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Abstract

Cryptocurrencies like Bitcoin balance privacy and transparency goals. In these

systems, all transactions are public by design, allowing nodes in a decentralized

network to validate them. However, this reveals many potentially privacy-sensitive

transaction details of users, whose privacy is only protected by varying degrees

of pseudonymity. Understanding the privacy cryptocurrencies provide in practice

is hence important for users transacting in them as well as law enforcement or

regulatory agencies concerned about their illicit use.

This thesis explores privacy in cryptocurrencies with differing transparency goals.

We find that cryptocurrency privacy is inherently interdependent, as some users’

behavior can negatively affect other users’ privacy. Furthermore, privacy-sensitive

disclosures from a few users can impact the privacy provided by the system at large.

Yet, transparency need not come at the expense of privacy, and we show how it

could be useful to impede illicit activity.

First, analyzing the early use of the privacy-focused cryptocurrency Monero, we

find that some users’ decision to forgo optional privacy protections obfuscating

which coins they spend actively reduced those privacy provisions for others who

opted for increased privacy. Furthermore, the obfuscation mechanisms employed

by the Monero wallet did not match users’ actual behavior well, negatively affecting

the privacy of all transactions.

Next, we turn to address clustering, a blockchain analysis technique essential

to understanding how Bitcoin is used in practice. As Bitcoin users can use many

addresses, increasing their privacy, address clustering aims at revealing all addresses

under a user’s control. However, current techniques haven’t been rigorously

evaluated or optimized. Using ground truth data extracted from the blockchain
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based on users’ privacy-compromising behavior, we build new models to identify

users’ addresses with high accuracy and use them to create enhanced clusterings.

Finally, we consider a system intentionally designed to aid law enforcement goals

of deterring money laundering and other financial crime. Public blacklists of coins

involved in illicit activity can incentivize individual users to reject payments that

can be traced back to listed coins, impeding money laundering attempts. We discuss

how blacklisting would change the Bitcoin ecosystem and provide a theoretical and

empirical evaluation of different tainting policies.
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1
Introduction

A naive look at Bitcoin, the first and to this day most popular cryptocurrency, could

lead to two contrary conclusions about the degree of privacy it provides. On the

one hand, all transactions are publicly visible and stored indefinitely, a degree of

transparency that had so far been unheard of in the financial world. On the other

hand, no personal identifiers are tied to those transactions, leading to initial claims

of Bitcoin being a completely anonymous payment system. These two contradictory

interpretations raise the question of how much financial privacy users actually

enjoy, and how useful the high degree of transparency is for law enforcement

entities investigating illicit activity. In this thesis, we explore the privacy offered by

cryptocurrencies on a spectrum of differing transparency goals. Our analyses of

two different cryptocurrencies, Bitcoin and Monero, reveal systemic interdependent

privacy risks stemming from users’ behavior as well as recurring risks of large-scale

privacy compromise due to the privacy-sensitive disclosures of a small set of users.

Finally, we design a system aiding law enforcement to curb illicit activity through

increased transparency around illegal activity, and explore its implications for the

ecosystem.
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1.1. Motivation

Cryptocurrencies like Bitcoin are payment systems that allow users to conduct

financial transactions without relying on a centralized intermediary. Instead, the

Bitcoin protocol publicly distributes all transactions, enabling an open, decentralized

network of nodes to check their validity. All valid transactions are eventually

recorded in an append-only public database, the blockchain, of which every node

stores a copy. This high level of transparency was not a goal in the design of Bitcoin,

rather, it was necessary to achieve security in the decentralized protocol [46].

Making users’ transactions publicly visible to any outside observer meanwhile

exposes many potentially privacy-sensitive transaction details. Whether this disclo-

sure has actual privacy implications for individual users depends to some degree

on whether their real identity can be linked to their activity on the blockchain. In

a perfectly anonymous system, an observer would be unable to link any particular

transaction to any particular individual or other transaction, and thus the privacy

impact would be low (cf. [129]).

To protect individuals from being trivially linked to their on-chain activity, Bitcoin

uses pseudonymous account identifiers (commonly called addresses). An address is a

unique cryptographic identity that allows users to send and receive funds, while

hiding their real identity. To assess individuals’ privacy risks, we need to consider

the degree of anonymity these pseudonyms can provide.

Every Bitcoin transaction inherently links the sender’s and recipient’s addresses

to each other. When users reuse their addresses across multiple transactions, those

transaction can be linked to the same sender or recipient. For this reason, users are

encouraged to create new pseudonyms for each transaction, but address reuse is

still a common phenomenon [79]. Even if users split their activity among different

address, spending from multiple addresses in the same transaction links them to a
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Table 1.1.: Difference between the concepts of transparency, pseudonymity, anonymity and
privacy.

Definition In Bitcoin

Transparency Degree to which contextual in-
formation is available [47]

All transactions, including val-
ues and pseudonymous ac-
count identifiers, are publicly
available on the blockchain

Pseudonymity Use of a pseudonym as an iden-
tifier [129]

Bitcoin addresses act as
pseudonyms

Anonymity State of being indistinguishable
from other users, not linkable to
items of interest [129]

No true anonymity possible due
to inherent linkability of trans-
actions, and possibility to link
pseudonyms of a user

Privacy An emergent property stemming
from the system design and user
behavior, including users’ expec-
tations and degree of control
user has

Apparent balance between
users’ desired level of privacy
and law enforcement needs to
understand activity

common owner [103, 135, 137]. Crucially, if only a single address in such an address

cluster can be linked to a user’s real identity, their entire financial activity on the

blockchain can potentially be discovered. Such a link can easily be established when

someone uses bitcoins to purchase goods or services (for example, a merchant may

need a shipping address for delivery of physical goods).

The transparency of Bitcoin in itself hence does not constitute the privacy risk, but

it enables linking transactions to people due to Bitcoin’s (imperfect) pseudonymous

nature. Financial privacy in cryptocurrencies thus is an emergent property that

depends not only on the system’s design but also on users’ actions and behavior

and the degree to which it leads to their activity becoming linkable (cf. Table 1.1).

As a result, protecting users privacy can take place on different levels: by making

less data available (which is difficult in cryptocurrencies, as protocols are already

designed with efficiency in mind), protecting sensitive data using cryptographic
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techniques where possible, as well as making interpretation of data harder through

obfuscation.

Recognizing the privacy limitations of Bitcoin, a number of privacy-enhancing

techniques have subsequently been proposed and developed (e.g., [17, 27, 43,

105, 109, 110, 139, 157]). Many of these techniques try to make interpretation of

transactions and subsequent linking harder, but most do not provide provable

privacy guarantees. Instead, they rely on obfuscation [28] to reduce the amount of

useful information an observer is able to extract from the blockchain.

Adoption of privacy-enhancing techniques in Bitcoin has been limited, both for

technical and political reasons [119]. Technically, strong privacy techniques require

the use of heavier cryptographic tools, adding significant performance penalties

that are undesirable for an already performance-constrained system (e.g., [44]). On

the political side, the current degree of transparency has been useful in aiding law

enforcement investigations in the system (e.g., [31]). Law enforcement’s subpoena

power and the use of specialized analysis tools allows them to establish links in

select scenarios while retaining privacy for most users [119]. Increasing the baseline

privacy of the system could instead lead financial regulators to consider stronger

oversight or to impose stricter anti-money laundering regulation, something the

cryptocurrency ecosystem has so far successfully lobbied to avoid (cf. [156]).

Strong privacy-enhancing technologies have instead been deployed in a few

alternative cryptocurrencies, two prime examples of which are Monero [157] and

Zcash [17]. Monero employs a combination of cryptographic techniques to prevent

linking known addresses to on-chain activity, using obfuscation to obscure which

funds a transaction is spending, as well as encrypting transaction amounts. Zcash

hides sensitive transaction information such as payment amounts and relies on zero-

knowledge cryptography to completely hide which funds a transaction is spending.
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Figure 1.1.: This thesis explores a spectrum of different transparency goals in digital currencies.

Importantly, the cryptocurrencies reduce transparency to outside observers but

retain the possibility for users to share such information on a voluntary basis (for

example, for compliance or audit purposes). This increases users’ privacy, but

makes it harder for law enforcement to investigate and prosecute illicit activity.

While Bitcoin seemingly provides a degree of transparency helpful to investigate

major illicit activity, it does not constitute the upper end on the transparency

spectrum. In Ethereum [162], users can create complex programs (so-called smart

contracts) that specify how and when funds can be spent. These are transparently

stored and executed on the blockchain. Another scenario where higher degrees of

built-in transparency may be desired are central bank digital currencies (CBDC).

Over the past years, there’s been increasing interest on the side of central banks

around issuing a digital currency as a new form of central bank issued money [68,

128]. A CBDC could increase efficiency for payments and provide a substitute

for the declining use of cash [128]. Today, China is already actively field-testing a

digital version of the Yuan [9]. Such systems would provide central banks control

over the monetary supply and transaction validation (e.g., [45]) and would likely

be designed with existing financial regulation in mind, such as compliance with

anti-money laundering (AML) regulation [68]. This highlights the potential for the

development of protocols that are more tailored towards regulatory needs.

It is in this broader context that this thesis contributes new insights into the

transparency and privacy provisions of cryptocurrencies and the challenge of

balancing privacy and law enforcement needs. We explore a spectrum of cryp-
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tocurrency designs with varying transparency goals (see Figure 1.1). In Chapter 3,

we investigate the early use of Monero, a cryptocurrency specifically designed to

increase financial privacy [157]. We find striking examples of user behavior that

puts the privacy of other users at risk and evaluate its impact. In Chapter 4, we look

at the current state of address clustering in Bitcoin, a common deanonymization

technique to group addresses under the control of individual users. Enabled by a

novel approach to collect ground truth data, we build new models that can identify

addresses that users create for the purpose of receiving change with high accuracy.

Our results are important for scientific analyses and law enforcement investigations

alike. Finally, recognizing that increased transparency does not necessarily result in

reduced privacy, in Chapter 5 we consider a system specifically designed to aid law

enforcement efforts. By increasing transparency around illicit activity using public

blacklists, regulators can disincentivize financial crime while maintaining Bitcoin’s

current level of financial privacy.

1.2. Takeaways

1.2.1. Cryptocurrency privacy is interdependent

A recurring theme throughout our work is that users’ choices and resulting privacy

are inherently interdependent (cf. [13, 18]). The actions of some users, whether

intentional or accidental, can negatively affect the privacy of other users, even if

those took steps specifically to protect their own privacy. For example, someMonero

users’ decisions to forgo privacy eroded the privacy of users who opted for privacy

protections through an iterative deducibility attack (Chapter 3). And in Bitcoin, a

recipient’s choice of wallet and use of protocol features often allows us to identify

the sender’s change address with high accuracy (Chapter 4).
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This interdependence has important implications for cryptocurrency protocol

designers. By definition, individual users’ ability to protect against interdependent

privacy risks is limited because they depend on the actions of others. Particular care

must thus be taken towards standardizing wallet behavior and choosing defaults,

especially for privacy-sensitive use cases, as users cannot be expected to understand

the implications their choices have on others. And the availability of optional privacy

protections may provide users a false sense of security if their privacy provisions

are rendered less effective by privacy-compromising behavior of others.

1.2.2. Tyranny of the blockchain minority

Not only may the actions of some users directly affect the privacy of others, but

often privacy-sensitive disclosures stemming from a small set of users can affect

the privacy that the system can provide at large. For example, to identify Bitcoin

change addresses in Chapter 4, we build a machine learning model based on known

change outputs from a subset of users that can be applied to the blockchain at

large. This phenomenon has previously been observed in the general context of big

data: the disclosures of a small set of users (for example, regarding their shopping

preferences) can be sufficient to infer privacy-sensitive information about other

users through statistical inference [14].

In cryptocurrencieswithout fullyprovableprivacyguarantees, this calls for caution

with regards to privacy claims for a specific system or use case. Claims made purely

based on protocol design may overestimate privacy, and the validity of these claims

can only be evaluated empirically based on actual user behavior and by taking into

account what information an adversary could already possess from studying other

users. To identify potential new issues and evaluate previously unanticipated uses

cases and behavior, cryptocurrency developers should continually monitor the use
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of their systems and incentivize researchers to perform independent measurement

studies on their own.

1.2.3. Transparency and privacy are not at odds

In Chapter 5 we discuss a system design with a focus on aiding law enforcement

goals through increased transparency. By introducing public blacklists of illicit

coins, regulators can create incentives for users to check coins they receive in a

transaction. Such a system would increase transparency around illicit activity and

can exist completely without changes to the underlying cryptocurrency protocol:

the traceability of transactions and the risk of receiving illicit funds from others are

sufficient to incentivize users to check the blacklists. At the same time, it retains

most existing privacy provisions and remains effective even if certain obfuscation

techniques aimed at thwarting address clustering were deployed.

As cryptocurrencies have matured and gained popularity with the general public

as well as traditional financial institutions, and as regulators are building out their

capacity to investigate financial crime (e.g., [49]), increasing the transparency around

illicit activity could help cryptocurrencies achieve further general acceptance in

the financial sector. Developers and regulators should explore solutions that do

not require extensive financial surveillance (cf. [154]). Blacklisting could be one

such tool to maintain balance in the tug-of-war between financial privacy and law

enforcement needs.

1.3. Overview

We organize this thesis along the spectrum of transparency depicted in Figure 1.1.

Chapter 2 provides the necessary background and we conclude in Chapter 6.
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1.3.1. Chapter 3: Traceability in Monero

Monero is a privacy-preserving cryptocurrency based on the Cryptonote protocol

[157]. It uses cryptographic tools to prevent address clustering and to obfuscate the

coins that are being spent by a user. In our analysis of the early use of the Monero

blockchain in Chapter 3, we found two striking examples of interdependent privacy

that put users at risk.

Monero provides users the possibility to obfuscate the origin of the coins they are

spending by including chaff coins (thereby providing plausible deniability). Initially,

users were given the choice to forgo these privacy protections. This had disastrous

consequences for other users. We show how it enables an iterative deducibility

attack, allowing us to determine the true coins spent in transactions of users who

opted for increased privacy, by ruling out coins that were already provably spent.

This attack revealed a second, severe privacy vulnerability: the age distribution

of coins chosen by the wallet to obfuscate the true spend severely mismatched users’

actual spend time distributions. This allows us to guess the true output spent for

other transactions as the most recent one with high (estimated) accuracy, even for

transactions unaffected by our initial attack. Crucially, learning privacy-relevant

information from only a share of users allows us to generalize to the system at large,

putting all users at risk of deanonymization.

1.3.2. Chapter 4: Address clustering in Bitcoin

While address clustering techniques are a cornerstone of Bitcoin blockchain analysis,

current techniques haven’t been rigorously evaluated or optimized. We use a novel

method to extract ground truth data from the Bitcoin blockchain to evaluate existing

address clustering heuristics. This enables us to build newmodels to identify change

outputs and their associated addresses for subsequent address clustering.
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Change address heuristics are enabled by the fact that wallet and user behavior

will differ based on whether the output is a payment or a spend output returning

surplus funds. Yet another example of interdependent privacy, we can often identify

spend outputs based on other users’ behavior. For example, we can eliminate

outputs that don’t match the senders address type, or those where the spending

transaction’s characteristics differ from the original transaction.

Equippedwith ground truth data based on users’ privacy-compromising behavior

(namely address reuse), we build amachine learningmodel that generalizes fromour

ground truth and allows us to predict the change output in other users’ transactions.

Crucially, this also impacts users who take care to not reuse addresses (and thus

don’t show up in our ground truth). Again, privacy-sensitive disclosures stemming

from a small share of users affects the privacy of the system as a whole.

1.3.3. Chapter 5: Blacklist-based cryptocurrency regulation

Finally, we consider a system intentionally designed to aid law enforcement goals

of deterring money laundering and other financial crime. Currently, knowledge

about transactions facilitating financial crimes is mostly unavailable, residing with

intermediaries and law enforcement agencies only. This creates a risk for normal

users transacting outside of regulated platforms to receive funds they cannot spend.

We consider a system that provides increased transparency around illicit use

through the provisioning of public blacklists. If information about transactions

involved in illicit activity were publicly available, and policies around how to treat

subsequent transactions were standardized, this now quantifiable risk of accepting

illicit coins would incentivize individual users to check public blacklists before

accepting coins from others.
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Amajor challenge in such a system is to design policies around the interdependent

aspects, such as checking blacklists when receiving funds, negotiating transaction

arrangements or how to handle funds traceable to illicit activity. We discuss how

blacklisting would change the Bitcoin ecosystem and provide both a theoretical and

empirical comparison of different taint policies for blacklisting.
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2
Background

Since the launch of Bitcoin in 2009, cryptocurrencies have grown from a niche

interest of cypherpunks and computer scientists [42] into a global phenomenon. As

of October 2021, their total market capitalization exceeds 2 trillion U.S. dollars [39].

There are twenty different cryptocurrencies alone with a market capitalization of

more than USD 10 billion, led by Bitcoin with USD 1.15 trillion (at an exchange

rate of around USD 60 000) and the smart contract-focused Ethereum with USD

440 billion. And over the past nine years, from 2012 to 2021, investors have poured

more than USD 38 billion of venture capital into the ecosystem [90].

At the same time, cryptocurrencies’ pseudonymity and the initial unfamiliarity

on the side of regulators and law enforcement agencies made them attractive for

criminal activity, including their use on darknet markets, for scams or to collect

ransomware payments [37, 84, 125, 146]. The company Chainalysis, which provides

compliance and blockchain monitoring products to governments, law enforcement

and financial intermediaries, reported that in 2019 identified illicit activity accounted

for aroundUSD 21.4 billion, or around 2.1 % of all cryptocurrency transfer value [33].

As a result, cryptocurrencies are increasingly becoming the target of regulators (e.g.,

[63]) and relevant in day-to-day political discussions (e.g., [30]).

In this chapter, we provide relevant background for the remainder of this thesis.
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2.1. Bitcoin

Cryptocurrencies like Bitcoin [118] are decentralized transaction systems that

facilitate payments without relying on a central intermediary for coordination and

security. Instead, they are based on an open, decentralized peer-to-peer network of

nodes that keeps track of a public, append-only data structure called the blockchain.

The blockchain stores transactions that have been validated for correctness and

confirmed by the network. As the network is decentralized, a consensus mechanism

ensures that invalid transactions are rejected and that all nodes (eventually) agree

on a correct state of the chain.

2.1.1. Transactions and addresses

Bitcoin users transact using pseudonymous account identifiers called addresses. A

transaction effectively reassigns a quantity of currency from one set of addresses

to another set of addresses. Addresses work differently from accounts in that the

system does not accumulate bitcoins sent to an address to a total balance, but instead

treats them like separate coins with individual denominations.

Every Bitcoin transaction contains a set of inputs and outputs (see Figure 2.1).

Each transaction output (TXO) assigns value to a specific address. An input refers to

a previously created unspent output (UTXO) that is then spent by the transaction.

A transaction needs to spend all the value provided in the inputs. For this reason,

most transactions have one additional output constituting the change, which is sent

back to an address under the payer’s control.

Technically, an address is a part of a script that specifies how coins can be

redeemed. Each output contains such a script, most of which pose a cryptographic

challenge to the recipient in order to redeem it. If a user receives multiple payments
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Previous
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Figure 2.1.: Schema of a typical Bitcoin transaction with two inputs and two outputs: the spend
output (1) is the intended payment, the change output (2) returns the surplus coins to
the sender. Each input and output is associated with an address. Each input refers
to the output of a previous transaction that they are spending.

to the same address, these will be distinct UTXOs and a separate input is required

to spend each of them.

The most common script used specifies a hash value of a public key (i.e. the

address). To spend the output, the recipient has to provide both a public key

that corresponds to the hash value as well as a digital signature created with the

corresponding private key proving ownership of the key pair. This script type is

commonly called “pay to pubkey hash” (P2PKH).

To provide more flexibility around the scripts that can be encoded in an address, a

second common script type allows to specify the hash value of an entire script. Then,

not only valid signatures but also the full script must be provided by the input. This

“pay to script hash” (P2SH) format is commonly used formultisignature transactions,

where the valid signatures of more than one public key are required to redeem an

output. Another benefit of P2SH is that it allows for backwards-compatible protocol

upgrades, as new script types and formats can be encapsulated and only need to be

supported by the recipient but not the sender.

The link between a transactions’ inputs and the outputs they are spending

creates a directed, acyclic graph, which we call the transaction graph (see Figure 2.1).

Connecting addresses based on the flow of value between them would instead
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Figure 2.2.: Every block includes a pointer to the previous block header, thereby creating an
authenticated chain of blocks. A Merkle tree is computed over all transactions in the
block and the hash of the root node of the tree is included in the block header. This
way, all transactions included in the blockchain are also authenticated.

produce an address graph. Finally, by identifying the addresses under the control

of a single user we can create a user graph describing interactions between them.

2.1.2. Blockchain and consensus

After creating and signing a transaction, a user submits it to the peer-to-peer network

for inclusion in the blockchain. Nodes in the network will verify the correctness of

the transaction (e.g., that the signature is valid and the funds have not already been

spent). Valid transactions then get queued to be included in a block.

Each block contains a Merkle tree computed over all transactions included in

the block (Figure 2.2). The root hash of the Merkle tree gets included in the block

header. Every block that extends the blockchain points to the block header of the

previous block, creating an authenticated data structure.

As Bitcoin is a distributed system, a consensus mechanism is required to ensure

that all users eventually share the same view of what is considered the “correct”

state of the blockchain. Otherwise, a user could attempt to double-spend an output

by creating two conflicting transactions that spend the output in different ways. As

there is no central authority to decide which transaction is valid, the network has to

vote on the correct transaction.
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Bitcoin uses a consensus mechanism known as proof of work (PoW). PoW is

designed to make it costly for an adversary to convince the network that a different

set of transactions is valid than what it had already agreed on. The mechanism

requires validators (so-called miners) to waste computational resources in order to

create a valid block. Finding a valid block is a stochastic process and the amount

of resources needed is adjusted such that on average every ten minutes a new

block is found. In turn, a miner who successfully mines a block is rewarded with

newly minted bitcoins (which they can claim in a special coinbase transaction) if the

network accepts their block. Over time, as the blockchain grows, blocks anchored

deeper in the chain become less likely to get replaced by a competing fork as a large

amount of computational power would be necessary [59].

As space in blocks is limited by the protocol, transactions bid for inclusion by

paying a transaction fee that is awarded to the miner of the block. The transaction

fee is not explicitly recorded in a transaction. Instead, the difference between the

sum of all input amounts minus the sum of all output amounts constitutes the fee.

Users can freely choose transaction fees, trading off lower fees for an increased time

it will take miners to process and include the transaction in a block. This has lead to

the emergence of a dynamic fee market [93, 111].

2.1.3. Protocol and software upgrades

The decentralization of Bitcoin poses unique challenges to upgrade the network

software. Protocol upgrades that involve the consensus rules (which includes,

among other things, the functionality of the script opcodes) require a large share of

the network nodes to adopt the software before new functionality can be activated.

Otherwise, the network would fork into two chains: one supporting the new rules

and one supporting the old ones.
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An important protocol upgrade for Bitcoin was the activation of the “Segregated

Witness” (SegWit) rules in 2017. SegWit essentially allows to store transaction

signatures outside of a block (anchored in the coinbase transaction), thereby

increasing the space available in blocks, allowing for more transactions to be

included. The upgrade also introduced new, backwards-compatible address types

that allow older clients to process payments that contain no signatures in the inputs.

Upgrades of users’ wallet software functionality is generally uncomplicated. Most

major network upgrades to this day have been backwards-compatible, allowing

users to continue using old wallets. And wallets can easily change behavior that is

not relevant for the consensus mechanism, such as deciding how UTXOs are chosen

when making a payment or which protocol features to use.

2.2. Privacy in Bitcoin

Because of Bitcoin’s transparency, users’ transactions are visible to anyone who

downloads a copy of the blockchain. Here, we discuss the privacy risks stemming

from Bitcoin’s protocol design.

2.2.1. Addresses provide pseudonymity

We start by laying out some common terminology around pseudonymity and

anonymity (as put forward by Pfitzmann and Köhntopp [129]). Pseudonymity

refers to the use of a pseudonym as an identifier. The benefit of using a pseudonym

over a personal identifier (such as a name or social security number) is that, at least

initially, it cannot be tied to a particular person.

In Bitcoin, addresses constitute pseudonyms that allow users to receive and send

payments. They protect them from having their financial activity on the blockchain
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immediately linked to their real identity. However, pseudonymity on its own does

not provide anonymity.

Anonymity is a state of indistinguishability, or non-identifiability, within a group

of subjects that form an anonymity set. A critical implication of this definition

is that a subject cannot achieve anonymity on their own. Only when they are

indistinguishable from at least one other subject we can consider them anonymous.

Anonymity breaks down if an item of interest, such as a transaction, can be linked

to a particular subject [129]. In Bitcoin, linkability occurs in a variety of ways.

2.2.2. Traceability: Transactions link recipients and senders

Coins in Bitcoin have value because they are verifiably linkable, back to the transac-

tion in which they were originally mined. Every transaction input needs to specify

the origin of funds it spends, which it does in the form of a pointer to a previous

transaction output. This links senders and recipients and prevents any true form of

unlinkability. In the cryptocurrency community, this specific form of linkability is

often referred to as traceability.

Traceability in Bitcoin is a double-edged sword. While the ability to look

backwards at previous transactions can have privacy implications, it has arguably

contributed to Bitcoin’s widespread acceptance, including with regulators and law

enforcement. Blockchain intelligence services utilize this transparency to identify

funds originating from illicit sources, such as the wallet of a darkweb market or

an entity sanctioned by the Office of Foreign Asset Control (OFAC) (e.g., [31]).

Such services are widely used by intermediaries in the ecosystem and are an

important component of their anti-money laundering (AML) compliance programs.

In Chapter 5, we explore new ways for regulators to expand upon the usefulness of

traceability to prevent illicit activity.
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2.2.3. Address reuse and clustering

Address clustering techniques are a cornerstone of blockchain analysis. The goal of

clustering is to identify addresses under the ownership of an individual by exploiting

characteristics of the transaction graph as well as common wallet behavior.

The most common clustering technique is the multi-input heuristic [103, 135, 137].

When a transaction combines inputs from different addresses, these are likely under

the control of a single user. For example, a user may receive small amounts of

bitcoins at different addresses and then combine those in a transaction to transfer a

larger amount of bitcoins than they received with any single address. The multi-

input heuristic is relatively straightforward to apply, moderately effective in practice

[79] and widely used. An important caveat is that the heuristic is vulnerable to false

positives from techniques like CoinJoin and PayJoin transactions that intentionally

break it by combining inputs from different users (e.g., [51, 99, 102, 110]).

The multi-input heuristic is especially effective if users reuse addresses. If for

every payment they receive they used a fresh address, then the multi-input heuristic

will only group the addresses found in inputs of a single transaction. If addresses are

reused, and coins fromone address are spent in different transactions, the transitivity

of the heuristic clusters addresses from multiple transactions. Unfortunately,

managing this risk can be challenging for users. While they can give out different

addresses in different contexts, they cannot prevent multiple payments being made

to the same address. In fact, an adversary could actively try to induce a user’s wallet

to link transactions in this way by making small payments to an address (a so-called

“dusting” attack), hoping the wallet will use them jointly with other funds.

A second class of heuristics aims to identify the change output in a transaction,

which is under the control of the userwho created the transactions (and thus controls

the addresses of the inputs). By clustering the change address, we essentially rely
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on Bitcoin’s traceability to expand the cluster to the subsequent transaction and

all addresses spent in its inputs. Change address clustering was pioneered by

Meiklejohn et al. [103], who exploited a specific behavior of the wallet of the Bitcoin

reference implementation to generate fresh addresses for change. Since then, there’s

been little progress on change address clustering, primarily due to a lack of ground

truth data. In Chapter 4, we address this limitation and explore new models to

detect and cluster change addresses.

2.2.4. External linkage of identity to cluster

The final privacy risk for Bitcoin users comes from the possibility to link their

real-world identity to an address or a cluster of addresses on the blockchain, thereby

revealing their financial activity. Crucially, if only a single address of a user can be

linked to them it could break the pseudonymity of all their transactions.

Linking address clusters to a person in this way may be possible whenever a user

interacts with an intermediary that requires personally identifying information,

such as a mailing address for physical goods or an email address to send a receipt.

Furthermore, users may leak their identity when using Bitcoin addresses in online

forums or other public venues. Conversely, intermediaries can be identified by

interacting with them (e.g., [103]) and there even exist websites
1
solely dedicated to

providing such information.

2.2.5. Countermeasures

As a remedy for the limited privacy Bitcoin provides, privacy-conscious users can

employ obfuscation techniques to protect their financial privacy [119]. Obfuscation

introduces uncertainty and makes it harder for an analyst to identify users and

1walletexplorer.com
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Figure 2.3.: State of privacy preserving techniques for cryptocurrencies in 2017

their transactions, but the techniques often do not come with quantifiable privacy

guarantees.

Obfuscation techniques in Bitcoin generally fall into one of two categories. Am-

biguating obfuscation increases uncertainty around on-chain activity. For example,

to make it harder to detect change addresses users can randomize the index of the

change output, create fresh addresses, or even create multiple outputs to obscure the

transaction further. Cooperative obfuscation, on the other hand, tries to establish an

anonymity set through cooperation of multiple users. For example, mixing services

allow users to combine their funds, potentially breaking the link between incoming

and outgoing payment [112].

