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Abstract—In this paper a review and analysis of ring signature
algorithms based on discrete logarithm and code-based problems
is made. The authors consider Linkable and Multilayer Linkable
Spontaneous Anonymous Group Signatures which are based on
the discrete logarithm problem. Taking into the account the fact
that quantum computers have already been developed, we look at
different variations of code-based signatures (linkable, multilayer
linkable, traceable and threshold) and analyse the efficiency of
their use. Finally, the analysis of these signatures is made and
standard code-based algorithms are compared.

Index Terms—ring signature, discrete logarithm problem, post-
quantum cryptography, code-based signature

[. INTRODUCTION

These days, there is a big variety of modern cryptographic
algorithms. However, with the advent of quantum computers
and a significant rise in their performance, some of the
algorithms become inefficient. Since such popular public-key
algorithms as RSA, El Gamal, and Rabin are based on factori-
sation and discrete logarithm problems, which could be now
easily solved by quantum computer with Shor’s algorithm, the
main part of modern cryptography is in danger [1].

Fortunately, there 1s another direction in cryptography called
post-quantum cryptography, where mathematical problems
cannot be theoretically solved by quantum computer, which
sounds promising for the entire cryptographic community.
Nevertheless, post-quantum algorithms are vulnerable to some
other attacks, and the main idea for now is to make them as
much secure as possible.

One of the most used and essential primitive, which can be
met in many cryptocurrency and blockchain systems, is a ring
signature. One of the most well-known uses of such signature
is the Monero RingCT protocol [2]. Monero is one of the most
popular cryptocurrencies in the world, known for its privacy,
security, and anonymity.

The main issue is that this primitive is based on the discrete
logarithm problem, which can threaten all such systems in the
near future. In this paper, we make a review and analysis of
the ring signature and its modifications in two versions: based
on the discrete logarithm problem, and hard coding problems.

In Section II, there is a short review of multilayer ring
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signatures and primitives which are a crucial part of such
signatures and their analysis. Section III consists of five
variations of ring signatures algorithms which are resistant to
possible attacks on quantum computers and the full analysis of
their expediency and performance. In Section IV, conclusions
are made and future perspectives are considered.

II. A SHORT REVIEW OF RING SIGNATURES BASED ON
DISCRETE LOGARITHM PROBLEM

This Section consists of a short review of ring signatures
based on the discrete logarithm problem. Starting from the
essential cryptographic primitives used in ring signatures, we
also cover two algorithms of Linkable and Multilayer Linkable
Spontaneous Anonymous Group signatures. This Section is
concluded by the analysis of effective use of ring signatures.

A. Keccak-256 Hashing Function

Choosing an optimal hashing algorithm is crucial for the
secure generation of user addresses and keys. Producing
the same hash output for two different inputs is known as
a collision, which chance must be negligible for complex
cryptosystems. Considering the effective uniqueness of hashes,
they are also frequently used as identifiers in blockchain
systems. Keccak hashing algorithm, which provides 32-byte
hashes, 1s used in the multilayer ring signatures. The way of
how this function works is described in [3].

B. Edwards25519 Elliptic Curve

Before moving on to the algorithms themselves, some of
their main parameters should be introduced. We generate a
key pair using the Edwards25519 elliptic curve, which is a
curve of the Twisted Edwards family.

The Edwards25519 1s birationally equivalent to the
Curve25519 [4]. Both Curve25519 and Edwards25519 were
introduced by D. Bemstein ef al. [S]-[7].

From the Cryptonote whitepaper [8], we get the following
constants for the Edwards25519 curve:

e ¢ — a prime number: g = 22°° — 19;

e (7 — a generator point many operations start with: ¢ =

(z;y), where y = —4 - 57! mod ¢;
e [ —a prime order of the generator point (¢ (or base point):
| = 22524.27742317777372353535851937790883648493;
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e d — an element of ¥, used in the curve equation below:
d = —121665 - 121666~ mod ¢;

o F — an elliptic curve equation: —z% + y* = 1 + da*y?;

o Let H, be defined as H,(x) = keccak(zx) - G;

e Let hy be defined as hy(z) = keccak(x) mod L.

C. LSAG Signature

Linkable Spontaneous Anonymous Group signature (LSAG)
is a ring signature over a set of u users.

e Let u be a number of users in the ring signature.

