorithm 4 to generate Y’'. Finally,
S returns a signature (', ¢f,, ..., ¢, _;) of the challenge (Y’, ")

to break the unforgeability wrt insider corruption of TRS. [J

Theorem 6. SA-TRS satisfies perfect anonymity wrt adversar-
ial keys if the underlying TRS satisfies perfect anonymity wrt
adversarial keys.

Proof. We will prove that if a PPT adversary A can break the
perfect anonymity wrt adversarial corruption of SA-TRS, then
there is a simulator § which can break the perfect anonymity
wrt adversarial corruption of the TRS by invoking A.
Setup. Assuming that S receives a challenge (7, cg, ...,¢n—1)
of (Y,-). & runs lines 3-7 of Algorithm 4 and returns o =
(r,Q, ) to A.
The Query and Guess phases are similar to those in the proof
of Theorem 4. We will not repeat them here.

If A wins the game, then S returns b’ generated by A as a
response to the challenge to break the perfect anonymity wrt
adversarial keys of TRS. L

The signature sizes of DR-based TRS and SA-TRS are
compared as shown in Table III. We set the element size in Z,,
to 256 bits and that in (3, to 512 bits, and set the threshold
to half the ring size. As the ring size increases, the signature
size of the former increases linearly, while that of the latter
increases logarithmically.

VI. INSTANTIATION OF LTRS

In this section, we introduce the design of our double-
challenge linkable ring signature (DC-LRS). Combining it
with SWT, we give the instantiation and security proofs of
our LTRS scheme.

A. Design of DC-LRS

The design of LRS was initially inspired by the undeniable
signature scheme [43]. For a public key y = ¢g* with secret
key x, the signature of the message m is denoted as o =
Hy(m)*. In the first LRS scheme proposed by Liu et al. [19],
it 1s proposed to realize linkability through the “serial number”
of the signature, which is denoted as sn = H;(y;)", where
i € {0,...,n—1}. By constructing an SoK of the following NP
language, a signer binds his secret key to the serial number.

die{l,..,n}:
. | (5)
loggy; = logm (y,)sni

If the signer uses the same secret key to sign different
messages, the signature can be identified by judging whether
the serial number in the two signatures is same.

Lrrs(m) = {(Y, sn)

However, SWT cannot be directly combined with the LRS
scheme to construct a LTRS scheme. To illustrate this problem,
we first review an example of a linkable schnorr signature
scheme in Figure 3. It is used to prove the NP language

Lrss ={(y,sn)|lz:y=g"ANsn=H(y)"}(m) (6)

Suppose we replace the public key in the scheme with the
product of multiple public keys, such as y; - y2, it satisfies that
Y1 - Y2 = g-17*2 but there is no PPT algorithm F' such that
Hy(yy)* - Hy(y2)** = F(x, + x2). The reason is that the
operation between the serial numbers of different public keys
is not homomorphic.

® s ® o

-4 signer - Verifier
r€Z; R g R 0.sns |5 HGlsnllR]le]m)
s Hy(y)%, Q = Hy(y)" p check :

gf=R-y%
H(y)? = Q- sn

cs < Ho(y|Isn||R][Q[|m)

L1+ o

Fig. 3. Linkable schnorr siganture.

To solve this problem, we consider separating the generation
of hash challenges in the scheme from commitments & and ().
Specifically, for the above example, we changed the equations
checked in the verification step to ¢g*“ = R - y““ and
Hi(y)*“ = Q - sn““, where ¢ = Hy(yl||sn|/m). For
the same R = g", n different public keys u,...,y, and
Q1= Hi(n)",....,Qn = Hyi(y,)", signers with correspond-
ing secret keys xy,...,x, can construct z; = r/cg + ¢ - x;
respectively to satisty the verifications g*“ = R -y and
Hy(y)?¢ % = Q; - sn: . In the above construction, it can be
seen that each z; can be used to prove that each serial number
Hy(y;)** is honestly generated, thereby achieving linkability.
Moreover, the design of LRS does not require the signer to
pass z; in the signature (see Algorithm 5 for details), thereby
preventing the disclosure of the information of signers’ public

keys. The instantiation of the DC-LRS scheme is shown in
Algorithm 5.

Algorithm 5 Instantiation of DC-LRS

I: Setup and KeyGen are the same as in Algorithm 2.
2: Sign(Y,x.,m)

3: Compute sn + Hy(ys)*s,c = Ho(Y||sn|m):;

B S Choose z + ZJ randomly:

3: Compute cgq1 < Ho((g- Hi(ys))*||m);

6: For each 7 in range [s + 1,5 + n — 1]:

7 Choose r; € Z7:

8: Compute ¢;41 + Ho((g - Hi(y:))™/ - (y; - sn)°|[m);
0: Compute 7¢ + cs(2z — cxg):

10: Return o + (rg,...,Tn—1, o, SN);

11: Verify (Y, o,m)

12: Parse o = (10, ..., Tn—1, €o, SN);

13: Compute ¢} <+ Ho((g- H1(y0))™°/ - (yo - sn)¢||m):

14: For each 7 in range [1,n — 1]:

15: Compute ¢, + Ho((g - H1 (y,-))"x'/‘-'ﬁ (yi - sn)¢||m);
16: If ¢;, = co, then return 1, else return 0;

B. Security Proofs of DC-LRS

We give the security proofs of DC-LRS scheme as follows,
where the instantiation of SOp¢ is shown in Algorithm 6.