When we surveyed the landscape of obfuscation techniques in 2017, few of the

available or proposed techniques were used in Bitcoin, and most of them provided

only limited privacy benefits (see Figure 2.3). To this day, strong privacy techniques

remain available only in alternative, privacy-focused cryptocurrency. Monero is one

such example.

21



InputPrevious
Output

Previous
Output

Previous
Output

Figure 2.4.: Inputs in Monero reference not a single output but a set of outputs. One of the outputs
is the true output being spent, the others provide plausible deniability.

2.3. Monero

Monero is a privacy-focused cryptocurrency based on the CryptoNote protocol [157].

Its design is conceptually similar to that of Bitcoin, but makes use of three crypto-

graphic techniques to increase users’ privacy: stealth addresses, ring signatures,

and confidential transactions.

2.3.1. Stealth Addresses

Stealth addresses [43] prevent an observer from recognizing that multiple payments

on the blockchain were made to the same address. Based on the Diffie-Hellman key

exchange over elliptic curves, the general idea behind stealth addresses is that every

time a payment is made to a stealth address the sender derives a unique public key

from the stealth address. They include their own (temporary) public key in the

output. Because the recipient doesn’t know the unique address the sender derived,

they need to scan all outputs on the blockchain and try to access the funds in them

by recomputing the shared secret.

2.3.2. Ring signatures

Monero uses ring signatures to hide the true output being spent by an input within

a set of candidate outputs [122]. A ring signature is a digital signature computed

non-interactively over a set of public keys with only one of the private keys used to
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create the signature [136]. As it is not feasible to determine to which of the public

keys the private key used corresponds to, they provide the signer with a degree of

anonymity.

In Monero, an input can refer not only to the single output it redeems, but instead

to a set of outputs that includes the actual output being spent (cf. Figure 2.4). The

input contains a ring signature that proves the transaction is authorized to spend

one of the outputs, but it does not reveal the exact output being spent.

With ring signatures it generally becomes impossible to tell whether an output

has actually been spent (our deducibility attack in Chapter 3 highlights an important

exception). To prevent double-spending of outputs, every input also contains a key

image that is deterministically derived from the corresponding private key. Nodes

need tomaintain a database of revealed key images and check the key image in every

input against it, rejecting inputs with key images that have been seen before. This

also highlights the necessity of using the aforementioned one-time address scheme.

If address reuse was possible as in Bitcoin, coins would become unspendable as

only one output sent to an address can ever be spent due to the same key image.

2.3.3. Confidential transactions

Starting with version 0.10.0, in September 2016, Monero added support for confiden-

tial transactions (RingCT) [122]. RingCT introduced a new transaction format that

hides the denomination of the outputs. Before, the Monero client split output values

into specific denominations in order to create sufficiently large anonymity sets.

With RingCT, output values are no longer visible and thus all outputs of RingCT

transactions constitute an anonymity set. This furthermore prevents correlation

attacks (e.g., [71]), where an adversary would be able to identify a transaction made

by a user by knowing that they transferred a specific amount of Monero.
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2.4. BlockSci

A significant challenge in analysing the privacy of cryptocurrencies like Bitcoin

comes from the large amount of data on the blockchain. As of June 2021, the Bitcoin

blockchain contains a total of 653 million transactions, or 350 GB of on-disk data.

Normal Bitcoin wallets are designed for efficient verification of transactions, but

they are not particularly useful to analyze the entire blockchain.

Throughout Chapters 4 to 5 we use the open-source blockchain analysis tool

BlockSci [87] that allows for fast analyses of the Bitcoin blockchain. While working

on this thesis, we extensively contributed to the development of BlockSci, maintained

the code base and built additional tools for testing and quality assurance of its

parser and analysis library. For example, we built a testing framework that allows

to create small, synthetic blockchains with customized transaction graphs that can

be used to test the functionality of any general-purpose blockchain analysis tools

[108]. To facilitate the analyses in this thesis, we use BlockSci version 0.7 with some

additional enhancements that are not found in the public version.

2.4.1. Data format and parser

BlockSci supports blockchains with a transaction graph layout and protocol features

similar to Bitcoin (i.e. UTXO-based cryptocurrencies where each input references

one output). It stores transaction data in a concise, hybrid format optimized for

sequential iterations of the transaction graph:

• The core transaction graph data is stored in a row-based format: inputs

and outputs are stored inline with the transaction data, making sequential

iterations over the graph extremely fast. This core transaction graph is always

loaded into memory.
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• Other data, such as additional protocol features or scripts, are stored in a

hybrid format and loaded into memory on-demand.

• Indexes, for identifiers such as transaction hashes or addresses, are stored in a

RocksDB database.

The BlockSci importer reads block files created by the Bitcoin reference imple-

mentation (Bitcoin Core), which stores the blockchain data in raw network format

on disk. The parser transforms this data into the BlockSci format and serializes it

to disk, enabling memory-mapping for fast analyses and parallelizable access. For

our analyses, we modified the parser to record the SegWit serialization format of a

transaction in a separate data file that is loaded on-demand.

2.4.2. Address deduplication

BlockSci deduplicates address data across similar high-level address types. For

example, a public key could be used in a raw “pay to pubkey” output, in a P2PKH

output, in the SegWit variant P2WPKH, and in a list of keys of a multisignature

output script. Since the underlying public key is always the same, it only needs to be

stored once. Similar deduplication takes place for P2SH outputs (for the traditional

format and the SegWit format). When a P2SH output wraps a normal public key,

the P2SH address in BlockSci contains a pointer to the underlying public key.

This degree of deduplication is particularly useful in the context of address

clustering: a company might switch to using a new address format (such as from a

normal P2PKH to the SegWit variant P2WPKH) reusing an existing key pair. In

BlockSci, these two addresses are revealed as referring to the same underlying key

and will thus automatically appear in the same cluster.

The duplication creates a small inconvenience when counting addresses, such

as when we refer to the size of the cluster. A low-level address may correspond
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to multiple, different address types on the blockchain. For easier comparability,

whenever we report cluster sizes we count the number of addresses that were used

on-chain with their high-level address type on the blockchain.

2.4.3. Analysis interface

BlockSci provides two interfaces: a C++ interface that provides low-level access

to the underlying BlockSci data, and a fluent Python interface that allows to write

fast queries in a Jupyer notebook environment. For our analyses, we implemented

performance-critical operations (e.g., tracing theflowof coins through the transaction

graph or detecting change outputs) in the C++ interface and then extend the Python

interface to provide convenience methods to access this functionality.

2.4.4. Clustering

BlockSci has a built-in clustering module that performs multi-input clustering, and

optionally change address clustering, on all addresses on the blockchain in the

order that they appear in transactions. It also, in a first step, clusters the wrapping

address and the wrapped address of all scripthash addresses. The clusterer relies

on a union-find implementation that operates on consecutive indexes. As BlockSci

addresses are stored as a combination of an index and an address type (such as

pubkey or scripthash), a pre- and post-processing step is necessary to convert from

and to the native format.

To enable the analyses in Chapter 4, wemake several modifications to the clusterer:

• To be able to enhance an existing clustering at a later point, we store the

intermediate output of the union-find algorithm before it is converted back

into BlockSci’s native address format.
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• To iterate over transactions in a cluster, BlockSci would first need to look up

individual addresses and then retrieve their transactions. To speed up our

analyses of the resulting clusterings, we extract every cluster’s transactions

after creating a clustering and store this mapping alongside the cluster data,

speeding up subsequent analyses.

• We implement a new function to enhance an existing clustering by clustering

change outputs. In contrast to the existing functionality to cluster change

outputs, we do not provide an individual heuristic to apply but instead an

externally computed set of change outputs.
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3
An Empirical Analysis of Traceability

in the Monero Blockchain

3.1. Introduction

Monero is a leading privacy-centric cryptocurrency based on the Cryptonote

protocol. As of November 2017 it was one of the most popular cryptocurrencies at

a market capitalization of USD 1.5B. While Bitcoin, the first and currently largest

cryptocurrency, explicitly identifies which coin in the transaction graph is being

spent, Cryptonote allows users to obscure the transaction graph by including chaff

transaction inputs called “mixins” (this is visualized in Figure 3.1).

As a result, Monero has attracted the attention of users requiring privacy guar-

antees superior to those Bitcoin provides. Some of the most publicized uses are

illicit (for instance, the former online anonymous marketplace AlphaBay accepted

Monero as a payment instrument), but we estimate that illicit use accounts for at

most 25 % of all transactions. For all uses it can be imperative that the advertised

privacy guarantees are maintained. Consider an attacker whose goal is to determine

whether Alice made a sensitive payment to a merchant. The attacker might have

access to Alice’s records at a cryptocurrency exchange (e.g., through hacks or

collusion), and/or to the records of the merchant. In this scenario, the payment
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(a) Bitcoin

(b) Cryptonote

(c) Zcash

Figure 3.1.: Transactions and tracing in Bitcoin and Cryptonote. Consider a new transaction (the
star) which spends an available coin (the second circle from the right). In Bitcoin (a),
each transaction input explicitly identifies the coin being spent, thus forming a linkage
graph. In the Cryptonote protocol (b), each transaction input identifies a set of coins,
including the real coin along with several chaff coins called “mixins.” However, many
mixins can ruled out by deduction (Section 3.3); furthermore, the real input is usually
the “newest” one (Section 3.4).
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(b) Age distribution among all
ruled-out mixins from blocks
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of real inputs (recovered
from deducible transactions,
among blocks 0.9M-1.2M)

Figure 3.2.: Age distributions of Monero mixins. In each graph, the Y-axis is the number of TXOs,
and the X-axis represents the time difference between input and referenced output in
days. The left graph (a) shows the distribution of all transaction inputs from blocks
0.9M to 1.2M where at least 1000 possible TXOs are available to choose from. Graph
(b) shows the age distribution among mixins that can be ruled out. Graph (c) shows
that real TXOs (based on deducible transactions, see Section 3.3) typically conform
to a highly-skewed distribution. The disparity between these distributions makes it
possible to guess the real input with an estimated 80 % accuracy.
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Table 3.1.: Traceability of Monero transaction inputs with 1+ mixins (up to block 1288774, ex-
cluding RingCT inputs). Deducible inputs can be traced with complete certainty to
the transaction output they spend (see Section 3.3). Among deducible transaction
inputs, the real input is usually the “newest” one (see Section 3.4). Entries marked
[Est.] are estimated by extrapolating from deducible transaction inputs, under the
assumption that the spend-time distribution of deducible transactions is representative
of the distribution overall.

Not deducible Deducible Total

Real input is not newest 14.82% [Est.] 302 078 (4.83%) 19.65% [Est.]
Real input is newest 22.24% [Est.] 3 635 253 (58.11%) 80.35% [Est.]

Total 2 318 273 (37.06%) 3 937 331 (62.94%) 6 255 604 (100%)

system must prevent the attacker from confirming that money flowed from Alice to

the merchant.

In this chapter we conduct an empirical analysis of the Monero blockchain dataset.

In particular, we evaluate the impact of two weaknesses in Monero’s mixin sampling

strategy, which substantially undermine its privacy guarantees. Even though neither

of these weaknesses is entirely new, having been discussed by developers since as

early as 2015, we find that users who made privacy-sensitive transactions prior to

February 2017 are at significant risk of post hoc deanonymization. We estimate that

more than 200 000 transactions from July 2016 to February 2017 may be affected.

Weakness 1. Most Monero transaction inputs prior to February 2017 contain

deducible mixins, and can be traced to prior transactions via analysis. The

Monero software allows users to configure the default number of mixins to include

in each transaction. Most Monero transaction inputs (64.04 % of all transaction

inputs) do not contain anymixins at all (“0-mixin transactions”), but instead explicitly

identify the prior transaction output (TXO) they spend, much like ordinary Bitcoin

transactions.
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0-mixin transactions not only provide no privacy to the users that created them,

but also present a privacy hazard if other users include the provably-spent outputs

as mixins in other transactions. When the Monero client chooses mixins, it does not

take into account whether the potential mixins have already been spent. We find

that among Monero transaction inputs with one or more mixins, 63 % of these are

deducible, i.e. we can irrefutably identify the prior TXO that they spend.

Weakness 2. Mixins are sampled from a distribution that does not resemble real

spending behavior, and thus the real inputs can usually be identified. When

the Monero client spends a coin, it samples mixins to include by choosing randomly

from a triangular distribution over the ordered set of available TXOs with the same

denomination as the coin being spent. However, when users spend coins, the coins

they spend are not chosen randomly from the blockchain, but instead appear (based

on our empirical observations) as though drawn from a highly skewed distribution.

In Figure 3.2 we show data from the Monero blockchain that confirms these

assumptions. Figure 3.2(c) shows the real age of inputs in a representative subset

of Monero transactions for which the real input is known (i.e., among deducible

transaction inputs as described above). Figure 3.2(b) shows the age distribution

of mixins for which we know that they are not real inputs. When looking at the

overall distribution of all inputs, shown in Figure 3.2(a), the overall distribution

can clearly be seen as a mixture of these two distributions. Among transactions for

which we have ground truth (i.e., the deducible transaction shown in (c)), we find

that the real input is usually the “newest” input, 92.33 % of the time; based on simulation

(Section 3.4), we estimate this holds for 80% of all transactions. Our results are

summarized in Table 3.1.
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Monero usage. We turn to the ecosystem and analyze the behavior of interme-

diaries to better understand the transactions affected by these weaknesses. While

the early days of Monero were dominated by mining activity, starting in 2016 we

see substantial growth in transaction volume. After accounting for the estimated

impact of mining pools, which opt-out of privacy by publishing their transactions

on webpages, there remain a substantial number of potentially privacy-sensitive

transactions, more than a thousand per day. We estimate that many of these transac-

tions (about 25 % of daily transactions at its peak) relate to the former underground

marketplace AlphaBay, which positioned Monero as a more secure alternative to

Bitcoin. The seizure of AlphaBay in July 2017 serves as a reminder of the fragility

of these marketplaces, whether due to lawful actions, hacks, or exit scams [146],

leaving users remain at risk of deanonymization. In Section 3.7 we discuss our

results in the context of three high-profile criminal uses of Monero. Of course,

Monero and other privacy-preserving technologies have legitimate uses as well,

such as providing privacy for activists and supporting free speech within oppressive

regimes.

In all of these, we consider an analyst model who has access to not just public

blockchain data, but also records from exchanges and merchants, obtained through

seizure or subpoena.

Threat model. Alice purchases a quantity ofMonero currency (XMR) on a popular

cryptocurrency exchange, such as Kraken or Poloniex, and withdraws it to a Monero

wallet on her home computer, as recommended by Monero best practices guides [4].

Over time, she uses it for a number of innocuous activities such as online shopping

and sending money to friends. In other words, she transacts with several parties

using Monero under her real identity (the exchange because it is mandatory, the

shopping site so as to have goods shipped to her, and so on). Later, Alice uses her
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wallet pseudonymously for a sensitive payment, one where she expects privacy.

The attacker’s goal is to link the pseudonymous account to a real name.

We consider a powerful attacker who is able to obtain two sets of logs (whether

through hacks, seizures, or collusion). The first set of logs is of withdrawal

transactions from the exchange (or another transaction where Alice used her real

identity). The second set of logs is of deposits at the merchant where Alice made

her sensitive payment. Due to the use of one-time addresses in Monero, the

withdrawal transaction is the only piece of information on address ownership the

attacker possesses. They cannot further infer common ownership of addresses

(a deanonymization attack possible in many other cryptocurrencies [103, 135]).

Furthermore, the attacker does not possess Alice’s private keys and cannot break

any cryptographic primitives.

The success of the attack depends on the attacker’s ability to link the withdrawal

transaction to one of the deposits at the merchant by deducing the real spend among

Monero’s chaff inputs, thereby confirming Alice as the originator of the payment.

We note that in addition to our attack, an attacker who is able to use side channels

such as additional timing information (e.g., a time zone) can further reduce the

effective anonymity set provided by the mixins.

Proposed countermeasures. We propose an improved mixin sampling strategy

that can mitigate these weaknesses for future transactions. Our solution is based

on sampling mixins according to a model derived from the blockchain data. We

provide evidence that the “spend-time” distribution of real transaction inputs is

robust (i.e., changes little over time and across different software versions), and can

be well approximated with a simple two-parameter model. We extend the improved

sampling with a sampling procedure which samples mixins in “bins.” We show
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this binned sampling ensures privacy even in spite of a compromised sampling

distribution.

Lessons. Ourworkhighlights the special difficulties of designingprivacy-preserving

blockchain systems. As noted by Goldfeder et al. [71], cryptocurrency privacy com-

bines the challenges of both anonymous communication and data anonymization.

The data are necessarily public forever and vulnerabilities discovered at any point

can be exploited to compromise privacy retroactively, as exemplified by the de-

ducible Monero transactions from mid 2016. Privacy is also weakened by the fact

that choices made by some users may affect other users detrimentally, such as the

mining pools’ practice of publishing payout transactions.

Concurrent and related work onMonero traceability. Two reports fromMonero

Research Labs (MRL-0001 [123] and MRL-0004 [96]) have previously discussed

concerns about Weakness 1, known as the “chain-reaction” attack. However, MRL-

0001 considered only an active attacker that must own coins used in previous

transactions. Our results show this vulnerability is not hypothetical and does

not require an active attack, but in fact leads to the traceability of most existing

transactions to prior to February 2017. MRL-0004 [96] discussed a passive attack

scenario and provided a simulation analysis predicting that the mandatory 2-mixin

minimum (implemented in version 0.9) would “allow the system to recover from a

passive attack quite quickly.” Our results (Figure 3.5) show that indeed the fraction

of deducible inputs indeed drops steadily after instituting the 2-mixin minimum

(from 95 % in March 2016 down to 20 % in January 2017), though a significant

fraction remain vulnerable.

Concurrently and inpendently of our work, Kumar et al. [92] also evaluated

the deducibility attack in Monero. Our work differs from (and goes beyond)
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their analysis in four main ways. First, we account for correlation between the

deducibility attack and temporal analysis in our simulation results (Section 3.4.3).

Though deducibility has been addressed in current versions, temporal analysis

remains independently effective. Second, our analysis of the Monero ecosystem

(Section 3.5) refutes a possible objection that our analysis only applies to irrelevant

transactions that do not need privacy (such asmining pool payouts). Third, while we

propose a similar countermeasure to temporal analysis, we evaluate ours through

simulation. Finally, our binned mixins countermeasure is novel and defends against

a strong adversary with prior information.

3.2. Background

Cryptonote: Non-interactive mixing with ring signatures. The Cryptonote pro-

tocol [157] introduces a technique for users to obscure their transaction graph,

in principle preventing transaction traceability. Instead of explicitly identifying

the TXO being spent, a Cryptonote transaction input identifies a set of possible

TXOs, including both the real TXO along with several chaff TXOs, called mixins (as

illustrated in Figure 3.1). Instead of an ordinary digital signature, each Cryptonote

transaction comes with a ring signature (a form of zero-knowledge proof) that is

valid for one of the indicated TXOs, but that does not reveal any information about

which one is real. To prevent double-spending, every input must provide a key

image that is unique to the output being spent, and the network must check whether

this key image has ever been revealed before.

Several cryptocurrencies are based on the Cryptonote protocol, including Monero,

Boolberry, Dashcoin, Bytecoin, and more. We focus our empirical analysis on

Monero, since it is the largest and most popular as of mid 2017, e.g. it has the 12th

largest market cap of all cryptocurrencies, over $750M. However, our results are
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also applicable to other Cryptonote-based protocols (as we show for Bytecoin in

Appendix A.2).

Choosingmixin values in Cryptonote. The Cryptonote protocol does not provide

an explicit recommendation on how the “mixins” should be chosen. However, the

original Cryptonote reference implementation included a “uniform” selection policy,

which has been adopted (at least initially) by most implementations, including

Monero. Since all the TXOs referenced in a transaction input must have the same

denomination (i.e., a 0.01 XMR input can only refer to an 0.01 XMR output), the

client software maintains a database of available TXOs, indexed by denomination.

Mixins are sampled from this ordered list of available TXOs, disregarding any

temporal information except for their relative order in the blockchain.

In principle, it is up to an individual user to decide on a policy for how to choose

the mixins that are included in a transaction. Since it is not a “consensus rule,”

meaning that miners do not validate that any particular distribution is used, clients

can individually tune their policies while using the same blockchain. The Monero

command-line interface allows users to specify the number of mixins, with a default

of 4 as of September 2017.

Over the past several years, Monero’s mixin selection policy has undergone

several changes; we describe the important ones below. A summary of the timeline

relevant to our data analysis is shown in Figure 3.3.

Prior to version 0.9.0 (January 1, 2016): In the initial Monero implementation,

mixins were selected uniformly from the set of all prior TXOs having the same

denomination as the coin being spent. As a consequence, earlier outputs were

chosen more often than newer ones.

After version 0.9.0 (January 1, 2016): Version 0.9.0 introduced a new policy for

selecting mixins based on a triangular distribution, favoring newer coins as mixins
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Figure 3.3.: Data considered in our experiment.

over older ones. This change was motivated by the belief that newer inputs are more

likely to be the real input [54]. This version also introduced a mandatory minimum

number of 2 mixins per transaction input, as recommended byMRL-0001 [123]. This

mandatory minimum was enforced after a “hard fork” flag day, which occurred on

March 23, 2016.

After version 0.10.0 (September 19, 2016): Version 0.10.0 introduced a new

RingCT feature [122], which allows users to conceal the denomination of their coins,

avoiding the need to partition the available coins into different denominations and

preventing value-based inference attacks. RingCT transactions were not considered

valid until after a hard fork on January 10, 2017.

The RingCT feature does not directly address the traceability concern. But as

RingCT transactions can only include other RingCT transaction outputs as mixins,

and since it was deployed after the 2-mixin minimum took effect (in version 0.9.0),

there are no 0-mixin RingCT inputs to cause a hazard.

After version 0.10.1 (December 13, 2016): Version 0.10.1 included a change to

the mixin selection policy: now, some mixins are chosen from among the “recent”

TXOs (i.e., those created within the last 5 days, called the “recent zone”). Roughly,

the policy is to ensure 25 % of the inputs in a transaction are sampled from the

recent zone.
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After version 0.11.0 (September 07, 2017): Version 0.11.0 increased the minimum

number of mixins per transaction input to 4, which was enforced after a hard

fork on September 15, 2017. This version also incorporates temporal analysis

countermeasures (increasing the number of mixins chosen from the recent zone,

and narrowing the recent zone from 5 days to 3 days) based on recommendations

from an early draft of our paper.

Transaction notation. We briefly introduce some notation for describing trans-

action graphs. For a transaction tx, tx.8= denotes the vector of tx’s transaction

inputs, and tx.>DC denotes the vector of tx’s transaction outputs. We use sub-

scripts to indicate the elements of input/output vectors, e.g. tx.8=1 denotes the

first input of tx. Each Cryptonote transaction input contains a reference to one or

more prior transaction outputs. We use array notation to denote the individual

references of an input. We use a dashed arrow,d, to denote this relationship, e.g.

tx�.>DC8 d tx�.8= 9[<]means that the <’th reference of the 9’th input of transaction

tx� is a reference to the 8’th output of tx�. Although a Cryptonote transaction input

may contain more than one reference, only one input is the real reference (known

only to the sender), indicated by a solid arrow. Thus tx� → tx� indicates that tx�

contains an output that is spent by one of the inputs in tx�.

Transactions included in the blockchain are processed in sequential order; we use

tx� < tx� to indicate that tx� occurs before tx�. Other properties of a transaction

are defined as functions, and introduced as needed. For example, time(tx) refers to

the timestamp of the block in which tx is committed.
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tx�.>DC tx� .8=

tx� .8=

Figure 3.4.: 0-mixins effectively reduce the untraceability of other transactions: the dashed refer-
ence can be ruled out since tx�.>DC must have been spent in tx� .8=.

3.3. Deducible Monero Transactions

A significant number of Monero transactions do not contain any mixins at all, but

instead explicitly identify the real TXO being spent. Critically, at the beginning of

Monero’s history, users were allowed to create zero-mixin transactions that do not

contain any mixins at all. Figure 3.5 shows the fraction of transactions containing

zero-mixin inputs over time. As of April 15, 2017 (at block height 1 288 774), a total

of 12 158 814 transaction inputs do not contain any mixins, accounting for 64.04 %

of all inputs overall.

One might think at first that 0-mixin transactions are benign. Transactions

with fewer mixins are smaller, and hence cost less in fees; they thus represent

an economical choice for an individual who does not explicitly desire privacy

for a particular transaction. However, it turns out that the presence of 0-mixin

transactions is a hazard that reduces the untraceability of other transactions, even

those that include one or more mixins. For example, as shown in Figure 3.4,

suppose a transaction output tx�.>DC8 is spent by a 0-mixin transaction input

tx�.8=8 (i.e. tx�.>DC8 d tx�.8= 9 where |tx�.8= 9 | = 1, from which we can conclude

tx�.>DC8 → tx�.8= 9). Now, suppose tx�.>DC8 is also included as a mixin in a second

transaction with one mixin, tx�.>DC8 d tx� .8=:[<], where |tx� .8=: | = 2. Since we

know that the given output was actually spent in tx�, we can deduce it is not spent

by tx� (i.e., tx�.>DC8 9 tx�), and hence the remaining input of tx� .8= 9 is the real

one.
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Table 3.2.: Monero transaction inputs where the real input can be deduced (1+ mixins, ≥ 1000

TXOs available, excluding RingCT).

Before 2-mixin hardfork After 2-mixin hardfork After 0.10.1, prior to Apr 15, 2017

Total Deducible (%) Total Deducible (%) Total Deducible (%)

1 mixins 683 458 608 087 (88.97) 0 – – 0 – –
2 mixins 250 520 206 276 (82.34) 1 882 681 1 209 259 (64.23) 732 251 308 926 (42.19)
3 mixins 634 520 480 500 (75.73) 564 525 376 920 (66.77) 126 795 65 738 (51.85)
4 mixins 217 493 156 767 (72.08) 376 432 192 348 (51.10) 145 687 33 022 (22.67)
5 mixins 87 077 43 214 (49.63) 48 806 26 599 (54.50) 3900 950 (24.36)
6 mixins 115 199 65 546 (56.90) 224 202 119 716 (53.40) 24 817 7890 (31.79)
7 mixins 3671 1680 (45.76) 4499 1770 (39.34) 1711 235 (13.73)
8 mixins 2216 1067 (48.15) 5048 1968 (38.99) 1458 249 (17.08)
9 mixins 1811 838 (46.27) 3264 1069 (32.75) 264 48 (18.18)

10+ mixins 57 363 11 997 (20.91) 46 791 12 970 (27.72) 9145 1682 (18.39)

Total 2 053 328 1 575 972 (76.75) 3 156 248 1 942 619 (61.55) 1 046 028 418 740 (40.03)

Overall (62.94)
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Notice that in this example, it does not matter if the real spend tx� that renders it

deducible occurs after the 1-mixin transaction tx� , i.e., if tx� < tx�. Thus at the

time tx� is created, it is impossible to knowwhether a future transaction will render

that mixin useless. However, the problem has been exacerbated by the behavior of

the Monero client software, which does not keep track of whether a potential mixin

had already been clearly spent, and naïvely includes degenerate mixins anyway.

3.3.1. Implementation

We extracted relevant information from the Monero blockchain, up to block 1288774

(April 15, 2017) and stored it in a Neo4j graph database (11.5 GB of data in total).

We then apply the insight above to build an iterative algorithm, where in each

iteration we mark all of the mixin references that cannot be the real spend since we

have already deduced that the corresponding output has been spent in a different

transaction. With each iteration, we further deduce the real inputs among additional

transaction input sets. (An alternative formulation – as a SAT problem – is presented

in Appendix A.1.)

3.3.2. Results on deducible transactions

Table 3.2 shows the results from applying the approach described above to Monero

blockchain data. As it turns out, approximately 63 % of Monero transaction inputs

(with 1+ mixins) so far can be traced in this way.

In Figure 3.6, we show how the vulnerability of Monero transactions to deduction

analysis varieswith the number ofmixins chosen, and in Figure 3.5we showhow this

has evolved over time. We see that transactions with more mixins are significantly

less likely to be deducible, as one would hope. Even among transactions with the

same number of mixins, transactions made with later versions of the software are
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less vulnerable. This is because at later dates, especially after the network started

to enforce a minimum of 2 mixins, the 0-mixin transaction outputs accounted for

a smaller number of the available mixins to choose from. However, the share of

transactions with at least one deducible input (enough for an attacker to link an

account to a user) stays above 80 % even after the 2-mixins minimum. Surprisingly,

we found over 100 000 transaction inputs with 10 or more mixins, presumably

indicating a high level of desired privacy, that are vulnerable under this analysis.

Applicability to current and future transactions using RingCT. The weakness

studied in this section is primarily a concern for transactions made in the past,

as transactions using the new RingCT transaction option are generally immune.

RingCT has been available to users since January 2017, and at the time of writing

has already been widely deployed. RingCT transactions are now used by default for

the vast majority of new transactions. The reason why these new transactions are

immune is not because of the RingCT mechanism itself, but rather because RingCT

was only deployed after the mandatory 2-mixin minimum was enforced. Therefore,

RingCT transaction outputs cannot be spent by 0-mixin inputs.

Applicability to other Cryptonote cryptocurrencies. As the deducibility attack

originates from the mixing sampling procedure inherent to the Cryptonote pro-

tocol, other cryptocurrencies based on Cryptonote share the same weaknesses.

Appendix A.2 contains results of an analysis of Bytecoin, an early implementation

of the Cryptonote protocol. We deduce the real input for 29 % of transaction inputs

with 1 or more mixins. While this rate is smaller than in Monero, we conjecture it to

be a result of lower usage of Bytecoin.
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Figure 3.6.: Transaction inputs are less likely to be deducible if they have more mixins and if they
are found among later blocks in the Monero blockchain.

