
i

A Comparative Study of Privacy-Preserving Cryptocurrencies:

Monero and ZCash

Sofie Christensen

ID 1820778

MSc in Cyber Security

Supervisor: Dr. David Galindo

School of Computer Science

University of Birmingham

September 2018

ii

Abstract

Since it was discovered that Bitcoin offers limited privacy, many cryptocurrencies have

emerged implementing privacy-enhancing cryptographic technologies including the use of ring

signatures and zk-SNARKs. Two of the most popular cryptocurrencies using these techniques

respectively are Monero and Zcash. A study has been conducted to identify the different

cryptographic primitives used to achieve privacy in Monero and Zcash and to offer a direct

comparison of both. The study shows that the implementation of privacy enhancing

cryptographic primitives introduces new limitations to the protocols in terms of usability and

efficiency. These limitations are critically assessed and evaluated.

Monero was identified to be vulnerable to two attacks that could compromise privacy. The first

attack shows that transactions can be de-anonymised due to the limited number of mixins

chosen for the ring signature. The second attack shows that it is possible to correctly guess

which mixin the real input is the majority of the time. Based on these vulnerabilities, three

improvements are suggested and tested. The first is a different ring signature scheme that

allows for constant sized transactions. It was shown that this scheme offers a viable solution to

incentivise the use of more mixins. The second is a different sampling algorithm that increases

the effective untraceability of the real input. The implementation resulted in better effective

untraceability than what is currently achieved by Monero. Finally, a more secure stealth address

generation algorithm is presented and implemented. This study critically assesses the

advantages and disadvantages of the proposed improvement.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. David Galindo, for his invaluable

guidance and support throughout the completion of this project.

I would also like to thank my parents and my siblings for their constant support.

Finally, I would like to thank Ollie, for once again being my rock throughout the completion

of this MSc.

iv

Contents
Abstract ... ii

Acknowledgments ... iii

1. Introduction.. 1

2. Literature Review .. 1

2.1. Monero ... 1

2.2. Zcash... 2

3. Background... 3

3.1. Ring Signatures .. 3

3.2. Pedersen Commitment .. 6

3.3. Zk-SNARKs ... 7

4. Protocol Description .. 8

4.1. Monero ... 8

4.1.1. Multi-layered Spontaneous Anonymous Group Signatures .. 8

4.1.2. Confidential Transactions .. 10

4.1.3. RingCT ... 11

4.1.4. Stealth Adresses ... 12

4.1.5. Earlier versions of Monero .. 13

4.2. Zcash... 13

5. Comparison of Monero and Zcash .. 16

5.1. Anonymity set ... 16

5.2. Opt-in privacy .. 17

5.3. Transaction size ... 18

5.4. Trusted setup .. 19

5.5. Traceability analysis ... 19

6. Improvement on Monero .. 23

6.1. Short Linkable Ring Signatures .. 23

6.2. Mixin Sampling Strategy ... 25

6.3. Stealth Address Security Improvement.. 28

7. Conclusion .. 30

References ... 32

Appendix.. 35

1

1. Introduction

The emergence of blockchain has introduced the possibility for currencies to be decentralized.

Cryptocurrencies such as Bitcoin ensure that the entire network can control and verify the

ledger on a consensus basis. This means that finances can be seen and monitored by everyone,

resulting in the problem that the privacy of users is not preserved. Bitcoin attempts to mitigate

this issue by introducing pseudonymous addresses, where the address is not directly linked to

the owner of the funds. However, it has been shown that Bitcoin transactions can be linked

back to their users and that Bitcoin thus offers limited privacy (Conti, et al., 2018). As a

response, new cryptocurrencies have emerged that present a solution to the privacy problem.

Among the most popular of these cryptocurrencies are Monero and Zcash, who use different

cryptographic primitives to preserve privacy.

In cryptographic applications it is often necessary to consider the trade-offs between privacy,

efficiency and usability. The same is true for applications such as Monero and Zcash. Both

cryptocurrencies employ different cryptographic primitives to promote privacy, with different

consequences for efficiency and usability. In this study the Monero and Zcash protocols will

be compared and their advantages and disadvantages will be analysed. In addition to a direct

comparison, improvements to the Monero protocol will be suggested and tested based on the

limitations identified.

The dissertation is organised as follows. First, related works are presented in the literature

review. Then the cryptographic primitives used in Monero and Zcash are described in the

background chapter, followed by an outline of the Monero and Zcash protocols. Chapter 5

consists of the direct comparison of Monero and Zcash. Finally, chapter 6 presents the

suggested improvements to the Monero protocol and testing results.

2. Literature Review

2.1. Monero

The first version of Monero was based on a paper by Van Saberhagen (2013) which introduces

a protocol called CryptoNote. CryptoNote uses ring signatures and stealth addresses to ensure

privacy of the sender and receiver respectively. Ring signatures were first introduced by Rivest,

et al. (2001). The ring signature is a variant of the group signature, which was first introduced

2

by Chaum & Van Heyst (1991). The ring signature used by CryptoNote is a variant of the

traceable ring signature based on the work by Fujisaki & Suzuki (2007).

Research has shown that vulnerabilities exist in the CryptoNote protocol, which allow for

transactions to be de-anonymised. Noether & Mackenzie (2014) show that CryptoNote can be

de-anonymised by tracing back mixins that have already been spent. Miller, et al. (2017)

performed a separate analysis that showed that 63% of Monero Cryptonote transactions can be

traced and that zero-mixin transactions can be used to de-anonymise further transactions. A

similar analysis on the traceability of transactions in Monero was carried out by Kumar, et al.

(2017). Wijaya, et al. (2018) completed a study that found that there are two types of attacks

that can be executed to reduce the anonymity set in the ring signature.

In response to the studied vulnerabilities, Monero implemented the RingCT protocol. The

whitepaper for RingCT is written by Noether & Mackenzie (2016). This protocol differs from

CryptoNote in two notable ways. Instead of using traceable ring signatures, RingCT uses Multi-

Layered Linkable Spontaneous Anonymous Group signatures, which are a variant of the

linkable ring signatures introduced by Liu, et al. (2004). Additionally, they make use of

Confidential Transactions, first introduced by Maxwell (2015).

There has been research into creating ring signatures that are of a constant size, i.e. ring

signatures that do not increase in size linearly to the number of mixins used in the ring

signature. There are a number of papers that describe an algorithm for creating constant size

linkable ring signatures, also named short linkable ring signatures. The first introduction to

short linkable ring signatures came from Tsang & Wei (2005) who used accumulators as a

solution to provide constant sized ring signatures. Au, et al. (2006) discovered a weakness in

the previous paper and offered an improvement to their security assumptions. A constant size

ring signature with escrowed linkability was introduced by Chow, et al. (2006). Au, et al.

(2013) introduced an id-based short linkable ring signature as well. Finally, an improvement

of the RingCT protocol used by Monero was introduced by Sun, et al. (2017), who use the

same concepts as the ones used in the previous papers.

