
Opening Pandora’s Box: An
Analysis of the Usage of the Data

Field in Blockchains

Sebastian Küng
Zürich, Switzerland

Student ID: 15-706-013

Supervisor: Eder J. Scheid, Muriel Franco
Date of Submission: April 1, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Der global zunehmende Trend digitale Medien zu posten und zu speichern, hat auch
Blockchains geprägt. Ihre Fähigkeit, Daten zensurresistent, redundant und permanent zu
speichern, ist jedoch durch Grössenbeschränkungen, Konsensregeln und Transaktionsge-
bühren begrenzt. Trotz dieser Beschränkungen und gegen weitere Barrieren wie komplexe
Methoden und Abraten durch Blockchain-Entwickler haben Nutzer Wege gefunden, Da-
ten in Blockchains einzubetten. Ziel dieser Arbeit ist, sowohl die Menge der Daten als
auch die Art der in die Blockchains von Bitcoin, Ethereum und Monero eingebetteten
Medien zu analysieren. Ein Vergleich der Ergebnisse zwischen diesen Blockchains kann
dann Anhaltspunkte dafür liefern, welche Blockchain sich am besten für die Datenspei-
cherung eignet und wie zukünftige Blockchain-basierte Speicheransätze den Bedürfnissen
ihrer Nutzer gerecht werden können.

Um den theoretischen Hintergrund für die Entwicklung einer Lösung zum Analysieren von
Blockchain-Daten zu schaffen, werden Blockchains im Allgemeinen und Bitcoin, Monero
und Ethereum konkret zunächst konzeptuell eingeführt. Bestehende Methoden zum Ein-
betten, Abrufen und Analysieren von Daten werden dann in verwandten Arbeiten unter-
sucht und ihre Ziele sowie Resultate verglichen. Dabei wurde das Fehlen von Blockchain-
übergreifenden Lösungen sowie von quantitativen Analysen von Blockchain-Inhalten fest-
gestellt. Die Beschreibung der eingesetzten Methoden und Werkzeuge wird schliesslich
genutzt, um eine Softwarelösung für diese Arbeit zu entwickeln.

Als Softwarelösung wurde das Blockchain-Parser-Tool zur Identifizierung von eingebet-
teten Medien in Blockchains entwickelt. Es analysiert direkt die Blockchain-Datenbank
und schreibt Ergebnisse in eine eigene Datenbank mit einem generischen Schema. Von
dort aus kann der Benutzer das Tool anweisen, die Daten entweder nach Dateitypen oder
nach Zeichenketten mit Hilfe mehrerer Tools zu analysieren. Der Benutzer kann dann die
Analyseergebnisse entweder mit dem Blockchain-Parser oder über eine Abfrage an seine
SQL-Datenbank anzeigen. Der Benutzer kann Blockchains und ihre Datenverzeichnisse
dynamisch auswählen.

Der Blockchain-Parser erstellt ASCII-Text- und Dateitypstatistiken. Für jede der unter-
suchten Blockchains wurden Textdaten und für Bitcoin und Ethereum einige der ein-
gebetteten Mediendateien identifiziert. Einige der erkannten Zeichenketten und Dateien
konnten erfolgreich aus der Blockchain-Parser-Datenbank extrahiert werden und werden
in dieser Arbeit vorgestellt. Die Anzahl der erwarteten Datentypidentifikationen wurde
mit den tatsächlich identifizierten Dateitypen verglichen. Dies lieferte Beweise dafür, dass
viele der erkannten Dateien, vor allem diejenigen, die durch kurze, 2- oder 3-Byte lange,

i

ii

“magische Zahlen” identifiziert wurden, in Wirklichkeit falsch positiv waren. Aus Zeit-
gründen wurde keine automatisierte Dateiextraktion durchgeführt, obwohl einige Dateien
als Beweis der Methodik manuell extrahiert wurden.

Zusammenfassend lässt sich sagen, dass die Ethereum-Blockchain die meisten eingebet-
teten Text- und Mediendaten enthielt, obwohl alle Blockchains tatsächlich zum Ein-
betten allgemeiner Medien verwendet wurden. Dies bestätigt die Behauptung, dass die
Blockchain-Speicherung für die Nutzer verlockend ist, obwohl sie für diesen Zweck we-
der konzipiert noch besonders effizient ist. Die Blockchain-Speicherung scheint beson-
ders für kleine Bilder und Texte attraktiv zu sein. Ein System, das die Blockchain-
Datenspeicherung nachahmen und ersetzen will, sollte wahrscheinlich als öffentliche, nicht
zensierbare, dauerhafte, aber grössenbegrenzte globale Pinnwand mit einmaligen Posting-
Kosten konzipiert werden.

Von den drei untersuchten Blockchains scheint Ethereum am besten für die Einbettung
allgemeiner Daten geeignet zu sein, da das Datenfeld der Transaktionen leicht zu mani-
pulieren ist, Platz für aufeinanderfolgende Daten zur Verfügung steht und das Netzwerk
dabei am wenigsten beeinträchtigt wird. Ethereum komprimiert und archiviert die Da-
teninhalte von EOA-zu-EOA-Transaktionen und speichert diese Daten im Gegensatz zu
einigen der Dateneinbettungsmethoden von Bitcoin und Monero nicht im Cache oder in
speicherintensiveren Datenbanken. Obwohl Monero ebenfalls grosse Mengen an aufein-
anderfolgenden Daten zulässt, ist es aufgrund ihrer nachteiligen Auswirkungen auf die
Einheitlichkeit der Transaktionen und damit auf die Privatsphäre seiner Nutzer wahr-
scheinlich weniger für die Datenspeicherung geeignet.

In dieser Arbeit wurden einige Aspekte der Einbettung von Daten über verschiedene
Blockchains hinweg ausgelassen, die in zukünftigen Arbeiten weiterverfolgt werden kön-
nen. Es wurde weder eine vollständige Studie über die Erfahrungen der Nutzer mit der
Einbettung von Daten in die einzelnen Blockchains durchgeführt, noch über die konkreten
Kosten, die sowohl für den Nutzer in Form von Transaktionsgebühren als auch für das
Netzwerk in Form von Verarbeitungs- und Speicherkosten anfallen. Ausserdem könnten
weitere Blockchains untersucht werden, da das entwickelte System blockchain-agnostisch
ist. In dieser Arbeit wurde jeweils ein Beispiel für das UTXO-, das TXO- und das kon-
tobasierte Transaktionsmodell verglichen. Weitere Blockchains, die eines dieser Transak-
tionsmodelle implementieren, könnten für Vergleiche analysiert werden. Die Fähigkeiten
des Blockchain-Parsers könnten noch verbessert werden. Vor allem sollte er die Fähigkeit
erhalten, Dateien aus den unterstützten Blockchains zu extrahieren und zu speichern. So-
wohl die Geschwindigkeit als auch die Präzision der Analyse sind Bereiche, die Gegenstand
zukünftiger Untersuchungen und Entwicklungen sein können.

Abstract

Since the inception of the Bitcoin blockchain in 2009 with the inclusion of the message
“The Times 03/Jan/2009 Chancellor on brink of second bailout for banks” in its genesis
block, blockchains have been used to store generic media. These include text, images, and
documents. However such media is often not easily discoverable in the blockchains and
is embedded deep within their binary data structures. The main goal of this thesis is to
design and implement a tool that scans blockchains for their media content. The software
tool developed for this work, the blockchain-parser, is capable of detecting text strings and
files embedded in blockchains. The blockchains of the Bitcoin, Monero, and Ethereum
cryptocurrencies were examined to find commonalities and differences between different
blockchains in terms of their generic media storage usage. Prior related work has focused
on the methods for storing media in Bitcoin. This thesis provides statistics and examples
of the blockchain-parser’s detected media across Bitcoin, Monero, and Ethereum, which
are presented and discussed herein. It concludes that Ethereum has been the most-used
blockchain for media data storage of the three and might also be the best-suited blockchain
for this task.

Seit Anbeginn der Bitcoin-Blockchain im Jahr 2009 und ihrer in ihrem Genesis-Block
enthaltener Nachricht “The Times 03/Jan/2009 Chancellor on brink of second bailout
for banks”, wurden Blockchains verwendet um Medien, wie zum Beispiel Texte, Bilder
und Dokumente, zu speichern. Allerdings sind solche Medien in den Blockchains oft nicht
leicht auffindbar und tief in ihren binären Datenstrukturen eingebettet. Das Hauptziel
dieser Arbeit ist es, ein Werkzeug zu entwerfen und zu implementieren, welches Block-
chains nach ihren Medieninhalten durchsucht. Das für diese Arbeit entwickelte Werkzeug,
der Blockchain-Parser, ist in der Lage in Blockchains eingebettete Textzeichenfolgen und
Dateien zu erkennen. Die Blockchains der Kryptowährungen Bitcoin, Ethereum und Mo-
nero wurden untersucht um Gemeinsamkeiten und Unterschiede zwischen verschiedenen
Blockchains hinsichtlich ihrer eingebetteten Medien zu erkennen. Frühere verwandte Ar-
beiten konzentrierten sich auf die Methoden zum Speichern von Medien in Bitcoin. Diese
vorliegende Bachelorarbeit präsentiert Statistiken und Beispiele der mit dem Blockchain-
Parser erkannten Medien in Bitcoin, Monero und Ethereum und diskutiert jene. Es wird
gefolgert, dass Ethereum von den dreien, die am häufigsten verwendete Blockchain für die
Speicherung von Mediendaten ist und auch die am besten geeignete Blockchain für diese
Aufgabe sein könnte.

iii

iv

Acknowledgments

I would like to thank and express my gratitude to my supervisor Eder John Scheid for
his continued editorial support during the entire duration of the writing of this thesis and
for providing the account-based and UTXO-based transaction model figures. I would also
like to thank him for the trust placed in me by letting me work on this interesting topic
that was originally scoped for a master thesis.

I would also like to thank the CSG group for providing me with a VPS equipped with a
generous amount of HDD storage for the Ethereum data analysis.

v

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Blockchain Definition . 5

2.1.1 Double Spending Problem . 5

2.1.2 Deployment Types . 6

2.1.3 Consensus Algorithm . 6

2.1.4 Node Types . 6

2.1.5 Transaction Models . 7

2.2 Blockchain Data . 8

2.2.1 Bitcoin . 8

2.2.2 Ethereum . 10

2.2.3 Monero . 11

2.3 Steganography and Steganalysis . 13

vii

viii CONTENTS

3 Related Work 15

3.1 Approaches . 15

3.2 Comparison . 19

4 Design and Implementation 21

4.1 Design . 21

4.1.1 Components . 21

4.1.2 Database . 23

4.2 Implementation . 23

4.2.1 Transaction Parsing Implementation 24

4.2.2 Data Extractor Implementation . 27

4.2.3 Database Adaptor Implementation 30

4.2.4 Analysis Engine Implementation . 31

4.2.5 View Implementation . 35

4.2.6 Usage . 35

5 Evaluation and Discussion 37

5.1 Histograms . 38

5.2 False Positive Detections . 42

5.3 Discussion and Challenges . 44

5.3.1 Discussion . 44

5.3.2 Implementation Challenges . 45

6 Summary, Conclusions, and Future Work 47

Bibliography 48

Abbreviations 55

List of Figures 55

List of Tables 57

CONTENTS ix

A Installation Guidelines 61

B Contents of the ZIP Archive 63

x CONTENTS

Chapter 1

Introduction

Blockchains offer unique data storage capabilities: Availability everywhere with an inter-
net connection, data redundancy by replication across thousands of devices, and reten-
tion guaranteed for a very long time. Since the inception of Bitcoin, arguably the first
“blockchain”, they have not only been used to store transactions recording the transfer
of value but also to permanently store generic media including text, images and docu-
ments [2]. Embedding generic media in blockchains is typically not done through methods
designed for this purpose, but rather leverages transaction data fields that are usually
used to encode additional transaction information or smart contracts. The demand for a
blockchain data store gave rise to services offering simplified storage of generic media in
Bitcoin such as eternitywall [22] and apertus [21], launched in 2015 and 2013 respectively.

Using blockchains to store generic media instead of financial data is controversial among
developers of blockchains. Recording this data eats into resources that could otherwise
be used to verify and store transactions recording value transfers. In a Bitcoin mailing
list entry [44], Bitcoin developer Greg Maxwell pointedly describes this duality between
storage and utility as follows:

Since Bitcoin is an electronic cash, it isn’t a generic database; the demand for
cheap highly-replicated perpetual storage is unbounded, and Bitcoin cannot
and will not satisfy that demand for non-ecash (non-Bitcoin) usage, and there
is no shame in that.

Blockchain storage capabilities are limited both by restrictions on transaction size and
economically with the help of transaction fees. Alternative systems combining the capa-
bilities of blockchain and other distributed data storage approaches, like storj [31] and
filecoin [40], seek to provide the features of storing media in blockchains like Bitcoin, at a
much lower cost. Such systems are not further discussed in this work but are mentioned
here for completeness.

In this thesis, an empirical study is conducted on some of the existing media stored in
the Bitcoin, Ethereum, and Monero blockchains. To this end, existing work on generic

1

2 CHAPTER 1. INTRODUCTION

blockchain media storage is presented and compared. Informed by this existing work, a
new approach towards detecting and analyzing various media in the aforementioned three
blockchains is designed and implemented as a command-line tool, the blockchain-parser
[37]. With its help, statistics of generic media in blockchains are compiled and evaluated.

1.1 Motivation

While other works focused on either exposing different methods for data storage in a
blockchain or its possible detrimental effects on a blockchain, this work seeks to provide
an overview of generic media data storage in multiple blockchains. It is desirable to
understand the scale at which blockchains are used for data storage and for which type
of data users find this storage alluring. Next to informing blockchain researchers and
developers, this can also act as insight for other services that seek to copy some of the
capabilities provided by blockchains. Further, this work presents differences between
blockchains in terms of their generic data storage capabilities and usage. Although this
thesis does not argue in favor of storing generic media in a blockchain, a reader can use
the information presented here to select a suitable blockchain for posting media in public.
A brief description of how each blockchain stores its data is provided not only to describe
how data can be read from the blockchain but also to give the reader an idea of which
trade-offs have been made by each blockchain to cater to their respective features. The
thesis may also be of interest to digital archaeologists who in the future would like to
extract messages and files embedded in blockchains.

1.2 Contributions

The thesis introduces a generic blockchain parser and blockchain-embedded media analysis
tool. It provides statistical analysis of data embedded into three popular blockchains:
Bitcoin, Ethereum, and Monero. These three blockchains were selected since they offer
varying capabilities and data embedding methods for the user. For each of the blockchains,
the tool implements a parser reading their blockchain data directly from their database
files. The parsed data is stored in a separate database with a blockchain-generic schema
and further analyzed for its potential media content. The tool is capable of identifying
ASCII strings and the file type of embedded media.

The analysis results as well as the deployment setup of the blockchain-parser for each
blockchain are visualized. By analyzing the visualized data in histograms and tables, as
well as attempting to estimate the expected number of false positive media detections,
the results are discussed and evaluated. Each of the examined blockchains contained both
text and generic media. It is assessed which of the three blockchains is utilized the most
as a data store.

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

Including this introduction, the work consists of 6 chapters. Chapter 2, the background,
serves as a theoretical springboard into the subject matter. It starts by defining blockchains
in Section 2.1 alongside their deployment types, use of consensus algorithms, node types,
and common transaction models. Section 2.2 describes what data blockchains persist on
disk, providing detail on data stored by Bitcoin, Ethereum, and Monero. Approaches
taken by prior work when analyzing blockchain data, especially the type of data ana-
lyzed and tools used, are summarized and compared in Chapter 3. Chapter 4 provides
an outline of the high-level design and implementation details for the blockchain-parser
developed in this work. In Section 4.1 the design of the blockchain-parser including its
components as well as the database schema are presented. In the following Section 4.2
the implementation of the blockchain-parser is discussed by explaining how the various
blockchains are parsed, which external libraries are used, and defining the media detection
algorithms. It also provides usage examples and how analysis results can be viewed. In
Chapter 5 the results of running the blockchain-parser on Bitcoin, Ethereum, and Monero
are evaluated by visualizing the detected contents and discussing patterns arising between
the blockchains. Finally, Chapter 6 gives a summary of the thesis, presents conclusions
from the evaluation, and gives an outlook on potential future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter outlines the main concepts involved in this thesis. Section 2.1 defines
blockchain, Section 2.2 describes the features and transaction structure of Bitcoin, Mon-
ero, and Ethereum, as well as how each of them may be used to embed generic media.