3.4. Tracing With Temporal Analysis

In the previous section, we showed that a majority ofMonero transactions inputs can

be traced with certainty through logical deduction. In this section, we investigate an

entirely unrelated complementary weakness which traces inputs probabilistically.

3.4.1. Effective-Untraceability

To quantify the untraceability of a transaction input when some referenced outputs

are more likely to be the real spend we first define the effective-untraceability set

size or the “effective-untraceability.”

Anonymity set size is a standard privacy metric which typically assumes each

element in the anonymity set is equiprobable. This is not the case in Monero

as the temporal analysis attacks we will demonstrate show that some referenced

outputs are more likely than others to be the real spend. Following the approach

of [50, 143] we use entropy to account for these differing probabilities. We measure

guessing entropy rather than Shannon entropy [144] because it is intuitive to
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our setting, an attacker trying to guess the real spend, and is easily relatable to

effective-untraceability.

First defined in [98], guessing entropy is commonly used as ameasure of password

strength [26]. In the context of untraceability guessing entropy is the expected

number of guesses before guessing the spent output. A transaction input’s guessing

entropy is

Ge =

∑
0≤8≤"

8 · ?8

where ? = ?0, ?1, . . . , ?" are probabilities, sorted highest to lowest, that a referenced

output is the real spend of a transaction input.

We define the effective-untraceability, i.e. effective-anonymity set size, of a

transaction input as (1 + 2 · Ge). If all referenced outputs of a transaction input are

equally likely to be the real spend, the effective-untraceability for that input is" + 1.

3.4.2. The Guess-Newest heuristic

Among all the prior outputs referenced by a Monero transaction input, the real one

is usually the newest one.

Figure 3.2(c) shows the spend-time distribution for deducible transaction inputs

(i.e., zero-mixin inputs and inputs for which the real TXO can be deduced using

the technique from Section 3.3). As can be seen, this distribution is highly right-

skewed; in general users spend coins soon after receiving them (e.g., a user might

withdraw a coin from an exchange, and then spend it an hour later). In contrast, the

distribution from which (most) mixins are sampled (either a uniform distribution or

a triangular distribution, for the most part) includes much older coins with much

greater probability.

44



Table 3.3.: Percentage of deducible transaction inputs where the real input is the “newest” input.

Before 2-mixin hardfork After 2-mixin hardfork After 0.10.1, prior to Apr 14, 2017

Deducible Newest (%) Deducible Newest (%) Deducible Newest (%)

1 mixins 608 087 585 424 (96.27) 0 – – 0 – –
2 mixins 206 276 191 372 (92.77) 1 209 259 1 126 924 (93.19) 308 926 293 051 (94.86)
3 mixins 480 500 461 154 (95.97) 376 920 353 246 (93.72) 65 738 59 693 (90.80)
4 mixins 156 767 139 626 (89.07) 192 348 149 722 (77.84) 33 022 18 889 (57.20)
5 mixins 43 214 39 854 (92.22) 26 599 24 971 (93.88) 950 473 (49.79)
6 mixins 65 546 51 816 (79.05) 119 716 102 378 (85.52) 7890 6458 (81.85)
7 mixins 1680 1522 (90.60) 1770 989 (55.88) 235 115 (48.94)
8 mixins 1067 964 (90.35) 1968 1310 (66.57) 249 163 (65.46)
9 mixins 838 692 (82.58) 1069 355 (33.21) 48 40 (83.33)

10+ mixins 11 997 10 822 (90.21) 12 970 11 750 (90.59) 1682 1480 (87.99)

Total 1 575 972 1 483 246 (94.12) 1 942 619 1 771 645 (91.20) 418 740 380 362 (90.83)

Overall (92.33)

Cross-validation with deducible transactions. In order to quantify the effect of

these mismatched distributions, we examine the rank order of the transactions with

1 or more mixins for which we have ground truth (i.e. the deducible transactions

from Section 3.3). Table 3.3 shows the percentages of deducible transaction inputs

for which the real (deduced) reference is also the “newest” reference. It turns out

that overall, 92 % of the deducible inputs could also be guessed correctly this way.

For 1 ≤ " ≤ 10 such transaction inputs have an effective-untraceability of no more

than 1.16–1.80.

We note that transactions with more mixins are only slightly less vulnerable to

this analysis: even among transaction inputs with 4 mixins (the required minimum

since September 2017) the Guess-Newest heuristic still applies to 81 % of these

transactions.

Validation with ground truth. We also verify the heuristic using our own ground

truth, which we obtain by periodically creating transactions using the default wallet

in Monero 0.10.3.1. We set up wallets for three scenarios and send transactions from

one wallet to another. The time gap between two transactions follows an exponential
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distribution, with the rate parameter set such that the means of the distributions

correspond to 30 minutes, 4 hours, and 1 day.

We evaluate whether guessing the most-recently created input identifies the true

input. At a 95 %-confidence level, we get success probabilities of 0.95 ± 0.02 for the

30-minute interval (= = 120), 0.90 ± 0.03 for 4 hours (= = 84), and 0.42 ± 0.14 for 24

hours (= = 12).

3.4.3. Monte Carlo simulation

The Guess-Newest heuristic and the deducibility attack (Section 3.3) are not entirely

independent. The transactions that are deducible tend to be those that include old

mixins, which thus also makes them more likely susceptible to Guess-Newest. As

a consequence, cross-validation of the heuristic using only deducible transactions

overstates the effectiveness of temporal analysis.

To control for this correlation, we also employ an alternative validation strategy

based on aMonteCarlo simulation. In each trial, we simulate a transaction, where the

real input is sampled from the dataset of deducible transactions, but the mixins are

chosenusing the sampling algorithms in theMonero software. Two factorsdetermine

which mixins are available to choose from: the denomination of the real input, and

the blockchain data at the time the transaction is created. To simplify the simulation,

we fix the block height at 1 236 196 (Jan 31, 2017). We consider the dataset of

deducible and 0-mixin transactions as records of the form (spendtime, denomination),

where the spend time is the block timestamp difference between when a transaction

output is created andwhen it is spent, i.e. spendtime(tx�.8= 9) = time(tx�)−time(tx�),

where tx� → tx�. We sample uniformly from these records to choose the real

input. Next we apply the mixin sampling strategy using the available transaction

outputs matching the chosen denomination. We note that our sampling procedures
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Figure 3.7.: Estimated vulnerability to the Guess-Newest heuristic for varying sampling policies
in Monero, based on Monte Carlo simulations (100k trials each).

are simplified models, and in particular elide the handling of edge cases such as

avoiding “locked” coins that have been recently mined.

In Figure 3.7 we show the results of simulating transactions using the sampling

rules from the three main Monero versions (pre 0.9, 0.9, and 0.10.1), as applied

to the blockchain at height 1 236 196 (Jan 31, 2017). For versions 0.9.0 and prior,

even up to 4 mixins, our simulation suggests that the newest input can be guessed

correctly 75 % of the time. Across all versions, including more mixins does reduce

the effectiveness of this heuristic, although the benefit of each additional mixin is

significantly less than the ideal.

Each subsequent update to Monero’s mixin sampling procedure has improved the

resistance of transactions to theGuess-Newest heuristic. We note that fromdeveloper

discussions [55] it appears that this concern has indeed been the motivation for

such changes. In particular, the triangular distribution was adopted in place of

the uniform distribution in Monero version 0.9 specifically because it chooses new

mixins with higher probability than “old” mixins, and version 0.10.1 explicitly

introduces a policy that often includes additional “recent” (within 5 days) mixins.
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However, we believe the magnitude of the problem has been underestimated. Under

the current default behavior, i.e. 4 mixins, and using the 0.10.1 sampling procedure,

we estimate that the correct input reference can be guessed with 45 % probability

(rather than the 20 % ideal if all input references were equally likely).

Excluding all of the deducible inputs, the average number of mixins among the

remaining inputs is 3.53. We therefore estimate that as a lower bound, based on

the “0.10.1” line in Figure 3.7, that at least 60 % of the remaining inputs are correctly

traced using Guess-Newest. Extrapolating from this figure, we estimate that in total

the Guess-Newest heuristic correctly identifies 80 % of all Monero inputs (Table 3.1).

3.5. Characterizing Monero Usage

In the previous section, we showed that a significant number of Monero transactions

are vulnerable to tracing analysis. However, not all transactions are equally sensitive

to privacy. We consider typical or normal transactions in Monero to be privacy-

sensitive. On the other hand, public transactions, for which privacy is not a major

concern to their participants, and where details of the transaction may even be

publicly disclosed, form a special case. We next quantify these different usage

types for Monero transactions, to assess potential impact of our attacks on privacy-

conscious users.

3.5.1. Quantifying mining activity

An integral part of a cryptocurrency is mining, which refers to the process of

bundling transactions in blocks and minting new currency. Whenever a block is

created, the “miner” of that block receives a monetary reward, described by a special

“coinbase” transaction. With an initial block interval of 1 minute until March 20,
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Figure 3.8.: Fraction of blocks created by mining pools for which payment transactions are made
public and have been collected.

2016, and a block interval of 2 minutes thereafter, it is conceivable that – at least in

the early days – a significant share of daily transactions relate to mining.

Miners often combine their efforts by joining mining pools to reduce the variance

of their payouts. Usually, the pool owner receives the full block reward and

then distributes the reward according to each miner’s contribution. To provide

transparency and accountability, many pools publicly announce the blocks they

find as well as the payout transactions in which they distribute the rewards. This,

however, reveals sensitive information about the relation between payout and

coinbase transactions. If an input in a pool’s payout transaction spends from a

coinbase transaction of a block known to belong to the same pool, it is likely the

real spend. This deducibility may even weaken the privacy of other transactions,

similar to a 0-mixin input. Transactions related to mining activity should thus be

considered public.

To account for public transactions related to mining, we crawled the websites of

18 Monero mining pools and extracted information about 73 667 pool payouts. We

also collected information about 210 800 non-orphaned blocks that had been won
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by these pools. We analyzed the coverage of this mining activity by computing the

fraction of all blocks in the network that had been produced by pools in our dataset

over a moving window of 20 000 blocks. Figure 3.8 shows the results of this analysis.

Our data accounts for roughly 30 % of the Monero mining power in late 2014.

In early 2015, according to an archive of Monerohash.com [107] retrieved via The

Wayback Machine [147], over 70 % of the mining power belonged to a combination

of the Dwarf [52] and MinerGate [106] mining pools, neither of which reveals

payment transactions, and of unknown mining sources. This centralization of hash

power continued until April of 2016 at which point Dwarf and MinerGate were still

significant (about 35 %), but there was no longer significant unaccounted for mining

power.

Besides the 73 667 transactions for which we have ground truth, we can estimate

the number of unlabeled transactions in the network that are used for mining

payments. To minimize transaction fees, most pools will pay their miners only a few

times per day, batching together payments to many miners into a few transactions

with up to hundreds of outputs. Most pools do offer an option for immediate payout

upon request, but charge a significant fee for doing so. Additionally, pools will

allow users to be paid to an exchange service instead of to their own wallet. Thus,

determining precisely the number of mining transactions is challenging.

Working under the assumption that the distribution of payments from the pools

we observed tracks that of the pools that we were not able to observe, namely that

the distribution of transactions is driven primarily by the needs and demands of the

miners, we can estimate the volume of total mining-related transactions.

To do so, we compute the ratio between the total number of transactions observed

and the total number of blocks mined by pools in our dataset. We estimate that in
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Figure 3.9.: Comparison of the volume of estimated non-mining transactions to the overall trans-
action volume.

addition to the coinbase transaction, approximately 0.438 transactions related to

mining payments are created for each new block in Monero.

Figure 3.9 plots the number of overall transactions per day against the number

of estimated normal transactions. Non-mining use was generally low during 2015

and until mid-2016, with at most a few hundred transactions per day. Transaction

volume increases after mid-2016, rising over 2000 per day in 2017, which cannot be

accounted for by mining-related activity. There is also strong correlation between

the number of normal transactions and the Monero exchange rate. This suggests

that changes in the ecosystem might be responsible for the additional transactions.

We next explore a potential source for these unaccounted for normal transactions.

3.5.2. Usage on online anonymous marketplaces: the AlphaBay

case

Online anonymous marketplaces have traditionally used Bitcoin for monetary

transactions [37], which makes them potentially vulnerable to transaction graph

analysis [103]. Because Monero advertises stronger anonymity properties than
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Figure 3.10.: Estimated AlphaBay sales volume since inception

Bitcoin, a couple of online anonymous marketplaces (Oasis, AlphaBay) have started

supporting it [74]. AlphaBay, in particular, started its operations in December 2014

and featured tens of thousands of pages until it was shut down by an international

law enforcement operation in July 2017, making it one of the longest-lived (and

possibly largest) marketplaces to that date.

On August 22, 2016, AlphaBay announced that it would support Monero, and

allowed vendors to list items accepting Monero. On September 1, 2016, buyers were

then able to use Monero to purchase items on AlphaBay. Inspecting the number of

daily transactions in Figure 3.9 reveals a strong correlation between these events

and the overall transaction volume. On August 22, the day of the announcement,

52



the number of transactions in the Monero blockchain increased by more than 80 %

compared to the previous day, and it peaked at 4444 transactions on September 3,

two days after Monero payments were made available on AlphaBay.

By default, an item listed on AlphaBay only accepts Bitcoin as a payment mecha-

nism. Vendors have to explicitly allow Monero for it to be considered—and can also

disable Bitcoin in the process. There are thus three types of items: items that only

accept Monero, items that only accept Bitcoin, and items that accept both.

We obtained AlphaBay crawl data from Soska and Christin [146], and multiplied

item feedback instances by item prices, to estimate sales volumes. We plot our results

in Figure 3.10. Figure 3.10(a) shows the volume in US dollars, accounting for daily

changes in Monero exchange rate. Each vertical dashed line corresponds to a scrape

of the website. The top curve corresponds to the total daily volume of transactions,

averaged over 7-day intervals. While sales volume remained fairly modest until

mid-2015, it has steadily climbed to reach approximately USD 600 000 a day in

2017, which is more than the combined volume of the major online anonymous

marketplaces in 2013–2015 [146].
1
Of those transactions, we are able to identify that

a vast majority (in white) only accept Bitcoin. Starting in September 2016, a modest,

but increasing number of items started accepting Monero along Bitcoin. The total

amount of sales for these items, represented in orange, gives an upper bound for the

dollar amount ofMonero transactions on AlphaBay—as of early 2017, approximately

USD 60 000/day (or 10 % of all AlphaBay transactions in volume). To get a lower

bound on the amount of Monero transactions, we also look at items that only

accept Monero, but these remain negligible (totaling between 0 and USD 100/day

in transactions). In short, up to USD 60 000/day of transactions on the AlphaBay

marketplace used Monero.

1
Anecdotal evidence suggests that AlphaBay reached more than $800 000/day shortly after the end

of the measurement interval presented in this paper.
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Figure 3.10(b) plots the number of transactions over time (averaged, again, over

7-day rolling windows). We see that, as of early 2017, up to 1000 transactions per

day on AlphaBay might be relying on Monero. Comparing with Figure 3.9, we

estimate that at most (approximately) a quarter of all Monero transactions could

be accounted for by deposits at AlphaBay. Among the remaining 75 % of Monero

transactions that we estimate are non-mining, we cannot conclude how many are

privacy sensitive. Good candidates for the sources of these transactions include,

gambling, exchanges, and traditional direct user to user payments.

3.6. Countermeasures

We now propose two countermeasures to improve Monero’s resistance to temporal

analysis. The first is to improve the mixin-sampling procedure to better match the

real spend-time of Monero users. The second takes a more pessimist view and aims

to preserve some untraceability even in the face of a highly compromised mixin

sampling distribution.

3.6.1. Fitted mixin sampling distribution

In this section we discuss a way to improve the sampling procedure. At a high level,

the idea is to estimate the actual spend-time distribution, and then sample mixins

according to this distribution.

Estimating the spend-time distribution In Figure 3.11, we show the CDFs of

the spend-time distributions from the Monero blockchain as well as the Bitcoin

blockchain. For Monero, we split the data by 0-mixin transaction inputs as well as

the 1+ mixin inputs for which we can deduce the real input. From this graph, we

make the following qualitative observations:
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Figure 3.11.: CDFs of spend-time distributions in Bitcoin and in Monero (deducible transaction
inputs), over multiple time intervals. A gamma distribution (red line) is fitted to the
combined Monero data (shape=19.28, rate=1.61).

• Observation 1: The spend-time distribution appears invariant with respect to

time.

• Observation 2: The spend-time distribution appears the same for 0-mixin as

well as 1+ mixin transactions.

• Observation 3: While the Bitcoin spend-time distribution appears to have

a somewhat similar shape, the distributions are quite different (i.e., the

Kolmogorov-Smirnov distance is approximately 0.3).

Based on these observations, we set about fitting a parametric model to the com-

bined Monero data. We heuristically determined that the spend time distributions,

plotted on a log scale, closely match a gamma distribution. We used R’s fitdistr

function to fit a gamma distribution to the combined Monero data from deducible

transaction inputs (in log seconds). The resulting best-fit distribution has shape

parameter 19.28, and rate parameter 1.61. By inspection (Figure 3.11), this appears

to accurately fit the overall Monero spend-time distribution.
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Sampling mixins using the spend-time distribution. To make use of the spend-

time distribution described above, we need a way of sampling transaction output

indices that matches the ideal spend-time distribution as closely as possible. Our

proposed method is to first sample a target timestamp directly from the distribution,

and then find the nearest block containing at least one RingCT output. From this

block, we sample uniformly among the transaction outputs in that block. This

procedure is defined Algorithm 1.

To quantify the effectiveness of our new sampling scheme, we turn again to

the Monte Carlo simulation described in Section 3.4.3. Figure 3.12 shows the

effective untraceability set under several regimes, including the RingCT protocol as

of 0.10.1 (the version prior to the initial preprint release of our paper), our proposed

mixing sampling routine method (Ppd), and version 0.11.0 (which incorporates a

countermeasure based on our preprint). Our proposed countermeasure performs

very close to the ideal. At the default setting of 4 mixins, our method nearly doubles

the effective untraceability set versus 0.10.1 (approximately ≈ 4, 80 % of the ideal,

instead of approximately ≈ 2); for large numbers of mixins, our improvement is

nearly four times better. As the simulation is based on the same dataset to which we

fit a parametric distribution, this is best understood as a goodness-of-fit test. Under

this analysis, we also find that the countermeasure employed in 0.11.0 performs

nearly as well as our proposed countermeasure at the default setting, though the

gap increases with the ring size.

In the conference version of this paper, we evaluated our countermeasure using

the results of several simulations based on an extrapolation that the transaction rate

of Monero would remain constant. At the time of the experiment, March 2017, there

were an average of 8.29 RingCT transaction outputs per block. We performed this

extrapolation because unlike the deducibility weakness, which improves over time
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Algorithm 1. Our proposed mixin sampling scheme.
SampleMixins(RealOut, NumMixins)
MixinVector := [];
while |MixinVector| < BaseReqMixCount do

C ← Exp(GammaSample(shape=19.28, rate=1.61));
if C > CurrentTime then

continue;
Let � be the block containing at least one RingCT output, with timestamp closest to
CurrentTime-C;
8 ← uniformly sampled output among the RingCT outputs in � if 8 ∉ MixinVector and
8 ≠ RealOut.idx then

MixinVector.append(8);

return sorted(MixinVector + [RealOut.idx]);

(see Figure 3.6), the problem of sampling from the wrong temporal distribution

becomes worse over time, since the set of “old” mixins to choose from grows larger

and larger. Our simulations with extrapolated data performed similarly to our

experiments with data from March 2018, although the effective untraceability set at

this point is slightly better than projected.

3.6.2. Binned mixin sampling

Here we introduce a countermeasure called binned mixin sampling which modifies

the current mixin sampling procedure. It is designed to maintain a minimum

level of untraceability even in face of compromised mixin sampling distributions or

deduction attacks. Binned mixin sampling improves on the current single mixin

sampling, which offers no guarantee that temporal analysis will not completely

trace a transaction input by reducing effective-untraceability to ≈ 1.

Compromisedmixin sampling distributions. Binnedmixin sampling is designed

tohedge against amixin samplingdistributionwhichpoorlymatches expected spend-

time behavior. This is important because even if the mixin sampling distribution
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Figure 3.12.: Projection of the Guess-Newest vulnerability, and the improvement due to our
proposed scheme.

matches the overall spend-time distribution, the spend-time behavior of some

groups may differ greatly. This difference, if known, could be leveraged to perform

temporal analysis.

Recall our threat model (Section 3.1) where a forensic attacker Eve has withdrawal

records of exchanges as well as deposit records at a merchant site (e.g., AlphaBay).

Her goal is to trace Alice’s withdrawal to a deposit at AlphaBay by confirming

that it was used as an input of a deposit transaction. Unlike attacks discussed

so far, Eve has additional information about Alice, Eve knows Alice’s timezone,

i.e. roughly the time of day when Alice receives and sends payments. Eve uses

this information to determine the likelihood that each referenced output is the

real spend, e.g., Ge = (?0 = 0.80, ?1 = 0.17, ?2 = 0.02, ?3 = 0.01) = 0.24 results in

Alice’s output having an effective-untraceability of 2 × (0.24) + 1 = 1.48 (defined in

Section 3.4.1). However, using binned mixin sampling the same number of mixins

would ensure an effective-untraceability ≥ 2.0.
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Binned mixin sampling. As shown in Figure 3.13 our strategy is to group outputs

in the Monero blockchain into sets of some fixed size, called bins, such that each

output in a bin is confirmed in the same block or a neighboring block. This ensures

each output in a bin has roughly the same age. Any transaction input referencing a

transaction output in a bin, either as a mixin or spend, must also reference all other

outputs in that bin. Thus, a real spend cannot be distinguished by age from the other

mixin outputs in the bin. Additionally, binned mixin sampling ensures that all the

outputs in a bin cannot be deduced as spent until the last unspent output in the bin

is spent, preventing deduction attacks from reducing the effective-untraceability of

an output to less than the bin size. Algorithm 2 specifies our binned mixin sampling

procedure.

The simplest way to assign outputs to bins would be to group outputs according

to their position within a block; however a malicious miner could, at no cost, choose

which outputs are assigned to which bins harming untraceability. Instead we shuffle

the assignment of outputs to bins using the block header of the block containing

those outputs. Thus, prior to mining a block, a miner cannot know which outputs

in that block will be assigned to which bin. To ensure that a spendable output will

always be assigned to a bin, any set of outputs that have been confirmed by ten

blocks and are not members of a complete bin are merged into the last complete bin.

Due to the privacy risks of using coinbase outputs as mixins, our bin assignment

scheme could be trivially modified to prevent non-coinbase outputs from being

binned with coinbase outputs.

Choosing the parameters for binned mixin sampling. If only one bin is refer-

enced, an active attacker could trace a newly created output by broadcasting many

attacker controlled outputs. The attack is successful if the targeted output shares a

bin with only attacker outputs. Since the number of bins referenced is one when the
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Figure 3.13.: Binned mixin sampling, an input spends an output (red dotted line) and references
outputs in two bins.

targeted output is spent, the spending transaction input can only use mixin outputs

from that one bin. Thus all the mixin outputs used by the targeted output will be

attacker controlled. To prevent such attacks we require that the number of bins

referenced be two or greater.

Another benefit of a larger number of bins is that it provides a larger potential

range of referenced output ages, thus obfuscating the exact confirmation time of

the spent output. Since we must reference at least two bins and we do not wish

to require an onerous number of mixins, we consider bin sizes of four or less; the

number of mixins required is (number of bins × bin size − 1), thus a bin size of five

would require all users to use at least nine mixins. Monero as of the Sept. 15, 2017

hard fork requires at least four mixins.

As this countermeasure is designed to resist worst case attacks we introduce a

measure of effective-untraceability, called min-untraceability, bounding untrace-

ability under worst case mixin sampling. By worst case assumptions we mean that

we choose inputs that reference outputs with ages that maximize the difference

between the spend-time distribution and the mixin sampling distribution, thus

minimizing the effective-untraceability (our definition of effective-untraceability is

given in Section 3.4.1). Put another way, min-untraceability is the minimum possible

effective untraceability given a spend-time and mixin sampling distribution. To
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Table 3.4.: Min-untraceability for different bin sizes and mixins. Mixins is the total number of
mixins referenced and bin size is the number of outputs per bin. � is the maximum
percent error

Min-untraceability

Bin size � = 0% 25% 50% 75% 100%

5 mixins 1 6.00 5.43 4.33 2.43 1.00
5 mixins 2 6.00 5.18 4.00 2.67 2.00
5 mixins 3 6.00 5.16 4.20 3.35 3.00
7 mixins 1 8.00 7.38 6.09 3.43 1.00
7 mixins 2 8.00 7.02 5.43 3.26 2.00
7 mixins 4 8.00 6.88 5.60 4.47 4.00
8 mixins 1 9.00 8.36 7.00 4.00 1.00
8 mixins 3 9.00 7.76 6.00 4.00 3.00

represent the degree to which the mixin sampling distribution fails to successfully

model the spend-time distribution we parameterize our analysis by the maximum

percent error, �.

We now provide a formal definition of the maximum percent error � as used

by min-untraceability. Denote the spend-time distribution as DS(G) and the mixin

sampling distribution as DM(G)where G is the the age of an output. Let G<0G and

G<8= be output ages which maximize and minimize the ratios

r<0G = max

∀G

(
DS(G)
DM(G)

)
, r<8= = min

∀G

(
DS(G)
DM(G)

)
.

The difference between A<0G and A<8= represents the point of greatest error between

the spend-time distribution and the mixin sampling distribution. The maximum

percent error � is the error between the spend-time distribution and the mixin

sampling distribution defined as

r<8= = (1 − �), r<0G =
1

1 − � .
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Algorithm 2. Binned mixin sampling procedure.
SampleBins(RealOut, NumMixins, BinSize)
NumBins← (NumMixins + 1)/BinSize;
RealBin← MapOutToBin(RealOut);
MixinVector← Copy(RealBin);
while |MixinVector| < (NumMixins + 1) do

TxOut← SampleSingleMixin(RealOut, 1);
if TxOut ∉ MixinVector then

Bin← MapOutToBin(TxOut);
MixinVector.appendAll(Bin);

return sorted(MixinVector);

Thus, if � = 0 %, a temporal analysis attack can never distinguish between the

spend-time and mixin sampling distributions, if � = 100 % a temporal analysis

attack can always distinguish the distributions.

In Table 3.4 we compute the min-untraceability for different bin sizes and maxi-

mum percent errors using min-untraceability. As shown, increasing the bin size

trades offmin-untraceability when themaximum percent error is small for increased

untraceability when the maximum percent error is large. We argue that a bin size of

two is ideal as itmaximizesmin-untraceability under a smallmaximumpercent error

compared to a bin size of three or four, yet still provides an effective-untraceability

of 2 against worst-case temporal analysis attacks (attacks which under single mixin

sampling would completely trace transactions).

3.7. Discussion and Recommendations

We have identified two weaknesses in Monero’s mixin selection policy, and shown

that they pose a significant risk of traceability – especially for early Monero trans-

actions. Next, we discuss how these weaknesses can support investigations into

present criminal activity, and also offer suggestions for improving Monero’s privacy.
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3.7.1. Criminal uses of Monero

In 2017 there have been three widely publicized instances of criminal activity

involving Monero transactions. Our techniques show that Monero is not necessarily

a dead end for investigators.

AlphaBay: the most prolific darknet market since the Silk Road (operating

between December 2014 and July 2017) began accepting Monero deposits in July

2016, partially leading to the large rise in transaction volume. In July 2017, US law

enforcement raided an AlphaBay server and seized 12 000 Monero (worth around

$500 000) [153]. Assuming the AlphaBay server kept logs generated by the default

Monero client, the seized logs could include Monero transactions associated with

user withdrawals and deposits, including those prior to 2017.

Shadow Brokers: From June 2017 onward, the “Shadow Brokers” offered to

accept Monero payments for subscription access to zero-day vulnerabilities and

exploit tools. They (mistakenly?) advised their hopeful subscribers to publish

their email addresses (hexencoded, but publicly visible) in the Monero blockchain,

leading to these transactions being identified [161].

WannaCry: Ransomware operators received Bitcoin ransomware payments, to a

common address. To launder the Bitcoin ransoms, the operators began exchanging

them for Monero using the Swiss exchange service ShapeShift. The Swiss exchange

subsequently announced their cooperation with US law enforcement, and began

blacklisting Bitcoin ransoms. However, $36 922 have already been exchanged for

Monero [66].

In each of these scenarios, an analyst’s goal is to link the criminally-associated

transactions to other information, such as accounts at exchanges, which can further

their investigation. The analyst starts off having identified several Monero TXOs

that belonged to a criminal suspect, and might next ask cooperating exchanges for
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information about the relatively small number of related transactions referencing

that TXO.

A seller at AlphaBay that received a payment directly into an exchange account

could clearly be linked this way. Users following a Monero best practice guide,

including “How To Use Monero and Not Get Caught” [4], would have known

to avoid this by first passing their coins through a wallet on their own computer;

however, for transactionsmade inmid 2016 to early 2017, theymight still be traceable

through the “deduction” technique.

In the WannaCry and Shadow Brokers scenarios, since the relevant transaction

occurred post-RingCT, deduction is most likely ineffective. However, analysts could

still use the temporal analysis and Guess-Newest heuristic to narrow their search at

exchanges or to accumulate probabilistic evidence.