2.2. Zcash

The technologies used by Zcash are zero knowledge succinct arguments of knowledge (zk-

SNARKs) which were first introduced by Bitansky, et al. (2012). Miers, et al. (2013) used the

concept of non-interactive zero knowledge proofs to introduce a new proposal for an extension

of Bitcoin, called Zerocoin. An important limitation of Zerocoin is that the proofs of knowledge

3

are not scalable and thus do not offer a viable solution to the privacy problem that can be

implemented in real world applications. In response, Zerocash, which uses zk-SNARKs, was

introduced in a paper by Sasson, et al. (2014) and implemented, with some adjustments, to

become what is now known as Zcash. Zcash uses a trusted setup that is needed for the zk-

SNARKs to work. The trusted setup is implemented by using the multi-party protocol called

the Pinnochio protocol as described by Bowe, et al. (2017).

Considering the novelty of zk-SNARKs and the Zcash cryptocurrency there has not been a lot

of research into the vulnerabilities that might be present in the protocol. However, studies

conducted by Kappos, et al. (2018) and Quesnelle (2017) show that it is possible to distinguish

transactions made by miners, founders and “normal” users, highlighting possible traceability

issues.

3. Background

3.1. Ring Signatures

Ring signatures were first introduced by Rivest, et al. (2001) in their paper How to Leak a

Secret. They describe a scenario where a member of a cabinet wants to leak a secret without

revealing who he is. In addition, he wants to prove that he is a trustworthy source by showing

that he is indeed a member of cabinet. The proposed solution is that the member of cabinet

produces a signature that includes his own secret key, as well as the public keys of other

members of cabinet. The signature that is produced is called a ring signature and hides the

actual signer whilst proving that the signer is a member of the group of signers.

Given a message 𝑚, the signer’s secret key 𝑆𝑠, and the public keys 𝑃1 , 𝑃2, … , 𝑃𝑟 of all the ring

members, the ring signature is computed by the signer as follows (Rivest, et al., 2001).

1. The signer computes the symmetric key 𝑘 as the hash of the message 𝑚:

𝑘 = ℎ(𝑚)

2. The signer picks an initialisation value 𝑣 uniformly at random from {0,1}𝑏

3. The signer picks random 𝑥𝑖 for all the other ring members, uniformly and independently

from {0,1}𝑏 and computes:

𝑦𝑖 = 𝑔𝑖(𝑥𝑖)

4

4. The signer computes the unique value for 𝑦𝑠 and solves the following ring equation for

𝑦𝑠:

𝐶𝑘,𝑣(𝑦1 , 𝑦2 , … , 𝑦𝑟) = 𝑣

5. The signer obtains 𝑥𝑠 by inverting 𝑔𝑠 on 𝑦𝑠 using his knowledge of his trap-door:

𝑥𝑠 = 𝑔𝑠
−1(𝑦𝑠)

6. The signature on message 𝑚 is defined as:

(𝑃1 , 𝑃2, … , 𝑃𝑟 ; 𝑣; 𝑥1, 𝑥2, … , 𝑥𝑟)

The combination function 𝐶𝑘,𝑣(𝑦1, 𝑦2 , … , 𝑦𝑟) is a symmetric encryption function 𝐸𝑘 applied to

the sequence (𝑦1 , 𝑦2 , … , 𝑦𝑟) as follows:

𝐶𝑘,𝑣(𝑦1 , 𝑦2 , … , 𝑦𝑟) = 𝐸𝑘(𝑦𝑟 ⊕ 𝐸𝑘(𝑦𝑟−1 ⊕ 𝐸𝑘(𝑦𝑟−2 ⊕ 𝐸𝑘(… ⊕ 𝐸𝑘(𝑦1 ⊕ 𝑣) …))))

The resulting ring signature can be seen in Figure 1.

A verifier can verify a signature (𝑃1 , 𝑃2, … , 𝑃𝑟 ; 𝑣; 𝑥1, 𝑥2, … , 𝑥𝑟) on a message 𝑚 as follows.

1. For 𝑖 = 1,2, … , 𝑟 the verifier computes:

𝑦𝑖 = 𝑔𝑖(𝑥𝑖)

2. The verifier hashes the message to obtain 𝑘:

𝑘 = ℎ(𝑚)

Figure 1 Ring signature generation (Rivest, et al., 2001)

5

3. The verifier checks that the 𝑦𝑖’s satisfy:

𝐶𝑘,𝑣(𝑦1 , 𝑦2 , … , 𝑦𝑟) = 𝑣

4. If the ring signature is satisfied, the verifier accepts the signature as valid. Otherwise

the signature is rejected.

It is important to note that a ring signature is different to a group signature as presented by

Chaum & Van Heyst (1991). The main difference is that in the group signature the group of

signers is managed by a group manager who distributes keys to the members of the group. Each

member of the group can then produce a signature on behalf of the entire group. Crucially, the

group manager can also revoke anonymity and reveal the actual signer of the signature. Another

distinction to make is that the group of signers all agree to work together and that the group is

predefined in the group signature scheme. In contrast, the ring signature can be generated by a

signer without the knowledge or consent of the members included in the ring signature. This

means that the ring signature can be constructed dynamically, which is a crucial observation

for the blockchain.

3.1.1. Linkable Spontaneous Anonymous Group Signature

Monero uses a variant of the ring signature called the Linkable Spontaneous Anonymous

Group/Ring Signature (LSAG) first introduced by Liu, et al. (2004). The main difference

between the classic ring signature and the LSAG is that the LSAG allows for two signatures to

be linked if they are signed by the same private key. This is an important observation with

regard to cryptocurrencies as it will allow for double-spending attempts to be detected and

rejected.

Similar to the ring signature described in the previous section, each user 𝑖 has a distinct public

key 𝑦𝑖 and a private key 𝑥𝑖 such that 𝑦𝑖 = 𝑔𝑥𝑖 for 𝑖 = 1, … , 𝑛.

Let 𝐻1: {0,1}∗ → ℤ𝑞 and 𝐻2: {0,1}∗ → 𝐺 be some cryptographic hash functions where 𝐺 =

〈𝑞〉 is a group of prime order 𝑞. Given a message 𝑚 𝜖 {0,1}∗, list of public keys 𝐿 = {𝑦1 , … , 𝑦𝑛},

and private key 𝑥𝑠 corresponding to 𝑦𝑠 ∈ 𝐿 an LSAG signature generation is described as

follows (Liu, et al., 2004).

1. Compute ℎ = 𝐻2(𝐿) and 𝑦̃ = ℎ𝑥𝑠

6

2. Pick 𝑢 ∈ ℤ𝑞 at random and compute

𝑐𝑠+1 = 𝐻1(𝐿, 𝑦̃, 𝑚, 𝑔𝑢 , ℎ𝑢)

3. For 𝑖 = 𝑠 + 1, … , 𝑛, 1, … , 𝑠 − 1 pick 𝑟𝑖 ∈ ℤ𝑞 at random and compute

𝑐𝑖+1 = 𝐻1(𝐿, 𝑦̃, 𝑚, 𝑔𝑟𝑖𝑦𝑖
𝑐𝑖 , ℎ𝑟𝑖 𝑦̃𝑐𝑖)

4. Compute 𝑟𝑠 = 𝑢 − 𝑥𝑠𝑐𝑠

The generated signature is 𝜎𝐿(𝑚) = (𝑐1 , 𝑟1 , … , 𝑟𝑛 , 𝑦̃).

