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Abstract: During the last decade, distributed ledger solutions such as blockchain have gained
significant attention due to their decentralized, immutable, and verifiable features. However, the public
availability of data stored on the blockchain and its link to users may raise privacy and security issues.
In some cases, addressing these issues requires blockchain data to be secured with mechanisms that
allow on-demand (as opposed to full) disclosure. In this paper, we give a comprehensive overview
of blockchain privacy and security requirements, and detail how existing mechanisms answer them.
We provide a taxonomy of current attacks together with related countermeasures. We present a
thorough comparative analysis based on various parameters of state-of the-art privacy and security
mechanisms, we provide recommendations to design secure and privacy-aware blockchain, and we
suggest guidelines for future research.

Keywords: blockchain; privacy; security

1. Introduction

Usually, people rely on a Trusted Third Party (TTP), such as an online bank operator, to transfer
assets over the internet. A TTP is responsible for guaranteeing a secure exchange and intervenes in case
of failure or security breach. However, the centralized design of TTPs makes them vulnerable to the
single point of failure problem. Nowadays, blockchain [1] has been widely adopted as an immutable
(if some constraints are respected, such as, the majority of the nodes are honest) Distributed Ledger (a
distributed database that shares transaction records between all the participants) technology (DLT)
allowing transaction information to be securely replicated over a set of nodes, thus eliminating the need
for TTP and avoiding the single point of failure problem. However, transaction data on the blockchain
is publicly accessible, and at the same time, depending on the requirements of their application, users
may need, in some cases, on-demand (as opposed to full) data disclosure, leading to privacy concerns
that should be handled in the design of the blockchain for this particular solution. On-demand data
disclosure requires fine-grained access control to check who is the recipient of the data before applying
required security (encryption strategies) and privacy (data protection) measures.

We define privacy-sensitive data as any data that is subject to disclosure constraints. Such data is
highly dependent on the application domain (medical care, production chain, etc.). Diverse solutions
are available to overcome the privacy challenge (such as k-anonymity, l-diversity, t-closeness, etc.).
In this context, privacy solutions are combined with security measures (such as mix network [2],
Zero-Knowledge Proofs (ZKPs) [3], ring signature [4], etc.) that provide required services to protect
data from unwanted disclosure, control data access, and prevent identity theft. Although several
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studies [5–10] focus on security or privacy, a comprehensive and structured analysis of blockchain
requirements, the latest advances and their relevance in this context is still missing as discussed below.

1.1. Paper Position

In the following, we highlight the relationship between the current work presented in this paper
and existing work on blockchain attacks, countermeasures, privacy and security threats, and defense
mechanisms. Authors in [11], review Ethereum security, attacks, and defense mechanisms without
considering privacy attacks and their defense mechanisms. They identified layers of attacks for
Ethereum, but do not address other blockchain implementations. More specifically, their Ethereum
application layer, data layer, consensus layer, environment layer correspond to our blockchain
attack categories and their network layer correspond to our network attack category, as shown in
Section 4. We took into consideration this classification of Ethereum attacks to build our own attack
classification that approaches blockchain from an inclusive high-level perspective, without binding to
any specific implementation.

Therefore, our attack classification presents the following advantages. First, it applies to all
types of DLT implementations, including Ethereum but not limited to it. Second, we also include
attacks related to user and transaction data privacy and security. Third, for each attack, we provide a
description of the malicious user’s goal, a detailed discussion on privacy and security countermeasures,
and we discuss countermeasure advantages and limitations.

Other survey papers [5,8] focus only on blockchain privacy threats and mechanisms, without
addressing security aspects. In our work, we provide a comprehensive overview of privacy and
security challenges, attacks, requirements, and solutions for blockchain. We analyze the limitations of
existing solutions with respect to complexity, trust, computation time, transaction time, cost, latency,
and involvement of a trusted third party.

In [9], privacy and security mechanisms for blockchain transactions are studied, however, only a
few blockchain attacks are addressed (double-spending attack, majority attack, and DDoS attack)
which is only 3 of the 21 network and blockchain attacks discussed in this paper. We also provide a
comparative analysis of existing mechanisms based on different parameters (e.g., scalability, complexity,
size, computation, and communication overhead, etc.).

In [6,7], authors mainly focused on privacy and security for bitcoin only without discussing users’
identity management mechanisms and blockchain challenges as we do in this paper. Another survey [12],
focuses on blockchain privacy and security issues without discussing countermeasures to overcome them.

1.2. Contribution

In this paper, we structure our contribution as follows:

• We provide detailed background knowledge of blockchain design, and discuss the development
of blockchain implementations.

• We identify blockchain requirements in terms of privacy and security, and we present several
mechanisms to meet them.

• We propose a classification of current attacks and matching countermeasures.
• We provide a critical comparative analysis of the state of the art privacy and security defense

mechanisms to highlight their corresponding advantages and drawbacks.
• We present step-by-step recommendations to provide understanding of the mechanisms and we

then discuss current trends based on our study and suggest future work to improve privacy and
security management for blockchain.

The rest of this paper is organized as follows. Section 2 overviews background knowledge about
blockchain technology and blockchain generations to facilitate understanding of this paper. It then
describes blockchain requirements for privacy and security and summarizes existing mechanisms to
enforce them. Section 4 proposes a classification of existing attacks and describes related countermeasures.
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Section 5 provides a comparative analysis, detailed in multiple tables, of existing technological solutions.
Based on this analysis, it covers directions for future research towards improved privacy and security
management of blockchain. Section 6 summarizes the main outcome of our study and our guidelines for
future work.

2. Blockchain: Background Knowledge

In this section, we provide the necessary background knowledge about blockchain design and
operation for a good understanding of this paper. After that, we discuss blockchain structure and its
main components. Then, we present the global view of blockchain generations and classification of
blockchain types.

2.1. Overview of Blockchain Technology

A blockchain is a transparent and decentralized database, secured with cryptography techniques
to enforce the integrity of its contents, stored under the form of transactions grouped in blocks linked
to each other [13]. A block is based on two main parts which are the block header and the transactions.
The block header comprises of different fields such as block version, the Merkle tree Root Hash,
timestamp, nonce, and parent block hash. Transactions include information such as transaction time,
transaction amount, recipient address, etc. and their contents can be verified by any user on the
network. Transactions are broadcast through the network of nodes and are eventually added to a block
after a process called mining.

Concretely, mining is the process of adding a block to the blockchain using consensus mechanisms
(e.g., proof of work, proof of stake, etc.) to validate the transactions in a block [14]. It helps to verify
transactions from this block and secure the blockchain against a double-spending attack. Miners
receive rewards to validate the block (e.g., new coin and transaction fees).

In order to add each block in the chain, the proof of work mechanism requires miners to solve
complex mathematical calculations that must be accepted by all the miners. Once the miners validate
the transactions, a block is added to the blockchain network. For this solution to work, it must be
difficult for an attacker to compromise more than half of the hashing power on the network. It is
easy and fast to verify the proof and its correctness. However, proof of work is inefficient due to high
computational power to solve complex mathematical calculations.

To cope with this issue, other consensus mechanisms such as proof of stake [15] allow miners
to validate block transactions according to the amount of digital currency (stake) a miner owns [1].
As compared to proof of work it saves more energy because it eliminates the high amount of computing
power required from the consensus mechanism. Unfortunately, it may lead to unwanted centralization
since rewards are distributed based on the amount staked. Wealthy node operators will earn the most
rewards, making them even more wealthy and in time, enable them to operate the majority of nodes.
Different methods exist, such as the coin age selection approach that is used to avoid the wealthiest
node in the network [16]. The coin age selection method selects nodes based on how long their tokens
have been staked for. In this approach, older and larger sets of coins have a higher chance of mining
the next block. Once a user has mined a block, their coin age is reset to zero and then they must wait a
certain period of time to mine another block.