3.7.2. Recommendations

We make the following three recommendations to the Monero community so that

privacy can be improved for legitimate uses in the future.

The mixing sampling distribution should be modified to closer match the real

distribution. Wehaveprovidedevidence that the strategybywhichMoneromixins

are sampled results in a different time distribution than real spends, significantly

undermining the untraceability mechanism. To correct this problem, the mixins

should ideally be sampled in such a way that the resulting time distributions match.

A report from Monero Research Labs cited the difficulty of frequently tuning

parameters based on data collection (especially since the data collection mechanism

itself becomes a potential target for an attacker hoping to alter the parameters) [96].

Fortunately, we provide preliminary evidence that the distribution of “spend-times”
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changes very little over time. Hencewe recommend a sampling procedure based on a

model of spending times derived from blockchain data, as discussed in Section 3.6.1.

Avoid including publicly deanonymized transaction outputs as mixins. We

have empirically shown the harmful effect of publicly deanonymized (i.e. 0-mixin)

transactions on the privacy of other users. Since non-privacy-conscious users

may make 0-mixin transactions to reduce fees, Monero had instituted a 2-mixin

minimum, and recently increased this to 4. However, even 4+mixin transactions

may be publicly deanonymized; in particular, as discussed in Section 3.5.1, mining

pools have a legitimate interest in forgoing anonymity by publicly announcing

their blocks and transactions for the sake of accountability. Thus, we propose that

Monero develop a convention for flagging such transactions as “public,” so that

other users do not include them as mixins.

Monero users should be warned that their prior transactions are likely vulner-

able to tracing analysis. A significant fraction (91 %) of non-RingCT Monero

transactions with one or more mixins are deducible (i.e., contain at least one de-

ducible mixin), and therefore can be conclusively traced. Furthermore, we estimate

that among all transaction inputs so far, the Guess-Newest heuristic can be used to

identify the correct mixin with 80 % accuracy. Even after accounting for publicly

deanonymized transactions such as pool payouts, we find that at least a few hundred

transactions per day in mid 2016 and more than a thousand transactions per day

from September 2016 through January 2017 would be vulnerable. Furthermore, we

estimate that at most a quarter of these can be attributed to illicit marketplaces like

AlphaBay. These users might have incorrectly assumed that Monero provided much

higher privacy, especially for transactions taking place in late 2016. Because many

transactions on AlphaBay are criminal offenses, with statutes of limitations that will
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not expire for many years (if ever), these users remain at risk of deanonymization.

We stress that illicit businesses tend to be early adopters of new technology, but

there exist many legitimate reasons to use privacy-centric cryptocurrencies (e.g., a

journalist protecting her sources). While such scenarios are less visible, their users

face the same risk of deanonymization.

Towards fulfilling this recommendation, we released an initial draft of this

paper to the Monero community. We believe it has been in the best interest

of Monero users that we offered this warning as soon as possible, even before

countermeasures have been deployed. One reason for our decision is that the data

from the Monero blockchain is public and widely replicated, and thus delaying the

release would not mitigate post-hoc analysis, which can be carried out at any future

time. Second, countermeasures in future versions of the Monero client will not

affect the vulnerability of transactions occurring between the time of our publication

and the deployment of such future versions.

Complementing this paper, we launched a block explorer
2
, which displays the

linkages between transactions inferred using our techniques. We recommend

additionally developing a wallet tool that users can run locally to determine whether

their previous transactions are vulnerable.

3.7.3. Subsequent impact

In Monero v0.13.0, released in October of 2018, the developers implemented an

improved sampling procedure in the wallet based on the observed spend-time

distribution. They also fixed the number of mixins to 10 in order to prevent users

from selecting uncommon ring sizes, which could aid in tracing transactions.

2https://monerolink.com
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Following our work, there was a variety of further research into the privacy

provisions of Monero. Hinteregger and Haslhofer [82] analyse the privacy risk

stemming from Monero forks: as every input needs to reveal a unique key image,

spending the same output on different chains can reveal the true spend simply

by taking the intersection of the referenced outputs. For inputs deduced in this

way, they report that the effectiveness of the Guess-Newest heuristic has dropped,

however, coins cashed out on forks might be skewed towards those held for a

longer time. Yu et al. [164] provide a statistical analysis of the deducibility attacks

using closed sets. More recently, Monero has also strengthened its defenses against

network-level attacks based on the work by Fanti et al. [60].
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4
Resurrecting Address Clustering in

Bitcoin

4.1. Introduction

Motivation. Blockchain analysis techniques are essential for understanding how

cryptocurrencies like Bitcoin are used in practice. A major challenge in analysing

blockchains is grouping transactions belonging to the same user. Because users

can create an unlimited amount of addresses, each of which can receive and send

coins, their activity may be split among a multitude of such addresses. Techniques

to group activity of individual users are commonly referred to as address clustering

heuristics, as they focus on identifying the addresses under an individual user’s

control using heuristic assumptions about how their transactions are created. As

the term heuristic suggests, address clustering today is more intuitive than rigorous;

our overarching goal in this chapter is to elevate it to a science.

There are at least four applications for which accurate address clustering is

important. First, a law enforcement agency may be interested in evaluating the

transactions of a specific entity (e.g., a specific exchange, trader or gambling

service). They may supplement their own investigation of the entity’s behavior

with a set of reliable heuristics to identify relevant transactions. Second, and

conversely, the ability to accurately determine a user’s transactions directly impacts
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Figure 4.1.: Schema of a typical Bitcoin transaction with two inputs and two outputs: the spend
output is the intended payment, the change output returns the surplus coins to the
sender. Each input and output is associated with an address.

their privacy. This tension between law enforcement needs and everyday users’

privacy is inherent to cryptocurrencies due to their transparency and pseudonymity.

Advocates from one side push for greater privacy and from the other side for

stronger regulation. To better understand this tug-of-war, it is important to quantify

how reliable heuristics are in practice. Third, accurate grouping of transaction

activity is important for aggregate analyses such as studying economic activity

over time. This usually requires a full clustering of all addresses on the blockchain.

Finally, the problem of address clustering itself may be interesting for researchers

outside of cryptocurrencies. For example, it may pose as an application domain for

machine learning models and could be used as a benchmarking application.

Goals. The current state of address clustering techniques available to researchers

is sub-optimal in multiple ways. The most common heuristic, multi-input, groups

addresses that are jointly used in inputs of a transaction (cf. Figure 4.1) [135, 137].

This heuristic is easy to apply, moderately effective in practice, [79] and widely

used. However, it misses addresses that are never co-spent with other addresses (cf.

Figure 4.2).

Many of these addresses can be identified using change address heuristics: as

coins in Bitcoin cannot be spent partially, transactions need to return the surplus
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Figure 4.2.: Clustering with only the multi-input heuristic misses addresses C and E that are not
co-spent with other addresses.

value back to the user who created the transaction. Identifying the change output

thus allows grouping the associated address with the inputs’ addresses. While the

effectiveness of change address detection has been demonstrated empirically and

through simulation (e.g., [8, 103]), it remains difficult to assess how well it works in

practice. As a result, clustering techniques are applied inconsistently across studies:

many forgo change address clustering (e.g., [86, 87, 97, 140]), whereas some simply

apply a single change heuristic (e.g., [41, 127]) .

A major issue is the lack of ground truth data available to researchers. In the

context of change output detection, ground truth consists of a set of transactions for

which the change output is known. Such a dataset allows to assess the accuracy

of individual heuristics aiming to identify the change output of a transaction. But

because the Bitcoin blockchain is used for a variety of different use cases and by

a diverse group of users, which may both change significantly over time, ground

truth needs to reflect this diversity in order to allow for a reliable assessment.

Such data is hard to collect, and, even if available, is unlikely to be made public,

e.g., due to privacy concerns. We are only aware of one approach exploiting

weaknesses in a specific type of lightweight client [121], which allowed to extract the

addresses of 37 585 wallets to assess four different clustering heuristics. Blockchain

intelligence companies might have access to manually curated and refined data

sets and clusterings, but their techniques and data aren’t generally available to

researchers (or only shared in limited form, e.g., [78, 160]). As a result, analyses of

70



clustering heuristics often fall short of quantifying their accuracy and instead resort

to analyzing the resulting clusterings (e.g., [36, 165]).

Considering this state of affairs, our goals in this chapter are to address the lack

of ground truth data and assessment methods, develop new techniques to apply

heuristics to predict change and use them to create improved clusterings.

Contributions, methods and findings.

1. A new ground truth method and dataset: We put forward a procedure to

select and filter transactions for which the change output has been revealed

on the blockchain. Our approach exploits that future transactions of users can

reveal change outputs in past transactions. We take specific care evaluating

the data set with regards to potential issues, such as violations of our core

assumption or existing cluster collapse. We extract a set of 35.26 million

transactions with known change (carefully filtered down from 53 million

candidate transactions) that can be used as ground truth for validation and

prediction. Our method does not rely on interaction with intermediaries,

though we use address tag data to assess the quality of our data set and

methods. The data set can be continuously updated, improved and shared

with other researchers. (Section 4.2)

2. Evaluating existingheuristics: We’ve compiled and evaluate a set of 26 change

address heuristics based on previous literature and community resources.

Evaluated on our ground truth, most change address heuristics have few false

positives at low to medium true positive rates. We find that due to changes in

the protocol and usage patterns, heuristics wax and wane in their effectiveness

over time, showing the need to use multiple heuristics and combine them in

an adaptive way rather than rely on a fixed algorithm. We also report the
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heuristics’ overall coverage (i.e., how often they return a result) for transactions

with unknown change. (Section 4.3)

3. Improved prediction: We use a random forest classifier to identify change

outputs and compare it against a baseline: the majority vote of individual

heuristics. While machine learning has been used to classify the type of

entity behind a transaction (e.g., [15, 78, 83, 86, 94, 150, 160]), to the best

of our knowledge our work is the first to apply it to the problem of change

identification. We find that a random forest model outperforms our baseline

threshold voting mechanism, especially for low false positive rates (to prevent

cluster collapse). For example, targeting a false positive rate below 0.1 %

the random forest model correctly detects twice as many change outputs.

(Section 4.4)

4. Preventing cluster collapse: We analyze the clustering that results from the

predicted change outputs with regards to cluster collapse. We find that a

naive clustering of predicted change outputs leads to cluster collapse, despite

choosing a high threshold to prevent false positives. We then apply constraints

to the union-find algorithmunderlying our clustering, aiming to prevent cluster

collapse that stems from frequent, repeated interaction between entities. This

technique prevents large-scale cluster collapse while still enhancing a majority

of the involved clusters. (Section 4.5)

5. Assessing impact: We assess the impact our enhanced clustering has on two

exemplary applications: cash-out flows from darknet markets to exchanges

and the velocity of bitcoins. We find that the results of such typical longitudinal

analyses are off by at least 11–14 % if they don’t fully account for clustering.

(Section 4.6)
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Our process is summarized in Figure 4.3. We discuss our findings in Section 4.7

and conclude in Section 4.8

Limitations. Our results are limited by the availability of “real” (i.e. manually

collected and validated) ground truth. As such, our analysis should be treated as a

first step towards better understanding the feasibility of change address detection

and clustering. However, we do not expect our high-level insights to change

significantly in the light of minor corrections to our ground truth data set. We

invite the research and blockchain community to evaluate our data set using their

own ground truth data or analysis techniques. An interesting avenue for future

research would be to build a privacy-preserving tool that allows to crowd-source the

validation of both the ground truth data and prediction models, to which individual

users could connect their wallet software.

Our extraction mechanism relies on change outputs revealed by the multi-input

heuristic. This heuristic is effective in practice [79] and widely used, but vulnerable

to false positives from techniques like CoinJoin and PayJoin transactions that are

intentionally designed to break the heuristic (e.g., [51, 99, 102, 110]). While we take

measures to detect CoinJoin transactions and pre-existing cluster collapse, some

errors can remain. Furthermore, entities that more effectively prevent address reuse

are less likely to be included in our data set.

We adopt the term clustering used in the blockchain community, however, our

underlying implementation sequentially processes transactions and uses a union

find algorithm that does not retain individual distance scores. In practice it may

be desirable to give analysts a choice between different clustering outcomes (e.g.,

concerning the order in which clusters are merged or the tradeoff between false

positive and true positive rates).
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Figure 4.3.: Our process in this chapter

Finally, weworkwith the Bitcoin blockchain, currently themost popular cryptocur-

rency by market volume. Our methods are applicable to similar cryptocurrencies,

potentially with a different set of heuristics, but may be less effective if transactions

are more homogeneous.

Data. We plan to make our ground truth data set publicly available and invite

other researchers to evaluate our data set using their own private ground truth

or analysis techniques. While identifying the change output of a transaction has

privacy implications for individual users, we believe that making our data set public

does not create additional privacy risk as all the data is already publicly available

on the blockchain and our methods are easy to reproduce.

4.2. Building a Ground Truth Data Set

Core assumption. We focus on the feasibility of detecting the change output in

Bitcoin transactions with exactly two spendable outputs, by far the most common
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Figure 4.4.: Address � is merged into the same cluster as addresses A and B by the multi-input
heuristic, thereby revealed as the change address in the first transaction.

type of transaction as of June 2021 (75.8 % of all transactions, see Figure 4.5). Our

core assumption is that one of these outputs is a payment, and the other output

receives the change. We call this type of transaction a standard transaction, as they

are created by typical end-user wallet software.
1

For transactions with only one output there is no good indicator to directly and

reliably determine whether the output belongs to the same user. The transaction

may correspond to a user sweeping the balance of their wallet, but the destination

address may not be under the same user’s control (e.g., it could be managed by a

cryptocurrency exchange).

Transactions with more than two outputs are less likely to originate from an

ordinary wallet. They may belong to an exchange that batches payouts to multiple

users, or correspond to a restructuring of their internal hot and cold wallets. As

a result, our assumption that exactly one of the outputs receives change may not

hold. Large numbers of outputs could also indicate mixing services or CoinJoin

transactions, where the funds of multiple users are mixed. Determining change in

CoinJoin transactions requires solving a subset-sum problem (e.g., [71, 102, 110])

and is outside the scope of this work.

1
There exist a separate notion of a standard transaction, namely those that pass the isStandard test
of the Bitcoin reference implementation that checks whether a transaction uses one of a handful

of default script types.
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Method. Our approach leverages the phenomenon that change outputs are some-

times revealed by the multi-input heuristic at a later point in time due to address

reuse. Figure 4.4 shows an example of how such disclosure may unintentionally

happen on the blockchain: a user spends coins at addresses � and �, their wallet

directs the change to a new address �. Later, they spend the change at address �

along with other coins at address �. At this point, the multi-input heuristic reveals

that �, � and � belong to the same user, thereby revealing � as the change address

in the first transaction. By identifying transactions that have their change revealed

in this way, we can build a ground truth set of transactions with known change.

Comparison to interactive collection. We briefly discuss the advantages and

disadvantages of our approach to collecting ground truth interactively. We could

download a Bitcoin wallet and send bitcoins to a number of different addresses,

thereby creating a corpus of transactions for which both the spend and the change

output are known. However, in order to be able to learn and generalize from our

ground truth data it should capture the expected heterogeneity of implementations

and use cases over Bitcoin’s entire history. An interactive collection would likely

yield ground truth inferior in three dimensions: variety, scale, and the collection

time frame.

Heterogeneous ground truth requires transactions from a variety of different use

cases and entities. Compared to prior deanonymization studies that identified

address clusters of specific entities by interacting with them (revealing some of the

intermediary’s addresses, e.g., [103]), we are interested in the change of transactions

made by those intermediaries. Purchasing an item from an online merchant can

reveal one of their addresses, but we do not learn about change in any of the

merchant’s transactions, only about our own transaction that pays them. The only

conceivable way to learn about change in an intermediary’s transactions is to induce
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them to make a transaction to an address under our control. This may be possible

with exchanges, where we could first deposit and then withdraw funds, but is not

applicable to many other intermediaries.
2
Our method, instead, is not limited to a

small set of intermediaries of our choosing.

Second, interactive collection would be hard to scale beyond a few hundred trans-

actions, as we would need to individually engage with a variety of intermediaries

and wallet implementations. This cannot easily be automated. While Nick [121]

was able to collect data on a larger scale from exploiting a vulnerability in a specific

type of lightweight client, his method is not transferable or generalizable to other

types of wallets. Our approach, instead, yields a data set of millions of transactions.

A third issue of collecting data interactively is the time frame. Interactive collection,

as described above, cannot be done retroactively and is therefore limited to a short,

current time window. This limits its utility as the resulting data set wouldn’t capture

shifting patterns over different epochs of Bitcoin’s history. Our non-interactive

approach, on the other hand, is applicable to transactions from Bitcoin’s entire

history.

Our method has a few important limitations. First, because we extract ground

truth data non-interactively from the blockchain, we are not able to fully verify its

correctness. Second, our core assumption that exactly one of the outputs is a change

output may not hold in every scenario. For example, a user sending funds to an

address under their control could lead to ambiguous or incorrect labeling of change

outputs. This is predominantly an issue for our collection process. We later take care

to remove transactions that are more likely to violate the core assumption in this way.

Similarly, there could be instances where none of the outputs is a change output

because a user made a payment to two different entities using a perfectly matching

2
It could also raise ethical and legal questions, e.g., when interacting with gambling services or

intermediaries in other countries.
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set of inputs that does not require change to be returned. This is an issue during

the subsequent prediction of outputs and could lead to cluster collapse. While this

becomes more likely the more UTXOs a wallet can choose from, we expect those

instances to be rare. Third, as our method relies on address reuse, the resulting

transaction corpus could be biased towards entities or wallet implementations that

are more prone to reuse and merge addresses. It might contain fewer instances of

transactions created with wallets that more effectively discourage address reuse.

4.2.1. Data collection and overview

We use and build upon BlockSci v0.7 [87], an open-source blockchain analysis

framework that provides fast access to blockchaindatauponwhichwe can implement

custom heuristics and extraction procedures. We parse the Bitcoin blockchain until

the end of June 2021 (block height 689 256) and create a base clustering using the

multi-input heuristic (where we heuristically exclude CoinJoin transactions).

As of June 2021, the blockchain contains 91 million transactions with one output,

495 million with two outputs, and 67 million with three or more outputs (Figure 4.5).

We divide the transactions into mutually exclusive categories. Transactions contain-

ing unspendable OP_RETURN outputs often signal the use of an overlay application

that stores metadata in the blockchain [16]. Such transactions may have specific

rules for how they are constructed, potentially making change detection unreliable.

Both transactions reusing an input address as well as transactions where cluster

membership (i.e. the multi-input heuristic) reveals a change output have their

change output identified. Direct address reuse however makes change identification

trivial and applying further change heuristics is never necessary. We thus only use

transactions where the change has been revealed by multi-input clustering as the
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Figure 4.5.: Distribution of different types of transactions in the Bitcoin blockchain until June 2021.
Transactions with two outputs and change revealed through cluster membership form
the basis of our ground truth data, which we further refine down to a ground truth
data set of 35.26 million transactions.

basis to construct our ground truth data set. For the remaining transactions, i.e.

those with yet unknown change, we will later try to predict their change output.

4.2.2. Refining the candidate set of ground truth transactions

Our candidate set of ground truth transactions consists of transactions with two

outputs (ignoring overlay transactions) where no input address is reused for change

and where at least one output is in the same base cluster as the inputs. This yields a

total of 53.41 million transactions. We further filter the transactions as follows (see

Figure 4.5 for a visual breakdown and Section B.3.1 for an extended description):

1. We remove 1.08 million transactions with unspent outputs, as our subsequent

analyses rely upon the spending transactions being known.
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2. For 0.97 million transactions both outputs are in the same base cluster as the

inputs, violating our core assumption. We remove these transactions. We

also find that some base clusters are more likely to produce such transactions.

We thus exclude transactions from base clusters where more than 10 % of

transactions exhibit such behavior. This removes an additional 0.48 million

transactions in 9967 base clusters.

3. We check our base clustering for preexisting cluster collapse, which could

create false positives. We remove 0.37 million transactions belonging to the

Mt.Gox supercluster (cf. [79, 103]) as well as 0.09 million transactions from

one possible instance of cluster collapse detected using address tags from the

website WalletExplorer.com.

4. We find many instances where the change address did not appear in the

inputs, but had been seen before and was known to be the change at the time

the transaction was created. For example, there are 5.77 million transactions

originating from the gambling service “SatoshiDice” that use only a total

of 50 change addresses, and 1.27 million transactions from “LuckyB.it” that

use a single change address. For such transactions, applying change address

heuristics is never necessary. We remove 15.17 million transactions where the

change output was already known at the time the transaction was created.

4.2.3. Assessing the final set of ground truth transactions

Next, we assess the composition of our ground truth data set and compare it to

transactions in the blockchain overall. This is useful to ensure that it contains

heterogeneity with regards to scale, time frame and variety (see discussion above),

80



2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e 
of

 g
ro

un
d 

tru
th

 tr
an

sa
ct

io
ns Share of all transactions

Share of standard transactions

Figure 4.6.: Share of ground truth transactions of all and standard transactions over time.

as well as to spot potential biases in the ground truth that could result from our

selection process.

Scale and time frame. Our ground truth of 35.26 million transactions makes up

about 7.6 % of standard transactions and about 5.4 % of all transactions. Figure 4.6

shows that those percentages are relatively stable over time.

Variety of included clusters. Our ground truth includes transactions from 3.58

million base clusters. Figure 4.7 shows the distribution of address counts of base

clusters that are represented with at least one transaction in our ground truth.

Our ground truth contains transactions from base clusters of all sizes, giving us

confidence that it can be representative of the blockchain overall. The share of base

clusters from which transactions are included is higher towards clusters with larger

number of addresses. This is likely a side-effect of our selection process, as base

clusters with more addresses may be more likely to combine addresses and thereby

reveal change.
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Figure 4.7.: Number of base clusters represented in our ground truth by total address count.
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Figure 4.8.: Number of transactions in ground truth and full blockchain per base cluster.
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Table 4.1.: Comparison of transaction characteristics between ground truth transactions and
transactions with 2 outputs for which change is unknown.

Characteristic Ground truth (%) Remaining (%)

1 Input 38.99 78.76
2 Inputs 22.09 13.61
3+ Inputs 38.92 7.63

Version = 1 79.83 80.68
Locktime > 0 25.25 24.60
RBF 3.57 6.22
SegWit 18.30 27.10

= (in million) 35.26 309.65

Figure 4.8 shows the number of transactions per base cluster included in the

ground truth compared to the total number of transactions per cluster, showing an

overall similar distribution. The largest number of transactions from a single base

cluster is 3.49 million, which has 8.85 million transactions in total. We did not find

a label for it on WalletExplorer.com. The second highest number of transactions is

383 519, again from an unlabeled cluster.

Transaction composition and use of protocol features. Table 4.1 compares char-

acteristics of transactions in our ground truth data to those of standard transactions

with yet unknown change, including the number of inputs as well as a number of

important protocol features (an overview and description of the protocol character-

istics used in this chapter is available in Section B.1). Transactions in the ground

truth data set notably tend to have more inputs than those in the set of transactions

with unknown change. This is an expected artifact of our selection method, which

relies on transactions with more than one input to reveal change outputs. The share

of transactions using SegWit serialization or allowing for fee bumping (RBF) is also

higher in the set of remaining transactions.
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Table 4.2.: Change heuristics proposed in the literature and used in this work.

Heuristic Notes and limitations Used Refs.

Optimal change: There should be no
unnecessary inputs: if one output is
smaller than any of the (2+) inputs, it is
likely the change.

Only applies to transactions with
2+ inputs. We use two variants,
one ignoring and one account-
ing for the fee.

X [121, 134]

Address type: The change output is
likely to have the same address type as
the inputs.

Wallets could use different ad-
dress types to obfuscate the
change output.

X [87, 134]

Power of ten: As purchase amounts
may be rounded, and the change
amount also depends on input values
and the fee, it is more likely to have
fewer trailing zeros.

We use six different variants,
which are partially redundant.

X [87, 134]

Shadow address: Many clients au-
tomatically generate fresh change ad-
dresses, whereas spend addresses
may be more easily reused.

Modern wallets discourage
reuse of receiving addresses.
We do not use the heuristic
because our ground truth is
filtered based on address
freshness.

x [8, 103]

Consistent fingerprint: The transac-
tion spending a change output should
share the same characteristics. We use
17 variants based on the following char-
acteristics:

• input/output counts and order
• version
• locktime
• serialization format (SegWit)
• replace-by-fee (RBF)
• transaction fee
• input coin age (zero-conf)
• address and script types

False positives are possible
when a wallet implementation
or the protocol change. We
only consider characteristics af-
ter they are available in the pro-
tocol. Section B.1 describes the
characteristics we use in more
detail.

X [23, 134]
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Figure 4.9.: Schema of how transactions are created, and how consistency of a transaction’s
fingerprint allows to identify change.

4.3. Evaluating Individual Change Heuristics

4.3.1. Background on change address detection

The Bitcoin protocol does not explicitly distinguish between change and spend

outputs. However, wallets create change outputs automatically to return surplus

value when users make payments (cf. Figure 4.9). We briefly describe how this

allows to identify change and present the heuristics that have been proposed in the

literature (see Table 4.2 for details, limitations and references).

Spend output. For standard transactions, the user will typically be given a specific

payment amount and an address to which the bitcoins should be sent (1). Payment

amounts in Bitcoin are denominated in satoshi, with one bitcoin equal to 10
8

satoshi.

At current and historic exchange rates, a single satoshi is worth only a fraction of a

cent. Merchants may thus round payment values to make it easier for users to enter

the correct amounts in their wallet, and transfers initiated by users may use round

values as well. Change can hence be distinguished from spends by potentially

having fewer trailing zeros (power of ten heuristic).
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Input selection. After the spend amount and a transaction fee have been deter-

mined, the wallet chooses a set of coins that covers the sum of both amounts (3).

While this selection procedure is not standardized and can differ between wallet

implementations (cf. [1, 56]), some behavior is common to many wallets, such as

not including unnecessary inputs (optimal change heuristic).

Change output. The change output is automatically created by the wallet to return

the surplus funds. Often, a fresh address is generated (i.e., one that has never

received coins before). In the past it was common that payment addresses were

reused, allowing to determine change based on this behavior (shadow heuristic

/ one-time change). We note that our ground truth data set is filtered based on

address reuse (see Section B.3.1). Because this filtering effectively determines the

performance of the heuristic, we decide not to use it in our subsequent analyses.

While the address type of the receiving address is determined by the payee,

wallets usually use consistent address types. A single output with a different

address type than the inputs might indicate a spend output, thus revealing the

change (address type heuristic).

Consistency of transaction fingerprints. The heuristics above are based on ex-

pected behavior that should apply to many common wallet implementations.

Furthermore, transactions can make use of protocol features that may allow to

discriminate between different types of wallets. Such a fingerprint would allow to

apply custom heuristics to subsets of transactions.

Transaction fingerprints can also be used for change identification. Assuming that

users don’t change wallets very often, characteristics should be consistent across

multiple transactions. When a wallet spends the change of a previous transaction,

those two transactions’ fingerprints should be similar (consistent fingerprint heuristic,
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Figure 4.10.: Time until both outputs are spent for transactions in our ground truth data, in the
remaining standard transactions and the blockchain overall. Time until spent is set
to infinity if not both outputs of a transaction are spent.

see (5) in Figure 4.9). We are not aware of any prior work that has evaluated this

across the range of available protocol characteristics. We also note that this heuristics

requires the outputs to be spent, whereas the previous heuristics are universal as

they can be applied to all transactions, including those with unspent outputs. We

selected our ground truth data such that it only contains transactions where both

outputs are spent, so the consistent fingerprint heuristic can be applied to all of

them.

Figure 4.10 shows the distribution of time until both outputs are spent for

transactions in the ground truth data set as well as remaining standard transactions

with yet unknown change. Overall, the outputs of more than half of all transactions

are spent in under a week, making the consistent fingerprint heuristic highly

applicable to a majority of transactions, including recent ones.
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Table 4.3.: True and false positive rates of heuristics applied to transactions in the ground truth
data set.

Ground Truth Remaining

Heuristic TPR FPR Coverage∗

Universal heuristics
Optimal change 0.306 0.026 0.133
• incl. fee 0.239 0.020 0.096
Address type 0.237 0.031 0.369
Power of ten
• = = 2 0.467 0.012 0.383
• = = 3 0.420 0.006 0.311
• = = 4 0.375 0.005 0.253
• = = 5 0.302 0.006 0.173
• = = 6 0.211 0.005 0.104
• = = 7 0.107 0.001 0.048

Consistent fingerprint
Output count 0.283 0.129 0.445
Input/output count 0.263 0.107 0.568
Version 0.245 0.004 0.320
Locktime 0.307 0.003 0.363
RBF 0.075 0.003 0.114
SegWit 0.191 0.021 0.260
SegWit-conform 0.021 0.001 0.028
Ordered ins/outs 0.262 0.053 0.443
Zero-conf 0.100 0.061 0.214
Absolute fee 0.117 0.025 0.305
Relative fee 0.042 0.008 0.204
Multisignature 0.140 0.001 0.154
Address type
• P2PKH 0.239 0.014 0.312
• P2SH 0.269 0.015 0.334
• P2WPKH 0.181 0.019 0.256
• P2WSH 0.063 0.007 0.082
All address types 0.294 0.023 0.392
∗Coverage denotes share of standard transactions
with yet unidentified change where the heuristic re-
turned exactly one output.
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4.3.2. Evaluating individual heuristics

We start by evaluating the universal and fingerprinting heuristics individually. We

explicitly encode our constraint that only one of the outputs can be the change.

