
From Zero (Knowledge) to Bulletproofs

June 27, 2022

1 Introduction
1.1 Audience
This document doesn’t really address (at least, not well) two potential audiences:

• Experts in the field who want academic rigour
• Casual readers who want a quick skim in a few pages to get an idea

So it doesn’t leave many people left I guess!
But if you are very curious about: Confidential Transactions, Bulletproofs

as a way to improve them, and also the underlying technical ideas (in particular,
zero knowledge proofs in general, and commitment schemes), and you have an
intention to understand pretty deeply, you might find this investigation at least
partly as interesting to read as I found it to construct!

Knowledge prerequisites: You are not assumed to know anything about
elliptic curves (EC) except that EC points can be added and also EC points can
be expressed as scalar multiples, i.e. the standard public-private key relationship
like P = kG where k is a scalar value which represents the private key, and
understand why it makes sense to say something like aP = axG, and that if
P − Q = H and Q = rsG then the private key of H would be (x − rs). No
deeper mathematics about the construction of elliptic curves will be relevant
here. If you’ve already taken the time to understand e.g. ECDSA signatures or
Schnorr signatures, you’ll find nothing here to trouble you.

Similar comments apply to hash functions (which play only a very minor
role in most of this document).

Very basic linear algebra1 will be very helpful. You need to know what a
vector is.

You don’t need to know anything about zero knowledge proofs (no puns
please!). I’ll endeavour to introduce some of the ideas behind that phrase in
stages.

If you don’t know how Confidential Transactions pre-Bulletproofs work, I’d
mainly suggest Greg Maxwell’s brief write-up[5]. My own detailed description[6]
of the mechanics may still be helpful in some parts if you are new to this stuff.
However, it goes into a lot of detail of implementation in later sections that
are no longer relevant here. Thirdly, there is this[7] more compact description
which could be useful, too.

1Let’s say: How to solve a set of simultaneous linear equations. What a matrix inverse is.

1

1.2 Motivation
In investigating and trying to understand Bulletproofs[15], I found myself dis-
appearing slowly down a rabbit hole of interesting ideas, blogs and eventually
academic papers, that talk about a whole set of ideas based on “Zero Knowledge
Proofs” and specifically, how you can construct such beasts using the Discrete
Log problem (I will translate to the Elliptic Curve form here), and apply them
to proving things about mathematical objects like vectors, polynomials, dot
products etc.

After an initial prelude about “commitments” (Section 2) which you should
definitely not skip unless you’re already fully familiar with them, I’ll focus par-
ticularly on parts of three papers: (1) a paper of Jens Groth from 2009 entitled
“Linear Algebra with Sub-linear Zero-Knowledge Arguments”[1], (2) a paper
by Bootle et al from 2016 that partly builds on those ideas: “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”[2]
(in particular its inner product argument-of-knowledge; in some way this is the
main breakthrough), and finally (3) the paper on “Bulletproofs”[15] itself by
Bünz et al. from 2017.

As we go through certain arguments/proofs in these papers, I’ll introduce
some details on how the proofs work; it’s far less interesting to just see the
algebraic constructions than it is try to actually convince yourself that they
do indeed achieve the rather magical goal:

Prove that some condition holds true, without revealing anything else, but
even better – do it using only a tiny amount of data!

What kind of condition are we talking about? Usually in this paper it’ll be
something like “Proving that you know the vector to which this commitment
commits without revealing it” or “Proving that the two committed vectors have
a dot product of zero” etc. Such proofs are a little puzzling without context,
hence the next subsection.

1.3 Why is “proving you know vectors without revealing
them” even useful?

In isolation, it’s not really useful for Alice to prove to Bob that she knows, say,
the vectors to which the commitments C1, C2, C3 committed, if she doesn’t at
some later point reveal them (more about “commitments” in Section 2, if you’re
new to them).

But this can be part of a larger proof: for example, Alice may prove that C4
is a commitment to a scalar value t, which is the dot product t = v1 · v2; still
without revealing any of these values. That can be useful, and indeed, it turns
out to be the central part of the mechanics of Bulletproofs for example. The
Groth 09 paper uses this proof-of-knowledge-of-committed-vectors primitive to
build a whole “suite” of proofs of this type: you can use a set of vectors as an
encoding of a matrix of course, so you can prove not only things like a dot prod-
uct as mentioned, but also other things like a matrix product, a matrix inverse,
a Hadamard product, even whacky things like that the matrix is triangular.

However, the “inner product”2 takes centre-stage, since the paper reduces
all the other linear algebra-y relations it wants to prove to that form. This

2Annoyingly this has two other commonly used names: dot product, and scalar product.
If you don’t remember its definition from linear algebra, please look it up.

2

document will not explain this, but only (in Section 3) that first step: how to
prove (technically, “argue”) knowledge of a set of vectors (in zero-knowledge).

1.4 Caveat Lector
This is not a complete coverage of either Bulletproofs, nor of the earlier papers
mentioned, nor of Zero Knowledge Proofs (which are just explained in outline);
it’s more of a patchwork coverage for the purpose of building some or most of
the intuitions and machinery that will put Bulletproofs in context, and perhaps
encourage you to learn more about Zero Knowledge Proofs generally.

More importantly though, this is for now just a personal investigation and is
bound to contain both gross and subtle errors. Corrections are welcomed, but
readers should bear this in mind.

1.5 Notation
We will be working in the elliptic curve scenario, assuming everywhere the use
of a curve for which the standard generator/basepoint is G, and whose order
is p3.

• Integers (scalars) mod will be written as plaintext lower case letters (x).
• Points on the curve will be written as upper case letters (X).
• Scalar multiplication will be written with no explicit notation (xY is the

scalar multiplication of the point Y by x).
• Vectors (including vectors of points) will always be written in bold (x,X)

where not expanded out into components.
• For matrices, we’ll use only the LaTeX-specific “mathbb” font: X
• An especially cheeky piece of lazy notation: we will often deal with sums

of the form:
a1G1 + a2G2 + . . .+ anGn,

which we will often write specifically as an “implicit product” of two vec-
tors: aG. Note that this is a single curve point.

2 Commitments; homomorphic; Pedersen
I’m going to blatantly plagiarise myself for the much of this section, from my
earlier document on Confidential Transactions[6]. If you’ve already read that,
you can skip this entirely, EXCEPT 2.3.2, 2.4, which are new here, and very
important.

2.1 Homomorphism
Consider this simple mathematical fact: ab×ac = ab+c. Also, the result is equal
to ac+b. Notice that the addition of and works, and follows the normal addition
rule4, even after we’ve put all the numbers into exponents. This is an example

3NB; this is usually N , but we avoid that notation because we reserve it for vector dimen-
sion.

4“commutativity” – you can swap them round with no effect

3

of “homomorphism”5, that we can use to get a blinding/encryption effect – we
can do arithmetic on “encrypted” amounts (in the very vaguest sense of the
term), in certain circumstances.

2.2 Commitment schemes
Cryptographic commitments are a well known powerful technique. They are
usually used in a situation where you want to promise something is true before
later proving it to be true, which enables a bunch of interesting types of systems
to work.

Commitments are only possible because of the existence of one-way func-
tions; you need to be able to produce an output that doesn’t, on its own, reveal
the input. Cryptographic hash functions (like SHA256) perform this role per-
fectly. If I want to commit to the value “2”, I can send you its hash:

53c234e5e8472b6ac51c1ae1cab3fe06fad053beb8ebfd8977b010655bfdd3c3

This wouldn’t be too smart though. It would mean that whenever I want to
send you a commitment to the value “2”, I would always be sending the same
string 53...c3 which wouldn’t hide the value very well! This is a lack of what’s
called “semantic security”. However, it’s pretty easy to address this.

Instead of committing to “2”, I commit to “2”+some random data, like
“2xyzabc”. To put it more generally, we decide on a format like: SHA256(secret
number || 6 random characters), just for example (the real life version will
be more secure of course). Because SHA256 has the property that you can’t
generate “collisions” (can’t create two inputs with the same output), this still
gives us the same essential security feature: once I’ve made the commitment, I
can’t change my mind on what the value is later - and you can ask me to reveal
it at a later stage of a protocol/system.

Notice that by combining a hash function with an extra piece of random data,
we have achieved what are known as the two key properties of any commitment
scheme:

• Hiding - a commitment C does not reveal the value it commits to.
• Binding - having made the commitment C(m) to m, you can’t change

your mind and open it as a commitment to a different message m′.

This is a counterintuitive achievement, so make sure you get it
before going further - I can choose a random number that I don’t reveal to
you in advance and append it to my message “2”, and even so, I still can’t go back
on my commitment. Because the output I create, the hash value, is absolutely
impossible for me to regenerate with any other message and random number.
That’s the power of cryptographic hashes (in practice, what’s needed for that
is called ‘second preimage resistance’ - you can’t create a second input for an
existing (input, output) pair – which is easier for a hash function to achieve than
full collision resistance, but a hash function is not considered cryptographically
safe unless it has the latter).

5Etymology note: “homo” here means “same” and “morphism” means a transforma-
tion/change, i.e. something stays the same under some change

4

So, a hash function provides the equipment to make commitments. However,
what hash functions certainly don’t have is any kind of homomorphism. There
is certainly no rule like SHA256(a)+SHA256(b) = SHA256(a+ b). So this is no
good for our purposes, because we are going to need a homomorphic commitment
scheme for the techniques we’re going to use.

2.3 A Pedersen commitment in elliptic curve form
Instead of using a hash function, we will use a point on an elliptic curve to
achieve the same goal; the one-way function here is scalar multiplication of
curve points:

C = rH + aG

Here, C is the curve point we will use as a commitment (and give to some
counterparty), a is the value we commit to (assume from now on it’s a number,
not a string), r is the randomness which provides hiding, G is as already men-
tioned the publically agreed generator of the elliptic curve, and H is another
curve point, for which nobody knows the discrete logarithm q s.t. H = qG.
This unknowness is vital, as we’ll expand upon next.

But, crucially for the rest of this document, this new commitment scheme
does have a homomorphism:

C(r1, a1) + C(r2, a2) = r1H + a1G+ r2H + a2G

= (r1 + r2)H + (a1 + a2)G
= C(r1 + r2, a1 + a2)

In words: “the sum of the commitments to a1 and a2 is equal to a commit-
ment to a1 + a2, as long as you choose the randomness for each of the first two
commitments so that their sum is equal to the randomness for the third.”

2.3.1 NUMS-ness and binding

NUMS[8] stands for “Nothing Up My Sleeve”. To achieve such a thing there are
various plausible methods, but in the specific case of wanting to find an H for
which nobody knows the discrete log w.r.t. G, one easy way is to use a hash
function. For example, take the encoding of the point G, in binary, perhaps
compressed or uncompressed form, take the SHA256 of that binary string and
treat it as the x-coordinate of an elliptic curve point (assuming a curve of order
' 2256). Not all 256 bit hash digests will be such x-coordinates, but about half
of them are, so you can just use some simple iterative algorithm (e.g. append
byte “1”, “2”, . . . after the encoding of G) to create not just one such NUMS
point H, but a large set of them like H1, H2, . . . ,Hn. And indeed we will make
heavy use of such “sets of pre-determined curve points for which no one knows
the relative discrete logs” later.

Assuming they have been thus constructed, let’s think about whether the
binding property of the commitment holds true:

If I made a commitment to a single value in the form C = rH + aG, and I
later am able to find two scalar values s and b such that C = sH+ bG, it proves
that both s = r and b = a. More precisely it proves that either both of those
equalities hold, or a “non-trivial discrete log relation” has been found, which

5

should not be possible unless you have cracked the ECDLP (= “Elliptic Curve
Discrete Logarithm Problem”). The ECDLP (as we have already described,
but without the name) basically says “given a point on the curve Q which
you’ve never seen before, can you find its private key (“discrete log”) q such
that Q = qG?” (in some half-reasonable amount of time).

If the two previously mentioned equalities do not hold, then we have rH +
aG = sH + bG for differing scalar values, meaning we have H = (r − s)−1 (b−
a)G, i.e. we have the discrete log between H and G. This was supposed to be
impossible due the NUMS construction of H, unless you have solved ECDLP.
Note also that in the scenario where it is not a result of an ECDLP break, but
instead someone cheated and it wasn’t actually NUMS, then that cheater (the
holder of the discrete log of H w.r.t. G) can open commitments to any value he
likes – in other words, the commitments are no longer binding at all.

Assuming none of this applies, the binding property allows us to construct
proofs like: given that C is part of the input to a system, if I have some algorithm
(even involving weirdly powerful adversaries of the type we’re about to see!) that
generates a formula C = r′H + a′G, I can safely assert a = a′, with the above
mentioned conditions.

2.3.2 Perfect Hiding and Perfect Binding are incompatible

The Pedersen commitment is not just “hiding” as explained above: it has a
property known as “perfect” or “unconditional” or “statistical” hiding.

This fact is sort of “complementary” to the above fact in 2.3.1 – that it’s
not binding, if you know the discrete log of Q = qG. Consider, if I have a
commitment C = rH + aG, there is another r′ s.t. C = r′H + a′G for any
chosen a′; it’s just that we can’t find that r′ without the ability to crack the
ECDLP. But the fact that it even exists means that the commitment is a valid
commitment to any value a, for the right r. This property is shared of course,
famously, with the One Time Pad[16], which also perfectly hides the encrypted
value.

