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Abstract—Most cryptocurrencies have successfully provided
anonymity in a permissionless environment. However, the pattern
of transfers is open to publicity. To face this issue, Monero
was proposed to provide untraceability from ring signatures by
introducing mixins to obfuscate addresses. By temporal analysis,
however, the transfer pattern can still be partially revealed in
a stochastic approach due to inappropriate selections of mixins.
Thereby, each flow of coins can be traced with high probability
which disobeys the untraceability principle of Monero. In this
work, we propose a hard-to-trace protocol based on Monero
where each transaction output is assembled into a fixed ring set.
In this way, inappropriate mixins are forbidden, and thereby
the temporal analysis is resisted. Apart from the traceability
issue, Monero is also challenged due to its growing difficulty of
block assembly. To guarantee the privacy, “key images” with
a considerable size have to be stored by each miner to verify
transactions and assemble blocks. As blockchain grows, the
number of key images increases and a significant burden has
already been caused, making the block assembly of Monero
inefficient to most miners. Aimed at a more practical block
assembly, our protocol allows key image truncations to facilitate
transaction verifications.

Index Terms—Blockchain, Privacy-Preserving, Untraceability,
Temporal analysis

[. INTRODUCTION

Bitcoin [1] opens up an era of cryptocurrency and has
been the most successful and popular cryptocurrency. One
reason for Bitcoin’s success is its anonymity. Adopting graph
analysis on the open blockchain of Bitcoin, however, its
transaction pattern can be obtained easily, which compromises
its anonymity greatly [2]. To solve such a privacy issue in
Bitcoin, some anonymous cryptocurrencies were proposed like
Monero [3], [4], Zcash [5], [6] and Dash [7]. Among them, the
total market value of Monero ranks the highest (841 million
dollars by February 19, 2019).

Still, Monero faces some attacks [8]-[13], which expose
the inputs and outputs of transactions and thereby weaken the
privacy. In this paper, we propose a protocol to solve such a
privacy threat in Monero.

A. Monero

Like all cryptocurrencies, Monero 1s an anonymous dis-
tributed ledger with a serialized log of transactions stored
in a chain of blocks (the blockchain) which grows by time.
The extension of the log is realized by the assembly of new
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blocks performed by miners (new transactions are verified
by miners before recorded into a block). The transaction in
Monero consists of inputs and outputs. Eash transaction output
has a one-time address, which can be regarded as a public
key randomly generated according to the long-term key of the
receiver whose corresponding private key 1s obtainable to the
receiver [14], [15]. The transaction input has multiple input
addresses, each of which links to an output of some previous
transactions.
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Fig. 1. A simplified diagram of the transaction in Monero

Although a transaction input has multiple input addresses,
only one (the real input) 1s actually spent in the transaction
and the rest, referred to as mixins of the real input, are used
to hide the real input. In this paper, we call the ring set as all
the addresses in an input. According to each ring set, a ring
signature 1s generated for each transaction input [?], [16], [17].
In this way, Monero achieves untraceability of currency trans-
fers since it 1s hard to distinguish the real input from mixins.
An example 1s provided in Fig. 1 where the transaction has
two inputs and one output. In input,, the real input is hidden
among three addresses—(Addry,, Addry,, Addr,3). However,
such an untraceability makes double-spending hard to detect.
To face this issue, for each input, a unique key 1image, which
1s generated according to the one-time private key of the real
input, is provided to prove that the input has not been spent in
the past [14]. Also mention about Monero uses linikable ring
signature [18]-[21] as the underlying cryptographic primitives
which can be used to provide linkable anonymity for various
applications such as e-voting [22] or cryptocurrency such
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as Ring Confidential Transaction (RingCT) for blockchain
protocol [17].