Algorlthm 6 Oracle SOpe (Y, m)

For each ((Y;,m;),0;) inLs: if ¥; = ¥ A m; = m, return o;
Compute ¢ = ’HOQ Y||sn||m)
Choose g, ....Tn—1.¢cp € Z
For each 7 in range 0,n — 2]
Compute cit1 <~ HOo((g - Hy(y:))™/ ¢ - (y;
(9 Hi(yn- 1))7"‘—1/(:"—l

(Yn—1 - sn)||m, cp
Set o + (ro,....,Tn-1,¢0), Ls + Ls U {((Y,m),o)}:Return o;

sn € [y, randomly:

- sn)¢||m):

Set Lhu .\ Lhu U

N S BhRtbe

Theorem 7. The proposed DC-LRS scheme satisfies unforge-
ability if the DL assumption holds.

Proof. We will prove that if a PPT adversary A can break the

unforgeability of our scheme with a non-negligible probability,

then a simulator § which is given a DL problem instance
g“) can resolve the instance by invoking A.

Setup. & generates the system parameter pp by running

Setup(A). § chooses s € {0,...,n — 1} randomly. For each

i € {0,....,n—1},if i = s, § sets y; «+ g*, otherwise S runs
KeyGen() — (y;, x;). S sends Y = {yg, ..., Yn—1} to A.

Query. A can adaptively query the oracles SO pe, HOy, HO,
respectively. For SO p¢, if the k-th query Y, = Y, then the
game aborts, else it returns a valid signature ;. to A. For the
k-th query mj. to HOq or HO,, it returns a hash value cy..
Forgery. A generates a signature o' = (r{,...,7,,_;,¢{) and
sends it to S. If Verify(Y,o’,-) = 1, then A wins the game.
If A wins, then it has 1/n probability that | = /(2" —
¢'a). According to the forking lemma, S rewinds the game
and invokes A to generate another valid signature o” =

(7{,,... r’_1,¢) such that ! = /(2 — ¢""a) where r!’ #

nl’

ri el # ¢l c” # . Then § can get the dlscrete logarithm o

9’ 3

of g by computing that:

= (ri/cs —=rd/cd) /(" = )
[t 1s contrary to the DL assumption. L]

Theorem 8. The proposed DC-LRS scheme satisfies compu-
tational anonymity if the DDH assumption holds.

Proof. Assuming that the simulator § receives a DDH prob-
lem instance (g, g%, ¢”, Z). We will prove that if A can break
the computational anonymlty with a non-negligible advantage
¢, then S can resolve this DDH instance by invoking A.
Setup. S generates the system parameter pp = (G, g), sets
ys = g and generates other key pairs by KeyGen to form
- {y()a---ays—lays-Jr-la---ayn—l}' S sets ]L}u — ]Lhw U
{(ys,9”)}, and runs SOp(Y,-) — o with modifying line
3 of Algorithm 6 to “Choose rq,...,Th_1,¢Co € Z; randomly,
compute sn = Z”. § sends (Y, o) to A.
Query. The oracles SOpc, HOy, HO, always respond to the
queries from A normally.
Guess. A outputs a guess b’ € {0,...,n — 1}. If A guesses
b' = s with advantage ¢, then A wins the game.

If Z = g7, then it has sn, = SO, (y,)**. The simulation is
indistinguishable from reality. Thus A has probability 1/2+ ¢
of guessing correctly.

If Z # ¢“%, then it has sng # HO,(ys)*:, so

Sng 1S

independent of y,. Thus A only has a probability 1/2 of

guessing the message correctly.

Therefore, the probability that A solves the DDH problem

is % + %6 It 1s contrary to the DDH assumption. O

Theorem 9. The proposed DC-LRS scheme satisfies linkability
if the DL assumption holds.

Proof. Assume that there is a simulator § which is given a
DL problem instance (g, g®). We will prove that if a PPT
adversary A can break the linkability of our scheme with a
non-negligible probability, then § can resolve the DL problem
instance by invoking A.
Setup. & generates the system parameter pp by running
Setup(A). S chooses s € {0,...,n — 1} randomly. S
runs KeyGen to generate some key pairs and forms YV =
{y(]a"'ayn—l}aY’ - {yf)w"'ay:;—laysay;-{-la"'ay:z—l}amsa
where Vi € {O,n — 1},i # s,y # yi. S sets Ly,
Ln, U{(ys,9%)} and sends (Y,Y' z4) to A
Query. The oracles always respond to the queries from A
normally.
Forgery. A returns a signature o' = (rg,...,7. _,,¢;,sn’) to
S. If Verify(Y',o',-) = 1, Link(o, 0') = 0, then A wins the
game.

If A wins, according to Link(o,0’) = 0, it has sn! #
sng = HO1(ys)"*. Might as well denote sn' = HOl(ys)“"L,
where ! # x,. According to Verify (Y’ o,-) = 1, it has

(g-HO1(ys))* /

Because HO(ys) = g, it has:

a)(ry/c;) =

"y

s - snL)e

(- HO(ys))" <

(1+a)z, — (zs + azx))c

7/_ S _71/(,

'/(‘ fj+c

Therefore, § can get the discrete logarithm « of g, which is
contrary to the DL assumption. [

=

C. Instantiation of LTRS

Based on DC-LRS and SWT, we give the instantiation of the
LTRS scheme as shown in Algorithm 7. It 1s used to prove the
following NP language, where SN is a set of serial numbers.