2.1 Blockchain Definition

From its original meaning describing the data set of the Bitcoin transaction graph [48],
blockchain has become an umbrella term for distributed database protocols implementing
a key idea from the original Bitcoin whitepaper. The whitepaper describes a timestamp
server that orders ownership transfer of an electronic coin into a chain of blocked together
transactions [48]. A Bitcoin transaction typically consists of one or more inputs, containing
the signature, and one or more outputs, determining what the next signature has to verify
against. In the simplified transaction model of the Bitcoin whitepaper, a transaction input
contains a signature that can be externally verified against the previous transaction’s
output public key in the transaction chain, thus authenticating coin ownership transfer.
However, blockchains, in general, may have different transaction mechanisms and formats,
transferring assets, information, or triggering events like further transactions [7]. While
Bitcoin nodes operate without prior permission, blockchains may also be deployed in
permissioned settings [7].

2.1.1 Double Spending Problem

Bitcoin practically solved the problem of spending a digital coin twice (i.e., the double-
spending problem) [48]. If a verifier of transactions detects transactions spending the
same coin twice, they need to know which transaction happened first, to reach the same
conclusion as another verifier. To this end, a timestamp server creates a new timestamp
by grouping transactions into a block, appending the current time, and hashing it to-
gether with the previous timestamp. Thus, the timestamp server establishes the order of
transactions. Verifiers can rely on the timestamp server to provide a canonical transaction

5

6 CHAPTER 2. BACKGROUND

order, while they only need to check signature validity and that the timestamp server does
not produce blocks containing transactions twice [48]. Hence, a general blockchain data
structure is a timestamped, ordered, back-linked list of blocks of transactions [2].

2.1.2 Deployment Types

Beyond timestamped blocks of transactions, the literature extends the definition of
blockchain to its network topology [20]. Blockchains replicate their state and historical
data among many nodes in a distributed network [7]. Further, such a replication might
present different access restrictions. Permissionless blockchains allow anybody with an
internet connection to participate as a full member in the distributed network, ”as well as
write and read transactions” [7]. Permissioned blockchains restrict the data availability,
the possibility to write transactions, or the verification of transaction validity, by either
running the blockchain on a non-public network or rules in the consensus algorithm [7].

2.1.3 Consensus Algorithm

Blockchains have consensus algorithms defining the execution of the timestamp server
as a multi-party computation between nodes in the distributed network. A node, more
commonly referred to as a miner or block producer in this context, provides a proof to
authenticate their turn in the multi-party computation. In Nakamoto’s Proof of Work
(PoW), a nonce in the block is incremented by a miner until a value is found that gives
the block’s hash the required number of zero bits [48]. A miner solving the proof of work
for a block is called the leader for that particular block [7, 68]. Blockchains may employ a
host of different consensus algorithms [7, 68]. Next to PoW, Proof of Stake (PoS) selects
the leader based on his stake in the underlying coin [7], while Proof-of-Authority (PoA)
selects from a pre-determined set of possible block producers [23]. There also exist many
hybrid forms of these algorithms, including classical Byzantine Fault Tolerant algorithms
[7].

2.1.4 Node Types

Nodes in the distributed network of a blockchain may have different roles. Lightweight
nodes only collect a subset of transactions, for example, transactions involving a specific
public key [11, 61]. Full nodes validate all transactions and blocks set out by the rules of
the blockchain. The common enforcement of rules by full nodes gives rise to consensus
[11]. Archival nodes retain the entire history of transactions and blocks. Additionally,
archival nodes are also capable of serving the complete transaction and block history to
other nodes [61]. This work analyzes some of the transaction and block data that archival
nodes retain.

2.1. BLOCKCHAIN DEFINITION 7

2.1.5 Transaction Models

The blockchains analyzed here are broadly distinguished between blockchains with an
input-output and an account-balance transaction model. Input-output based transaction
models may be further divided into Transaction Output based (TXO-based), where a
transaction input may reference outputs from any previous transaction [36], and Unspent
Transaction Output based (UTXO-based), where a transaction input may reference only
previously unspent transaction outputs [48, 2, 7]. In UTXO-based blockchains, the current
system state is described by the set of UTXOs [7]. Input-output based transactions are
akin to analog cash-and-change transactions [7]. Figure 2.1 depicts an example of a UTXO
transaction. To spend an amount x to a recipient, a transaction originator has to assemble
unspent outputs with a total summed value of y >= x. The originator then creates a
new transaction output with an amount x addressed to the recipient and a change output
y − x addressed back to the originator [48, 7, 2].

Figure 2.1: Input-output transaction model

Account-balance model transactions transfer amounts by directly subtracting from orig-
inator and adding to recipient accounts [7, 72]. Figure 2.2 is an example of an account-
balance transaction. The blockchain state keeps track of all accounts and their associated
balances.

Figure 2.2: Account-balance transaction model

8 CHAPTER 2. BACKGROUND

2.2 Blockchain Data

Transaction and block data in a blockchain need not strictly be information describing
the ownership transfer of coins and their timestamps [2]. Next to operations allowing
for complex transfer constructions and contracts, a user may write arbitrary data into a
blockchain [43]. Some blockchains allow writing arbitrary data by design, making specific
transaction and block fields and procedures available for the user. Other methods may also
be leveraged to embed data or convey additional meaning: Values like public key hashes
can be generated until they reach a desired value, scripting languages may allow enough
flexibility to embed additional data, and fields that are only used conditionally, e.g.,
Bitcoin’s locktime, allow storage of additional small data. Depending on the transaction
model, different data storage types are used across blockchains.

Depending on the transaction model blockchains also have different performance require-
ments for the storage database. Monero, operating under the TXO-model, requires quick
lookup of spend proofs across the entire blockchain, necessitating a fast key-value store:
The Lightning Memory-Mapped Database (LMDB) [17]. Bitcoin, operating under the
UTXO-model, only needs quick key-value lookups for its UTXO set, which is stored in
a LevelDB database [32]. Block data is not queried as intensively but is still retained
for cases of chain reorganizations and serving blocks to the peer-to-peer network. The
complete block bodies are stored in flat binary files and use a dedicated LevelDB database
as a lookup index.

Ethereum, or rather the go-ethereum implementation [71], stores data in multiple LevelDB
tables. These include recent blocks and transactions as well as the account state data
structures. Older blocks are not persisted in the database, since their quick availability
is not needed to maintain and update the account states. Instead, they are compressed
with snappy [28] and written to flat binary files. An index to the block’s location within
these files is loaded into memory.

2.2.1 Bitcoin

Bitcoin uses the UTXO transaction model [48], where outputs contain scripts in a simple,
Forth-like Turing-incomplete scripting language, that may be unlocked by correspond-
ing scripts in inputs [2]. When transactions are validated, an input’s script is evaluated
together with the script of the output being spent [2]. Transactions valid by Bitcoin’s con-
sensus rules may additionally be either standard or non-standard. Standard transactions
abide by a set of rules enforcing among other criteria which script OP_CODES may be used,
what templates they should adhere to, and with what data the transaction fields should be
populated. Non-standard transactions are not relayed on the Bitcoin distributed network
[2]. Standardness checks may be subverted by miners including non-standard transactions
in blocks. Additionally, the Pay-to-Script-Hash (P2SH), and Pay-to-Witness-Script-Hash
(P2WSH) output script templates allow script OP_CODES in a corresponding input script-
sig respectively witness that would otherwise be non-standard in output scripts. This
flexibility allows the embedding of arbitrary data in an input scriptsig spending a P2SH
output and more generally in non-standard transaction scripts [43].

2.2. BLOCKCHAIN DATA 9

Other standard transaction templates, such as Pay-to-Pubkey (P2PK), Pay-to-Multisig
(P2M), Pay-to-Pubkey-Hash (P2PKH), and Pay-to-Witness-Pubkey-Hash (P2WPKH)
may be exploited to hold arbitrary data. The respective public key and public key
hash values may be replaced with arbitrary data in the transaction output. Next to
the transaction fee, these transactions have additional costs for the user. Their outputs
are unspendable because the user replaces valid public keys and public key hashes with
arbitrary data (invalid public keys and public key hashes) [43]. These methods moreover
incur costs for the Bitcoin network as a whole, since these unspendable outputs cannot be
detected and therefore not pruned, or omitted from caches and the Unspent Transaction
Output (UTXO) set. According to [43] embedding data into unspendable, but standard,
transactions, is the most economical method for a user and allows storage of up to 92’625
Bytes in the P2MS case across many outputs in a single transaction.

Miners may embed arbitrary data in a coinbase transaction. Because Bitcoin coinbase
transactions do not reference any previous transactions, their scriptsig has no semantic
meaning. Satoshi Nakamoto’s message in the first Bitcoin coinbase transaction “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks” [2], was embedded
in the scriptsig. Since the activation of Bitcoin improvement proposal 34 (BIP34), the
block height of the coinbase transaction has to be the first item in the scriptsig [1],
while the rest of the field remains at the discretion of the miner. In practice, BIP34 limits
the amount of arbitrary data in a coinbase scriptsig to 96 bytes [43].

In August 2017 Bitcoin deployed a backward-compatible upgrade to its transaction struc-
ture: Segregated Witness (segwit) [2]. SegWit introduced a new standard transaction
output type and moved the signature and input script OP_CODES to a new witness field.
Depending on the serialization this witness field is either represented as a vector alongside
the inputs or another field within a transaction input. Segwit transaction outputs, also
referred to as witness programms, are versioned [2]. Version ”0x00” includes P2WPKH
and P2WSH outputs, while version ”0x01” includes pay-to-taproot (P2TR) outputs.

Bitcoin script provides the OP_RETURN opcode, which allows users to write up to 83 bytes
of arbitrary data into a standard transaction output [5]. The Bitcoin developers recom-
mend using OP_RETURN to store arbitrary data in a transaction without side effects[2].
OP_RETURN outputs are unspendable and can therefore be pruned, omitted from caches,
and are not part of the UTXO set. More than one OP_RETURN output per transaction
is considered non-standard. Various protocols external to Bitcoin leverage OP_RETURN to
encode additional asset data [5].

Vanity addresses encode meaningful substrings in Bitcoin addresses [4, 25]. P2PKH
addresses are Base58-Check encoded hashes of Elliptic Curve Digital Signature Algo-
rithm (ECDSA) public keys [48]. While addresses are not directly stored in the Bit-
coin blockchain, user-facing applications like wallets and block explorers can re-construct
addresses from transaction input and output data [2]. Vanity addresses may be cre-
ated by brute-force searching ECDSA public keys until a corresponding address contains
the desired substring [4, 25]. An example of this would be “1BoatSLRHtKNngkdX-
EeobR76b53LETtpyT”, where the string “Boat” is contained in the address. Alterna-
tively, the entire string is set to a desired value. Such addresses are used for “Proof-
of-Burn”, where coins are sent to unspendable addresses, since the corresponding pri-

10 CHAPTER 2. BACKGROUND

Figure 2.3: Bitcoin transaction fields

vate key is unlikely to be known by anybody [4]. A well-known address is “1Counter-
partyXXXXXXXXXXXXXXXUWLpVr”, which is used by the Counterparty protocol
“Proof-of-Burn” [53]. Data may be distributed over many vanity addresses, contained for
example in the inputs and outputs of a transaction [4].

Figure 2.3 shows a possible representation of the fields of a Bitcoin transaction. Marked in
red are those fields that have been previously identified to hold arbitrary data embedded
by users. The witness field is only present for segwit transaction inputs. Alternatively
the witness field can be serialized and represented outside of the shown vin structure.
Additionally, the address is marked in green since it is not strictly part of a transaction,
but nevertheless conveys information as transported by an output script.

2.2.2 Ethereum

An Ethereum transaction is an authenticated instruction to the Ethereum Virtual Machine
(EVM) [72] using an account-balance transaction model. A transaction changes the state
of its originator and recipient accounts [3]. While the EVM is capable of Turing-complete
computation, the halting problem is sidestepped by the introduction of fees [72]. Fees
per specific operations on the EVM are given in gas. Executing transactions drains gas
[72] from the originator account. Figure 2.4 shows the fields of an Ethereum transaction.
Each transaction has to specify a gas limit, the maximum amount of gas the originator
is willing to pay. If a transaction costs more gas than the gas limit, its execution is
halted and the state is rolled back [3]. A transaction also contains a gas price, or how
many Ethereum base units (Wei) the user is willing to pay per unit of gas [72].

2.2. BLOCKCHAIN DATA 11

Figure 2.4: Ethereum transaction fields

Ethereum transactions have an input data field (marked red in Figure 2.4), a field without
size limits, though bounded in practice by the block gas limit, the maximum amount
of gas allowed per block [72]. Ethereum has two types of accounts, Externally Owned
Accounts (EOA) and contracts. An Ethereum transaction transfers a message from an
EOA to either an EOA or a contract. Dependent on the recipient account type, the data
field is interpreted differently. The data field of transactions between EOA’s is ignored
by Ethereum’s consensus rules and may have arbitrary content [3]. The data field in
transactions from EOA’s to contracts is interpreted by the EVM as a contract invocation.
Contract invocations typically contain data selecting the correct function of the invoked
contract with its associated function arguments [3]. An EOA may create a new contract by
sending a transaction to the reserved ”zero” address and including the contract’s compiled
bytecode in the data [3]. Any non-zero transaction data costs 16 gas per byte [72].

An Ethereum smart contract as contained in the transaction data of a contract deployment
transaction is usually compiled from a higher-level language such as Solidity [3]. A Solidity
compiler however is not only able to compile the contract code to EVM bytecode, but
also produces an application binary interface (ABI) in plaintext JSON that describes the
function and data structure interfaces of the contract. The ABI thus defines how later
invocations on the smart contract need to be structured. The first 4 bytes of an ABI
function’s interface SHA3-hash are referred to as its methodId [3]. A transaction invoking
a smart contract’s function includes the methodId as well as the function arguments in
the data field [3].

2.2.3 Monero

Monero is based on cryptonote, employing one-time keys to hide the recipient identity
and ring signatures to hide the originator within a group of potential signatories [66, 36].
The keys in the ring signature are sampled from prior transactions. For a ring signature

12 CHAPTER 2. BACKGROUND

with size n, a signers own key pair as well as n − 1 decoy, or alternatively called mixin,
keys are selected. Amounts are additionally encrypted with confidential transactions
[36, 49]. While Monero transactions have inputs and outputs, transactions may refer to
any previous outputs and thus follow the TXO-based transaction model [36]. A key image
of the signer’s true private one-time key is added to every transaction input, ensuring
double-spend protection by uniquely tagging an input signed by a specific private key
[36].

Monero transactions and blocks have a tx_extra field. The contents of tx_extra are
disregarded by consensus [36]. tx_extra may be populated with arbitrary data by users.
However, transaction- and block-relevant information is also stored in tx_extra and iden-
tified with reserved one byte tags [36]. These include information for wallets, such as
transaction public keys, encrypted payment IDs, and extra nonces for miners [36]. Using
tx_extra for arbitrary information storage is controversial, since adding plaintext infor-
mation may de-anonymize single users and decreases transaction uniformity, which may
be detrimental to the privacy of Monero as a whole [60].

Figure 2.5: Monero transaction fields

Figure 2.5 show the structure of a Monero transaction with fields that may be leveraged by
users to store arbitrary data marked red. Similar to Bitcoin’s locktime, Monero’s unlock
time may also be used to embed small amounts of data.