B. Privacy issues in Monero

In general, the larger the number of mixins, the stronger
the untraceability is. However, mixins are chosen by users and
thereby improperly-selected mixins can easily compromise the
untraceability.
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Fig. 2. An example of choosing mixins inappropnately in Monero

For example, as shown in Fig. 2, there are three
transactions with one input. Transaction 1 (fx;) has the
input (Addri, Addry). Transaction 2 (frz) has the in-
put (Addry, Addrs). Transaction 3 (fr3) has the input
(Addry, Addrs). From tro and txz, Addry and Addr; must
be the real input of tzy or txs. Therefore, Addr, must not
be the real input of fx;. So the real input of fz; must be
Addry. In this way, one transfer is traced and hence the
pattern of currency transfer is partially revealed. This 1s a
drawback of Monero, and there is no way for users to ensure
that their transactions are untraceable, as the hard-to-trace
property of any flow of currency also depends on transactions
of others. This 1s an inevitable issue caused by the spontaneity
of choosing mixins in Monero.

As a more systematic approach of currency tracing, tempo-
ral analysis [8] has been proposed in 2017, posing a greater
challenge to the untraceability of Monero. As shown in [8], the
real input in the input addresses of a transaction input 1s often
the one with the smallest spend-time'. In fact, the real inputs
of more than 90% of transactions can be deduced by temporal
analysis, which seriously threatens the privacy of Monero.

To resist temporal analysis, Malte Moser et al. [9] proposed
two countermeasures, namely, spend-time distribution and
binned mixin sampling.

Spend-time distribution estimates the spend-time of the
addresses of all transaction inputs in the blockchain to get the
distribution of transaction inputs’ spend-time. Users choose

'The spend-time is the minus of send-time (the height of the block in which

it appears as an input) and receive-time (the height of the block in which an
address appears as an output).
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mixins following the above distribution to hide their real
inputs. However, the sampling distribution is highly dependent
on the sample and can not ensure real-time updates. In
addition, since it 1s not guaranteed that all users use the same
sampling distribution, some groups of users with their unique
distribution can be exposed to the adversary.

Binned mixin sampling groups the transaction outputs in
the same block or the next block into a fixed-size set, called
bins. In this way, the temporal analysis 1s resisted. It takes
into account the fact that miners may be malicious. In order
to prevent malicious miners harming the system, transaction
outputs within the same block will be shuffled.® In this case,
miners can not control the order of the transaction outputs.
However, there 1s a worse situation. If a malicious miner
only packages the target transaction and lots of his/her own
transactions, the target transaction outputs must be in a bin
with the malicious miner’s transaction outputs even if there is
a shuffling procedure. The attacked user will immediately be
exposed when the target transaction output 1s spent. Ordinary
users cannot identify whether a miner packages his/her own
transactions to surround the user’s transaction. This is a
weakness for the binned mixin sampling procedure.

C. Our Contribution

In this paper, we propose a practical protocol that avoids
weakening the privacy of the transaction due to choosing mix-
ins inappropriately and resists temporal analysis completely.
The ring sets in our protocol are assigned by the rules instead
of chosen by users and the ring sets are also fixed, which
means that if Addr 4 is the mixin of Addrg, then Addrg must
be the mixin of Addra. In this way, inappropriate selection of
mixins 1s forbidden, therefore, the anonymity of a transaction
cannot be reduced. Although the ring set is fixed, the block
head hash is used to shuffle the outputs, so nobody can control
the members of a ring set. In addition, the addresses in a ring
set come from blocks in the same time period. The adversary
can not analyze which one is the real input through their spend-
time.

Furthermore, our protocol can make the verification of
transactions more efficient. To verify whether a transaction
is valid, for each transaction input, a miner needs to check
whether the addresses in the ring set are referred to existing
transaction outputs, as well as, whether the key image has
appeared previously. In order to verify a transaction quickly,
Monero miners need to load all the outputs and all the key
images on the blockchain into the memory. For miners, both
key images and outputs are continuously growing, the memory
growth rate is unbearable and the verification process 1s too
time-consuming, which is very terrible for the expansion and
performance of Monero. The protocol in this paper breaks the
original rules of verifying transactions so that miners do not
need to load all the key images and outputs. It greatly reduces
the demand for miners” memory and speeds up verification of
transactions.

2If the number of transaction outputs is not divisible, the remainder
transaction outputs in a bin will come from the next block.