,113_3+t_1} . V.T-i = X,
gt € YA Hy(y;)* € SN
(7)

In order to make each signer collaborate to construct a
signature without disclosing their secret keys, the Sign al-
gorithm of Algorithm 7 can be performed as follows, where
P, ..., Ps+;_ denotes to the ¢ signers.

(1) On line 3 of Algorithm 7, each signer P; computes sn;
and sends it to P, where i = s,...,s+ 1 — 1;

(2) P, runs the statements on line 4 and the first two state-
ments on line 5. Then F, sends ¢, z, to Py, ..., Pi_1:

(3) Each signer P; computes C; < (g/H(y;))*7<* and

Y, [3X = {za, ..
Lirrs(m) = {S(N)‘ {z,,

sends it to P, where i = s,...,s +1 — 1;
s+t—1 (O
(4) P, computes cgiq1 < Hpyl ,‘tg G -)||m).

Then he runs the rest of the statements in lgn



10

Algorithm 7 Instantiation of LTRS

1: Setup(\) and KeyGen() are the same as in Algorithm 2.
2: Sign(Y,X,m)

3: Initialize SN - (; For each i in range [s,s + ¢t — 1]: Compute sn; < H(y:)™, set SN SN U {sni}:

4: Compute sn l—[t_l sn H{“(k” ™). For each i in range [0, n — 1]: Compute y; ]_[' el h; l_[' “ Y Hy (yp ) Holk—il188)
5: Compute ¢ + Ho(Y||SN||m): Choose zs € Zy; For each @ in range [s + 1,s + ¢ — 1]: Compute zi — zs + r( ; — Ts);

6: Compute cq41 + Ho( i*_t_l(q H, yk)H“(" 1SN Y2k | |m);

7: For each i in range [s + 1, s 4+ n — 1]: Choose r; € Z,, compute ¢; ) <+ Ho((g" - h;)’ rilci . (y; - sn)¢||lm):

8: Compute rg ¢ cs(2zs — ¢-x): Return o + (rg,....,7,1,SN, ¢p):

9: Verify(Y,o,m)

10: Parse 0 = (10, ..., 7n—1,SN = {sng,..., snt—1},co0); Compute sn ¢ Hll H”(LH M e = = Ho(Y||SN||m);

11: For each 7 in range [0,n — 1]: Compule Y H' el hy I_['“ yk)HU("_‘” M),

12: Compute ¢} + Hy((g' - hg)™0/c0 . (yo - sn)¢||m); For each 7 in range [1,n — 1]: Compute ¢!, < Hy((g" - h; Jrile . (y - sn)¢||m):
13: If cf, # cg, then return 0, else return 1;

14: Link(o, o')

15: If there is sn in o, sn’ in ¢’ and sn = sn’, then return 1, else return 0;

Algorithm 8 Oracle SO (Y, m)

1: For each ((Yi,m;i),oi) inLs: if ¥; =¥ Am; = m, return o;;
2: Parse ¥ — {y0,....Yn—1}:

3: For each 7 in range [0,¢ — 1]:

4: Choose sn; € G, randomly Set SN + SN U {sn;}:

5: Compute sn - Hk ST

6: Compute ¢ + HOp( "Y||§N||m); Choose ¢ randomly:

7: For each 7 in range [0,n — 1]:

8: Choose ; € Zj, randomly; Compute y; + H' re=t Yk :
0: Compute h; + H'“ FHO (yy ) MO0k~ ”)
10: Compute C; + ( .‘/h yrifei . (y;/sn)e;
11: Compute ¢; 41 + HOp(C;||m):
12: Set Ly, + Ly, \{(Cn-1. cn)}U{ Tn—1,€0)}:
13: Seto « (ro,...,Tn—-1,SN,¢p);
14: Set Ly + Ly U{((Y,m),o)}: Return o

D. Security Proofs of LTRS

We give the security proofs of the above instantiation as

follows. We first give the instantiation of the signing oracle
SOy in Algorithm 8.

Theorem 10. The proposed LTRS scheme satisfies -

unforgeability wrt insider corruption if the DL assumption
holds.

Proof. The steps of the game are the same as those of Theorem
3, except that the signing oracle SO is replaced by SOy..
If A wins the game, then it has 1/n probability that r! =
c'(r" — ¢'a). According to the forking lemma, S rewinds the
game and invokes A to generate another valid signature o =
(7{,’,... 7',: 1 ,q,) such that r! = ¢/(r' — ") where r" #
el £l " # ¢ Then S can get the d,l,screte logarithm «
ot g* by computing that o = = ./, —"/ . It is contrary to

the DL assumption. ]

Theorem 11. The proposed LTRS scheme satisfies computa-

tional anonymity wrt adversarial keys if the DDH assumption
holds.

Proof. The steps of the game are similar to those of Theorem
8, except that the Setup phase is changed as follows:

Setup. S generates the system parameter pp = (G, g), sets
ys = g% and generates other key pairs by KeyGen to
form Y = {y(,,...,yn_l},X* = {:I?s+1,...,.93+t_1}. S sets
Ln, < Ly, U{(ys,¢"°)}. and runs SOL(Y,:) — o with

modifying line 5 of Algorithm 8 to “If 7 = (), then compute
sn; < Z, otherwise compute sn; < HO;(yssi) =+ S
sends (Y, X* o) to A.

O

Theorem 12. The proposed LTRS scheme satisfies linkability
if the DL assumption holds.