2.2. Structure of Blockchain

• Block: In blockchain, verified transactions are stored in a block. Any node in a blockchain system
can initiate a transaction and send a copy to other available nodes on the network. When network
nodes verify that all stored transactions in the block are valid, the next step is to add a block to the
blockchain. Each block contains certain information such as transaction time, number of occurred
transactions, etc. Each block is linked to the hash of the previous block via a hash function ( Hash
functions such as MD5 and SHA-256 transform an input message into a fixed size value called
a hash, making it impossible to go back to the original text, but possible to check that a copy is
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exact by comparing generated hashes [17]) to ensure immutability. A unique hash code is then
assigned to each block which is generated by the hash function and differentiates a current block
from other blocks.

• Merkle tree: It is defined as a binary search tree in which tree nodes are linked to each other
using hash pointers. The blockchain transactions are arranged in a Merkle tree structure. The
hashes of all nodes are combined to create the Merkle tree [18], in which each two child nodes
are combined together into one node called parent node as shown in Figure 1. This process is
repeated from down to top to reach the root of the tree. The root of the Merkle tree verifies all
the transactions in the block. An advantage of Merkle tree is that it allows us to prove both the
integrity and validity of data. If an adversary attempts to change the transaction then it is needed
to change all the subsequent block hashes.

• Digital signature: It ensures the data validity by using a cryptographic algorithm. The digital
signature scheme is comprised of three components. The first component is a key generation
algorithm, which generates a key pair known as a private key and public key. The private key is
kept secret and is used to sign a message, whereas the public key is available to the public and is
used to verify the message whether the message has been signed with the corresponding private
key. Second component is a signing algorithm, which uses the given private key to creates a
signature on the input message. The third component is a verification algorithm, that takes three
parameters as input, such as signature, a message, public key and validates the message signature
by using the public key. The advantage of using a digital signature is to prevent non-repudiation
so participants on the blockchain network cannot deny their own activities.
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Figure 1. Merkle tree structure on blockchain.
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2.3. Development of Blockchain Implementations

Over time, it has been observed that the development of blockchain can be organized into
3 generations [19–21], as follows.

• First generation: digital currency. The first generation of blockchain is a decentralized digital
currency (e.g., bitcoin or digital coin) that allows participants to make transactions directly without
the involvement of a centralized party [19]. The first blockchain generation solved major issues to
create decentralized currency, this generation mainly relied on proof of work consensus algorithm.
The main advantages of this generation are to provide decentralized storage, to enable nodes
to share data directly, and to ensure transparency during transaction processing [20]. The main
drawbacks are related to the energy consumption of consensus algorithms and the fact that
proof-of-work gives rewards to the participants who already have the most computation power,
which can be a security issue.

• Second generation: smart contracts. The concept of smart contract was proposed to support the
self-execution of programs that execute when specific terms are met [22]. The smart contract
code is stored on a public ledger and cannot be changed. The transactions that occur in
a smart contract are run by the blockchain without a third party. A contract is comprised
of three main parts: a unique contract address to identify them on the blockchain, private
storage and amount of balance (for example, Ethereum the first implementation to provide
smart contracts uses the Ether cryptocurrency). A smart contract can be written in high-level
languages, for example, Ethereum uses the Solidity programming language, which can compile
into low-level bytecode for the Ethereum virtual machine (EVM) code [23]. Smart contracts
guarantee tamper-proof fraud prevention and reduce verification costs. It is important to highlight
that some blockchain implementations do not fully, or at all, implement a smart contract. However,
this second-generation still remains limited in terms of performance and scalability, as witnesses,
for example, the low number to process transactions per second [21].

• Third generation: scalability. The third generation of blockchain focuses on improving the scalability
identified in previous generations. Most limitations relate to mining delay, energy consumption,
low number of transactions, mostly related to the use of proof of work type of consensus
and application of smart contracts. We have also observed a growth in the number and
variety of applications, such as e-Health [24] and supply chain management systems [25]. For
example, the third generation of blockchain platforms includes Dfinity [26] and NEO [27], that
aim at supporting different programming languages and the development of mobile-based
applications [20].

Generally, blockchain has different types depending on data availability and on what actions are
allowed to perform on data by the user [28]. Thus, the following types of blockchain are available
nowadays: public, private and consortium.

• Public blockchain: is a permissionless ledger that is available to everyone on the network and
anyone can view, read and write data on the blockchain [29]. Examples of public blockchain
include Ethereum and bitcoin [30].

• Private blockchain: is a permissioned blockchain, which allows only specific people to verify and
add transaction blocks to the blockchain [31]. Monax and multichain are private blockchain [30].

• Consortium blockchain: is known as federated or public permission blockchain, which allows
only a group of organizations to verify and add data to the blockchain. It can be an open ledger
or restricted to a particular group. R3 and Corda are consortium blockchain [32].

Although blockchain brings several advantages such as trust, traceability, transparency, and secure
distributed storage, it also has specific privacy and security requirements, as described below.
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3. Privacy and Security Requirements for Blockchain

In this section, we provide a detailed analysis of privacy and security requirements for blockchain,
before showing how current technological advances answer them and highlighting their shortcomings,
as summarized in Table 1.

Blockchain requirements with respect to privacy and security differ from usual ones due to its
decentralized operation. Indeed, blockchain provides privacy and security to sensitive data as a user
can make transactions with public and private keys without revealing their real identity. However,
public blockchain does not guarantee the privacy of transactions since the content of transactions
(e.g., amount) is publicly visible [33,34]. This issue causes leakage of privacy-sensitive information.
Furthermore, users’ bitcoin addresses can be linked to identify users’ real identity [35]. Therefore,
we suggest that to provide privacy and security on blockchain, mechanisms should be selected based
on well-defined requirements. We identify and detail the most significant requirements below.

• Transaction data protection: The transaction contents (payload) recorded on the distributed
ledger (such as healthcare or business data) and the transaction itself (e.g., transaction time and
amount, etc.) may need to be protected from unauthorized disclosure. Indeed, such information
may be sensitive, especially for companies with public records that can be matched and that may
not want to disclose their transactions on the blockchain.

• User identity protection: As mentioned above, the structure of transactions establishes a direct
link to the involved users through asymmetric cryptography (if one finds out who a public key
belongs to). Typically, blockchain users may want to protect the link between their identity and
the transactions they perform, thus making identity protection a major issue for blockchain.

• Security properties: Typical data security properties are required: confidentiality to protect from
unauthorized data access, integrity to make sure the contents are the original ones, availability as
data should be accessible upon request and non-repudiation as recorded data cannot be denied.
By definition, blockchain implementations must provide such properties, therefore, the challenge
is to make sure that additional measures dealing with other requirements do not break any of
those properties.

• Avoiding TTP: The centralized ledgers of current transaction systems (e.g., banks) are subject
to the single-point of failure vulnerability, so they can be more easily compromised than
decentralized solutions. As Blockchain helps to eliminate TTPs, additional solutions that answer
privacy and security problems should avoid relying on TTPs as well. Unfortunately, it is still
common practice to rely on TTPs [36].

• Blockchain support: While our research approaches blockchain from a theoretical perspective, it is
important to look at existing blockchain implementations that show the feasibility of those theoretical
advances. Therefore, we show in Table 1 how the studied privacy and security mechanisms are
supported with blockchain implementations.
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Table 1. Overview of blockchain requirements and existing mechanisms.

