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Abstract. Decentralized cryptocurrencies still suffer from three interre-
lated weaknesses: Low transaction rates, high transaction fees, and long
confirmation times. Payment Channels promise to be a solution to these
issues, and many constructions for cryptocurrencies, such as Bitcoin and
Ethereuem, are known. Somewhat surprisingly, no solution is known for
Monero, the largest privacy-preserving cryptocurrency, without requiring
system-wide changes like a hard-fork of its blockchain like prior solutions.

In this work, we close this gap for Monero by presenting the first prov-
ably secure payment channel protocol that is fully compatible with Mon-
ero’'s transaction scheme. Notably, the payment channel related trans-
actions are identical to standard transactions in Monero, therefore not
hampering the coins’ fungibility. With standard techniques, our payment
channels can be extended to support atomic swap of tokens in Monero
with tokens of several other major currencies like Bitcoin, Ethereum,
Ripple, etc., in a fungible and privacy-preserving manner.

Our main technical contribution is a new cryptographic tool called
verifiable timed linkable ring signatures (VTLRS), where linkable ring
signatures can be hidden for a pre-determined amount of time in a ver-
ifiable way. We present a practically efficient construction of VTLRS
which is fully compatible with the transaction scheme of Monero, and
allows for users to make timed payments to the future which might be
of independent interest to develop other applications on Monero.

Our implementation results show that even with high network latency
and with a single CPU core, two regular users can perform up to 93500
payments over 2min (the block production rate of Monero). This is
approximately five orders of magnitude improvement over the current
payment rate of Monero.
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1 Introduction

Check for

updates

Modern cryptocurrencies, such as Bitcoin or Monero, realize the digital analog
of a fiat currency without a trusted central authority. They typically consist of
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two main components: (i) A public ledger that publishes all transactions and
(ii) a transaction scheme that describes the structure and validity of transac-
tions. Compared to traditional centralized solutions, decentralized cryptocurren-
cies suffer from three weaknesses: First, they have a relatively low transaction
rate; for example, the current transaction rate of Bitcoin is about four transac-
tions per second while it is 0.1 transactions per second in case of Monero [1].
Second, the transaction fees are relatively high, about 0,608 per transaction in
the case of Bitcoin and about 0.25% in Monero [2]|. Third, the confirmation of
a transaction takes (on average) one hour in the case of Bitcoin and 20 min in
the case of Monero. Payment Channels (PC) [27], and its generalization Pay-
ment Channel Networks (PCN) [15,22,23,27| have emerged as one of the most
promising solutions to mitigate these issues and have been widely deployed to
scale payment in major cryptocurrencies, such as Bitcoin [5], Ethereum [7] or
Ripple [6]. These solutions are commonly referred to as layer 2 or off-chain
solutions.

A PC allows a pair of users to perform multiple payments without committing
every intermediate payment to the blockchain. Abstractly, a PC consists of three
phases: (i) Two users Alice and Bob, open a payment channel or a joint address
by adding a single transaction to the blockchain. This transaction is a promise
from Alice that she may pay up to a certain amount of coins to Bob, which he
must claim before a certain time 7. (ii) Within this time window, Alice may send
coins from the joint address to Bob by sending a corresponding transaction to
the other user. (iii) The channel closes when one of those payment transactions
is posted on the chain, thus spending coins from the joint address. Bi-directional
payment channels allow for payments to be made from the joint address to
either users. While realizing PCs for Bitcoin is an established task due to the
functionality available in the Bitcoin scripting language, several challenges arise
when considering privacy-preserving cryptocurrencies like Monero or Zcash [11].
Bolt [18] is a PC proposal for Zcash while Moreno-Sanchez et al. [26] developed a
PC protocol for Monero. However, their proposal has various shortcomings (see
below for more details) and, as a consequence, is unlikely to be integrated into
Monero. In this work, we aim to close this gap by constructing a PC protocol
that is fully compatible with the transaction scheme of Monero and can be used
to make off-chain transactions.

Brief Look into Monero. Monero is the largest privacy-preserving cryptocur-
rency. The notion of privacy it offers is that: Any external observer cannot learn
who the sender or the receiver of a transaction is and the number of coins being
transferred. Monero achieves these properties with Ring Confidential Transac-
tions (RingCT) as its cryptographic bedrock. Briefly, a RingCT is a transaction
scheme where the sender of the transaction ‘hides’ his key in an anonymity set
(ring). Comparing with Bitcoin, where transactions have typically one source
address, the amount in plain, one or two recipient address(es), and a simple sig-
nature (ECDSA), Monero transactions contain a ring of addresses, destination
addresses, commitments to amounts, related consistency proofs, and a (linkable
ring) signature, making the transactions considerably larger. Moreover, the size
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of a Monero transaction grows linearly with the size of the anonymity set. This
results in a major setback to the scalability of Monero and often requires users
to make tough choices between better privacy (high transaction fee) and smaller
transactions (lower transaction fees). There has been a line of research [20,36]
that proposes new and efficient RingCT constructions that result in smaller
transaction sizes. These approaches help to increase privacy because they sup-
port larger ring sizes and therefore do not increase the transaction fees. How-
ever, the central three issues that PCs are addressing remain open: Increasing
the transaction rate, reducing the transaction fees in general, and therefore sup-
porting fast micro-payments, as well as fast verification time. Moreover, all these
on-chain solutions require system-wide changes in the Monero protocol, and it
is unclear if Monero will fork and adapt to one of these schemes. Unfortunately,
layer two solutions (such as PCs) proposed for Bitcoin do not extend to Monero
as they require scripting features that are absent in Monero.

1.1 Our Contribution
The contributions of this work can be summarized as follows.

— We propose PAYMO, the first payment channel protocol that is fully compat-
ible with the transaction scheme of Monero (Appendix B). A notable feature
of our solution is that PC transactions are syntactically identical to standard
transactions in Monero, thus retaining the fungibility' of the Monero coins.
Following the work from [23]|, we can also extend PAyMoto have the first
secure scriptless atomic-swap for Monero with many other major currencies.