I[I. OUR PROTOCOL
A. Overview

In order to solve the privacy issues of Monero discussed in
Section. I-C, we propose a protocol that two rules should be
followed. First, to avoid inappropriate and invalid selection of
mixins, the mixins of an output should also be the mixin of this
output. Second, to resist the temporal analysis, the members
of a ring set should come from the blocks in the same time
period.

Our protocol, in general, 1s a way to assign the fixed ring
set by the rules. It breaks the original spontaneous and uncon-
trolled mixing law and adopts the form of fixed matching. The
main idea of our protocol is to divide the transaction outputs
in the consecutive /N blocks into a number of fixed mixin sets
as the size of k. The reason for the consecutive N blocks is
that it can avoid malicious miners controlling the members
in a ring set. With large enough N, nobody can control the
blocks consecutively, otherwise, Monero will face 51% attack
under the majority assumption.

Generally, the larger the ring set, the harder it i1s for the
adversary to determine which is the real input. In current
Monero, such ring set is constantly changing. Users choose
mixins spontaneously without considering whether others also
choose their outputs as the mixins. This changeable ring set
can cause traceability of transactions. In this paper, the ring set
is fixed, which guarantees the effectiveness of the mixins and
avoids users affecting each other because of their spontaneity
of choosing mixins.

In this paper, the transaction outputs in a block are divided
into N parts. For the consecutive /N blocks, one part is selected
from each block to form a group. As shown in Fig. 3, the
dotted box represents a group. The transaction outputs in the
same block but different parts will be included in different
groups. In order to ensure that the division fully covers every
transaction output of each block, the composition of groups is
like a sliding window, and any group is formed by the parts
of the consecutive N blocks just before it.

It 1s still too many transaction outputs in a group, and they
should be divided into a smaller group —- a ring set. In
current Monero, the ring set 1s chosen by the user, while in
this paper, the ring set is assigned by the rules. From a privacy
perspective, even if the ring set is determined, it still should
not be controlled by anyone. Due to PoW(Proof of Work [1]),
block head hash is a number that cannot be easily controlled
by miners. When a new block 1s created, the addresses in a
group of previous consecutive /N blocks are shuffled by the
block head hash and then divided into many ring sets.

Let £ be the size of the ring set and N be the number of
blocks in a time period, where k& and N are system parameters
and can be adjusted according to the actual situation.

As Fig. 3 shows, the transaction outputs in a block are
divided into N parts. Take block._ y for example, the trans-
action outputs are divided into N parts: (part, : opy1,0p...),
(party : op1a,0p...), ..., (party : opyn.op...). The light blue
parts from block.— n to block.— 1 are gathered together to form

516

ey bhodc hel gececl van bhodcel
Bt by Entkar e dnccHEr -
Bod boxy Ehd kot ot 2o Zombedy Zouibody

arve kel arvrke

|
.

urvril

arvekale arve ke

k \'m_<

arvriN arve s

mEeil | Bad-ed-a

Fig. 3. Overview of our protocol

a group, which should be shuffled by the light blue block head
hash(block.), and finally, be divided into lots of ring sets. Here
is a point that needs attention —- if a transaction has multiple
outputs, they should be regarded as separate individuals, with
large probabilities being assigned to different ring sets.

B. Protocol Run by Miners

In the Monero network, there are two types of nodes, one
is the miner, and the other is the ordinary user. Different
from ordinary users, miners should verify the transactions and
package the transactions into a block. Then, miners should
make a block to be valid through the PoW. In general, a block
consists of a block head and a block body. The transactions are
contained in the block body in the form of a Merkle tree [1].
The Merkle tree’s root is stored in the block head to ensure
the integrity and unforgeability of the information in the block
body. Miners are free to choose transactions and decide the
locations of these transactions in the Merkle tree.

In our protocol, when miners are creating a block, one
more thing should be done compared with the current Monero,
that is, divide the transaction outputs in this block into N
parts. At first, miners should calculate the sequence number
for every transaction output in the block. According to the
Merkle tree and outputs’ order in a transaction, all transaction
outputs within a block can be given a sequence number. Once



the Merkle tree is constructed, the sequence numbers of the
transaction outputs in this Merkle tree are determined.