Mechanism

Requirements

Identity
Protection

Transaction
Data Protection

Security
Properties Avoiding TTP Blockchain

Support

Ring Signatures Yes [4,37,38] Yes [39] Confidentiality [4,37,38]
No [37]
Yes [4,38] Monero BC [39]

Zero-Knowledge proof Yes [3,5] Yes [5] Integrity [40]; Authentication [3] No [3,40]
Bitcoin and
Ethereum [5]

Mix Network No Yes [41] Integrity; Authentication [1,41] Yes [1] Bitcoin [1]

Onion and Tor Routing Yes [42–44] Yes [43,44] Integrity [42,44] No Loki Blockchain [42]

K-anonymity Yes [45] No [46] Integrity [47] Yes [45] N/A

L-diversity Yes [48] No [49] Confidentiality [50,51] Yes [48] N/A

T-closeness Yes [52] Yes [52] N/A Yes [52] N/A

Identity-based Encryption Yes [53–55] Yes [53,54] Integrity [55] Yes [53,55] Bitcoin and Namecoin [55]

Attribute-based Encryption No Yes [56,57] Confidentiality [56]
Yes
Multiple parties to generate
public/private keys [56]

Private [56]

Symmetric key Cryptography
(DES, AES, Blowfish, RC5 etc) Yes [58] Yes [58,59]

Integrity [58]
Confidentiality
Non-repudiation [59]

No Bitcoin [58,59]

Asymmetric key Cryptography
(Elgamal, RSA, DSA, Elliptic curve, etc.) Yes [60] Yes [60,61] Authentication [60,61];

Confidentiality [61]
Server to manage user identity
and password [61] Permissioned BC [61]

Homomorphic Encryption No Yes [62,63] Confidentiality [62,63] Yes [63] Bitcoin [62]

Hash Function (MD5, SHA-1) Yes [64] Yes [64] Integrity; Confidentiality [64] No Bitcoin [64]
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According to those requirements, we are now able to evaluate the main privacy-preserving and
security mechanisms that support transactions anonymity, enhance data anonymization and user
identity protection as shown in Table 1, and describe how they apply to blockchain.

Ring signature provides data confidentiality and user identity privacy. A ring signature is a
type of cryptographic digital signature that relies on a group of users (called a ring) provided with
asymmetric keys to sign messages. Once a message has been signed, it can be decrypted with the
ring signature only, and we cannot identify the actual signer of the message within the group. As an
implementation example, the Ring CryptoNote protocol hides transaction details (e.g., amount, origin,
destination) in the decentralized cryptocurrency Monero [39]. However, ring signature involves a TTP
to manage user identities and the cost of both generation and verification of ring signature increases
due to digital certificates [37]. Identity-based ring signature overcomes these issues and enhances
users’ privacy. It also prevents against full key exposure attack [65].

Zero knowledge proof (ZKP) allows one entity (the prover) to prove to another entity (the
verifier), that a given value is true, without disclosing any information apart from that the proof itself
is correct. Zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge) is a
ZKP that allows proving correct computation of information without any interaction between both
parties (prover and verifier). ZKP-based solutions are particularly interesting for data integrity and
authentication without revealing anything as they provide proof of a statement without revealing
that particular statement. They also preserve anonymity for sensitive data and do not rely on TTP.
However, they are computationally quite intensive as compared to other solutions to validate and
generate proofs [5].

Mix networks take input data from multiple users and forward them to the next destination
according to a different time frame. They basically randomize the order of the transaction data,
so that it is harder for an attacker to trace end-to-end communication. However, the mix network
becomes a TTP and has latency issues as compared to other mechanisms. One example of blockchain
implementation is coinJoin [66]. On the other hand, onion routing and tor routing enable anonymous
communication to provide protection on user’s data without any TTPs.

K-anonymity concept was introduced in 1998 to prevent identity disclosure [67]. It preserves the
privacy of sensitive information by hiding a user’s identity in a given data set [68]. It enforces integrity
on data without any TTPs. However, it is insufficient to protect attribute privacy in transactional data
due to lack of diversity in the data.

L-diversity complements k-anonymity. It augments the diversity of users’ sensitive information
in the data set to achieve higher privacy. It effectively protects the user’s identity and guarantees the
confidentiality of the data [50,51].

T-closeness ensures better protection of identity privacy and transaction data privacy than
existing data anonymization techniques [52]. It enforces privacy without the involvement of TTPs [52].
The principle of t-closeness is simple and easy to understand as it enforces a maximum distance
between sensitive attributes in a data set to ensure data protection.

Identity-based encryption is a technique of public-key encryption that allows a user to generate
a public key from its unique identity (e.g., IP address or email address) [69]. This scheme may involve
a TTP such as a private key generation algorithm to derive corresponding private keys. It protects
user’s identity and guarantees the integrity of the message. It entails a longer public key, message size,
and memory overhead than attribute-based encryption.

Attribute-based encryption derives from identity-based encryption [70] in which only a user can
decrypt the ciphertext if the user attributes (e.g., hometown) satisfy the access rules defined by the
owner of the system. It enforces confidentiality on data and fulfills transaction data requirements.
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Symmetric key cryptography is efficient to enforce integrity, confidentiality, and non-repudiation
on data without TTPs. Symmetric key cryptography refers to use the same key for encryption and
decryption of messages to guarantee that only authorized users do so. Key should be shared through a
key exchange protocol to protect further communications. There are several symmetric key algorithms
such as DES, Blowfish, and AES [71]. In our context, the main drawbacks of symmetric cryptography
are communication overhead and the required key exchange protocol [58,59].

Asymmetric key cryptography, also called public-key cryptography (e.g., RSA [72]) is efficient
for both user identity and transaction data anonymity due to its security properties e.g., confidentiality
and authentication on data [61]. It is based on a couple of keys (called public and private) to encrypt
and decrypt messages. Only the public key can be shared. It relies on digital signatures to verify that
messages come from a particular sender (if encrypted with the sender’s private key) or to guarantee
that only a specific receiver can read it (if encrypted with the receiver’s public key). However, it is
computationally more intensive compared to symmetric key cryptography, which makes it less suitable
for encrypting large amounts of data. In practice, it typically requires a TTPs to manage user’s identities,
although key management can be realized individually.

Homomorphic encryption [73] ensures data confidentiality and provides confidentiality on
transaction data, and therefore user anonymity. It encrypts data and allows anyone to perform actions
on the encrypted version without accessing the encryption key. However, it depends on TTPs and has
a high computation overhead.

Hash Functions are most often utilized to confirm data integrity over a copy of original data
and a signature by comparing with the one generated from the copy without any intermediate party.
A hash function is a one-way function that transforms input data into fixed-length data. It has a low
computation overhead as compared to other available solutions.

4. Attacks and Countermeasures

After giving an overview of blockchain requirements and existing technology, it is appropriate
to look at the attacks and how they are handled. Therefore, in the following, we overview the main
existing attack vectors on blockchain, including remote attacks and attacks related to data disclosure.
We provide a classification of existing attacks and match associated countermeasures as follows:

• Network attacks, and therefore network security, have been historically existing since the beginning
of distributed computing. Network security is typically defined as a subcategory of security [74],
and as such network security attacks and countermeasures apply to blockchain implementations as
well. Typical countermeasures include designing secure protocols, applying symmetric/asymmetric
encryption, filtering and monitoring networks.

• Blockchain attacks specifically exploit weaknesses in the blockchain operation to be successful.
Typical countermeasures involve integrating secure protocols and algorithms into the blockchain
operation and extending the original blockchain design.

• Privacy attacks exploit available privacy-sensitive data to disclose additional information.
Typical countermeasures rely on generating fake transactions (e.g., mixins in Monero) and use
statistical models to disable data exploitation.

Figure 2 gives a detailed overview of the different attacks described in the following, and the
associated countermeasures, including references to the related literature.
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4.1. Network Attacks and Countermeasures

Network attacks leverage network design and properties to be successful. They can be categorized
as active, where a malicious user alters or deletes information, and passive, where a malicious
user listens to the data passing on the network. In the following, we detail the countermeasures
that apply to the network attacks. Most of them rely on secure protocols such as TLS based on
asymmetric cryptography (Public Key Infrastructure–PKI) or symmetric cryptography, whereas others
are implemented at the network level, for example with network filtering, monitoring, or routing. We
categorized active attacks as follows:

• IP spoofing attack: In which an attacker uses (or spoofs) someone else’s identity and
communicates with this identity to get benefits from it [75].