The contents of tx_extra can be serialized and deserialized with the help of tags
and encoded field lengths. For a normal Monero transaction, tx_extra contains a
single transaction public key and payment ID. A payment ID is used by the recipi-
ent to distinguish outputs received. It may either be an 8-byte encrypted payment

2.3. STEGANOGRAPHY AND STEGANALYSIS 13

ID, or a 32-byte long payment ID that contains pre-communicated data for identi-
fication [36]. Since monero consensus version 10 every transaction created by the
Monero reference wallet contains a single transaction public key and encrypted pay-
ment ID. The Monero code in src/cryptonote basic/tx extra.h defines the commonly
used content tags used for serializing tx_extra content. The following decoded rep-
resentation thus matches the below hexadecimal tx_extra field of the transaction
9b6318cbd3af1b4ee7f17336e1a7124aaaef4a9fcc43d1160255e3a30ee39ac6:

TX_EXTRA_TAG_PUBKEY <pubkey> TX_EXTRA_NONCE <9> TX_EXTRA_NONCE_PAYMENT_ID

<encrypted_payment_id>

01 540aa530a9bfeae381b0993287d28627f3584f38a6bf047012d8e134a5c03ca0 02 09

01 7b5175ad4f853fc7

2.3 Steganography and Steganalysis

Steganography describes a class of algorithms allowing covert communication through an
otherwise open communication channel without an active adversary noticing that covert
messages are exchanged. An otherwise inconspicuous message, or cover object is trans-
formed into a stego object containing a covert message. To an outside observer the dif-
ference between cover object and stego object should be undetectable [16]. As a further
constraint on a steganographic algorithm Kerckhoffs principle of open cryptographic de-
sign should ideally hold [13]. Steganography is often done in conjunction with media like
digital images, audio or movies. Otherwise inconspicuous steganographically prepared
media may be publicly posted, while in actuality containing a covert message. Modern
steganographic algorithms employ public key cryptography to generate a shared stego key
used to encrypt and embed the covert message. Recipients then generate the same shared
key and use it to extract and decrypt the covert data [16, 18].

Steganalysis encompasses methods to detect stego objects and potentially extract the
covert message [16]. Steganalysis typically targets weak points of steganographic algo-
rithms. One of the simpler steganographic algorithms is Least Significant Bit (LSB)
replacement, where every least significant bit in the cover medium is replaced by a bit of
the covert message, thus only slightly altering the cover object. While potentially convinc-
ing for a casual viewer of the stego object, LSB replacement is usually easily detectable in
the stego object by analysis of byte asymmetry [34].

Openpuff is among a host of popular steganography tools. Its main purpose is stegano-
graphically hiding messages in various media, such as images and videos. Potential usage
of Openpuff in content found on blockchains could be specifically analyzed since the Bit-
coin Wiki’s mention of it might hint at potential usage in Bitcoin and other blockchains
[6]. OpenPuff is known to use LSB replacement for its image steganography, which lends
itself to statistical attacks [12].

14 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter describes the related approaches to the work presented in this thesis in Sec-
tion 3.1 and compares them in different dimensions in Section 3.2. Its purpose is to collect
prior experiences relating to analyzing blockchain content, from which the development
of the blockchain-parser tool should be informed.

3.1 Approaches

Analyzing and discussing the media content of blockchains has been a point of interest
for cryptocurrency enthusiasts, hobbyists, and reporters alike since the Bitcoin genesis
block with its timestamp message was mined [24, 67, 26]. Hence, academic examinations
have been undertaken by several works. In the following, related work is presented for
the Bitcoin, Ethereum, and Monero blockchain.

[10] presents an analysis of the prevalence and types of non-standard Bitcoin transactions.
Their presented transaction data was collected with the help of a Bitcoin Core node and
stored in a PostgreSQL database. In [9] one of the authors of [10] provides additional
insights into the used visualization workflow (”BlockChainVis”), detailing that all block or
transaction data retrieved from the Bitcoin API enters a single PostgreSQL database from
which it may later be queried. [9] also stresses that RAM usage is a metric when selecting a
database for querying many, maybe related, transactions from a blockchain. [10] identifies
that non-standard transactions make up the small fraction of 0.02% of all transactions at
block height 550’000. Though not stated explicitly how this number was computed, likely,
the standard transaction output types (P2PKH, P2PK, OP RETURN, P2SH, P2WPKH,
P2WSH) were counted first. By exclusion, the remaining are non-standard transactions.
A detector for the standard transaction output types can be constructed by analysing the
used OP_CODES in the output script pubkey. While [10] provides histograms of common
patterns of non-standard transactions, these fail to include any spent transactions making
it presently unclear what their actual usage across the history of Bitcoin is.

UTXOs are more generally examined by [19] by analyzing and quantifying the Bitcoin
UTXO set. They present their own tool (STATUS [57]) for reading and analyzing the

15

16 CHAPTER 3. RELATED WORK

Bitcoin LevelDB database files in which the Bitcoin UTXO set is stored. The UTXO
set parser implemented for this thesis borrows from their work. Their analysis shows
the evolution of the amount of output types as a function of their block height showing
stagnation of non-standard output and a continuous increase of standard output types
at block height 491868. Further, the UTXO-set is made up of 82% P2PKH outputs,
17.1% P2SH outputs, 0.1% P2PK outputs with the remaining 0.8% divided into a 99.8%
majority of P2MS outputs around 0.1% SegWit outputs and 0.1% non-standard outputs.

UTXOs that are marked unspendable by the OP_RETURN OP_CODE are studied in [5]. More
specifically [5] investigates the data footprint of protocols built on top of data embedded
into Bitcoin with OP_RETURN. They further distinguish the data and protocol purpose
by their share of the total usage of OP_RETURN at their time of data collection on the
15th of February 2017. The majority of identified OP_RETURN transactions are related to
asset protocols (26.7%), followed by notary services (8.3%) and digital arts (5.5%), while
protocols whose purpose could not be identified make up 10.8% of the share. A further
15.7% contained no data alongside the OP_RETURN OP_CODE leaving 32.8% with unknown
classification. Their detection method relies on concrete protocol identifiers appended to
the actual data. The Omni-Protocol for example prepended the identifier omni to their
data.

Bitcoin data insertion methods next to OP_RETURN are explored in [59], whose authors
attempt to classify, analyze and compare data insertion methods in Bitcoin. Their analysis
distinguishes the following insertion methods:

1. Coinbase: Data embedded in the input of a coinbase transaction

2. Pay-To-Fake-Key-Hash (P2FKH): Replaces the public key hash of a P2PKH output
with data

3. Pay-To-Fake-Key (P2FK): Replaces the public key of a P2PK output with data

4. OP_RETURN: Data stored in OP_RETURN outputs

5. Pay-To-Fake-Multisig (P2FMS): 1-of-n P2M output retaining at least one real key
and replacing the rest with data

6. Pay-to-Fake-Script-Hash (P2FSH): Replaces the script hash of a P2SH transaction
with data

7. P2SH with OP_DROP redeem script: A P2SH transaction where the redeem script
contains data preceded by the OP_DROP OP_CODE. Allows spending, but is malleable,
since the data is not in the redeem script.

8. P2SH with Data Hash: Part of the redeem script commits to and checks the data
contained in the complete input script. Spendable and protects against malleability.

[59] further goes on to identify the P2SH with OP_DROP data embedding method as the
most efficient and economic in terms of both costs spent on transaction fees and available
data size per transaction. They provide a count of P2FKH usage by counting all P2PKH

3.1. APPROACHES 17

UTXOs where the key hash contains at least 18 consecutive printable ASCII characters.
These total 129’410 UTXOs storing 2.59 MB while burning 118.96 BTC as of June 7th,
2017. It should be noted that the fake key method also applies to segwit and taproot
outputs, though these did not exist at the time of publishing. Reconstructing non-ASCII
data is conceded as more difficult, since data may be spread over many outputs and
transactions. Though they mention that metadata, like the format, name, and size is
often embedded alongside the actual data, no generic method for extracting the data is
given. The appendix of [59] contains code examples detailing how data is parsed from the
raw block files, lists some TXIDs of transactions that contain images, as well as showcases
a few example transaction constructions with the help of the bitcoinj library [56].

Next to analyzing and quantizing generic media data in Bitcoin, [43] discusses some of
the legal impacts of storing this data on the Bitcoin blockchain by raising awareness of
unsavory content, like links to child pornography websites. They stipulate that these
might make the possession of the blockchain illegal for its users in many jurisdictions.
They additionally give counts of different file and media types found, including text,
images, HTML, other source code, archives, audio, and PDFs in their table 3.1. No
methods for either their insertion type or the data content detectors are provided.

Table 3.1: [43]: Distribution of blockchain file types

File Via Service? Overall File Via Service? Overall
Type yes no Portion Type yes no Portion
Text 1353 54 87.07% Archive 4 0 0.25%
Images 144 2 9.03% Audio 2 0 0.12%
HTML 45 0 2.78% PDF 2 0 0.12%
Source Code 7 3 0.62% Total 1557 59 100.0%

[27] probes transaction data for potential traces of steganography. Their steganalysis
focuses on steganographic approaches specific to blockchains and not on steganalysis of
media embedded in blockchains. The method for embedding data in the blockchain out-
lined by [52] gave the impetus for their research. [52] gives a provably secure method for
LSB replacement in Bitcoin addresses. [27] notice that this same method also applies to
block nonces, which are similarly randomly distributed.

They identify that the problem is further complicated in the case of addresses since they
might be spread over many transactions in non-consecutive blocks. Addresses with a
covert message from a common originator are likely able to be clustered together by
heuristics. For Bitcoin address clustering they mention multi-input, a single change output
with the same type same as the inputs, while other outputs are of a different type, and
the change value often being the smallest value [46, 33]. The insight that address clusters
arise when a common originator enters data into a blockchain can also be used for our
analysis cases where data may be distributed over multiple transactions. They note that
clustering requires a lot of memory. This work attempts to lower the memory requirement
by pre-filtering transactions.

Next to these address clusters, they also create ordered data sets of block nonces in
order of the block height and addresses in order of their index within their containing

18 CHAPTER 3. RELATED WORK

transaction and transaction order within a block. The sequential data is collected with
the aid of the Python Bitcoin Blockchain Parser [14] and Ethereum ETL [45] python
libraries. Additionally, the address clustering is achieved with the Bitcoin Blocksci [33]
library. Further, the scalpel tool is used to potentially detect files within the data.

They then calculate three different metrics that could indicate the presence of LSB re-
placement steganography. For each cluster or sequence the Shannon entropy, arithmetic
mean, and monobit failures are calculated. The Shannon entropy [41] is a metric for the
information-theoretic entropy in a piece of data, where P is the probability of a piece of
data xi appearing:

E = −
n∑

i=1

(P (xi) log2(P (xi)))

The Shannon Entropy is thus a measure of the number of bits needed to store the in-
formation in a variable. Monobit tests are a measure for randomness in a bitstring by
counting how many more ”1” bits than ”0” bits are contained. By calculating a “p” value
of these events, bitstrings can be accurately assessed for their randomness.

Finally, [27] present histograms of the arithmetic mean and LSBytes of bitcoin and
Ethereum nonces, but failed to detect evidence for steganography and state whether the
data passed the Shannon entropy and monobit failure tests. Similarly with the address
data and clustered address data. To detect stenographic activity, the authors analyzed
histograms of the least significant bytes of their extracted data. Their analysis did not
turn up evidence of steganography used in Bitcoin.

Next to Bitcoin, data analysis approaches have also been published and discussed for
Ethereum. [73] extracted data from the Ethereum blockchain and developed a clustering
and partitioning framework. While clustering and partitioning transactions is out of
scope here, their work offers some insights into data extraction from Ethereum clients.
Raw block data of Ethereum clients only store transactions as issued by the user. The
exact contract state that serves as the input of the transaction is however not stored. To
be able to analyze input states, a trace of the contract execution has to be collected.

For smart contract data specifically, [30] classify smart contracts by analysing the data
field extracted from transactions collected from Etherscan and traces collected from the
Parity Ethereum client. [8] generates histograms of opcodes after collecting contracts
from Etherscan. The literature survey conducted for this thesis has however not turned
up broad arbitrary media analysis done on the Ethereum blockchain.

Much of the research published on Monero’s blockchain focuses on achieving transaction
clustering and linkability. For example, [47] extracts data from the Monero blockchain
and attempts transaction clustering by two heuristics to break Monero’s privacy. Before
2017 Monero users could specify zero additional mixins, effectively affording themselves
no privacy improvement. Further, the mixin sampling potentially allowed guessing the
true input by its spend-age. With these heuristics, the authors managed to guess the true
signer for up to 40% of transactions. They also remark that transaction linking heuristics
that can be applied to identify the true signer, can also be used to exclude signature ring

3.2. COMPARISON 19

members as mixins in other transactions where the true signer is unknown. As a reaction
Monero samples mixins from a distribution mimicking true spend behavior and enforces
constant ring sizes since the year 2018.

[70] investigates possible transaction linkability due to re-use of payment ID data stored
in the tx_extra field. If two transactions use the same unencrypted payment ID the true
signer is revealed if the second transaction uses the change output of the first. Additionally,
they identify the possibility for abuse of plaintext data stored in tx_extra, potentially
proving detrimental to the user’s privacy. Commonalities between the embedded data
in multiple transactions, for example, embedded E-Mail addresses belonging to the same
domain or the synchronicity of their publishing, can be used to link transactions. More
recently, hobbyist researchers published a list of text media embedded in tx_extra [38].
However, a broader analysis of embedded media in Monero has not been undertaken yet.

3.2 Comparison

Table 3.2 compares the related works described in Section 3.1. For each approach, the
target blockchain, the analysis framework, the data analysed, and the analysis scenario
were identified. The findings from this comparison are described below.

Bitcoin’s arbitrary data storage is well studied and has been used by a variety of services.
Three gaps can be identified in the research presented here: A probe of coinbase transac-
tion unlock time and sequence values, automated extraction from the Bitcoin blockchain
of generic media embedded therein, and a steganalysis of media embedded in Bitcoin. Al-
though the research groups present a host of different tools, little re-use of tools is observed
between the works. The solution here re-uses some of the tools of [27] and [5], namely the
Python Blockchain Parser [14], eth-rlp [15] (a sub-dependency of their Ethereum ETL [45]
dependency) and GNU strings. It also uses STATUS [57] from [19] to retrieve data from
the Bitcoin UTXO set. Further, similarly to [9], the data is written to a single database
instance.

The related work presented here has shown that no analysis of media stored in either
Ethereum or Monero was found. In Monero specifically there is no analysis of stored
arbitrary data in tx_extra, though [70] treats the possibility for abuse. Since the liter-
ature discusses no proper framework for data extraction on the Monero blockchain, this
work relies on a custom software based on the Python LMDB wrapper library [69] and
the Monero Python serialization library [35]. The usage of the Ethereum transaction
data field for contract code is well studied, especially for classifying different contracts
and clustering transactions, but no treatment of arbitrary data stored within it has been
found. Overall there is no comparison of arbitrary data storage between the blockchains.

20 CHAPTER 3. RELATED WORK

Table 3.2: Comparison of Related Work

Work Blockchain Analysis Framework Data Analysed Analysis Scenario

[43] Bitcoin Unknown Transactions Arbitrary data types,
legal impacts

[19] Bitcoin Bitcoin Core + STA-
TUS [57] + numpy

UTXO set UTXO set output
type counts

[27] Bitcoin,
Ethereum

Bitcoin: Bitcoin Core
+ Python Blockchain
Parser / BlockSci +
Scalpel ; Ethereum:
Ethereum-ETL +
Scalpel

Addresses,
Block nonces

Address clustering
and stetaganalys,
nonce steganalysis

[10] Bitcoin Bitcoin Core + Post-
greSql

Transactions Classification and
Statistics of Non-
standard Transactions

[5] Bitcoin Bitcoin Core +
Various Shell Utili-
ties (GNU strings,
Binwalk, local-
blockchain-parser,
binary-grep)

Transactions OP RETURN based
protocol detection and
statistics

[59] Bitcoin Bitcoin Core + Cus-
tom Bitcoin Block
Parser + bitcoinj

Transactions Survey and compari-
son of data insertion
methods

[73] Ethereum XBlock-ETH Blocks, Trans-
actions

Block and transaction
partitioning and clus-
tering framework

[30] Ethereum Parity client, Ether-
scan

Transactions
(Smart Con-
tracts)

Smart Contract Clas-
sification

[47] Monero Monerod RPC, Neo4j Transactions Transaction Link-
ablity

[70] Monero Unknown Transactions Transaction Linkabil-
ity, Payment ID reuse

Chapter 4

Design and Implementation

Based on the research on the related work to this thesis, this chapter details the design
and implementation of a command-line tool as a software solution for parsing blockchain
data and writing this data to a tool-specific database for later data analysis and retrieval.