Given a signature 𝜎𝐿(𝑚) = (𝑐1 , 𝑟1 , … , 𝑟𝑛, 𝑦̃) on a message 𝑚 and a list of public keys 𝐿 a

signature is verified as follows.

1. Compute ℎ = 𝐻2(𝐿) and for 𝑖 = 1, … , 𝑛 compute 𝑧𝑖
′=𝑔𝑟𝑖 𝑦𝑖

𝑐𝑖, 𝑧𝑖
′′ = ℎ𝑟𝑖 𝑦̃𝑐𝑖.

If 𝑖 ≠ 𝑛 compute 𝑐𝑖+1 = 𝐻1(𝐿, 𝑦̃, 𝑚, 𝑧𝑖
′, 𝑧𝑖

′′)

2. Check whether 𝑐1 = 𝐻1(𝐿, 𝑦̃, 𝑚, 𝑧𝑛
′ , 𝑧𝑛

′′). If yes accept, otherwise reject.

Two signatures 𝜎𝐿
′(𝑚′) = (𝑐1

′ , 𝑟1
′, … , 𝑟𝑛

′, 𝑦̃′) and 𝜎𝐿
′′(𝑚′′) = (𝑐1

′′ , 𝑟1
′′, … , 𝑟𝑛

′′, 𝑦̃′′) are linked if

𝑦̃′ = 𝑦̃′′.

3.2. Pedersen Commitment

Commitment schemes are cryptographic primitives used to commit to a value without revealing

the value and crucially, prevent the value from being changed once it has been committed to,

making them binding. An important variant of the commitment scheme is the Pedersen

Commitment first introduced by Pedersen (1991). The scheme is described as follows.

Let 𝑔 and ℎ be elements of 𝐺𝑞 such that nobody knows 𝑙𝑜𝑔𝑔(ℎ). The committer commits

himself to a value 𝑠 ∈ ℤ𝑞 by choosing 𝑡 ∈ ℤ𝑞 at random. The commitment is computed as:

𝐶(𝑠, 𝑡) = 𝑔𝑠ℎ𝑡

The commitment can later be opened and revealed by revealing 𝑠 and 𝑡.

The special property of this commitment scheme is that it is homomorphic, which means

mathematical operations can be performed on the committed values. The idea being that these

operations produce a commitment to the result of applying these mathematical operations on

the non-committed values.

7

For example, given a commitment to the value 3, 𝐶(3), and a commitment to the value 5, 𝐶(5),

addition can be performed with the result being a commitment to the value 8, 𝐶(8):

𝐶(3) + 𝐶(5) = 𝐶(3 + 5)

This property will prove useful in Monero, where transaction amounts are hidden by the

Pederson Commitment, but where a sender needs to be able to prove that the input amounts

equal the output amounts.

3.3. Zk-SNARKs

The main technology used in Zcash is the zk-SNARK (zero knowledge-Succinct Non-

interactive Arguments of Knowledge), a variant of zero knowledge proofs. Classic zero

knowledge proofs consist of an interaction between the prover and the verifier resulting in the

verifier either accepting or rejecting the final proof provided by the prover. These types of

proofs are not suited for blockchain applications such as Zcash because they are highly

inefficient.

The term zk-SNARK was first coined by Bitansky, et al. (2012) and is a variant of the Succinct

Non-interactive Arguments (SNARGs). A description of zk-SNARKs as they are used in the

Zcash protocol is given by Sasson, et al. (2014). For an 𝐹-arithmetic circuit 𝐶, its relation

𝑅𝐶 and its NP language ℒ𝑐, a zk-SNARK consists of three polynomial-time algorithms

(𝐾𝑒𝑦𝐺𝑒𝑛, 𝑃𝑟𝑜𝑣𝑒, 𝑉𝑒𝑟𝑖𝑓𝑦), which are described as follows (Sasson, et al., 2014).

1. 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆, 𝐶) → (𝑝𝑘, 𝑣𝑘). Given a security parameter 𝜆 and an 𝐹-arithmetic circuit

𝐶, 𝐾𝑒𝑦𝐺𝑒𝑛 probabilistically samples a proving key 𝑝𝑘 and a verification key 𝑣𝑘. The

keys are published as public parameters and can be used, any number of times, to

prove/verify membership in ℒ𝑐.

2. 𝑃𝑟𝑜𝑣𝑒(𝑝𝑘, 𝑥, 𝑎) → 𝜋. Given a proving key 𝑝𝑘 and any (𝑥, 𝑎) ∈ 𝑅𝐶 , 𝑃𝑟𝑜𝑣𝑒 outputs a

non-interactive proof 𝜋 for the statement 𝑥 ∈ ℒ𝑐.

3. 𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘, 𝑥, 𝜋) → 𝑏. Given a verification key 𝑣𝑘, an input 𝑥 and a proof 𝜋, 𝑉𝑒𝑟𝑖𝑓𝑦

outputs 𝑏 = 1 if the verifier is convinced that 𝑥 ∈ ℒ𝑐.

8

4. Protocol Description

This chapter introduces the protocols used in Monero and Zcash, based on the building blocks

presented in the previous chapter.

4.1. Monero

As seen previously, Monero provides privacy through Ring Confidential Transactions

(RingCT), which were first introduced by Noether & Mackenzie (2016). RingCT combines

three cryptographic primitives to achieve privacy. A variant of the LSAG ring signatures is

used to obfuscate the actual sender of the transaction, Confidential Transactions are used to

hide the amount sent in a transaction and stealth addresses protect the privacy of the receiver

of a transaction. In the following these cryptographic primitives will be elaborated on.

4.1.1. Multi-layered Spontaneous Anonymous Group Signatures

Monero uses a variant of LSAG ring signatures called Multi-layered Linkable Spontaneous

Anonymous Group (MLSAG) signatures, presented by Noether & Mackenzie (2016). The

main difference between the MLSAG and LSAG signatures is that the former produces a ring

signature on a set of 𝑛 key-vectors, instead of a set of 𝑛 keys. Noether & Mackenzie (2016)

describe a key-vector as “[..] a collection 𝑦̅ = (𝑦1 , … , 𝑦𝑟) of public keys with corresponding

private keys 𝑥̅ = (𝑥1, … , 𝑥𝑟)”.

In Monero the MLSAG is computed as follows (Noether & Mackenzie, 2016). Each signer of

the ring containing 𝑛 members has exactly 𝑘 keys {𝑃𝑖
𝑗
} 𝑖=1,…,𝑛

𝑗=1,..,𝑘
. A signature on a message m, is

generated by the signer, π, by using the key vectors of n other signers.

1. For the signature of the actual signer, 𝜋, define

𝐿𝜋
𝑗 = 𝛼𝑗𝐺

𝑅𝜋
𝑗 = 𝛼𝑗𝐻(𝑃𝜋

𝑗)

where 𝛼𝑗 is a random scalar and 𝑗 = 1, … , 𝑘 are the indices of the signer’s key-vector.