However, the Pedersen commitment’s binding is not perfect – it is “computa-
tional”. What this means is that, much as discussed just above, in a case where
the ECDLP was cracked, the binding property could fail and people could open
the commitment to other values.

Ideally, we’d have a commitment scheme that was perfect in both respects –
binding and hiding, but unfortunately that is logically impossible. Consider
that if the above mentioned perfect hiding property applied (as it does for
Pedersen), then it is possible for more than one pair (r, a) to be a valid opening
for the commitment C, meaning it is not perfectly binding.

Hence the title of this subsection.
There are commitment schemes that make the opposite tradeoff – they pro-

vide perfect binding but not perfect hiding. That of ElGamal[9] is one such.
However to make that tradeoff it’s necessary that you don’t compress – the out-
put cannot be smaller than the input, for if it was, the mapping between them
cannot be injective.

Further to this last point, Ruffing[10] has come up with a new concept
“Switch Commitments” by which he proposes to at least partially solve the
problem of how to have a kind of mutable commitment that switches from per-
fectly hiding to perfectly binding at a later date.

6

2.4 The Vector Pedersen Commitment
To extend to a more powerful form of the Pedersen commitment already defined,
we go from:

C = rH + aG

to:

C = rH + (v1G1 + v2G2 + . . .+ vnGn) = rH + vG (1)

The individual Gi generators can be constructed using a simple algorithm of
the form already mentioned (like, take a H(encode(G)||i) where H represents
some hash function). The opening of this commitment would of course be the
random scalar r and the components of the vector v. I defer to elsewhere, proof
that this extension preserves both the hiding and binding properties, although
it’s pretty obvious.

The main thing to observe right now is: this is a very powerful construction
if you’re interested in compactness. The vector may have an arbitrarily large
number of elements, but is committed to with one single curve point C.

A final note (and this will be used a lot): we can extend this yet further to
create commitments to 2 or even multiple vectors; we just need a set of N NUMS
base curve points for each vector we’re committing to, for example (2 vectors):

C = rH + vG + wH

Note here that the single curve point H is not part of the vector H.
Finally, note the connection with 2.3.2 above: there we pointed out that if a

commitment compresses the input, it can’t be perfectly binding. Here, we are
doing a huge amount of compression: there are 2N scalars in the above vectors,
for dimension N . So commitments of this type can’t be perfectly binding,
whether they’re using Pedersen or any other style of commitment. Hence we
can assert that the methods developed here6 for Bulletproofs can never have
perfect binding.

3 A zero knowledge argument of knowledge of
a set of vectors

This section will go over Appendix A from the Groth paper [1]; in so doing, we’ll
get a chance to start to understand the basic mechanics of doing zero knowledge
proofs, so there will be some side-discussions as we go through it.

An “argument of knowledge” is a technical term distinguished from “proof
of knowledge” by the idea that the proof is only computational – an adversary
with enough computing power may be able to convince you that he knows the
secret value(s), even if he doesn’t.

Before starting: we will not be discussing , here, removing the interactivity
from this process using Fiat-Shamir / random oracle model, as it’s an extra level
of complexity in the zero knowledge proof aspect we want to avoid for now. We’ll
make some comments on it near the end of the document, in Section 6.2.4.

6Heavily using this kind of vector commitment

7

So here just assume that the Verifier (denoted V) of the proof will interact
with the Prover (denoted P) in real time.

Our argument of knowledge will come after we have generated a set of com-
mitments for each of m vectors x1,x2, . . . ,xm, each of the same dimension N
(6= m)). Explicitly:

C1 = r1H + x1G
C2 = r2H + x2G
. . .

Cm = rmH + xmG

Since the commitments are (perfectly) hiding, we have not revealed these
vectors by passing the commitments to the Verifier. So having at some earlier
time shared these commitments C1, C2, . . . , Cm, we will now prove/argue in zero
knowledge that we know the openings of all of them.

Here’s the process interactively:

• P → V: C0 (a new commitment to a newly chosen random vector of
dimension N)

• V → P: e (a random scalar)

• P → V: (z, s) (a single vector of dimension N , and another scalar)

These last two are calculated as:

z =
m∑
i=0

eixi, s =
m∑
i=0

eiri

Note that the summations start at 0; this means that the sums include the
extra, random commitment, indexed 0, that was created as the first step of the
interaction. Note also that we are using powers of the random number e, i.e.
literally the set of numbers (1, e, e2, . . . , em). We will discuss this important
detail later in 3.3.1.

In case it isn’t obvious why this actually keeps the vectors x hidden, consider
one component of z, like for example z2 = x02 + ex12 + . . . emxm2; the addition
hides the individual values.

Having received this (z, s), the verifer of course needs to verify whether the
proof is valid. He does the following:

m∑
i=0

eiCi
?= sH + zG

3.1 Completeness: does it validate if the opening is cor-
rect?

We can see this by expanding the RHS of the above verification check:

8

sH + zG =
m∑
i=0

ei (riH) +
m∑
i=0

eixiG

=
m∑
i=0

ei (riH + xiG)

=
m∑
i=0

eiCi

So an honest Prover does indeed convince the verifier.

3.2 Zero knowledge – does the prover reveal anything
more?

We deal with zero knowledgeness before soundness, because the latter is the
harder proof (and indeed the most interesting part!).

To argue for zero information being revealed to the Verifier (other than the
single bit of information that the Prover knows the opening of the commit-
ments), we use this reasoning:

If the distribution of transcripts of the conversation between Prover
and Verifier, in the case where the verifier’s execution environment
is controlled and it is run by a notional entity called a “Simulator”,
and we can simulate a proof without actually having the knowledge,
is the same distribution as that obtained for genuine conversations
with Prover(s) who do know the opening of the vector commitments,
it follows that the Verifier learns zero from the interaction other than
the aforementioned single bit.

For more details on this basic (if rather bizarre at first) reasoning for the
construction of zero knowledge proofs, refer to e.g., [14] for a discursive introduc-
tion, and [17] for an in-depth discussion with academic rigour7. The Wikipedia
page[18] gives a summary also.

There’s some value in chasing up those links and spending time with them
before going further, although technically you have enough to basically under-
stand it here. Here I will only briefly mention the three key properties of any
zero knowledge proof:

• Completeness – does an honest Prover succeed in convincing the Verifier
• Soundness – does the Prover actually prove the truth of the statement
• Zero-Knowledgeness – can we reveal that the Prover reveals nothing else

than that the statement is true.

In academic coverage of this concept, there are a lot additional definitions
used. A “witness” is a piece of (usually secret) data corresponding to a “state-
ment” which the Prover possesses but does not want to reveal. Zero knowledge

7Hat tip Jonas Nick for pointing me at that!

9

comes in flavours such as “Honest Verifier Zero Knowledge” with a number of
subcategories. And so on. This document is not attempting to be rigorous, and
so will avoid going into details at this level. If you want to do so, again, I refer
you to [17], although there are bound to be a lot of other high quality resources
too.

As a preparation for using these ideas in practice, here is how the proof
works for a (slightly) simpler case, namely for Schnorr’s Identity Protocol8. To
review, the basic structure is:

Prover starts with a public key P and a corresponding private key x s.t.
P = xG.

Prover wishes to prove in zero knowledge, that he knows x.
P → V: R (a new random curve point, but P knows k s.t. R = kG)
V → P: e (a random scalar)
P → V: s (which P calculated from the equation s = k + ex)
Note: the transcript referred to above, would here be: (R, e, s).
Verification works fairly trivially: verifier checks sG ?= R+eP . Now, to prove

zero knowledgeness of this construction in the above described framework:
The “Simulator”, which controls the execution of the verifier, given the public

key P , just as the Verifier would be, can fake a valid transcript as follows:
Choose s randomly. Then, choose e, also randomly. Finally, we only need

to choose R to create a complete conversation transcript; it must be R = sG−
eP . Then we have successfully simulated a conversation which is entirely valid:
(R, e, s), without ever knowing the secret key x, and which it’s easy to see
is randomly distributed in the same way as a real one would be (R is a free
variable).

This is a useful example to start from; it shows how, if the proof relies on
causality in the interaction (you only get A after you first give me B), then since
a conversation transcript doesn’t intrinsically enforce that, such transcripts can
(at least in this case) be faked. Another way of looking at it is that this kind
of proof is deniable – it may be entirely valid to the interacting Verifier, but
entirely meaningless (as in this case) to a third party who is shown the transcript
later. And though this is not quite the same as zero knowledge (we also have
to consider distributions), it’s basically the same here.

Coming back to our vector proof of knowledge, we can see that we’re in a
very similar situation. The conversation transcripts look like:

(C0, e, (z, s))

which is almost the same, except that the final portion is a vector + a scalar in-
stead of a single scalar. And so the same reasoning applies: a Simulator can fake
the transcript by choosing out of order (it’s only a slightly more algebraically
involved issue here): you choose (z, s) both at random, as well as e, and you
can deduce the right value of the point:

C0 = (sH + zG)−
(

m∑
i=1

eiCi

)
(remember, the C1, C2, . . . , Cm are all set in advance). It’s easy to see that this
will mean that the entire transcript will look valid to a third party, and it’s less

8Schnorr’s Identity Protocol is basically the same as the Schnorr signature, except the
interactive form and ignoring messages

10

obvious but certainly plausible that the statistical distribution of these tran-
scripts will be indistinguishable from that for genuinely constructed transcripts
by honest Provers; thus zero knowledgeness is proven.

3.3 Knowledge soundness – does a verifying interaction
actually prove knowledge of the vectors?

This is the most interesting part, and justification here will explain a lot about
why the mathematical structure is what it is.

Taking an intuitive view, it makes sense that this is the most sophisticated:
if someone gives me just one vector and one scalar, it’s more than a little
surprising that this is enough to prove correct opening of a potentially large
list of vectors .. e.g. suppose we had 10 vectors and N = 20, then there are
210 different variables embedded in the Pedersen commitments C1, C2, . . . , Cm
- 10 random scalars and 20x10 individual vector components. We’ll be proving
knowledge by only providing one vector plus one scalar, so 21 numbers (but not
revealing any of the original numbers in doing so! - see the previous section).

Proving “soundness” is somehow complementary/“opposite” to proving zero
knowledge, in the following sense: the idea here is to isolate/control the oper-
ation of the Prover, as a machine, rather than isolate the verifier. If we can
control the Prover’s environment and by doing so get him to spit out the secret
information (the “witness”), it follows that he must have it in the first place!
In the real world, malware aside, the Prover is interacting and will not allow
breaking of his own rules, but that fact doesn’t invalidate the above reasoning.

Figure 1: God (the Extractor) stealing the secret ($) from the Prover (Machine)

Even God cannot steal $100 from you if you don’t have $100. Contrariwise,
if you do, he can!

You might object: “Hmm, if this adversary is basically God can’t he just
dream up $100 for you and then steal that?”. Yes, but that’s not stealing $100
from you. We want to know what is inside this black box machine called a
Prover; it’s of no interest what we can inject into it.

Another way of thinking about it, that might be especially appealing to
coders: imagine the Prover is literally a function. You can start running it, stop
at any point (imagine debugger breakpoints). Crucially you can make copies
of its current state. You can take info from one run and feed it into another,

11

etc. If by doing this whacky stuff you somehow manage to get it to spit out
information that reveals the secret (say, a number x such that P = xG), then
it must have been in there in the first place.

In the Schnorr identity protocol case, this is quite straightforward: we get
the Prover to run twice, but only after the same initial random point R. So
imagine I as “Extractor” (what we call the “God” controlling the Prover) create
two runs of the protocol with two different values e1, e2 against the same initial
R, then:

s1 = k + e1x

s2 = k + e2x

=⇒ x = s1 − s2

e1 − e2

Thus, the Extractor managed to get the secret key in two runs of the protocol
that happened to share the same “nonce” point R (remember, R = kG and
it’s the same in both runs here). This is such a widely known “exploit” of
both Schnorr and ECDSA signatures (when wrongly implemented) that I won’t
belabour the point; but note it’s crucial here to proving that the construction
has “knowledge-soundness”, i.e. that this protocol can only be run by a
Prover who actually knows the secret, x.

OK, we’ve given the background, now on to the nitty gritty: how do we
prove knowledge soundness for our zero knowledge proof of knowledge of the
openings of the commitments to the vectors x1,x2, . . . ,xm?

First point:
We need to get the Prover to output not just two transcripts, butm+1. This

will be enough to prevent the system of equations from being underdetermined,
i.e. it will give us a unique solution. In more detail:

As for the Schnorr case, we have the Extractor start the Prover, who gener-
ates here a C0, then provide it with a random challenge e, then retrieve from it
a pair (z, s). Assuming that this response is valid, we can repeat the process, a
total of m+ 1 times, resulting in this set of transcripts:

(C0,1, e1, (z1, s1))
(C0,2, e2, (z2, s2))
. . .

(C0,m, em, (zm, sm))

The Extractor now effectively uses this data as a set of linear equations that it
can solve to extract the values of the commited vectors x1,x2, . . . ,xm. Here’s
how. It starts by constructing the Vandermonde matrix [19] of the challenges
ei:

A−1 =


1 e0 e2

0 . . . em0
1 e1 e2

1 . . . em1
1 e2 e2

2 . . . em2
...
1 em e2

m . . . emm


12

(Ignore the LHS for a moment). The Vandermonde matrix, acting on the col-
umn vector of a set of coefficients of a polynomial, outputs a new column vec-
tor which represents the evaluation of that polynomial at each of the points
(e0, e1, . . . , em). What’s particularly elegant here is that this means the inverse
of that matrix, if it exists, therefore maps a set of m+ 1 polynomial evaluations
(the polynomial here has degree m), back to its set of coefficients, and most cru-
cially that mapping is one-to-one and therefore the solution is unique.
(This idea is used in polynomial interpolation; as you may know, a set of N + 1
evaluations fixes a polynomial of degree N .)