— At the heart of our proposal is a new cryptographic primitive, called wveri-
fiable timed linkable ring signatures (VILRS), that we define and construct
(Sect. 3). Our solution relies on well-established cryptographic assumptions,
and VTLRS can be of interest for other applications on Monero.

— We demonstrate the practicality of our approach by benchmarking PAyMo
(Sect. 4). Our analysis shows that PAYMO can be used on today’s hardware
by Monero’s users. In terms of performance, at its full power, PAYMO sup-
ports close to 93500 payments for 2min between two regular users with one
CPU core each. Here 2min is the block production rate of Monero. This is
a significant increase in payments in Monero, which currently supports only
one payment from an address per 2min.

1.2 Related Work and Discussion

In the following, we compare our approach with existing systems, and we discuss
some of the choices behind practical aspects of our design.

The first PC proposal for Monero was recently put forth by Moreno-Sanchez
et al. [26], however, their solution requires a hard fork with major changes to the

! Fungibility is a property of a currency whereby two units can be substituted in place
of one another: no coins are special irrespective of transactions acting on them.
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Monero transaction scheme and is not backward compatible. Specifically, a joint
address of their comprises of two public keys where the secret keys of both keys
are shared among the users, and they also require an explicit time-lock script for
the joint address. Both of the above requirements are not supported in Monero.

We stress that even assuming that Monero will fork in the near future to
integrate their scheme, the adoption procedure still requires one to solve some
challenges: Since the tag generation in [26] is different from the currently used
algorithm, one needs to perform massive system-wide changes to the Monero
protocol itself, requiring every Monero user to spend from their existing, unspent
keys (with old tag generation) to a new key (with the new tag generation) during
a specific time interval. This is highly undesirable as it requires every Monero
user to be online and make transactions, and any user unable to make this switch
during this time interval loses his coins permanently. An additional limitation of
their proposal in terms of transaction privacy where the time-lock information
which is public can lead to on-chain censorship from miners and other users.

On the contrary, PAYMO does not require any changes to the transaction
scheme of Monero, nor it needs to add any functionality to the scripting language.
Any interested pair of users can run PAYy MO without the knowledge of any other
user in the Monero system. Furthermore, any PAYMO related transaction posted
on-chain is identical to posting any other regular transaction in Monero. However,
PAy Mousers need to run a background computation in the form of time-lock puz-
zle solving [28]. We discuss how to mitigate this computational load with batching
techniques and outsourcing the solving to a decentralized service [34].

Payment Channels and Payment Channel Networks [22,27] have been pro-
posed as solutions for Bitcoin’s scalabiltiy problem. They rely on the special
script Hash Time-Lock Contract (HTLC) that lets a user get paid if he pro-
duces a pre-image of a certain hash value before a specific time, referred to as
the time-lock of the payment. Bolt [18] is a payment channel protocol specially
tailored for Zcash [11| which uses zk-SNARKs [17], and is not compatible with
the transaction scheme of Monero, which is the focus of this work. A gener-
alisation of a payment channel with complex conditional payments is a state
channel [14] that requires highly expressive scripting functionalities from the
underlying blockchain, that are not available in Monero. Recently Gugger [19]
proposed a mechanism for atomic swaps between Bitcoin and Monero. However
their swap protocol is only semi-scriptless because they require a hash function
verification from the bitcoin script. On the other hand, all PAYMO requires sig-
nature verification from the Bitcoin and Monero and, therefore, improves both
the coins’ fungibility in their respective chains.

2 Technical Overview

We first introduce the notion of Verifiable Timed Linkable Ring Signature
(VITLRS) that is fully compatible with the transaction scheme in Monero. Then
we describe how to leverage VI'LRS to construct payment channels (PCs) for
Monero. Finally, we discuss how to extend our protocol to support atomic swaps
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with tokens from other currencies and how to integrate our approach in the
current implementation of Monero.

For ease of presentation, we consider a simplified view of a transaction in
Monero consisting of: A ring of one-time public keys (addresses) R, a linkabil-
ity tag tag (for double-spend protection against same key spending twice), a
signature o and the target public key (recipient). We omit other components
of a Monero transaction as our tools and techniques only deal with the above
components and it can be naturally extended to the current transaction scheme
of Monero with all components in place”.

2.1 VTLRS for Monero

On a high-level, a VITLRS lets a user create a timed commitment of a linkable
ring signature on a message (transaction) such that the recipient of the com-
mitment can force open the commitment and learn the signature only after a
pre-specified time T. The recipient also receives a proof that convinces him that
the force opening would indeed reveal the valid linkable ring signature on the
message. Our construction of VI'LRS is compatible with the linkable ring sig-
nature transaction scheme that is currently implemented in Monero, where the
message is now a Monero transaction.

On a high-level, to commit to a VILRS, the committer takes a (linkable
ring) signature on a transaction tr and encodes it into a time-lock puzzle 28],
which keeps it hidden until time T. To convince the verifier that the puzzle
contains a valid signature on the transaction tr, the committer also computes a
non-interactive zero-knowledge (NIZK) proof for such a statement. The challenge
here is to design an efficient NIZK proof that certifies the validity of the encoded
signature. General solutions exist [32] only for common signature schemes, like

Schnorr, ECDSA, and BLS.