4.1 Design

The solution was designed with three requirements in mind: (1) Optimize the stored
data, (2) be as generic as possible under the changing data structures of the blockchain
being analyzed, and (3) flexibility towards the data to be identified. The solution is not
optimized for data analysis across multiple transactions; it does not provide tools for
transaction clustering. Data embedding methods relying on clusters of transactions are
therefore hard to detect with the tooling presented in this thesis.

Figure 4.1 depicts the high-level flow of data and its components. Blockchain transactions
are first parsed from each blockchain instance. Once parsed, the data passes through pre-
processing criteria, e.g., a check if transactions are non-standard. Only if the data passes
these, it is written to a database. An analysis engine component then runs detectors on
the data for different types of media and if detected applies data labels to the database.
Lastly, there is a view component that presents results to the user or he/she can query
the database for results directly.

4.1.1 Components

The transaction parsing component operates under the assumption that it has access to
the raw blockchain data of the respective blockchain. Typically, blockchain implementa-
tions provide Application Programming Interfaces (APIs) through HTTP or ZeroMQ [42]
servers to query blockchain data. These APIs incur processing time overhead compared
to reading the data directly from disk. Thus, the transaction parser trades shorter pro-
cessing times for direct access to blockchain data files. The parser can also be described
as a generic iterator for blockchain data.

21

22 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.1: Solution High-Level Data Flow

In the data extractor component fields of interest from the parsed transactions are se-
lected. The selected fields are then filtered through a set of pre-processing criteria. The
selection and filter steps are applied to reduce the amount of data written to the database
for further analysis by excluding all transaction fields that are unlikely to contain embed-
ded media. Selecting fields is highly dependent on the underlying blockchain. As described
in Chapter 2, the fields suitable for data storage vary between the coins. The pre-filtering
criteria may include generally applicable criteria, e.g., checking against a minimum length
requirement, but are mostly also specific to the underlying blockchains and attempt to
filter out transaction data formats that are unable to hold arbitrary media. Each row of
data written to the database must have a unique ID that can be reconstructed from the
raw transaction data.

The rows of processed data are then analyzed for potential media content by the analysis
engine component. Each row is iteratively selected and tested against criteria checking
for a specific media type. If a media type is successfully detected, a label for that specific
entry is created in the database. Labels are maintained in their own database tables.
The data labeling criteria use a combination of blockchain-specific and generic methods.
Many blockchain data insertion methods also insert data specific to the operation on the
blockchain alongside the actual data. This additional data needs to be stripped both to
improve the performance of the generic methods and reduce false positives. Thus, every
data labeling criterion first applies blockchain-specific pre-processing before generic data
detection.

Finally, the view component queries the database to compile results for presentation to
the user. To make interaction with the database easier, common adaptors for selecting
and writing data are defined. These include the database adaptor and data selector of

4.2. IMPLEMENTATION 23

Figure 4.1. Compiling results from the labeled data should be done with as many database-
intrinsic operations as possible. For example, with the help of SQL queries, instead
of processing the data iteratively with a data processing framework, such as Python’s
NumPy [50]. The database can optimize these queries for both a shorter runtime and
reduced memory footprint, as opposed to a data processing framework, in which the user
is responsible for the implementation and configuration of such optimizations.

4.1.2 Database

Figure 4.2 depicts the adopted schema of the database. Each row of data is identified
by a triple of attributes making it unique. This attribute triple includes the TXID, or
transaction ID of the transaction the data is contained in, an EXTRA_INDEX especially
relevant for Bitcoin’s case where the exact index of the input or output of a transaction
needs to be specified, and a DATA_TYPE marking which part of a transaction the data is
coming from. This is Transaction Extra for Monero, Data for Ethereum, and Input or
Output Script for Bitcoin. Next to this triple constituting the primary key, the actual data
in raw bytes, the coin or originating blockchain, and the block height of the transaction
are recorded.

Figure 4.2: Example Database Schema

For this thesis, two detectors are implemented as data labeling criteria in the analysis
engine component: (i) One for detecting raw ASCII strings and (ii) one for detecting
potential files. Each detector iterates over all pre-filtered potential data entries in the
blockchainData table, runs the data through the detector, and on detection writes the
length or type of the data alongside the primary key of the blockchainData table as a
foreign key to a dedicated table for the detector, meaning either asciiData or fileData.

4.2 Implementation

This thesis implements the solution’s design (cf. Figure 4.1) as an open-source command-
line tool using Python and a SQLite3 [29] database, called blockchain-parser. Its code

24 CHAPTER 4. DESIGN AND IMPLEMENTATION

is available at [37]. Blockchain-parser is a command-line tool operating in three modes:
parse, analyze and view. The parse mode implements the transaction parsing and data
extractor components, analyze the analysis engine component and view the view compo-
nent. A single, common database ensures data continuity between the different modes. A
database adaptor provides common SQL queries for inserting and reading data to define
a common schema between blockchains as defined in Figure 4.2. A unique transaction
parser and data extractor are developed for each blockchain, though the latter is sub-
classed under a common super-class interface. The analysis engine is implemented as a
monolithic class but contains selected functions that are blockchain-specific to strip un-
necessary data. While the view implementation may take a blockchain as an argument
to select results, it has no blockchain-specific functionality. Wherever possible the code is
annotated with mypy types and docstrings.

4.2.1 Transaction Parsing Implementation

Table 4.1 shows the tools and libraries used for parsing and de-serializing data from
the respective blockchains. A new, custom parser for the go-ethereum database format
was implemented for this work. Since Monero stores all its data in a single LMDB
database, no special data extraction logic was required, beyond the Python-LMDB li-
brary [69]. The STATUS [57] tool used to parse the Bitcoin UTXO-set had to be manually
ported to Python3. The data serialization could be achieved in each case with additional
code required to connect the extraction and serialization libraries. While both python-

bitcoinlib and eth-rlp were straightforward to use, the Monero Python Serialization
Library implements its functions only asynchronously. This required the additional use
of Python’s asyncio runtime to drive the execution of these functions. Each transaction
parser is implemented as a Python iterator within an instantiation of a data extractor
component class.

Table 4.1: Blockchain Parsing Tools

Blockchain Data Extraction Data Serialization
Ethereum Custom eth-rlp [15]
Monero Python-LMDB [69] Monero Python Serialization

Library [35]
Bitcoin Python Bitcoin Blockchain Parser [14]

+ STATUS [57]
python-bitcoinlib [62]

Ethereum

The custom implementation of the Ethereum data parser for this work is outlined in the
following two paragraphs. The go-ethereum [71] Ethereum node stores block bodies and
their headers in separate indexes and files. For this reason, two separate iterators were
created for block headers and block bodies. Listing 4.1 shows the implementation of the
block body iterator. It provides access to both the LevelDB tables for recent data and
the so-called “Freezer” tables, using go-ethereum’s terminology, for historical blocks and

4.2. IMPLEMENTATION 25

transactions. All the data in the “Freezer” tables are stored in a series of numbered data
files. An index file keeps track of each data blob’s start and end positions within the data
files with fixed-size entries. Each index entry is a tuple of a 2-byte integer representing
the file number and a 4-byte integer representing the offset byte where the next blob of
data is expected. Whether the data in the “Freezer” tables need to be decompressed with
snappy [28] is additionally identified by the file extension of the data files. The index
entries are ordered by block height, facilitating a time-ordered retrieval of data.

By reading the index files for both the block body and header tables, it is thus possible to
retrieve data by block height, as done in Listing 4.1 (line 17). If no data is retrieved, the
iterator falls back to retrieving from the LevelDB database. Two queries are required to
retrieve blocks or headers from the database. The first query uses the block height as a
key and retrieves the block hash, the second uses both the block hash and height as a key
and retrieves the full block. In both the “Freezer” tables and the LevelDB database the
data is encoded using Ethereum’s Recursive Length Prefix (RLP) encoding. The eth-

rlp library is used for their decoding. If no entry for a certain block height is found, the
iteration is stopped.

Listing 4.1: Ethereum Block Body Iterator

1 from __future__ import annotations

2 from typing import Union

3 from ethereum_freezer_tables import FreezerBodiesTable

4 from ethereum_leveldb_tables import EthLevelDB

5 from ethereum_rlp import Body

6
7 class ParseEthereumBlockBodies:

8 def __init__(self , ancient_chaindata_path: str , chaindata_path: str)

:

9 self.eth_freezer_table = FreezerBodiesTable(

ancient_chaindata_path)

10 self.eth_leveldb = EthLevelDB(chaindata_path)

11 self.value = 0

12
13 def get_body(self , number: int) -> Body:

14 try:

15 body: Union[Body , None] = self.eth_freezer_table.

get_body_by_height(number)

16 except:

17 body = self.eth_leveldb.get_body_by_height(number)

18 if body is None:

19 raise Exception(f"BodyNotFoundOnHeight :{ number}")

20 return body

21
22 def __iter__(self) -> ParseEthereumBlockBodies:

23 return self

24
25 def __next__(self) -> Body:

26 try:

27 body = self.get_body(self.value + 1)

28 except:

29 raise StopIteration

30 self.value += 1

31 return body

26 CHAPTER 4. DESIGN AND IMPLEMENTATION

Monero

The Monero transactions are retrieved from two LMDB database tables, txs_pruned and
tx_indices, as shown in Listing 4.2 (lines 2-3). First, all content in tx_indices is iterated
over, to retrieve transaction indices used later to retrieve the full transaction (Listing 4.2
line 6). These are filled into a cache to facilitate batched processing (Listing 4.2 line
8). Once a sufficient size, the raw tx_indices entries are de-serialized with the Monero
Python serialization library and an in-line instantiated asynchronous runtime (Listing 4.2
line 10). The first 8 bytes of the de-serialized transaction hash are then used as a key to
retrieve the transaction data from the txs_pruned table, and specifically whatever data
is in the tx_extra field. The transaction data is fetched in batches using Python LMDB’s
getmulti for batched reads (Listing 4.2 line 15).

Listing 4.2: Monero Transaction Parser

1 env = lmdb.open(self.blockchain_path , subdir=True , lock=False , readonly=

True , max_dbs =10)

2 index_db = env.open_db(b"tx_indices", integerkey=True , dupsort=True ,

dupfixed=True)

3 tx_db = env.open_db(b"txs_pruned", integerkey=True)

4 tx_indices_cache = []

5 with env.begin(write=False) as txn:

6 for _, tx_index in txn.cursor(db=index_db):

7 tx_indices_cache.append(tx_index)

8 if len(tx_indices_cache) == 10000:

9 # Get the TxIndex struct from the database tx_index value

10 monero_tx_indices: List[xmr.TxIndex] = asyncio.

get_event_loop ().run_until_complete(

deserialize_tx_indices(tx_indices_cache))

11 # translate the tx index back to bytes for retrieval of the

full transaction

12 db_tx_hashes: List[bytes] = [monero_tx_index.data.tx_id.

to_bytes(8, "little") for monero_tx_index in

monero_tx_indices]

13 # Get the full transaction from the database with the

transaction id bytes

14 cursor = txn.cursor(db=tx_db)

15 monero_txs_raw: List[bytes] = cursor.getmulti(db_tx_hashes)

16 cursor.close()

17 # Use monero_txs_raw and monero_tx_indices for further

processing

18 ...

19 tx_indices_cache = []

Bitcoin

The Python Bitcoin Blockchain Parser’s get_ordered_blocks method first reads Bit-
coin’s LevelDB block height index and then uses the index to traverse the block files
similarly as described before for Ethereum. UTXOs are parsed with a separate iterator
developed from a customized version (typed and updated to Python3) of the STATUS

4.2. IMPLEMENTATION 27

library. In Bitcoin’s LevelDB database UTXOs containing standard P2SH, P2PK, and
P2PKH outputs are stored in a compressed state by exchanging their OP_CODEs for a sin-
gle identification byte. Additionally, all UTXOs are stored obfuscated to avoid anti-virus
software false positives [63]. Listing 4.3 shows the retrieval of the obfuscation key (line
6). Finally, the iterator wraps a LevelDB iterator and on each step de-obfuscates and
de-serializes a single UTXO (Listing 4.3 line 10-15).

Listing 4.3: Bitcoin UTXO parser

1 # Open the LevelDB

2 db = plyvel.DB(

3 str(path.expanduser ()) + "/" + fin_name , compression=None)

4 ...

5 # Load obfuscation key (if it exists)

6 self._o_key = db.get((unhexlify("0e00") + b"obfuscate_key"))

7 ...

8 self._iterator = db.iterator(prefix=prefix)

9 def __next__(self) -> Dict[str , Any]:

10 key , o_value = self._iterator.__next__ ()

11 key = hexlify(key)

12 if self._o_key is not None:

13 value = deobfuscate_value(self._o_key , hexlify(o_value))

14 else:

15 value = hexlify(o_value)

16 return decode_utxo(value , key)

4.2.2 Data Extractor Implementation

An instantiated data extractor component connects the transaction parser iterator to the
database while implementing a unique set of pre-processing criteria for each blockchain.
The data extractors have a common interface as defined by the abstract base class in
Listing 4.4.

Each extractor is initialized with a path to its respective blockchain data files and an enu-
merator for the blockchain it represents. The parse_and_extract_blockchain abstract
method takes the database adaptor as an argument. Its implementation and instantiation
in sub-classes run the actual parsing, pre-processing, and writing. Unique extractors are
implemented for each Bitcoin, Monero and Ethereum deriving from the DataExtractor

abstract base class. Using a common interface across the different data extractors allows
easier switching between blockchains at the call site of the extractor.

Listing 4.4: Data Extractor Base Class

1 from abc import ABC , abstractmethod

2 from pathlib import Path

3 from database import BLOCKCHAIN , Database

4
5 class DataExtractor(ABC):

6 @abstractmethod

7 def __init__(self , blockchain_path: Path , coin: BLOCKCHAIN) -> None:

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

8 pass

9 @abstractmethod

10 def parse_and_extract_blockchain(self , database: Database) -> None:

11 pass

It should be noted that the runtime speed of the data extractor is mostly dominated by
interactions with the filesystem. Reading blockchain data and writing to the blockchain-
parser’s database are both necessarily synchronous, non-concurrent operations, con-
strained by both locks on the various databases and the need to retain block height
order. However, since the blockchain files and databases, and the blockchain-parser SQL
database are distinct from each other, the data extracting and writing can be split into
two concurrent tasks. Thus, to speed up parsing, filtering, and writing the results to
disk, writing to the SQL database is split into a separate worker thread, while the main
thread parses, extracts, and filters the blockchain data. Database writes are additionally
batched.

The worker thread communicates with the main thread with the help of ZeroMQ message
passing. Listing 4.5 shows an example ZeroMQ setup for the communication between the
main and worker thread implemented for Ethereum, using the Pair pattern and in-process
communication as the transport layer. The ZeroMQ recv_pyobj method blocks until a
message is received.

Listing 4.5: ZeroMQ setup

1 import zmq

2 database_event_sender = context.socket(zmq.PAIR)

3 database_event_receiver = context.socket(zmq.PAIR)

4 database_event_sender.bind("inproc :// ethereum_dbbridge")

5 database_event_receiver.connect("inproc :// ethereum_dbbridge")

6 ... # a later point when iterating through the raw ethereum data

7 database_event_sender.send_pyobj(EthereumDataMessage(tx.data , tx.hash(),

DATATYPE.TX_DATA , height))

8 ... # in the worker thread:

9 while True:

10 message: EthereumDataMessage = self._receiver.recv_pyobj ()

11 ... # process and write to the database

For each scanned historical Bitcoin block, the therein contained transactions are deserial-
ized with python-bitcoinlib and each of the transaction inputs and outputs are selected.
All transactions containing non-P2SH standard transaction inputs are ignored. This check
includes all P2PK, P2PKH, P2SH(P2MS), P2SH(P2WPKH), and P2WPKH inputs. Ad-
ditionally, all standard transaction outputs except for those containing OP_RETURN are
ignored, including P2PKH, P2PK, P2SH, P2MS, P2WPKH, and P2WSH. A detector
function for a P2SH output is included in Listing 4.6. This method has the downside of
also excluding all pay-to-fake-key style data embedding methods. Since these fake out-
puts are unspendable though, they can be collected from the UTXO set. To this end,
all UTXOs as parsed from the UTXO set are saved to the database, without additional
pre-filtering applied.