Note that this of course breaks down where there is no such inverse, which is
easily seen to occur exactly and only in the case where not all of the (e0, e1, . . . , em)
are distinct; this would represent a scenario where you had less than N +1 eval-
uations of the polynomial; the set of equations would be underdetermined. As
is well known from high school level linear algebra, the inverse exists if and only
if the determinant is non-zero, and this is the product of the pairwise differences
of the e-values (which is a useful result about Vandermonde matrices – one for
which we have just explained the insight). All we need is that the e-values are
all different, which of course we can arrange to be true in this Extractor mode.

Holding in mind this guarantee that the inverse exists, you can see from the
above equation that A is that inverse. Consider the identity:a00 a01 a02

a10 a11 a12
a20 a21 a22

1 e0 e2
0

1 e1 e2
1

1 e2 e2
2

 =

1 0 0
0 1 0
0 0 1


where we’re looking at only m = 2, for brevity. We can see that for any

particular e-value (’challenge’), the following holds:
∑m
j=0 ahje

i
j = δhi; in words,

the i-th row of the matrix A yields 1 when multiplied by the column vector of
i-th powers of the challenges, and zero when multiplied by all other columns
(here δxy is just a well known mathematical shorthand called the “Kronecker
delta” which yields 1 when x = y and zero for all other combinations).

Now we’ll show in a series of steps how we can use this to extract the witness,
that is to say, the actual vectors xi. For any specific commitment in the set

13

C1, C2, . . . , Cm, we’ll say we’re looking at Ch, we can write:

Ch =
m∑
i=0

δhiCi by definition of Kronecker delta

=
m∑
i=0

 m∑
j=0

ahje
i
j

Ci as above paragraph

=
m∑
j=0

ahj

(
m∑
i=0

eijCi

)
additive commutativity

=
m∑
j=0

ahj

(
m∑
i=0

eij (riH + xiG)
)

definition of commitment C

=
m∑
j=0

ahj

(
m∑
i=0

eijriH

)
+

m∑
j=0

ahj

(
m∑
i=0

eijxiG
)

additive associativity

=
m∑
j=0

ahjsjH +
m∑
j=0

ahjzjG definition of s,z

=⇒ Ch is a commitment to
m∑
j=0

ahjzj with randomness
m∑
j=0

ahjsj

=⇒ xh =
m∑
j=0

ahjzj by the binding property of the commitment

The last step of reasoning is crucial, of course; this only extracts the x vectors
because you cannot open a commitment to two different values/vectors. See the
details in the section on Pedersen commitments.

I realise it all looks a bit fancy, but that’s just typical mathematical for-
malism/neatness; what it really means is pretty simple: if you have m + 1
evaluations, you can fix the mapping between zj ↔ xj , invert it and extract all
the x-vectors.

Through this algorithm, we were able to therefore extract the committed
vectors x from the Prover, and thus we have “knowledge-soundness”, that is, a
Prover cannot provide a verifying proof without actually knowing the values.

3.3.1 Why do we use powers of e? Generalisations about polynomi-
als

Referring back to the basic protocol, which is Prover sends C0, Verifier sends
e, Prover sends back (z, s), we see that the Verifier only sends one random
value e, which is then “expanded” into this set of powers (note btw that all
scalars are mod p, where p is the order of the elliptic curve). It’s intuitively
logical that m + 1 challenge values are indeed required; imagine for example
constructing z = e

∑m
j=0 xj ; this would obviously be pointless as it doesn’t fix

the vectors x at all (previously, we expressed this as the idea that a set of linear
equations are “underdetermined”); one could clearly open this z to any number
of combinations of vectors xj that happened to add up to the same value. So
this makes us realise that we’re going to need m+ 1 not-predictable-in-advance-
by-the-Prover coefficients, by which he’ll have to multiply his individual x-es

14

before adding them together. So for these coefficients, you need something like
a “basis” that doesn’t allow clever cancellation.

You might try to achieve that if the verifier sent m+ 1 independent random
values ej . Construction and verification of the proof would still work here, but
this would incur communication cost (m+ 1 separate random scalars).

Clearly a compact transfer of only one value e is preferable from that point of
view; but is this series of powers enough to guarantee that the Prover’s original
vector (in this case x) is fixed?

The most intuitive way to understand it: the vectors x1,x2, . . . ,xm can be
seen as the coefficients of a polynomial P (e) = x0 + x1e + x2e

2 + . . . + xmem.
Note that this polynomial is vector-valued. Now this set of vectors (= this
polynomial) is fixed by m+ 1 evaluations (see Figure 2).

Figure 2: A polynomial of degree n is fixed by n+1 evaluations

It’s important (for later parts of this document) to realize that one can go
further here – one can assert that even a single polynomial evaluation of this
type may be enough to fix a single vector with overwhelming probability.

Consider the argument like this: imagine you have a vector v, and you make
a commitment Cv to it. Now, how can you, in a very short (low-bandwidth)
interaction, prove to a Verifier that vector v was the zero vector? Let the
Verifier pass a scalar challenge e, and then reply with a proof that P (e) =
x0 + x1e + x2e

2 + . . . + xmem, as above, is 0. Clearly without knowing the
challenge in advance it’s unlikely that you’d have been able to choose a v that
wasn’t 0 itself, and still have the dot product verify. But how unlikely? It’s easy

15

in this simplified case to estimate the probability: since e is randomly chosen,
the chance that it is a root of P (x) must be

roots of P (x)
available numbers ,

i.e. m/p where p is, again, the order of the elliptic curve. This is of course
not a rigorous treatment, but should be good enough. For typical elliptic curves
(256 bit) and typical polynomials (some countably small number of compo-
nents), this will be negligible. We can use this style of argument to build com-
mitments to a set of values, or vectors, by turning them into coefficients of a
polynomial of a single scalar challenge, and have that whole set of commitments
be computationally sound.

3.3.2 Aside: a philosophical musing about Zero Knowledge Proofs

(As you can guess, this section is . . . not required for the rest of the document)
If you found it easy to grasp the general outline of the above arguments,

then kudos I guess – for most people this stuff seems very weird on a first
pass-through. The idea goes back to Goldwasser, Micali and Rackoff [20] from
the 80s. What strikes me as interesting is that the whole basis of the idea is
shifting the notion of a “proof” from complete perfection (nothing less is ac-
cepted in Pure Mathematics – axioms, syllogisms, proof, etc.) to procedures
based on a fundamentally computational notion of soundness – the proof is
either acceptable because different distributions of results are not statistically
distinguishable (“statistical soundness”), or even weaker, that an invalidating
counterexample cannot be constructed without computing power greater than
some infeasibly large number. Of course this is totally normal in practical com-
puting and cryptography (especially today), but in Mathematics it’s of course
not at all – apparently this is part of why the initial ZKP paper had to be
submitted several times before it was published!

The reason I mention it is because it’s of course part of the broader trend –
note that the basic mathematics behind the first public key cryptosystem (RSA)
was well known decades and probably centuries before the 1970s, when it was
invented. It just wasn’t relevant until computation became fast enough for it
to become relevant. Factoring “large numbers” is “hard” when “large” means
a few thousands or tens of thousands. That asymmetry (between making a
product and decomposing it) existed, but it wasn’t so big as to be interesting.
But when you can work with numbers that have 200+ digits in their base-10
representation, that asymmetry has blown up to such a huge extent that you
can treat it as a one-way function. So in this sense the entirety of public key
cryptography is, realistically, a direct consequence of fast computation creating
a kind of “phase change” in the significance of the underlying number theory.

4 An inner product proof
In Section 5 of Groth’s paper, he presents the core algorithm, which probably-
not-coincidentally is also the core of Bulletproofs (although the latter’s version
is more sophisticated and more compact, as we’ll see later). The inner product

16

proof here uses all the same elements as we’ve discussed above, although in a
slightly more complicated structure.

It starts by assuming that the Prover has two vectors x and y, and obviously
knows the inner product of those, which we’ll now call z.

The Prover’s job will now be to convince the verifier that Pedersen commit-
ments to these three quantities obey z = x · y; so we assume upfront that the
three commitments are known, we’ll denote them Cz, Cx and Cy from now on:

Cz = tH + zG (2)
Cx = rH + xG (3)
Cy = sH + yG (4)

(Remember our notation cheat: The bolded parts are actually summations.)

4.1 Aside: the Sigma protocol
This is an abstraction worth mentioning at this point, because we are about to
see another example, and we have already seen two – the first was Schnorr’s
identity protocol and the second was the proof of knowledge of a set of vectors.
Here they were:

• P → V: R (a new random curve point, but P knows k s.t. R = kG)

• V → P: e (a random scalar)

• P → V: s (which P calculated from the equation s = k + ex), and

• P → V: C0 (a new commitment to a newly chosen random vector of
dimension N)

• V → P: e (a random scalar)

• P → V: (z, s) (a single vector of dimension N , and another scalar).

These are both examples of Sigma protocols, so called because of a vague
resemblance to the greek letter Σ, in that the process goes forwards once, then
backwards, then forwards finally. The common pattern, though, is more than
this three step interactive process. We generalise it as something like:

• P → V: commitment

• V → P: challenge

• P → V: response (proof)

It’s worth emphasizing this structure, and why it arises, at this point in the
discourse. It makes the mathematical structure of the inner product proof less
overwhelming then. Consider the Schnorr case (basically the simplest) to see
why it’s necessary for the provision of a proof. Say you have a secret value x.

Option 1: just send x to V
This would be fine except we’re trying to keep x secret, so . . .
Option 2: send to V

17

This hides (“blinds” is sometimes the term used) x perfectly (in particular,
to an outside observer of the communication, so that’s something), but it also
leaves V with no way of verifying.

The first attempt to get out of this impasse is to let V get involved – inter-
activity. Hence the “challenge”.

Option 3: V sends challenge e, P sends x+ e
Dumb of course; this doesn’t hide anything from V since V knows e.
At this point we would just be stuck and give up, except for one thing: we

have one-way functions. This means P can send a commitment instead of a
naked value (not a properly hiding+binding commitment, so using the term
loosely):

Option 4: P sends R, V sends e, P sends k + ex
This will allow V to check using the curve points, as we’ve already discussed,

if he has the public key for x - using (R + eP). But since he can’t get k, P is
protected from V learning x via simple arithmetic.

So now we’re going to see how this pattern plays out in this more complex
case.

4.2 The commitment step for the inner product proof
The Prover P will need to send commitments to two nonce vectors, analogous
to the R value in the above description – one for each of x and y. These nonce
vectors will be called dx and dy respectively. But there’s another difference – in
our stated problem, we have Pedersen commitments to the vectors, rather than
the vectors themselves (this is analogous to how, in the Schnorr protocol, you
have a public key P , not the secret x, so you have to send the nonce-point R,
not the raw nonce itself, k), so instead of sending dx,dy, the Prover will instead
send Pedersen commitments to them:

Ad = rdH + dxG (5)
Bd = sdH + dyG (6)

where rd, sd are random values as usual for Pedersen commitments.
To leverage the analogy further, just as the final Schnorr response is ex+ k,

so here our final response(s) are of the form ex + d, more specifically, one for
each: ex + dx, ey + dy.

However, that’s not enough. We’re trying to prove an inner product too.
What we’ll have to do also in the commitment step is to send a commitment

to the expected inner product of this blinded form of our vectors. The blinded
form has already been mentioned as ex + dx, ey + dy, but we don’t yet know
the challenge e, so we have to factor that out somehow.

Now, e is a linear factor in each of these terms, so dot-product-ing them((ex+
dx) ·(ey+dy)) will result in a quadratic in e, so there will be three coefficients,
and we’ll therefore need to provide commitments in advance for each of these
three coefficients. However, we already have the coefficient of e2; that’s Cz,
which was given in advance. So we’ll therefore need to provide two additional

18

commitments9:

C1 = t1H + (x · dy + y · dx)G (7)
C0 = t0H + (dx · dy)G (8)

So to do all this in the commitment step, the Prover had to come up with:

• 4 random scalars rd, sd, t1, t0,

• 2 random vectors dx,dy, and

• 4 Pedersen commitments using this data: Ad, Bd, C1, C0.

4.3 The challenge step
The Verifier just simply sends a single scalar value e and the challenge step is
finished.

4.4 The response step
The above detailed discussion will hopefully make the following set of data, sent
by the Prover, less bewildering10:

fx = ex + dx (9)
fy = ey + dy (10)
rx = er + rd (11)
sy = es+ sd (12)
tz = e2t+ et1 + t0 (13)

First, note that here we are sending the blinded forms fx, fy in (9) and (10),
not the Pedersen commitments. The idea is that the Verifier will verify precisely
by reconstructing the commitments and checking they match Cx, Cy. Those two
verification checks are:

eCx +Ad
?= rxH + fxG (14)

eCy +Bd
?= syH + fyG (15)

The rx, sy were defined in (11) and (12) to make the random values equate
in the relevant Pedersen commitments. It’s not hard to see that equations
(14) and (15) will verify for honest behaviour (remember, this is called “com-
pleteness”):

eCx +Ad = e(rH + xG) + (rdH + dxG) (See Ad definition (5)) (16)
= (er + rd)H + (ex + dx) G (17)
= rxH + fxG (18)

9Note the use of G not G because dot products are scalars, not vectors.
10One may forget what t variable in (13) represents. It comes from Cz = tH + zG defined

in (2).