• Countermeasures: Typically, it is possible to prevent such attacks by filtering network traffic in
order to stop the delivery of spoofing packets. In [76], routing-based mechanisms are discussed
to deal with IP spoofing attacks. These solutions are implemented by routers or end-hosts.

• Message modification attack: A malicious user modifies the contents of a message being
transmitted [75].

• Countermeasures: To deal with message modification attack, using a hash function is a typical
solution [77].

• Message forgery attack: The goal of this attack is to create false information on the network.
Sending a spam email by using the identity (e.g., name or email address) of another entity is an
example of this attack [75].

• Countermeasures: Cryptographic mechanisms such as asymmetric key cryptography can be
used to mitigate a message forgery attack. Sender and receiver have their own public and private
key pair to encrypt and decrypt the message [78]. It ensures that the receiver receives the original
message and proves the identity of the sender.

• (Distributed) Denial-of-Service (DoS) attack: The adversary sends enough traffic so that the
target is unable to process it and remains unavailable to legit users. Distributed denial-of-service
(DDoS) is a distributed version of the DoS attack, where multiple nodes are orchestrated to attack
the target simultaneously [6].

• Countermeasures: In [79], the authors discuss some prevention techniques against DDoS attack.
It includes an intrusion prevention mechanism to disable unused network services which are not
needed, install security patches to the host machine to prevent vulnerabilities in the system,
use firewalls, and dynamically switch the IP address of the active server within a pool of
other servers.

• Man-in-the-middle (MITM) attack: An attacker intercepts communication and acts on behalf of
one end to collect valuable data [80].

• Countermeasures: One proposed solution to avoid man-in-the-middle attacks is to monitor the
network using an intrusion detection system. It observes the behavior of an attacker and gives an
alert if an attacker tries to take control of network traffic [81].

• Time delay attack: The goal of this attack is to slow down the network traffic. An attacker tries to
control the network traffic, which leads to the delay in the transmission of message [82]. Delay attack
can be categorized in the following two attacks: BGP hijacking and Liveness attack.

• Countermeasures: To prevent time delay attack, Arman et al. [83], proposed a method to track
and estimate the time delay during communication on the network. If the measured time delay is
more than the allowed time delay, then the system issue an alarm signal to stable the system. It is
a simple and inexpensive way to secure the system from time delay attacks.
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– Border gateway protocol hijacking (BGP) attack: BGP is a routing protocol of the Internet.
It helps to forward IP packets to their destination. The attacker conducts BGP hijacking to
control the network traffic on the blockchain, which leads to delay of network messages [84].

– Countermeasures: Xing et al. [85], proposed BGPcoin based on Ethereum blockchain, a BGP
framework that is generated by a smart contract in the network Ethereum. It provides a
transparent allocation of sources (e.g., IP prefixes). It also checks source assignments using
blockchain to enhance system security.

– Liveness attack: This attack [86] causes the delay of target transaction time on blockchain.
It works in three phases, such as (1) attack preparation phase, in which the attacker creates a
private chain longer than the public chain, (2) in-transaction denial phase, where the attacker
tries to privately keep the block that contains target transaction, (3) in-blockchain phase,
where the attacker will integrate their private blocks into the public chain to slow down the
growth rate of the public chain.

– Countermeasures: To resolve the liveness attack Chenxing et al. [87] proposed the conflux
consensus protocol that allows fast confirmation and ensures the consensus progress. It is a
secure, scalable, and decentralized blockchain platform.

On the contrary, with passive attacks, an attacker monitors the network and attempts to gain
sensitive information about a target. We identified the most well-known passive attacks as follows:

• Traffic analysis attack: An adversary tries to observe the communication route between the
sender and receiver. The goal of this attack is to analyze the network communication and from
this analysis gather useful information to execute an attack [88].

• Countermeasures: Onion routing provides a solution to traffic analysis as it allows to transfer
data from a source through multiple onion routers before the data reaches its destination,
thus guaranteeing anonymity. Each message has various layers of encryption, where each layer
links to one onion router. It prevents the attacker to identify the endpoints of communication [89].

• Eavesdropping attack: The aim of this attack is to listen to private information over the
network [90].

• Countermeasures: Cryptographic techniques such as symmetric key encryption can be used to
protect confidential communication against eavesdropping attack. It limits data access only to the
authorized user [91].

As a summary, we observe that most cryptographic mechanisms that are used to ensure security
on sensitive data rely on key management solutions. Symmetric cryptography is computationally
efficient, but is sensitive to attacks during key agreement or key distribution. For instance, the
well-known Diffie-Hellman (DH) scheme is vulnerable to the man-in-the-middle attack. Efficient
key agreement and distribution are still being researched intensively, though improvements like
Station-to-station (STS) addressed the issues by authenticating both parties of the exchange through
public-key cryptography. Although DDoS attack remains dangerous, it is generally prevented by
implementing firewalls on routers, where networks are interconnected.

4.2. Blockchain Attacks and Countermeasures

Blockchain has gained massive attention for both industry and academia, however, it is subject to
specific attacks. In the following, we classify them and present possible countermeasures.
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• Malleability attack: It consists of changing the unique ID of a transaction before confirmation on
the network, so an attacker may pretend that a transaction did not occur [92]. This attack was
successfully executed on many blockchains due to the nature of the ECDSA digital signature
scheme. Suppose Alice sends a payment transaction to Bob with a txID. Before the transaction is
accepted into a block, the txID is changed to txID′. Bob receives the payment regardless but now
Alice not knowing about the change, cannot know if Bob received the funds. This way Bob can
ask Alice to resend the funds until eventually, Alice notices. The vulnerability has gained a lot of
attention once it was cited by Mt Gox exchange as a key reason for suspending withdrawals.

• Countermeasures: Malleability can rarely be exploited to the attacker’s benefit. At present, it is
more of a theoretical problem than a real one as the attacker stands very little to gain. The threat is
addressed on the application layer with wallet software not trusting zero-confirmation transactions
by either displaying them as pending or not at all. Additionally, changing a transaction ID is
not trivial especially now that users’ digital signatures are properly checked by clients in most
protocols [93]. However, with the influx of new blockchain implementation it is important to be
aware of the potential threat.

• Nothing at Stake Problem: Proof of stake-based blockchains require staked nodes to attest,
validate, and verify blocks. Attestations are used to decide, which of the two conflicting blocks is
accepted. Proof of stake nodes can collude to vote on conflicting chains. Once their private chain
gains more attestations for a series of blocks, they can attempt to convince the rest of the network
to fork, and accept their version of the chain. In a proof of stake setting, this is referred to as voting
on conflicting blocks. These issues stem from the so-called Nothing-at-Stake problem [15]. A node
that receives two conflicting blocks must vote and decide which one to accept. It is always in the
node’s best interest to vote for both blocks to earn the reward for contributing to the consensus,
whichever block is accepted.

• Countermeasures: To mitigate this problem, proof of stake-based consensus mechanisms introduce
game theoretical concepts that penalize any nodes that are discovered to vote on conflicting blocks.
The state of the art protocols such as Casper [94], and GHOST [95] or recently a combination
of both [96] propose modified fork-choice rules and block finalization protocols. Casper, for
example, requires validators to be bonded i.e. to commit Ether to a smart contract. Validator sets
continuously get randomly shuffled. Withdrawing their bond would take a long time (months).
It creates a long time window within which other votes will be collected. This allows for a long
enough period where the validators bond can be destroyed (called slashing in Casper) by another
validator set once all votes are collected.

• Majority attack A malicious actor tries to obtain a majority representation in the network to
compromise the blockchain either on the consensus level, or the network level. On the consensus
level, this can lead to a double-spending attack [97] (described below). The severity of this
attack largely depends on the network. In proof-of-work-based blockchain, this can lead to
a double-spend using a selfish mining attack. The malicious party submits a large payment
transaction, and in return receives goods or services. The transaction is confirmed on the public
chain. Once the goods/services are received, the malicious party reconnects their network to the
public chain, and propagates their version of the blockchain. Their version of the chain will be
longer due to higher hash-rate, forcing the public chain to revert a few blocks, reverting also, the
payment transaction. The extent of the thread largely depends on the underlying protocol, its
consensus algorithm, and its fault tolerance.