Listing 4.6: P2SH output detector

4.2. IMPLEMENTATION 29

1 def is_p2sh_output(script: bitcoin.core.script.CScript) -> bool:

2 """ Checks if the output script is of the form:

3 OP_HASH160 <hash > OP_EQUAL

4 :param script: Script to be analyzed.

5 :type script: bitcoin.core.script.CScript

6 :return: True if the passed in bitcoin CScript is a p2sh output

script.

7 :rtype: bool """

8
9 if len(script) != 23:

10 return False

11 return (

12 script [0] == bitcoin.core.script.OP_HASH160

13 and script [-1] == bitcoin.core.script.OP_EQUAL

14)

For Ethereum, transactions with empty data fields are ignored. Ethereum Request for
Comments 20 (ERC-20) [65] contract calls are unlikely to hold generic data while making
up a significant portion of Ethereum transactions. They are identified by their methodId,
length, and amount of leading zero bytes in the address encoding. These include the ERC-
20 transfer, approve and transfer from methodIds. Listing 4.7 shows the transfer

from method detector, first checking the correct method id and then the presence of the
addresses used as the arguments of the transfer from invocation.

Listing 4.7: ERC-20 transfer from detector

1 ERC20_TRANSFER_FROM_METHOD_ID = bytes.fromhex("23 b872dd")

2 ETH_LEADING_12_ZERO_BYTES = bytes.fromhex("0"*24)

3
4 def detect_erc20_transfer_from(tx_data: bytes) -> bool:

5 """"Checks if the provide tx_data contains the ERC20 transfer from

function invocation

6 :param tx_data: The tx data to be analyzed

7 :type tx_data: bytes """

8
9 # transferFrom(address _from , address _to , uint256 _value)

10 if tx_data [0:4] == ERC20_TRANSFER_FROM_METHOD_ID:

11 # the length of this contract call is exactly 100 bytes

12 if len(tx_data) != 100:

13 return False

14 # check that the addresses are present , by checking the number

of zeroes

15 if not (tx_data [4:16] == ETH_LEADING_12_ZERO_BYTES and tx_data

[36:48] == ETH_LEADING_12_ZERO_BYTES):

16 return False

17 return True

18 return False

In the Monero Data Extractor, all transactions are ignored with tx_extra fields containing
a single encrypted payment ID with a single transaction public key. Listing 4.8 shows
how first the correct length of such a tx_extra entry is asserted followed by checks of the
correct flag bytes. The Monero transaction parser has an additional runtime performance
bottleneck from the required asynchronous asyncio runtime. To minimize its effect on the

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

data processing and analysis performance, an additional worker thread is created for the
sole purpose of deserializing the transactions. It accepts ZeroMQ messages from the main
thread and passes its results directly by another ZeroMQ message to the database writer
thread.

Listing 4.8: Monero default Transaction Extra detector

1 def is_default_extra(extra: bytes) -> bool:

2 """ Checks if the tx_extra follows the standard format of:

3 0x01 <pubkey > 0x02 0x09 0x01 <encrypted_payment_id >

4 :param extra: Potential default extra bytes.

5 :type extra: bytes

6 :return: True if the passed in bytes are in the default tx_extra

format

7 :rtype: bool

8 """

9
10 if len(extra) != 1 + 32 + 1 + 1 + 1 + 8:

11 return False

12 if (

13 extra [0] == 0x01

14 and extra [33] == 0x02

15 and extra [34] == 0x09

16 and extra [35] == 0x01

17):

18 return True

19 return False

4.2.3 Database Adaptor Implementation

The database adaptor provides functions for creating tables, inserting data, and querying
records. Writes to the SQLite3 database are additionally batched where possible with
the help of Python SQLite3’s executemany, which combines multiple rows into a single
SQL INSERT statement. For the analysis component, a function is provided that takes a
media type detector function as an argument to analyze the data. The interface of this
function is defined in Listing 4.9. Since reading and writing to the same SQLite3 database
cannot be executed in parallel due to the database’s read and write locks, a separation
into worker threads or even separating the iterating read database cursor from the write
database cursor proved architecturally challenging and was not implemented.

Listing 4.9: Media Detection Function Interface

1 class DetectorPayload(NamedTuple):

2 txid: str

3 data_type: str

4 extra_index: int

5 data: bytes

6
7 DetectorFunc = Callable [[DetectorPayload], Optional[NamedTuple]]

8 DatabaseWriteFunc = Callable [[[Iterable[Any], SQLite3.Connection]]]

9

4.2. IMPLEMENTATION 31

10 def run_detection(self , detector: DetectorFunc , database_write_func:

DatabaseWriteFunc , blockchain: Optional[BLOCKCHAIN]) -> None:

4.2.4 Analysis Engine Implementation

When running the blockchain-parser in analyze mode, the user is given the option to select
from a host of different “detectors”. A detector is a function with an interface as defined
in Listing 4.9. Each detector only returns its first positive finding, or None. Further data
in each entry once a positive finding has been made is not analyzed. The implementation
of ASCII string and file type detectors is described in the following paragraphs.

Two string detectors are implemented to check if any strings are embedded inside the ex-
tracted data. The native_strings detector iterates through bytes in the data and checks
if each of them are printable characters, or rather part of Python’s string.printable as
shown in Listing 4.10 (line 18). The length of the first detected string greater than the
minimum length is returned in the detected_data_length field of the returned tuple.

Listing 4.10: Native ASCII detector

1 class DetectedAsciiPayload(NamedTuple):

2 txid: str

3 data_type: str

4 extra_index: int

5 detected_data_length: int

6
7 def native_strings(detector_payload: DetectorPayload , min: int = 10) ->

Optional[DetectedAsciiPayload]:

8 """ Find a string with the specified minimum size

9 :param detector_payload: Contains data to be examined.

10 :type detector_payload: DetectorPayload

11 :param min: Minimum length of the to be detected string.

12 :type min: int

13 :return: DetectedAsciiPayload if detected , None if not.

14 :rtype: Optional[DetectedAsciiPayload]

15 """

16 result = ""

17 for c in detector_payload.data:

18 if chr(c) in string.printable:

19 result += chr(c)

20 continue

21 if len(result) >= min:

22 return DetectedAsciiPayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.extra_index ,

len(result))

23 result = ""

24 if len(result) < min: # catch result at EOI

25 return None

26 return DetectedAsciiPayload(detector_payload.txid , detector_payload.

data_type , detector_payload.extra_index , len(result))

The gnu_strings detector uses the GNU strings [51] command-line utility to detect
printable characters within the data. Its use is inspired by [59], who mention that using

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

it directly on the blockchain databases, for example, Bitcoin’s .blk files, will recover the
ASCII strings. Calling this external utility with Python’s subprocess library for every
data entry is computationally expensive: For every data entry a new subprocess and file
handles for handling the input and output have to be created. Listing 4.11 shows how the
subprocess is opened, data is written to its standard input, results read from its standard
output and the length of the detected string returned in the resulting tuple.

Listing 4.11: GNU strings ASCII detector

1 def gnu_strings(payload: DetectorPayload , min: int = 10) -> Optional[

DetectedAsciiPayload]:

2 """ Find and return a string with the specified minimum size using

gnu strings

3 :param bytestring: Bytes to be examined.

4 :type bytestring: bytes

5 :param min: Minimum length of the to be detected string.

6 :type min: int

7 :return: A string of minimum length min as detected in the

bytestring.

8 :rtype: str

9 """

10 cmd = "strings -n {}".format(min)

11 process = subprocess.Popen(cmd , shell=True , stdout=subprocess.PIPE ,

stderr=subprocess.STDOUT , stdin=subprocess.PIPE)

12 process.stdin.write(payload.data)

13 output = process.communicate ()[0]

14 output_str = output.decode("ascii").strip()

15 length = len(output_str)

16 if length < min:

17 return None

18 return DetectedAsciiPayload(payload.txid , payload.data_type , payload

.extra_index , length)

Next to these two ASCII string detectors, two file type detectors are implemented. One
uses the Python imghdr module to detect magic bytes of various image-related file formats.
Magic bytes are typically a few bytes prepended to data to identify their format. The other
uses a Python wrapper (python-libmagic [64]) for the libmagic [54] library, which is one
of the main components of the better known GNU file [39] utility, to detect potential
files from a large variety of different files. Checking magic bytes will on occasion lead to
false positives. The file detectors do not check every possible sub-slice of the data for files.
Instead, the data is chunked by removing all blockchain-specific serialization and script
operator bytes. Each chunk is then analyzed in its entirety by the file detectors.

The imghdr module and python-libmagic library provide very similar interfaces, leading
to similar implementations between them. For illustration purposes the implementation
of the imghdr detector is shown in Listing 4.12. Some Bitcoin media embedding tools,
for example the “publish-text” tool in the python-bitcoinlib library [62], add a padding
byte before the data. If no file is found an additional attempt is made with the potential
padding byte removed (Listing 4.12 line 12).

Listing 4.12: imghdr detector

4.2. IMPLEMENTATION 33

1 def find_file_with_imghdr(data: bytes) -> Optional[str]:

2 """ Find images with the help of imghdr magic numbers

3 :param bytestring: Bytes to be examined.

4 :type bytestring: bytes

5 :return: A string with the file type

6 :rtype: str

7 """

8 res = imghdr.what("", data)

9 if res:

10 return res

11 # try again with a potential padding byte removed

12 res = imghdr.what("", data [1:])

13 return res

Bitcoin data is chunked with the help of python-bitcoinlib’s script parser. Its CScript
object provides an iterator over each chunk of data contained in a Bitcoin script. In
Listing 4.13 every non-OP_CODE part of the script is passed to the file detector function.
Beforehand the entire data is checked for a potential file (Listing 4.13 line 5).

Listing 4.13: Bitcoin File Data Chunker

1 from bitcoin.core import CScript , script

2 def bitcoin_find_file_within_script(detector_payload: DetectorPayload ,

file_detector_func: Callable [[bytes], Optional[str]]) -> Optional[

DetectedFilePayload]:

3 cscript = CScript(detector_payload.data)

4 # try finding a file in the full script

5 res = file_detector_func(cscript)

6 if res is not None:

7 return DetectedFilePayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.extra_index , res

)

8 for op in cscript:

9 # ignore single op codes

10 if type(op) is int:

11 continue

12 if type(op) is script.CScriptOp:

13 continue

14 # try finding a file in one of the script pushdata

15 res = file_detector_func(op)

16 if res is not None:

17 return DetectedFilePayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.extra_index ,

res)

18 return None

The monero-python library’s ExtraParser [55] separates public keys and nonces from the
complete data contained in the Monero transaction tx_extra field. Listing 4.14 is an
excerpt of the function invoking the file detector on chunks of the tx_extra data. Each
public key and nonce value is checked for potential file data. The ExtraParser’s parse
method throws an exception containing offset location of the first offending byte if any
non-standard bytes are found. In Listing 4.14 lines 15-25 the exception is caught and the
data is sliced at the location of the offending byte passed to the file detector function.

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.14: Monero File Data Chunker

1 from monero.transaction import ExtraParser

2 def monero_find_file_within_extra(detector_payload: DetectorPayload ,

file_detector_func: Callable [[bytes], Optional[str]]) -> Optional[

DetectedFilePayload]:

3 extra_data = ExtraParser(detector_payload.data)

4 probable_data_index = 0

5 ...

6 # check every first and second byte in the nonces

7 try:

8 parsed_extra = extra_data.parse ()

9 if "nonces" in parsed_extra.keys():

10 for nonce in parsed_extra["nonces"]:

11 res = file_detector_func(nonce)

12 if res is not None:

13 return DetectedFilePayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.

extra_index , res)

14 ...

15 except ValueError as err:

16 # get the offset of the non -standard tx extra data

17 match = get_monero_offset_regex ().match(str(err))

18 if match is None:

19 pass

20 else:

21 if match.group (1) is not None:

22 probable_data_index = int(match.group (1))

23 res = file_detector_func(detector_payload.data[

probable_data_index :])

24 if res is not None:

25 return DetectedFilePayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.

extra_index , res)

26 ...

No additional data chunking is implemented for Ethereum. Nonetheless, a separate file
detector implementation for Ethereum shown in Listing 4.15 lays out how the functions
compose with each other. Similar function compositions with file detectors and data
chunking for Bitcoin and Monero are also implemented. These composed functions are
passed to the run_detection function of the database component as defined in Listing 4.9.

Listing 4.15: Ethereum File Detectors

1 def ethereum_find_file_within_data(detector_payload: DetectorPayload ,

file_detector_func: Callable [[bytes], Optional[str]]) -> Optional[

DetectedFilePayload]:

2 res = file_detector_func(detector_payload.data)

3 if res is not None:

4 return DetectedFilePayload(detector_payload.txid ,

detector_payload.data_type , detector_payload.extra_index , res

)

5 return None

6

4.2. IMPLEMENTATION 35

7 def ethereum_find_file_with_magic(detector_payload: DetectorPayload) ->

Optional[DetectedFilePayload]:

8 return ethereum_find_file_within_data(detector_payload ,

find_file_with_magic)

9
10 def ethereum_find_file_with_imghdr(detector_payload: DetectorPayload) ->

Optional[DetectedFilePayload]:

11 return ethereum_find_file_within_data(detector_payload ,

find_file_with_imghdr)

4.2.5 View Implementation

The results presented in the evaluation, are compiled by the view mode of the blockchain
parser. It uses SQL queries to directly query histograms from the database. The query
used for the ASCII text data is shown in Listing 4.16. The view prints the raw data of
the histogram to stdout on the command line (lines 2-7), saves and shows plots of the
histograms to the user, and writes the histograms to CSV files.

Listing 4.16: Sample SQL histogram query

1 SELECT STRING_LENGTH , COUNT(STRING_LENGTH) FROM asciiData GROUP BY

STRING_LENGTH ORDER BY STRING_LENGTH;

2 > ppm|5

3 pbm|11

4 pgm|13

5 bmp |303

6 tiff |616

7 rgb |18002

4.2.6 Usage

The blockchain-parser tool provides a help text when run with the -help flag. Exam-
ple usage within the three implemented modes, parse, analyze and view, is nevertheless
provided in the following.

The blockchain-parser command in Listing 4.17 illustrates its usage in parse mode. -

parse takes as an argument the location of the respective blockchain’s data directory.
-blockchain specifies which blockchain is supposed to be targeted, -database the name
of the database file the parsed data is written to. Valid blockchain arguments can be read
from the help text.

Listing 4.17: Blockchain-Parser Parse Mode

1 python main.py --parse /home/drgrid /. bitcoin/testnet3 --blockchain

bitcoin_testnet3 --database btc_test.db

Listing 4.18 is an example for running the tool in analyze mode. Analyze takes as an
argument an identifier for the detector function to be used. The -help text provides all

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

valid analyzer arguments. While not strictly required, the blockchain argument is relevant
where data chunking as illustrated in Listing 4.13 and Listing 4.14 is possible.

Listing 4.18: Blockchain-Parser Analyze Mode

1 python main.py --analyze magic_files --blockchain monero_mainnet --

database xmr_result.db

Lastly, the view mode usage is shown in Listing 4.19. The view argument determines for
which detected data type a histogram should be compiled. Again, the help text provides
all valid data type arguments for the view mode. The data can additionally be restricted,
labeled, and color-coded to specific blockchains with the -blockchain argument. When
passed the record_stats flag, the view compiles and prints statistics of the data tables as
shown in Listing 4.20 including the total number of rows in each table and the maximum
block height found in the blockchainData table.