19

and similarly for the y equations.
The definition for tz defined in (13) is needed for the third verification

check11:

fx · fy = e2z + e (x · dy + y · dx) + dx · dy ∵ z = x · y (19)

This check ensures that the inner product is correct. Moreover, it ensures the
random values in the Pedersen commitment equation will be correct. Note that
this was actually the reason why we sent the two commitments C1, C0 in (7)
and (8).

But this equation is reconstructed “under” Pedersen commitments; using
Comm as shorthand for that, we want the verifer to be able to reconstruct a
check that:

Comm(fx · fy) = e2Cz + e (Comm(x · dy + y · dx)) + Comm(dx · dy) ,

but we prepared C1, C0 and tz to fulfil exactly this role, so we have

tzH + (fx · fy)G ?= e2Cz + eC1 + C0

and the reader can now easily check for himself, by simple substitution, that
this will be passed in the honest case.

4.5 Knowledge soundness
What we need to prove here is not only that the Prover knows x,y, but also
that z = x · y. So our Extractor is tasked with extracting those vectors and
must be able to verify that the dot product equation holds.

First let’s note the transcript:

((Ad, Bd, C1, C0), e, (fx, fy, rx, sy, tz))

As a reminder: the ’commitment’ step of the Sigma protocol involves sending:

• those 4 curve points – each of which are Pedersen commitments them-
selves,

• then the Verifier sends back a single scalar challenge (i.e. e),

• then the ’response’ step involves the Prover sending two blinded vectors
(f), along with random scalars to make the Pedersen commitments verify
correctly, and finally

• tz to allow the completed verification of the inner product.

What can we do if the Extractor gets the Prover to output a second accepting
transcript with the same commitment, say

(
(Ad, Bd, C1, C0), e′, (f′x, f

′
y, r
′
x, s
′
y, t
′
z)
)
?

Let’s isolate our consideration to the x-part only: we have two validating
checks, one from each transcript:

eCx +Ad = rxH + fxG
e′Cx +Ad = r′xH + f ′xG

11The symbol ∵ means because.

20

Subtracting the second equation from the first and multiplying both sides by
η = (e− e′)−1 gives:

Cx = η(rx − r′x)H + η(fx − f ′x)G

and we note by the same logic as for the set-of-vectors case, that this, by the
binding property of the Pedersen commitment, proves that

x = η(fx − f ′x)

We can also now extract the opening of the commitment12 Ad:

dx = fx − ex

thanks to definition (9). Note that the same procedure can be applied to extract
y and dy.

However, to go to the final step, we also need to get the opening of the com-
mitment Cz to z. This is a little more involved and requires a third transcript:

tzH + (fx · fy)G = e2Cz + eC1 + C0

t′zH +
(
f′x · f

′
y

)
G = e′2Cz + e′C1 + C0

t′′zH +
(
f′′x · f

′′
y

)
G = e′′2Cz + e′′C1 + C0

We can express this system of equations in matrix form:tz fx · fy
t′z f′x · f

′
y

t′′z f′′x · f
′′
y

(H
G

)
=

1 e e2

1 e′ e′2

1 e′′ e′′2

C0
C1
Cz


As noted in Section 3.3, the Vandermonde matrix with powers of e, e′, e′′ is
invertible as long as e, e′, e′′ are all different, so we can multiply both sides by
its inverse: 1 e e2

1 e′ e′2

1 e′′ e′′2

−1tz fx · fy
t′z f′x · f

′
y

t′′z f′′x · f
′′
y

(H
G

)
=

C0
C1
Cz


Next, we can perform the matrix multiplication to get a 3 × 2 matrix. Note
that for brevity, we are using placeholder variables αi,j for the result instead of
performing the explicit calculation:α1,1 α1,2

α2,1 α2,2
α3,1 α3,2

(H
G

)
=

C0
C1
Cz


Finally, we can write Cz in terms of H and G by considering the third row of
the matrix equation:

α3,1H + α3,2G = Cz

Thus z = α3,2 gives us an opening for the commitment Cz.
Proving that z = x · y is a little different. Note that, we expect of course

that this equation is true, but the above argument doesn’t completely prove it;
12See definition (5)

21

it is only an algorithm to extract the specific set of values for z,x,y that were
committed to. Proof basically amounts to observing that in the polynomial
equation in the challenge e, for arbitrary transcript, we expect the coefficients
to be equal:

(ex + dx) · (ey + dy) = ze2 + z1e+ z0

(here we boil down the openings of C1, C0 as z1, z0 for readability). The paper
appeals to the Schwartz-Zippel lemma (see 3.3), which states (in simple terms)
that the probability of two different coefficient sets satisfying the equality must
be less than d/p where d is the degree of the polynomial; since here d = 2 and p is
a very large prime, this is basically negligible. We thus conclude that z = x · y
(this is the first coefficient, of e2, of course) must hold, with overwhelming
probability.

4.6 Zero-knowledgeness
The argument here will be the same basic idea as for the set-of-vectors case
(and similarly sketchy, I won’t include detail).

As in previous versions of this argument, we set ourself the task of generating
a fake transcript with the same distribution. And as before (unsurprisingly, as
it was explained in some painstaking detail in the previous section that this
retains a lot of the “spirit” of the Schnorr-style sigma protocol), the way this is
achieved is generating the elements of the transcript out of order.

Cz, Cx, Cy will be set in advance; will be treated as an input. The Simulator
will then pick randomly the response section of the transcript: (fx, fy, rx, sy, tz)
(if you’ve forgotten the structure of the transcript, read again the first part of
the previous section). It’ll also choose the commitment C1 as a commitment
to zero (note that because Pedersen commitments have randomness, that’s still
blinded and random). This is enough for it to reconstruct the first part of the
transcript, as follows:

Ad = (rxH + fxG)− eCx
Bd = (syH + fyG)− eCy

By substitution you can see these satisfy the definitions given originally for
Ad, Bd. Similarly you can reconstruct what C0 must be:

C0 = tzH + (fx · fy)G− eC1 − e2Cz

Verifier will check:

e2Cz + eC1 + C0
?= tzH + fx · fyG

Substituting definition of C0 : LHS =
e2Cz + eC1 + tzH + fx · fyG− eC1 − e2Cz

= RHS

22

Hence the faked transcript

((Ad = (rxH + fxG)− eCx,
Bd = (syH + fyG)− eCy,
C1 = t1H + 0G,
C0 = tzH + (fx · fy)G− eC1 − e2Cz),
e, (fx, fy, rx, sy, tz))

will verify, by this construction.
It’s not hard to be convinced (although I won’t try formally) that the real

and faked transcripts will both have random distributions – the important point
being that these Pedersen commitments all have randomness included for the
hiding property.

5 A more compact inner product proof
The paper by Bootle et al. [2] has a more sophisticated approach to this problem
– fiendishly clever in fact – involving recursion; and indeed, this method is very
similar to the idea used in Bulletproofs; it is its direct precursor. It’s also worth
mentioning that it’s inspired by this Groth paper [21], although that version
didn’t include the critical recursion idea.

The goal here is principally to reduce the amount of data communicated
between the two parties (and when it’s switched to a non-interactive form,
using the Fiat Shamir heuristic, that means a more compact proof).

Note that in this form, there is no attempt to make the argument-of-knowledge
be zero-knowledge (so in itself, it only has the compactness advantage).

5.1 Condensing a single vector
Before getting into the inner product aspect, we can start with an easier goal.
We will reduce how much data we have to send in order to commit and then
prove knowledge of a vector.

Let’s start by considering a vector of dimension 10, as a concrete example.
We’ll use a Pedersen commitment to the vector, but with no randomness; we’ll
write the Pedersen commitment A here as a starting point for the discussion:

A = a1G1 + a2G2 + . . .+ a10G10 (20)

Straightforward revelation of [a1, a2, . . . , a10] vector would suffice to prove knowl-
edge of course; but this requires 10 scalar values13 as well as the original com-
mitment. Is there a way to condense down the “revelation” part?

Revealing the sum a1 + a2 + . . . + a10 is, trivially, a dumb idea since there
are many different combinations of 10 numbers that could give that same sum.

The clever trick employed is to transform the commitment A to a different
commitment A′, which commits to a vector with a smaller number of elements,
but also contains the original commitment A! We start by chopping the original
vector

[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10] (21)
13This may be 32 bytes each in typical elliptic curve scenarios.

23

into equal-sized pieces:

[[a1, a2], [a3, a4], [a5, a6], [a7, a8], [a9, a10]] (22)

and use the same chopping/chunking operation on the Gis from (20). We are
going to use the following notation for (22): [a1,a2,a3,a4,a5], i.e. 5 vectors of
dimension 2. The G-part will be written likewise14: [G1,G2,G3,G4,G5].

We can visualize this new arrangement in a matrix form:
a1G1 a2G1 a5G1
a1G2 a2G2
. a3G3
. a4G4 . . .
a1G5 a5G5

 (23)

Please note that the sum of the main diagonal of matrix (23) is equal to A:

aiGi = a2i−1G2i−1 + a2iG2i ∀i ∈ 1..5

The Prover is going to send commitments to the diagonals of this matrix; we’ll
see in a minute why this is particularly useful; note that the total number of
such commitments is 2 × 5 − 1, including the main diagonal which is already
known as A. The formula for the diagonals is:

Ak =
min(5,5−k)∑
i=max(1,1−k)

ai+kGi for k = −4,−3, .., 0, .., 3, 4 (24)

It’s pretty fiddly but if you work through it carefully, you’ll see that this will pro-
vide 9 (= 2×5−1) commitments. One for each of the diagonals of matrix (23).
For example, set k = −4, we get lower limit = upper limit of sum = 5, so we
have A−4 = a1G5, which is precisely the lower left entry in matrix (23), i.e. the
first of the set of diagonals, travelling up and to the right.

At this point we receive a challenge, x, from the Verifier.
The next step is where the actual “condensing” happens. Let’s define new

vectors of dimension 2 like this:

a′ =
5∑
i=1

xiai (25)

G′ =
5∑
i=1

x−iGi (26)

This is tricky notation-wise15, so let’s show (26) explicitly:

G′ = [x−1G1, x
−1G2] + [x−2G3, x

−2G4] + [x−3G5, x
−3G6]+

[[x−4G7, x
−4G8] + [x−5G9, x

−5G10]
= [
(
x−1G1 + x−2G3 + x−3G5 + x−4G7 + x−5G9

)
,(

x−1G2 + x−2G4 + x−3G6 + x−4G8 + x−5G10
)
]

def= [G′1, G′2] (new variables)
14Note that the particular choice here depends just on the factorization; we have a vector

with dimension 10 here, so we choose 5x2. Had we started with 21 we would have to choose
7 and 3, etc.

15Remember our convention that we bold “vectors” of curve points.

24

. . . with the same basic pattern for a′ (except the powers of x are positive).
Now we recreate the commitment for this new “coordinate system”:

A′ = a′G′

=(xa1 + x2a3 + x3a5 + x4a7 + x5a9)G′1+
(xa2 + x2a4 + x3a6 + x4a8 + x5a10)G′2 (27)

Now this multiplication has, not accidentally, a specifically useful cancella-
tion: the powers of x cancel where the indices of a and G match. For maximum
clarity, we visualize this again as a matrix:


a1G1 + a2G2 x(a3G1 + a4G2) x2(a5G1 + a6G2) x3(a7G1 + a8G2) x4(a9G1 + a10G2)

x−1(a1G3 + a2G4) a3G3 + a4G4 x(a5G3 + a6G4) x2(a7G3 + a8G4) x3(a9G3 + a10G4
. a5G5 + a6G6
. a7G7 + a8G8 . . .

x−4(a1G9 + a2G10) a9G9 + a10G10


Note, these are not literally matrices we’re looking at, but just a visualization

of the multiplication of the two terms in (27). We see that, as before the inclusion
of x, the main diagonal is exactly the entirety of A = a1G1+a2G2+. . .+a10G10.

Now we see, however, the importance specifically of the diagonals, as opposed
to other slicings-up of the matrix: the diagonals are the sets of terms which are
multiplied by the same power of x. To validate the correspondence between A
and A′, a Verifier will need to check that the entire set (“matrix”) of terms; to
do this he checks whether:

A′ =
4∑

k=−4
xkAk

(see (24))=
4∑

k=−4
xk

min(5,5−k)∑
i=max(1,1−k)

ai+kGi

Verifier only checks the left equation of course; the full decomposition is known
only to the Prover.