Algorithm 1 Calculate sequence numbers for transaction
outputs
Input:
The complete Merkle Tree of a block, MT;
Output:
The set of transaction outputs with a sequence number,
SN;
I: from left to right, push all leaf nodes(transactions) from
MT into a queue 7T X;
initialize the sequence number s = ();
for each tz; € TX do

:a) !\)

4:  for each op; € tx; do
5: SN|s| = opj;

6: s=s+1;

7 end for

8: end for

9:

return SN;

Through Algorithm 1, the sequence numbers for a given
block are calculated, which is determined by the Merkle tree
in the block body. In order to make the division of transaction
outputs in a block unique, SN is of great significance and
everyone can run the Algorithm 1 to get the SN of any block
in Monero blockchain.

After obtaining the sequence numbers of outputs, miners
divide outputs into N parts, which should follow the rules
below.

a). The difference in the number of outputs per part is less
than 1 (except party).

b). Adjust the size of party to ensure that the size of a
group is an integer multiple of k.

¢). The size of No.N part is at most £ less than other parts.

d). If 7 < j, the sequence number of transaction output in
part; 1s smaller than part;.

e). If © < j, the size of part; is larger than part;.

f). The parameters meet the following conditions: N is larg-
er than k&, N (k — 1) is larger than the number of transaction
outputs in a block.

Following the above seven rules, the division of a given
block is determined.

Through Algorithm 2, the block has been divided into the NV
parts that are roughly the same size. The result of Algorithm
2 —- DI is recorded in the block head in order to facilitate
other miners and users to figure out which part the transaction
outputs are divided into. D/ is an array of N + 1 integers,
which do not take up too much space. DI 0] is 1 and DI[i] —
DI|i — 1] is the size of part;.

In addition to dividing the outputs in the current block,
miners should gather the parts of previous consecutive N
blocks into a group. If blockid > N, miners do the gather
procedure. If blockid < N, there are not consecutive N blocks
before current block, so miners cannot do the gather procedure.
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Algorithm 2 Division for transaction outputs
Input:
The set of transaction outputs with a sequence number,
SN;
The size of ring set, k;
The number of parts in a block, V;
Divisions of N — 1 blocks before the current block,
DI, N1, DIcNy2y .y DIcq;
Output:
Division for all the transaction outputs in the current
block, DI,
initialize a array of size N: AR = {0}
initialize an integer: j = ();
for each op; € SN do

&  AR[j] = AR[j] + 1;

5 j=(j+1) mod N;

6: end for

7: initialize ent = AR[N — 1];

8: for n=1to N —1do

9: ent=cnt+ (DIe—n|[N —n]—DI._n|N —n—1]);
10: end for

- re = cnt mod k;
: AR[N — 1| = AR|N — 1] — re;
13: for t =1 to re do

14:  AR|j| = AR[j] + 1;

15: j=(j+1) mod N;

16: end for

17: D](_-[O] = ]

18: for n=1to N do

19:  DI.[n] =DI.n— 1]+ AR[n — 1];
20: end for

21: return D/,.;

Considering the initial implementation of our protocol, some
transaction outputs of the initial /N blocks cannot be covered.
One solution is to let that the first block has only one part
and the second block has two parts and so on. Therefore,
there are no uncovered transaction outputs. The other solution
1s to gather all of these uncovered transaction outputs into a
big group and shuffle them by the N — 1th block head hash.
There 1s a problem that the size of the big group is not a
multiple of k. In this case, the miner of the N — 1th block
need to carefully package the transactions and construct the
Merkle tree, ensuring that the total number of the big group
is a multiple of k.

After calculating the division of a new block and record
the division in the block head, the block has been assembled.
Then, miners can do the PoW to obtain a legal block. After
that, the new block should be broadcasted to the network and
then be verified by other miners of Monero. After the verifica-
tion, the block has been accepted by all. Then, the new block
head hash should be used to shuffle the transaction outputs
in the previous consecutive N blocks. Before the shuffling
procedure, the group to be shuffled should be gathered from
the NV blocks.