• Countermeasures: In [97], a merged mining technique is developed to protect against majority
attack, in which, two different crypto-coins are combined to be mined at the same time. This
technique enhances security, because miners contribute to the hash-rate of both crypto-currencies
and miners can mine multiple blocks simultaneously. However, this process is complex and
merged crypto-currencies must rely on the same hashing algorithm.
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– Selfish mining attack: Also known as block withholding attack, occurs when attacker keeps
track of their own private chain, separate from the public chain [98]. The attacker mines
on the private chain and keeps private blocks, then use the majority attack. This attack is
mostly applicable to Proof of Work blockchains if a malicious actor is able to sustain majority
mining power for more than one block. Upon reconnecting with the public network, they
would have mined more blocks, forcing the rest of the network to accept the longer chain.
Transactions on the public network would hence be reversed, potentially opening the door
to a double-spend attack. In proof of the stake-based consensus algorithm, this idea applies.
However, the condition is different as the malicious party needs to control the majority of
validator nodes. They then vote for both the blocks on the public network and the private
network. However, proof of stake chains can mitigate this by finalizing blocks, and not
simply following the “longest chain wins” rule of the Nakamoto consensus.

– Countermeasures: To resolve selfish mining attacks Siamak et al. [99] proposed Zeroblock
mechanism, in which, if a block does not generate within fixed interval time, then this
block will be rejected by all other miners. However, maintaining time synchronization is
not trivial. The problem becomes much harder when nodes display byzantine behavior.
Blockchains with PoS consensus mechanisms rely on different fork choice rules, and block
finality protocols to prevent large forks such as Casper FFG [94].

– Eclipse attack: In which an adversary tries to control the incoming and outgoing connection of
a node and mining power in the network. It allows an attacker to manipulate the information,
and hence nodes operation and launch an attack [100]. The attacker runs a modified version of
the protocol on multiple instances in an attempt to convince one or multiple nodes to connect
to his malicious nodes. Once the attacked nodes only maintain connections to nodes operated
by the attacker, the nodes are eclipsed from the rest of the network. The attacker can arbitrarily
filter the message passing possibly even censoring transactions from eclipsed nodes. The most
recent successful attack was on the Monero network [101], where the attackers ran multiple
nodes by renting cloud instances. They exploited the network code that favored outgoing
connections to nodes running behind the same IP address. This allowed the attacker to gain
network share by eclipsing honest nodes with malicious ones. The attack ended after a few
weeks with a fix of the P2P code in Monero.

– Countermeasures: In paper [100], proposed solutions to mitigate eclipse attack is to
use a white-list (e.g., known miners) and disable incoming connections in the network.
It prevents new nodes to join the network. Another paper [102], proposed a mechanism
against eclipse attack. The basic idea behind this mechanism is to bind the incoming and
outgoing connections of the overlay network and allow a node to choose neighbors based on
performance metrics. This countermeasure is effective because it is difficult for an attacker to
control the nodes in the network.

– Sybil attack: the attacker tries to control the peer network by participating with multiple
identities. It tries to gain the majority of influence on the network [8]. In the context of
blockchains, this attack is applicable in a proof-of-stake setting. All proof of work-based
consensus protocols relies on voting schemes to decide the fork choice rule. With the majority
of the consensus nodes, an attacker can win the vote for invalid blocks. However, due to
staking requirements, the attack is rarely feasible. On the one hand, should such an attack be
successful, all trust in the chain would be lost, and the value of the attacker’s staked coins
would drop drastically. On the other hand, the investment needed to acquire such a large
influence is usually too high.

– Countermeasures: To prevent Sybil attack George et al. [103], proposed Xim, a two-party
mixing protocol that is compatible with bitcoin and virtual crypto-currencies. It is a
decentralized system that allows participants to find partners anonymously to hide coin
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exchange by mixing. It does not rely on TTP to choose partners for mixing, and enhances
security because the malicious user cannot identify the evidence of participants that mix up.

• Double spending attack: It consists of spending digital currency more than once. This is what
blockchain primarily solves, however an attacker may replicate a digital coin and use it in another
transaction [92].

• Countermeasures: To prevent the double-spending attack Hyunjae et al. [104] proposed a
recipient-oriented transaction method based on a private blockchain. The proposed mechanism
ensures the privacy of recipients and mixes the incoming transactions to protect them from
attackers. However, in public permission-less networks, double-spends are only possible by
exploiting the consensus algorithm. It allows the transaction’s receiver to verify the validity of
transactions before adding them to the block. The actual attack vector varies depending on the
type of consensus mechanism.

• Malicious smart contract: It facilitates, for instance, leakage of privacy-sensitive information
(e.g., email address into a smart contract is publicly visible) and password theft (e.g., a fair
exchange between two parties can only be done after receiving a valid password) [105]. In [106],
the authors explain the example of password theft. Dealing with malicious smart contracts
remains an open research problem.

• Countermeasures: Slither is a fast and reliable security mechanism to detect bugs in a smart
contract. The main objective of this mechanism is to understand code and detect vulnerability
automatically [107]. In [108], the authors proposed the SmartCheck vulnerability analysis
framework to protect the code of solidity smart contracts. It helps to identify the vulnerabilities
in smart contracts and the reason of these vulnerabilities with recommendations. Ahmed et
al. [34], proposed the Hawk framework, based on zero-knowledge proofs to enforce transactional
privacy in a smart contract. It allows a user to write a private smart contract and does not store
transactions publicly on blockchain.

– Distributed autonomous organizations (DAO) attack: It occurs with the help of a malicious
smart contract on Ethereum. In this way, the attacker injects some malicious functions in the
smart contract, such as withdraw function, call send to Ether and steal all the Ethers from
DAO [109].

– Countermeasures: As DAO attack exploits calling a reentrant function in the smart contract
execution, its solution consists in making sure that the code of the smart contract is not
callable in such a way [110].

– Wallet theft attack: Usually, the user’s private keys are generated and maintained by the
user with the help of wallets. In paper [111], authors claim that ECDSA (Elliptic Curve
Digital Signature Algorithm) scheme does not maintain user’s privacy because it is unable to
create enough randomness during the signature process, through which an attacker can steal
the user’s private key.

– Countermeasures: To deal with wallet theft attack Weiqi et al. [112] proposed to use the Trust
zone mechanism present on ARM processors that creates a secure execution environment
(SEE) to guarantee a safe and reliable environment for the execution of sensitive processes.
This is realized with non-maskable interrupts (NMI) and guarantees complete isolation from
the operating system, using a secure memory zone and storage to protect user’s private key,
wallet’s address, and transaction verification process.
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• Blockchain Poisoning: It is an attempt to store illegal files (e.g., malware, malicious content, and
privacy information, etc.) in the free space for smart contracts of blockchain. A malicious user can
force blockchain nodes to download malicious files which leads to other attacks in the blockchain
such as DoS (see Section 4.1). Another kind of poisoning consists of spamming many transactions
and indexing the outputs so when those outputs are used as decoys on other transactions, one can
consider them decoys and increase the odds of tracing the real outputs, leading to the statistical
modeling attack [113].

• Countermeasures: blockchain poisoning attack can be prevented by introducing a minimal fee
determined by its resemblance with existing contracts in which the minimal fee reduces if the
number of similar contracts increases. The idea is to calculate the fee of all contracts which are
used on blockchain and it becomes higher if there is no similar contract. In this approach, the cost
to send a transaction relies on the number of similar contracts. Because the number of malicious
smart contracts related to falsified transactions is small in the blockchain, then, a malicious user
would need to pay a higher fee, which reduces the likelihood of such an attack to occur [113].