Thus, applied to a transaction, the heuristic may either return an individual output

if it is the only output determined to be change, or no output otherwise. Let ℎ be a

heuristic applied to transaction C which returns a set of potential change outputs,

then our constrained heuristic ℎ′ returns:

ℎ′(C) =


ℎ(C) |ℎ(C)| = 1

∅ otherwise

This constraint is crucial to prevent cluster collapse: if a heuristic cannot determine

a unique change output, we’d rather cluster none of the outputs than both, as

clustering both would violate our core assumption and may lead to the merging of

two clusters not belonging to the same user.

In Table 4.3 we report the individual heuristics’ true and false positive rate

(TPR/FPR) for identifying change outputs in our ground truth. We also report the

share of all standard transactions with unknown change for which the heuristic

returns a unique output (denoted as “coverage”).

Most heuristics have a low FPR, with four fingerprinting heuristics being the

exception: output count, input/output count, input/output order, as well as zero-

confirmation spending. The power of ten heuristic has a notably high TPR compared

to many other heuristics (its variants are in many cases redundant).

Comparing the TPR of the heuristics to their coverage, we see moderate positive

correlation (A = 0.55, ? = 0.004), meaning that heuristics that identify more change

outputs in our ground truth also tend to be more applicable to the remaining

standard transactions. One outlier is the optimal change heuristic, which only
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Figure 4.11.: Number of votes from heuristics on transactions in the ground truth data set

returns a result in 13.3 % of the remaining transactions (compared to a TPR of

30.6 % in the ground truth). This is due to the difference in the number of inputs

for these two sets (see Table 4.1). At the same time, many of the fingerprinting

heuristics appear to be more applicable to the remaining transactions, signaling

higher heterogeneity among those.

27.49 million transactions have votes from a universal heuristic, and 32.17 million

have votes from a fingerprint heuristic. 858 582 transactions don’t have any predic-

tions. Among the 34.40 million transactions with at least one vote, 33.34 million

(96.91 %) have at least one correct vote.

Figure 4.11 shows the number of (correct and incorrect) votes received by each

transaction. Figure 4.12 further breaks down the average number of correct and

incorrect predictions per transaction over time, grouped by the type of heuristic. We

notice three important trends: the universal heuristics drop over time, likely due to

some of the power-of-ten variants becoming less useful (as they contain redundant

information, we provide additional plots where the heuristics are aggregated in

Section B.2). The consistent fingerprint heuristics instead see a steady uptick in

the number of correct votes. This highlights how the increasing variety of protocol
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Figure 4.12.: Average number of correct and uncorrect votes per transaction and type of heuristic
in the ground truth data set, over time

features also raises their utility for detecting change outputs. Finally, there’s an

uptick in both correct and incorrect fingerprint votes in late 2017 and early 2018,

when wallet implementations started to switch to SegWit transaction serialization

and address formats (e.g., [21, 142]).

For the following analyses, we exclude the 858 582 transactions that don’t have

any predictions in order to reduce the chance of false positives. When we later apply

the heuristics to the full blockchain, we will also skip transaction without votes

from at least one heuristic.

4.4. Combining Heuristics

A clear disadvantage of choosing a single individual heuristic for change output

detection is that they apply only to a subset of transactions (cf. Table 4.3). Further-

more, some heuristics may be more applicable during certain epochs of Bitcoin’s

history than others. In contrast to prior work (e.g., an evaluation of three change
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heuristics [121]), we also have a larger variety of heuristics available that enable new

ways of combining them. Here, we consider two approaches.

4.4.1. Threshold vote

Figures 4.11 and 4.12 suggest that, in general, a majority of cast heuristic votes

should produce the correct outcome. However, the number of votes cast varies

among transactions, and individual votes could be incorrect. We thus compute a

threshold vote: if there are at least C more votes for output 0 than for output 1, then

output 0 is considered the change. Changing the threshold C thereby allows the

analyst to require higher degrees of confidence.

We use all of the heuristics listed in Table 4.3 to compute the threshold vote on

the full ground truth data set (as there is no training involved, we do not split the

data set). The resulting ROC curve is shown in Figure 4.13 (for comparison, we also

plot the FPR and TPR of the individual heuristics). We can achieve an ROC AUC of

0.94, and, for example, a 37.0 % true positive rate (TPR) below a false positive rate

(FPR) of 0.1 % with a threshold of C = 7.

Using a threshold vote may not be ideal as the individual heuristics have varying

true positive and false positive rates, and some might be more or less reliable

during different periods of Bitcoin’s history. Rather, a specific subset of heuristics

may provide better classification accuracy. Instead of manually trying different

combinations of heuristics, we opt to use a supervised learning classifier.

4.4.2. Random forest classifier

We use a random forest classifier to predict the change output of a transaction. A

random forest is an ensemble classifier that trains and aggregates the results of

individual decision trees. It is inherently well suited for change detection as it is
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capable of dividing the dataset into homogeneous subsets. This allows it to pick up

differences in behavior between different types of transactions or time periods. In

an initial comparison of common classifiers it also achieved the highest ROC AUC

score (Section B.3.2).

We model an output-based binary classification problem, where every output

is either a change (1) or spend (0) output. As before, an individual heuristic may

produce one of three outcomes: vote for the output, against the output, or not be

able to discern between the outputs. Next, we add additional characteristics about

each output and corresponding transaction that may help the classifier differentiate

between distinct types of transactions, or wallets. Output characteristics include

the ratio of an output’s value to the total output value of a transaction (the change

output is the smaller output in 76.38 % of our ground truth transactions) and its

index. Transaction characteristics include its total value in satoshi, the transaction

fee paid per byte, its version number, whether it uses SegWit serialization and sets a

non-zero locktime, as well as the number of inputs and the time of inclusion (as

epochs of 1008 blocks, about one week).

We use the RandomForestClassifier implementation in scikit-learn 0.24.1. We

add regularization by searching a small parameter grid using a successive halving

strategy, including three parameters: the number of features considered at each

split, the minimum number of samples required before each further split, and the

minimum number of samples required at each leaf node. As we consider an analyst

that works with a static snapshot of the blockchain, we randomly split our data set

into 80 % training and 20 % test set. We use the training set for the hyperparameter

search using 4-fold cross-validation, optimizing the area under the curve (AUC)

as our scoring metric.
3
To account for the fact that transactions in the same base

3
Additional details are available in Section B.3.2.
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cluster may be highly similar, we explicitly ensure that all outputs of a base cluster

remain in the same set and fold.

Applying the random forest model (RF-1) to the test set, we achieve an AUC of

0.9986 (Figure 4.13).
4
We see that random forest model is able to detect a higher

share of outputs, especially at low false positive rates, compared to the threshold

vote.

In Figure 4.14 we show the ROC curves of both the threshold vote and the random

forest on the same test set, log-transforming the x-axis to highlight the important

difference in low false positive rates. The random forest achieves much higher true

positive rates at low false positive rates, meaning that it correctly identifies the

change output in a larger number of transactions. For example, if we target a false

positive rate below 0.1 %, the threshold vote achieves a TPR of around 39 % at a FPR

of 0.06 %. For the same FPR, the random forest achieves a TPR of 82 %, more than

twice as high.

We train a second random forest model (RF-2) only on transactions that contain

predictions of the universal heuristics in order to later predict change in transactions

that contain unspent outputs. Using a similar evaluation strategy as for the full

model, the AUC of this model is 0.9981.

To ensure that the performance of our model is not dependent on our particular

split, and to determine the variance of the ROC AUC score, we again randomly split

our ground truth data set into 80 % training and 20 % test set 20 times and train a

random forest classifier using the previously determined hyperparameters. The

average ROC AUC score on the test sets is 0.9974 (SD = 0.0016) for RF-1, and 0.9965

(SD = 0.0036) for RF-2.

4
The AUC on the training set is 0.9994
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Figure 4.14.: Comparison of the random forest classifier and the threshold vote on the test set.
There is a notable difference between the two classifiers for low false positive rates.

We note one caveat: because the base clustering is incomplete, grouping transac-

tions by their base cluster may not fully prevent homogeneous transactions from the

same entity to appear in both sets (e.g., an entity’s transactions can be split among

multiple clusters, of which some end up in the training and some in the test set).

Yet, some of the variability we see comes from unusual clusters that do not appear

in the respective training sets. Other researchers with private, more heterogeneous

ground truth may be able to evaluate the degree to which this affects the overall

performance of the model.

4.4.3. Additional model validation

Weuse two data sets to assess the performance of the random forestmodel trained on

our entire ground truth data. First, we use the list of 16 764 transactions identified by
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Huang et al. [84] as ransom payments related to the Locky and Cerber ransomware.

Those payments were identified through clustering, transaction graph analysis

and known characteristics of the ransom amounts. The data set contains not only

transaction hashes, but also the index (and amount) of the predicted payment output.

Out of the 16 764 transactions in the data set, we exclude 3057 (18.2 %) because they

don’t match our definition of a standard transaction. For 23 transactions, none of the

heuristics return any distinct votes. 1636 transactions (9.8 %) directly reuse change,

and in 852 transactions (5.1 %) multi-input clustering already correctly revealed

the change output. For the remaining 11 196 transactions (66.8 %) we predict the

change output using the random forest model and achieve an AUC of 0.996.

Our second data set is constructed using a GraphSense tagpack [72] that contains

382 tags for addresses of 273distinct entities (such as exchanges or gambling services)

extracted fromWalletExplorer.com. We identify each associated cluster and then

extract transactions between the clusters, assuming that the output belonging to

a different cluster is the spend output. In total, we extract 2 236 064 transactions

between the clusters. As the data is highly skewed towards a few clusters, we

limit the total number of transactions for each combination of interacting clusters

to 1000 (sampled randomly), giving us 859 270 transactions. Out of these, 13 338

(1.6 %) don’t have any predictions, 117 421 (13.7 %) reuse an address for change and

for 459 737 (53.5 %) change outputs have already been identified through cluster

membership. For the remaining 268 774 transactions (31.3 %) we predict the change

output and achieve an AUC of 0.976.

4.5. Clustering Change Outputs

We use our random forest model to enhance the base clustering by clustering change

outputs. To this end, we predict the change outputs of the 310 million standard
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transactions with yet unknown change. We exclude 10.5 million transactions where

no individual heuristic identified a change output and use RF-2 for 19.3 million

transactions with unspent outputs.

Informed by the histogram of probabilities
5
(cf. Figure B.3 in the appendix), and in

order to keep the likelihood of false positives low, we use a conservative probability

threshold of ?2ℎ0=64 = 0.99.
6

This gives us 155.56 million change outputs (for

50.24 % of transactions). We then enhance the base clustering by merging the base

cluster of the inputs with the base cluster of the change address in the order that

the transactions appear on the blockchain.

4.5.1. Naive merging leads to cluster collapse

We first assess the sizes of the enhanced clusters to spot possible cluster collapse.

A typical measure for the size of the cluster is the number of addresses contained

in it. However, this may not always be reliable: if entities reuse addresses, their

clusters can appear small despite being responsible for many transactions. We

therefore also inspect the number of transactions originating from the cluster, which

is independent of address reuse. Without address reuse, these two measures should

correlate as a fresh address is created for every outgoing transaction.

Clustering the identified change outputs reduces 184.3 million affected base

clusters into 39.8 million enhanced clusters. However, it leads to severe cluster

collapse: there is one large supercluster, of which the prior Mt. Gox supercluster

is a part of, that consists of 223.9 million addresses (a 1596 % increase) and 108.2

million transactions (a 2500 % increase). Inspecting the 273 labeled clusters from

5
A probability returned by the random forest is the average of the probabilities returned by the

individual decision trees, each of which corresponds to a fraction of samples in the leaf node.

6
This corresponds to a false positive rate of 0.044 % for RF-1. We use a threshold of 0.997 for RF-2

to match the FPR.
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Figure 4.15.: Our constrained clustering prevents themerging of clusters A and B due to conflicting
types of payments between them.

the Graphsense tag pack, we find that 113 of them have been merged into this

supercluster.

4.5.2. Constraints prevent cluster collapse

The majority of cluster merges involve address clusters from which only a single

transaction originated. Here, the impact of a single misclassification is low unless

a sequence of such merges collapses multiple larger clusters. At the same time,

we observe a small number of merges that combine two large clusters. Imagine

two large exchanges whose users frequently interact with each other. A single,

misidentified change output could collapse their address clusters.

Approach. We use this intuition to constrain which clusters we merge. While

change outputs predicted by our model should be clustered, we can use predicted

spend outputs to prevent cluster merges: the input cluster should not be clustered

into the cluster of the spend. Given the probability ?8 returned by the random

forest model for output 8, we use two thresholds ?2ℎ0=64 and ?B?4=3 such that if

?8 > ?2ℎ0=64 the clusters should be merged (as before), and if ?8 < ?B?4=3 then the

clusters should not be merged. In many cases, these constraints will prevent the

spend and change output of a single transaction to end up in the same cluster (cf.
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Figure 4.15). It is therefore a stronger assumption than our core assumption, which

only considered the change.

This approach is comparable to that by Ermilov, Panov, and Yanovich [58] to

use address tags in combination with a probabilistic model to reduce the number

of conflicting tags in the final clustering. However, public sources of address

tags likely contain information on a limited number of intermediaries only. Our

approach, instead, potentially covers all clusters appearing in the 258 million

standard transactions, including those that may be hard to interact with (and

identify) manually. Due to the size of our data set we only consider the binary

case of preventing any potential conflict, accepting that we may prevent some valid

merges in the process.

We implement a constrained union-find algorithm that prevents merging two

clusters that are related by a predicted spend output. For every spend from cluster

2< to cluster 2= , predicted by the random forest with ?8 < ?B?4=3, we add a constraint

to cluster 2< that it must not be merged with cluster 2= . Before merging two clusters,

we the check the constraints of both clusters and skip the merge if it would violate

them.

Results. Using the same ?2ℎ0=64 as before and setting ?B?4=3 = 0.01, the constrained

clustering prevents 413 608 merges that would have violated constraints and retains

231 340 more individual clusters than the unconstrained clustering. 10.8 million of

the predicted merges are redundant because the clusters had already been merged.

We find that the constrained merging prevents the previously observed severe

cluster collapse. For example, the constrained clustering does not produce the large

Mt. Gox supercluster: the enhanced cluster contains 4.4 million transactions (a 6 %

increase) and 14.5 million addresses (a 10 % increase). Assessing the 273 labeled

clusters, there are only seven instances left where two labeled clusters are merged
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Table 4.4.: Transaction counts of smaller clusters being merged.

Transaction count

Percentile Naive Constrained

90 1 1
99 6 6
99.9 25 25
99.99 114 102
99.999 1696 578

together. We suspect that unusual types of payouts from these services might have

triggered their collapse.

The largest cluster in the constrained clustering contains 20.4 million transactions

and 40.5 million addresses. Inspecting the composition of this cluster, we find that it

is the result of merging many small clusters (including 9.4 million single-transaction

clusters).

Table 4.4 shows percentiles of the number of transactions associated with each

smaller cluster that was merged into a larger cluster. In at least 90 % of merges the

smaller cluster created at most one outgoing transaction, highlight the usefulness of

change address clustering to merge small clusters that are missed by multi-input

clustering (see Figure 4.2). We can also see that up to the 99.99 percentile, transaction

counts are very similar between the unconstrained and the constrained clustering,

but that the constrains prevent merges of large clusters, preventing cluster collapse.

Figure 4.16 shows histograms of the increase in address count and transaction

count for the affected cluster. Increase here is the difference between the resulting

size of the enhanced cluster and the largest individual base cluster before clustering.

The histograms are plotted on a log-log axis, highlighting the extreme skewness of

101



100 102 104 106 108

Increase in address size

100

101

102

103

104

105

106

107

Fr
eq

ue
nc

y
Supercluster

Naive
Constrained

100 102 104 106 108

Increase in transaction size

100

101

102

103

104

105

106

107

Fr
eq

ue
nc

y

Supercluster

Naive
Constrained

Figure 4.16.: Absolute increase in address and transaction count per affected cluster, using either
the naive or the constrained approach. Note the caveat in footnote 7.

the distribution. Most clusters increase only by a few addresses or transactions.
7

The supercluster can also easily be spotted.

Varying thresholds. For our clustering we chose conservative thresholds in order

to reduce the possibility of cluster collapse. At the same time, this means that fewer

change outputs are being clustered than with larger thresholds. To assess the impact

7
Due to the log-scale, the histogram showing the increase in transaction size excludes 2.3 million

clusters that, using the naive approach, didn’t increase in their transaction count, and 2.5 million

using the constrained approach, respectively.
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of raising the threshold, we create two additional constrained clusterings, one with a

threshold corresponding to 0.1 % FPR and one corresponding to a 1 % FPR. At 0.1 %,

the number of collapsed clusters in the Graphsense tag pack increases to 12. At 1 %,

however, there are 60 instances of cluster collapse, highlighting the importance of

choosing conservative thresholds corresponding low false positive rates.

4.6. Impact on Blockchain Analyses

Address clustering is a common preprocessing step before analyzing activity of

entities on the blockchain. Using different change heuristics (or none at all) thus

affects the outcome of these analyses. In this section we present two exemplary

applications to highlight the impact change address clustering has on blockchain

analyses. Furthermore, we compare our clustering to one created with a popular

change address heuristic based on address reuse.

4.6.1. Increased cashout flows from darknet markets to exchanges

We evaluate the impact of our enhanced clustering on analysing payment flows from

darknet markets to exchanges. Such analyses are potentially relevant for cybercrime

researchers, economists, regulators or law enforcement, highlighting the importance

of address clustering for a variety of use cases. To identify relevant intermediaries,

we use address tags in the GraphSense tag pack for 117 exchanges and 15 darknet

markets.

We extract the value of all outputs in transactions initiated by a darknet market

(most of which were active between 2013 and 2016) that are sending bitcoins to an

exchange, comparing the transaction volume calculated using our base clustering to

that of our enhanced clustering. The median increase in output value across all 15
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darknet markets amounts to 11.5 %. Overall, the total amount of bitcoins flowing

from the darknet markets to exchanges increases from BTC 823 839 to BTC 937 330

(a 13.8 % increase). An overview of each individual market’s increase in transaction

volumes is presented in Table B.1 in the appendix.

4.6.2. Improved estimate of velocity

We replicate the analysis of velocity conducted by Kalodner et al. [87], an example

for a longitudinal analysis of economic activity occurring on the Bitcoin blockchain.

For this analysis, clustering is used to remove self-payments of users (such as change

outputs), which would artificially inflate estimates of economic activity. The better

and more complete our clustering, the more self-payments are removed and hence

the lower the estimate will be.

Our refined clustering reduces their estimate of bitcoins moved per day between

January 2017 to June 2021 by about 11.9 % (a longitudinal plot is provided in

Figure B.4 in the appendix). This number is quite similar to the impact on darknet

market cash-out flows.

In general, much activity is generated by large intermediaries, which are more

prone to be clustered by the multi-input heuristic. Our enhanced clustering

predominantly merged small clusters, which should give a more realistic estimate

for their activity. As we chose relatively conservative thresholds to enhance the

clustering, loosening them could lead to larger effect sizes.

4.6.3. Comparison to the Meiklejohn et al. heuristic

We compare our constrained clustering to one created using the address reuse-based

heuristic presented by Meiklejohn et al. [103], which has subsequently been used

in other studies (e.g., [41, 127]). While the authors highlight the need for manual
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intervention to prevent cluster collapse, this is likely infeasible for analysts without

in-depth domain knowledge or the right set of tools. There are two possible ways to

implement the heuristic, either such that an output is considered to be change if its

address has not appeared in any previous transactions (we call this variant local),

or such that over the entire blockchain it appears in only one output (global). The

latter thus depends on the particular state of the blockchain.

Applying the local heuristic to the standard transactions with unknown change

produces a large supercluster, including 124.8 million transactions and 281.3 million

addresses. 166 of the tagged clusters appear in this supercluster. Similarly, the

global variant produces a supercluster containing 133.1 million transactions and

298.4 million addresses, with 177 tagged clusters ending up in the supercluster.

To characterize the difference between the clusterings, we look at the probability

that two random addresses are clustered in a particular clustering. The probability

of two addresses being clustered together increases by a factor of 40 when using the

Meiklejohn heuristic compared to our constrained clustering, further highlighting

the cluster collapse (cf. Table B.2 in the appendix).

Finally, we take closer look at the individual predictions. First, comparing the

predictions of the local Meiklejohn heuristic to those of our constrained clustering,

they overlap on 71.2 million transactions and differ for 1.3 million of those. The

global heuristic differs on 1.9 million transactions out of an overlapping 81.1 million.

For those conflicting predictions, summing up the pairwise differences of output

values in each transaction (an upper bound on the economic activity / payment

volume that might be misattributed when clustered) amounts to BTC 2.1 million, or

USD 16.6 billion (computed with the corresponding daily exchange rate for each

transaction) of economic activity for the local heuristic. For the global heuristic, the

difference amounts to BTC 4.1 million, or USD 38.7 billion.
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4.7. Discussion

Our results confirm existing expectations (e.g., [134]) that in many instances change

address detection is feasible with high precision. This may motivate users to adopt

privacy-enhancing countermeasures. Techniques to avoid address reuse (such

as one-time addresses [157]) would reduce the effectiveness of the multi-input

heuristic and thus also of our ground truth extraction technique. Widespread use of

cooperative obfuscation techniques like CoinJoin [99] and PayJoin [51] would make

multi-input clustering unreliable (by causing cluster collapse), and ambiguity-based

obfuscation such as the randomization of address types (e.g., [21]) could thwart

the fingerprinting heuristics. If users adopted these techniques more widely (cf.

[110]), it would also make law enforcement investigations into cryptocurrencies

more challenging, increasing the need for complimentary approaches that do not

rely on address clustering (cf. Chapter 5).

The transparency blockchains provide, and our work respectively, are highly

useful beyond law enforcement purposes. Researchers studying social or economic

questions, using cryptocurrencies as a “social science lab” [24], benefit from increased

transparency. Blockchains contain a valuable trove of financial data that traditionally

hasn’t been available to researchers [22]. In this context, our techniques can help to

remove ambiguity about ownership of funds, improving data quality and leading

to more realistic estimates.

4.8. Summary

Address clustering is an important cornerstone of many blockchain analyses. In this

chapter, we’ve taken a first step towards building better models that allow analysts

to identify change outputs in transactions, enabled by a new ground truth data set
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extracted from the Bitcoin blockchain. Evaluating this data set, we find that for

many transactions identifying the change address is feasible with high precision.

Importantly, the ability to fingerprint transactions based on Bitcoin protocol features

in order to determine change outputs has become highly effective over the past

years. This dependence of users’ privacy on how others create transactions yet again

demonstrates how privacy in cryptocurrencies is inherently interdependent.

Crucially, our work is the first to apply machine learning to the problem of change

identification. We find that our random forest model outperforms a baseline voting

mechanism, detecting twice as many change outputs when targeting low false

positive rates. This model can be applied to other standard transactions on the

blockchain, highlighting how the privacy-sensitive disclosures of some users can

affect the privacy that Bitcoin provides at large. Turning to the subsequent clustering

of change addresses, we’ve demonstrated that constraints based on our model’s

predictions can help prevent cluster collapse. Finally, we’ve explored the impact

of our clustering on the outcome of economic analyses. We hope that this work

will encourage and enable further research into the privacy implications of change

address detection as well as techniques for address clustering.
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5
Effective Cryptocurrency Regulation

Through Blacklisting

5.1. Introduction

“Criminals are early-adopters of new technology” — this colloquial statement

about the tug of war between criminals and law enforcement readily applies to

cryptocurrencies like Bitcoin. Being open financial transaction systems, they allow

pseudonymous participation, facilitate global payments, and don’t rely on a central

entity. This unique value proposition, however, comes at a price. Since their

inception more than ten years ago they have been associated with money laundering

[61, 112, 141, 151], the sale of narcotics and illegal goods [37, 146], extortion and

ransomware [84, 125, 126, 151], investment fraud and scams [76, 158, 159] or human

trafficking [133].

Fighting the criminal use of cryptocurrencies meanwhile faces unique challenges.

In most financial systems, know-your-customer (KYC) procedures tie accounts to

account holders’ identities, enabling identity-based blacklists and enforcement. In

cryptocurrencies, however, identity-based regulation is inherently ineffective (cf.

[113]). Bitcoin addresses can be created anonymously, in unlimited quantities, and

without central oversight. Criminals can thus easily evade static identity-based

measures by generating new addresses to receive funds or launder their coins.
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As part of their anti-money laundering (AML) compliance programs, regulated

entities such as cryptocurrency exchanges have started using transaction screening

services to assess incoming funds (e.g., [35, 120]). As normal users don’t have

access to these services, their widespread use creates information asymmetries that

leave users at risk of receiving funds they cannot spend at exchanges. Detection of

illicit activity by intermediaries also does not provide a comprehensive deterrent to

combat money laundering that takes place outside of regulated intermediaries.

Instead of relying on identity-based measures and proprietary transaction screen-

ing, regulators can make use of the inherent transparency and traceability of the

blockchain. As transfers in Bitcoin reference the origin of the funds they are spend-

ing, it is possible to follow money derived from illicit activity from one transaction

to the next. This allows to blacklist individual transaction outputs (think coins) and

recursively enforce such blacklisting [113]. By requiring intermediaries in the Bitcoin

ecosystem to check the origin of coins against the blacklist before accepting them,

all users are incentivized to adhere to the blacklist, addressing money laundering

and other criminal activity more effectively.

Transaction blacklisting in Bitcoin has been discussed both from a technical

[2, 5, 6, 25, 75, 113] and legal [5, 25, 75, 81, 138] perspective. However, it hasn’t

received much attention in policy discussions about regulating cryptocurrencies yet.

Regulators so far have followed an optimistic approach of waiting for the ecosystem

to mature, and have largely abstained from regulation that could potentially hinder

innovation. Cryptocurrency advocacy groups have also supported such a path, often

highlighting howBitcoin’s transparency already enables retroactive law enforcement

investigations [119].

However, supplementing existing regulation with transaction blacklisting could

increase the effectiveness of anti-money laundering in cryptocurrencies today, and
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will become even more important as cryptocurrencies get more widely used outside

(i.e. without the involvement) of regulated intermediaries. Blacklisting could at

some point also start to occur organically through individual regulators’ actions or

court decisions (e.g., [81]), but a holistic regulatory approach, including common

principles and technical standards, is desirable to make it effective in practice.

Like all anti-money laundering regulation, blacklisting has to balance the some-

times competing interests of transaction efficiency, users’ privacy, and disincen-

tivizing the criminal use of cryptocurrencies. Compared to an unregulated cryp-

tocurrency, it may raise transaction costs and reduce the fungibility or time-value of

coins. At the same time, reducing criminal activity and strengthening the ownership

rights of coin holders could benefit the overall adoption of cryptocurrencies. For

blacklisting to be a viable option, its impact needs to be well understood and the

cryptocurrency remain practical to use.

To this end, we explore the intricacies of blacklisting and how it would impact

the cryptocurrency ecosystem. First, we show how blacklisting fills current gaps in

AML regulation of cryptocurrencies and protects users from receiving funds derived

from illicit activity (Section 5.2). Next, we discuss the practical aspects of setting

up and using transaction blacklisting in a cryptocurrency like Bitcoin (Section 5.3).

Once blacklisting is in place, users can employ new mitigation strategies against

the risk of accepting funds which could get blacklisted in the future (Section 5.4).

Next, we systematize important properties of blacklisting policies and review five

policies that have been proposed in the literature (Section 5.5). Acknowledging that

blacklisting may not be feasible in all cryptocurrencies, we describe the degree to

which blacklisting can remain effective in the presence of more privacy-preserving

cryptocurrencies (Section 5.6). Finally, we discuss common concerns around
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blacklisting, such as its impact on fungibility and privacy (Section 5.7), and conclude

with a brief outlook (Section 5.8).

5.2. Combating Money Laundering in Bitcoin through

Blacklisting

In this section, we first review the current state of AML regulation as it applies

to regulated Bitcoin intermediaries such as exchanges. Then, we discuss the

shortcomings of the current regulatory landscape, specifically how the focus on

accounts and regulated intermediaries misses money laundering happening outside

of exchanges and how it puts users at risk of receiving money they cannot spend.

Finally, we sketch a more effective solution: how making information about money

laundering public would make combating money laundering more effective and

better protects users.

5.2.1. Background: AML regulation in the US

Anti-money laundering (AML) regulation aims to prevent and disincentivize the

(re-)introduction of money derived from illegal activity into the legal economy. In

the United States, money laundering is prohibited throughmultiple, complementary

laws, the most important ones being the Bank Secrecy Act (BSA) of 1970, the Money

Laundering Control Act of 1986, as well as Title III of the USA PATRIOT Act of 2001

(also known as Title III: International Money Laundering Abatement and Financial

Anti-Terrorism Act of 2001).

The Bank SecrecyAct of 1970 requires financial institutions to fulfill record keeping

obligations and to report large or suspicious transfers. The original intention of the

BSA was to make the placement of cash proceeds of drug sales harder by creating
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a paper trail that investigators could follow [104]. Yet, it did not make money

laundering itself illegal: money laundering was only considered a by-product of the

actual crime from which the proceeds were derived, which would be prosecuted.

The BSA also did not make (attempted) evasion of the reporting requirements illegal.

Criminals were able to structure transactions in a way that would avoid reporting

requirements, e.g., by making cash deposits slightly below the reporting threshold.

The Money Laundering Control Act of 1986 made money laundering a federal

crime and applies to any US person (not just financial institutions). It also fixed

loopholes of the BSA by explicitly making evasion of reporting requirements a crime.