Proof. The steps of the game are similar to those of Theorem
9, except that the Setup phase is changed as follows:

Setup. & generates the system parameter pp by
running Setup(A). & chooses s € {0,...n — 1}

randomly. & runs KeyGen to generate some
key pairs and forms Y = {yg,..,Yn-1}, X =
{Zs) s 'rs+t—1} Y = {Y0s s Ys—1:Yss Yst1s oy Yn—1 ) X =
{xg, 2 qnxl o, Vi€ {s+ 1, s+t —1},2; # x. S sets

L;, « L, U {(ys,g*)}, runs Sign(Y,X,-) — o and sends
(Y, X, Y, X') to A.
O

VII. THRESHOLD RINGCT PROTOCOL

In this section, we first describe the workflow of our thresh-
old RingCT protocol, then we give the design and security
analysis of it. Finally, we presented the advantages of our
design compared to the original RingCT protocol [2].

A. Overview

We assume that in a peer-to-peer network, there are three
participants: the payer, the payee, and the miner. They interact
with each other through the following steps, as depicted in
Figure 4.

(1) The payee generates his receiving address through an
address derivation algorithm, and then sends the receiving
address to the payer.

(2) The payer constructs an anonymous transaction. It hides
the transaction amount through the signature algorithm
in our TRS scheme, and hides the addresses of the
payer and payee through the signature algorithm in our
LTRS scheme. The payer broadcasts the transaction to the
miners.

(3) When a miner receives a transaction, he first verifies the
validity of the transaction. Specifically, he verifies that the



dh

NP N NF

Paycc 4. Check and Reccive I
‘| ransaction \ —_
. - . Venity
1. Send Hidden content /
address and
REI ¥ Record
. Address Amount '}

Fig. 4. Workfow of threshold RingCT protocol.

input amount of the transaction equals the output amount
through our TRS scheme’s verification algorithm, and that
the payer has the authority to spend this amount in the
input account through our LTRS scheme’s verification
algorithm. The miner verifies these properties without
knowing the hidden content of the transaction. If the
transaction is valid, the miner packages the transaction into
a candidate block, and works with other miners to add the
block to the blockchain through its consensus mechanism.

(4) The payee confirms whether the transfer is completed by
checking the transaction records stored in the blockchain
related to their receiving address through the receiving
algorithm in our protocol.

B. Design of Threshold RingCT

We denote Ipk = (pka,pkp) as a long-term public key
with the long-term secret key lsk = (ska,skp). y is a
one-time public key with the one-time secret key z. C' is a
Pedersen commitment of a random number a and an amount
v. We denote act = (y,C') as an account with the secret
account key sak = (x,a,v). The party that owns sak can
construct an anonymous transaction to spend the amount v
of the account act. A = {acty,...,act,,_1} is an account set
and S = {saky,...,sak,s;_1} 1s an secret account key set.
The threshold RingCT protocol contains the following PPT
algorithms:

Setup(A) — pp. On input a security parameter A, the
algorithm outputs the system parameter pp.

LKGen() — (Ipk,lsk). The algorithm outputs a long-term
public key Ipk and its corrsponding long-term secret key [sk.
OpkGen(lpk) — (y,R). On input a long-term public key
Ipk, it outputs a one-time public key y and a label R.
OskExt(y,lpk,lsk, R) — x. On input a one-time public key
y, a long-term key pair Ipk,lsk and a label R, the algorithm
outputs a one-time secret key .

Spend(A, S, Ipk,m) — (tz,o). On input an account set A,
an secret account key set S, a long-term public key Ipk, and
some auxiliary information m € {0, 1}*, the algorithm outputs
a transaction tx and a signature o.

Verify(tx,0) — 0/1. On input a transaction fx and a
signature o, the algorithm outputs 0/1 if the proof is in/valid.
Link(o,0') — 0/1. On input two signature o and o', it
outputs (/1 if the two signatures are un/linked.
Receive(tx, Ipk,lsk) — sak. On input a transaction {x, and

11

the long-term key pair Ipk, [sk, the algorithm outputs an secret
account key sak.

We give the instantiation of the  proposed
threshold RingCT protocol in Algorithm 9, where
PKE.Enc(m,y), PKE.Dec(ct,z) are public key
encryption and decryption algorithms with message m,
public key y, ciphertext ¢t, and secret key x. For the case of
multiple payers, they need to cooperate to generate signature

orrrs In the Spend algorithm, which we have covered in
Section VI-C.

C. Security Properties and Proofs

We present the security properties of threshold RingCT and
the security proofs of our instantiation as follows:
Unforgeability. No PPT adversary A can spend amount that
belongs to an account without the secret account key.

Proof. If A can break the unforgeability of the proposed
threshold RingCT, then there is an adversary B that can break
the unforgeability of the underlying LTRS.

For a given challenge(Y = {yo,...,Yn—1}, %" =
{Tpns1, oy Tnat—1}), B generates other required variables,
and uses them together with (Y,X*) to form (A,S%).
Then B sends (A,S") to A. If A can forge a valid pair
(tz',0" = (0% 1ps,*)) of spending ¢ accounts, then it has
LTRS Verify(Y, 0’ rpe,tx’) = 1. B can use o0 ppg as a
valid forgery of message tx’, thus breaking the unforgeability
of the underlying LTRS. [

Balance. No PPT adversary A can construct a transaction in
which the input amount i1s not equal to the output amount.

Proof. If A can break the balance of our protocol, then there
is an adversary B that can break the DL assumption.