In summary, due to its public nature, blockchain is vulnerable to several attacks. In order to
tackle these attacks and improve blockchain security and performance, we have discussed possible
countermeasures. Among these, smart contract attack is a growing concern due to bugs in code,
which can lead to loss of cryptocurrency and privacy leakage. Writing secure smart contracts can be
difficult due to various rules, as well as platform vulnerabilities and limitations. Research towards
securing the execution of smart contracts on blockchain-based systems is still an open question.

4.3. Privacy Attacks and Countermeasures

As a complement to previous categories, we identified the most relevant privacy attacks
and their countermeasures, that focus on exploiting available data to gain knowledge of
privacy-sensitive information.

• Homogeneity attack and background knowledge attack: Homogeneity attack discloses
privacy-sensitive information and breaks privacy when all values of a quasi-identifier attribute
(e.g., zip code, date of birth, and gender) are similar in a given table [114]. Background knowledge
attack occurs when an adversary has a background knowledge of a quasi-identifier to reveal the
user’s sensitive attributes [67].

• Countermeasures: K-anonymity is based on quasi-identifier attributes to hide user’s identity in
a dataset [45] by providing at least k identical records in the data set for each quasi-identifier
attribute. Thus, even if an attacker accesses the data set, he could not identify the real identity of
a person due to a similar record in the data set. However, background knowledge attacks can still
link outside information to disclose sensitive information.

L-diversity extends k-anonymity to prevent homogeneity attack and background knowledge
attack as it normalizes data distribution. It improves the diversity of user’s sensitive information
in the data set to achieve higher privacy. It ensures data privacy without disclosure of sensitive
attributes. However, it is vulnerable to skewness and similarity attacks [67].

• Skewness attack and similarity attack: Skewness attack occurs when the values in the table
have a non-uniform distribution, a malicious user obtains a sensitive value based on its higher
frequency distribution over a subset of the data [115]. A similarity attack happens when the values
of sensitive attributes are distinct but semantically similar, and the attacker uses the meaning of
data to infer missing information [49].

• Countermeasures: The t-closeness approach [49] improves privacy by integrating k-anonymity
and l-diversity. It provides protection against sensitive attribute disclosure. This approach works
properly if the distance between two distributions in the table should not more than the given
threshold value. It does not work properly if the distribution of sensitive values in a class is not
close to the distribution of sensitive values in the overall dataset.
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• Statistical modeling: Such attacks are specific to blockchain implementations that use decoys to
prevent transaction identification, such as Monero. Statistical modeling, coupled with a heuristic
approach for decoy elimination is believed to be the attack vector CipherTrace is using to attempt
to trace Monero transactions at the time of writing [116]. The accuracy of such models can be
increased significantly when coupled with other privacy attacks such as blockchain poisoning.

• Countermeasures: Statistical modeling can be prevented with binned mixin sampling, which
changes the current mixin sampling process. The idea is to combine outputs into groups of some
fixed size in the Monero blockchain, called bins. Each input transaction is referencing an output
transaction in a bin, either as a mixin or spend. It estimates the real spend-time distribution,
and then sample mixins according to this distribution. It helps to prevent the traceability of
transaction input and disclosure of mixin sampling distribution [117].
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Figure 2. Classification of attacks and countermeasures.
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As a summary, the main highlight is the diversity of attacks that blockchain-based solutions
face at the network, blockchain and privacy levels. Therefore, today’s solutions must combine
existing techniques to guarantee reasonable protection from this diversity of potential breaches.
In particular, data confidentiality, privacy, and smart contract execution are vital challenges for
blockchain implementations. We discuss this further in the following section.

5. Evaluation and Discussion

This section starts with a comparative analysis of privacy and security mechanisms and follows
with a set of recommendations for design choices that should be considered when designing
blockchain-based solutions and research directions based on the identified open challenges.

5.1. Comparative Analysis

In order to compare existing work, we deem it appropriate to examine the following criteria:
complexity, scalability, size overhead, memory cost, efficiency, computation overhead, communication
overhead, and latency. Table 2 gives a global overview of existing technologies with respect to these
criteria. We analyze in detail each privacy and security mechanism of Table 2, including their main
advantages and limitations, in the following. We mentioned “N/A” in the table if we did not find
detailed literature for specific criteria.

Complexity is a general indicator that helps us assess how costly a solution will be when adopted,
based on its mathematical complexity. Scalability gives an insight into how the compared solutions are
suitable to large-scale contexts. Size overhead reflects the cost to apply the solution in terms of storage
space. Memory cost shows an amount of memory that is required to apply the solution, which helps us
to measure solution performance. Efficiency determines the speed and average execution time taken
by a mechanism to complete the given task, which affects the solution performance. Computation
overhead shows the cost of privacy and security mechanism operations, which facilitate us to measure
the number of steps compulsory to solve the problem. Communication overhead is measured by the
number of bytes in every message sent during communication over the network and latency refers to
how much time it takes to transfer information to its destination. We follow with Table 3 that provides
a detailed discussion on the advantages and drawbacks of the previously mentioned privacy and
security techniques to guide further research.

The tables show that ring signature [37], is relatively efficient and works with very low latency.
Security properties (e.g., confidentiality and authentication) and data transaction protection [4,39]
are also provided without reducing signature size overhead. However, key management and long
signature size are drawbacks as the number of key couples is linear to the number of ring participants.

Zero-knowledge proof [118], is a promising solution to validate transactions or to ensure privacy
of the data in the blockchain. It is good to provide anonymous authentication and is secure against
man-in-middle attack [119]. However, zero-knowledge proof is not efficient for large-scale systems
because it requires high computation time and memory resources to create and validate proofs [5].

Mix networks, as proposed in [1,41], achieve both efficiency and scalability. It has a low size
overhead because the size of input data is linear to the number of mix servers. The proposed scheme
is unable to reduce complexity, latency, memory, and computation overhead due to the high cost of
generating an input cipher text and cost of encryption keys used by mix servers.

In [43,44], the Tor mechanism is presented to improve the identified limitations of mix network and
achieves low memory cost, data size, computation, and communication overhead. Their motivation
was to reduce latency in the anonymity system. However, Tor is not scalable because it cannot
handle a large number of nodes or servers. Using Tor entails reducing network speed as compared
to normal internet and it does not ensure data security outside of the network. Along with this,
onion routing protocol [42], enables sending end-to-end encrypted messages with minimal disclosure
of user metadata. The focus is put on scalability and efficiency in communication. However, memory
cost and communication overhead are high.
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From the data privacy perspective, k-anonymity technique is scalable and works without any
latency [120]. It is easy to implement and risk of re-identification is reduced when the diverse values
are high. However, it is not efficient because of the long processing time [121,122]. It is prone to the
background knowledge attack and homogeneity attack.

In [123], the authors proposed the l-diversity mechanism that has a low size overhead.
Computation overhead is also low due to the same frequency of sensitive attributes in a given dataset.
However, it is not efficient due to the chance of attribute disclosure. It also fails to prevent the skewness
attack and similarity attack.

The authors in [68], presented the t-closeness mechanism which is not scalable to handle large
datasets. T-closeness suffers from higher time complexity for larger datasets because running time
increases in proportion to the number of inputs. It is therefore a complex computational process to
enforce t-closeness.

In [53], authors proposed an identity-based encryption mechanism that is simple and efficient
because it allows verifying the validity of ciphertexts publicly and reduces the ciphertext size and
decryption time as compared to existing approaches (e.g., adaptive chosen ciphertext (CCA2) attacks).
The solution relies on an encapsulation algorithm to enhance security against selective-identity attacks
and to reduce the public and private key sizes as compared to typical encryption systems. However,
key management is a limitation of the identity-based encryption technique because of the private-key
generator which is used to generate user’s private key. A secure channel between a user and private-key
generator is needed to transmit the private key. One main limitation of Identity-based encryption is a
single point of failure, because if a private-key generator is compromised then it means that the entire
system is compromised.