From [9], [10], we obtain the following steps for the
signature generation and verification algorithms:

1) Key generation
Consider a set of public keys PK:

PK = (Pl,PQ,...,Pi,...,Pu), Vi € {1,2,...,'11.}

o Let ] C Fy;
e Let (¢ be the Edwards25519 base point;
o Let the signer be with index m, m € {1,2,...,u}.

The signer with index 7 knows a secret key x, such
that P, = x, - (. The secret key is randomly chosen
from [y.

The rest of the public and private keys for all users
are generated in the same way, but the ring signature
algorithm uses only the signer’s private key.

e Let I be the key image for the given index 7 such
that [, = x, - H,(Px).

2) Signature generation
Suppose some user with index m, w € {1,2,...,u} signs
a message on behalf of the ring. This user has:

e Public key: P;;
o Secret key: x;
o Image key: /.

We will use the auxiliary values to generate a signature:

e Let L, R be the Edwards25519 points;
o Let ¢, s be the values of [F;.

With the given keys, the next algorithm will be the
following:
a) Let M be a given message;
b) Let o be randomly chosen from F;. Compute:
e L.=a- -G
o R =a-H,(FP)
¢c) Leteriy = hy(M, L, R;)
d Vie{r+1,7+2,...,u,1,2,...,m— 2,7 — 1},
replacing u 4+ 1 — 1:
e Let s; be randomly chosen from [F;. Compute:
1) Li=5;-G+c;-P;
i) R =s;-Hp(FP;)+c- Iz

¢ Cit1 = h's(ﬂ'fa Lia Rl)

e) S =« — ¢ - T mod [

The algorithm outputs a signature:

0= (IzcC1,81,...,54)

3) Signature verification
Given a message M, a public key set PK:

PK = (P],Pz,...,Pi,...,Pu), Vi € {1,2,...,'11.}

and a signature:

g = (I,Cl,.gl,..-,su,)

With the given values, the next algorithm will be the
following:
a) Let ¢} = ¢.
b) Vie {1,2,...,u}, replacing u + 1 — 1:
e Ll=s;,-G+c¢;- P
o Ri=s; - Hy(FP)+ci-1
o iy =hyM, L R,
c¢) Check that ¢; = ¢, .,

If the equality in (c) is true, the signature is valid.

D. MLSAG Signature

Multilayer Linkable Spontaneous Anonymous Group sig-
nature (MLSAG) is a ring signature over a set of u key-

vectors, where each key-vector is a collection of a public keys
Pi - (})i.,la })i,z* ceey Pi.,a)s VI © 1,2,. ..y U

e Let u be a number of users in the ring signature;
e Let a be a number of one-time addresses for each user.

From [2], [10], [11], we obtain the following steps for the
signature generation and verification algorithms:

1) Key generation
Consider an a x u matrix of public keys:

Pia P Pr Py
PK = |... ...
Pl,a P2,a
o Let Fj C Fy;
e Let & be the Edwards25519 base point;
o Let the signer be with index 7, m € {1,2,...,u}.

Pfr,a Pu.,a

The signer with index 7 knows the secret keys x_ ; such
that P; ; = x-; - G, Vj € {1,2,...,a}.The secret key
values are randomly chosen from ;.

The rest of the public and private keys are generated in
the same way, but the ring signature algorithm uses only
the signer’s private keys.

o Let [ = (I1,I5,...,1;,...,1,) be the key image
vector for the given index 7, m € {1,2,...,u} such
that Ij = Tg - HP(P,T,J'), Vi € {1,2,. . ,(l}

2) Signature generation
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Suppose some user with index m, w € {1,2,...,u} signs
a message on behalf of the ring. This user has:

« Public key-vector: (Pr 1, Pr1,..., Pra);
o Secret key-vector: (T 1,%x. 1,3 Tr.a)i
o Image key-vector: (Iy,15,...,1,).

We use the auxiliary values to generate a signature:

e Let L, R be the Edwards25519 points;
o Let ¢,s be the values of [F;.