For a given DL problem instance (g,¢9%), B sets the
system parameter pp < (-,9,¢9%,-,-). Then B forms a,v
and a pair (A, S = (-, a4,0s),..., (", @5:¢—1,Vs5¢—1)) In the
required form which satisty v # Z,ﬁit;l vi.. Then B sends
(a,v,A,S) to A If A can construct a valid pair (tz’' =

(A, (-, gaga.v)v KR '), o' = (s 0;25‘ - (C:)v 7‘:,, ===y 7':1—1)))’ then
B rewinds the game and invokes A to generate another

. . /" — N ! r !
valid pair where 0%, = (ci,7(,....Th_1),¢o # ¢o,1i F#
ri’ for i € {0,...,n—1}. B can get a by computing
- ri—rl+a(c—cl) ~ s+t—1 ~
@ = v(cl'—cl) , where a = ( k=s (l.k) —a,v =
s+t—1 : .
( Zzg v ) — v. It is contrary to the DL assumption. L]

Computational Anonymity. Give t-1 accounts and their secret
account keys to a PPT adversary A. For a transaction that
spends the t-1 accounts and an additional account, .4 cannot
distinguish the addition account from the input account set.

Proof. If A can break the computational anonymity of our
protocol, then there is an adversary B that can break the
computational anonymity of the underlying LTRS.

For a given challenge (Y, X*, or1Rrs, -), B generates sak =

(z,a,v). For k = s,...,s +1 — 1, B chooses ay,vi € Zj

. s+t—1
and computes Cp = g¢g**h"* where v = Z; vg. For

k=0,..,s=1,s+t, ...,n—1, B chooses C} € (5, randomly.
Then B generates C by performing line 15 of Algorithm 9



Algorithm 9 Instantiation of Threshold RingCT

1: Setup())
2: Initialize (Gp, 9. h) < A\, Hp : {0,1}* = Z,,Hy : {0,1}* — Gp: Return pp < (Gp,g9,h, Ho, Hy ):
3: LKGen()
4: Choose sk 4, skp € Z;, randomly; Compute pk 4 < g**a pkp « ¢**B; Return (Ipk « (pka.pkg).lsk « (ska,skg)):
5: OpkGen(ipk) ‘
6: Parse Ipk = (pka.pkg): Choose r € Z;, randomly: Compute R < g": Compute y gHokL) . pkp: Return (y, R):
7: OskExt(y,lpk,lsk, R)
8: Parse Ipk = (pk.pkp).lsk = (sky,skg): Ify= gHo(R*FA) | k- then return & Hy(R*kA) + sk, else return 0;
9: Spend(A,S, Ipk,m)
10: Parse Ipk = (pka.pkp), A = {acto,...,act,,_l} S = {saks,...,saksyt-1}:
11: For each 7 in range [0,n — 1]: Parse act; = (y;, C;): For each i in range [s s+ t — 1]: Parse sak; = (x;,a;,v;):
12: Set ¥ + {yo, ...oYn—1}, X + {Ts, ..., Tst t_l} Compute v = > 7 ti=1g, -
13: Run OpkGen(ipk) — (y, R,7): Choose a € Zj;, randomly; Compute (" — g"h": Sel act + (y,C);
14 Run PKE.Enc((a,v),y) — ct: Set tx + (A, act R,ct,m); Compute a < » ;' =l —a:
15: For each i in range [0,n — 1]: Compute C; + ([Ti.1" t-1 Ci)/C): Set C + {Cp, ... Cn_l};
16: Run LTRS.Sign(V, X, tr) = orrrs: Run RS, Slgn(-C, a,tr) = ors: Return (t:r, o+ (CLTRS,ORS)):
17: Verify(tz, 0)
18: Parse txr = = {actp = (yo.Co), ..., act, 1 = (?n 1,Cn-1)},act = (y,C),R,m); SetY « {yo,....Yn—1}:
19: For each 7 in range 0,n - 1]: Compule C: « (IT.L, LCr)/C): Set T + {Cy,...,Cn-1};
20): If LTRS. Verify(VY,or1Rrs,tr) =1 ARS.Verify(C, ors,tx) = 1, then return l else return O
21: Link(o, ')
22: Parse 0 = (01 7RS,0RS ), 0" = (0} 1 pe:TRe): Return LTRS . Link(or1Rrs. 0] 1 pe):
23: Receive(tz, Ipk,lsk)
24: Parse tx = (A, act = (y,C), R, ct,m): Run OskExt(y,Ipk,lsk, R) — x;
25: If  # 0, then run PKE . Dec(ct, ) — (a,v), return sak + (x,a,v), else return 0;

and runs RS.Sign(C, (377" ar) — a,-) — ogs. B sends

(6r1TRs,0rs) to A. Finally, A returns a guess b’ to B, and

B returns b’ to break the computational anonymity of the
underlying LTRS. ]

Linkability. Two transactions that spend the amount of the
same account will be linked.

Proof. Assume that A outputs two valid pairs (tz',¢") that
cost the amount in the same account, and Link(o’, o) = 0.
Then it has LTRS.Link(o{rrs, o1 rrsg) = 0. B can returns
(0% 1 Rs, 07 17Re) Of the challenge (Y, X' Y" X") to break
the linkability of the underlying LTRS, where (Y’ , X') are
from tz’ and (Y”,X") are from tz”. O]

D. Comparison with Original Protocol

The comparison of the transaction’s signature in the original
RingCT protocol [24] and our proposal is shown in Figure 5.
In [24], for ¢ input accounts, additional #(n — 1) auxiliary
accounts are needed to construct the signature. Our protocol
only needs n — ¢ auxiliary accounts.