Listing 4.19: Blockchain-Parser ASCII-Histogram View Mode

1 python main.py --view ascii_histogram --blockchain monero_mainnet --

database xmr_result.db

Listing 4.20: Blockchain-Parser Record-Stats View Mode

1 python main.py --view record_stats --blockchain monero_mainnet --

database xmr_result.db

2 > Maximum data record size: 165035

3 RecordStatistics(distinct_data_rows =5475178 , max_block_height =2558959 ,

ascii_data_count =178366 , magic_file_data_count =82108 ,

imghdr_file_data_count =18950)

Chapter 5

Evaluation and Discussion

Each of the blockchains considered in this thesis are parsed and analyzed with the
blockchain-parser tool. The blockchain-parser’s view mode is then used to generate the
presented histograms. Table 5.1 shows at which block height the data was recorded for
each blockchain as well as the total number of rows in the raw blockchainData table and
the tables populated by the various analysis engine detectors. Additionally, the maximum
size of a single data record in bytes for each blockchain is given. The last row contains
the full raw size of the respective blockchain.

Table 5.1: Data Collection Statistics

Bitcoin Ethereum Monero
Block Height 725’463 10’230’173 2’558’959
Last Block Date March 1st 2022 June 9th 2020 February 13th 2022
Raw Data Rows 234’257’580 155’271’423 5’475’178
String Rows 5’985’826 9’216’636 178’366
Magic File Rows 2’220’047 3’292’963 82’108
Imghdr File Rows 27’843 851 18’950
Max. Data Record Size (Bytes) 9319 716’805 165’035
Database Size (MBytes) 61’459 67’664 1’510
Blockchain Size (GBytes) 456 494 134

Due to time constraints in collecting data for this thesis, the block syncing from the three
blockchains was stopped at different points in time. The block syncing of Ethereum was
stopped prematurely after a week of real-time syncing to test and develop the blockchain-
parser. Though not benchmarked accurately, estimated runtime durations are given in the
following sentences. The Monero parsing and analysis steps did not exceed a few hours.
Bitcoin and Ethereum’s block parsing each took more than a full day. The native string
and imghdr detector-based analyses each took about 8 hours. The file type analysis with
the python-libmagic library in each case took about 24 hours. The Monero blockchain
has recorded orders of magnitude fewer transactions than both Bitcoin and Ethereum,
explaining the discrepancy in both the amount of data parsed, recorded, and analyzed,
and thus the differences in analysis runtime. Once the analysis was completed, producing
the results with the blockchain-parser’s view was performed in seconds.

37

38 CHAPTER 5. EVALUATION AND DISCUSSION

To decrease the initial blockchain download, data parsing, and analysis time, each
blockchain was processed with its dedicated operating system and hardware. Parallel
processing would have been possible as long as separate databases are used for each
blockchain to avoid deadlock. Table 5.2 shows the system configuration used for each
blockchain, including the Operating System (OS) on which the analysis was conducted
on. Besides the disk type and its effect on file I/O, none of the system resources were
exhausted or seemed to have negatively affected processing speed. The slower Ethereum
initial blockchain sync speed can be explained by the slower read and write performance
of a Hard Disk Drive (HDD) compared to a Solid-State Drive (SSD).

Table 5.2: System Information

Bitcoin Ethereum Monero
CPU Ryzen 7 3700X @ 3.6GHz Xeon E312xx @ 2.4 GHz i7-5820K @ 3.3 GHz
RAM 64 GB 16 GB 24 GB
Disk Size 921 GB 2047 GB 464 GB
OS Ubuntu 18.04 Ubuntu 20.04 Ubuntu 18.04
Disk Type SSD HDD SSD

5.1 Histograms

The ASCII string length histograms depict the string length distribution of detected
strings with a minimum length of 10. For each blockchain, a histogram showing the
distribution of string length counts and the total strings above a certain string length is
generated. The x-axis in each plot is logarithmically scaled.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 37 39 41 50 22
4

23
1

23
2

24
9

33
1

50
02

3

string length

101

103

105

co
un

ts

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

minimum string length

102

104

co
un

ts

Figure 5.1: Monero ASCII String Logarithmic Histogram

5.1. HISTOGRAMS 39

The entire distribution of Monero string lengths is plotted in Figure 5.1. The single outlier
in the 50’023 string length bin was inspected closer and contains the phrase “Improve
uniformity, remove tx extra.” repeated over and over again in the tx_extra field of the
transaction with TXID 108E...791E. The limitations of the ASCII string detection method
used by the blockchain-parser are illustrated by the content in the 249 string length bin.
On inspection, it contains the full script of DreamWorks Animation’s “Bee Movie”, a
string with length 115’345 contained in the tx_extra field of the transaction with TXID
50DE...1478. The difference between the actual and detected string length is explained
by the inclusion of special non-ASCII characters in the data. The string detector of the
blockchain-parser will only detect the first ASCII substring longer than 10 characters
before the special non-ASCII characters are found. Indeed the first special character
appears 249 characters after the beginning of the first string. Prepended and appended
to the movie script is a message again calling for the immediate removal of the tx_extra.
Further inspection of the strings reproduces the existing findings in [38], including E-Mail
addresses, greetings, and short texts.

10

37

64

91

11
8

14
5

17
2

19
9

22
6

25
3

28
0

30
7

33
4

36
4

39
5

14
44

string length

101

102

103

104

105

106

co
un

ts

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

string length

104

105

106

co
un

ts

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

minimum string length

106

2 × 106

3 × 106

4 × 106

6 × 106

co
un

ts

Figure 5.2: Bitcoin ASCII String Logarithmic Histogram

The top histogram of the Bitcoin string length Figure 5.2 shows the distribution of string
lengths in its entirety. The labels added to its bins offer coarse orientation to their repre-
senting string length, however, empty bins are skipped to visualize their entire distribution.
The last bin with string length 1’444 is a string from a non-standard transaction output
in the transaction with TXID 7782...AD69 containing an E-Mail supposedly written by

40 CHAPTER 5. EVALUATION AND DISCUSSION

Satoshi Nakamoto warning a Bitcoin implementation of a security bug. Several outliers
can be distinguished in the data, with a cluster of strings appearing around the 64-byte
string length. For visualization and comparison purposes only the first 33 bins are plotted
in the second plot of Figure 5.2. Even so, outliers can still be identified for example in
bin 24. During the development of the blockchain-parser, some of the detected Bitcoin
strings were viewed closer, confirming prior research on their content containing, among
others, short poems, greetings, and E-Mail addresses.

10

23
0

45
0

67
2

92
6

12
04

14

92

20
44

26

42

35
49

49

84

75
06

15

10
1

27
24

3
29

69
9

17
45

14

string length

101

103

105

co
un

ts

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

string length

104

105

106

co
un

ts

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

minimum string length

2 × 106

3 × 106

4 × 106

6 × 106

co
un

ts

Figure 5.3: Ethereum ASCII String Logarithmic Histogram

Similar to Bitcoin’s, the top histogram in the Ethereum string length Figure 5.3 omits
empty bins. The final bin with string length 174’514 corresponds to the data field content
of the Ethereum transaction with TXID 2F05...D9AE containing a full copy of William
Shakespeare’s Romeo and Juliet as published by Project Gutenberg [58]. A cluster around
the 450 string length bin can be visually identified. The second strings histogram in
Figure 5.3 is also truncated to the first 34 bins. Its data seems more evenly distributed,
with just a single, clear visual outlier in bin 31. From the few other strings beheld during
development, their content seemed similar to that of Bitcoin and Monero.

The python-libmagic- and imghdr-based file type detector results are histogrammed
within the same figure for each blockchain. Comparing the histograms visually, a few
prevalent file types seem common across all blockchains. Again, the counts in each his-
togram are logarithmically scaled. When comparing the distribution of python-libmagic-
detected file types between the blockchains, a prevalence for UTF-8, JSON and CSV data

5.1. HISTOGRAMS 41

can be identified in Ethereum. The distributions of Monero’s detected file type histograms
presented in Figure 5.4a and 5.4b seem like a subset of the detected file types in the his-
tograms of Bitcoin and Ethereum with no apparent file types sticking out, besides a high
count of rgb type images.

bm
p

pb
m

pg
m

pp
m rg
b tif
f

101

102

103

104

co
un

ts

(a) Monero imghdr-detected file types
Bi

o-
Ra

d
.P

IC
 Im

ag
e.

M
PE

G
st

re
am

RL
E

im
ag

e
da

ta
Ta

rg
a

im
ag

e
da

ta
gz

ip
 c

om
pr

es
se

d
da

ta
m

cr
yp

t e
nc

ry
pt

ed
 d

.
zli

b
co

m
pr

es
se

d
da

ta
JP

EG
 im

ag
e

da
ta

Gr
in

go
tts

 d
at

a
fil

e
PG

P
en

cr
yp

te
d

da
ta

PG
P

ke
y

GP
G

en
cr

yp
te

d
da

ta
GP

G
ke

y

100

101

102

103

104

105

co
un

ts

(b) Monero python-libmagic-detected file
types

Figure 5.4: Monero detected file types logarithmic histogram

Some of the imghdr-detected jpeg file types found in Bitcoin and presented in Figure 5.5a
were manually inspected. Their transaction IDs matched the ones presented in the prior
work of [59]. However, no complete reconstruction of an image was attempted, since
further tooling would have been required to retrieve other parts of the image from other
transaction outputs or even other transactions. Due to time limitations, this was not
developed.

bm
p gi
f

jp
eg

pb
m

pg
m

pn
g

pp
m rg
b tif
f

101

102

103

104

co
un

ts

(a) Bitcoin imghdr-detected file types

Bi
o-

Ra
d

.P
IC

 Im
ag

e.
Ch

ia
sm

us
 k

ey
DE

R
En

co
de

d
Ce

rti
f.

EI
CA

R
vi

ru
s t

es
t f

.
Hi

ve
ly

 Tr
ac

ke
r S

on
g

M
PE

G
st

re
am

PB
F

im
ag

e
(d

ef
la

te
.

PE
M

 R
SA

 p
riv

at
e

ke
y

PG
P

sig
na

tu
re

RL
E

im
ag

e
da

ta
SV

G
Sc

al
ab

le
 V

ec
to

.
Ta

rg
a

im
ag

e
da

ta
Un

ico
de

 te
xt

, S
CS

U.
bz

ip
2

co
m

pr
es

se
d

d.
gz

ip
 c

om
pr

es
se

d
da

ta
m

cr
yp

t e
nc

ry
pt

ed
 d

.
zli

b
co

m
pr

es
se

d
da

ta
UT

F-
8

JP
EG

 im
ag

e
da

ta
PN

G
im

ag
e

da
ta

Gr
in

go
tts

 d
at

a
fil

e
DI

F
(D

VC
PR

O)
 m

ov
ie

.
op

en
ss

l e
nc

'd
 d

at
a

PG
P

en
cr

yp
te

d
da

ta
PG

P
ke

y
GP

G
en

cr
yp

te
d

da
ta

GP
G

ke
y

LZ
M

A
co

m
pr

es
se

d
d.

GI
F

im
ag

e
PD

F
do

cu
m

en
t

M
P3

 a
ud

io
M

SX
 m

us
ic

fil
e

M
us

ep
ac

k
au

di
o

101

102

103

104

105

106

co
un

ts

(b) Bitcoin python-libmagic-detected file
types

Figure 5.5: Bitcoin detected file types logarithmic histogram

The three potential gif type files detected from Ethereum and represented in the data
of Figure 5.6a were also manually inspected. Their entire raw data was retrieved from

42 CHAPTER 5. EVALUATION AND DISCUSSION

bm
p gi
f

jp
eg

pb
m

pg
m

pn
g

rg
b tif
f

100

101

102

co
un

ts

(a) Ethereum imghdr-detected file types

Bi
o-

Ra
d

.P
IC

 Im
ag

e.
CS

V
te

xt
Ch

ia
sm

us
 k

ey
EI

CA
R

vi
ru

s t
es

t f
.

JS
ON

 d
at

a
Ke

ep
as

s p
as

sw
or

d
d.

M
PE

G
st

re
am

PG
P

m
es

sa
ge

PG
P

sig
na

tu
re

RL
E

im
ag

e
da

ta
Ri

ch
 Te

xt
 F

or
m

at
 d

.
SV

G
Sc

al
ab

le
 V

ec
to

.
So

ny
 P

la
yS

ta
tio

n
A.

Ta
rg

a
im

ag
e

da
ta

gz
ip

 c
om

pr
es

se
d

da
ta

m
cr

yp
t e

nc
ry

pt
ed

 d
.

zli
b

co
m

pr
es

se
d

da
ta

UT
F-

8
JP

EG
 im

ag
e

da
ta

PN
G

im
ag

e
da

ta
DI

F
(D

VC
PR

O)
 m

ov
ie

.
ta

r a
rc

hi
ve

op
en

ss
l e

nc
'd

 d
at

a
OS

/2
 g

ra
ph

ic
PG

P
en

cr
yp

te
d

da
ta

PG
P

ke
y

GP
G

en
cr

yp
te

d
da

ta
GP

G
ke

y
LZ

M
A

co
m

pr
es

se
d

d.
GI

F
im

ag
e

PD
F

do
cu

m
en

t100

101

102

103

104

105

106

co
un

ts

(b) Ethereum python-libmagic-detected file
types

Figure 5.6: Ethereum detected file types logarithmic histogram

the database and written to a file. Indeed each of the data contained a complete, single-
framed gif file, Figure 5.7a showing an extracted QR code, Figure 5.7b a “troll face” and
Figure 5.7c what appears to be the first 20 bytes of an Ethereum private key. Due to time
constraints, no other potential files were inspected.

(a) TXID 7DE..3A2

(b) TXID CC44..430E
(c) TXID C9F6..BE23

Figure 5.7: GIF files found in Ethereum

5.2 False Positive Detections

Much of the data presented in the histograms are made up of false positives. The likelihood
of finding an ASCII string of length n within a series of uniformly distributed bytes
decreases exponentially with the length of n. In the ASCII string histograms, the number
of detected strings is thus skewed towards the left-hand side. When visualized on a
logarithmic axis the string length appears to decrease linearly within the first few bins.
Outliers of this pattern are where in all likelihood actual strings were detected. A concrete
calculation of the false positive rate for detected ASCII strings is complex. Though the
probability of detecting a single character in a byte of data is p = 100/256 for the 100
printable characters contained in Python’s string.printable, calculating the probability
of detecting a string with a minimum length n is dependent on the string’s length, which
varies for each record. Thus, such a calculation is omitted here.

5.2. FALSE POSITIVE DETECTIONS 43

The likelihood of a false positive file type identification is based on the length and re-
strictions of the file type’s magic bytes. As an example, the magic bytes of one of the
most often imghdr-detected file type, rgb, are \x01\xda. The probability of drawing
these two bytes at the first and second position of the data respectively is p = 256−2 and
the expected number of false positives for n trials, assuming the bytes in the data are
randomly distributed, n · p. Calculating the expected false-positive rate on the data here
is however more involved since the data is indeed not randomly distributed. However,
what should be noted is that file types identified by only 2 or 3 magic bytes are in all
likelihood false positives.

Table 5.3: Expected imghdr File Detection Events

File
Type

l n p EE
Monero

AE
Monero

EE
Bitcoin

AE
Bitcoin

EE
Ethereum

AE
Ethereum

tiff 2 2 2 · 256−2 668 616 28595 9434 9477 514
rgb 2 1 256−2 334 18’002 14279 11796 4738 144
bmp 2 1 256−2 334 303 14279 6261 4738 73
pbm 3 6 6 · 256−3 11 11 335 79 111 1
pgm 3 6 6 · 256−3 11 13 335 59 111 4
ppm 3 6 6 · 256−3 11 5 335 84 111 0
jpeg 4 2 2 · 256−4 0 0 0 67 0 68
gif 6 2 2 · 256−6 0 0 0 9 0 3
png 8 1 256−8 0 0 0 54 0 44

Table 5.3 shows the expected numbers of detected data assuming a uniform distribution
of its bytes from a few selected file types. First, the probability p for a single false positive
is calculated from the magic bytes. This probability is multiplied by a value estimating
the number of k data chunks for each blockchain. For Monero this is estimated at 6,
including a transaction public key, a payment ID, and the entire data with each padding
byte removed and left whole. Bitcoin transaction input or outputs usually contain at
least one data element, so its k is estimated to 4, while Ethereum data is not chunked any
further beyond the padding byte, making its k = 2. A certain file type is marked by n
different magic bytes of length l. Finally the total number of records r is retrieved from
Table 5.1. The expected number of detected file types, or Expected Events (EE), is then
n · p · k · r. These are analog to the expected number of false positives. Additionally the
Table 5.3 gives the number of Actual Events (AE) for each detected file type.