Algorithm 3 Gather the parts of previous /N blocks
Input:
The sets of transaction outputs with a sequence number
in previous N blocks, SN._n,SN._n41,.... SN._1;
Division of N blocks before the current block,
D-lc—N, ch—N+1, vaes D-Ic—l;
Output:
The transaction output group, GR,.;
initialize GR,. = {}:
for i =1to N do
for each op; € SI\"C_,'[DIC_1 [4‘\" — I] -1, DIC_1[.N +
1—i|—1] do
add op; into GR,;
end for
end for

return GR,.:

L A
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Through Algorithm 3, miners get a newly-formed group,
and then miners should do the shuffling procedure. The block
head hash i1s introduced as a random factor that shuffles the
transaction outputs in a group. The block head hash is a value
that cannot be arbitrarily modified by miners so that it is
suitable as a parameter for the shuffling procedure.

Algorithm 4 Shuffle the transaction outputs and divide the
outputs into ring sets
Input:
The transaction output group, GR,.;
The current block head hash, BH H,.;
The size of ring set, k;
Output:
The set of ring sets, RS,;
. for each op; € GR, do
h; = H(BHH, || op; public key), where H is a hash
function;
end for
sort RS, from small to large of the value h;;
initialize rs = {};
for each op; € GR,. do
add op; into 7s;
if the size of rs is equal to k& then
add rs into RS¢:
10: set 7s = { };
11:  end if
12: end for
13: return RS, ;

2
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Through Algorithm 4, miners finally obtain many newly-
formed ring sets. Next, we will discuss how miners do to
make the verification of transactions more efficient.

To verify a block, miners should verify the transactions
in this block. When miners verify a transaction, they should
verify that each input 1s a legal input. The verification of a
transaction input is mainly divided into three steps:
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a). Check whether each address in the transaction input is
valid.?

b). Check whether the key image has appeared in the
transactions of previous blocks. If the key image has appeared,
the transaction input cannot be accepted.

¢). Verify the signature of the transaction input.

In our protocol, miners maintain an unspent ring set list,
which is different from what miners do in current Monero. As
the Fig. 4 shows, the unspent ring set has three data segments
which are counter, keylmages and ring set. When a new
transaction 1s successfully verified and put on the blockchain,
the counter of its input’s unspent ring set adds one and the key
image of this transaction input is recorded in the keylmages.
When the counter is equal to k, this unspent ring set should
be removed from the list. The role of counter records the
number that this ring set appears as an input, and the role of
keylmages is to prevent double spending.

counter
—>
keylmages
—>
Addrl
Addr2 :
Acdr3 ring set
—..

Fig. 4. The data structure of unspent nng set

For a given valid new block, miners should do the following

two operations:

e Initialize: According to the Algorithm 4, miners obtain
many newly-formed ring sets that should be inserted
into the unspent ring set list. Initialize counter 0,
keylmages is empty and ring set is one of the newly-
formed ring sets.

e Update: For each transaction input in the new block,
miners should add one to the counter of the related
unspent ring set, and record the key image of the input
in the keylmages. When a counter reaches the upper
limit, ie the size of the ring set, this unspent ring set
should be removed from the list.

With the unspent ring set list, miners can verify a transaction
easily. For a transaction input, miners do the following two
steps.

a). Check whether the ring set of the input is in the list
or not. Every input addresses should be the same with the
addresses 1n ring set.

b). Check whether the key image of the input is in the
keylmages or not.

In this way, miners save space and time. First, miners no
longer need to load all key images and transaction outputs into

*A valid input must be the transaction output in the previous blocks.



the memory. Now, miners only need to maintain an unspent
ring set list, which size is almost constant by the Initialize
and U pdate operations. Second, miners used to search all the
transaction outputs to verify that the transaction input is valid
and all the key images to make sure the key image of the
transaction has never appeared in the previous blocks. Now,
the miner only needs to search for the unspent ring set first,
which 1s to verify that the transaction input 1s valid, and then
verify that the key image does not appear in the keylmages,
which takes less than half of the search time.
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Fig. 5. The total flow diagram of miners

In conclusion, as Fig. 5 shows, before a block 1s created, the
miner should run the Algorithm 1&2 to calculate the division
of the transaction outputs in this block. After the block has
been put into the blockchain, all the miners should run the
Algorithm 1&3&4 to get the ring sets of previous consecutive
N blocks and then initialize the unspent ring sets into the
list. Moreover, miners should update the unspent ring sets
according to the transaction inputs that are spent in the current
block.