With the given keys, we follow the next algorithm:

a) Let M be a given message;

b) Let aj, ¥j € {1,2,...,a} be randomly chosen
values from [F;. Compute:

. L‘fr,j = Q- G
. Rﬁ—,j == O‘j . Hp(Pw,j)
c) Let Crt+l = hg (1‘[, Lﬁ,ja ij, Ce e L’w,aa R,.-,a)

d Vie{r+1,7+2,...,u,1,2,...,m— 2,7 — 1},
replacing u 4+ 1 — 1:

o Lets;;,Vje {1,2,...,a} be randomly chosen
values from F;. Compute:
1) Lij=s5i;-G+c;i P
ll) Ri,j = Sij - ’Hp(Pifj) 4+ C; - Ij

o Cis1=hs(M,L; ,Ri1,...,Liq,Ria)

e) Spj =@ —Cr-xr; modl, Vje{1,2,... a}

The algorithm outputs a signature:

g = (Ila' . 'aIaaclaSl,la vy Slay ey Suly - 'aSu.,a)
3) Signature verification
Given message M and public key matrix PK:
Pra P, Py
PK = | ... ...
_Pl,u. P2,a Pu,a_
and a signature:
g = (Ila' . 'aIaaclaSl,la sy STiay oy Suly - 'asu,a)

With the given values, we follow the next algorithm:
a) Let c] = ¢.
b) Vie {1,2,...,u}, replacing u+ 1 — 1:
e Vj€{1,2,...,a} compute:
i) L ;=sij - G+ci- P
i) R;’j =8ij - Hp(Pij)+ci- I
o ¢iy=hy(M,L;\,R;,,...,L} R} ,)
c) Check that ¢; = ¢, .,

If the equality in (c) is true, the signature is valid.

E. Signatures Comparison

In the process of creating LSAG and MLSAG signa-
tures, auxiliary values are generated. These values c;, s; for
LSAG, and s;; for MLSAG, where Vi € {1,2,...,u} and

V5 € {1,2,...,a}, are necessary to check the signature for
correctness.

The Edwards25519 elliptic curve provides small private (32
bytes) and public (32 bytes) keys. Public and image keys are
usually represented as 64-byte points on elliptic curve, but
could be compressed up to 32 bytes [2]. Elements of [F] are
also represented as 32-byte values.

TABLE 1
COMPARISON OF RING SIGNATURES BASED ON THE DISCRETE
LOGARITHM PROBLEM

Signatures LSAG MLSAG
Parameters
Public key size u axu
Secret key size 1 a
Image key size 1 a
Signature size 2xu+2 | 2x(axu)t+a+1

Table I shows the number of elements for each signature
parameter. As mentioned above, each element is stored as a
32-byte value.

An increase in the MLSAG ring size by one user can be
seen to correspond to an increase in the signature size by 2x a
elements.

F. Analytics

In order to generate or verify the signature, we need to
use key-vectors in MLSAG algorithm, which limits the use
of large ring sizes in practice. This drawback can affect
the algorithm speed and the allocated memory for storing
signatures. The LSAG algorithm is faster because each user
has only one public and one secret key. Accordingly, the
generated signatures need less space.

Let us consider a ring where the number of users is
gradually increased by one user, starting from u = 4 to
w = 100. Each user has a fixed number of public keys in
MLSAG algorithm, e.g. a = 5.

For the experiment LSAG and MLSAG signatures were
modeled in Python 3.8 and computed on the machine with
the following characteristics:

e Intel Core 17-7700K (4 cores, 4.2-4.5 GHz);
« DDR4 RAM, 4200 MHz, 8 GB.

The results of the execution time of the LSAG algorithm
are demonstrated in Figures 1-2. The results of the execution
time of the MLSAG algorithm are demonstrated in Figures
3-4.

Excluding small deviations, we can observe how the time
for creating and verifying signatures increases linearly (Figures
1-4). The LSAG algorithm is about 5 times faster, because the
MLSAG signature is modeled with 5 layers. Consequently, if
the system uses the MLSAG signature, i1t should not be chosen
a big number of users, as well as the number of public keys for
each user. Otherwise, the execution time can be too long and
the generated signatures can occupy a lot of memory space.

To sum up, it can be concluded that the classical ring

signature algorithms are based on the complexity of the
Elliptic Curve Discrete Logarithm Problem (ECDLP). It has
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Fig. 1. Time dependence on the number of users in the LSAG signing
algorithm.
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Fig. 2. Time dependence on the number of users in the LSAG verification
algorithm.

been experimentally verified that multilayer ring signatures
have one major drawback — the dependence on the number
of users and the number of public keys for each user, which
can be an obstacle for large systems.