Efficient NIZKSs. To design an efficient NIZK, we adopt a cut-and-choose app-
roach. The basic idea of this approach is to encode the signature into many
puzzles redundantly. The validity can be checked by revealing the random coins
corresponding to a subset of them. If implemented naively, this could compro-
mise the privacy of the signature. Instead, we harness the structural properties
of signatures in Monero to reveal only isolated components while at the same
time keeping the signature hidden. More specifically, the committer computes a
t-out-of-n secret sharing of a particular component of the signature. Given a t —1
subset of the shares (which are revealed by the cut-and-choose), the verifier can
check the validity of the puzzles and that these opened shares are valid shares of
the signature component. If the check is successful, then the verifier is convinced
that at least one of the unopened puzzles contains a valid share, which is enough
to reconstruct a valid signature. The scheme is made non-interactive using the
Fiat-Shamir transformation [16].

> A Monero transaction is based on RingCT [20] which additionally consists of com-
mitments to hide the amounts and range proofs to prove that they are well-formed.
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Time-Lock Puzzles. We then instantiate the time-lock puzzles with [24,33] and
use the homomorphic properties of such a scheme to combine puzzles in such
a way that the computation needed to force open is the same as that to force
open a single puzzle. We stress that the use of homomorphism is crucial for the
solver’s efficiency (verifier) and also for security. Without the homomorphism, a
user with n = n — (¢ — 1) processors can solve n puzzles in parallel and in total
time T. On the other hand, users with fewer processors will have to solve the
puzzles one after another, thereby spending more time than T time. This could
lead to scenarios in PCs where an adversarial party has an unfair advantage
with respect to an honest user and could post a valid transaction ahead of time,
effectively stealing coins.

2.2 (Uni-directional) Payment Channels in Monero

Channel opening Payment Channel dosing (on chain)
X, 4es IXfund IXpay, " Xpay.g IXedm
R R’ R, R, R
h‘tx,w.:’-t;,;;.e laga. 04 lagan, ?;7.1.5;-.5 188 4R0-Tal, OR 1GEAN. Tan
aftertime T
ka0 Pkag Pk g PK g0 Pk ag
(C,x) — CommitIx,gm. 0 4u.T)

(Alice-Bob) (Bab) (ARce) (Alice-Bob) (Bob) (Alce)

Fig. 1. Three phases to a (uni-directional) payment channel protocol between Alice
and Bob in PAyMo. The channel opening phase has three steps. Steps run individually
and jointly through interaction are denoted with (Alice) or (Bob) and (Alice-Bob)
respectively. Signature oap inside a dotted box indicates that only Bob learns the
signature after interaction with Alice.

Equipped with our efficient VI'LRS scheme, we show how Alice and Bob can run
a payment channel protocol to make payments (i.e., an address whose secret key
is shared between Alice and Bob, and both of them have to agree on a payment).
A pictorial description of our PC protocol (PAYMoO) is given in Fig.1 and its
three main subroutines (channel opening, payment, and channel closing) are
discussed below briefly. Due to space constraints, we defer the complete formal
description to the full version [35] along with full security analysis.

Channel Opening. Alice and Bob jointly generate a spending key pk 45 (the
corresponding secret key is additively shared between Alice and Bob) and a
redeem transaction f{r.g, (containing the joint tag tag ,) that spends the coins
from pk 4 5 (belonging to some ring R) to some address of Alice pk 4 ,. Note that
pk 4 1s an address that is not yet present on the chain. Bob then generates a
VTLRS of the signature o 45 on tr.gm with timing hardness T. Bob gives the
VTLRS commitment and proof (generated using Com(tz,4m,oap, T) in Fig. 1)
to Alice, who then posts the transaction tzg,,g on the Monero blockchain. Such
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a transaction initializes the channel by sending funds from one of her addresses
pk 4 to the joint key pk 4 5. The channel is now created and initialized on-chain,
and its expiry time is set to T (via the VILRS). Note that after time T Alice
will be able to recover the signature tr,g4, and redeem the remaining funds in
the address pk 4 if any.

Payment. When Alice wishes to pay Bob, they jointly generate a transaction
tTpay.i for the i-th payment. trp,, ; spends from pk 4 (in some ring R ;) and sends
it to some address of Bob pk g . They jointly generate a signature o 4p ; on trpay ;
(as the secret key for pk,p was shared among the users), in such a way that
only Bob learns the signature o 4p ;. Importantly, the transaction tzp,y; is not
posted on the blockchain. Alice and Bob can continue making further payments
this way.

Channel Closing. If Bob wishes to close the channel, he takes the last
exchanged transaction payment tzp,y ; with Alice and posts it along with o4 ;
on the Monero blockchain. In case Bob has not posted any such payment and
time T has passed, Alice by then learns o4p from the VITLRS on tz.4, (that
was given by Bob during channel opening). Alice can now post tz,4n and oap
on the Monero blockchain and redeem all the coins from the channel. In either
case, once a transaction spending from pk ,p is posted on-chain, the payment
channel is considered closed.

Integration in Monero. An additional challenge stems from the fact that each
public key in the ring used in a transaction is associated with a key_offset
field [3] in the current implementation of Monero. This field stores the index of
the key with respect to the global set of public keys as a way to optimise the look
up of keys during transaction verification. Recall that, during channel opening,
Alice and Bob need to generate the redeem transaction tr.4, that spends from
the payment channel key pk 45 before tzs,ng (that spends to pk 45) is posted on
the blockchain. This means that, in order to sign a correctly formed transaction
tTrdm, One needs to guess ahead of time the offset position of pk 4 5.

There are two ways to bypass this obstacle. (1) Modify the current imple-
mentation (not the transaction scheme) to adopt a different look up strategy for
public keys, that allows users to sign transactions that spend from a key that is
not posted on the blockchain yet. (2) Instead of generating a VILRS commit-
ment of a signature on tx,4mn, Bob can generate a timed commitment to his share
of the joint secret key sk ap, for time T. After force opening the commitment,
Alice learns sk 4p and can use it to correctly sign tr.4n,, since the offset of pk 4,5
is fixed at this point. Clearly, one needs an efficient mechanism to ensure that
the timed commitment of Bob indeed contains a valid share of sk 4 5. This can be
realized using a verifiable timed discrete-log (VITDlog) scheme, and an efficient
instantiation was recently proposed in [32].