From comparing the expected to the actual number of detected file types most if not all
of the detected tiff, rgb, or bitmap files are false positives. However, any detected jpeg,
gif, and png file types may represent real files with a high likelihood. Considering that
these are three widely used image file formats adds evidence to this hypothesis. Based
on the difference between the estimated and actual data in Bitcoin and Ethereum, their
k value seems to have been chosen too high.

Similar to the imghdr-detected file types, the python-libmagic-detected file type results
also contain many false positives. Comparing the results among each other, all blockchains
contain similarly large amounts of PGP data, an indication that these are further false
positives, especially when comparing their counts to the counts of detected png. The

44 CHAPTER 5. EVALUATION AND DISCUSSION

gif and png image file types are also detected by both imghdr and python-libmagic,
contrary to jpeg identification, where the python-libmagic detector seems to produce
many false positives. The python-libmagic file detector seems especially well suited for
identifying structured data, e.g., CSV, UTF-8 and JSON data. For these file types, the
distribution between the blockchains varies significantly. Some of their identifications
in Ethereum were checked manually and indeed all contained the structured data that
python-libmagic claimed they did.

5.3 Discussion and Challenges

This section recapitulates the results of the evaluation, discusses them, and briefly con-
textualizes them with those of some related works. Finally, it presents challenges faced
during implementation and data gathering.

5.3.1 Discussion

In the Monero ASCII string length histogram of Figure 5.1 a clear outlier is in the 32-byte
bin. These are likely small messages embedded in the 32-byte unencrypted payment IDs
[38]. No explanation was found for the apparent clusters in the Bitcoin and Ethereum
string data. For each blockchain, the aggregate minimum string length bins are plotted
to discover bins that significantly deviate from the baseline. Such can be found for string
length 37 in Monero, 24 in Bitcoin, and 31 in Ethereum. Ascertaining if these outliers
contain actual strings and not false positives just by their amount compared to other bins
is however problematic. They may be caused by OP_CODEs in the script contracts whose
byte representations lie within the printable ASCII character range. Analyzing the strings
with a language engine could bring more certainty.

An example indicating that the bytes of the data analyzed here are not composed of
uniformly distributed bytes can be seen in the Monero imghdr-detected file type histogram
Figure 5.4a. If the bytes in the data were indeed uniformly distributed, the expected
likelihood of a tiff false positive should be twice as high as a rgb false positive file type
identification as shown in Table 5.3. The discrepancy in the data can be explained by
noting that \x01, the first magic byte of the rgb file type, is used at the beginning of
most Monero tx_extra data as a serialization marker byte indicating the presence of a
transaction public key. Analog explanations also apply to the overestimation of expected
file detection events for Bitcoin and Ethereum in Table 5.3.

The capabilities of the blockchain-parser to correctly identify at least a subset of the files
and texts embedded into blockchains were proven by extracting and inspecting, albeit
manually, some image and text data. To further increase its utility both its accuracy and
speed should be improved. The ASCII-string detector should handle at least some special
characters to not terminate its counting early. File and data carving tools, for example,
disk recovery utilities, could potentially be used for efficient file extraction once a file
has been identified. Eventually, the blockchain-parser should be able to automatically

5.3. DISCUSSION AND CHALLENGES 45

extract media files from blockchains. Though the blockchain-parser does not implement
transaction clustering that would be required to extract files spread across multiple Bitcoin
transactions, this could be sidestepped by using a block explorer or Bitcoin node API to
assemble the required transactions. Clustering all transactions of a blockchain would
be wasteful compared to assembling the required data ad-lib for the couple of hundred
identified potential files.

From Table 5.1 it appears that Ethereum is the most-used blockchain for data embedding
of the three, both in absolute and relative terms. Though it has the least amount of
imghdr-detected data, this is mostly due to the low amount of likely false positives.
When comparing the probably correctly identified data types, gif, jpeg and png, it has
the most records for each. The reason for the low rate of imghdr detections might be that
the various methodIds embedded in the data field have no common bytes with the magic
numbers of the tested file types. A possible explanation for why Ethereum contains the
most data is that it is cheaper. However, such an assessment is difficult, since the gas and
Ether prices both fluctuate. A more likely explanation is that many Ethereum wallets
allow their users to manually fill the transaction data field, thus allowing them to embed
strings and files.

Compared to the media statistics provided by [43] in Table 3.1 the blockchain-parser
discovered many more text and media records. This can be partly explained by the
inclusion of false positive entries and the later blockchain height at which the analysis here
was commenced from. However, a closer comparison or contextualizing of the results is
not possible, since [43] does not disclose their methods for detecting data. [59] identified
129’410 unique P2FKH outputs storing ASCII strings with a minimum length of 18.
In total the blockchain-parser detected 3’024’579 strings with a minimum length of 18
(Figure 5.2). This shows that many strings are stored with data embedding methods other
than P2FKH. [59] also provides TXIDs of transactions containing images that appeared
in the Bitcoin detected media data generated by the blockchain-parser.

5.3.2 Implementation Challenges

The main implementation challenge was reducing the computation time required in the
parse and analyze steps of the blockchain-parser. Even with all optimizations outlined
in Section 4.2, some of the parsing and analysis steps took over 24 hours. This made
debugging particular issues that only arose deep within the respective processes, e.g.
system resources, caching, and data type exceptions, challenging and time-consuming.
One such issue was a memory leak in the libmagic library, which was only discovered
after a full day of processing. Due to time constraints on this thesis, the blockchain-parser
was not further optimized. Another key optimization might be batching blockchain file
reads, by reading ahead in the iterator and only processing chunks of the data in each
iteration. Further, the data written to the blockchain-parser’s database can be reduced
by placing duplicate items, like duplicate block heights, or transaction IDs, into separate
tables.

The python-libmagic file type detector created a lot of false positive and noisy output.
The noisy output was owned to python-libmagic creating custom results based on po-

46 CHAPTER 5. EVALUATION AND DISCUSSION

tential file sizes, encryption modes, and stream modes among others. These results were
labeled together by matching common substrings, for example, any python-libmagic

result containing the string “MPEG” was re-labeled as “MPEG stream” by the analyzer
in the database. Further, highly probable false positive results, e.g. esoteric or outdated
file types, were manually filtered and ignored by matching substrings.

No data analysis was made with the GNU strings-based detector because its runtime
was too slow for the amount of data analyzed. Two attempts were made to improve
its performance. In the first attempt, a strings subprocess was launched asynchronously
and awaited in batches in a dedicated thread in order not to block the database reading
and writing. However, Python’s asynchronous subprocess had limitations when used in
a thread outside the main thread, which rendered this approach too architecturally chal-
lenging. In the second attempt, many subprocesses were launched in dedicated threads.
This proved much faster until the system ran out of file handles opened by the input and
output streams to capture the results, leading to a crash of the program. No workaround
was found to these problems, leading to the adoption of a single-threaded implementation.

Chapter 6

Summary, Conclusions, and Future Work

The ever-increasing propensity for posting and storing digital media online has left its
mark on blockchains. However, their capability of storing data is limited by size restric-
tions, consensus rules, and transaction fees. Even with these restrictions and against
further odds like complex methodologies and discouragement by blockchain developers
users have found ways to embed data in blockchains. The objective of this thesis was
to analyze both the amount of data and the types of media embedded into the Bitcoin,
Ethereum, and Monero blockchains. Comparing results between the blockchains can then
provide pointers towards which blockchain is most suited for data storage and how future
blockchain-based storage approaches can cater to the needs of their users.

To provide a theoretical background needed to develop a solution to parse and analyze
blockchain data, a conceptual introduction to blockchains was given. For each of Bit-
coin, Ethereum, and Monero their core features and functionality, transaction structures,
blockchain database designs, and data embedding methods were illustrated. Existing
methods for embedding, retrieving, and analyzing data were surveyed from related work.
From the related work, a lack of a cross-blockchain solution as well as quantitative analyses
of blockchain-embedded media data, was identified. Finally, their description of methods
and tools employed informed the development of a solution for this thesis.

As a software solution, the blockchain-parser tool was developed for identifying embedded
media in blockchains. It directly parses the blockchain database and writes to a database
with a generic schema. From there a user can direct the tool to analyze the parsed data
for either file types or strings using multiple tools. The user can then view the analysis
results through either the blockchain-parser or a query to its SQL database. The user can
dynamically select blockchains and their data directories.

With the help of the blockchain-parser, ASCII text and file type statistics were compiled.
For each blockchain, the tool identified text data and for Bitcoin and Ethereum some
of the embedded media files. A few of the detected strings and files were successfully
extracted from the blockchain-parser database and presented in this thesis. The number of
expected data type identifications was compared to those of file types actually identified.
This provided strong evidence that a lot of the detected files, mostly those identified
through short 2- or 3-byte magic numbers, were false positives. Due to time limitations,

47

48 CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

no automated file extraction was implemented, though some files were extracted manually
as proof of the method.

In conclusion, the Ethereum blockchain contained the most embedded text and media
data, though all blockchains were indeed used to embed generic media. This corroborates
the claim that blockchain storage is alluring for users, despite not being strictly designed,
nor particularly efficient, for this purpose. Blockchain storage seems to be especially
attractive for small images and texts. A system seeking to emulate and replace blockchain
data storage should probably strive to be a public, uncensorable, permanent, but size-
limited global bulletin board with a single up-front cost.

Of the three investigated blockchains, Ethereum seems to be the best suited for embed-
ding generic data due to the ease of use of manipulating its data field, the available space
for consecutive data, and the least detrimental effects to the network. Ethereum com-
presses and archives the data contents of EOA-to-EOA transactions and unlike some of
the data-embedding methods of Bitcoin and Monero does not cache, or save this data
to more memory-intensive databases. Although Monero also allows for large amounts of
consecutive data, it is probably less suited for data storage due to its detrimental effects
on transaction uniformity and thus the privacy of its users.

The thesis has left out some aspects of embedding data across different blockchains that
can be followed up in future work. No complete study was done on the user experience
of embedding data in each blockchain, nor the concrete associated cost for both the user
in terms of transaction fee and the network in terms of transaction size and processing
cost. Besides this, more blockchains could be investigated as the developed system is
blockchain-agnostic. This work compared a single example of each of the UTXO-, TXO-
and Account-based transaction models. Other blockchains implementing each of these
transaction models could be analyzed for further comparison. The capabilities of the
blockchain-parser could be improved. Most importantly, it should eventually get the
ability to extract and save files from the supported blockchains. Both analysis speed and
precision are areas that can be the subject of future work investigations and development.

Though mentioned both in the background and related work chapters, no steganalysis
was done as part of this thesis, in part due to the lack of automated file extraction.
Once implemented, future work can implement a steganalysis approach for detecting LSB-
replacement in the extracted images with the herein discussed techniques, such as monobit
failure detection and Shannon entropy calculations.

Bibliography

[1] Gavin Andresen. Block v2, Height in Coinbase, June 2012. https://github.com/

bitcoin/bips/blob/master/bip-0034.mediawiki, Last visit October 25 2021.

[2] Andreas M. Antonopoulos. Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media, 2nd edition, June 2017.

[3] Andreas M. Antonopoulos. Mastering Ethereum: Building Smart Contracts and
DApps. O’Reilly Media, 1st edition, December 2018.

[4] Massimo Bartoletti, Bryn Bellomy, and Livio Pompianu. A journey into bitcoin
metadata. Journal of Grid Computing, 17(1):3–22, 2019.

[5] Massimo Bartoletti and Livio Pompianu. An analysis of bitcoin op return metadata.
Lecture Notes in Computer Science, February 2017.

[6] BeckyMH. OpenPuff, December 2017. https://en.bitcoinwiki.org/wiki/

OpenPuff, Last visit October 31 2021.

[7] Marianna Belotti, Nikola Božić, Guy Pujolle, and Stefano Secci. A Vademecum on
Blockchain Technologies: When, Which, and How. IEEE Communications Surveys
& Tutorials, 21(4):3796–3838, 2019.

[8] Stefano Bistarelli, Gianmarco Mazzante, Matteo Micheletti, Leonardo Mostarda, and
Francesco Tiezzi. Analysis of ethereum smart contracts and opcodes. In International
Conference on Advanced Information Networking and Applications, pages 546–558.
Springer, 2019.

[9] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. A suite of tools for the
forensic analysis of bitcoin transactions: Preliminary report. In European Conference
on Parallel Processing, pages 329–341. Springer, 2018.

[10] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. An analysis of non-standard
transactions. Frontiers in Blockchain, 2, August 2019.

[11] bitcoin.org. What is a full node?, October 2021. https://bitcoin.org/en/

full-node#what-is-a-full-node, Last visit October 25 2021.

[12] Benedikt Boehm. Stegexpose - a tool for detecting lsb steganography. arXiv preprint
arXiv:1410.6656, 2014.

49

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://en.bitcoinwiki.org/wiki/OpenPuff
https://en.bitcoinwiki.org/wiki/OpenPuff
https://bitcoin.org/en/full-node#what-is-a-full-node
https://bitcoin.org/en/full-node#what-is-a-full-node

50 BIBLIOGRAPHY

[13] Christian Cachin. An information-theoretic model for steganography. In David Auc-
smith, editor, Information Hiding, pages 306–318, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[14] Antoine Le Calvez. python-bitcoin-blockchain-parser, November 2015. https://

github.com/alecalve/python-bitcoin-blockchain-parser, Last visit January
25 2022.

[15] Jason Carver. Ethereum recursive length prefix encoding, January 2018. https:

//github.com/ethereum/eth-rlp, Last visit March 10 2022.

[16] Rajarathnam Chandramouli, Mehdi Kharrazi, and Nasir Memon. Image steganog-
raphy and steganalysis: Concepts and practice. In Ton Kalker, Ingemar Cox, and
Yong Man Ro, editors, Digital Watermarking, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[17] Howard Chu. Lmdb, June 2011. https://git.openldap.org/openldap/openldap/
tree/mdb.master, Last visit March 10 2022.

[18] Resul Das. An investigation on information hiding tools for steganography. Interna-
tional Journal of Information Security Science, 3(3):200–208, 2014.

[19] Sergi Delgado-Segura, Cristina Pérez-Sola, Guillermo Navarro-Arribas, and Jordi
Herrera-Joancomart́ı. Analysis of the bitcoin utxo set. In International Conference
on Financial Cryptography and Data Security, pages 78–91. Springer, 2018.

[20] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar.
Survey on cryptocurrency networking: Context, state-of-the-art, challenges. arXiv
preprint arXiv:2008.08412, 2020.

[21] embiimob. apertus, December 2013. http://apertus.io/, Last visit February 28
2022.

[22] eternitywall. eternitywall. https://eternitywall.it/, Last visit February 28 2022.

[23] Open Ethereum. Proof-of-authority chains - wiki, October 2021. https://

openethereum.github.io/Proof-of-Authority-Chains, Last visit October 30
2021.

[24] Maureen Farrell. How porn links and ben bernanke snuck into bitcoin’s
code, March 2013. https://money.cnn.com/2013/05/02/technology/security/

bitcoin-porn/index.html, Last visit January 30 2022.

[25] Abba Garba, Zhi Guan, Anran Li, and Zhong Chen. Analysis of man-in-the-middle
of attack on bitcoin address. In ICETE (2), pages 554–561, 2018.

[26] Jeff Garzik. On bitcoin data spam, and evil data, April 2013. http://garzikrants.
blogspot.com/2013/04/on-bitcoin-data-spam-and-evil-data.html, Last visit
January 30 2022.