[II. CODE-BASED RING SIGNATURES

In this Section the different types of code-based ring sig-
natures are described. These types are based on the syndrome
decoding problem which is proven to be NP-complete in [12].
In addition, the comparison of code-based ring signatures
schemes and modeling results are presented.

The schemes of ring signatures are presented below, and the
following notation for this purpose is used:

e n,k,t — the parameters of the used codes:
- n — codeword length;

6
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Fig. 3. Time dependence on the number of users in the MLSAG signing
algorithm.
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Fig. 4. Time dependence on the number of users in the MLSAG verification
algorithm.

- k — code dimension;

- t — maximum correctable errors number;
e w(x) — the Hamming weight of x;
e M — the message;
e u — the number of users in the ring.

A. Ring Signature

The ring signature scheme, which is an extension of T.
Courtois et al.’’s scheme [13], i1s described in [14] and its
algorithm is presented below.

1) Key generation

o Let the parameters n, k,t € N
e For each user P; where i = 0,1,...,u — 1:
— Choose a generating matrix GY and a parity-
check matrix H.
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— Choose random £ x k non-singular matrix U,
(n — k) x (n — k) non-singular matrix V; and
n X n permutation matrix F;.
- Compute Gi_ = (J,G?Pl and Hi = ‘/zHi)Pz
— Public key is H;, secret key is (G, U;, Vi, P;).
2) Signature generation
The operations in the algorithm are described for signer
r and identical for all signers.

a) Choose random vectors 5, € F3~* and compute
Sr+1.q = h(u|lh(M)|5,) for ¢ = 0,1,2,..., where
h:F; — F2~% is a hash function.

b) Choose random vectors z; , € FJ, ',r(~, q) = t,
and compute s;+1,, = h(u|h( 7U)|HW @ s; q) for
t=r+1,r+2,...,u—1,01,.. .7—1

c¢) Find ¢ which is the smallest value of ¢ such that

e calculate r,; = v + d;e;.
d) Output o = (dy, (r.;),1}) as the signature.
3) Signature verification
a) Fori=0,1,...,u— 1, compute
I =Arl, - d;PK]
1,7 = Brl, — 417,
d,+1 — h(L TZ,J\I tl 1:¢ 12)
reject, otherW1se.
4) Signature linking
For two valid signatures for different message o and o,

check if 7} = T]. If equality is respected, then both
messages are signed by one user.

sr,q 0 54 1s decodable by any designed algorithms. . arylsilayer Linkable Ring Signature

d) Set z, such that H,z! = s, ,® 5,.

e) Compute the indexes [, of z; as [, =
(p1,p2,...,p:t), where p; < pa < --- < p; denote
the positions of non-zero bits of z;.

f) Output o = (sg,1.,,1.,,...,1. ) as the signa-

ture, where sy = ¢ 4.

—1

3) Signature verification
a) Recover z;’s from the indexes [, for i =

0,1,...,u— 1.

b) Compute s;+1 = h(u|lh(M)|H;z! @ s;) for i =
0,1,...,u — 1: accept if s, = sy and reject,
otherwise.

B. Linkable Ring Signature

The linkable ring signature is a ring signature type which
allows detecting if different messages are signed with the same
private key.

The linkable ring signature scheme is described in [15], and
its algorithm 1s presented below.

1) Key generation

o Let the parameters n, k,t € [N
e Choose matrices A, B trom ]F(n k) , where ¢ =

2™, m € N,

o Pick for each user P; e; € F}' such that w(e ) <t
and compute PK! = Ael where t=0,1,...,u—
1.

e The public key is PK;, the secret key is e;.
2) Signature generation

a) For signer P;, calculate TT BeT ] -

b) Choose v € [} such that w(v) < t and calcu-
late dj., = h(L Tl,f\f AvT, BvT) where L =
{PK;|i=0,1,...,u—1}, h: F; = F, is a hash
function.