Attribute-based encryption [124], allows a user to encrypt and decrypt data based on the
user’s attributes. It is scalable and efficient for large size encryption and enforces confidentiality
on data [125]. The identified limitations of attribute-based encryption are high time complexity and
computational cost in terms of key generation, encryption, and decryption [57]. Another drawback of
the attribute-based encryption mechanism is high communication overhead due to a larger ciphertext
size. In the future, attribute-based encryption with fixed ciphertext size might be a possible solution to
overcome identified limitations.

In [58], the authors propose a blockchain-based credit network that provides privacy and security
without TTP using symmetric key cryptography. They present security and scalability analysis
to demonstrate advantages in terms of transaction privacy, achieve low communication overhead,
maintain concurrent transactions, and identify attackers in transactions. The major disadvantage of
the proposed approach is public transactions and higher time complexity.

Asymmetric key cryptography ensures secure communication between sender and receiver by
using public and private keys [126].It has high computational time overhead because of key generation
time and encryption/decryption time, which makes encryption/decryption more complex for large
size of data [127]. Asymmetric key cryptography is memory consuming and computationally intensive,
leading to long execution times [128]. Lastly, key management remains an issue.
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Table 2. Comparative analysis of privacy and security approaches.

Mechanism Complexity Scalable Size
Overhead

High Memory
Cost

Efficiency Computation
Overhead

Communication
Overhead

High
Latency

Ring
Signature Low [4,37,38] No

O(n) ring signature
grows linear with
group size [4,37–39]

No [4,37,38] Yes [4,37,38]

- High [4]
- O (n + 1)
n is group size
of ring signature
[129,130]
- O(n) [38]

N/A No

Zero Knowledge
Proof High [118] Yes [119] Low [5] Yes [5] No [5] Expensive [5] N/A Yes [5]

Mix Network

O(snN)
s is length of
plain text
parallel
to input [41]

Yes [1]

O(n)
Input entities
is linear to mix
servers [41]

Yes [1] yes [41] O(N + n)
All inputs [41]

N/A Yes [1]

Tor Routing Low [44] No Low [44] No [44] Yes [44] Low [44] N/A Low [44]

Onion Routing Low [42,43] Yes [42] High [42] Yes [42] Yes [42] High [42] Yes [42] High [43]

K-anonymity Very low [68] Yes [120] Low [121] No [121] No [122] Low [121] N/A No [121]

L-diversity Low [68] Yes [123] Low [123] Low [122] No [122] Low [123] N/A No

T-closeness Very high [68] No [68] Low [52] Low [52] Yes [52] Low [52] N/A No [131]

Identity-based
Encryption
(session key,
and encapsulation
algorithm)

Low [53] No

- O(n)
public-key size and
encryption time
grows linearly [53]
- n-bits
messages [54]

Yes [55] Yes [53,54] weak [53,54] N/A No

Attribute-based
Encryption
(bilinear
Diffie-Hellman)

High [57] Yes [125] Low [57] No [57,125] Yes [124,125] High [125] High [125] No



J. Cybersecur. Priv. 2021, 1 183

Table 2. Cont.

Mechanism Complexity Scalable Size
Overhead

High Memory
Cost

Efficiency Computation
Overhead

Communication
Overhead

High
Latency

Symmetric key
Cryptography
(DES, AES,
RC5 etc)

Low [58] Yes [59] Low [72] Yes [58] Yes [58] Low [132] Yes [58,59] Yes [58]

Asymmetric key
Cryptography
(Elgamal, RSA,
DSA, etc.)

High [127] Yes [61] High [133] High [61,128] Yes [60,128] High [127] Yes [134] No [134]

Homomorphic
Encryption Low [62] No Low [62] No [62] Yes [62,63] Low [62] Low [62] No

Hash Function
(MD5, SHA-1)

O(N), N is a
size of
data [135]

No High [136] Yes [136] Yes [135] Low [136] N/A No
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Homomorphic encryption allows mathematical operations on encrypted data by untrusted third
party and ensures the privacy of sensitive data [137]. In [62], the authors present a transaction-privacy
bitcoin framework by using homomorphic encryption that is efficient and less complex because it has
small unit of time in terms of key generation, encryption, verification, and decryption. The proposed
framework is secure and prevents the active attack, double spending attack, and passive attack but it
does not ensure identity privacy. This technique has low computation overhead in terms of modular
operations on data. The communication cost between the user and the third-party server is low.

In [135], the authors discussed the Hash function that is simple and efficient. The complexity of
hash function is O(N), where N is the size of the input data. It is computationally intensive due to
large hash size for SHA-256 and SHA-512 algorithms [136].

In addition to privacy challenges on blockchain, the reader is referred to additional survey
papers [1,5], where authors summarize the limitations of consensus algorithms (e.g., proof of
work, proof of stake, and delegated proof of stake etc.) and privacy challenges (e.g., transaction
linkability, private key management, and malicious smart contract etc.) as well as their corresponding
countermeasures. However, as it is proved in literature, full anonymity is not ensured in the bitcoin
blockchain. Related to cryptographic aspects, another identified limitation is to deal with the high
computational cost of ZK-SNARKS on the blockchain.

In [60], a simulation has been conducted to test the computation cost of an authentication
scheme using Elliptic Curve Cryptography to achieve efficiency, key security, and user anonymity.
The experimental results show that it is secure against replay attacks and man-in-the-middle attacks.
The main disadvantage of this approach is its complexity because of Elliptic Curve Cryptography.

In [61], the authors propose a blockchain-based system to send data anonymously and securely.
The proposed system achieves scalability and reduces communication overhead without latency.
Security properties (e.g., data confidentiality and authentication) and user’s privacy are also provided but
the proposed system is limited to private permission blockchain. However, the proposed system presents
several drawbacks related to system complexity, computational cost, and high storage overhead.

Authors in [64] propose a system that ensures identity privacy, unlinkability during a fair
exchange, and security on data. The proposed system is based on decentralized blockchain and
smart contracts are used to enforce fair transaction exchange between parties. It reduces memory cost.
However, it is not scalable and requires high communication overhead. Analysis of complexity and
attack risks are also not provided. Table 3 summarizes our findings that are detailed below.

Table 3. Advantages-limitations of privacy and security mechanisms.

Privacy and
Security Mechanisms Advantages Limitations Attack Risks

Ring Signature
Flexible, Efficient;
Does not depend on TTP.

Computational infeasible;
Could not identify actual
signer of transaction.

Attribution attack.

Zero Knowledge
Proof

Protect identity
and transaction data.

Efficiency; Need high
computational time; Size of proofs.

One user pretends to
be another.

Mix Network
Efficient; Difficult for
an attacker to trace
communication.

Require TTP as mixing server. Active attack;
Sleeper attack.

Onion Routing Enforce security on data. High communication overhead. Replay attack.

Tor Routing
Efficient; Protect user’s
identity online.

Does not ensure data security;
Slow network speed.

Attack on client through
internet browser and
external software e.g., Flash etc

K-Anonymity
Ensure identity privacy;
Easy to understand.

It does not prevent
attribute disclosure;
Attacks are possible;
Re-identification
is possible.

Homogeneity attack;
Background knowledge
attack.
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Table 3. Cont.

Privacy and
Security Mechanisms Advantages Limitations Attack Risks

l-Diversity
Ensure privacy
of user attributes.

Does not prevent data
against the attacks;
In-efficient; Attribute
disclosure can be possible.

Skewness attack;
Similarity attack.

T-closeness Protect data privacy

Difficult to identify the
closeness between the
knowledge gained and t-value
by using Earth Mover’s Distance(EMD)

Linkability risk is possible
to link external data
to the equivalence areas

Symmetric
Key Cryptography

Re-identification of message
is not possible; Authorized
user has access to data; Fast;
Easy to use.

Difficult to manage multiple
keys; Require secure platform
to share secret keys.

Re-identification of
key from plain text;
Recover plain text
from cipher text.