In some cases, the anonymity of our scheme is better than
that of CLSAG in some cases. The reason is that CLSAG

Original RingCT Threshold RingCT

Ring 1: | ¥11 - Wi [ ¥1a

) 'Ring 10| ¥y [, Yoo [Ysti—1 oo | ¥n
Ringj: | via | o Yis | o | Wia !

i ‘Ring 2 D=6 IEET'G TTE a
Rlng t: 'Vr'l . }’C.S amn }'c,n : 9 r-:,n! I'.._'m.t Cc::u'
Ringt+1:M ﬂ?jnfi..s ﬂfT.C;,,. |

"'ow! € vl (-o;u‘ 1

Fig. 5. Comparison of the construction of the transaction signature in the
original protocol and our proposal.

requires the payer’s accounts to be in the same index of each
ring (that is, the same column in the matrix in Figure 5).
Assuming the adversary identifies ¢’ of ¢ input accounts for
the transaction (' < t), the other ¢ —¢" accounts are exposed.
For our scheme, the advemary only guesses the other accounts
with the probability of ; t, 7"

However, the requnrement for adjacent real input accounts
could lead to a loss of anonymity in our protocol in some
cases. For example, assuming there are two users who are
respectively the owners of the i-th and j-th accounts, where
j > and the distance j — i + 1 <= {. Then they can jointly
determine that the 5 — ¢ + 1 accounts between them are not
real input accounts. Setting the number of input accounts ¢ = 2
per ring can avoid this issue while achieving a communication
overhead reduction of about 31% compared to the original
RingCT. In application scenarios requiring higher transaction
efficiency, anonymity can be appropriately compromised by
setting a higher ¢.

VIII. EXPERIMENT

The simulation experiment is performed on a laptop with
a 1.80GHz Intel Core 15-8265U CPU, 8GB memory, and
Ubuntu 16.04 operating system. We construct implementations
of group operations based on Short Weierstrass elliptic curve
parameters provided in the golang library.

Figure 6 shows the comparison of the signing/verifying time
between our proposed TRS scheme and other TRS schemes.
We set the condition that the ring size increases from 10 to
100 and the threshold to half the ring size. For each case,
we repeated the signing and verifying algorithm 100 times
and took their average execution time. It can be seen that our
scheme is similar in terms of signing and verifying time to [26]
and faster than [27], [28]. As shown in Figure 7, we compare
the proposed LTRS scheme and other LTRS schemes. The
experiment set i1s the same as that of the experiment in Figure



30 —5— [26)
- 0N _ 27 v
) = —&— (28] %
= = 60
= 20 &
) -
n 9
. Z 40
(=]
2 10
= 2 2
0 )
50 100 50 100

Fig. 6. Efficiency comparison of TRS schemes with increasing ring size.

TABLE IV
COMPARISON OF COMMUNICATION OVERHEAD UNDER DIFFERENT
THRESHOLDS (KB).

T 2 4 8 16 32 64
2] 1577 | 2836 | 53.54 | 103.88 | 204.58 | 405.98
[23] 8.00 | 1586 | 31.90 | 63.77 127.50 | 254.97
[24] 052 | 15.86 | 2854 | 53.8% 104.58 | 205.98
Ours 6.39 6.45 6.58 6.83 7.33 8.33

6. It can be seen that our scheme is faster than the schemes
[24], [29], [30] in the signing and verifying time.

We compare the communication overhead of our threshold
RingCT protocol with that of other RingCT protocols in Table
IV. We mainly consider the main parts of the transaction,
including input accounts, output accounts, and the signature.
We refer to the set in Monero, which uses Ed25519 elliptic
curve public key signature system with 257 bits public key
and 256 bits secret key. We set the ring size to 100 and
increment the threshold from 2 to 64. As shown in Table IV,
when the threshold is set to 2, the communication overhead
of our protocol is approximately 67% of that in [24]. As
the threshold increases, the advantage of our improvement
in communication overhead becomes more significant. For a
transaction where n = 100 and ¢ = 64, the communication
overhead of our protocol is about 4% of that in [24].

[X. CONCLUSION

In this work, we first proposed a construction of TRS
scheme for homomorphic cryptosystems. Based on it, we
presented the efficient instantiations of TRS and LTRS under
the DL assumption. Compared to previous work, our instan-
tiations have less signature/verification overhead and smaller
signature sizes. Based on our proposed LTRS, we proposed a
threshold RingCT protocol, which is more efficient than others
and allows multiple payers to co-construct an anonymous
transaction.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the anony-
mous reviewers for their valuable comments and suggestions,
which have significantly contributed to enhancing the security
of our scheme.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

80

60

40

Lo
—
S

Time of Sign (ms)

0

Fig.

(2]
(3]

4]

5]

6]

[7]

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

13

—e— [29) A —5— [29) .
—s— [30) X = 60 || —=— [30) e
—5— [24) s g —5— [24) i
| Z
g 40
>
2
2 20
)
o0 100 50 100

7. Efficiency comparison of LTRS schemes with increasing ring size.

S. Noether and A. Mackenzie, “Ring confidential transactions,” Ledger,
vol. 1, pp. 1-18, 2016.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 2014, pp. 459-474.

T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practi-
cal decentralized coin mixing for bitcoin,” in ESORICS 2014, Wro-
claw, Poland, September 7-11, 2014. Proceedings, Part I, vol. 8713.
Springer, 2014, pp. 345-364.