¢c) Fori=I1+1,1+2,...,u—1,0,1,...,1l —1:

e choose ¢; € Fy.rip,rin € IF('; such that w(r;;) <
t,(j =1,2)

e calculate 7. ; = ri1 + ¢;ris.

e compute d;i, = h(L T,,J\[ t; 1, ,2), where
i1, = Arz —d; PK! t; ¥, = B7 . — d.,-,TlT.
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The multilayer linkable ring signature is a modification of

the linkable ring signature which is applied for a signing with
multiple inputs.

The multilayer linkable ring signature scheme is described

in [15], and its algorithm is presented below.

1) Key generation

e Let the parameters n, k,t € [N.

« Choose matrices A, B from Fy" %)™
2™ m € N,

e For each user P;, i € {0,1,...,u — 1}, pick
e;j € Fy for j € {0,1,..., K — 1}, where K is
a number of signature layers, such that w(e;;) <t
and compute PK ;'g = Aeg

o The public key is PK; = {PK;;|0 < j < K — 1},
the secret key is e; = {e;;|0 < j < K — 1}.

2) Signature generation

a) For sngner P, calculate Tl = Be tor all j €
{0,1,..., K — 1}.

b) Choose vj . IF[; such that
w(v;) < t and calculate dj., =
h(L,T);, M, Avl', Avl| .. ,Av}':.-_l, Bvl, Bvl,...
Bvl. ) where L = {PK,;}, h: F, — F, is a
hash function.

c) Fori =1+ 1,1+ 2,. - 1,0,1,...,1 —1:

. € FY such that w(r) <

, Where ¢ =

. choose Cij € FqJ
t,(h=1,2)
e calculate r; ; = rilj -+ cijr;_zj, i # L.
. compute d,+1 = h(L, T,J,J\[ t! z‘fj) where
(! )T ~ d;iPK, ( ) = Br;, -
d; T
d) Fori = l calculate 7 ; = v; + djey ;.
e) Output o = (dy, (7i;), Tl]) as the signature

3) Signature verification
a) Fori=0,1,...,u— 1, compute

(t; ;)" = Ar], — d;PK,

t.] 1]’

(t; '2)T - BT‘- P d'Tqu

t.J

d;., = h(L, le,m th .1 t; 2).

l]’

Z_]‘



b) Check if df] = d().
4) Signature linking
For two valid signatures for different message o and o”,
check if T} ; = T ;- If equality is respected, then both
signatures are computed using the same private key.

D. Traceable Ring Signature

The traceable ring signature is a ring signature type which
allows detecting if different messages are signed with the same
secret key, and also identifying this signer.

The traceable ring signature scheme is described in [16],
and its algorithm is presented below.

1) Key generation

o Let parameters n, k,t € N, k = 3n/4,

e Choose the code parity-check matrix H.

o Each user P; Chooses e; from {0,1}", w(e;) = t,

and computes s = He!, wherei = 0,1,...,u—1.

o Public key of user P; is (H,s;) and secret key is

€;.

2) Signature generation

To sign message M, user P;:

a) computes H = ¢(L) and rT = He!
F; — Fy" )™ is a random oracle hash function:

b) sets Ay = r; + f(M) + ---+ f*(M), where f :
F3 — F2~* — a random oracle hash function, f°
— applying the function f 7 times on its input;

C) computes ry = A[)-{-f(ﬂ.[)-{-fz(ﬂf)-*- . +fJ(A[),
for j # i;

d) applies the Fiat-Shamir transform to (})-GStern’s
protocol, which is Stern’s protocol modification
described in [16], on input (H,S§, H, r) where
§=(81,...,8,) and 7 = (ry,...,ry):

o computes the commitments C'om according to
(})-GStern’s protocol;

o simulates the verifier’s challenge as Ch =
f(Com, M), where f — a random oracle hash
function;

« computes the corresponding responses Resp ac-
cording to (}')-GStern’s protocol;

« outputs the transcript 7" = (C'om, Ch, Resp).

e) outputs the signature o = (A, Com, Resp).

3) Signature verification

To verify the message signature, the verifier:

a) computes r; = Ao+ f(M)+f*(M)+- - -+ f“(M);

b) computes Ch = f(Com, M);

c) verifies 7' = (Com,Ch, Resp) is a valid tran-
script, according to (})-GStem’s protocol.