It is a little confusing to imagine this interaction since it has only a point in
cases where we employ “recursion”: The Prover asserts that A is a commitment
to a, and then sends the full list A−4, A−3, . . . , A0 = A, . . . , A4. Then the
verifier replies with a challenge x. Unlike a typical Sigma protocol, the Prover
does not then send back a proof. What happens instead is, both sides now
construct a reduced form of the same problem. (Aside: Jonathan Bootle
illustrated this idea helpfully in this [4]blog post – see Figure 3, taken from that
post – this gives you the mental model of what’s going on; we’re repeatedly
shrinking the size of the proof we’ll have to finally create before the final step
(the envelopes represent commitments)):

Both Prover and Verifier can construct A′,G′ (while only the Prover of
course constructs a′), and they now are back in the starting position with smaller
vectors – in our concrete example, they started with a vector of dimension 10,
it’s now a vector of dimension 2. If the process is to end there, the Prover will
simply reveal this vector (here it would be the components (xa1 +x2a3 +x3a5 +
x4a7 + x5a9), (xa2 + x2a4 + x3a6 + x4a8 + x5a10), as two numbers).

But if we started with, say, a vector of dimension 600, we could have followed
the above procedure as 60x10, and at this point the basis vectors G′ may have
dimension 60, and we could repeat, chunking 60 = 6 x 10 again. We would
repeat the above algorithm, except replacing A→ A′ , G→ G′.

25

Figure 3: Compressing commitments - attribution of this image below

Summarizing: in the case with multiple reductions, the pattern of interaction
would be: P sends diagonal commitments, V sends x, (both sides calculate next
step), P sends new diagonal commitments, V sends x′, . . . , last step: P sends
full commitment openings to a small vector.

So has this admittedly complicated algorithm helped us? Let’s count: for
the dimension-10 case, first we had to send an additional 9 - 1 commitments
(subtract off the main diagonal; that’s A, which we transferred at the start),
then we revealed 2 scalars at the end. So that’s actually about the same as
the 10 scalars we’d have to reveal if we did it without shenanigans.

But for the case 600 = 10 × 10 × 6 - we first “chunk” in 10s, then again
in 10s, leaving only 6 components for the final step. That requires revealing
2 × 10 − 1 = 19 commitments at each of the two reducing steps, along with
6 scalars in the final step (and again subtract 1 for the starting A). That’d be
only 43 items instead of 600.

So far so good – it clearly saves space, but we’ve left a big hole in the
argument; does this actually have knowledge soundness?

5.2 Knowledge soundness of the argument
We can isolate this to the question: does the provision of the diagonal commit-
ments A′ (strictly, the provision of the A values, from which the A′ are derived
using x), in any step, prove knowledge of the uncondensed vector a? Because
(a) trivially the final step has soundness; it reveals the vector in its entirety and
(b) all of the reducing steps can be treated the same (with different dimension
of course; here we’re sticking to the 10→2 reduction for concreteness).

As in the first section of the document, we have a situation where the Ex-
tractor collecting a “complete set” of equations for multiple challenges (in this

26

case, 2× 5 = 1 values of x) will allow us to define a complete solution to a set
of linear equations, although here it’s meaningfully more complicated!

For each such challenge x, an interaction will provide an equation like:
4∑

k=−4
xkAk = a′G′ = a′

5∑
i=1

x−iGi

Remember that the publically shared information here is the Aks, the x and
the Gis. The Extractor-Verifier therefore knows G′; if he can extract the set of
coefficients of G he can thus open the commitment to a′ which the LHS of the
above equation represents (remember, such a sum of commitments is actually
just one curve point).

If he can reconstruct that opening in the form: a′ =
∑5
i=1 aixi, for some set

ai, then we have a valid opening of the commitment and the Extractor’s job is
done (he has extracted the original vector committed to).

As in the first section, on proof of knowledge of a set of vectors, because we
chose x-powers as multiplying factors, we have a Vandermonde matrix (actually
a shifted Vandermonde matrix, because we used negative as well as positive
powers), and that ensures we can invert it (to put it another way, as the paper
does: it’s guaranteed that, as long as the challenges x are all distinct, you’ll be
able to find a particular linear combination of the equations that isolates the
formula for one particular Ak). Choosing one particular Ak, say A−4, then by

such isolation, you can get a formula A−4 =
5∑
i=1

a−4,iGi, where a−4,iis some

linear combination of the original vectors a - note that this procedure has ex-
plicitly calculated these a−4,is. We’ll do this for each of the 9 Aks; consider what
happens if you apply this new formula to the original equation:

Ak =
5∑
i=1

ak,iGi ∀k ∈ −4 . . . 4

∴
4∑

k=−4
xk

(5∑
i=1

ak,iGi

)
= a′G′ = a′

5∑
i=1

x−iGi

∴ x−ia′ =
4∑

k=−4
ak,ixk ∀i ∈ 1 . . . 5

where the last deduction specifically arises from the fact that the coefficients of
the Gis must be equal. Now note that this has given us 5 different equations
for a′, in terms of a 9 by 5 matrix of vector coefficients ak,i. By comparing
coefficients of powers of x, you can see that in fact ak,i = ak+i if k + i ∈ 1..5
and is zero otherwise – the proof is left as an exercise for the reader (in other
words, I haven’t figured it out yet!), but it’s easy to check by hand. So finally
the relation boils down to:

a′ =
5∑
i=1

aixi

which proves that the ais we calculated (remember we went from Ak to ak,i to
ak+i to the ai in the above calculation, in other words, we explicitly calculated
them from a matrix inversion) are actually exactly those committed to.

27

5.3 Extending to an inner product
It might seem like we’ve barely started, since we only talked about one vector
a so far. However, the power of the above algorithm extends almost directly to
the more general goal of proving knowledge of: a,b, z such that z = a · b.

First, one can repeat the exact algorithm above for the knowledge of b;
although to make the inner product work, we modify it in two trivial ways: we
replace G with H (i.e. different base curve points in the commitments), and we
replace the challenge x with its inverse x−1.

So this would require commitments to the diagonals as before, a total of
2m−1 commitments Bk (we’ll now switch from a concrete structure 10 = 5×2,
to a generic n = m1 ×m2 . . ., i.e. a factorization of some dimension n), and we
will have:

B′ =
m−1∑
k=1−m

Bkx
−k

It remains to consider the z = a · b part. Remember that we have “chunked”
both these vectors, like so: a = [a1,a2,a3,a4,a5] and b = [b1,b2,b3,b4,b5];
we take the same approach of committing to diagonals, this time of a · b in the
matrix: 

a1b1 a2b1 a5b1
a1b2 a2b2
. a3b3
. a4b4 . . .
a1b5 a5b5


We have already defined a′ =

∑m
i=1 aixi, we now define b′ =

∑m
i=1 bix−i

(note that the role of x has to be reversed to create the same cancellation as
before). As before, we define commitments to diagonals, and construct:

z′ =
m−1∑
k=1−m

zkx
k, zk =

min(m,m−k)∑
i=max(1,1−k)

ai · bi+k

and it’s easy to see that we have the same pattern as the previous section:
z′ = a′ · b′.

So finally we see that the reduction step previously mentioned will work for
proof of the inner product as well as the vectors themselves.

To sum up: the Prover sends initially (A,B, z) (assuming the vectors G,H
are set in advance), along with the factorization of the dimension n into (m1,m2, . . .),
then for each reduction step sends (Ak, Bk, zk ∀k ∈ max(1, 1−k) . . .min(m,m−
k)), while of course the Verifier sends a challenge x for each step. And as noted
before the final step simply involves revealing the final two vectors a′,b′, whose
dot product will be z′.

Note: in the interest of brevity, I’ve for now omitted including the logic for
the soundness of the inner product part of the proof.

5.4 Scaling
The great achievement of this construction is that its communication cost be-
tween the Prover and Verifier is “basically” logarithmic in the dimension n of
the vectors a,b.

28

For any arbitrary vectors dimension n, whose factorization is
∏α
i mi, the

cost is about 6
∏α
i=2(mi − 1), so, linear in the sum of the factors. A power of 2

(as was illustrated in the diagram from Bootle’s blog post), will be a somewhat
optimal case (the more factors the better) –we will have one reduction step for
each power of 2, i.e. k steps for dimension 2k, and so the cost will be ' 6 log2 n.

6 Bulletproofs
The ideas laid out in the Bulletproofs[15] paper by Bünz et al. are basically (a)
an even more compact version of the inner product argument of knowledge, (b)
how to construct a compact rangeproof using such an argument of knowledge
(c) how to generalize this idea to general arithmetic circuits. We’ll focus on (a)
and (b), and only briefly mention (c).

6.1 An even more compact inner product proof
The general flavour of the arguments laid out in Section 3 of the Bulletproofs
paper is, how can we most efficiently make use of the essential/basic element of
the very powerful reduction/recursion argument laid out in detail above?

As before, start by considering a single vector . . . but wait, in Section 3,
Bünz goes back (helpfully!) even a step further and considers just committing to
2 scalars a, b. Let’s say we commit to them with a commitment C = aG1 + bG2
(as in the previous section we are omitting blinding). If you wanted to fold this
commitment together so as to reveal only one scalar in the commitment opening,
you’d need to somehow combine a and b together. As we’ve already observed
at least once, “combining” values under commitment in a naive way loses the
binding property – a commitment to a + b is useless as it might just as easily
be a commitment to (a + α), (b − α) as to (a, b). A commitment to something
like (ax+ b), with x being the challenge as per usual, seems like a step up – but
how is the verifier going to verify the commitment? C(ax+ b) = xC(a) + C(b)
by linearity, but that is not a function of the original commitment C. We
need a function f(a, b, x) from these three values to a single scalar a′, which,
when combined with a function g(G1, G2, x) from the basepoints and x to a
new basepoint G′, such that we can construct a commitment verifier-side. This
construction is:

a′ = ax+ bx−1, G′ = x−1G1 + xG2

∴ C ′ = a′G′ =
(
ax+ bx−1) (x−1G1 + xG2

)
= aG1 + bG2 + x2aG2 + x−2bG1 = C + x2L+ x−2R

where C was the original commitment.
This little example illustrates a central idea, but in itself is of course useless

– you would have to open the commitment using a′, L,R instead of just a, b
which is longer not shorter. So the point here is what happens when we scale
it up to vectors, in particular, long ones.

So the next step is to look at a vector like a1, a2, . . . , an instead of a, b. The
commitment would be as according to previously used notation; here aG. What
you do is pair off the entries in the first half and the second half of the vector

29

to re-create the above effect, but crucially, you still only need one each of
L and R:

(a1, a2, . . . , an/2), (an/2+1, an/2+2, . . . , an) “cut”
→
([a1, an/2+1], [a2, an/2+2], . . . , [an/2, an]) “fold”
← Verifier sends x
(xa1 + x−1an/2+1, xa2 + x−1an/2+2, . . . , xan/2 + x−1an)

where the first two steps “cut” and “fold” are just to illustrate the concept
(they’re not mathematical operations, just rearrangements of the vector). Now
note that if we perform the same cut-and-fold operation on the basepoints G,
with the exception that we apply the reciprocal of the challenge, then we’ll get:

G′ = (x−1G1 + xGn/2+1, x
−1G2 + xGn/2+2, . . . , x

−1Gn/2 + xGn)

so that

a′G′ = (xa1 + x−1an/2+1)(x−1G1 + xGn/2+1), (xa2 + x−1an/2+2)(x−1G2 + xGn/2+2), . . . ,
(xan/2 + x−1an)(x−1Gn/2 + xGn)

which reduces to

a′G′ = aG + x2 (a1Gn/2+1 + a2Gn/2+2 + . . .+ an/2Gn
)

+
x−2 (an/2+1G1 + an/2+2G2 + . . .+ anGn/2

)
= aG + x2L+ x−2R

with L,R defined as the parenthesized terms.
So the interaction (a similar pattern to what we saw with Bootle with the

matrix diagonals) is: Prover constructs and sends L,R, Verifier sends x, then
both sides can construct G′ and reconstruct the final C ′ = a′G′ as above.

Note that we already have the key scalability win: we’ve reduced the com-
munication from n terms to n/2 + 2 (the extra two for L,R). And if we apply
the protocol repeatedly, we get to 2 + log2 n × 2 (because we need a new for
each halving step, and a final reveal of two scalars).

6.1.1 Two vectors in parallel

It’s trivial to do this with commitments to two vectors, C = aG+bH. Assume
they both have dimension n, a power of 2. The construction composes directly;
you can simply add the L,Rs for each one; because they are using different base
curve points, and the pattern holds in the same way:

L = La + Lb =
(
a1Gn/2+1 + a2Gn/2+2 + . . .+ an/2Gn

)
+(

b1Hn/2+1 + b2Hn/2+2 + . . .+ bn/2Hn

)

30

and the same for R.
In other words, the Prover starts with commitment aG + bH, and at each

halving iteration sends across the composed values of L,R; everything is as
before. To be explicit, the “reduced”/ “halved” form of the commitment is:

C ′ = a′G′ + b′H′ = C + x2(La + Lb) + x−2(Ra +Rb)

6.1.2 Re-introducing the inner product

Bünz’s paper separates this into two parts. First, he modifies the above con-
struction to include an explicit value of the inner product of the two vectors,
then he overlays a simple additional step to enforce that overlay explicitly (see
“Protocol 1” and “Protocol 2”; Protocol 2 is the actual proof while Protocol 1
enforces the value of the inner product and calls Protocol 2 as a subroutine).