While using VT Dlog is a viable option to construct Monero-compatible PCs,
we argue that VI'LRS is a more desirable solution, since it enables the usage of
stealth addresses [20]. Stealth addressing reduces interaction between the sender
and the receiver of a payment in the following way: Alice (sender) generates a
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one-time public key opk; for Bob (recipient) given access to Bob’s master public
key mpkg, and then sends coins to opky. Bob can later spend from opky by
generating the one time secret key oskp using his master secret key mskp. This
way the receiver is not required to send a recipient key to the sender every time
he wishes to receive funds. Since the VT D-based solution leaks information about
the long term secret key of a party, stealth addressing scheme used currently in
Monero, is no longer a viable option, as one could link all future transactions of
Bob once osk is disclosed [30]. Note that this issue does not arise in the VT LRS-
based scheme, since neither user learns the secret key shares of the other user
involved. More details can be found in [35].

Outsource Computation. Notice that Alice is required to perform persistent
computation to open her VI'LRS commitments. This could limit the number
of channels that Alice can operate simultaneously. However, the persistent com-
putation of opening a VI'LRS commitment can be securely outsourced to a
decentralized service [34] at a market determined cost. This relieves Alice of
any potentially heavy computation related to VI'LRS opening, provided she has
enough funds to outsource using the service from [34]. Therefore the number of
channels Alice operates is no longer limited by her computational power.

Extending to Bi-directional Payments. PAYMO supports payment channels
with uni-directional payments. A payment channel with bi-directional payments
allows both Alice and Bob to make payments to each other using their channel.
A recent work [10] proposed Sleepy Channels, the first bi-directional payment
channel protocol compatible with Monero. However, the key tools that they
require to achieve this, are based on our work. Specifically, they crucially rely on
VTLRS and the channel operations of PAYMO, to realise timed payments and
payment revocation, which are essential for bi-directional payment channels.

3 Verifiable Timed Linkable Ring Signature

In the following we define and construct a Verifiable Timed Linkable Ring Sig-
nature (VTLRS) transaction scheme. We introduce some notation that we use
extensively in this paper. We denote by A € N the security parameter and by
x < A(in;r) the output of the algorithm A on input in using r « {0,1}* as
its randomness. We omit this randomness and only mention it explicitly when
required. We denote the set {1,...,n} by [n]. We model parallel algorithms as
Parallel Random Access Machines (PRAM) and probabilistic polynomial time
(PPT) machines as efficient algorithms.

3.1 Definition

A VTLRS is a linkable ring signature based transaction scheme (see Appendix
B) where one commits to such a signature in a verifiable and extractable way.
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Definition 1 (VTLRS). A Verifiable Timed Linkable Ring Signature Trans-
action Scheme Ilytrs, for a LRS transaction scheme Y := (Setup, OTKGen,
TgGen, Spend, Vf) is a tuple of five algorithms (Setup, Com, Vfy, Op, FOp) where:

crs « Setup(1*): the setup algorithm outputs a common reference string crs which
is implicitly taken as input in all other algorithms.

(C,m) « Com(o, tz,T;r): the commit algorithm takes as input a signature o, the
transaction tr, a hiding time T and randomness r. It outputs a commitment C and
a proof .

0/1 « Vfy(tz, C, m): the verify algorithm takes as input a transaction m, a commit-
ment C' of hardness T and a proof ™ and accepts the proof if and only if, the value o
embedded in C is a valid signature on the transaction tzx (i.e., LRS.Vf(tr,o) = 1).
Else it outputs (.

(o,7) « Op(C;r): the opening algorithm is run by the committer that as input a
commitment C' and outputs the committed signature o and the randomness r used
in generating the commitment C'.

o « FOp(C): the deterministic FOp algorithm takes as input the commitment C
and outputs a signature o.

We require standard notion of correctness that is formalized in the full ver-
sion [35]. In terms of security, a VTLRS must satisfy the notions of timed privacy
and soundness, defined below.

Timed Privacy. This notion requires that all PRAM algorithms whose running
time is at most ¢ (where ¢t < T), succeed in extracting o from the commitment
(' and m with at most negligible probability. The adversary is given the spend-
ing public key and the tag as input, and gets access to a spending oracle. The
challenge for the adversary here is to distinguish (within time T even with par-
allelism) a commitment from being a commitment to a valid LRS signature with
the above attributes, to a simulated commitment.

Definition 2 (Timed Privacy). A VTLRS scheme IlIytirs = (Setup, Com,
Vfy, Op, FOp) for a LRS transaction scheme X' is timed private if there exists a
PPT simulator S, a negligible function negl, and a polynomial T such that for
all polynomials T > T, all algorithms A = (A, As) where Ay is PPT and A,
is a PRAM whose running time is at most t < T, and all A € N it holds that

B (pk, sk) «— LRS.OTKGen(pp)
tag «— TgGen(sk)

Pr|b=10b"| (R O.u)— A (pk, tag, pp) < negl ()
s.t. pk = pk | and tz := {R, tag, O, pu}

b— {0,1}, b' — AP*™(tx,Ch, 7))

where, pp « LRS.Setup(1?), crs « Setup(1*) and if b = 0, then (Cg, 7o) «—
Com(o, tx, T) where o « LRS.Spend(R,(|R], sk, tag), O,pn) and if b = 1,
(Cy,m) « S(pk, tz,T).
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Soundness. This says that the accepting verifier is convinced that given C, the
FOp algorithm will return a valid signature ¢ on transaction tr in time T. A
VTLRS is simulation-sound if it is sound even when the prover has access to
simulated proofs for (possibly false) statements of his choice; i.e., the prover must
not be able to compute a valid proof for a fresh false statement of his choice.