C. Protocol Run by Ordinary Users

Ordinary users only care about their own transactions. When
a user receives a transaction output, if the user wants to create a
transaction to spend the output, he/she should run the protocol
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to figure out which ring set its output belongs to. Suppose the
user’s transaction output is opyser, and the block that the user’s
transaction is in is block,. Part! is the part; of block;.

Algorithm 5 Calculate the ring set of a transaction output
Input:
The Monero blockchain, B j,in:
The user’s transaction, op, cer;
The block id that user’s transaction is in, u;
Output:
The ring set of a transaction output, RS, cer:
I: MT, < (Bihain.U);
from left to right, push all leaf nodes(transactions) from
MT, into a queue 17X, ;
3: 1nitialize the sequence number s = 0);
4: for each tzr; € TX, do
5:  for each op; € tX; do
6: if op; = opy e, then
.
8
9

(S

break;
else
s =8+ 1;
end if
end for

12: end for
13: Dlu — (-Bch,aina 'll.);

14: mitialize p = 0; (p 1s the partid of op,, eer)

15: for each j € DI, do

16: if s > j then

17: break;

18:  else

19: p=p+1

20:  end if

21: end for

22: calculate I’art'l‘_pH, ., Party, ..., I’mt“ P+\) by

Algorithm 1&2;

groupyser = 1’a.7‘t'1‘_”+1, ... Part?, .., Part 3 PN
calculate RS with groupuser and blocky—p4n4+1 head
hash by Algorithm 4;

25: for each re € RS do
26:  for each 7 € re do
27: if i = op,cer then
28: RSuser = 1€
29: end if

30:  end for

31: end for

32: return RS, ;

As Fig. 6 shows, users need to wait for NV —p+1 blocks to be
able to spend the coins they have already received. However,
the delay 1s insignificant, because users can still confirm their
transactions timely. It doesn’t matter if you can be sure to
receive the coins and wait for a while to spend it. Moreover,
assuming N is 50, the maximum waiting time for users is 100
minutes, which is a short delay.
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Fig. 6. The total flow diagram of ordinary users

III. SECURITY ANALYSIS
A. Analysis of the Untraceability

Untraceability 1s one of the most important characteristics
in Monero. Ring signature is used to hide the real input and
thereby Monero achieves the untraceability of transactions.
However, since choosing mixins is a completely spontaneous
procedure for users, it can cause many privacy risks. The most
severe risks are the improper selection of mixins and temporal
analysis mentioned in section one.

Our protocol enhances the untraceability in Monero. First,
there is no improper selection of mixins. Our protocol makes
the ring set fixed that the addresses in a ring set always appear
in the same transaction input at the same time. In this way,
users never have to worry about the improper selection of
others. Second, our protocol can completely resist temporal
analysis, because the addresses in a ring set must come from
the adjacent NV blocks. The spend-time of the addresses in an
input have almost no difference. The adversary can not deduce
which is the real input from the spent-time .

In conclusion, the protocol in this paper can deal with
the current two types of traceable attacks against Monero.
Compared with the current Monero, our protocol has better
privacy.

B. Attack and security analysis

Miners play a vital role in the protocol of this paper.
Transactions 1n the block are packaged by the miners, which
means that the miners are free to package transactions into
the block. If there are malicious miners, they do not package
transactions in the normal order, which may cause certain
damage to the privacy of our protocol. However, if malicious
miners do not pay a considerable price on computing power,
it 1s difficult to attack our protocol.

Due to the shuffling procedure of the transaction outputs, the
only way for an adversary to attack the protocol 1s to control
more transactions in the consequent N blocks, which means
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that the adversary should make its own transactions outputs
in the consequent N blocks as much as possible. The more
transactions the adversary controls, the worse the privacy of
the transactions.