4) Signature tracing

Given two structures (L, M,o) and (L', M',c") where
o = (Ay,Com, Resp) and o' (Ay, Com’, Resp')
such that Ver(L,M,o) = 1 and Ver(L,M',o") = 1,
the verifier:

a) computes r; = Ao+ f(M)+ f2(M)+---+ f1(M)
and 7 = Af + f(M') + f2(M') + -+ fI(M")
for all j;

where ¢ :

2 2

b) checks if r; = 1 . If this happens, it stores pk; in
a list traceList, Wthh is initially empty for all j;

c) outputs the only pk; € traceList if |trace List| =
1; else if traceList = (pky,...,pkn) it outputs
linked; else it outputs indep.

E. Threshold Ring Signature

The (7, u)-threshold ring signature is a ring signature type
which requires at least » out of u users to sign a message.

The threshold signature scheme is described in [17], and its
algorithm is presented below.

1) Key generation

e Let the parameters n, k,t € [N.

o For each user P; in the ring R = {P;|1 < i < u},
choose a parity-check matrix /;, a random binary
(n — k) x (n — k) non-singular matrix (); and a
random n X n permutation matrix F;.

o Public key of user P; pk; = H;, where H; =
Q:H; P;, secret key sk; = (Q;, H;, P;), The ring
public key is PK = (pki<i<n).

2) Signature generation

a) Choose a leader signer P; randomly from a signers’
subset size 7.

b) For each signer P;,1 < @ # [ < r,
choose e;; € Fy,j = r+ 1,r+ 2,.
compute s! = h(M)' + ) ,_HH el
M is a message, h : F5; — F5~
collision-resistant hash function.

c) For each signer P;,1 < i # | < r, compute
Q; 'sT. 1f Q;'s! is a decodable syndrome, obtain
a vector ¢/ such that H;e!T = Q; 's!'; otherwise,
recompute s; in the previous step.

d) Compute the permutations ¢! = Ple!T 1 < i #
[ <.

e) Forr+1 < j < u, choose a random ¢;; under the
condition w(e;; + Z;':u#eij) = t.

f) Set €; = Z;':le,:j,r + 1 S _] < u.

g) Compute s; as s{ = h(\[) + ZJ ,+1H p, if r
is odd, or as S,T = Xk ,+1H (’1 , otherwise.

h) Compute Qz_ It Q, is a decodable syn-
drome, obtain a vector P, such that Hie]? =
Ql—lsf; otherwise, choose another ¢;;.

i) Compute the permutation ¢/ = PTe ;T.

j) Output o = (e1,€s,...,¢e,) as the signature.

3) Signature verification
If w(e;) = t for each e; and h(M)T
accept the signature, and reject, otherwise.

random]y

,'.z., and
ij» Where
% is a one-way

Zz alz’

F. Signatures Comparison

The comparison of the ring signature types by the main
parameters is presented in Table II.
In Table II the following notation is used:

e n — codeword length;
e k — code dimension;
e 1 — maximum correctable errors number;
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TABLE 11
CODE-BASED RING SIGNATURES COMPARISON

Signatures Basic Linkable Multilayer Linkable Traceable Threshold
Parameters
Public key size n(n — k) n—k K(n - k) (n+4+1)(n — k) n(n —k)
Secret key size 2n? — kn + 2k? n Kn n 2n? — 3nk + k2
Signature size n—k+ut[logon] | mn(u+1)—k+1) | m(K(nu+n—k)+1) | n—k+uK(3t+ 2n) Nn

e m — Fom field expansion ratio;
e u — number of users.

Coefficient K in Table II has two different meanings: for
the multilayer linkable signature, A" is a number of signature
layers; for the traceable signature, /' is a number of GStern’s
algorithm rounds required to reduce the algorithm cheating
probability.

G. Analytics

During the experiment, the multilayer linkable signature is
modeled in SageMath 9.0 and generated with the Goppa code
with the parameters n = 3488, m = 12, t = 64 which are
recommended in [18].

To evaluate the generation and the validation time, the
experiment is conducted with the number of users from u = 5
to 100 and the number of signature layers X' = 5. The comput-
ings were performed on the machine with the characteristics
given in Section II. The results of the experiment are presented
in Figures 5, 6.

Comparing these results with the results in Section II, it
can be concluded that execution time for the code-based
multilayer signature is longer than the time for its elliptic
curves analogue and makes the use of such signature options
in real systems ineffective. However, despite this fact, the
main advantage of the code-based signatures is their resistance
to Shor’s algorithm, and with the improvements in quantum
computers development, makes these options prioritised and
recommended for use.