9

2. For the remaining signers, excluding the actual signer, 𝜋 , define

𝑐𝜋+1 = 𝐻(𝑚, 𝐿𝜋
1 , 𝑅𝜋

1, … , 𝐿𝜋
𝑘 , 𝑅𝜋

𝑘)

𝐿𝜋+1
𝑗 = 𝑠𝜋+1

𝑗 𝐺 + 𝑐𝜋+1𝑃𝜋+1
𝑗

𝑅𝜋+1
𝑗 = 𝑠𝜋+1

𝑗 𝐻(𝑃𝜋+1
𝑗) + 𝑐𝜋+1𝐼𝑗

Where 𝑠𝑖
𝑗
 is a randomly selected scalar. This is repeated incrementing 𝑖 𝑚𝑜𝑑 𝑛 until we

arrive at

𝐿𝜋−1
𝑗 = 𝑠𝑖−1

𝑗 𝐺 + 𝑐𝑖−1𝑃𝑖−1
𝑗

𝑅𝜋−1
𝑗

= 𝑠𝑖−1
𝑗

𝐻(𝑃𝑖−1
𝑗

) + 𝑐𝑖−1𝐼𝑗

𝑐𝜋 = 𝐻(𝑚, 𝐿𝜋−1
1 , 𝑅𝜋−1

1 , … , 𝐿𝜋−1
𝑘 , 𝑅𝜋−1

𝑘)

3. To complete the ring, the signer needs to solve 𝑠𝜋
𝑗
 for 𝐿𝜋

𝑗
and 𝑅𝜋

𝑗
. This is done by setting

the randomly chosen scalar 𝛼𝑗 = 𝑠𝜋
𝑗

+ 𝑐𝜋𝑥𝑗 𝑚𝑜𝑑 𝑙 and computing 𝑠𝜋
𝑗

= 𝛼𝑗 −

𝑐𝜋𝑥𝑗 𝑚𝑜𝑑 𝑙

To prove the correctness of 3. recall that the actual signer’s signature is

𝐿𝜋
𝑗

= 𝛼𝑗𝐺

𝑅𝜋
𝑗 = 𝛼𝑗𝐻(𝑃𝜋

𝑗)

Now we set 𝛼𝑗 = 𝑠𝜋
𝑗 + 𝑐𝜋𝑥𝑗 𝑚𝑜𝑑 𝑙 and show that the signer’s signature is now

indistinguishable from the other decoy signatures.

𝐿𝜋
𝑗 = 𝑠𝜋

𝑗𝐺 + 𝑐𝜋𝑥𝑗𝐺

𝐿𝜋
𝑗 = 𝑠𝜋

𝑗𝐺 + 𝑐𝜋𝑃𝜋
𝑗

and

𝑅𝜋
𝑗

= 𝑠𝜋
𝑗
𝐻(𝑃𝜋

𝑗
) + 𝑐𝜋𝑥𝑗𝐻(𝑃𝜋

𝑗
)

𝑅𝜋
𝑗 = 𝑠𝜋

𝑗𝐻(𝑃𝜋
𝑗) + 𝑐𝜋𝐼𝑗

10

4. The final signature is 𝜎 = (𝐼1, … , 𝐼𝑘, 𝑐1 , 𝑠1
1, … , 𝑠1

𝑘 , 𝑠2
1 … , 𝑠2

𝑘 , … , 𝑠𝑛
1, . . , 𝑠𝑛

𝑘)

Here 𝐼1..𝑘 is the key image for the key vector of the actual signer. The key images are computed

as

𝐼𝑗 = 𝑥𝑗𝐻(𝑃𝜋
𝑗)

The key image ensures linkability of the signature and allows for detecting double-spending

attempts. When a coin is spent, the key image is added to a lookup table. If it already exists in

the lookup table, it means that the coin has already been spent and the transaction is then

discarded.

To verify the signature the verifier recomputes 𝐿𝑖
𝑗
, 𝑅𝑖

𝑗
 and 𝑐𝑖 , for 𝑖 = 1, . . 𝑛 and 𝑗 = 1, . . , 𝑘.

Finally, the verifier verifies that

𝑐𝑛+1 = 𝑐1

4.1.2. Confidential Transactions

In Monero Confidential Transactions (CT) are used to hide transaction amounts. CT was first

introduced by Maxwell (2015) as a possible improvement to privacy in Bitcoin. The main

cryptographic primitive used in CT is the Pedersen Commitment as described in section 3.2.

The commitment scheme used in CT is computed as

𝐶 = 𝑥𝐺 + 𝑎𝐻

Where 𝑥 is the randomly chosen secret blinding factor, 𝑎 is the amount and 𝐺 and 𝐻 are

generators of an elliptic curve group such that no one knows the discrete log of H with respect

to G (and vice versa).

Due to the homomorphic properties of the commitment scheme, anyone on the network can

verify that the amounts that went into the transaction are equal to the amounts that came out of

the transaction by checking that

∑ 𝐶(𝑖𝑛)𝑖 − ∑ 𝐶(𝑜𝑢𝑡)𝑖 = 0

However, in Monero this mechanism does not work, because a transaction consists of multiple

possible inputs, with only one of them being the real input. In order to verify the above

statement, the verifier would have to know which input the real input is, thus defeating the

11

purpose of the ring signature. The solution is to create commitments for the inputs and outputs

as follows (Noether & Mackenzie, 2016).

𝐶𝑖𝑛 = 𝑥𝑐 𝐺 + 𝑎𝐻

𝐶𝑜𝑢𝑡−1 = 𝑦1𝐺 + 𝑏1𝐻

𝐶𝑜𝑢𝑡−2 = 𝑦2𝐺 + 𝑏2𝐻

Such that 𝑥𝑐 = 𝑦1 + 𝑦2 + 𝑧, 𝑦𝑖 are mask values, 𝑧 > 0 and 𝑎 = 𝑏1 + 𝑏2. Here 𝑥𝑐 is called the

“amount key”, which is a special private key known only to the sender. The secret amount key

can be derived as follows.

𝐶𝑖𝑛 − ∑ 𝐶𝑜𝑢𝑡−1

2

𝑖=1

= 𝑥𝑐𝐺 + 𝑎𝐻 − 𝑦1𝐺 − 𝑏1𝐻 − 𝑦2𝐺 − 𝑏2𝐻

= 𝑧𝐺

The secret amount key is 𝑠𝑘 = 𝑧 and the corresponding public key is 𝑝𝑘 = 𝑧𝐺. It can be seen

that the above commitment becomes a commitment to zero (𝐶(0) = 𝑧𝐺 + 0𝐻), which proves

that the input amounts equal the output amounts.

The ring consisting of all input commitments 𝐶𝑖 , 𝑖 = 1, . . , 𝑛 and corresponding public keys

𝑃𝑖 , 𝑖 = 1, . . 𝑛 including the commitment and public key of the actual signer is created as

follows.