If the Prover asserts that the commitment C = zG + aG + bH (minor
technical note: the G basepoint for z is not one of the elements of the vector
G; it can be another curve point such as the curve’s known generator), is in
fact a commitment to the inner product as well as the two vectors, then it is
not too difficult to extend the above construction to include the ability for the
Verifier to verify that z = a · b. We just need to ensure that, at each halving
step, z′ = a′ · b′ (remember – the whole idea here is to reduce one version of
the problem to a smaller one, meaning we have to preserve all the properties
at each step). Let’s first note what we get from simply reconstructing the new
commitment from the old one, without any modifications to the algorithm from
the previous section:

C ′ = C + x2L+ x−2R = zG+ aG + bH + x2L+ x−2R

The problem now is that z is no longer a dot product of the reduced sized
vectors a′,b′; it’s just the dot product of the original vectors, which is different.
That new dot product is:

(xa1 + x−1an/2+1, xa2 + x−1an/2+2, . . . , xan/2 + x−1an)·
(x−1b1 + xbn/2+1, x

−1b2 + xbn/2+2, . . . , x
−1bn/2 + xbn)

= a1b1 + a2b2 + . . .+ anbn+
x2(a1bn/2+1 + a2bn/2+2 + . . . an/2bn)+
x−2(an/2+1b1 + an/2+2b2 + . . .+ anbn/2)

So from this we can see that a′ ·b′ contains z, just as C ′ contains C. We simply
need to add the cross terms (the last two lines in the above) into L and R
respectively, since they share coefficients of x. Thus we redefine:

L = La + Lb + (a1bn/2+1 + a2bn/2+2 + . . . an/2bn)G
R = Ra +Rb + (an/2+1b1 + an/2+2b2 + . . .+ anbn/2)G

and now the reduced commitment will satisfy:

C ′ = z′G+ a′G′ + b′H′ = C + x2L+ x−2R, z′ = a′ · b′

31

as required.
So, much as previously mentioned, we can repeatedly apply this process:

start with vectors length n, C = zG+ aG+bH, pass this to the Verifier, along
with L,R, receive back a challenge x, both sides recalculate C ′, continue until
a final step (each step a halving and a new L,R), and in the last step reveal
scalars for the now single values a, b, and the Verifier makes the final check that
C∗ = a∗b∗G+ a∗G1 + b∗H1, where * indicates the log2 n-th transformed values.

As we mentioned at the start, to tweak this to create an argument of knowl-
edge that a given z is the inner product of the committed vectors, “Proto-
col 1” requires the Verifier to provide an initial challenge x, and then the
Prover runs the above algorithm replacing G with xG, so we have initially
C = z(xG) + aG + bH.

6.1.3 Knowledge soundness

To get things absolutely clear, it’ll help to draw out a table of the interaction
between Prover and Verifier for a simple case; here let’s say n = 4 so there are
only 2 reduction steps to the final reveal.

C, n = 4 (shared in advance)
Prover Verifier

(1) L,R →
← x

[C ′] [C ′]
(2) L′, R′ →

← x′

[C ′′] [C ′′]
(3) a, b →

verify

First we observe that, by construction, every step is the same as every other;
if we can demonstrate that we can open the original vectors a,b given the
intermediate transformed vectors a′,b′ ((2)→ (1)), it follows we could do the
same going from (3) to (2) in the above; and indeed, at any intermediate step
in a much longer list. So we will focus only on the former problem. Consider
that we already have the values a′,b′, z′ generated in (2), for any x ; we’ll write
a′i,b

′
i, z
′
i for multiple values.

We’ll now demonstrate that the Extractor can, using this, extract the origi-
nal a′,b′, z using rewinding.

Here we will need three transcripts, specifically, because there are three com-
mitments C,L,R in the construction of C ′. This will generate three equations
at step 2 (i.e. after the provision of the first x): C ′i = x2

iL+C+x−2
i R ∀i ∈ 1..3.

Note here that C,L,R do not differ in the three versions of the equation, only
C ′ does; L,R are calculated before provision of x. The Extractor can now
simply solve this system of three equations in the three unknowns (details are
obvious) to retrieve values of C,L,R in terms of the xi, C ′is; but here we are
only interested in C specifically. We have something like C = f(C ′1, C ′2, C ′3)
where f is linear function of those three variables. However, we also know the
openings of those commitments! (Remember that we argued above that we

32

can assume we already know a′i,b
′
i, z
′
i, by recursion). For example, we know

that C ′1 = z′1G + a′1G
′
1 + b′1H

′
1. Although G′i,H

′
i are not the same as G,H,

they are linear combinations of them, so opening is still provided in the original
base. Hence you can see we are already done, for proving knowledge of opening,
because you can write the opening of C as:

C = f((z′1G+ a′1G
′
1 + b′1H

′
1), (z′2G+ a′2G

′
2 + b′2H

′
2), (z′3G+ a′3G

′
3 + b′3H

′
3))

Before we go on to complete the argument, remember the crucial point about
binding in Pedersen commitments – any opening over the set of base points is
the opening, so the above has already found z,a,b.

However, it does remain to show that the opening satisfies z = a · b.
The opening of C given above will be of the form zCG+aCG+bCH, where

the subscripted variables are those extracted from the function f . Since we are
here asserting that these values are indeed the correct openings, we could drop
the C subscript, but we leave it in for clarity in the remaining steps.

We need to show that zC = aC ·bC to complete the proof. We already know,
by the recursive argument, that z′ = a′ · b′.

To do this, first observe that we can repeat the above procedure to solve for
L and R just as we did for C. We can thus get openings L = zLG+aLG+bLH
and R = zRG+aRG+bRH. Then we can expand this into the original equation
for C ′:

C ′ = a′ · b′G+ a′G′ + b′H′ = (zC + x2zL + x−2zR)G+ (aC + x2aL + x−2aR)G+
(bC + x2bL + x−2bR)H

but note: we can do this three times with the randomly chosen three values
x1, x2, x3. This equation is therefore an identity over x. But the condition is
even stronger: according to the binding property of such commitments it is also
an “identity” over the individual base points. In particular the coefficient of G
and x0 must be equal; if we only consider the coefficient of (G, x0), then we just
need to look at the constant term in the dot product:

a′ · b′ = a1b1 + a2b2 + . . .+ anbn+
x2(a1bn/2+1 + a2bn/2+2 + . . . an/2bn)+
x−2(an/2+1b1 + an/2+2b2 + . . .+ anbn/2)

which is indeed a · b. Thus we have proved that zC = a · b and we are done.

6.2 Encoding conditions into an inner product – a range
proof

So far we have not attempted or considered applications of these techniques for
compactly proving knowledge of vectors, or of the inner product of committed
vectors. Only in this final section of the document will we do this – we’ll specif-
ically consider how Bulletproofs encodes a proof of the range of a committed
number in an inner product, using polynomials (several, in fact!).

Start with a commitment to a number/value: V = γH + vG, so a standard
(hiding) Pedersen commitment to the value v with randomness γ. We want to
prove that v ∈ 0 . . . 2n − 1.

33

This will map to Bitcoin’s Confidential Transactions proposal of Maxwell et.
al. [5], which uses Pedersen commitments to values in exactly this form, and
leverages the commitment’s homomorphism property to ensure balance.

6.2.1 Steps towards the range proof

Outline of the strategy

• The aim here is to achieve two goals: make the proof as compact as possible
in terms of data communicated, but also to provide simultaneous proof of
multiple conditions. To achieve the latter we leverage the idea outlined
in 3.3.1, that is, using a challenge to evaluate a polynomial in order to fix
it. This will be expanded on below. Note that this is done several times,
in a layered approach, so several challenges and polynomials are involved.
To achieve the former, we construct the outer polynomial such that one
of its terms is an inner product, allowing us to leverage the very-compact
inner product proof explained earlier in Section 6.

So, the following set of steps (actually, well explained in the paper!) is a way
to encode this problem into an inner product verification of the type we saw in
the last section.

Step 1: Encode the value v into a bit representation. Let aL be a vector
of bits such that aL · 2n = v (put more simply, the components of aL are the
binary digits of v).

(Side note: from now we will use two additional pieces of notation: kn =
[1, k, k2, . . . , kn] i.e. a vector of integer powers (but don’t forget, all integers here
are mod p), and a ◦ b = [a1b1, a2b2, . . . , anbn] , often known as the “Hadamard
product” of two vectors. Note that the Hadamard product is a vector, whereas
the dot product/inner product is a scalar).

Step 2: In order to prove that v is in range, we’ll combine this structure
with an additional condition: that each element of aL is either 0 or 1. To do
that, we construct a “complementary” vector aR = aL − 1n and require that
aL ◦ aR = 0 hold.

We’re set the task of constructing an algorithm for the Prover to prove to the
Verifier that these conditions hold. To prove that these equations hold using an
inner product, you could have the Verifier send a random x and then the Prover
could prove e.g. (aL ◦aR) ·xn = 0; this would be correct in the “computational”
sense (note: we argued in section 3.3.1 that this should be convincing with
forgery probability negligible at ' n/p). But remember – the inner product
argument of knowledge, constructed and proved in the previous two sections,
was not zero-knowledge.

Step 3: The problems so far described are divided into effectively three
stages. Here are the first two: first, for each of the conditions mentioned in Step
2 (vectors differ by 1, Hadamard is zero), use a challenge y to construct the
inner product. Second, combine all three (including the condition on v) into a
polynomial function of a second challenge z:

z2aL · 2n + z (aL − 1n − aR) · yn + (aL ◦ aR) · yn = z2v

Note that the use of z here is simply an “overlay” of another instance of the
previous pattern/argument: use powers of a challenge to effectively evaluate

34

a polynomial at that challenge. However, the y challenge required a power of
n, i.e. n-th degree polynomials, because it is testing a condition on the set of
components of the vectors (dimension n), whereas the z challenge only requires
a quadratic polynomial, because we are only testing three conditions – those
mentioned in Steps 1 and 2.

(Note that the second and third dot products are required to be zero, and
therefore the RHS is just the first term).

Step 4: (Confusingly, this is not the third of the three stages I just mentioned
:)).Using some deft mathematical footwork, convert this into a single inner
product. We can afford for this factorization to leave terms “dangling”, but
what’s important is that the aL,aR terms be kept inside (since they can’t be
shared with the Verifier):

(aL − z1n) ·
(
yn ◦ (aR + z1n) + z22n

)
= z2v + δ(y, z)

where, by expansion you can see that the “dangling” term δ is purely a
function of the public challenges: (z − z2)(1n · yn)− z3(1n · 2n).

Step 5: The third of the three stages mentioned: To solve the problem that
this is not zero knowledge, we need to blind the vectors aL,aR: introduce two
new vectors sL, sR, created at random by the Prover. On creating these, the
Prover can send commitments to these vectors; these are properly blinded vector
Pedersen commitments:

A = αH + aLG + aRH
S = ρH + sLG + sRH

Step 6: On receipt of challenge values y, z, the Prover is now able to construct
the above inner product. However the inner product needs to be embedded as
the constant term in yet a third polynomial, using a new challenge x. This is to
make the blinding effect of work. It’s analogous to how in Section 4.2 we needed
to construct ex + d with blinding vectors d, so that the private vectors x could
be transferred. We thus can prove knowledge of aL,aR without revealing them
by transferring the vectors l, r defined below(whether we actually will is another
question!). The two terms of the dot product above are set as the constant term,
while sL, sR are the coefficient of x1, in the following two linear polynomials,
which are combined into a quadratic in x:

l(x) = (aL − z1n) + sLx
r(x) = yn ◦ (aR + z1n + sRx) + z22n

t(x) = l(x) · r(x) = t0 + t1x+ t2x
2

Note that t is scalar-valued, not vector-valued, because it is the result of the
inner product.

Let’s recap the above 6 steps (they’re not the full interactive protocol be-
tween Prover and Verifier, but they do cover the most important ideas behind
it): we have the actual data representing the value in aL,aR. We use the first
challenge, y, to “fix” the bits of those vectors, then use the challenge z to assert
the three constraints (all of which are inner products) in one equation. Then we

35

combine the three terms into one inner product, with dangling terms OK be-
cause they are using public data. Finally we use corresponding random vectors
sL, sR to the original vectors, and require a third challenge to make a quadratic
polynomial in that challenge for which the constant term is the inner product
we’ve constructed. Verifying the value of that inner product will validate that
the value v is in range, while because it has been encoded as an inner product,
we can leverage the above inner product proof for the desired compactness (this
will be explained in 6.2.3).

6.2.2 After having built the “outer” polynomial t(x)

Here we’ll briefly describe what the Prover needs to do to convince the Verifier
that his value is in range, ignoring the inner product proof. Then we’ll overlay
that in the succeeding section.

The Prover will, basically, have to convince the verifier that he has honestly
constructed the polynomial t(x). To do this he sends Pedersen commitments
T1, T2 (= τ1,2H+ t1,2G) to the coefficients t1, t2, obviously before he receives the
final challenge x; after having received that, he then can send the “blinding”
half of the T commitments (τ), combined into the form required to make the
“committed” version of the x-polynomial add up (this will be τx = τ2x

2 +
τ1x + z2γ). He’ll also send the dot product t(x) = l(x) · r(x) = t̂, and the
blinding factor required for the Verifier to verify the earlier commitments A,S:
: µ = α + ρx. The check that the Pedersen commitment to the value (V) is
indeed the constant term of t(x) will thus look like this:

t̂G+ τxH
?= z2V + δG+ xT1 + x2T2

where you can verify that both sides of the equation are the “Pedersen-ised”
form of:

l(x) · r(x) = z2v + δ + xt1 + x2t2 for G
τ2x

2 + τ1x+ z2γ for H

The verifier must also check that the commitments A,S are valid. In other
words, he must check that the blinded commitments to aL,aR that the Prover
made before receiving the challenges x, y, z match the constructions of l, r. Refer
back to the definitions of those two vectors in terms of aL,aR, and you can see
that this requires:

H′ = y−nH
P = A+ xS − zG+

(
zyn + z22n

)
H′

P
?= µH + lG + rH′

The introduction of H′ is a bit of algebraic housekeeping to relate the com-
mitment to aR in A to the definition of r(x), which uses a Hadamard product
with yn; note it has nothing to do with the use of ’ notation in the inner product
proof.