Definition 3 (Soundness). A VTLRS scheme IlIytirs = (Setup, Com, Vfy,
Op, FOp) for a LRS transaction scheme X' is sound if there is a negligible func-
tion negl such that for all PPT adversaries A and all A\ € N, we have:

crs «— Setup(17)
(tx,C.w, T) «— Alcrs)
Pr|by=1Aby=0| (o.r)—F0p(C) | < negl(\).
by 1= Vfy(tz, C, w)
by := LRS.Vf(tz, o)

3.2 Our VTLRS Construction

We give a construction of VI'LRS transaction scheme for the LRS-TS transaction
scheme used in Monero.

LRS-TS Construction in Monero. We give a formal description of the
LRS-TS scheme deployed in Monero. We do not consider the “confidential
transaction” part, and only focus on the signature of the transaction scheme,
for conceptual simplicity. The scheme (Fig.2) is defined over a cyclic group
(G of prime order ¢ with generator G and uses two different hash functions
Hp : G — G,Hs : {0,1}* — Z;. The private-public key pair is the tuple
(z,G*) € Z; x G. Each secret key is associated with a unique linkability tag
that is set as tag := Hp(pk)**. For ease of understanding we make the assump-
tion that the spending public key is always pkz| (as shown in Fig. 2). The

spend algorithm samples (s{,s1,...,8p) Z(’; and computes Lg, Ry, hg and
L;, R;, h; for each index 7 € [D] (as shown in Fig. 2). The algorithm finally sets
so = 84 — hp - sk and the signature consists of o := (sg, $1,...,8p,hg). Note

that sy is reminiscent of how signing is done in Schnorr signatures. The verifi-
cation algorithm runs the same loop as in the spend algorithm (except that it
now ranges over the full ring) to obtain hjg| and it accepts only if hy = h|g|.
For brevity, we denote D = |R| — 1.

Throughout the following overview, we describe the VI'LRS as an interactive
protocol between a committer and a verifier, which can be made non-interactive
using the Fiat-Shamir transformation [16]. A formal description of our VITLRS
is given in Figs. 3 and 4, where hash function H' : {0,1}* — J, with J being a set
of indices in [n] such that |J| = ¢t — 1, is used used to implement the Fiat-Shamir
transformation.

High-Level Overview. The commit algorithm proceeds as follows: Consider
a signature o := (sq,S1,...,8p,hg) (where D = |R| — 1) generated by Spend

algorithm of Fig.2 on a transaction tz := ({ pki}yjll tag, O, u). Let pk | be
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Setup(1*,1°) Spend(R,Z, O, 1) Vf(tz, o)
He : G — G R := (pky,...,PkiR)) tr := (R, tag, O, p)
Hs : {0,1}" — Z, T :=(y, sk, tag), s.t. R := (pky,....pkig))
pp = (G,q,G, Hp, Hs) j=|R| and pkr = G* 0 :=(s0,...,5D,ho)
return pp tr = tz(R, I, O, ) set sig) = So
s i . for i € ||R|| do
OTKGen(pp) (50,81, 8D) = Zq [l ql] hi_1
" Lo := G"°, Ry := Hp(pk )™ Li =G pk,
T ¢ Zq R: ‘= H k)% hi_1
| ho = Hs(tz|| Lo|| Ro) + i= He(pk,) " tag
sk =
e for i € [D] do hi := Hs(tz||Li||R:)
PR = o hi1 endfor
return (pk, sk) Li:=G"pk;"",
oir his return (ho = hir))
R; := Hp(pk,)" tag™
TgGen(sk) hi := Hs(tz||L:|| R:)

sk
tag := Hp (Gs"’) endfor
return fag
g = (.S‘(), S1,...48D, h'())

return (tz,o)

Fig.2. LRS-TS X := (Setup, OTKGen, TgGen, Spend, Vf) used in Monero.

the spending key. The commit algorithm takes as input this transaction tz,
signature ¢ and the hiding time T. To generate a VILRS on transaction tz,
the committer secret shares the values in sc := (sg, G*°, Hp(pklRI)s“) using a
t-out-of-n threshold sharing scheme:

1. For the first £ — 1 shares, choose «; € Z; uniformly at random and set K; :=
G and Y; := Hp(pk g )™, respectively.

2. For the remaining n — 8t — 1) shares, use Lagrange interpolation in the expo-
nent, i.e., for i € {t,t+ 1,...,n} set a;, K;,Y; as

£:(0)? £(0)~!
£,(0) Geo
50 = Z aj’ ) 76 (0) )
je(t—1] Hje[t—l] 7
£:(0)~!

He(pk g )"
£;(0)
-1 Y;

respectively, where #;(-) is the i-th Lagrange polynomial basis.

The K and Y elements ensure verifiability, that is we can indeed reconstruct
(via Lagrange interpolation) the value sy that is part of the signature o from
any t-sized set of shares of sc.
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The committer then computes a time-lock puzzle Z; (using LHTLP.PGen)
with time parameter T for each share «; separately. The first message consists
of all puzzles (Z,,...,Z,) together with G*°, Hp(pklm)"‘“ and all (K;,Y;) as
defined above.

After receiving the above first message, the verifier chooses a random set I of
size (t — 1) as the challenge set. For this set, the committer opens the time-lock
puzzles {Z;}icr and reveals the underlying value «a; (together with the corre-
sponding random coins) that it committed to. The verifier wants to ensure that,
(i) the puzzles are indeed generated for the correct timing hardness T and can be
successfully solved in that time and (ii) as long as at least one of the shares in the
unopened puzzles ({Z;};c(n),r) is consistent with respect to the corresponding
partial commitments (K, Y;), then we can use it to reconstruct sy and therefore
a valid o. To do this, the verifier performs the following checks and accepts the
commitment as legitimate only if they are all successful: (1) All puzzles {Z; }.icr
are correctly generated using «; and the corresponding randomness (which was

also revealed above) with timing hardness T, (2) All {«; };c; are consistent with
the corresponding K;,Y;, ie., K; = G*Y; = Hp(pkml)“* and (3) All K;,Y; are

valid shares of G°° and Hp(pkml)"‘D respectively, i.e., Kf*(()) : Hje] Kjfi O — gso
and Yf" O 1., Y50 = He(pk g )™

JEL 7]
Consequently, to fool a verifier, a malicious prover has to guess the challenge
set I ahead of time to pass the above checks without actually committing a valid
so (signature o). Setting the parameters appropriately, we can guarantee that

this happens only with negligible probability.