{𝑃1 + 𝐶1,𝑖𝑛 − ∑ 𝐶𝑗,𝑜𝑢𝑡

𝑗

, … , 𝑃𝑛 + 𝐶𝑛,𝑖𝑛 − ∑ 𝐶𝑗,𝑜𝑢𝑡

𝑗

}

This ring can be signed because we know one of the private keys (𝑧 + 𝑥′ where 𝑥 ′𝐺 = 𝑃𝜋, the

public key of the signer and 𝑧𝐺 = 𝑝𝑘 is the special public amount key).

4.1.3. RingCT

Combining the MLSAG as described in section 4.1.1. and the ring produced by the CT

commitment scheme, the RingCT protocol as used in Monero is described as follows (Noether

& Mackenzie, 2016).

1. Let {(𝑃𝜋
1, 𝐶𝜋

1), … , (𝑃𝜋
𝑚, 𝐶𝜋

𝑚)} be a collection of addresses/commitments of the real

signer with corresponding secret keys 𝑥𝑗 , 𝑗 = 1, . . , 𝑚

12

2. Find 𝑞 + 1 collections of public keys and commitments {(𝑃𝑖
1, 𝐶𝑖

1), … , (𝑃𝑖
𝑚, 𝐶𝑖

𝑚)}, 𝑖 =

1, . . 𝑞 + 1

3. Decide on a set of output addresses (𝑄𝑖 , 𝐶𝑖,𝑜𝑢𝑡) such that ∑ 𝐶𝜋
𝑗𝑚

𝑗=1 − ∑ 𝐶𝑖,𝑜𝑢𝑡𝑖 is a

commitment to zero.

4. Let 𝑅 = {{(𝑃1
1, 𝐶1

1), … , (𝑃1
𝑚, 𝐶1

𝑚), (∑ 𝑃1
𝑗

𝑗 + ∑ 𝐶1
𝑗𝑚

𝑗=1 − ∑ 𝐶𝑖,𝑜𝑢𝑡)}, … ,𝑖

{(𝑃𝑞+1
1 , 𝐶𝑞+1

1), … , (𝑃𝑞+1
𝑚 , 𝐶𝑞+1

𝑚), (∑ 𝑃𝑞+1
𝑗

𝑗 + ∑ 𝐶𝑞+1
𝑗𝑚

𝑗=1 − ∑ 𝐶𝑖,𝑜𝑢𝑡)}𝑖 } be the

generalized ring to sign.

5. Compute the MLSAG signature on 𝑅

4.1.4. Stealth Adresses

Finally Monero uses stealth addresses to provide privacy to the recipient of a transaction. In

Monero each user has two key pairs. The first key pair is the viewing key pair (𝑉, 𝑣) and is

used to scan the blockchain to search for transactions destined for that user. The second key

pair is called the spend key pair (𝐵, 𝑏) and is used by a user to spend the coins sent to him.

Given an ECC base point 𝐺, stealth addresses are constructed as follows.

1. A sender Alice wants to send a transaction to Bob, whose public key is of the form

(𝑉 = 𝑣𝐺, 𝐵 = 𝑏𝐺).

2. Alice generates a random 𝑟 and computes 𝑅 = 𝑟𝐺

3. Alice computes one-time public key 𝑃 = 𝐻𝑠(𝑟𝑉)𝐺 + 𝐵

4. Alice publishes 𝑅, 𝑃

5. Given 𝑅 Bob computes 𝑃′ = 𝐻𝑠(𝑣𝑅)𝐺 + 𝐵

6. Bob checks whether 𝑃′ = 𝑃. If not, the transaction is not meant for him and he

continues to scan the ledger.

7. If yes, the transaction is meant for him and Bob computes corresponding one-time

private key 𝑥 = 𝐻𝑠(𝑣𝑅) + 𝑏 such that 𝑃 = 𝑥𝐺

8. Bob can now use 𝑥 to send the transaction to a new address

13

Note that Bob can share his private viewing key with someone else, who can then scan the

ledger for him. However, without the private spending key they cannot spend the transaction

sent to Bob. This is a useful feature for auditing purposes for example.

4.1.5. Earlier versions of Monero

It is important to note that the first version of Monero was different to the protocol described

in the previous sections. It was based on the CryptoNote protocol, introduced by Van

Saberhagen (2013). The main difference is that the old protocol used a different type of ring

signature, called a traceable ring signature (Fujisaki & Suzuki, 2007), and did not incorporate

Confidential Transactions. The latter is an important observation because in the earlier version

transaction amounts were not hidden. This posed a problem because ring signatures could only

be created using inputs of the same amount. Suppose a user wants to send a transaction of an

unusual amount, for example 0.8456 XMR. In such a case it would be difficult to find a large

number of inputs with the same denomination. Consequently, this would prevent the user from

using a large number of mixins in his/her ring signature, thus limiting the anonymity set. In

section 5.5 it will be shown that the old version of Monero was vulnerable to deducibility

attacks that are made possible by limited anonymity sets.

4.2. Zcash

The Zcash protocol is based on the paper presented by Sasson, et al. (2014). There are different

types of addresses in Zcash, namely shielded addresses (z-addr) and transparent addresses (t-

addr). Each transaction splits its input values into amounts coming from shielded addresses and

amounts coming from transparent addresses. Output values are split into amounts going to

shielded addresses and amounts going to transparent addresses. This means that there are

different types of transactions between addresses, as visualised in figure 2. A transaction can

be:

1. From z-addr to z-addr, where, for example, the input amount is split into 5 ZEC coming

from a shielded address and 0 ZEC coming from a transparent address. The output

amount would for example be 5 ZEC to a shielded address and 0 ZEC to a transparent

address. This means that the transaction is completely shielded.

2. From t-addr to z-addr and vice versa. In this case the input amounts would come from

a transparent address but would be sent to a shielded address and vice versa. Thus, there

is only partial anonymity.

14

3. From t-addr to t-addr, where the input and output amounts come from/go to transparent

addresses. This provides no anonymity and functions similarly to a normal Bitcoin

transaction.

In Zcash each user generates a random spending key 𝑎𝑠𝑘 with corresponding incoming viewing

key 𝑎𝑝𝑘 to which incoming transactions can be sent. In addition, a user has a

transmission/receiving keypair (𝑝𝑘𝑒𝑛𝑐 , 𝑠𝑘𝑒𝑛𝑐). This keypair is used for encrypting sensitive

data that needs to be sent over the network.

For the purpose of this study a simplified example of a shielded transaction will be introduced,

however a full overview of the Zcash protocol is presented in the protocol specification

authored by Hopwood, et al. (2016). In the simplified scenario we have Alice who wants to

send a note to Bob. A note is a tuple (𝑎𝑝𝑘 , 𝑣, 𝜌, 𝑟𝑐𝑚), where:

• 𝑎𝑝𝑘 is Bob’s viewing public key

• 𝑣 is the value of the note

• 𝜌 is the random value chosen to compute the nullifier, 𝑛𝑓, using a pseudo-random

function. The nullifier can be thought of as a serial number and will be used to prove

that the note has not been spent.

• 𝑟𝑐𝑚 is the random value chosen to compute the note commitment. The note

commitment is added to a Merkle tree that holds all notes that were ever created. When

the note is spent, this serves to prove that the note exists.