R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,”
in ASIACRYPT 2001, Gold Coast, Australia, December 9-13, 2001,
Proceedings, vol. 2248.  Springer, 2001, pp. 552-565.

Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous identifi-
cation in ad hoc groups,” in EUROCRYPT 2004, Technigues, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, C. Cachin and J. Camenisch,
Eds., vol. 3027. Springer, 2004, pp. 609-626.

J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit,
“Short accountable ring signatures based on DDH,” in ESORICS 2015,
Vienna, Austria, September 21-25, 2015, Proceedings, Part I, vol. 9326.
Springer, 2015, pp. 243-265.

G. Malavolta and D. Schrider, “Efficient ring signatures in the standard
model,” in ASIACRYPT 2017, Hong Kong, China, December 3-7, 2017,
Proceedings, Part 1I, vol. 10625. Springer, 2017, pp. 128-157.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in EUROCRYPT
2003, Technigues, Warsaw, Poland, May 4-8, 2003, Proceedings, vol.
2656. Springer, 2003, pp. 416-432.

S. S. M. Chow, V. K. Wei, J. K. Liu, and T. H. Yuen, “Ring signatures
without random oracles,” in ASIACCS 2006, Taipei, Taiwan, March 21-
24, 2006. ACM, 2006, pp. 297-302.

F. Zhang and K. Kim, “Id-based blind signature and ring signature from
pairings,” in ASIACRYPT 2002, Queenstown, New Zealand, December
1-5, 2002, Proceedings, vol. 2501. Springer, 2002, pp. 533-547.

W. Beullens, S. Katsumata, and FE Pintore, “Calamari and falafl:
Logarithmic (linkable) ring signatures from isogenies and lattices,”
in ASIACRYPT 2020, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part 11, vol. 12492, Springer, 2020, pp. 464-492.

Z. Liu, K. Nguyen, G. Yang, H. Wang, and D. S. Wong, “A lattice-based
linkable ring signature supporting stealth addresses,” in ESORICS 2019,
Luxembourg, September 23-27, 2019, Proceedings, Part I, vol. 11735.
Springer, 2019, pp. 726-746.

X. Lu, M. H. Au, and Z. Zhang, “Raptor: A practical lattice-based
(linkable) ring signature,” in ACNS 2019, Bogota, Colombia, June 5-
7, 2019, Proceedings, vol. 11464. Springer, 2019, pp. 110-130.

M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu, “Short lattice-
based one-out-of-many proofs and applications to ring signatures,” in
ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings, vol. 11464.
Springer, 2019, pp. 67-88.

E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in CCS 2004, Washington, DC, USA, October 25-29, 2004. ACM,
2004, pp. 132-145.

S. Patachi and C. Schiirmann, “Eos a universal verifiable and coercion
resistant voting protocol,” in E-Vote-1D 2017, Bregenz, Austria, October
24-27, 2017, Proceedings, vol. 10615.  Springer, 2017, pp. 210-227.
M. Abe, M. Ohkubo, and K. Suzuki, “l-out-of-n signatures from a
variety of keys,” in ASIACRYPT 2002, Queenstown, New Zealand,
December 1-5, 2002, Proceedings, vol. 2501. Springer, 2002, pp. 415-
432.

J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” in ACISP 2004, Sydney, Australia,
July 13-15, 2004. Proceedings, vol. 3108. Springer, 2004, pp. 325-335.



[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

T. Nishide and K. Sakurai, “Security of offline anonymous electronic
cash systems against insider attacks by untrusted authorities revisited,”
in INCoS 2011, Fukuoka, Japan, November 30 - Dec. 2, 2011. 1EEE
Computer Society, 2011, pp. 656-661.

S. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero,” in ESORICS 2017, Oslo, Norway, September
11-15, 2017, Proceedings, Part 1I, vol. 10493.  Springer, 2017, pp.
456-474.

Y. Jia, S. Sun, Y. Zhang, Q. Zhang, N. Ding, Z. Liu, J. K. Liu, and
D. Gu, “S{\sf PBT}Spbt: A new privacy-preserving payment protocol
for blockchain transactions,” IEEE Trans. Dependable Secur. Comput.,
vol. 19, no. 1, pp. 647-662, 2022.

T. H. Yuen, S. Sun, J. K. Liu, M. H. Au, M. E Esgin, Q. Zhang, and
D. Gu, “Ringct 3.0 for blockchain confidential transaction: Shorter size
and stronger security,” in FC 2020, Kota Kinabalu, Malaysia, February
10-14, 2020 Revised Selected Papers, vol. 12059. Springer, 2020, pp.
464-483.

B. Goodell, S. Noether, and A. Blue, “Concise linkable ring signatures
and forgery against adversanal keys,” Cryptology ePrint Archive, 2019.
E. Bresson, J. Stern, and M. Szydlo, “Threshold ring signatures and
applications to ad-hoc groups,” in CRYPTO 2002, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, vol. 2442, Springer,
2002, pp. 465-480.

J. K. Liu, V. K. Wei, and D. S. Wong, “A separable threshold ring
signature scheme,” in ICISC 2003, Seoul, Korea, November 27-28, 2003,
Revised Papers, vol. 2971. Springer, 2003, pp. 12-26.

S. S. M. Chow, L. C. K. Hui, and S. Yiu, “Identity based threshold ring
signature,” in ICISC 2004, Seoul, Korea, December 2-3, 2004, Revised
Selected Papers, vol. 3506. Springer, 2004, pp. 218-232.