In this paper, the method of choosing mixins is fixed. When
the output of a certain transaction is spent, if the adversary
can control all the outputs except this output in the fixed ring
set, the adversary can trace this output. When this output is
spent, although it has £ — 1 mixins, the adversary can still
know this output is the real input of the transaction, since
the rest are controlled by the adversary. However, through
probability calculations, the probability that an adversary can
control all remaining outputs in aring set is small. Besides, the
adversary needs to pay a lot of computing power and obtain
no transaction fees.

The range in which an adversary can attack is small, only
the transaction outputs in the latest V — 1 blocks. Because
the ring sets of the transaction outputs in the block before
the latest V — 1 block have been determined and no one can
change it unless someone can implement a 51% attack. The
adversary has no way to attack the transaction output with the
determined ring set. As more and more blocks are created and
follow a target block, the probability of attacking transactions
in this target block is getting smaller and smaller.

We define the model of the attack, assuming that the purpose
of the adversary 1s to determine the real input of a transaction,
in other words, to achieve traceability of the transaction.
Assume that the adversary’s computing power is ¢, and the
honest miners’ computing power is p, which satisfies g+p = 1.
Set the maximum capacity of a block to M and the average
size of a transaction to m. The average number of transactions
that a block has on average is ¢, which satisfies M = tm.
Suppose each transaction has an average of two outputs, one
for payment and one for change. There is an average of
W transaction outputs in each block and W = 2{. Without
considering economic incentives, we assume that the block
created by the adversary contains only its own transactions,
which allows the adversary to gain maximum attack power.
We use the size of the anonymous set to measure the privacy
of transactions. The initial size of the anonymous set is k. If
the adversary controls one address in the ring set, the size of
the anonymous set reduces 1. If the adversary controls £ — 1
addresses in the ring set, the adversary attacks the target output
successfully.

According to the above model, the probability that the
adversary can attack one target output successfully can be
calculated.

The probability that the anonymous set reduces i (i < k—1)
1s:

gN W\ (pNW —1
e
The probability that the anonymous set reduces to 1 is:
(1)
(Cemi)
When N = 50, M = 2MB, m

LkB, t = 2000, W =



4000 , the probability that the adversary can attack one output
successfully is as followed:

TABLE |
ATTACK THRESHOLD

q=0.05 q=0.1 q=0.15 q=0.2

k=5 | 6.3x10°° 1.0 x 1071 5.1 x 1074 1.6 x 10~

k=10 | 2.0 x 10712 1.0 x 10—9 3.9x10°8 51x10"7

k=15 | 6.1 <1071 [ 1.0x 107 | 30x10712 | 1.6 x 1071V

k=20 | 1.9x1072% [ 1.0x 10719 | 25x10716 | 5.2 x 1014

As can be seen from table. I, the probability that the
anonymous set reduces to 1 is very small. As k increases, the
probability that an adversary can attack successfully is almost
negligible. But considering that the larger k£ is, the larger the
size of the transaction, the more transaction fees the users need
to pay, we can choose a suitable value of k.

From the above probability formula, if the computing power
ratio of the adversary is constant when N is small, the larger
N 1is, the smaller the probability of success is, but when N
increases to a certain value, the increase of N hardly affects
the probability. A value of 50 1s a good choice for N.

In conclusion, the protocol with fixed ring sets in this paper
1s more untraceable and has better privacy. Its security is
guaranteed by the limited computing power of the adversary.
Moreover, if the user thinks that k£ is too small to protect
his/her privacy, the user can use some intermediate addresses
to generate a series of transactions, so that the privacy is
exponentially rising.

IV. CONCLUSION

This paper introduces a hard-to-trace and efficient Monero-
based distributed consensus from fixed ring sets. In all, apart
from privacy properties inherited from Monero, our scheme
has, in addition, solved two issues. Firstly, by fixed ring
sets, 1t resists transfer pattern leakage caused by improperly
mixin selections or temporal analysis. secondly, it speeds up
transaction verification, and hence block assembly, via key
image truncations. To discuss the security of our scheme, we
show that the probability of malicious miner determining the
members of a ring set 1s negligible. The methodology behind
this scheme is applicable not only in Monero but also in
related cryptocurrencies with currency flow obfuscation from
ring signatures.
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