A transaction is made by creating a new note holding the value of the old note (for the sake of

simplicity we assume that there is one input note and one output note). Alice creates a new note

for Bob in the following way.

1. Choose random 𝑟𝑐𝑚𝑛𝑒𝑤 , which will be the blinding value used in the new note

commitment.

Figure 2 Different types of Zcash transactions (Kappos, et al.,
2018)

15

2. Compute 𝜌𝑛𝑒𝑤 = 𝑃𝑅𝐹𝜑
𝜌

(ℎ𝑠𝑖𝑔), where 𝑃𝑅𝐹𝜑
𝜌

 is a pseudo-random function using the old

note’s 𝜌 and random seed 𝜑 applied to a public seed ℎ𝑠𝑖𝑔 . 𝜌𝑛𝑒𝑤 will be used to compute

the nullifier of the new note, 𝑛𝑓𝑛𝑒𝑤.

3. Alice sends the nullifier of the old note, 𝑛𝑓𝑜𝑙𝑑 , to all nodes. The nullifier is then added

to a separate Merkle tree that holds the nullifiers of all spent notes. If the nullifier

already exists in that Merkle tree it means the note has already been spent and the

transaction will be discarded.

4. Compute new note commitment 𝑐𝑚𝑛𝑒𝑤 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚(𝑎𝑝𝑘
𝑛𝑒𝑤, 𝑣𝑛𝑒𝑤, 𝜌𝑛𝑒𝑤) where

𝑎𝑝𝑘
𝑛𝑒𝑤 is the public key of the receiver, Bob. 𝑐𝑚𝑛𝑒𝑤 is sent to all the nodes and will be

added to the Merkle tree of existing coins, such that it can be spent in a later transaction.

5. Let 𝑛𝑛𝑒𝑤 =(𝑣𝑛𝑒𝑤, 𝜌𝑛𝑒𝑤 , 𝑟𝑐𝑚𝑛𝑒𝑤 , 𝑚𝑒𝑚𝑜) be the new note.

6. Alice encrypts 𝑛𝑛𝑒𝑤 using Bob’s transmission key, 𝑝𝑘𝑒𝑛𝑐 , and send it to Bob.

7. For each transaction, an ephemeral signing key pair is generated. Alice signs the

transaction using the private signing key. The public signature verification key is added

to the transaction.

In addition, Alice generates a zk-SNARK proof, 𝜋, proving that she knows:

1. 𝑝𝑎𝑡ℎ a Merkle tree path to the note commitment

2. 𝑝 a position where the note commitment is in the Merkle tree

3. 𝑛𝑜𝑙𝑑 = (𝑣𝑜𝑙𝑑 , 𝜌𝑜𝑙𝑑 , 𝑟𝑐𝑚𝑜𝑙𝑑 , 𝑚𝑒𝑚𝑜)

4. 𝑎𝑠𝑘
𝑜𝑙𝑑 Alice’s secret spending key

5. 𝑛𝑛𝑒𝑤 =(𝑣𝑛𝑒𝑤, 𝜌𝑛𝑒𝑤 , 𝑟𝑐𝑚𝑛𝑒𝑤 , 𝑚𝑒𝑚𝑜)

Such that:

1. The Merkle path is valid

2. The balance of input notes is equal to the balance of output notes

3. 𝑛𝑓𝑜𝑙𝑑 = 𝑃𝑅𝐹
𝑎𝑠𝑘

𝑜𝑙𝑑
𝑛𝑓

(𝜌𝑜𝑙𝑑)

4. 𝑎𝑝𝑘
𝑜𝑙𝑑 = 𝑃𝑅𝐹

𝑎𝑠𝑘
𝑜𝑙𝑑

𝑎𝑑𝑑𝑟(0)

16

5. ℎ = 𝑃𝑅𝐹
𝑎𝑠𝑘

𝑜𝑙𝑑
𝑛𝑓 (ℎ𝑠𝑖𝑔)

6. 𝜌𝑛𝑒𝑤 = 𝑃𝑅𝐹𝜑
𝜌

(ℎ𝑠𝑖𝑔)

7. 𝑐𝑚𝑛𝑒𝑤 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑟𝑐𝑚𝑛𝑒𝑤(𝑛𝑛𝑒𝑤)

5. Comparison of Monero and Zcash

The literature review and background have established that Monero and Zcash are

predominantly different due to the cryptographic primitives used to ensure privacy. These

differences influence the overall performance of the cryptocurrencies in terms of actual privacy

provided, efficiency and usability. In the following sections, a comparison of the two

cryptocurrencies will be made and their advantages and disadvantages will be critically

assessed.

5.1. Anonymity set

The anonymity set contributes to the overall anonymity provided by the cryptocurrency. In

theory, the larger the anonymity set, the higher the anonymity. In Monero the anonymity set is

only as large as the chosen number of mixins used to construct the ring signature. At the time

of writing the enforced minimum mixin number is set to 7, however it is important to note that

there has not always been an enforced minimum. In the beginning it was possible to send

transactions using zero mixins. It has been found that these transactions can be used to de-

anonymise further transactions (Kumar, et al. 2017; Miller, et al. 2017). A zero-mixin

transaction A is essentially not anonymous as there is only one signer in the ring signature,

namely the real signer. This means that when the transaction A is spent, anyone on the network

can see that the transaction coming from that signer was spent. If this transaction A gets used

as a decoy mixin in a different transaction B, it can be deduced that the transaction A cannot be

the real input because everyone knows that it has already been spent. This effectively reduces

the anonymity set of B by one. If transaction B was a transaction with only one decoy mixin, B

would now be de-anonymised and could potentially de-anonymise further transactions. Figure

3 illustrates this type of attack.

17

Figure 3 Illustration of the de-anonymisation attack. The dashed lines are inputs identified as decoy mixins, the bold lines
are the real input (Kumar, et al., 2017)

Whilst an anonymity set of 7 is very low, it needs to be considered that transactions are sent

from one-time addresses as described in section 4.1.4. Even if the real input is found, it would

only show which one-time address it came from, not which user is linked to this one-time

address.

In Zcash the anonymity set is equal to the entire pool of shielded transactions, which is

considerably larger than Monero’s anonymity set. However, it has been found that shielded

transactions are not used by many users, the consequences of which will be discussed in the

next section.

5.2. Opt-in privacy

As seen in section 4.2. Zcash allows for different types of transactions between shielded and

transparent addresses. This means that in Zcash it is optional to use the privacy preserving

features. It has been found (Kappos, et al., 2018) that only a small percentage of users use

shielded transactions. Figure 4 clearly shows that the majority of transactions carried out in

Zcash are transparent transactions. Whilst the anonymity set is considerably larger than in

Monero, it is not as large as one would expect, due to the small amount of shielded transactions

carried out in Zcash. This means that the opt-in privacy feature reduces the anonymity provided

by Zcash. The reason for the limited usage of shielded transactions could be due to the fact that

Zcash lacks in usability, which will be further discussed in section 5.5.