18 U.S. Code § 1956 prohibits the transfer of funds derived from “specified unlawful

activity” with the intent of promoting specified unlawful activity. In addition,

18 U.S. Code § 1957 prohibits monetary transactions above $10,000 derived from

specified unlawful activity and conducted by, through or to a financial intermediary,

without requiring intent of promoting unlawful activity [29]. Both sections feature

a knowledge requirement: a person must know that the money is derived from

unlawful activity in order to be guilty of money laundering – just a suspicion that

the money might be derived from unlawful activity is not sufficient.

The International Money Laundering Abatement and Financial Anti-Terrorism

Act of 2001 (Title III of the USA PATRIOT Act) further strengthened these money

laundering regulations. It requires companies to have an AML compliance program,

including at a minimum the development of internal AML policies, procedures

and controls, the designation of a compliance officer, employee training as well

as independent audits of the program (31 U.S. Code §5318 (h)). The act also

classified Money Services Businesses (MSB), which are businesses that transmit or

convert money, as financial institutions, making it easier to apply existing financial

regulations to them (Section 359). The Patriot Act furthermore widened the scope
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of anti-money laundering regulation by including the support of foreign terrorist

organizations as a money laundering offense.

5.2.2. Existing AML regulation’s focus on accounts is ineffective

in cryptocurrencies

Banks constitute centralized entry points to the traditional financial sector, making

them a convenient target to enforce AML regulation. Cryptocurrencies like Bitcoin

however operate fundamentally different from traditional financial systems. Account

creation is independent of any financial institution and without the ability to enforce

identity verification requirements. Instead of maintaining accounts as entries in

a centralized database (allowing to enforce KYC), cryptocurrency “accounts” are

represented by cryptographic key pairs. The public key of such a pair is used as

the account identifier (i.e. the “address”), and digital signatures created with the

private key authorize payments. As anyone can create new key pairs and use them

to receive and send coins, the system works completely without a central authority.

Because creating keys is fast and cheap, one-time use of addresses is encouraged:

every time a user receives money they can create a new address, increasing privacy

as their activity is split among many different addresses. Identifying addresses

belonging to the same user is possible only heuristically and likely to be incomplete.

With no oversight over account creation, cryptocurrencies lack a natural leverage

point to enforce KYC or record keeping requirements. Identities can only be acquired

and verified when users cross the boundary to the traditional financial system by

interacting with regulated intermediaries, such as exchanges or payment providers.

But even if identities can be acquired at these intersections, regulators won’t gain a

complete picture of an individual’s transactions as these could be facilitated using
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many different addresses (cf. Chapter 4), only a small subset ofwhich become known

to the intermediary. As a result, much activity in the system is not attributable.

This inherent limitation has started to draw regulators’ attention. In 2019, the

Swiss regulator FINMA issued guidance requiring financial institutions to verify

that the receiving wallet of an outgoing transfers belongs to the customer [64]. In

December 2020, the Financial Crimes Enforcement Network (FinCEN) proposed

rule making that would require financial intermediaries to record and verify

additional information about counterparties using “unhosted” wallets [63]. And

recent guidance by the Financial Action Task Force (FATF) suggested to include

transfers from virtual asset service providers (VASP) to non-VASPs under the travel

rule, which requires financial intermediaries to collect identifying information about

the recipient [154]. Yet, none of these approaches are effective as they do not affect

any transactions after the initial withdrawal to the unhosted wallet, and at the same

time require intermediaries to collect large amounts of personal data.

Right now, many cryptocurrency transactions are likely driven by speculation

[132]. But in the future, cryptocurrencies could enable large volumes of decentralized

commerce that takes place between individuals only, facilitated by decentralized

protocols that don’t require the involvement of a regulated intermediary. Cryp-

tocurrencies also do not distinguish between national and international payments.

National regulation efforts that depend on sensitive private information about users’

identities and their spending habits are ineffective in such an environment.

5.2.3. The effectiveness of regulating exchanges is limited and

users are at risk of accepting money they cannot spend

Cryptocurrency exchanges currently constitute the major interface between the

traditional financial sector and the Bitcoin ecosystem. Exchanges allow users to
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deposit bitcoins or fiat currency and convert them from one to the other. They are

usually custodial, as they hold users’ funds in their own wallets (in the case of

cryptocurrency) or bank accounts (for fiat currency). In the United States, custodial

exchanges are considered to beMSBs and thereforemust complywith the previously

discussed AML regulations [62].

To fulfill the abstract requirements of these regulations, including the development

of an effective AML compliance program that has “reasonable” measures to prevent

money laundering, many exchanges have adopted the use of blockchain intelligence

services to screen customers’ transactions.

These services are designed to detect transactions that originate from illicit sources,

such as dark web markets or sanctioned individuals. Exchanges use them to screen

customers’ incoming funds before depositing them into the respective accounts. If

suspicious transactions are detected, accounts may be frozen and customers asked

for additional information about the origin or purpose of funds, or customers might

be prevented from further using the service altogether.

As (to the best of our knowledge) no detailed technical information about how

these serviceswork exactly is publicly available, the following description is based on

blog posts (e.g., [85, 145]) and informal discussions. To detect suspicious transactions,

these services rely on large databasesmapping Bitcoin addresses to known identities.

Their ground truth comes from interaction with platforms and marketplaces in

the Bitcoin ecosystem, from the use of their products by intermediaries, as well as

from law enforcement and other sources. The identified entities are then grouped

into risk classes. To derive a risk score for a specific transaction, it is checked for

originating from or being destined for a known entity.

These current practices raise three general concerns. First, the existence and use

of such databases is a potential privacy concern for Bitcoin users. While exchanges
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do not send customers’ identities to the screening services [85, 145], the collected

data may still allow to re-identify users when combined with address clustering

and external datasets, or specific knowledge of an individual’s activity.

Second, transaction screening at intermediaries is not sufficient to combat money

laundering in Bitcoin. While currently most exchanges rely on such services to

identify money derived from illicit activity in order to comply with the (rather

unspecific) requirements of AML regulation, their use does not prevent money

laundering occurring outside of regulated intermediaries. And companies in

countries with less strict AML regulation may have little incentive to implement

such measures in the first place.

Third, individual users who want to make payments without the involvement

of an intermediary don’t have easy access to transaction screening services to

perform their own due diligence before accepting coins. This creates information

asymmetries about the quality of coins. As a result, whenever they accept coins

from anywhere but regulated entities they are at risk of receiving illicit funds that,

unknowingly to them, they won’t be able to spend.

5.2.4. Public blacklists of funds derived from illicit activity make

AML more effective and protect innocent users

We identified three areas in which the current regulatory landscape can be improved:

reducing the dependence on knowledge of account ownership, improving the

effectiveness of AML outside of regulated intermediaries, as well as providing more

transparency to protect innocent users. A regulatory approach based on public

blacklists for illicit coins [25, 75, 113] would address all three of these issues.

Blacklists are a well-known tool in a regulator’s toolbox to prevent interaction of

regulated parties with certain outside entities. For example, the Office of Foreign
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Asset Control (OFAC), a US regulator responsible for enforcing trade and economic

sanctions against foreign countries, maintains a list of identities of foreign nationals

that US entities are forbidden from interacting with, in order to prevent those listed

from participating in the global economy. And in many areas of computer security,

such as spam prevention or defending against denial of service attacks, defense

mechanisms rely on blacklists. In the context of Bitcoin, a blacklist would contain

specific coins that are known to be derived from illicit activity. By tracing these

coins from one transaction to the next, they can be separated from the legal economy

[25, 113].

Blacklisting coins works on the basis of transactions and is recursively applied

when an illicit coin is spent in a new transaction. The advantage of a transaction-

based approach is that it is not necessary to know any identities behind addresses.

Anyone can check whether coins of a particular transaction are illicit by checking

the blacklist. Whenever illicit coins are spent, coins in the new transaction inherit

the illicit status, ensuring that it is impossible to launder coins by moving them

through a chain of transactions to an unknown address (in fact, the exact address a

coin is associated with becomes irrelevant).

Public blacklists are effective at fighting money laundering outside of regulated

intermediaries. Since anyone can check the coins they are about to receive, those

holding illicit coinswon’t be able to spend them. While only regulated intermediaries

would be legally required to reject or confiscate illicit coins, every user has an incentive

to check the blacklist, as they wouldn’t be able to spend listed coins themselves. At

the same time, once it is publicly known which coins are derived from illicit activity,

the ability to check coins before accepting them reduces the risk of receiving coins

that the user cannot spend at an exchange.
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Public blacklists enable public scrutiny: while there’s currently a lack of trans-

parency about exchanges decisions’ to accept coins, any incorrect or malevolent

blacklisting of coins (e.g., for political censorship) would be detectable, and could

then be openly questioned (or challenged in court). Having a standardized process

to list funds will furthermore improve regulators’, law enforcements’ and courts’

effectiveness at combating crime in cryptocurrencies. And if blacklists effectively

deter crime, they can even reduce current reliance on potentially privacy-invasive

practices of mapping out the Bitcoin ecosystem.

Of course, implementing public blacklists for cryptocurrencies is not a panacea. It

requires additional infrastructure and makes sending and receiving cryptocurrency

more involved as users will want to check the blacklist before accepting coins. And to

make blacklists effective for a global payment system, some degree of international

coordination is necessary to prevent criminals from routing their funds through

countries that don’t enforce the same blacklists. Regulators and law enforcement

might be reserved towards a regulatory solution that affects normal users and

requires making information about illicit activity public. And the cryptocurrency

community itself might object such an approach, since it introduces centralized

control that cryptocurrencies were envisioned to evade in the first place. In the rest

of this chapter, we describe how such a system can work in practice and address

these concerns in more detail.

5.3. How Blacklisting Would Work

Enforcing transaction blacklists impacts the way payments are conducted in a

cryptocurrency. In this section we recall how recursive transaction blacklisting

works, discuss the role regulators would need to take on and how blacklisting affects
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Table 5.1.: How blacklisting would change the Bitcoin ecosystem

Stakeholder Aspect Change Description Section

Ecosystem Decentralization Decrease Centralized entities may be better able to
offer more convenient solutions for users to
handle blacklisting compared to decentralized
alternatives

5.3,
5.4

Privacy Mixed Centralization could reduce privacy, less
reliance on privacy-invasive address tagging
can increase privacy, payment networks and
privacy overlays can increase privacy

5.6

All users Taint check Major change Users are incentivized to check coins against
blacklists before accepting payments

5.3.1,
5.3.6

Risk of future
blacklisting

Major change Exposed by public information, now requires
use of mitigation strategies

5.4

Money Services
Businesses

Existing AML
requirements (KYC,
reporting, etc.)

No change Potentially reduced reliance on
privacy-invasive identity-based measures if
blacklists are effective

5.2.1

Taint check Major change Required to check incoming funds against
blacklists and freeze/reject tainted funds

5.3.5

Risk of future
blacklisting

Objective
change

Risk assessment to protect against future
blacklisting of high-risk transactions

5.4

Additional services New Exchanges can provide insurance against
future blacklisting

5.4.4

Wallets Taint check Voluntarily Integration of automated blacklist checks 5.3.6
Risk of future
blacklisting

Voluntarily Integration of mitigation strategies 5.4

Coin selection Minor change Depends on taint policy and objectives 5.3.6

Payment Channel
Networks

Channel establishment Minor change Taint check + risk assessment as for normal
payments, preference for trusted
counterparties

5.4.3

Risk of future
blacklisting

Minor change Only immediate channel hop poses risk 5.4.3

Decentralized
protocols

Taint check, risk of
future blacklisting

Voluntarily May incorporate signaling or coin negotiation
into protocol

5.6.2

Regulators / Law
Enforcement

Blacklists Major change Issue cryptocurrency-specific blacklists,
define taint propagation policies and specify
actions cryptocurrency intermediaries and
users need to implement, define standardized
API for clients to query blacklists

5.3.3

International
cooperation

Major change International cooperation and coordination
required (e.g., through FATF or Interpol)

5.3.3

Reporting crimes Major change Users can submit evidence of crimes to law
enforcement to blacklist coins

5.3.4

Contesting listings Major change Legal process to object unreasonable or
incorrect blacklisting of coins required

5.3.4

Courts Forfeiture Minor change Able to blacklist known funds that cannot be
seized by LE

[81]

119



1.5 BTC
Address 0

. . .

Previous transactions

. . .

Inputs

Fee

1 BTC
Address 3

1 BTC
Address 2

1 BTC
Address 1

Outputs

Figure 5.1.: The structure of the Bitcoin transaction graph allows to follow coins from one trans-
action to the next

exchanges, merchants and normal users. We provide a summary of the anticipated

changes in Table 5.1.

5.3.1. Recursive blacklisting

The goal of AML regulation is to prevent money that was acquired through illegal

activity from entering the legal economy. A blacklist-based approach can achieve

such separation, requiring users to check coins before accepting them and refusing

those with illicit origin. In the context of Bitcoin, a blacklist would include specific

outputs of transactions that are associatedwith illegal activity, such as theft, extortion,

money laundering or trade of illegal goods [25]. When those outputs are spent,

their illicit status (we refer to it as taint) is inherited by the transaction spending it.

That means that even when coins originating from an address known to be involved

in illicit activity are moved through other addresses multiple times, they retain their

taint and can be identified as illicit. By recursively assigning taint to all following

transactions laundering illicit coins becomes impossible.

Figure 5.1 shows the structure of a typical Bitcoin transaction. Transactions

contain outputs that associate an amount of bitcoins with an address and spend

value from previous outputs that are referenced by inputs. By mapping taint from
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the inputs to the outputs (discussed in detail in Section 5.5), taint of a former

transaction is retained and applied to new outputs [113].

Blacklisting outputs effectively freezes the value containedwithin the outputwhen

regulated entities are forbidden to accept these coins. When coins are transferred

to a different address, the link between inputs and outputs allows to follow the

coins and recursively apply the blacklisting to the new transactions. Intermediaries

would not be allowed to accept coins that stem from these blacklisted outputs, or

would need to ignore or seize the part of the funds that are tainted.

Because taint is only propagated when outputs are being spent, it is not possible

to taint other users’ funds simply by sending tainted coins to their addresses. Only

when those tainted coins are combined in a transaction with other inputs, their taint

can propagate to the user’s coins.

A note on terminology. Fox [65] discusses the difference between the terms

“following” and “tracing” in English law (i.e. common law in England and Wales).

“Following” implies that the same asset is being followed, whereas “tracing” means

identifying a new substitute for the original asset. In many cryptocurrencies (e.g.,

Bitcoin), a transaction effectively destroys the value present in its inputs and recreates

the value in its outputs. Just as if someone were to melt gold coins to create new

coins of a different weight, there is no clear mapping from the value in the inputs to

the value in the outputs. Hence, it cannot be followed, only traced.

In the context of cryptocurrencies the term “tracing” is used with a different

meaning: the deanonymization of patterns or techniques designed and employed

to obfuscate payment flows. Privacy-focused cryptocurrencies like Monero use the

term “untraceable” to describe a specific form of unlinkability: between the input in

a transaction and the output that is being spent by this input [117]. In a way, there

can be two types of tracing: identifying the output (of a previous transaction) that
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is spent by an input (taking a backwards look), and identifying which output (in

the same transaction) receives value from an input (taking a forward look).

To make the distinction between these two types of tracing clear, we will use

the following terminology in this chapter. First, we are primarily interested in the

flow of illicit value. We call such value “tainted”. A “taint policy” defines how

taint is “traced” from inputs to outputs (within one transaction), but we use the

term “mapping” instead. When such mappings are applied recursively, we say that

taint is “propagated” through the transaction graph. Second, we use the terms

“traceable” and “untraceable” as used in the cryptocurrency privacy literature, i.e.

referring to unlinkability between outputs and the inputs in which they are spent.

5.3.2. Legal grounds

When property is stolen and resold to an unsuspecting (bona fide) purchaser, even

multiple times, the original owner generally retains their title in the property. As a

result, they can reclaim the property from the bona fide purchaser (in English law

this is known as the “nemo dat rule” [6]). Blacklisting facilitates such recovery of

stolen property in cryptocurrencies.

However, exceptions to this principle exist: the bona fide acquisition rule excludes

certain types of property, such as cash and other legal tender, from falling under

this general principle in order to balance competing interests between unrestricted

economic exchange and ownership rights [12]: frequent exchange of cash is critical

for efficient economic exchange and tracing the flow of cash from one person to the

next is impractical.

Whether the rule applies to cryptocurrencies has not yet been established, and in

part depends on their legal status (i.e., whether they should be treated like money).

Balthazor [12] argues that “if the cost of tracing a transaction evolves to have little
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or no impact on the free flow of money, then this erodes the economic justification

for the bona fide acquisition rule.” Blacklisting could provide just such a means

for efficient tracing of stolen cryptocurrency. Furthermore, cryptocurrencies lack

options and remedies similar to those of traditional enforcement. Their decentralized,

cross-national nature complicates law enforcement investigations, the identification

of perpetrators as well as the seizure or retrieval of funds.

For the purpose of this chapter we assume that the law permits recursive blacklist-

ing of coins. We refer the interested reader to in-depth discussions of these issues

by Balthazor [12] for U.S. law, by Fox [65] for English law, and by Grzywotz [75] for

German law.

5.3.3. Blacklist governance

A blacklist would be published by a regulatory agency that is tasked with the

prevention of financial crime. The regulator would be responsible for adding entries

to the blacklist as well as defining the terms of how it should be followed. For

example, they would specify how taint propagates from one transaction to the next

(cf. Section 5.5) and how regulated intermediaries should treat tainted coins.

While the abstraction of a single blacklist is useful to reason about blacklisting,

in practice there will likely be multiple blacklists issued by different regulators. In

the US, financial regulation is split between a variety of different agencies. State

regulators, such as the New York Department of Financial Services, exist alongside

federal regulators such as FinCEN. Different regulatory and law enforcement

agencies have oversight over different areas or jurisdictions, for which they would

issue individual blacklists, with potentially different rule sets. For example, FinCEN

could maintain a general list of bitcoins stemming from money laundering and
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terrorist financing, while OFAC maintains a list related to economic sanctions, and

the DEAmight list coins specifically related to the illegal sale of drugs and narcotics.

Similarly, other countries would maintain their own blacklists, and entities that

conduct business in different countries would need to adhere to their respective

blacklists. To make blacklisting effective and prevent criminals from cashing out

money that was stolen in the US on a European exchange, international coordination

between the different countries is necessary. As with traditional financial regulation,

and cybercrime more generally, blacklisting inherits the challenges typical in

international cooperation. Countries need to synchronize their blacklisting efforts,

such that cross-national transactions are not inhibited by a highly fragmented

landscape of blacklists and policies.
1
Information sharing can be carried out by

existing structures for international cooperation, such as the Egmont Group of

Financial Intelligence Units, the Financial Action Task Force on Money Laundering

(FATF) or the International Criminal Police Organization (Interpol). In order to

limit the complexity for end-users, blacklists should have a standardized API and

machine-readable rules such that client software can automatically parse them and

adhere to their requirements.

5.3.4. Adding an entry to the blacklist

Entries are added to a blacklist as a result of a criminal investigation, for example

when investigators were able to locate a criminal’s bitcoins but are not able to seize

it (cf. [81]), or as a direct reaction to a crime, such as the payment of a ransom. We

note that regulators and law enforcement may in specific instances choose not to list

assets if they are part of an ongoing investigation, e.g., if they hope to identify a

1
If different jurisdictions select different taint policies, outputs could have different legal status

across countries.
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specific criminal when they attempt to cash out their proceeds on an exchange.
2
In

such a scenario, listing the assets could compromise the integrity of the investigation.

A user whose coins have been stolen, or who was blackmailed and paid a ransom,

would need to submit supporting evidence to the operator of the blacklist (e.g.,

through a law enforcement entity such as the FBI’s Internet Crime Complaint

Center). To prove ownership of the coins at the time of the incident, the user would

create a digital signature with the keys that held the coins. In case of a theft on an

exchange (e.g., due to phishing) where the user does not hold the keys themselves,

the exchange could submit such a proof on behalf of the user. In addition, the user

would submit supporting evidence that their coins were indeed stolen or extorted

and a statement of good faith under penalty of perjury. Making incorrect claims

about stolen coins would hence be a crime that can be challenged through traditional

enforcement channels.

Due to the decentralized nature of Bitcoin and a lack of a central registry, regulators

are unable to inform the holder of coins of a listing of their funds. While custodians

could be required to inform users when their coins have been listed, users of

non-custodial wallets need to regularly check their coins against the blacklist (which

could be done automatically by their wallet software).

As the listing of funds effectively corresponds to the freezing of assets, there

must be a legal process in place to contest unreasonable listings as well as a

way for incorrectly affected persons
3
to complain and take legal action against it

[75]. Such a process could be modeled based on existing processes, e.g., OFAC’s

license application to release blocked funds [124]. Affected users would submit

an application to the regulator to remove the listing of coins from the blacklist,

2
Guidance byOFAC strongly encourages companies affected by ransomware to report their incidents

to law enforcement in order to facilitate such subsequent investigations [152].

3
Note that objecting to a listing would only be feasible for the immediate holder of the illicit coins.
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along with details about the transaction as supporting evidence that the coins were

acquired legally (e.g., bought from a reputable exchange). Depending on the type

of crime and evidence presented, some of these steps could be automated.

5.3.5. Regulated intermediaries

Blacklisting is only effective if users and businesses take it into account when

accepting coins. However, since Bitcoin is an open system, compelling users,

developers or miners to enforce a blacklist is hard due to their geographic dispersion

and limited legal options to do so. Intermediaries in the Bitcoin ecosystem, such as

exchanges or payment providers, however, do have a clear jurisdiction in which they

already follow existing financial regulation. They are responsible for a significant

amount of the transaction volume on the Bitcoin blockchain (cf. [91]) and provide

onboarding for most users acquiring bitcoins. They could be required to follow

a transaction blacklist by amending existing anti-money laundering regulations.

If exchanges and payment providers follow the rules in a blacklisting regime, any

user who at some point in the future wants to interact with them, either to convert

fiat currency into cryptocurrency or back, or to buy goods from a merchant with

bitcoins, is thus incentivized to also adhere to the blacklist. Otherwise, they might

accept coins that are worthless when being deposited at an exchange.

Depending on the legal implications of blacklisting, regulated intermediaries

would either accept blacklisted coins, freeze them and report the incident to the

responsible regulator, or be forbidden from accepting them in the first place. If

coins get tainted while in control of an exchange, it can potentially sanction the

user who deposited the coins, reduce the nominal value of their holdings on the

exchange as well as report the user to law enforcement (this may depend on whether

the coins were directly listed, or can be traced back to listed coins). In a follow-up
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investigation users might be required to reveal from whom they received their

tainted coins.

Intermediaries could offer customers a quality guarantee for coins [113], i.e. if

purchased coins are retroactively blacklisted the exchange would compensate the

user for the difference in quality or exchange the coins for clean ones. They could

achieve such higher quality either by holding coins long enough (i.e. using more of

their reserves to facilitate payments), or by adding a risk premium to their fees.

Not all intermediaries in the Bitcoin ecosystem are centralized or operate within a

identifiable jurisdiction. There is a trend to decentralize services such as exchanges

[20] or privacy services [110]. While decentralized platforms cannot be directly

targeted by regulators, their users still have an incentive to adhere to blacklisting if

they want to spend their coin at a regulated intermediary in the future (or want to

transfer it to a user who does). As such, these platforms would lose users if they

put them at risk of receiving tainted coins [2].

5.3.6. Making and accepting payments

Whenever a user receives funds, they need to verify that the coins they are about to

receive are not (significantly) tainted. In order to do so, they need to know which

coins they will receive. Here, we sketch three different options.

Returning coins. A simple solution would be for a payee to return funds to the

payer when the coins received are tainted. However, the address from which the

coins were originally sent might not allow the payer to receive them back. For

example, when sending money from an exchange, the coins might come from

an address under the control of the exchange that is not directly linked to the

user’s account. Another disadvantage is that a refund transaction incurs additional
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transaction fees and adds “unnecessary” transactions to the blockchain. Finally, it is

undesirable that the payer has to hand over control of their bitcoins to the payee in

order for them to check and accept or reject the payment.

Refundable transfers. To address the last issue, the payer could lock funds in a

2-of-2 multisig transaction that contains a time-locked refund. To spend these funds,

both payer and payee need to sign a spending transaction. If the payee provides

their signature, it indicates acceptance of the coins. Going further, the payer could

lock more funds than nominally required and have the payee create a transaction

with an amount that they deem equivalent to the risk of future blacklisting. The

payer can then choose to agree or reject the transaction by signing or refusing to sign

it. If at any point the payee becomes unresponsive, the payer can reclaim their coins

after a short timeout period. While this solution provides more flexibility and the

coins stay under the payers control until the payment is finalized, it always requires

two on-chain transactions. It also may not be desirable when short transaction

finalization times are important.

Extending the Bitcoin Payment Protocol. The Bitcoin Payment Protocol is a

standardized protocol that allows a merchant (or payee) to specify details of a

Bitcoin payment, such as the destination address and the amount, and make these

programmatically available to the user’s wallet [7]. The user’s wallet receives a link

to a payment request (e.g., by opening a URL or scanning a QR-code) and retrieves

the payment details from the merchant’s website. This protocol could be extended

to include specific details for the handling of blacklisted coins and the risk of future

blacklisting. For example, it could specify whether tainted coins are accepted by

the merchant and how these would be discounted. It could also specify a set of

blacklists (e.g., as API endpoints) that the customer must check their coins against.
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Figure 5.2.: In a blacklisting regime users are at risk of receiving coins that might get blacklisted
in the future [113]

Most of the evaluation could happen on the payer’s side, preserving privacy as

the merchant will only see the final set of coins chosen. If the user chooses coins in

a way that violate the rules set by the merchant, the merchant can reject and refund

the payment or, if legally required to do so, freeze the funds they received.

Wallet support. Both the multisig solution as well as the extension of the Bitcoin

payment protocol require end-users’ wallets to support these specific protocols.

Wallets furthermore need to modify their coin selection algorithms to take the

taint of coins into account. Currently, coin selection is often optimized to reduce

transaction fees or increase users’ privacy (cf. [1, 56]). In a blacklisting regime,

wallets need to take the taint status as an additional constraint andmaymake further

optimization depending on the taint policy (cf. Section 5.5).

5.4. Managing the Risk of Future Blacklisting

While it is straightforward to check whether coins are tainted at the time a user

accepts them, in a blacklisting regime users also need to account for the risk of

receiving coins that get blacklisted in the future [113]. After any illicit activity has

taken place, there will be a time delay until those coins appear on the blacklist (cf.

Figure 5.2). During this time a user might accept unlisted coins, only to later discover

that those originate from illicit activity and have been listed, leaving them with

coins they cannot spend. While this risk is similar to the current risk of receiving
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coins that an exchange may not accept, the reduced time frame and the availability

of public information enable new mitigation strategies. Users can combine these

depending on their individual needs.

5.4.1. Time-delayed payments

The time since a coin was created is a useful indicator of its risk in the context of

future blacklisting. Assuming that criminal activity is associated with some transfer

of funds (e.g., payment of a ransom or theft of coins), then blacklisting should

happened after the transaction has been put on the blockchain. The criminal hence

wants to get rid of their illicit coins quickly, before they get listed. A coin that has

been sitting in a user’s wallet for longer has thus a lower risk of future blacklisting

than a coin that has been moved recently. The longer a coin has been in a user’s

possession, the less likely it should be that it will get blacklisted in the future.

One way to systematically reduce the impact of future blacklisting would be

to limit the time frame in which blacklisting can occur. If blacklisting needed to

happen within, say, two weeks of an incident, then users could mitigate the risk

of blacklisting by preferring coins that have been sitting unspent sufficiently long.

(If the coins haven’t moved since the crime occurred, they could still be listed after

the blacklisting period expired since there is no collateral damage to the rest of the

ecosystem). However, regulators might not be willing to limit their blacklist in such

a way. Users who do not hold a variety of coins of different ages would also be at a

disadvantage.

Using coin age as a proxy for risk is inapplicable when a criminal is able to steal a

user’s private keys. The coins would appear to have sufficient age, but once spent

become subject to blacklisting. Data on private key theft is scarce: while high-profile

attacks on exchanges often garner a lot of attention (cf. [32]), the effect on ordinary
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users is likely under-reported. A survey conducted by Abramova et al. [3] found

that it may pose a risk for specific groups of users, such as traders and investors. The

risk of key theft can, however, be reduced by using storage options that are more

secure than a regular software wallet. Larger amounts of bitcoins can be kept in

multisig arrangements (where multiple keys are needed to authorize a transaction)

or hardware wallets, and software solutions that provide built-in fail safes could

further help alleviate the issue of private key theft (cf. [19, 100, 114]).

Even without a limited time period in which blacklisting occurs, increasing

the time delay between coin transfers is an effective way to reduce the risk of

future blacklisting. Users can make use of two features of the Bitcoin protocol

to enforce a time-delay until coins can be spent: time-locked transactions, and

time-locked outputs. Time-locked transactions are invalid until a future point

in time (as specified by the nLockTime field) and will be rejected by the network

until the time-lock has expired. A user could give such a time-locked transaction

to a merchant, who waits until the time-lock expires and then submits it to the

Bitcoin network. If coins get blacklisted before the transaction becomes valid, the

transaction can simply be disregarded. A slightly different mechanism to create an

artificially delay is to make use of the CheckLockTimeVerify opcode that allows

to specify a time before or after an output can be spent by different public keys.