IV. CONCLUSION

This paper provides an overview of modern cryptographic
methods for creating a ring signature. A comparison of tradi-
tional and post-quantum algorithms based on error-correcting
codes is presented. To demonstrate a significant difference in
the implementation complexity of two approaches considered,
the results of modeling the classical and post-quantum algo-
rithms using the SageMath 9.0 software package are presented.
However, it should be noted that since the algorithms have
been modelled on personal computers with characteristics
shown above, the calculations are limited by their computing
power.

Based on the results obtained, the future research directions
can be considered as the reduction of the complexity of code-
based ring signature algorithms, as well as the size of signature
keys and signatures.
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Fig. 5. Time dependence on the number of users in the signing algorithm in
Mululayer Linkable signature.
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Fig. 6. Time dependence on the number of users in the verification algorithm
in Multilayer Linkable signature.

REFERENCES

[1] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, Report on post-quantum cryptography. US De-
partment of Commerce, National Institute of Standards and Technology,
2016, vol. 12.

111




(2] S. N. koe, K. M. Alonso, “Zero to monero: Second
editon,” 2020, [Accessed 14-September-2020]. [Online]. Available:
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge
function family main document,” Submission to NIST (Round 2), vol. 3,
no. 30, pp. 320-337, 2009.

(4] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in
International Workshop on Public Key Cryptography. Springer, 2006,
pp. 207-228.

[5] D.J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted
edwards curves,” in International Conference on Cryptology in Africa.
Springer, 2008, pp. 389-405.

[6] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77-89, 2012.

[7] D. J. Bernstein and T. Lange, “Faster addition and doubling on elliptic
curves,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2007, pp. 29-50.

(8] N. Van Saberhagen, “Cryptonote \ 2.0.7
2013, [Accessed 14-September-2020]. [Online].  Available:
https://decred.org/research/saberhagen2013.pdf

[9] B. E. K. Seguias, “Monero’s building blocks part 6 of 10-linkable
spontaneous anonymous group (lsag) signature scheme,” 2018, [Ac-
cessed 14-September-2020]. [Online]. Available: https://delfr.com/wp-
content/uploads/2018/05/Monero_Building_Blocks_Part7.pdf

[10] S. Viayakumaran, “Monero ring signatures,” 2018, [Accessed 14-
September-2020]. [Online]. Available: https://www.ee.iitb.ac.in/ sarva/-
courses/EE465/2018/slides/MoneroRingSignatures.pdf

[11] S. S.Noether, A. Mackenzie et al., “Ring confidential transactions,”
Ledger, vol. 1, pp. 1-18, 2016.

[12] S. Barg, “Some new np-complete coding problems.” Problemy Peredachi
Informatsii, vol. 30, no. 3, pp. 23-28, 1994.

[13] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
mceliece-based digital signature scheme,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 157-174.

[14] D. Zheng, X. Li, and K. Chen, “Code-based ring signature scheme.” 1J
Network Security, vol. 5, no. 2, pp. 154-157, 2007.

[15] Y. Ren, Q. Zhao, H. Guan, and Z. Lin, “On design of single-layer and
multilayer code-based linkable ring signatures,” IEEE Access, vol. 8, pp.
17 854-17 862, 2020.

[16] P. Branco and P. Mateus, “A traceable ring signature scheme based on
coding theory,” in International Conference on Post-Quantum Cryptog-
raphy. Springer, 2019, pp. 387—403.

[17] G. Zhou, P. Zeng, X. Yuan, S. Chen, and K.-K. R. Choo, "An
efficient code-based threshold ring signature scheme with a leader-
participant model,” Security and Communication Networks, vol. 2017,
pp- 1915239:1-1915 239:7.

[18] D. J. Bemnstein, T. Chou, T. Lange, R. Misoczki, R. Niederhagen,
E. Persichetti, P. Schwabe, J. Szefer, and W. Wang,
“Classic mceliece: conservative code-based cryptography 30 march
2019, 2019, [Accessed 14-September-2020]. [Online]. Available:
https://classic.mceliece.org/nist/meeliece-2019033 1 .pdf

112