36

The Verifier must also, finally, check that the inner product is correct: t̂ ?=
l · r.

Let’s compile the interaction between Prover and Verifier for what we have
so far:

V, n,G,H, G,H (shared in advance)
Prover Verifier
A,S →

← y, z
T1, T2 →

← x
τx, µ, t̂, l, r →

verify

, where “verify” refers to the three checks marked ?= above.This provides the
necessary zero-knowledgeness because l, r are properly blinded as already ex-
plained, but it doesn’t provide the compactness; see next section.

6.2.3 Leveraging the compact O(log n) inner product proof

As a reminder the compact inner product proof provided in the Bulletproofs
paper takes as public input only the commitment C and the claimed inner
product (which for continuity I have called z, but in the paper c is used);
assuming that everything else is set in advance – the basepoints G,H,G,H,
and the dimension n. We can convert the final check t̂

?= l · r above, with
the check of the commitment P above, into one check of such an inner product
proof; we just need to set the basepoints to make it fit:

public:
P − µH → C

H′ = y−nH→ H
G→ G
t̂→ z

private:
l(x)→ a
r(x)→ b

Given these renamings, we can apply the inner product proof of Section 6.1
directly.

How does it change the interaction? Instead of having to transmit l, r (and
don’t be deceived by the fact that’s only 2 terms – they are vectors, so by far
the largest part of the transfer in the existing protocol; also, don’t be deceived
thinking “oh but they’re bit decompositions – each element is 0 or 1!” - this is
wrong because we blinded them, so they’re all group elements, which take 32
bytes each for a 256 bit curve, so for a 32 bit number you need 32x32x2 bytes),

37

the Prover can instead transfer only P −µH as C. He transfers t̂ in either case,
so no change there. Note that as well as the inner product proof, the other
pre-existing check must still be carried out by the Verifier:

t̂G+ τxH
?= z2V + δG+ xT1 + x2T2

(this is what binds the proof to the actual original Pedersen commitment V to
v).

At this point, we are done: we have a proof which is claimed to be sound
(see 6.2.6), and zero knowledge (see 6.2.7), and which is also very compact (see
6.2.5). The proof will be constructed non-interactively (see 6.2.4). We claim
that all the necessary conditions hold, to prove that V is a commitment to a
value v that is in the range 0 . . . 2n − 1.

6.2.4 Aside: Non-interactive proofs

The above protocol is obviously pretty complicated, but more importantly, it has
several steps of interaction between Prover and Verifier. This is not acceptable
for the application of Bitcoin transactions; but it can be solved with a standard
technique that’s used widely in all kinds of cryptographic protocols that involve
this kind of interaction. It’s called the Fiat-Shamir heuristic [22]. This point
is explained in Section 4.4 of the Bulletproofs paper. It also applies to most
of the other constructions we’ve looked at in this document – for example the
Schnorr signature, where we can replace the interactive challenge e with a hash
of (message to be signed, nonce point R, public key P).

Using this heuristic however does come at a cost – it relies on something
called the “Random Oracle Model”(discussed at length in [23] - warning, it’s
a rabbit hole!) or “ROM” for short, in other words, it’s another assumption
you have to make in order to reach the conclusion that the protocol is secure.
Basically a “random oracle” is considered to be a black box that outputs unpre-
dictable, random values in response to input, in a deterministic way (that is to
say, if you give it the same input twice, it will give the same random output).

Using the ROM is a tradeoff which people do, generally, make since non-
interactivity makes a lot of things that would otherwise be impractical, practical.

It should also be mentioned that, to address how the ROM changes the zero
knowledge proofs we have discussed thus far is a separate and interesting topic.
Basically we have to treat the random oracle as something that the Extractor
or Simulator can program in advance.

It’s also important to note that the input to the random oracle, in the Fiat-
Shamir heuristic, is specifically the transcript of the interaction up to that
point.

6.2.5 Scaling

Here we’ll focus (as in previous sections) only on the amount of data com-
municated; not the computational cost, although of course this is indeed very
important. We assume use of the Fiat-Shamir heuristic just mentioned; this
means that we get the “challenge” values (for example, x, y, z, but also the
challenges in the inner product proof) for “free” since they’re calculated by the
Prover alone, using a cryptographic hash function like SHA256.

38

The Prover must send the curve points A,S, T1, T2, and also the scalar values
τx, µ and t̂, but then also L,R the pairs (of which there are 2 log2 n) along with
the final 2 scalars a, b at the end of that inner product protocol. So the total
size of the published proof is (curve point size)*(4+2 log2(n)) + (scalar size)*5.

Both curve points and scalars in the group can be encoded in about 32
bytes, so this is roughly 32 × (9 + 2 log2(n)), where n is the number of bits in
the range. For 32 bit ranges this gives around 620 bytes, and for 64 bits, it’s
nearer to 700 bytes. Note that this is dramatically smaller than the range
proofs based on Borromean ring signatures[12] for the earlier implementation of
Confidential Transactions, which used about 2500 bytes in its simplest form for
32 bit ranges, and would be far higher for 64 bits (because that construction
didn’t have log(n) scaling)!

6.2.6 Knowledge soundness

This is obviously a slightly more complicated proof than previous ones, because
the algorithm itself has several components, also my exposition will be a little
lacking in detail.

Fortunately, though, it’s mostly using logic very similar to previous proofs,
so it hopefully isn’t too overwhelming.

The proof given in Appendix C of the Bulletproofs paper is for the aggregated
form of the proofs (see 6.2.8), which makes sense as a single proof is just a special
case of the aggregated form.

Outline Start by noting that Section 6.1.3 gave us a proof of soundness of
the inner product proof (i.e. the soundness of an argument of knowledge for the
vectors a,b such that their dot product is z). We of course use this here; we
assert that this provides us with a sound opening of the vectors l, r, and asserts
that their inner product is t̂ (see the table in 6.2.3 for the conversion of terms).

As usual in such proofs, we use an Extractor who can rewind at any point
in the conversation. Here, for the first part of the proof, we will specifically be
rewinding the x-challenge, but not the previous two challenges y, z. That means
that in the following equations, the values y, z are fixed, but there is a different
x value for each generated proof/equation. For the second part of the proof, we
will also need n+ 2 different y, z challenges.

We proceed as follows: starting with the formula for the commitment P , we
can run this twice and get openings first of the quantities: α, ρ,aL,aR, sL, sR.
We can then use the public value t̂ along with three transcripts (i.e. three x
values), and get openings of the quantities t1, t2, τ1, τ2, v, γ. At this point we
have extracted the value under commitment/range proof: v.

However, we must also proof that the conditions hold, that is: aL ◦ aR =
0,aR = aL−1n,aL ·2n = v. By using here different values of the challenges y, z,
and comparing coefficients in t(x) = l(x) · r(x) we can justify that t0 = z2v + δ
has the right form, and thus that these 3 conditions are true.

Stage 1: Openings of α, ρ,aL,aR, sL, sR
Remembering that P is defined as µH+lG+rH′, and noting its construction

by the verifier as P = A+xS−zG+
(
zyn + z22n

)
H′, we will compare the two.

For the first challenge x1, this will look like:

P1 = µ1H + l1G + r1H′ = A+ x1S − zG + (zyn + z22n)H′

39

Do likewise for x2. Now consider the “coefficients” (recall the idea here in
Section 6.1.3) of H:

µ1 = α+ ρx1

µ2 = α+ ρx2

solve: ρ, α

Then consider coefficients of G:

l1 = aL + x1sL − z
l2 = aL + x2sL − z
solve: aL, sL

And finally for H′ (note that these curve points are fixed for fixed y, as here):

l1 = aR + x1sR + k

l2 = aR + x2sR + k

solve: aR, sR

where k is just the remaining terms for H′, and is constant.
Now we have explicit openings for α, ρ,aL,aR, sL, sR.
Stage 2: Openings of t1, t2, τ1, τ2, v, γ
The model is basically the same as above; here we actually need 3 values

x1, x2, x3. We consider here the Verifier’s check that t̂G+τxH = z2V +δ(y, z)G+
xT1 + x2T2. Recall first that T1,2 = τ1,2H + t1,2G, that V = γH + vG , and
that δ is a publically known constant (once y and z are fixed, as here).

Applying the three challenges and considering the G coefficient gives:

t̂1 = z2v + δ + x1t1 + x2
1t2

t̂2 = z2v + δ + x2t1 + x2
2t2

t̂3 = z2v + δ + x3t1 + x2
3t2

solve: t1, t2, v

At this point we have extracted the value v.
Considering the H coefficient gives:

τx1 = z2γ + x1τ1 + x2
1τ2

τx2 = z2γ + x2τ1 + x2
2τ2

τx3 = z2γ + x3τ1 + x2
3τ2

solve: τ1, τ2, γ

Now we have explicit openings for t1, t2, τ1, τ2, v, γ.
Stage 3: It remains to prove that the 3 conditions hold: aL ◦ aR = 0,aR =

aL − 1n,aL · 2n = v.

40

For this part, we need that the Extractor runs the Prover with n different y
challenges (and this is applied multiplicatively with the 3 different x challenges
we have already mentioned).

We must argue that t(x) = l(x) · r(x) is an identity over x. We have already
extracted t0, t1 and t2 (with t0 = δ(y, z) + z2v), so we have fully fixed t(x) for
any particular y, z. On the other hand, l(x) · r(x) is fixed from the first step,
by our re-use of the opening of those vectors from 6.1.3 (see the start of this
section). Let p(x) = l(x) ·r(x). We can now check whether t(x)−p(x) = 0 holds
for each of our 3 challenges x1, x2, x3. If it does, we assert that the equation
is an identity, because the polynomial has degree 2 over x, which is less than
3. This specifically means that p0 = t0 and we can use the expansion of l, r to
assert that:

z2v + δ(y, z) = z2(aL · 2n) + yn · (aL ◦ aR) + z((aL − aR − 1n) · yn) + δ(y, z)

We cancel the δ terms as they are identical in every run. This polynomial
has degree n − 1 over y (remember, a term like v · yn is v0 + v1y + v2y

2 +
. . . vn−1y

n−1), and we would therefore require n versions of that challenge to
determine the system of linear equations and extract a solution (in other words,
fix the coefficients of that polynomial). However it is also a quadratic in z, so
overall it is a bivariate polynomial of degree n−1+2, requiring n+2 combinations
to fix its coefficients. After this, we can deduce that coefficients of the same
powers of (y, z must be equal. In particular, the coefficient of y0, z2) must be
equal:

v = aL · 2n

And the coefficient of (y0, z1) (zero on the LHS) must be equal:

aL ◦ aR = 0

Likewise the coefficient of (y0, z0):

aL − aR − 1n = 0

In other words, all of our three conditions hold: aL ◦aR = 0,aR = aL−1n,aL ·
2n = v. This ends the proof.

6.2.7 Zero-Knowledgeness

Here is a rough outline, only. The usual trick, if you recall from earlier sections,
is to examine the transcript for the interactive version of the protocol and de-
duce how it could be created without knowing the secret data (the witness), if
necessary allowing a Simulator entity to rewind protocol execution.

The witness here is specifically the values v, γ such that V = vG + γH.
V is treated as the public input to the protocol. The transcripts look like
((A,S), y, z, (T1, T2), x, (t̂, µ, τx)), where the Prover’s part of the conversation is
parenthesized.

As usual, what you need to do is to pick values at random except have cer-
tain values be calculable from the other random values, so that the verification
conditions hold. As a reminder, the verifications, ignoring the inner product

41

proof were:

t̂G+ τxH
?= z2V + δ(y, z)G+ xT1 + x2T2

A+ xS − zG+
(
zyn + z22n

)
H′ ?= µH + lG + rH′

Remember that the public commitment V is only checked in the first of the
above two equations; so forging that equation successfully is the main goal. To
get that equation to verify, given random T2, τx, z, x, y, t̂ we can simply calculate
T1 as:

T1 = x−1 ((t̂− δ(y, z))G− z2V − x2T2 + τxH
)

To make the second equation verify, the one that checks the validity of the
commitment P , we can choose random A,µ, l, r in addition to the other random
values already mentioned, and ensure that t̂ = l · r, and set the commitment S
to value:

S = x−1 (µH + zG+ lG + (r− zyn − z22n)H′ −A
)

Then the transcript ((A,S∗), y, z, (T ∗1 , T2), x, (t̂, µ, τx)) will verify, where we use
* to indicate calculated values, and all other values are randomly selected, if we
create additional random vectors l, r such that their dot product is t̂.

Based on the usual reasoning, the ability to create fake transcripts which
verify implies that the protocol releases no information other than that the
witness is valid. Caveat: this “proof” is, again, a brief sketch, and more detail
is really needed.