18

In Monero it is mandatory to use RingCT when making a transaction. In addition, the user is

required to generate a minimum ring size of 7 in his/her transaction. This means that all

transactions are anonymous to the degree of the anonymity set, which is equal to the number

of mixins used. It is therefore in the user’s best interest to increase this anonymity set by adding

more mixins to his/her transactions. However, the majority of users keeps their ring size as

minimal as possible. In the last month, as of the time of writing, 96.68% of users generated

transactions with 3-9 mixins (Monero Blocks, 2018). One of the main reasons for this is the

fact that the transaction fee increases with the expansion of the ring size, keeping users from

using more mixins. This in turn leads to a smaller anonymity set, which decreases the privacy

provided by Monero.

5.3. Transaction size

In Monero the average transaction size is 12.5 kb, compared to 2 kb in Zcash (Intelligent

Trading, 2018). The transaction size in Monero is much larger, because the number of mixins

chosen increases the size of the ring signature, which increases the size of the transaction. As

Monero instates a minimum mixin of 7, it already considerably expands the transaction size.

This is one of the main limitations in Monero because users need to consider the trade-off

between increased privacy and lower transaction fees. In contrast, the transaction size in Zcash

is much smaller, which means that users can use shielded transactions without having to pay

more in transaction fees.

Figure 4 Total number of different types of transactions over
time (Kappos, et al., 2018)

19

5.4. Trusted setup

The zk-SNARKs used in Zcash require a trusted setup to generate the public parameters that

are used to create and verify proofs. This trusted setup was carried out using a multi-party

generation protocol, as outlined by Parno, et al. (2013). Six different parties, each holding a

part of the master secret, participated in the setup. Each party completed their portion of the

protocol by using their part of the master secret, which finally produces the public parameters.

After the parameter generation is finished it is important for each party to discard their fragment

of the master secret. If each part does not get destroyed the parties could collude and reassemble

the master secret. Whilst this would not allow them to revoke the anonymity of transactions, it

would allow them to create new notes out of nothing. It is also important to note that all parts

of the master secret are needed for this to happen. This means that even if only one party

properly destroyed their part of the secret the reassembly of the master secret would not be

possible. This is an important topic of debate within the cryptocurrency community, because a

substantial amount of people does not trust that the fragments of the master secret were

destroyed. This could also be one of the reasons why adoption of Zcash is so limited. However,

it needs to be noted that the Zcash team is working on a new parameter generating protocol,

presented by Bowe, et al. (2017), that is scalable enough that it can be generated by hundreds

of parties. The idea is that anyone could participate, and it would make it practically impossible

for everyone to collude together after the generation is done.

 In contrast, Monero does not need a trusted setup, thus the issue is entirely avoided.

5.5. Traceability analysis

Based on the previous sections, it can be said that none of the actual cryptographic primitives

used in either Monero or Zcash are susceptible to de-anonymisation. However, there have been

several studies into the traceability of both Monero and Zcash transactions. In the following,

the findings of these studies will be presented and analysed.

It was found that “62% of transaction inputs with one or more mixins are vulnerable to “chain-

reaction” analysis” (Miller, et al., 2017). Recall that the earlier versions of Monero did not

enforce a mixin minimum, which meant that 0-mixin transactions could often be used to further

de-anonymise other transactions that included these transactions as mixins. The researchers

iteratively scanned through the blockchain and marked transactions that were de-anonymised.

With each iteration they were able to further de-anonymise other transactions and were

20

eventually able to trace approximately 62% of Monero transactions. However, it needs to be

noted that the research was carried out on the first 1288774 blocks (April 15th, 2017) of the

blockchain. Monero has since updated to include RingCT, and RingCT transactions can only

use other RingCT inputs as mixins. This means that none of the inputs that were de-anonymised

by the research poses a threat to the anonymity of current Monero transactions, because they

cannot be used as mixins anymore.

A much more relevant problem exposed by Miller, et al. (2017) is that the algorithm used for

sampling inputs when creating the ring signature is not representative of the spend-time

distribution of Monero transactions. It was found that most users spend their coins within 1.8

days of receiving them. However, Monero samples decoy mixins from a triangular distribution,

which means that there is a higher chance that decoy mixins are much older than the real input.

The researchers found that “the Guess-Newest heuristic […] applies to 81% of these

[deducible] transactions” (Miller, et al., 2017). This means that they were able to correctly

guess that the newest input is also the real input 81% of the time.

Similar research was conducted by Kumar, et al. (2017). In

addition, they presented a different heuristic. They

hypothesise that it is possible to guess the real inputs of a

transaction that takes at least two real inputs, if those inputs

were both outputs in the same earlier transaction. Figure 5

illustrates this idea. The heuristic assumes that the inputs

chosen as decoy mixins are not likely to all come from the

same previous transaction. This heuristic is slightly weaker

because it allows for false positives.

Wijaya, et al. (2018) showed that it is also possible for an

active attacker to reduce the anonymity of other transactions.

The attacker creates a set number of inputs in the “setup phase”

and spends them in a transaction. These are inputs that he now knows were spent. This means

that, when they get used as decoy mixins in other transactions, he will know that they are not

the real input for that specific transaction. The paper describes both a passive and an active

attack in this scenario. The passive attack consists of the attacker simply observing the

blockchain and finding transactions that use his inputs as decoy mixins. He can then reduce the

Figure 5 Heuristic proposed by
(Kumar, et al., 2017)

21

anonymity set of those transactions by 𝑘. Where 𝑘 is the number of the attacker’s inputs used

as decoys.

The active attack consists of the attacker compromising a user’s wallet. In Monero the wallet

is where decoy mixins are picked for the ring signature. An attacker that has compromised a

wallet would be able to choose which inputs to use in a transaction. In this case, the attacker

would use their own inputs as decoys, effectively reducing the anonymity set to 1, which is the

actual input. These attacks are very effective against transactions using small ring sizes.

However, when it comes to larger ring sizes, the attacker will have to own an increasingly large

number of outputs on the blockchain. Considering the attacker would have to pay a transaction

fee for each output he wants to own, this becomes a very expensive attack to carry out.

Zcash has not been around for as long as Monero, and as such there has been less research into

the traceability of transactions. Important research was carried out by Kappos, et al. (2018),

who, in addition to discovering the limited usage of the Zcash shielded transactions, showed

that there are recognisable patterns in the transactions going into and coming out of the shielded

pool. Based on these patterns they were able to identify transactions made by founders and

miners and able to “reduce the size of the overall anonymity set by 69.1%” (Kappos, et al.,

2018). The pattern of founder transactions showed that founders do not often put money into

the pool, but when they do they transfer large amounts. It was also found that there was only

ever one founder address “active” at a given moment. Once this address reached the limit of

44,272.5 ZEC the next address became the “active” address and the old address did not get

used again. They also found that the deposited amount was usually always the same. These

heuristics were able to identify founder deposits 74.9% of the time.

The patterns of miners showed that they are the main actors transferring money to the pool.

This is not surprising as miners are obliged by the consensus rules to put their coins through

the shielded pool when they receive their block rewards. The deposits by miners are therefore

easy to spot, because the deposit into the shielded pool occurs directly after a new coin has

been mined.

22

When it comes to withdrawals out of the shielded pool, miners were identified using the

following heuristic.