Signature Recovery via Homomorphic Packing. To recover s; and the
valid signature, the verifier has to solve n = (n — t + 1) puzzles to force the
opening of a VI'LRS. To close the gap between honest and malicious verifiers,
we would like to reduce his workload to the minimal one of solving a single
puzzle. To achieve this goal, we use the linearly homomorphic time-lock puzzle
construction from [24| or [33] (for a transparent setup), combined with stan-
dard packing techniques to compress n puzzles into a single one. Concretely, the

verifier, on input (Z;,...,Z;) homomorphically evaluates the linear function
flzy,...,zq) = >0, 2(i=1)'A. 2. to obtain a single puzzle Z, which he can solve

in time T. Observe that, once the puzzle is solved, all signatures can be decoded
from the bit-representations of the resulting message. However we need to ensure
that: (1) The message space of the homomorphic time-lock puzzle must be large
enough to accommodate all n signatures and (2) The values a; encoded in the
the input puzzles must not exceed the maximum size of a signature (say A bits).

Condition (1) can be satisfied instantiating the linearly homomorphic time-
lock puzzles with a large enough message space. On the other hand, condition
(2) is enforced by including a range NIZK (Pnizk c,.,,» VNizk.z.,) for the language
Ling = {(Z,0,2),T) : Jw = (a,r), s.t., (Z = LHTLP.PGen(pp, ;7)) A (a €
[0,2*])}, which certifies that the message of each time-lock puzzles falls into
the range [0, 2’\]. We instantiate the range proof with the recently introduced
protocol [32].
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The following theorem states the security of our VI'LRS construction and
the formal proof is deferred to the full version [35].

Theorem 1 (Timed Privacy, Soundness). Let (Setupyzk ., PNIZK, Loy
VNIZK,c,,,g) be a NIZK for Ling and let LHTLP be a secure time-lock puzzle with
perfect correctness. Then the protocol satisfies timed privacy (Definition 2) and

soundness (Definition 3) in the ROM.

Setup(1?) Com(ao, tz, T)
CTSmg ZK.Setup(l’\) crs 1= (CTSmg, PPLRrs: PPLHTLP)
Phigs < LRS.Setup(1*,1°) to = ({pk, 12} , tag, O, 1)
ppLHTLP — LHTLP.SGtUp(lA. T) a = (SOq 81, e . 8D hO)
crs 1= (CrSmg, PPLRss PPLHTLP) Vie[t—1] a; + Z;,
return crs Ki:= G Y, = Hp(pkrnl)m
FOp(C) forie {t,....,n} do
C = (G~ H1 {Si}ie[D]r ;= (50 e Z ;- EJ(O)) . €f(0)_l
h'O? {Z'f"}‘i.e[n.]) JE[t—1]
Vig[n] Qi < £;(0)~"
G
LHTLP.PSolve(pp, Z;) K; = ( 770}
[Liep—y K5
So 1= Z(aj) -fj(O) jEt—1] 1 -
7el v _ [ _He(Pkig))™
a = (SO.!"'!SD.\h'O) e ij(O)
return o Hje[t—'] !
endfor
Op(C, {ri}ticin)) for i € [n| do
return (o, {7i}ic[n]) ri + {0, 1})\ Zi < LHTLP.PGen(pp, ai:r:)

Teng,i < PNIZK, Long (CTSmg, (Zi, 0,27, T), (i, 7:))

endfor
I+ H(G™ Hp(pk )™,
{(Ki,Yi, Zi, Tg,i) bie[n])
C = (G, He(pk\|)"", {si}ic(p)s ho, {Zi}ien))
7= ({K;, Y, Wrng,i}-i.e[-n]-. I {ai,Titier)
return (C, )

Fig. 3. Algorithms of our VI'LRS Scheme. Here D = |R| — 1.

Instantiating LHTLP. We can instantiate the LHTLP with the RSA based
construction from [24] or the class group based construction from [33]. In the
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former we can let the committer run the setup while additionally proving the
well-formedness, and in the latter we have a transparent setup which can be run
by any party. Notice that one-time setup for VI'LRS other than LHTLP, can be
instantiated in the ROM without any trust.

Batch Force-Opening of VITLRS Commitments. We observe that assum-
ing (i) a large enough message space of the time-lock puzzles and (ii) global
public parameters pp, one can batch the solutions of different puzzles into a
single one using known constructions from [24|. This can be done by homomor-
phically packing the messages in each puzzle into a single puzzle with a linear
function f(x1,...,z5) = >, 207 VA . 2, as discussed before. Therefore open-

ing a VILRS commitment involves solving a single puzzle, and infact, we can
potentially open many VIT'LRS commitments by solving a single puzzle.

Vfy(tz, C, )

R
crs := (CTSmg, PPrs: PPLuTLe)s 10 = ({Pki }ll=|1 ; tag, (’),;1.)