6.2.8 Aggregation

This is just a brief overview, although the core idea is pretty simple.
The motivation here is to leverage the O(logn) scaling achieved in the inner

product proof. It turns out that you can construct a single proof for the range of
multiple values v, while only incurring an additional space cost of 2 log2(m) for
m additional values v – which is remarkably useful, for example in aggregating
multiple outputs in a Bitcoin transactions. Note how this (along with batching
the verification of proofs in transactions, something we haven’t discussed at all
here), could actually incentivize creating transactions with larger numbers of
outputs – see e.g. Coinjoin.

To prove that multiple values vj , each of which has a commitment Vj , are in
range, we can do something quite crude – just concatenate the values together.
For example, if the first value is 10 and the second value is 3, you could write,
using n = 4, v1 = 1010, v2 = 0011, and concatenate to 10100011 in 8 bits instead
of 4. This is the fundamental way we achieve the space saving mentioned above.
Consider that you had two values v1, v2, and let’s assume 64 bit range proofs.
According to the formula from 6.2.4, the total size of 2 proofs is 2× (32× (9 +
2 log2(64))) = 1344 bytes. If instead we concatenate, we have effectively a 128
bit range proof for a single number, giving 32 × (9 + 2 log2(128)) = 736 bytes.
The formulae show clearly the idea – move the multiplication from multiple
proofs inside the log term.

However, as explained in the paper (section 4.3), this needs some “patching
up” to make the full rangeproof work. The values δ, τx, and the commitment

42

P must be updated, to reflect the existence of multiple values, also. I leave the
details to the paper for those interested.

6.3 General arithmetic circuits
Giving some detail on this is deferred to a later version of this document. Here
will just be a few notes.

It’s not hard, having gone through the details of the above inner product
proof → range proof, to imagine that one could make different types of zero
knowledge proofs using the same equipment; since ultimately we just kind of
“hacked-in” the set of constraints: aL ◦ aR = 0,aR = aL − 1n,aL · 2n = v on a
pair of starting vectors that were introduced at the start.

The concept of an arithmetic circuit can be found in [24]. These circuits can
be thought of as encodings of polynomials, where at each point in the circuit, a
value is found by either adding or multiplying two input gates. The Bulletproofs
paper, in Section 5, discusses the case of a Hadamard product of the type we’ve
already encountered, which is really a set of multiplications of pairs of values,
i.e.

aL ◦ aR = (aL1 × aR1, aL2 × aR2, . . . , aLn × aRn) = aO
Using a result from Bootle [2] not here discussed, it’s possible to combine an
assertion about a Hadamard product as above with a set of linear constraints
on other vectors wLq,wRq,wOq, where there are Q ≤ 2n copies of these, and
to get from this an arbitrary arithmetic circuit.

The paper then constructs a proof where we are proving that aL ◦ aR = aO
(c.f. the previous aL ◦ aR = 0, which is obviously easier), and that the above
mentioned linear constraints hold (they are expressed as dot products). The
protocol is obviously more complex than the range proof one, but preserves the
same basic structure. The initial commitment A is replaced with two commit-
ments AI to aL,aR and AO to aO and requires more commitments Ti to the
coefficients in the more complex version of the polynomial t(x) (but still uses
the same three challenges x, y, z). See Protocol 3 in the paper for more.

There are a wide variety of potential applications of such a construction, as I
understand, and in a sense this document “buries the lede”, since some of these
applications may end up being more practically useful than the presented range
proof. To quote from [25]:

As a specific example, consider a single run of the SHA2 compression
function. Our prover requires less than 30 MiB of memory and about
21 seconds to prove knowledge of a SHA2 preimage. Verification
takes about 23 MiB of memory and 75 ms, but we can batch verify
additional proofs in about 5 ms and 13.4 KiB each.

This is just one (famously difficult) case: proof of knowledge of a hash
preimage. There may other variants of the same idea (hashes based on Pedersen
commitments?) that end up being more practical. The key takeaway here
is that this a zero knowledge proof system for arbitrary computation, whose
performance is notably better than alternatives in some scenarios, and whose
security is only dependent on the well studied ECDLP problem.

43

6.4 Implementation
Implementation in libsecp256k1, the secp256k1 elliptic curve code implementa-
tion used by Bitcoin, is in [13], and is primarily the work of Andrew Poelstra up
till now. Additional existing partial implementations are those in Monero [26]
and an initial proof of concept by Bünz [27].

6.4.1 Boosting verification performance

In previous sections we’ve focused exclusively on the size of the proofs being
generated, with the “headline” result of Bulletproofs and the earlier Bootle
construction being that the size of the proof is logarithmic in , the size of the
vectors.

However other performance characteristics matter a lot too, depending on
context, for example: memory and time required for proof construction, and
memory and time required for verification. The latter is particularly important
in a Bitcoin or other cryptocurrency scenario, since all participants must verify.

A big speedup can be achieved by using a technique usually called “multi-
exponentiation” (confusingly: in an elliptic curve context we’re actually talking
about multi-multiplication e.g. aG1 + bG2 + cG3 + . . .; but the term “exponen-
tiation” is used because in the discrete log case this is actually exponentiation:
ga1g

b
2g
b
3 . . .). It’s not obvious why it should be faster to compute the sum of a

bunch of scalar multiples like this; one would expect it would requireN× a single
scalar multiple computation, but it turns out that with clever algorithms, such
as Bos-Coster [28] or Pippenger (29), the scaling can be reduced to O(n

logn).
The above refers to how verification of a single proof can be sped up. How-

ever, further performance improvements can be achieved by batching multiple
verifications of multiple proofs together. Combining two “exponentiations” (or
“multiexponentiations”) together involves using a similar trick to that employed
several times in this document, that is to say combining two values by evaluating
a linear polynomial with a random input α, i.e. αx+ y. For more information
see Section 6.2 of Bulletproofs.

7 References
1. Groth 2009 http://www.cs.ucl.ac.uk/staff/J.Groth/MatrixZK.pdf
2. Bootle et al. 2016 https://eprint.iacr.org/2016/263
3. Lindell 2003: https://eprint.iacr.org/2001/107 (updated in 2003 with

the section on Witness Extraction, 3.3)
4. Bootle’s without-maths explanation of the inner product proof

innovation 2016 https://www.benthamsgaze.org/2016/10/25/how-to-do-zero-knowledge-from-discrete-logs-in-under-7kb/
5. Maxwell 2015 https://www.elementsproject.org/elements/confidential-transactions/

investigation.html
6. My deep dive into (original flavour) Confidential Transactions 2015 https:

//github.com/AdamISZ/ConfidentialTransactionsDoc
7. Rosenberg, A more digestible explanation of the core crypto concepts

in Confidential Transactions 2017 http://cryptoservices.github.io/
cryptography/2017/07/21/Sigs.html

8. Wikipedia, “Nothing Up My Sleeve numbers” https://en.wikipedia.
org/wiki/Nothing_up_my_sleeve_number

44

http://www.cs.ucl.ac.uk/staff/J.Groth/MatrixZK.pdf
https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2001/107
https://www.benthamsgaze.org/2016/10/25/how-to-do-zero-knowledge-from-discrete-logs-in-under-7kb/
https://www.elementsproject.org/elements/confidential-transactions/investigation.html
https://www.elementsproject.org/elements/confidential-transactions/investigation.html
https://github.com/AdamISZ/ConfidentialTransactionsDoc
https://github.com/AdamISZ/ConfidentialTransactionsDoc
http://cryptoservices.github.io/cryptography/2017/07/21/Sigs.html
http://cryptoservices.github.io/cryptography/2017/07/21/Sigs.html
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number

9. Wikipedia, “ElGamal encryption scheme” (can be used as a commitment
scheme) https://en.wikipedia.org/wiki/ElGamal_encryption

10. Ruffing and Malavolta 2017 https://eprint.iacr.org/2017/237.pdf
11. Wikipedia, random oracles (and the Random Oracle Model) https://en.

wikipedia.org/wiki/Random_oracle
12. Maxwell and Poelstra 2015 Borromean Ring Signatures https://github.

com/Blockstream/borromean_paper/blob/master/borromean.pdf
13. Poelstra’s implementation of Bulletproofs in libsecp256k1 (WIP) 2018

https://github.com/ElementsProject/secp256k1-zkp/pull/16
14. Green, blog posts on ZKPs 2014++ https://blog.cryptographyengineering.

com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
15. Bünz et al. “Bulletproofs” 2017 https://eprint.iacr.org/2017/1066
16. Wikipedia, the One Time Pad https://en.wikipedia.org/wiki/One-time_

pad
17. Boneh and Shoup (WIP) 2017 https://crypto.stanford.edu/~dabo/

cryptobook/BonehShoup_0_4.pdf . See Chapter 19,20 for the develop-
ment of the ideas behind Zero Knowledge Proofs.

18. Wikipedia, Zero Knowledge Proofs https://en.wikipedia.org/wiki/
Zero-knowledge_proof

19. Wikipedia, the Vandermonde matrix https://en.wikipedia.org/wiki/
Vandermonde_matrix

20. Goldwasser, Micali, Rackoff 1985 https://groups.csail.mit.edu/cis/
pubs/shafi/1985-stoc.pdf

21. Groth, Bayer 2012
http://www.cs.ucl.ac.uk/staff/J.Groth/MinimalShuffle.pdf

22. Wikipedia, the Fiat-Shamir heuristic
https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic

23. Green, blog posts on the Random Oracle Model 2011 https://blog.
cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3/

24. Wikipedia, Arithmetic circuits
https://en.wikipedia.org/wiki/Arithmetic_circuit_complexity

25. Poelstra blog post on Bulletproofs 2018 https://blockstream.com/2018/
02/21/bulletproofs-faster-rangeproofs-and-much-more.html

26. Monero implementation of bulletproofs (WIP) 2018 https://github.
com/moneromooo-monero/bitmonero/tree/bp-multi-aggregation

27. Bünz’s proof of concept implementation of Bulletproofs in Java 2017 https:
//github.com/bbuenz/BulletProofLib

28. Bos, Coster 1990 https://link.springer.com/content/pdf/10.1007/
0-387-34805-0_37.pdf

29. Bernstein et. al. 2012 http://eprint.iacr.org/2012/549.pdf (see
page 15)

45

https://en.wikipedia.org/wiki/ElGamal_encryption
https://eprint.iacr.org/2017/237.pdf
https://en.wikipedia.org/wiki/Random_oracle
https://en.wikipedia.org/wiki/Random_oracle
https://github.com/Blockstream/borromean_paper/blob/master/borromean.pdf
https://github.com/Blockstream/borromean_paper/blob/master/borromean.pdf
https://github.com/ElementsProject/secp256k1-zkp/pull/16
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://eprint.iacr.org/2017/1066
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/One-time_pad
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/Vandermonde_matrix
https://groups.csail.mit.edu/cis/pubs/shafi/1985-stoc.pdf
https://groups.csail.mit.edu/cis/pubs/shafi/1985-stoc.pdf
http://www.cs.ucl.ac.uk/staff/J.Groth/MinimalShuffle.pdf
https://en.wikipedia.org/wiki/Fiat\T1\textendash Shamir_heuristic
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3/
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3/
https://en.wikipedia.org/wiki/Arithmetic_circuit_complexity
https://blockstream.com/2018/02/21/bulletproofs-faster-rangeproofs-and-much-more.html
https://blockstream.com/2018/02/21/bulletproofs-faster-rangeproofs-and-much-more.html
https://github.com/moneromooo-monero/bitmonero/tree/bp-multi-aggregation
https://github.com/moneromooo-monero/bitmonero/tree/bp-multi-aggregation
https://github.com/bbuenz/BulletProofLib
https://github.com/bbuenz/BulletProofLib
https://link.springer.com/content/pdf/10.1007/0-387-34805-0_37.pdf
https://link.springer.com/content/pdf/10.1007/0-387-34805-0_37.pdf
http://eprint.iacr.org/2012/549.pdf

	Introduction
	Audience
	Motivation
	Why is ``proving you know vectors without revealing them'' even useful?
	Caveat Lector
	Notation

	Commitments; homomorphic; Pedersen
	Homomorphism
	Commitment schemes
	A Pedersen commitment in elliptic curve form
	NUMS-ness and binding
	Perfect Hiding and Perfect Binding are incompatible

	The Vector Pedersen Commitment

	A zero knowledge argument of knowledge of a set of vectors
	Completeness: does it validate if the opening is correct?
	Zero knowledge – does the prover reveal anything more?
	Knowledge soundness – does a verifying interaction actually prove knowledge of the vectors?
	Why do we use powers of e? Generalisations about polynomials
	Aside: a philosophical musing about Zero Knowledge Proofs

	An inner product proof
	Aside: the Sigma protocol
	The commitment step for the inner product proof
	The challenge step
	The response step
	Knowledge soundness
	Zero-knowledgeness

	A more compact inner product proof
	Condensing a single vector
	Knowledge soundness of the argument
	Extending to an inner product
	Scaling

	Bulletproofs
	An even more compact inner product proof
	Two vectors in parallel
	Re-introducing the inner product
	Knowledge soundness

	Encoding conditions into an inner product – a range proof
	Steps towards the range proof
	After having built the ``outer'' polynomial t(x)
	Leveraging the compact O(log n) inner product proof
	Aside: Non-interactive proofs
	Scaling
	Knowledge soundness
	Zero-Knowledgeness
	Aggregation

	General arithmetic circuits
	Implementation
	Boosting verification performance

	References