T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou, “Threshold
ring signature without random oracles,” in ASIACCS 2011, Hong Kong,
China, March 22-24, 2011. ACM, 2011, pp. 261-267.

P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S.
Wong, “Separable linkable threshold ring signatures.” in INDOCRYPT
2004, Chennai, India, December 20-22, 2004, Proceedings, vol. 3348.
Springer, 2004, pp. 384-398.

P. P. Tsang, M. H. Au, J. K. Liu, W. Susilo, and D. S. Wong, “A suite
of non-pairing id-based threshold ring signature schemes with different
levels of anonymity,” in ProvSec 2010, Malacca, Malaysia, October 13-
15, 2010. Proceedings, vol. 6402. Springer, 2010, pp. 166-183.

T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou, “Efficient link-
able and/or threshold ring signature without random oracles,” Comput.
J., vol. 56, no. 4, pp. 407421, 2013.

D. E Aranha, M. Hall-Andersen, A. Nitulescu, E. Pagnin, and S. Yak-
oubov, “Count me in! extendability for threshold ring signatures,” in
PKC 2022, Virtual Event, March 8-11, 2022, Proceedings, Part I, vol.
13178. Springer, 2022, pp. 379-406.

A. Haque, S. Krenn, D. Slamanig, and C. Striecks, “Logarithmic-size
(linkable) threshold ring signatures in the plain model,” in PKC 2022,
Virtual Event, March 8-11, 2022, Proceedings, Part 11, vol. 13178.
Springer, 2022, pp. 437-467.

T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding, “Dualring:
Generic construction of ring signatures with efficient instantiations,” in
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I,
vol. 12825. Springer, 2021, pp. 251-281.

E. Kiltz, D. Masny, and J. Pan, “Optimal security proofs for signatures
from identification schemes,” in CRYPTO 2016, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part 11, vol. 9815. Springer,
2016, pp. 33-61.

U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
J. Cryptol., vol. 1, no. 2, pp. 77-94, 1988.

C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack,” in CRYPTO '91, Santa
Barbara, California, USA, August 11-15, 1991, Proceedings, vol. 576.
Springer, 1991, pp. 433444,

M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in
CRYPTO 2006, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, vol. 4117. Springer, 2006, pp. 78-96.

T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in CRYPTO 91, Santa Barbara, California, USA,
August 11-15, 1991, Proceedings, vol. 576. Springer, 1991, pp. 129-
140.

A. Haque and A. Scafuro, “Threshold ring signatures: New definitions
and post-quantum security,” in PKC 2020, Edinburgh, UK, May 4-7,
2020, Proceedings, Part II, vol. 12111. Springer, 2020, pp. 423-452.

[41]

[42]

[43]

14

D. Ermilov, M. Panov, and Y. Yanovich, "Automatic bitcoin address
clustering,” in ICMLA 2017, Cancun, Mexico, December 18-21, 2017.
IEEE, 2017, pp. 461-466.

J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting,”
in EUROCRYPT 2016, Vienna, Austria, May 8-12, 2016, Proceedings,
Part Il, vol. 9666. Springer, 2016, pp. 327-357.

D. Chaum, “Zero-knowledge undeniable signatures,” in EUROCRYPT
'90, Aarhus, Denmark, May 21-24, 1990, Proceedings, vol. 473.
Springer, 1990, pp. 458-464.

Junke Duan received the M.S. degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2021. He is currently pursuing
the Ph.D. degree in cyber security with the Beijing
University of Posts and Telecommunications. His
current research interests include applied cryptog-
raphy and blockchain technology.

Shihui Zheng received the Ph.D. degree from Shan-
dong University, China, in 2006. From 2006 to 2008,
she was a Post-Doctoral Researcher in the School
of Information Engineering at Beijing University of
Posts and Telecommunications (BUPT), China. In
2008, she joined the School of Cyberspace Security
& National Engineering Laboratory for Disaster
Backup and Recovery at BUPT. Her current research
interest 1s cryptographic scheme design.

Wei Wang received the M.S. degree from Shandong
Computer Science Center (National Supercomputer
Center in Jinan), Qilu University of Technology,
Jinan, China, in 2021. He is currently pursuing the
Ph.D. degree in cyber security with the Beijing
University of Posts and Telecommunications. His
current research interests include applied cryptog-
raphy and blockchain technology.

Licheng Wang received the B.S. degree in computer
science from Northwest Normal University, China,
in 1995, the M.S. degree in mathematics from Nan-
jing University, China, in 2001, and the Ph.D. degree
in cryptography from Shanghai Jiao Tong University,
China, in 2007. He is currently a professor with the
Beijing Institute of Technology. His current research
interests include modern cryptography, network se-
curity, and trust management.



Xiaoya Hu received the B.S. degree in Information
and Computing Sciences from Shandong Univer-
sity of Science and Technology, Qingdao, China,
in 2017. She received a M.S. degree Computer
Technology from Beijing University of Posts and
Telecommunications, Beijing, China, in 2020. She
1s currently working towards her PhD degree in
Cyberspace Security in Beijing University of Posts
and Telecommunications, Beijing, China. Her cur-
rent research fields include security and privacy in
blockchain and applied cryptography.

Lize Gu received the Ph.D. degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2005, where he is currently a
Professor. He joined in School of Cyberspace Se-
curity National Engineering Laboratory for Dis-
aster Backup and Recovery at BUPT. His current
research interests include modern cryptography and
blockchain technology.

15