[27] Alexandre Augusto Giron, Jean Everson Martina, and Ricardo Custódio. Stegano-
graphic analysis of blockchains. Sensors, 21(12):4078, 2021.

https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/ethereum/eth-rlp
https://github.com/ethereum/eth-rlp
https://git.openldap.org/openldap/openldap/tree/mdb.master
https://git.openldap.org/openldap/openldap/tree/mdb.master
http://apertus.io/
https://eternitywall.it/
https://openethereum.github.io/Proof-of-Authority-Chains
https://openethereum.github.io/Proof-of-Authority-Chains
https://money.cnn.com/2013/05/02/technology/security/bitcoin-porn/index.html
https://money.cnn.com/2013/05/02/technology/security/bitcoin-porn/index.html
http://garzikrants.blogspot.com/2013/04/on-bitcoin-data-spam-and-evil-data.html
http://garzikrants.blogspot.com/2013/04/on-bitcoin-data-spam-and-evil-data.html

BIBLIOGRAPHY 51

[28] Steinar H. Gunderson. snappy, June 2015. https://github.com/google/snappy,
Last visit February 5 2022.

[29] Dwayne Richard Hipp. Sqlite3, 2000. https://www.sqlite.org/index.html, Last
visit March 27 2022.

[30] Teng Hu, Xiaolei Liu, Ting Chen, Xiaosong Zhang, Xiaoming Huang, Weina Niu,
Jiazhong Lu, Kun Zhou, and Yuan Liu. Transaction-based classification and detec-
tion approach for ethereum smart contract. Information Processing & Management,
58(2):102462, 2021.

[31] Storj Labs Inc. storj. https://www.storj.io/, Last visit February 28 2022.

[32] Sanjay Ghemawat Jeffrey Dean. Leveldb, September 2011. https://github.com/

google/leveldb, Last visit January 28 2022.

[33] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner, Alishah
Chator, and Arvind Narayanan. BlockSci: Design and applications of a blockchain
analysis platform. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2721–2738. USENIX Association, August 2020.

[34] Ismail Karadogan and Resul Das. An examination on information hiding tools for
steganography. International Journal of Information Security, 3:200–208, September
2014.

[35] Dusan Klinec. Monero serialize, February 2018. https://github.com/ph4r05/

monero-serialize, Last visit Jaunuary 28 2022.

[36] Sarang Noether Koe, Kurt M. Alonso. Zero to Monero 2nd Edition, April
2020. https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf, Last
visit November 2 2021.

[37] Sebastian Kung. blockchain-parser, December 2021. https://github.com/

TheCharlatan/blockchain-parser, Last visit January 31 2022.

[38] Noncesense Research Lab. Monero tx extra data analysis: Ascii data, August
2020. https://github.com/noncesense-research-lab/monero_tx_extra/blob/

master/ascii_data.md, Last visit October 25 2021.

[39] AT&T Bell Laboratories. file, 1986. http://www.darwinsys.com/file/, Last visit
March 20 2022.

[40] Protocol Labs and Juan Benet. filecoin. https://filecoin.io/, Last visit February
28 2022.

[41] Annick Lesne. Shannon entropy: a rigorous notion at the crossroads between prob-
ability, information theory, dynamical systems and statistical physics. Mathematical
Structures in Computer Science, 24(3), 2014.

[42] Pieter Hintjens Martin Sustrik. Zeromq, August 2009. https://zeromq.org/, Last
visit March 5 2022.

https://github.com/google/snappy
https://www.sqlite.org/index.html
https://www.storj.io/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/ph4r05/monero-serialize
https://github.com/ph4r05/monero-serialize
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/TheCharlatan/blockchain-parser
https://github.com/TheCharlatan/blockchain-parser
https://github.com/noncesense-research-lab/monero_tx_extra/blob/master/ascii_data.md
https://github.com/noncesense-research-lab/monero_tx_extra/blob/master/ascii_data.md
http://www.darwinsys.com/file/
https://filecoin.io/
https://zeromq.org/

52 BIBLIOGRAPHY

[43] Roman Matzutt, Jens Hiller, Martin Henze, Jan Henrik Ziegeldorf, Dirk Müllmann,
Oliver Hohlfeld, and Klaus Wehrle. A quantitative analysis of the impact of arbi-
trary blockchain content on bitcoin. In Sarah Meiklejohn and Kazue Sako, editors,
Financial Cryptography and Data Security, pages 420–438, Berlin, Heidelberg, 2018.
Springer Berlin Heidelberg.

[44] Greg Maxwell. [bitcoin-dev] capacity increases for the bitcoin system, De-
cember 2015. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

2015-December/011865.html, Last visit February 7 2022.

[45] Evgeny Medvedev. Ethereum etl, April 2018. https://github.com/

blockchain-etl/ethereum-etl, Last visit January 25 2022.

[46] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon Mc-
Coy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins: Characterizing
payments among men with no names. Commun. ACM, 59(4):86–93, March 2016.

[47] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivas-
tava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas
Christin. An empirical analysis of traceability in the monero blockchain. Proceedings
on Privacy Enhancing Technologies, 2018:143–163, June 2018.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography
Mailing list at https://metzdowd.com, March 2009.

[49] Shen Noether. Ring Confidential Transactions, February 2016. https://web.

getmonero.org/resources/research-lab/pubs/MRL-0005.pdf, Last visit Novem-
ber 2 2021.

[50] Travis Oliphant. Numpy, 2005. https://numpy.org/about/, Last visit March 17
2022.

[51] now licensed by the Free Software Foundation as part of GNU binutils Origi-
nally from Bell Labs. Gnu strings, 1991. https://sourceware.org/binutils/

docs/binutils/strings.html, Last visit March 25 2022.

[52] Juha Partala. Provably secure covert communication on blockchain. Cryptography,
2:18, August 2018.

[53] Ouziel Slama Robby Dermody, Adam Krellenstein. Counterparty, 2013. https:

//counterparty.io/, Last visit March 30 2022.

[54] Mans Rullgard and Christos Zoulas. libmagic. https://man7.org/linux/

man-pages/man3/libmagic.3.html#LIBRARY, Last visit March 20 2022.

[55] Michal Salaban. monero-python, November 2017. https://github.com/

monero-ecosystem/monero-python/graphs/contributors, Last visit March 20
2022.

[56] Andreas Schildbach. bitcoinj, May 2011. https://github.com/bitcoinj/bitcoinj,
Last visit January 30 2022.

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011865.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011865.html
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://numpy.org/about/
https://sourceware.org/binutils/docs/binutils/strings.html
https://sourceware.org/binutils/docs/binutils/strings.html
https://counterparty.io/
https://counterparty.io/
https://man7.org/linux/man-pages/man3/libmagic.3.html#LIBRARY
https://man7.org/linux/man-pages/man3/libmagic.3.html#LIBRARY
https://github.com/monero-ecosystem/monero-python/graphs/contributors
https://github.com/monero-ecosystem/monero-python/graphs/contributors
https://github.com/bitcoinj/bitcoinj

BIBLIOGRAPHY 53

[57] Sergi Delgado Segura. Status, November 2017. https://github.com/sr-gi/

bitcoin_tools/tree/master/bitcoin_tools/analysis/status, Last visit Febru-
ary 5 2022.

[58] William Shakespeare. The Tragedy of Romeo and Juliet. Project Gutenberg, 1597.

[59] Andrew Sward, Ivy Vecna, and Forrest Stonedahl. Data insertion in bitcoin’s
blockchain. Ledger, 3, April 2018.

[60] tevador. Consider removing the tx extra field, June 2020. https://github.com/

monero-project/monero/issues/6668, Last visit November 2 2021.

[61] Harding Theymos, Belcher. Full Node, October 2021. https://en.bitcoin.it/

wiki/Full_node, Last visit October 25 2021.

[62] Peter Todd. python-bitcoinlib, April 2011. https://github.com/petertodd/

python-bitcoinlib, Last visit January 31 2022.

[63] Wladimir J. van der Laan. Obfuscate database files #6613, September 2015. https:
//github.com/bitcoin/bitcoin/issues/6613, Last visit March 10 2022.

[64] Dima Veselov. python-libmagic, 2014. https://github.com/dveselov/

python-libmagic, Last visit March 20 2022.

[65] Fabian Vogelsteller. Erc-20, November 2015. https://eips.ethereum.org/EIPS/

eip-20, Last visit February 10 2022.

[66] Nicolas von Saberhagen. CryptoNote v2.0, October 2013. https://bytecoin.org/

old/whitepaper.pdf, Last visit November 2 2021.

[67] Benjamin Wallace. The rise and fall of bitcoin, November 2011. https://www.wired.
com/2011/11/mf-bitcoin/, Last visit January 30 2022.

[68] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang,
Yonggang Wen, and Dong In Kim. A Survey on Consensus Mechanisms and Mining
Strategy Management in Blockchain Networks. In IEEE Access, volume 7, pages
22328–22370, January 2019.

[69] Nic Watson. Python lmdb, February 2013. https://github.com/jnwatson/

py-lmdb, Last visit January 28 2022.

[70] Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, Dongxi Liu, and Tsz Hon Yuen.
Anonymity reduction attacks to monero. In Fuchun Guo, Xinyi Huang, and Moti
Yung, editors, Information Security and Cryptology, pages 86–100, Cham, 2019.
Springer International Publishing.

[71] Jeffrey Wilke. go-ethereum, December 2013. https://github.com/ethereum/

go-ethereum, Last visit February 6 2022.

[72] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.

[73] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning Dai. Xblock-eth: Extracting
and exploring blockchain data from ethereum. IEEE Open Journal of the Computer
Society, 1:95–106, 2020.

https://github.com/sr-gi/bitcoin_tools/tree/master/bitcoin_tools/analysis/status
https://github.com/sr-gi/bitcoin_tools/tree/master/bitcoin_tools/analysis/status
https://github.com/monero-project/monero/issues/6668
https://github.com/monero-project/monero/issues/6668
https://en.bitcoin.it/wiki/Full_node
https://en.bitcoin.it/wiki/Full_node
https://github.com/petertodd/python-bitcoinlib
https://github.com/petertodd/python-bitcoinlib
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/dveselov/python-libmagic
https://github.com/dveselov/python-libmagic
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://www.wired.com/2011/11/mf-bitcoin/
https://www.wired.com/2011/11/mf-bitcoin/
https://github.com/jnwatson/py-lmdb
https://github.com/jnwatson/py-lmdb
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum

54 BIBLIOGRAPHY

Abbreviations

ABI Application Binary Interface
AE Actual Events
BIP Bitcoin Improvement Proposal
EE Expected Events
ECDSA Elliptic Curve Digital Signature Algorithm
EOA Externally Owned Account
ERC Ethereum Request for Comment
HDD Hard Disk Drive
LMDB Lightning Memory-Mapped Database
LSB Least Significant Bit
P2M Pay-to-multisig
P2PK Pay-to-pubkey
P2PKH Pay-to-pubkey-hash
P2SH Pay-to-script-hash
P2WPKH Pay-to-witness-pubkey-hash
P2WSH Pay-to-witness-script-hash
P2TR Pay-to-taproot
PoW Proof of Work
OS Operating System
segwit Segregated Witness
SSD Solid-State Drive
TXO Transaction Output
UTXO Unspent Transaction Output

55

56 ABBREVIATONS

List of Figures

2.1 Input-output transaction model . 7

2.2 Account-balance transaction model . 7

2.3 Bitcoin transaction fields . 10

2.4 Ethereum transaction fields . 11

2.5 Monero transaction fields . 12

4.1 Solution High-Level Data Flow . 22

4.2 Example Database Schema . 23

5.1 Monero ASCII String Logarithmic Histogram 38

5.2 Bitcoin ASCII String Logarithmic Histogram 39

5.3 Ethereum ASCII String Logarithmic Histogram 40

5.4 Monero detected file types logarithmic histogram 41

5.5 Bitcoin detected file types logarithmic histogram 41

5.6 Ethereum detected file types logarithmic histogram 42

5.7 GIF files found in Ethereum . 42

57

58 LIST OF FIGURES

List of Tables

3.1 [43]: Distribution of blockchain file types 17

3.2 Comparison of Related Work . 20

4.1 Blockchain Parsing Tools . 24

5.1 Data Collection Statistics . 37

5.2 System Information . 38

5.3 Expected imghdr File Detection Events . 43

59

60 LIST OF TABLES

Appendix A

Installation Guidelines

This project uses“pyenv”and“pipenv”for managing the python version, dependencies and
even running commands. The recommendation of using these two tools in combination is
from https://gioele.io/pyenv-pipenv. A python “pip” module of the package has not been
published yet, but may be provided at a later date. Even so, this guideline serves more
as an installation guide for a development environment.

Clone and build Monero LMDB

1 git clone https :// github.com/monero -project/monero

2 cd monero/external/db_drivers/liblmdb

3 make

The following environment variables need to be set when installing the project’s depen-
dencies, in particular when installing Python LMDB:

1 export LMDB_FORCE_SYSTEM =1

2 export LMDB_INCLUDEDIR =~/ monero/external/db_drivers/liblmdb

3 export LMDB_LIBDIR =~/ monero/external/db_drivers/liblmdb

If in doubt, consult this Monero Stackexchange answer
https://monero.stackexchange.com/questions/12234/python-lmdb-version-mismatch.

Prepare monero-serialize

monero-serialize requires local, unpublished patches. For this clone the repository and
checkout the patched branch:

1 git clone https :// github.com/TheCharlatan/monero -serialize

2 cd ~/monero -serialize

3 git checkout txMetaData

61

62 APPENDIX A. INSTALLATION GUIDELINES

Install pyenv

On Ubuntu/Debian:

1 sudo apt -get update; sudo apt -get install make build -essential libssl -

dev zlib1g -dev \

2 libbz2 -dev libreadline -dev libsqlite3 -dev wget curl llvm \

3 libncursesw5 -dev xz-utils tk-dev libxml2 -dev libxmlsec1 -dev libffi -dev

liblzma -dev

Then for ease of use:

1 curl https :// pyenv.run | bash

Read the pyenv installation manual at https://github.com/pyenv/pyenv on how to con-
figure the correct environment variables for pyenv.

Install pipenv

1 pyenv global 3.7.0

2 pip install pipenv

Clone the project

1 git clone https :// github.com/TheCharlatan/blockchain -parser

Install dependencies with pipenv

1 pipenv install ~/monero -serialize

Running the Script

The Monero LMDB parser requires the following path to be set to the LMDB library:

1 LD_LIBRARY_PATH="/usr/local/lib:$USER/monero/external/db_drivers/liblmdb

" \

2 pipenv run python main.py --help

The help text should self-describe the usage of the parsers. The parsers read data directly
from the blockchain database. The blockchain-parser thus requires access to the directory
where the blockchain database files are located.

IDE Integration

The python path that pipenv is configured to after installation is made available with:

1 pipenv --py

Appendix B

Contents of the ZIP Archive

1. This thesis as PDF

2. This thesis as LATEX source archived in a zip file, including the figures

3. Figures in their .drawio format in a directory called figures_drawio

4. The blockchain-parser source code in a directory called blockchain-parser

5. Midterm presentation slides as a PDF document

6. The histogram datasets from the evaluation as CSV files, in a directory called
datasets

7. The extracted strings discussed in the thesis as TXT files, in a directory called ex-

tracted_strings

63

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Blockchain Definition
	Double Spending Problem
	Deployment Types
	Consensus Algorithm
	Node Types
	Transaction Models

	Blockchain Data
	Bitcoin
	Ethereum
	Monero

	Steganography and Steganalysis

	Related Work
	Approaches
	Comparison

	Design and Implementation
	Design
	Components
	Database

	Implementation
	Transaction Parsing Implementation
	Data Extractor Implementation
	Database Adaptor Implementation
	Analysis Engine Implementation
	View Implementation
	Usage

	Evaluation and Discussion
	Histograms
	False Positive Detections
	Discussion and Challenges
	Discussion
	Implementation Challenges

	Summary, Conclusions, and Future Work
	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Installation Guidelines
	Contents of the ZIP Archive