C:=(G,H,{si}icip), ho, {Zi}ictn)

7= ({Ki,Yi, Tmg.i bien), I, {@i, ritier)

Vi€ [D]|, L;:= Gs*pkili_', R; := Hp(pk,)* tag"i—*, h; := Hs(tz||Li||R:)
Lz :=G- pklh,,’gl, Rir) = H - tag"?, hr| = Hs(tz||Liz|||Ri%|)

by := (ho # hr|)

by :=3j ¢ I (Kf]“” J 5 # G)

el
by := 3_] ¢ 7 (}/jl"j(O) ) Hyvit'ii(()) # f])
e 1
by := i € [n] (VNIZK,C,,,B(CTSrng, (Z,O 2A,T),7ng,i) # 1)
bs := 3Ji € I (Z; # LHTLP.PGen(pp, ai;r;))
be := 3i € I (K: # G™)
br i=3i € I (Vi # He(pkiz))™)

bg 1= ([ £ H’ (G‘., H, {(K;,Y:, Zi,ﬂ'rng,i)}ie[u]))

if \/ b; = 1 thenreturn 0 else return 1
i€[8]

Fig. 4. Verification algorithm of our VTLRS scheme. Here D = |R| — 1.
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4 Benchmarking

We implement prototypes of our VILRS construction and PAYMo. We build our
VTLRS prototype with rust using the curve25519-dalek [8] library with security
parameter A = 128. All measurements were done on on a single CPU core of an
AWS t2 micro instance for easier comparison with the following specifications:
1 core of a Intel Xeon E5-2676 v3 @ 2.40 Ghz, 1 GB of RAM, Ubuntu Linux
18.04.2 LTS (4.15.0-1045-aws) and rust 1.41. Our measurements are reported as
a median over 1000 executions.

All hashing operations (Hs,Hp,H and H’) are implemented using SHA-512
or the Keccak variant used in Monero. For all Elliptic Curve Operations the
Curve25519 implementation from curve25519-dalek [8] in Ristretto form [9] was
used. We implemented the NIZK proof from [12] for Leqq and the NIZK proof
for Ling from [32]. The prover and verifier times for the NIZK proof for Leqq
is 0.079ms and 0.143ms, respectively. For the NIZK for L., for statistical
soundness parameter k& = 64, the prover and verifier times are 258.66 ms and
289.56 ms, respectively. We implemented the LHTLP construction [24] for time-
lock puzzles, with a 1024 bit RSA modulus N. In our benchmark, the time taken
for PSetup (including prime generation) is 730.43 ms, and the time taken for PGen
is 3.557ms. And the time taken by PSolve for timing hardness T := 1024, 2048
and 4096 is 2.708 ms, 4.070ms and 6.795 ms, respectively.

VTLRS. We evaluated our VI'LRS construction by setting the parameters as
n = 80 and t = 40 (probability of adversary breaking soundness is 9.3 x 10~24).
Our results show that Com and Vfy algorithms of our VI'LRS construction take
586.76 ms and 467.84ms in CPU time, respectively. We implemented the LRS
transaction scheme of Monero with a ring size of 10 keys (which is the common
size used in Monero today [4]), with one spending key and one recipient.

Evaluation of PAYyMo. We consider two different measurements: (i) Only the
computation operations and not the cost of serialisation and network transmis-
sion in PAYMO. This shows the performance of the protocol on the sender and
receiver side of a PAYMo channel. (ii) Total time taken by operations including
network operations and latency. To show the impact of network transmission in
this measurement, two settings with different network latency are considered.
We focus only on LRS-T'S of Monero and omit other confidential transactions
related operations. A possible future work is to have a complete prototype that
is executable on the Monero network.

We consider Alice and Bob who share a payment channel. To evaluate the
performance of PAYMO, we measure the computation time of both users during
the channel opening and payment phase. We also measure the total time taken
for PAYMO operations that includes network latency between parties. Our results
from Table1l show that the time taken for finishing a single payment is less a
third of second even under high latency scenarios.
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Table 1. PaAyMo operations for Alice and Bob excluding network overhead. PC oper-
ations for both parties including network latency, with low latency setup S1 (Alice
and Bob) and high latency setup S2 (Alice and Bob) with Round Trip Times between
the two users of 0.3 ms and 144 ms, respectively. All measurements are reported in
milliseconds (ms).

Alice Bob Setup S1 Setup S2
Joint key/Tag generation 0.13  0.31 | 1.85 440.7
PC opening 468.1 | 588.4 | 1060 1351
PC payment 130 1.28 | 3.61 1297.9

Interpretation. Our results from Tablel show that by exploiting parallel
request processing, the receiver of one or more channel(s) can process around
780 payments per second per CPU core, while the sender of one of more chan-
nel(s) can process around 770 payments per second per CPU core. The parties
can scale up their processing power if they spawn more PC nodes (or cores) as
done in the Lightning Network.

For instance, for a payment service provider (recipient) who has payment
channels with several users, it can accept more than 93600 payments per CPU
core over a span of 2min (average block production rate in Monero), from users
with PAYMO channels with the service provider. In this case, only the receiver’s
CPU time for payments is considered, excluding the overhead for serialization
and network.

Alice and Bob can process close to 93500 payments per CPU core (with
acknowledgement of payment) over a span of 2 min even with a round trip latency
time of 144 ms per message. This is because during message transmission, parties
do not stay idle but instead spawn new payments in parallel. In case the parties
only make sequential payments, Alice can still make more than 400 payments
over the span of 2min.

5 Conclusions

We presented verifaible timed linkable ring signatures a new cryptographic tool
and PAYMoO, which is the first payment channel protocol that is fully compatible
with Monero, the largest privacy-preserving cryptocurrency. Our results show
an increase in the transaction throughput of several orders of magnitudes when
compared with the current implementation of Monero. As an exciting next step,
we plan to work on large scale adoption of PAYMoO in Monero.

Acknowledgements. The work was in part supported by THE DAVID AND
LUCILLE PACKARD FOUNDATION - Award #202071730, SRI INTERNATIONAL
- Award #53978 / Prime: DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY - Award #HR00110C0086 and NATIONAL SCIENCE FOUNDATION -
Award #2212746. This work is also partially supported by Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) as part of the Research



Verifiable Timed Linkable Ring Signatures 483

and Training Group 2475 “Cybercrime and Forensic Computing” (grant number
393541319/GRK2475/1-2019), and by the grant 442893093, and by the state of Bavaria
at the Nuremberg Campus of Technology (NCT). NCT is a research cooperation
between the Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU) and the Tech-
nische Hochschule Niirnberg Georg Simon Ohm (THN).