This opcode can be combined with the aforementioned techniques to check the coin

status before making a payment, where the payee would effectively receive a specific

time window in the future in which they can claim the funds. It has the advantage

of producing an on-chain transaction, addressing the issue of stolen public keys

mentioned above: the affected user would be alerted by the move of their coins

on-chain (similar to Bitcoin vaults [114]) and could blacklist the funds before they

are accepted by the merchant.
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We note that delaying payments is a common risk mitigation strategy in the

financial sector today (e.g., [69]), and is used in the cryptocurrency space as well.

Exchanges may delay the conversion or transfer of currency if additional compliance

checks are necessary (e.g., [38]), and so they may adopt similar procedures when

they deem funds to be at high risk of future blacklisting. Charging a risk premium or

using insurance may be viable alternatives in settings where delays are undesirable.

5.4.2. Risk scoring

While the age of a coin is a strong indicator for the risk of future blacklisting, it

is not the only feature that can be used to assess this risk (cf. [113]). A risk score

can potentially be constructed based on a variety of indicators, including structural

features of the transaction graph or private information about the ownership of

addresses. Such a score is similar to traditional fraud detection for credit card

payments or the risk assessment that banks are required to perform prior to

conducting large payments [75]. However, in order to construct a precise risk model,

relevant data must first be made available.

As discussed previously, cryptocurrency exchanges are already using risk scores

provided by blockchain intelligence services to screen incoming payments. Chainal-

ysis, for example, offers a “Know Your Transaction (KYT)” API that allows to

“identify high risk transactions on a continuous basis” [34]. Currently, these scores

are primarily available to enterprise customers such as exchanges. However, they

could easily be offered to a larger group of users in order to be useful to supplement

risk scoring in a blacklisting regime.
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5.4.3. Payment networks

The Bitcoin protocol is inherently limited in the number of transactions that can be

processed, as all transactions need to propagate through the network and be verified

byminers and full-node operators [44]. Payment networks, i.e. a network of payment

channels between individual users that can facilitate chains of payments (similar to

credit networks), may provide one viable solution [131]. As these payments do not

appear on the blockchain, it raises two important questions: can money laundering

be facilitated through payment channels, and is blacklisting still effective if they

become commonly used?

Payment channels [48, 131] allow users to conduct a potentially unlimited amount

of transfers between each other, limited only by the amount of coins locked into the

channel, by locally updating the state of the channel (i.e. increasing or decreasing

the individual shares). Only when they no longer want to use the channel, the final

balance (i.e. the settlement of all intermediary transactions) is committed to the

blockchain.

Payment channels can be combined into payment networks that allow to route

payments across multiple payment channels [101, 131], similar to transactions in

credit networks (but without the risk of a party defaulting). This allows mutually

distrusting parties to pay each other without having to open their own, direct

channel.

Unsurprisingly, payment networks can be used to facilitate illicit activity. A

ransomware operator could ask users to pay a ransom using a payment network

instead of a normal Bitcoin transaction. However, payment networks are less

attractive for money laundering on a large scale since the bandwidth available (i.e.

the amount of funds that can be sent or received) is significantly lower than in a

normal cryptocurrency transaction (e.g., the median channel size on the Lightning
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Network amounts to only 0.01 BTC, about USD 600, as of October 2021 [70]). For a

user to pay another user, there must be a path with sufficient bandwidth available

to facilitate the pairwise payments. Normal users might not be willing to make

large amounts of bitcoins available through these channels (every channel locks up

capital that cannot be used otherwise). High bandwidth may be available from large

hubs run by exchanges or other payment providers. These might decide to follow

already established KYC procedures before initiating such a connection, enabling

follow-up investigations that could reveal the criminal’s identity or coins on the

Bitcoin blockchain.
4

Payment channels are not only unattractive for money laundering, they also

remedy some of the drawbacks of blacklisting in Bitcoin for small payments.

Channels are opened infrequently, hence parties only need to check the taint of

the counterparty’s funds when a channel is opened. Opening a channel however

increases the impact of potential future blacklisting as channels are intended to be

kept open for long periods of time. This gives payment networks characteristics

similar to credit networks: while there’s no direct risk of losing funds (the primary

risk in a credit network is a defaulting counterparty), there remains the risk that

at the time the channel is closed the funds in the channel have been listed. This

incentivizes users to only open payment channels to highly trusted counterparties,

such as friends or reputable and regulated intermediaries. Moving high-frequency

transactions into off-chain networks also improves the effectiveness of on-chain

transaction blacklisting, as coins are less likely to mix with each other and the

overhead of checking blacklists and assessing the risk of future blacklisting is

reduced.

4
Currently, Lightning Network nodes do not need to register as MSBs as they do not take custody

of other users’ funds (cf. [156]).
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5.4.4. Identity and insurance

Blacklisting introduces notions of trust into Bitcoin and increases the benefit of

knowing the identities of counterparties. While many intermediaries in the Bitcoin

ecosystem are already required by existing AML regulation to verify identities,

normal users could be inclined to conduct similar identity checks prior to interacting

with other users, e.g., to better assess the risk of future blacklisting or to be able

to use traditional enforcement channels in case of future blacklisting. This could

prevent some users from transacting pseudonymously and raise transaction costs

of using Bitcoin. However, when large payments are conducted through Bitcoin

they may already be governed by a contractual relationship that is aware of the

counterparties’ identities. Furthermore, such information is only acquired locally

and not shared with outside parties or the government. For small payments, a small

risk premium might be a viable alternative.

Another potential remedy is optional co-signing of transactions by well-known

intermediaries. Today, co-signing is mostly used for enhanced security, but some

intermediaries are using it as a mechanism to prevent double-spending: by having

the assurance of a trusted third party to not double-spend a co-signed transaction,

exchanges can accept payments that haven’t yet been confirmed by the network

(e.g., [73]). In the context of blacklisting, co-signing would indicate the ability

for the regulated party to reveal the user’s identity if funds get blacklisted, to

signal that the intermediary determined the coins to be of low risk, or even to

provide assurance that the third-party provides some form of insurance against

such blacklisting. Insurance of this type could dramatically reduce the impact of

long chains of transactions that become effectively invalidated due to retroactive

blacklisting of funds in the first transaction.
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5.5. Blacklisting Policies

To make blacklisting effective, taint must propagate through the transaction graph.

A blacklisting policy specifies how exactly taint is mapped from incoming coins

(inputs) to outgoing coins (outputs).

Several blacklisting policies have been discussed in the literature. Möser, Böhme,

and Breuker [113] propose two policies. In the Poison policy, any tainted input

completely taints all the outputs in a transaction. In the Haircut policy, any taint

associated with an input is distributed equally among all outputs such that the total

amount of tainted value does not change. These policies can quickly affect large

parts of the transaction graph, yetmay appear desirable from a legal perspective (e.g.,

due to Poison’s deterrent effect or Haircut’s perceived fairness, cf. [75]). Abramova,

Schöttle, and Böhme [2] introduce the Seniority policy, in which taint is assigned to

outputs in ascending order. The policy assigns taint in the inputs to the first output

until all of its value is tainted, followed by the second output, and so on. Anderson,

Shumailov, and Ahmed [5] and Anderson et al. [6] discuss the FIFO policy, where

tainted and untainted value is mapped to outputs in the order that it enters the

inputs. They show that there is legal precedent for using FIFO in English law and

discuss advantages of using FIFO over the Poison and Haircut policies, such as

tainting fewer outputs. Tironsakkul et al. [148] propose a TIHO policy that assigns

taint towards the outputs containing the highest values, reducing the probability of

taint being split by small outputs (e.g., change outputs).

In addition to these existing policies, combining ideas from the FIFO and the

Seniority policy, we also analyze an Output-based Seniority policy, where taint is

assigned to outputs similar to FIFO, but aggregated towards the beginning of each

output. This could allow a more granular distribution of taint in transactions with
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Figure 5.3.: How different tainting policies propagate taint from inputs to outputs

potentially many inputs and outputs. Figure 5.3 provides a visual explanation of

these six policies.

We first systematize the design space for blacklisting policies and discuss the

advantages and disadvantages of the individual policies. To this end, we put

forward a set of characteristics to evaluate them. A global characteristic affects

other users or impacts the overall system (e.g., by changing incentives), whereas

local characteristics are relevant to individual users sending or receiving funds in a

transaction. A technical characteristic is of particular interest to implementations of

the policies, or blacklisting more generally. Table 5.2 provides an overview of the

characteristics of the different policies.
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5.5.1. Local characteristics

We start with two basic properties. A policy preserves value if the total amount of

tainted value is the same before and after propagating taint. The Poison policy does

not preserve taint, since any infinitesimal amount of tainted value in the inputs

completely taints all value in the transaction’s outputs. All other policies preserve

taint, though the Haircut policy requires special attention regarding rounding

errors.

A policy is deterministic when at the time of creating the transaction it is clear

how a blacklisted input would affect the distribution of taint to the outputs. All

policies discussed are deterministic, as their taint propagation does not depend on

any outside circumstances. A counterexample would be a policy where the order in

which outputs of a transaction are spent impacts the distribution of taint, which

would create unintended incentives for the recipients of coins to spend or hold

them.

Blacklisting policies can change the way users construct and agree on payments.

Most importantly, the risk of future blacklisting associated with individual inputs

can be accounted for by changing the structure of the transaction (e.g., the order

of inputs and outputs), as it determines which (and to which degree) outputs are

affected.

In a normal setting, the user creating the transaction (i.e. spending their own

funds) may have an advantage in the form of additional information about the

origin of the coins, and hence about the risk of future blacklisting. For example, they

might know that a coin came from a reputable exchange, or from a questionable

mixing transaction. Large intermediaries like exchanges or payment providers,

on the other hand, may have access to additional private information that the

user creating the transaction does not. For example, they might use a proprietary
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blockchain analysis software that provides more accurate risk estimates than public

sources. Furthermore, a merchant or exchange receiving money usually has a

stronger bargaining position to enforce a transaction structure that limits their risk

exposure. The construction of a transaction hence depends upon these potential

information asymmetries and power imbalances.

A policy may allow users to distribute risks of receiving blacklisted coins, e.g., by

allocating taint not equally among all outputs, but to specific outputs instead. Both

Poison and Haircut do not allow to distribute risk since all outputs are affected

equally (either completely tainted with Poison, or tainted relative to their value).

FIFO and Output-based Seniority provide limited flexibility: reordering the inputs

changes which outputs are affected by them. The Seniority policy provides most

flexibility, as it assigns all taint to outputs in order. This enables users to direct the

risk by choosing which output to put first. They can potentially even overfund that

first output to add some buffer before taint is assigned to subsequent outputs. The

TIHO policy assigns taint towards the output with the highest value. While this

may allow a similar distribution of risk if output values can be freely chosen, it

has several downsides. It requires the payer to have sufficient funds available (e.g.,

to create a change output larger than the actual payment), could result in larger

transaction sizes due to more inputs being used, and might even create security

risks if those additional funds need to be moved from cold to hot storage. None of

the policies allow for more granular distribution, e.g., among a chosen subset of

outputs.

To address the issue that the transaction creator may have private information

about the quality of inputs, a policy can be considered ungameable only if modifying

the order of inputs cannot influence a potential taint distribution in their favor. Any

policy that does not allow to distribute risk is ungameable, and so are the Seniority
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and TIHO policies where the distribution of taint only depends on the total amount

of taint in the inputs.

In a traditional Bitcoin transaction, users may arrange inputs and outputs in

any order they choose. This could change in a blacklisting regime, as users may

construct transactions such that they achieve some desired outcome based on the

specific policy. As a result, more information about the origins and recipients of

funds is revealed, reducing users’ privacy. Generally, a more even distribution

of taint is more privacy-preserving than a concentration of taint, as it reduces the

concern for which counterparty receives the taint.

Consider a typical Bitcoin transaction that has two outputs: a spend output and a

change output. The Seniority policy allows one user to take over a larger share of the

risk of receiving blacklisted coins by putting their output first. In a scenario where

the buyer may have less bargaining power than the seller, they might be responsible

for taking over the risk of receiving blacklisted coins. As a result, it’s more likely

that the change output is the first output rather than the second, which would be

yet another indicator that an analyst could use to identify a users’ addresses (cf.

Chapter 4). For the TIHO policy, changing the order of the outputs has no effect, but

the value of each output could similarly be used (within the limits described above)

to distribute the risk. FIFO does not aggregate taint, but the order of inputs may

reveal information about the expected risk for each output, which allows similar

considerations about identifying the change output to be applied.

5.5.2. Global characteristics

Enforcing blacklisting policies not only changes how users construct transactions,

but can also more generally affect the whole cryptocurrency.
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Blacklisting has the potential to impact many users once taint gets diffused among

coins as they change hands. One strategy to reduce this diffusion is to aggregate

taint in each transaction: rather than distributing taint equally among all outputs or

splitting it up in small chunks, taint entering a transaction is combined. Consider

the FIFO policy, where every small chunk of taint entering a transaction in the inputs

is mapped identically to the outputs. Instead, the Seniority policy allocates all

taint in the transaction towards the first outputs, thereby reducing diffusion. TIHO

aggregates taint towards the output with the highest value(s), and output-based

Seniority aggregates taint in individual outputs.

Blacklisting policies also need to take transaction fees into account and can thereby

affect mining incentives. Tainting fees is important, otherwise any complicit miner

could launder stolen coins through a transaction that designates all of its value to

the fee. When tainting fees, the taint of individual transaction fees must thus be

mapped into the coinbase transaction of the block that includes the transaction, even

though no direct reference exist. If the mechanism chosen to taint fees minimizes

the risk for miners to receive tainted fees and does not disincentivize them from

including transactions, the policy is miner-friendly. In practice, one may not be able

to prevent transaction fees from ever be tainted or the miners from ever be affected.

However, the policy should allow to minimize such interference with a miner’s

incentive to include transactions based on the fee they pay.

To consider transaction fees in such a way, two design choices must be made: the

position of the fee as a “virtual output” in a transaction (cf. Figure 5.1), and the

position of the fee as a “virtual input” in the coinbase transaction. The choice of the

output position is most important for the Output-based and regular Seniority policy.

Setting the fee first would increase the likelihood that a miner receives tainted fees,

setting it last makes the policy more miner-friendly. For TIHO, tainting the fee last,
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despite of its value compared to the outputs, would maximize its miner-friendliness.

The coinbase transaction contains not only transaction fees of all transactions in

the block, but also a fixed amount of newly minted (and thus untainted) coins.

Positioning the fees after the reward would allow a miner to not claim transaction

fees but still include transactions when using the FIFO or Output-based seniority

policy (as miners can choose to claim less than the sum of coinbase reward and total

amount of fees in a block). Putting the fees first denies miners this flexibility. Poison

and Haircut are both unfriendly towards miners, as any taint in the inputs will taint

the transaction fee. Hence, likely tainted coins will move slower, or not at all.

5.5.3. Technical characteristics

FIFO allows to track the taint of each blacklisted coin individually. Because the

policy does not aggregate taint and propagates it exactly as it enters a transaction,

tainted chunks do not impact each other. This is in stark contrast to aggregating

policies like Seniority, where different tainted inputs can individually lead to the

same outcome (e.g., the first output being tainted), but taken together produce a

different result (e.g., more than one output being tainted). As a result, FIFO allows

to combine taint individually propagated from different listed coins into a full taint

mapping. This would make it easier to follow different blacklists, as their individual

results can be combined easily.

At the same time, since FIFO tracks individual chunks of taint it requires to

maintain a lot more information than the other policies, all of which can compactly

store the outputs’ taint status using a single integer value.

Anderson, Shumailov, and Ahmed [5] furthermore highlight that the FIFO policy

allows to follow taint backwards (backtrackability): starting from a tainted output one

can map the taint back to previous transactions. This doesn’t have a direct impact
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Table 5.2.: Characteristics of different blacklisting policies

Characteristic Po
iso
n
Ha
irc
ut

FIF
O
Ou
tpu
t-S
en
ior
ity

Se
nio
rity

TIH
O

Value-preserving # G#     
Deterministic       

Risk is distributable # # G# G#  G#
Ungameable   # #   
Privacy-preserving   G# G# # G#

Aggregating # # # G#   
Miner-friendly # # G# G# G# G#

Combinable  #  # # #
Compact storage   #    
Backtrackable # #  # # #

Provides property  fully, G# partially, # not

on the user, but potentially allows for more efficient calculation of the taint status of

outputs in a database system.

5.5.4. Empirical evaluation

We conduct an empirical evaluation of the behavior of the different taint policies.

To this end, we implement them on top of the open-source blockchain analysis tool

BlockSci [87]. While a backwards-looking analysis is not necessarily indicative of

how a blacklisting policy would affect transactions once it is put into place, as users

would change their behavior in response, it is useful to get a better understanding

of the overhead the policies could impose. As such, the analysis could be interpreted

as a worst-case analysis, where users pay no attention to the taint of a coin.

We evaluate the policies on four datasets: ransomware payments for the Cerber

and Locky ransomware [84], payments to addresses blacklisted in 2018 by OFAC

[151], a list of addresses from blackmail (sextortion) scam emails collected by us
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Table 5.3.: Total number of outputs tainted, transactions traversed and percentage of tainted
value ending up in transaction fees for different datasets on 06/31/2020

Dataset/Measure Poison Haircut FIFO Output-Seniority Seniority Juniority TIHO

Blackmail (n = 273, Apr 2018—Apr 2019)
# outputs tainted 32,743,834 11,290,000 2,821 11,913 22,215 10,330 304
# txes traversed 223,333,836 183,411,521 317,391 879,722 1,093,422 1,471,504 89,183
% fee taint – – 1.06 2.64 1.38 0.69 0.09

OFAC (n = 3305, Sep 2013–Jun 2020)
# outputs tainted – – 270,537 451,581 870,672 456,477 29,963
# txes traversed – – 44,365,714 14,566,976 18,145,061 40,740,508 8,557,248
% fee taint – – 2.02 4.75 3.63 1.88 0.26

Ransomware (n = 16777, Feb 2016–Aug 2017)
# outputs tainted – – 576,694 840,363 1,591,322 617,263 48,510
# txes traversed – – 59,863,788 20,762,137 26,485,103 31,416,342 12,236,429
% fee taint – – 1.94 3.82 2.63 1.43 0.33

Random outputs (n = 100, Jan–Dec 2019)
# outputs tainted 25,986,492 16,800,865 24,813 51,714 91,098 34,096 3,291
# txes traversed 166,087,796 160,081,753 2,872,369 2,147,643 2,589,374 3,024,931 866,940
% fee taint – – 1.0 2.37 1.27 0.61 0.23

(listed in Section C.1), as well as a randomly chosen set of 100 outputs created in

2019 (each worth over BTC 0.001). For each dataset we mark the outputs as fully

tainted and then propagate the taint through the transaction graph, up to height

637 091 (June 31, 2020) of the Bitcoin blockchain. We are interested in the total

number of outputs tainted, the their age and value distributions, as well as their

impact on transaction fees.

Both the Poison and Haircut policy affect significantly more outputs than the

other policies, confirming our expectation and prior analysis by Anderson et al.

[6] (cf. Table 5.3; while in theory Haircut should affect the same total number of

outputs, very small taint values and rounding lead to only a subset of those outputs

receiving taint). This makes them undesirable for practical use.

Between FIFO, Seniority and Output-based seniority, FIFO consistently tainted

fewer outputs than the Seniority policies. This is surprising at first, as Seniority

can merge taint of multiple inputs into a single output. Inspecting the tainted

outputs, we discovered that structural properties of the current transaction graph

are likely responsible for this. For example, funds often ended up in outputs with
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very small values (546 satoshi), which are often used to confer additional metadata

in transactions by protocols such as Omni Layer (cf. [16]). Other common motifs,

such as peeling chains (a pattern where outputs of small amounts are repeatedly

created), could similarly play a role in the large number of outputs tainted by

Seniority. To assess the effect of transaction graph structure on the Seniority policy,

we implemented a Juniority policy (i.e. reversed Seniority), assigning taint to

outputs starting from the last to the first. We see that for all datasets this significantly

reduces the number of outputs tainted, confirming our suspicion.

The TIHO policy taints the least amount of outputs by a large margin. This

is not surprising, as it assigns taint towards the outputs with the highest values,

minimizing the need to split taint. At the same time, it suggests that with strategic

use aggregating policies, such as Seniority, could achieve far better results (as TIHO

and Seniority with outputs ordered by value produce the same outcome).

With FIFO, an output can containmultiple chunks of taint. The difference between

the number of outputs and the number of chunks varied considerably between the

datasets (cf. Table C.1), and reached up to four times as many chunks as outputs

(despite merging adjacent chunks). A larger number of chunks will make reasoning

about the selection of inputs for a transaction more complicated in practice. We also

find that it impacts transaction fees more than the Juniority and TIHO policy, with

between 1–2 % of tainted value ending up in transaction fees.

In Section C.2 we provide value and age distributions for these analyses. Compar-

ing the share of taint within tainted outputs we find that most outputs tend to either

be fully or barely tainted. Inspecting the creation time of the final set of tainted

outputs, we see that they are skewed towards more recent times, but distributed

over the entire time frame.
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5.5.5. Discussion

Both the Poison and Haircut policies’ distribution of taint among all outputs is

beneficial for privacy, but—unless users change behavior—too easily impacts large

parts of the transaction graph. This motivates the use of more granular policies.

FIFO and Seniority/TIHO present two different approaches towards taint prop-

agation. FIFO aims for an exact tracking of each individual chunk of taint. The

primary benefit of this is that changes to the blacklist have straightforward impli-

cation and results from different blacklists can easily be combined. However, the

policy is not ungameable: it gives the payer an advantage over the payee when

negotiating the transaction structure. This complicates users’ behavior around

negotiating the transaction structure.

Seniority, in contrast, provides ungameability at the cost of reduced privacy. If

used strategically, it could also reduce the number of outputs affected (as seen with

TIHO). An important avenue for future research will be to model how users could

negotiate transaction structures when using Seniority compared to FIFO.

We imagined the Output-based seniority policy as a middle ground between

FIFO and Seniority, and we find that it taints fewer outputs than Seniority. However,

it inherits FIFO’s issue of gameability. Combined with the mix of policy behaviors,

it may make it difficult to provide an intuitive experience for users.

We note that all policies discussed here are inherently limited in their flexibility

to assign taint. For example, no policy allows the user to distribute taint equally

among a subset of outputs. To this end, one might consider allowing transactions to

specify more advanced taint policies (e.g., encoded in an OP_RETURN output) with a

fallback to a default policy.
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5.6. Blacklisting and Privacy

Blacklisting is enabled by the ability to follow coins from one transaction to the

next. At the same time, this transparency has implications for users privacy,

and a variety of designs for more private cryptocurrencies have been proposed

[17, 105, 157] and are being deployed. This raises questions about the privacy

implications of blacklisting, how it interacts with privacy-enhancing techniques,

and whether adopting blacklisting in Bitcoin would push criminals to use more

private cryptocurrencies where regulation of this form is not possible.

5.6.1. Compatibility with privacy techniques

A variety of techniques have been proposed to increase the privacy of Bitcoin

transactions. Already, the basic structure and details of a transaction can vary

considerably, allowing to tell transactions apart (e.g., the protocol characteristics

or script types used can serve as a form of fingerprint [87]). Improving privacy

by making transaction appear more uniform is an ongoing process in Bitcoin, and

helpful new protocol features are expected to be deployed by the end of 2021 (e.g.,

Schnorr signatures and Taproot script programs [80]). However, since none of these

approaches change the fundamental structure of transactions, nor the link between

inputs and previous outputs, they are fully compatible with blacklisting.

Arguably the biggest privacy issue in Bitcoin right now is address clustering and

reuse [79, 103]. It allows to link multiple payments to or from the same user together,

potentially revealing their transacting patterns and other related addresses that are

owned by the same user. Applied on a broad scale, it may allow to associate large

parts of activity on the blockchain with specific identities.

Since blacklisting does not depend on addresses, it is compatible with techniques

that provide remedies against address reuse, such as the use of one-time addresses
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as in Monero [43]. So far, these techniques have seen limited use in Bitcoin due to

their complexity and performance overhead [109], but they could be added on top

of Bitcoin without affecting blacklisting.

Another possible privacy improvement is to hide the values of transaction

outputs. Unique values may allow to infer the purpose of transactions or perform

re-identification through other datasets [71]. Hiding them would, however, reduce

the choice of a blacklisting policy to the poison policy. All other policies make use

of output amounts to map taint to the outputs.

5.6.2. Incompatibility with privacy techniques

A variety of privacy overlays have been proposed for Bitcoin, the most popular being

CoinJoin (e.g., [99, 102, 109, 110, 139]). In a CoinJoin transaction, multiple users

facilitate a joint transaction by combining multiple sets of inputs and outputs into

a single transaction. Such a transaction makes it hard to determine which inputs

correspond to which outputs, and it breaks a popular deanonymization heuristic

that assumes that all inputs to a transaction belong to the same user. In a blacklisting

regime, CoinJoin users face the risk of the coins they receive being tainted by other

users’ inputs, which would lead to a decline in the use of CoinJoin in the absence of

signaling or coin negotiation [2, 110]. The same holds true for other techniques of

mixing coins, e.g., using centralized mixers.

Recall that tainting is concerned with mapping taint from inputs to outputs,

whereas tracing is concerned with the ability to identify which coins are spent

in a transaction (cf. Section 5.3.1). The latter is useful to efficiently verify the

validity of a transaction, and so far we’ve assumed perfect traceability of coins. But

while Bitcoin’s traceability provides great transparency and enables blacklisting,

being able to tell which coins are spent in a transaction is also a potential privacy
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Figure 5.4.: Limited untraceability does not preclude taintability

issue. Other cryptocurrency designs, such as Zerocash [17] or Cryptonote [117, 157]

are designed to obfuscate this connection and increase privacy by making coins

untraceable. In these cryptocurrencies there no longer exists a unique link from one

transaction to the next, rather, there is an anonymity set of possible links (the size

of which varies between designs). In Monero (based on the Cryptonote protocol),

transactions select a small number of possible origins for coins spent.

While perfect traceability makes tainting coins straightforward, it is not necessary

to give up all privacy in order to achieve effective tainting. Blacklisting aims to

separate illicit coins from the legal economy. This requires to identify illicit coins, but

not which coin exactly a user is spending. It only matters that they are not spending

a tainted coin. In principle, users could still enjoy an anonymity set of potential

coins that they are spending from, as long as these don’t include any tainted coins

(cf. [89]). Figure 5.4 visualizes this distinction: by excluding the tainted coin from

the set of possible coins being spent one can prove that their coins don’t have illicit

origin while still including other, untainted coins in order to retain (now slightly

reduced) untraceability.

In cryptocurrencies based on the Zerocash design, the entire set of outputs can

make up the anonymity set. So far, users have been slow to adopt these privacy

features [88], but widespread use would make the coexistence of untraceability and

taintability difficult. The major challenge in enabling blacklisting for untraceable
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Figure 5.5.: Applicability of taint policies given levels of anonymity in the cryptocurrency

cryptocurrencies is to develop an efficient but privacy-preserving mechanism

that allows users to dissociate their coins from tainted coins. But because all

outputs on the blockchain make up the anonymity set, this needs to be recursively

proven for all coins created after the tainted coin appeared on the blockchain.

When coins are retroactively blacklisted, or a listing is removed from the blacklist,

the proofs would need to be updated as well. This requires a high degree of

interactivity and cooperation by users (cf. [89]), or would need to be build into the

protocol and client software. Furthermore, such a dynamic system for checking

the inclusion of specific coins must not break the anonymity of the system by

allowing to enumerate all outputs on the chain, requiring some form of rate limit or

authoritative approval. Whether this can be incorporated into the cryptographic

zero-knowledge proof systems while preserving the decentralized, non-interactive

nature of cryptocurrencies is an interesting open research question.

In Figure 5.5 we summarize the effect of the different privacy mechanisms on the

choice of a taint policy.
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5.6.3. Towards regulation that balances privacy with regulatory

and investigatory needs

As the cryptocurrency ecosystem matures, new technical solutions are being

developed that increase financial privacy (e.g., [17, 105, 130, 157]). Privacy is

important: individual users don’twant their everyday purchases to be identifiable on

the blockchain, and companies prefer to hide their financial activity from competitors.

At the same time, private, decentralized cryptocurrencies raise challenges for

regulators and law enforcement to investigate crimes such as money laundering,

corruption or tax evasion and to enforce relevant laws. While regulators shouldn’t

(and likely cannot [155]) hinder the development and distribution of such systems,

they may be able to steer their development and adoption towards a cryptocurrency

landscape that balances privacy with regulatory needs.

In the following, we attempt to sketch one option for a potential middle ground,

combining blacklisting with privacy-preserving payments. Users should be able to

transact privately for everyday purchases (e.g., buying medications at a pharmacy),

while payment systems would, at the same time, provide transparency and account-

ability for larger payments (e.g., significant financial donations to political parties)

with the ability to blacklist funds from illicit origins.

We divide payment activity in cryptocurrencies along these lines (cf. Figure 5.6).

High value transactions and the storage of large amount of coins is done in trans-

parent cryptocurrencies such as Bitcoin. Large cryptocurrency holdings are usually

accessed infrequently, and can be securely stored, e.g., using hardware security

modules or by implementing additional fail safes [100, 114]. Large transactions

are also facilitated in this layer. If any of those coins are stolen or used for illegal

purposes, they could be effectively blacklisted due to their low frequency of use.
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Figure 5.6.: Framework for Effective Cryptocurrency Regulation

More frequent, low value transactions are facilitated on a second layer. These

could involve payment networks and other overlays, e.g., focused on increased

privacy protections. The value that can be moved through this layer would be

limited, either organically (e.g., channel capacity and number of open channels in

payment networks) or through technical means. For example, these systems might

cryptographically ensure that users can only transact up to a certain limit without

regulatory oversight [163], or more rigid KYC requirements could be enforced by

centralized overlays. A third approach could be to enforce regular movement of

coins out of the private overlay layer into the transparent base layer.