Asymmetric
Key Cryptography Ensures data confidentiality.

Slow; Does not provide
data integrity.

Possible to crack private
keys; Brute force attack.

Hash
Function Flexible; Easy to use.

Not effective on small scale
dataset; High computation cost;
In-efficient.

Collision attack;
Brute force attack.

Homomorphic
Encryption

No one can read or modify
data; Prevention of active
and passive attacks.

Slow. Heuristic attack.

5.2. Current Recommendations and Research Directions

In this section, we first describe our recommendation for the selection of privacy and security
mechanisms on the basis of identified requirements to protect privacy and security-sensitive
information. Then, we detail the most prominent privacy and security challenges for blockchain
as an outcome of our analysis.

5.2.1. Current Recommendations

Some features are the top priority when designing new data privacy and security mechanisms
for blockchain. Based on our previous analysis, these features are unlinkability, low cost, scalability,
reliability, and efficiency, low overhead and low computational cost. In the following, we present the
most appropriate privacy and security mechanisms and explain their relevance for blockchain.

1. Ring signature we consider ring signature to be efficient for identity protection, because of its
lower complexity than zero-knowledge proof. However, it is not as scalable as other mechanisms.
While scalability can be moderated by creating several rings with a manageable number of
participants, key management remains a central problem for ring signature.

2. Zero-knowledge proof has higher memory cost and complexity as compared to ring signature.
It is mostly considered as a solution to identity management where identity attributes need
to be proven without revealing the actual identity. In such a case, it is considered relevant to
prevent identity/transaction data disclosure. Despite their higher cost, zero-knowledge-proof
constructions are currently the most suitable to address both privacy, and scalability. We conclude
that ZKPs can be used to provide anonymous transactions such as Monero [39]. However,
they can also be used as a scaling mechanism, where transactions can be batched off-chain,
and verified on-chain in blockchain platforms with Turing-complete smart contracts. Presently,
the use of ZKPs is limited by the time complexity of constructing proofs, and the lack of protocols
that enable trust-less setup [138] with the exception of STARKs [40].

3. Mix network is efficient to randomize the order of input data and it is scalable as compared to
other available solutions. However, mixed networks require TTPs to shuffle transaction data [1]
which is a major drawback in our context.
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4. Identity-based encryption is better to prevent users’ identity disclosure because of its low
complexity and computation overhead as compared to attribute-based encryption. However, it is
not scalable and has a higher memory overhead than other available solutions.

5. Attribute-based encryption mechanism is good to enforce confidentiality on data and fulfills
transaction data protection requirements without latency. It works efficiently because it has lower
data size overhead and memory cost than identity-based encryption and onion routing mechanisms.

6. Symmetric key cryptography is relatively fast for large amounts of data because of its low
computation overhead as compared to asymmetric key cryptography. In symmetric key
cryptography, keys can be developed and exchanged between two parties through cryptographic
algorithms (e.g Diffie-hellman key exchange).

7. Asymmetric key cryptography is easy to use due to separate public and private keys, however,
it has high computation overhead as compared to symmetric key cryptography.

8. Homomorphic encryption is considered less complex and efficient due to its low memory cost
as compared to ZKPs, onion routing, and symmetric key cryptography [62]. Advances in
cryptography are consistently being integrated to possibly overcome security and privacy issues.
Homomorphic encryption is well-positioned to address most privacy concerns. However, the
lack of practical, scalable, and audited implementations is hindering integration.

9. Hash function is good to fulfill identity and transaction data protection requirements without an
intermediate party, because it has lower computation overhead without latency. It generates a
unique signature of fixed size from variable-size data input and it is useful to assess the integrity
of data during data exchange. It is very widely used for data integrity verification.

5.2.2. Research Directions

As an emerging technology, blockchain is facing some challenging issues. In the following,
we summarize privacy and security directions for blockchain environments.

• Key management: As it is the case with ring signature, most solutions today rely on
asymmetric cryptography. Therefore, a pair of public/private is required for each involved
actor. Key management is an issue that needs to be mitigated as a large-scale adoption of
developed solutions would need to handle very large numbers of key pairs, including the
important constraint that the private key must not be disclosed.

• Energy consumption of consensus protocols: Blockchain consensus protocols consume a lot of
computing resources, especially the ones based on proof-of-work, which leads to low-system
throughput and high system latency. Designing a better consensus mechanism to improve system
throughput is challenging due to the algorithmic complexity involved.

• Security and consensus protocols: As detailed in Section 4 a good part of security issues related
to consensus protocols, such as proof of work, proof of stake, and delegated proof of stake.
While consensus mechanisms also have their own challenges in terms of computational cost,
they are also central from a security perspective. One possible option in this direction is to
constrain the longest chain rule to alleviate majority attacks, which remains an open problem [97].

• Privacy: On most public blockchains, transaction data is verified and stored on every node due
to its decentralized nature and security concerns. It increases the chances of misuses of the user
identities and transaction data. As stated in [34], blockchain does not guarantee transaction and
user’s identity privacy since all data on the blockchain is publicly available. A lot of work as
been ongoing to integrate solutions for privacy protection into the blockchain, a good example
of implementation being Monero. Further work is required to protect anonymity at the level of
transaction contents, blockchain, history of added blocks, and even blockchain access, so that
data read and write accesses becomes totally protected from monitoring attacks. It is noticeable
that this problem spreads across the OSI model layers, as identifiers also relate to the network and
data link layers (IP and MAC addresses), therefore a well-designed solution should make sure
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that all layers are covered. The ability to perform computation on encrypted data will arguably
have enormous implications on privacy, security, and scalability. Therefore, future research
on homomorphic encryption should be aimed not only at mathematical constructions but also
audited implementations. The ability to verify, and process transactions without revealing the
data will be the key enabler technology for the future development of DLT.

• Storage cost: Due to the decentralized nature of blockchain, data is copied on every node in
the network. Therefore, it imposes a huge cost due to the ever-increasing size of the chain.
Building storage-wise lightweight blockchain solutions still remains an open challenge. One direction
to explore in this domain is the study of multiple subsets with data intersections, where replication
would occur on relevant data subsets while maintaining the security properties that make the
blockchain interesting. Local network structures could serve as filters in such setup, guaranteeing that
majority attacks could not occur within one particular network by preventing external participants to
contribute. At the higher level, a decentralized marketplace of micro-currencies would guarantee
global communication, maybe using a central blockchain as we know them now to store the
history of the different subsets.

• Blockchain vulnerabilities: Consensus mechanisms are arguably the biggest security risk.
Different consensus mechanisms are available, each with different properties and trade-offs
between scalability, security, and decentralization. Secure mechanisms like proof of work have
issues with scalability, whereas scalable consensus mechanisms like proof of stake, have issues
with security and decentralization [139]. Efficient mechanisms yet require guaranteeing the
privacy of transactions and protect against attacks such as double-spending.

6. Conclusions

In this paper, we look at privacy and security concerns for distributed ledger technology.
We identify requirements of data privacy and security for blockchain and provide a detailed overview
of the limitations of existing technologies. We classify attacks into different categories that provide
a comprehensive global overview of the topic, and provide the matching privacy and security
countermeasures to mitigate these attacks.

Then, we provide a thorough comparative analysis of state-of-the-art privacy and security-preserving
mechanisms before giving recommendations for the different problems blockchain face nowadays. Indeed,
while each individual mechanism has advantages and limitations and should be selected according
to the constraints of the application domain, some aspects such as scalability, privacy, overhead,
memory cost and consensus mechanism remain cross-domain research concerns.

We follow with an overview of the work direction that we identified from our study. We detail
open research challenges and propose research directions. We have identified consensus protocols
and key management as central elements to improve blockchain developments to come. As well,
integration of existing privacy and security protection mechanisms will be a central concern for the
development of secure, safer and trusted distributed ledger technology. In this respect, the compromise
between complexity and performance will be a key point during this process.
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