A Preliminaries

Time-Lock Puzzles. Time-lock puzzles |28 allow one to conceal a secret for
a certain amount of time T. Homomorphic Time-Lock Puzzles (HTLPs) |24]
allow one to perform homomorphic computation on honestly generated puzzles.
It consists of a setup algorithm (PSetup), that takes as input a time hardness
parameter T and outputs public parameters of the system pp, a puzzle gener-
ation algorithm (PGen) that, on input a message, generates the corresponding
puzzle. One can then evaluate homomorphically functions over encrypted mes-
sages (PEval) and solve the resulting puzzle in time T (PSolve). The security
requirement is that for every PRAM adversary A of running time < T¢(\)
the messages encrypted are computationally hidden. Malavolta and Thyagara-
jan [24] show an efficient construction that is linearly homomorphic over the ring
Zins, where N is an RSA modulus and s is any positive integer. The scheme is
perfectly correct and is secure under the sequential squaring assumption [28|.

Non-interactive Zero-Knowledge. Let R : {0,1}" x {0,1}" — {0,1} be an
NP relation with corresponding NP-language £ := {stmt : Jw s.t. R(stmt, w) =
1}. A non-interactive zero-knowledge proof (NIZK) [13] system for £ is initial-
ized with a setup algorithm Setup(1*) that outputs a common reference string
crs. A prover can show the validity of a statement stmt with a witness w by
invoking Pnizk. c(crs, stmt, w), which outputs a proof m. The proof 7 can be
efficiently checked by the verification algorithm Vyzk o(crs,stmt, 7). A NIZK
proof for language £ is simulation extractable if one can extract a valid w from
adversarially generated proofs, even if the adversary sees arbitrarily many sim-
ulated proofs. A NIZK must also be zero knowledge in the sense that nothing
beyond the validity of the statement is leaked to the verifier.

Threshold Secret Sharing. Secret sharing is a method of creating shares of
a given secret and later reconstructing the secret itself only if given a threshold
number of shares. Shamir [31] proposed a threshold secret sharing scheme where
the sharing algorithm takes a secret s € Z, and generates shares (s1,..., s,) each
in Z,. The reconstruction algorithm takes as input at least ¢ shares and outputs
a secret s. The security demands that knowing only a set of shares smaller than
the threshold size does notreveal any information about s.

B Transaction Scheme of Monero

We review the basic definitions of Linkable Ring Signatures (LRS) following
Lai et al. [20]. In contrast to their work, our definitions do not consider the
“confidential transaction” part, and only focus on the signature of the transaction
scheme, for conceptual simplicity.
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B.1 Definition

A ring signature [29] scheme allows to sign messages such that the signer is
anonymous within a set a possible signers, called the ring. The members asso-
ciated to the ring are chosen “on-the-fly” by the signer using their public-keys.
Linkability [21] means that anonymity is retained unless the same user signing
key is used to sign twice. This is achieved by associating a unique linkability tag
to each signing key that is revealed while generating a signature.

In a transaction scheme, we have a block of data referred to as a transac-
tion, that determines the amount of coins transferred from one user address
(source) to another user address (target) and it is accompanied by an authenti-
cation token (signature) of the sending user. Since the sending user is represented
through the source address in the transaction, the signature is checked for valid-
ity with respect to the source account. Combining linkable ring signatures and a
transaction scheme, we have a linkable ring signature based transaction scheme
(LRS-T'S), where the message signed is the transaction which consists of: A ring
of addresses (LRS public keys) and their associated coins (out of which one of the
addresses is the source account), and one or more target addresses. The authen-
tication token of the transaction is a linkable ring signature on the transaction
(as message), with the ring of addresses as the ring, and the secret authentica-
tion key of the source address as the signing key of the linkable ring signature
scheme. To prevent leakage of the source address it is assumed that each address

in the ring of addresses have the same amount of associated coins®.

Definition 4. A Linkable Ring Signature (LRS) transaction scheme X' consists
of the PPT algorithms (Setup, OTKGen, TgGen, Spend, Vf) which are defined as
follows:

pp < Setup(1*): outputs the public parameter pp.

(pk, sk) «— OTKGen(pp): The one-time key generation algorithm outputs a
public-secret key-pair (pk, sk).

tag «— TgGen(sk): The tag-generation algorithm takes as input a secret key sk.
It outputs a tag tag.

(tr,o) « Spend(R,Z, O, u): The spend algorithm takes as input a set R of public
keys with each key associated with ¢ coins, a tuple I = (j, sk, tag) consisting of
an index j, a secret key sk, and a tag tag, a set O consisting of target public
keys and some metadata p. It outputs a transaction tr := (R, tag, O, ) and a
signature o.

b« Vf(tx,o): The verify algorithm inputs a transaction tr and a signature o.
It outputs a bit b denoting the validity of o.

Security. We have three properties of LRS-TS, namely (1) Privacy: LRS-TS
should ensure privacy of the source account, meaning an adversarial observer on
the blockchain should not learn any information about the source address from
a transaction other than the fact that it is a member of the ring of one-time

% This assumption can be relaxed with the use of confidential transactions [25] where
an account’s associated amount is hidden using commitments.
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addresses, (2) Non-Slanderability (Unforgeability): LRS-TS must ensure that an
adversarial user cannot steal the coins of an honest user (unforgeability) or spend
coins on behalf of an honest user (non-slanderability), and (3) Linkability: LRS-
TS must ensure that an adversary cannot double spend his coins and any such
attempts must be linkable. We refer the reader to [35] for the formal definitions.
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