Blacklisting or technical limits at the intersection between the two layers help to

prevent structuring, i.e. splitting up large amounts into smaller ones to launder

them in the second layer. With payment channel networks, blacklisting creates a

disincentive for money mules to open channels with illicit funds, since they would

be stuck with tainted coins. The same applies to more centralized solutions, where

coins need to be checked when moved in and out of the system.

152



5.7. Discussion of Common Concerns

In this section we address some concerns around blacklisting that have surfaced in

discussions about the topic.

5.7.1. Concern: Blacklisting destroys Bitcoin

A common concern is that blacklisting could potentially make Bitcoin unusable as a

whole. If tainted coins mix too quickly with other coins, especially on exchanges

that process large amounts of value, then a large number of coins could quickly

become tainted. Also, users could become too afraid of receiving illicit coins and

turn to alternative payment methods due instead.

A related concern is reduced fungibility. Fungibility describes the ability to

exchange one coin for any other coin of the same denomination. It is reduced if

users are able to discriminate between coins of different quality. Bitcoins are by

design not fungible. The ability to discriminate between coins based on their history

is a core aspect of Bitcoin’s design: the ability to uniquely identify and keep track of

unspent coins enables the efficient verification of transactions.

There may be instances of successful money laundering where retroactive black-

listing could affect a large number of (innocent) users. This might deter regulators

from blacklisting those funds. While the threat of blacklisting even in those situ-

ations is (to a certain degree) required to make users check blacklists in the first

place, in practice regulators will likely seek a balance between these two competing

interest. As discussed in Section 5.5, more granular blacklisting policies than Poison

or Haircut can help to reduce the impact of such listings.

Importantly, not implementing blacklisting does not mean that coins are fungible.

Funds that blockchain intelligence services suspect to originate from illicit activity

may be rejected or frozen by exchanges. Blacklisting makes the loss of fungibility
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transparent, allowing users to manage the risk proactively. If taint tracking is

included in common wallet software (and dealt with automatically by exchanges),

then the practical impact on users can be lowered.

Given today’s importance of centralized exchanges, their ability to provide

more user-friendly solutions for dealing with blacklisting (cf. Sections 5.3.5, 5.4.2

and 5.4.4) might initially drive more users towards centralized solutions. This could

temporarily reduce the utility of unhosted wallets until sufficient tools are available

for normal users to manage tainted coins effectively.

5.7.2. Concern: Blacklisting destroys privacy

The goal of tainting illicit coins is to prevent them from being mixed with legitimate

coins. Tainting an output does not require information about the owner of the

coin and also does not reveal any additional identifying information (unless the

regulator chooses to make information about the circumstances that lead to the

listing public). In the long term, blacklist-based regulation could reduce the reliance

on address-based deanonymization for money-laundering detection, yielding an

overall benefit for users’ privacy as a substitute to inefficient KYC procedures.

When users decide whether to accept coins, there are two potential impacts on

privacy. While the blacklist allows users to check coins for potential taint, theymight

ask for the counterparty’s identity in order to assess the risk of future blacklisting,

or to enforce claims through the legal system should the coins get blacklisted in the

future. However, in many commercial settings such information is known already

and stays private with the two parties involved only.

The choice of the policy also affects privacy (cf. Section 5.5). For example, with

the Seniority policy some outputs can be more likely to be change outputs than
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others. This should be a consideration when choosing a policy, with FIFO and

Output-based seniority providing potentially more privacy.

5.7.3. Concern: Criminals will use anonymous cryptocurrencies

instead

Another concern is that blacklisting can be evaded andmoney laundering continued

to be facilitated by switching tomore anonymous cryptocurrencies. While cryptocur-

rencies like Zcash andMonero offer more privacy than Bitcoin and blacklisting coins

isn’t feasible on their blockchains (cf. Section 5.6.2), they at the same time create

additional hurdles for criminals (and their victims) to use. Ease of use and the ability

to quickly acquire and sell cryptocurrency are desirable not only for ordinary users,

but also for criminals. Compared to Bitcoin, privacy-focused cryptocurrencies enjoy

lower acceptance at intermediaries, are available for purchase on fewer exchanges (cf.

[40]) and are harder to use (e.g., there are fewer wallet implementations available).

And due to their anonymous nature, these cryptocurrencies pose a higher risk for

exchanges and as such their use (and customers) may be more closely monitored,

which could deter criminals or make subsequent investigations feasible.

All these factors could shift if blacklisting was widely deployed and effective. We

believe that the degree to which criminals would then increase their use of privacy-

focused cryptocurrencies depends to some degree on regulators’ reaction to towards

them. That Bitcoin’s transparency enables certain types of criminal investigations

might be one of the reasons why regulators haven’t regulated cryptocurrencies

more aggressively yet [119]. If the illicit use of privacy-focused cryptocurrencies

increases, the regulatory landscape might change in response (cf. [154]). We believe

that finding a balance between transparency and privacy is possible (as discussed

in Section 5.6.3).
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5.7.4. Concern: Blacklisting will turn into whitelisting

To manage the risk of future blacklisting, intermediaries might feel pressured to

switch the system around, tracking and accepting only coins with perfect quality

and known history, effectively creating a system in which only “whitelisted” coins

have value.

Regulated intermediaries could indeed exchange information about coins they

hold to make risk scoring easier. Coins held by exchanges with strong AML

programs would have a lower risk than those with unknown histories. Yet, a purely

whitelist-based system would have significant overhead over a blacklist-based

system. Tracking and constantly verifying the set of all whitelisted coins would

require to exchange a lot of privacy-sensitive information and have much worse

performance than tracking blacklisted coins—after all, illicit activity only constitutes

a small share of activity in cryptocurrencies [32]. And due to the risk of retroactive

blacklisting it would be impossible to avoid that certain coins initially considered to

be of good quality will eventually be listed, affecting the quality of other coins and

reducing the set of whitelisted coins. Guidance on how to manage both blacklisted

coins and coins at high risk of future blacklisting thus needs to be specific to remove

legal uncertainty while providing intermediaries with sufficient flexibility to prevent

such a scenario from materializing.

Note that even in the absence of blacklisting intermediaries still face an AML

risk and could decide to implement a whitelisting-system to reduce it, effectively

creating a walled garden rather than embracing the transparency and open nature

of cryptocurrencies.
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5.7.5. Concern: Blacklisting can be avoided by moving coins

across chains

If criminals can easily convert their coins into another cryptocurrency, then black-

listing would potentially have to occur across different chain, making it harder to

apply and manage in practice.

However, blacklisting across chains is only necessary when the original coins do

not retain their value on the original chain. In most cases, users will sell their coins to

a counterparty and receive new coins in a different cryptocurrency in return. Similar

to normal transactions, the counterparty is incentivized to check the taint and risk

of future blacklisting before accepting coins, hence there is no need to track taint

across currencies. This not only applies to centralized exchanges, but also to most

atomic swap protocols that allow users to exchange their coins without counterparty

risk. As discussed in Section 5.6.2, the behavioral change that blacklisting induces

may effectively “dry out” some high-risk applications in the absence of signaling or

effective negotiation protocols (cf. [110]).

In a few scenarios coins may actually (temporarily) lose their value on the

original chain. With a sidechain, coins are locked on the original chain, effectively

transferring their value to the sidechain [11]. Users accepting coins on the sidechain

would need to check the taint of the coins that were locked up on the original chain.

Other mechanisms could include “burning” coins on one chain (i.e. making them

unspendable) in order to receive coins of equal value on another chain. In such

cases, the taint of the original coins would need to be applied to the newly minted

coins on the other chain (similar to how transaction fee taint is propagated into

the coinbase transaction). This could be automated if redeeming coins on the new

chains involves a (transparent) proof of the coins being destroyed/locked up on the

original chain.
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5.7.6. Concern: Blacklists can be abused for political censorship

Another concern is that governments can use blacklists to freeze funds outside of

money laundering, for example, for the purpose of political censorship. However,

blacklisting should not significantly increase the potential for such actions as the

transparency of the system also increases accountability. A public listing can be

discussed and objected much more easily than an account closure at a bank for

undisclosed reasons. Thus, blacklists do not enable censorship beyond what could

already be attempted today, e.g., through exerting political pressure on regulated

intermediaries to freeze or reject certain coins.

5.8. Summary

Transaction blacklisting can be an effective regulation approach that works on top of

existing cryptocurrencies, improves AML outside of regulated intermediaries, and

protects users from inadvertently accepting illicit funds. It complements existing

AML regulation and reduces reliance on opaque transaction screening services

widely used today.

Improving AML through blacklisting may introduce some of the inefficiencies

from traditional financial systems, such as delayed payouts to protect against future

blacklisting. At the same time, it disincentivizes criminal use and retains cryp-

tocurrencies’ openness, decentralized infrastructure and transparency. Regulators

shouldn’t be afraid to trade off some of cryptocurrencies’ widely touted advantages

in order to reinforce AML efforts through new regulation strategies.

We hope this chapter provides a starting point for discussion around the feasibility

of blacklist-based regulation of cryptocurrencies. If cryptocurrencies are to become
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more widely adopted, effective means of addressing financial criminal activity will

be desperately needed.
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6
Conclusion

Our work in this thesis has highlighted the interdependent nature of cryptocurrency

privacy. All too often, the behavior of some users affected the privacy of others, as

we’ve seen in the deducibility attack on Monero transactions. And an even greater

risk comes from privacy-sensitive disclosures of a small group of users that can

affect the system as a whole, such as our ability to build a machine learning model to

predict change outputs with high accuracy. Developers should consider these risks

when building protocols or standardizing behavior, and both consider and analyze

the use of their protocols in privacy-sensitive scenarios. Based on conversations

with developers, companies in the Bitcoin ecosystem, law enforcement agencies,

and regulators, we believe our work in this thesis has been highly insightful for all

parties involved, as they work towards a shared goal of protecting privacy while

reducing illicit activity.

Looking ahead, our work raises questions about the feasibility of future research

into cryptocurrency privacy. Despite the openness of cryptocurrencies, researchers

have increasingly limited insight into the nature of transactions as transaction

volumes grow, use cases and the number of intermediaries expand, and information

about how and why transactions are created is often proprietary. In both analyses

of Monero and Bitcoin we utilized privacy-compromising behavior of users to

learn about their activity. This is not a sustainable approach in the long term, as

cryptocurrency protocols mature and privacy weaknesses get resolved.
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Importantly though, in both analyses of Monero and Bitcoin, our collected data

allowed us to identify further issues and generalize beyond the initially affected

population of users. Fixing the initial weakness does not fix the subsequent issues

we discovered, and without insights into the system it will be hard to determine the

degree of privacy it actually provides in practice. For example, preventing address

reuse in Bitcoin will make multi-input clustering less effective, preventing us from

constructing a ground truth data set of known change outputs. However, it would

not change the feasibility of change address clustering itself. Similarly, fixing the

deducibility issue in Monero did not fix the mismatched sampling distribution.

Cryptocurrency protocol designers and security researchers may need to consider

newmethods to studyprivacy in these systems. On the onehand, they could consider

cooperating with companies that have access to private information due to their

respective business activities. On the other, they could try to incorporate privacy-

preserving data collection mechanisms into client software itself. For example,

techniques based on differential privacy [53] can be used to collect telemetry data

from users in a privacy-preserving way (e.g., [57]).

In Chapter 5 we described how regulators can use the transparency of Bitcoin

to address illicit activity. An important takeaway here is that blacklisting induces

behavioral change. As such, it would be interesting to study blacklisting experimen-

tally or more formally through the lens of mechanism design. While regulators may

not want to rush adopting technology-specific regulation, increasing interest and

guidance from the side of regulators such as OFAC could soon make it necessary to

think about these issues more concretely.
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A
Appendix to Chapter 3

A.1. Deducibility Attack as a SAT problem

A limitation of the query-based algorithm is that it can only deduce a spend when

previous iterations ruled out all other mixins. However, more complex “puzzles”

are conceivable where we cannot rule out mixins because they have been provably

been spent, but because they must have been spent by another input (cf. Figure A.1).

We formalize this combinatorial puzzle as a SAT problem and solve it using the

Sat4j SAT solver.

A SAT problem ? is a boolean formula containing = propositional variables that

yield a mapping � between inputs and outputs. Each variable AGH ∈ � denotes a

single reference from an input G to an output H. Let �(Ĝ) give us all existing H values

for AĜH , and vice versa. We can then specify restrictions on the possible relationships

between inputs and outputs.

• Every input can spend any of the referenced outputs:

|- |∧
G=1

∨
H∈�(G)

AGH

183



tx- .>DC

tx. .>DC

tx/ .>DC

tx�.8=

tx� .8=

tx� .8=

Figure A.1.: Since tx. .>DC must have been spent by either tx� .8= or tx� .8=, tx- .>DC must
have been spent by tx�.8=.

• An input can only spend a single output:

|- |∧
G=1

|�(G)|−1∧
8=1

|�(G)|∧
9=8+1

(¬AG�(G)8 ∨ ¬AG�(G)9 )

• Similarly, every output can only be spent by a single input:

|. |∧
H=1

|�(H)|−1∧
8=1

|�(H)|∧
9=8+1

(¬A�(H)8H ∨ ¬A�(H)9H)

Since inputs can only spend outputs of the same value, the SAT problem can be

solved individually for each denomination. Assignments of propositional variables

that are true in all solutions of ? correspond to true spends, as it reflects the only

possible way to spend an output (e.g., tx�.8= always spends tx- .>DC in Figure A.1).

Solving the SAT problem using Sat4j yields an additional 5149 deanonymized

spends across 1157 different denominations.

A.2. An Analysis of Bytecoin

The cryptocurrency Bytecoin was an early implementation of the Cryptonote

protocol. As Monero is based upon Bytecoin’s codebase, Bytecoin’s mixin sampling

procedure shares the same weaknesses. We run the mixin sudoku algorithm on
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transaction data extracted from the Bytecoin blockchain and show the results in

Table A.1. Overall, we are able to deduce the real spent for 29% of all inputs with

more than one mixin. Of those that include only 1 mixin, we can deduce 56%

of inputs. We attribute the lower total success rate to a discrepancy between the

number inputs to outputs in Bytecoin, suggesting that there exist a lot of unspent

outputs from which significantly fewer inputs can choose.

In Table A.2 we show the percentage of inputs where guessing the most recent

output yields the true spend. With an accuracy of 97.54% theGuess-Newest heuristic

proves to be very effective.

Table A.1.: Bytecoin transaction inputs (with 1 or more mixins, at least 1000 TXOs available)
where the real input can be deduced.

Total Deducible (%)

1 mixins 4 192 272 2 338 746 (55.79)
2 mixins 813 375 264 610 (32.53)
3 mixins 1 243 428 207 540 (16.69)
4 mixins 2 450 891 249 618 (10.18)
5 mixins 405 140 25 666 (6.34)
6 mixins 1 250 627 51 755 (4.14)
7 mixins 158 753 4198 (2.64)
8 mixins 76 530 539 (0.70)
9 mixins 62 714 226 (0.36)

10+ mixins 204 725 197 (0.10)
Total 10 858 455 3 143 095 (28.95)
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Table A.2.: Percentage of deducible Bytecoin transaction inputs where the real input is the “newest”
input.

Deducible Newest (%)

1 mixins 2 338 746 2 311 078 (98.82)
2 mixins 264 610 249 000 (94.10)
3 mixins 207 540 193 453 (93.21)
4 mixins 249 618 245 236 (98.24)
5 mixins 25 666 19 027 (74.13)
6 mixins 51 755 44 243 (85.49)
7 mixins 4198 3011 (71.72)
8 mixins 539 378 (70.13)
9 mixins 226 149 (65.93)

10+ mixins 197 128 (64.97)
Total 3 143 095 3 065 703 (97.54)
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B
Appendix to Chapter 4

B.1. Protocol characteristics used for fingerprinting

• Input/output count: the number of inputs and/or outputs may indicate a

wallet software’s behavior of creating transactions. While the number of

inputs depends on the UTXOs available to the user, some commonly occurring

patterns such as peeling chains ([103, 112]) have consistent input and output

counts.

• Version: BIP 68 [67] introduced relative timelocks for transactions, which

requires transaction to set the transaction version to 2.

• Locktime: Transactions can set a timelock such that they are valid only after the

tip of the chain has passed a specific block height or timestamp. Some clients

(e.g., Bitcoin Core) produce timelocked transactions by default to prevent

fee-sniping [149].

• Replace-by-fee (RBF): Transactions opting into the replace-by-fee policy can be

replaced by a similar transaction paying a higher fee [77].

• SegWit: Segregated witness [95] is a protocol update that enabled storing

the inputs’ signatures outside of the transaction, thereby increasing available

space in blocks. As the upgrade is backwards-comptabile, not all wallets
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produce SegWit transactions. A wallet might also be able to produce SegWit

transaction, but may be required to use non-SegWit serialization if none of the

inputs use SegWit. We call this behavior SegWit-conform.

• Ordered inputs/outputs: BIP 69 [10] defines non-binding rules (i.e. not

enforced by the consensus mechanism) for lexicographically sorting inputs

and outputs in a transaction. (A limitation of our implementation is that it

does not compare the raw scriptPubKey in case the output values are equal,

as they are not available in BlockSci).

• Zero-conf: Bitcoin user’s are encouraged to wait for up to six confirmations

(about an hour) before accepting a payment, as there is a risk that funds might

be double-spent. A transaction spending inputs without any confirmations

indicates willingness to accept the double-spending risk, which could be

specific to certain intermediaries.

• Transaction fee: Bitcoin users pay transaction fees for their transactions to be

included into the blockchain by miners. Some clients may pay the same exact

fee (either absolute, or relative to the transaction’s size) for every transaction.

• Multisignature: Multisignature scripts allow to specify a list of public keys

and a threshold < such that the redeemer must provide valid signatures for <

out of = of these keys. They aren’t typically used by normal end-user wallets.

• Address types: Bitcoin Core defines a number of standardized output scripts

types including Pay-to-Pubkey-Hash (P2PKH), Pay-to-Script-Hash (P2SH) as

well as their respective SegWit variants (P2WPKH and P2WSH). Often, a

wallet consistently uses a specific address type. (Compared to the normal

address type heuristic, the fingerprint checks for overlap with the address

types of all inputs of the spending transaction).
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B.2. Additional plots and tables
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Figure B.1.: Number of votes from heuristics (with compressed power-of-ten heuristic)
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Figure B.2.: Average number of correct and incorrect votes per transaction and type of heuristic,
over time (with compressed power-of-ten heuristic)
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Figure B.3.: Probabilities returned by the random forest classifier for standard transactions with
unknown change
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Figure B.4.: Revised estimate of velocity
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Table B.1.: Increase in outgoing transaction volumes of darknet markets to exchanges using the
base clustering (before) and our enhanced clustering (after).

# Outputs Volume (BTC)

Tag Before After (%) Before After (%)

abraxasmarket 9202 11 373 23.59 21 925 23 368 6.58
agoramarket 82 218 108 026 31.39 158 360 170 970 7.96
alphabaymarket 25 646 33 052 28.88 35 496 41 573 17.12
babylonmarket 422 616 45.97 222 283 27.13
blackbankmarket 3052 3987 30.64 8292 9245 11.49
blueskymarket 6581 9919 50.72 2520 3333 32.3
cannabisroadmarket 48 76 58.33 6 7 25.15
doctordmarket 414 621 50.0 224 277 23.92
evolutionmarket 20 572 53 335 159.26 49 891 84 637 69.64
middleearthmarket 5078 5410 6.54 11 793 12 021 1.93
nucleusmarket 23 840 26 760 12.25 45 265 47 006 3.85
pandoraopenmarket 8246 10 399 26.11 8708 9461 8.64
sheepmarket 4487 5235 16.67 12 104 13 309 9.96
silkroad2market 32 693 38 251 17.0 47 292 49 559 4.79
silkroadmarket 15 152 20 369 34.43 421 741 472 282 11.98

Total 237 651 327 429 37.78 823 839 937 330 13.78

B.3. Further insights and technical details

B.3.1. Filtering the ground truth data set

Selecting transactions with two outputs, no OP_RETURN outputs, where no input

address has been directly reused in the outputs and where at least one output is

in the same base cluster as the inputs yields a total of 53.41 million transactions.

We first exclude 1.08 million transactions with unspent outputs, as our subsequent

analyses rely upon the spending transactions being known.

Transactions with two change candidates. Out of the 52.33 million transactions

with at least one change candidate, for 0.97 million transactions both outputs are in

the same base cluster. This can happen when a user transfers funds to an address in

their own wallet, an online service restructures their funds, or cluster collapse leads

191



Table B.2.: Characteristics of clusterings created with the Meiklejohn heuristic in comparison to
our constrained clustering

Meiklejohn heuristics

Characteristic Local Global

Coverage 47.7% 54.4%

Largest cluster
• # addresses 281.3M 298.4M
• # transactions 124.8M 133.1M

Address pairs clustered
• Neither 90.80% 87.03%

• Ours only 0.06% 0.05%

• Meiklejohn only 8.97% 12.66%

• Both 0.17% 0.26%

Predictions
• Total 147.6M 168.5M
• Overlapping 71.2M 81.1M

Conflicting predictions
• Count 1.3M 1.9M
• Difference in BTC 2.1M 4.1M
• Difference in USD 16.6B 38.7B
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to merging of both outputs’ addresses. In a first step, we exclude all transactions

with two change candidates.

However, it is possible that there are yet unidentified transactions where both

outputs do belong to the same entity. This should occur only in rare cases, but there

may be specific intermediaries that create such transactions more frequently.We

therefore exclude all transactions from base clusters where more than 10 % of

transactions exhibit such behavior. This removes an additional 480 845 transactions

in 9967 base clusters from our ground truth.

Potential false positives. A risk of using the base clustering to extract ground

truth is that the multi-input heuristic could already have produced false positives.

For example, if a user Alice makes a payment to merchant Bob and their wallet

addresses are incorrectly clustered together, her spend output would appear to be

the change.

To this end, we first remove 366 926 transactions belonging to the Mt. Gox

supercluster (cf. [79]). Next, we spot-check our base clustering against the website

WalletExplorer.
1
For the 100 largest base clusters in our ground truth we select

25 addresses at random and collect the tag (which is either explicitly named or

pseudo-random) that WalletExplorer assigns to the address. In five instances, the

addresses yield multiple tags. Four of these return only additional pseudo-random

tags, which upon manual inspection we believe to be the result of a heuristic to

not link addresses in transactions with large numbers of inputs. Only one base

cluster contains addresses with two different named tags: “LocalBitcoins.com-old”

and “AnxPro.com”. This could be a result of cluster collapse, or an instance of

mislabeling on the side of WalletExplorer. We remove the 87 947 transactions from

1https://walletexplorer.com
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this base cluster from our ground truth. Overall, this check gives us some confidence

that our base clustering does not already include wide-spread cluster collapse.

Change address reuse. Our initial selection removed transactions where the

change address appeared in an input of the transaction. Yet, we find many instances

where the change address did not appear in the inputs but had been seen before.

For example, a base cluster labeled by WalletExplorer as the gambling service

“SatoshiDice”, contains 5.77 million transactions that use only 50 different change

addresses. Similarly, there are 1.27 million transactions from a base cluster tagged

as “LuckyB.it” that all use a single change address.
2
In many of these cases, the

change address could have already been revealed (before the transaction took place)

through the multi-input heuristic.

If the change is known at the time the transaction is created, applying change

heuristics is unnecessary. In contrast, whenever a transaction uses a fresh address

for change, it cannot possibly be revealed as the change at the time the transaction

was created. With this intuition, we remove transactions with change addresses that

were not freshly generated if, at the time they were included in the blockchain, the

change had already been revealed by the multi-input heuristic. This removes a total

of 15.17 million transactions (90.80 % of transactions with reused change addresses).

Table B.3 provides an overview of whether the change and spend addresses are

fresh in our ground truth data.

B.3.2. Additional details on classification

Encoding. Due to the large size of the data set, we forgo one-hot encoding and

instead use the following ordinal encoding for the heuristics:

21NxaBCFQwejSZbQfWcYNwgqML5wWoE3rK4
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Table B.3.: Number of transactions (in million) in our ground truth data set with fresh or reused
spend and change outputs.

Spend

Change Reused Fresh Total

Reused 0.73 0.81 1.54
Fresh 19.38 14.34 33.71

Total 20.11 15.15 35.26

1 the heuristic votes for the output

0 the heuristic votes neither for nor against the output

-1 the heuristic votes against the output

AUC scores for different classifiers Initial runs were done for a baseline compari-

son without hyperparameter tuning. We note that our encoding may not be ideal for

some classifiers, specifically for attributes that allow to subdivide behavior between

different clients and epochs. This is a major limitation of linear models and one the

primary reasons we choose a random forest model, as it is able to split the data set

along those attributes.

• Logistic regression (l2 penalty): 0.9933

• Support Vector Machine (linear kernel): 0.9931

• Adaboost: 0.9926

• Random forest: 0.9982

Hyperparameter tuning for the random forest classifier. Our hyperparameter

grid search returns the following parameters:

• All heuristics / full model
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– max_features: 7

– min_samples_leaf: 10

– min_samples_split: 20

• Universal heuristics only

– max_features: 6

– min_samples_leaf: 10

– min_samples_split: 20
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C
Appendix to Chapter 5

C.1. Blackmail Scam Addresses

The following Bitcoin addresses were extracted from blackmail scam emails (often

referred to as “sextortion”). The outputs sent to these addresses make up the

“Blackmail” dataset used in Section 5.5.4.

• 16oE4aRiJQvwMvbdfkx6kX8Wg9GLA1uFnz

• 1Agq5LZhY2UgcHoknVU7rZeE1x4gMuJTvf

• 13bpFXeCW6inWQSSgkVKj9rmemtkNvNoD3

• 1GPjEBZvfFRAGwCorR98upF5ByDu2Cq9Ha

• 18921mhD7bedjrgQuDmNh3oFuMQiUry1X7

• 1B3SBdx6ZqhBjUuYTzoMZq4a6Kvk4psKfM

• 19qL8vdRtk5xJcGNVk3WruuSyitVfSAy7f

• 1KzMDhZLokkNd1kcxs2mgwXm97pVvnfRBC

• 1P7bLeCJywaaDRQpT7iwb4qzUHa4CpRFyP

• 1971pHPgLaTmuYtoH4BsGSfFMZaAjotium
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• 17EuB8AmyBm81FgCovdr6huCCoSzv2S7nP

• 1WLEChY6S7S97m5voZZtbQcwiEYeSNsja

• 13phdoBirrAtFXKWJQ9HgTYX9b7C2MqXPE

• 1G1qFoadiDxa7zTvppSMJhJi63tNUL3cy7

• 18Pt4B7Rz7Wf491FGQHPsfDeKRqnkyrMo6

• 3ER3byGWbnqgxN4C5amtCXHExPgGaUWsBd

• 19UW5P6PGDA3SWehh8UMGQQC3ezBzN1mDE

• 1H1K8MfLEJgjCCfDEkTJmv9GJjD3XzEFGR

• 39eaJ2Fxbm4KWVu26BzaEH465aK4yrbuzH

• 38KxdSNjge7hdy7zWZuRRC4hN4krQrrA5b

• 12s4cfoNTzT68gSdxLjmSRT3qdvaqwDWNz

• 1GoWy5yMzh3XXBiYxLU9tKCBMgibpznGio

• 15mWFjVymAdqimVim2f1UgX6oSD4TYeGLE

• 1ELgYTbMLmw9vaHADfZmMcKVMWCNmRH8S2

• 1Gm6q6M2TfL4yrL3TnvsUZZ1C5k6wrvBbX

• 34vhBcVUYwfNYjupWHrzef1zogaRZaSFU6

• 3CEx39owi6EeUAoM4ENyYdGhLZj7nAwuYH

• 1DjuN5PM9VLXCeqYrb9nxzpQ8rb2hXZiEt
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Table C.1.: Number of outputs tainted by FIFO, and total number of tainted chunks despite merging
adjacent chunks, with different datasets on 06/31/2020

Dataset # tainted outputs # tainted chunks

Blackmail 2821 3428
OFAC 270 537 764 601
Ransomware 576 694 2 221 476
Random outputs 24 813 44 472

Table C.2.: Average number of outputs tainted by applying the heuristic to each individual output in
the dataset separately and propagating taint throughout the next 2018 blocks, starting
from the output’s block height (2 weeks)

Dataset/Measure FIFO Output-Seniority Seniority Juniority TIHO

Blackmail (n = 273)
median 1.0 1.0 1.0 1.0 1.0
mean 2.4 5.2 6.6 3.66 1.25

OFAC (n = 3305)
median 5.0 10.0 14.0 32.0 1.0
mean 27.68 45.43 64.45 238.14 9.39

Ransomware (n = 16777)
median 2.0 10.0 14.0 4.0 2.0
mean 9.4 26.99 40.84 35.69 2.45

Random outputs (n = 100)
median 4.0 8.5 12.5 6.5 2.0
mean 116.85 154.05 197.93 111.24 51.85

C.2. Extended Taint Analysis

The following pages contain the results of our empirical analysis (see Section 5.5.4)

of applying different taint policies to three different exemplary data sets.
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Figure C.1.: Analysis of the Blackmail data set
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Figure C.2.: Analysis of the OFAC data set
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Figure C.3.: Analysis of the Ransomware data set
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Figure C.4.: Analysis of the Random Outputs data set
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