If a z-to-t transaction has over 100 output addresses, one of which belongs to a known

mining pool, then we label the transaction as a mining withdrawal (associated with that

pool) and label all non-pool output t-addresses as belonging to miners. (Kappos, et al.,

2018)

The logic behind this heuristic is that in mining pools the block rewards are shared between the

miners. In Zcash this is done by sending the block reward to a shielded address and from there

dividing the reward and sending a share to each miner in the mining pool. As a result of the

above heuristic, the researchers were able to tag 110,918 addresses as belonging to miners.

The above examples show that the anonymity set can be reduced by identifying miners and

founders. In addition, the study presents a heuristic that could link an input address, used in a

t-to-z transaction, to an output address, used in a z-to-t transaction. This heuristic is based on

work by Quesnelle (2017) and allows to identify “round-trip transactions”. These transactions

are used when a user wants to anonymise their coins by sending them to a new address. In this

scenario a user sends their coins to the shielded pool and then back to a new transparent address.

The heuristic thus claims that a transaction of a specific value 𝑣 is a “round-trip transaction” if

the value is found to have been spent in a t-to-z transaction, followed by the same value being

spent in a z-to-t transaction shortly after. Running the heuristic resulted in linking 28.5% of t-

to-z transactions, followed by z-to-t transactions. However, they also found that 87% of those

transactions were transactions they had identified as being either founder or miner transactions,

meaning that the heuristic is less effective when applied to “normal” user transactions.

In summary the research shows that the anonymity set of shielded transactions can be reduced

by applying certain heuristics. However, it is important to note that the anonymity set is still

larger than in Monero, and that transactions carried out by “normal” users have not been proven

to be traceable as of yet. In addition, fully shielded transactions (z-to-z) were not affected by

any of the heuristics described.

In conclusion, it can be said that there are distinct differences in the way the cryptographic

primitives used in Monero and Zcash affect the cryptocurrencies. In terms of pure privacy

guarantees I believe Zcash offers a more secure solution. This is because the use of zero-

23

knowledge proofs means that no sensitive information is published when a user makes a

transaction. Consequently, post-hoc de-anonymisation is much less likely and is not likely to

reveal any identities or identifying data. As seen in Monero the majority of non-RingCT

transactions have already fallen victim to post-hoc de-anonymisation. It is important to note

that Zcash was deployed much later than Monero. This means that it has been subject to less

“real world” testing and, due to the limited use of shielded transactions, it has not been tested

when the network is busy. In contrast, the protocol used in Zcash is based on and backed by

highly regarded academic research.

The limited number of people who actually use shielded transactions could be an indication of

the fact that Zcash lacks in usability compared to Monero. The reason being that verification

times are slow and that the protocol is not very scalable. Monero has better usability but loses

some of its privacy guarantees in the process. The larger the ring signatures become, the less

usable Monero becomes, which means Monero has to make a compensation between privacy

and usability. At the moment the trade-off between privacy and usability is much more

balanced than in Zcash. However, Zcash is working on improvements and is releasing an

update this month that would improve usability and scalability, possibly pushing Zcash to the

forefront of privacy preserving cryptocurrencies.

6. Improvement on Monero

The research done into the traceability of Monero, as described in section 5.5, has highlighted

two issues. Firstly, it is important that ring sizes are big enough so that anonymity does not get

compromised even if it is possible to reduce the anonymity set by process of elimination.

Secondly, the sampling algorithm needs to be more representative of the spend-time

distribution, so that an attacker cannot accurately guess which input the real input is. In this

chapter improvements to both issues will be proposed and tested. In addition, a different more

secure stealth address will be presented.

6.1. Short Linkable Ring Signatures

One of the issues previously discussed is that the ring signatures in Monero grow linearly with

the number of mixins used, which means that the transaction fee grows with it. Consequently,

less people are inclined to use a larger number of mixins, because they would have to pay

higher transaction fees. However, using less mixins reduces the privacy guarantees offered by

Monero. A solution to this problem would be to introduce ring signatures that do not grow with

the number of mixins used. In the following, the short linkable ring signature will be presented,

24

showing that it is possible to produce constant sized transactions independent of the number of

mixins chosen.

The short linkable ring signature schemes presented by Au, et al. (2006, 2013), Chow, et al.

(2006) and Sun, et al. (2017) make use of accumulators with one-way domain. The idea of an

accumulator is that it takes a set of values and accumulates them into one value by iteratively

applying the same function to each element of the set of values. The properties of an

accumulator with one-way domain are the following (Sun, et al., 2017).

- Quasi-commutativity. It holds that 𝑓(𝑓(𝑢, 𝑥1), 𝑥2) = 𝑓(𝑓(𝑢, 𝑥2), 𝑥1). For any 𝑋 =

{𝑥1, 𝑥2, . . , 𝑥𝑛} ⊂ 𝑋𝜆 the accumulated value of 𝑋 over 𝑢 is 𝑓(… 𝑓(𝑢, 𝑥1) … 𝑥𝑛).

- Collision-resistance

- One-way domain

- Efficient generation

- Efficient evaluation

The algorithms of the accumulator with one-way domain are described by Sun, et al. (2017) as

follows.

1. 𝐴𝐶𝐶. 𝐺𝑒𝑛(1𝜆): generate cyclic groups 𝐺1 = 〈𝑔0〉 and 𝐺2 of prime order 𝑝, equipped

with a bilinear pairing 𝑒: 𝐺1 × 𝐺1 → 𝐺2 , and an accumulating function 𝑔 ∘

𝑓: ℤ𝑝
∗ × ℤ𝑝

∗ → 𝐺1 , where 𝑓 is defined as 𝑓 ∶ ℤ𝑝
∗ × ℤ𝑝

∗ → ℤ𝑝
∗ such that 𝑓 ∶ (𝑢, 𝑥) →

𝑢(𝑥 + 𝛼) for some auxiliary information 𝛼 randomly chosen from ℤ𝑝
∗ (for simplicity 𝑢

is always set as the identity element of ℤ𝑝
∗ and 𝑔 is defined as 𝑔 ∶ ℤ𝑝

∗ → 𝐺1 such that

𝑔 ∶ 𝑥 → 𝑔0
𝑥. The domain of accumulatable elements is 𝐺𝑞 = 〈ℎ〉 which is a cyclic group

of prime order 𝑞 such that 𝐺𝑞 ⊂ ℤ𝑝
∗ . At last, output the description 𝑑𝑒𝑠𝑐 =

(𝐺1 , 𝐺2, 𝐺𝑞 , 𝑒, 𝑔0, 𝑔0
𝛼 , 𝑔0

𝛼2
, … , 𝑔0

𝛼𝑛
, 𝑔 ∘ 𝑓), where 𝑛 is the maximum number of elements

to be accumulated.

2. 𝐴𝐶𝐶. 𝐸𝑣𝑎𝑙(𝑑𝑒𝑠𝑐, 𝑋): compute the accumulated value 𝑔 ∘ 𝑓(1, 𝑋) for 𝑋 by evaluating

∏ (𝑔0
𝛼𝑖

)𝑢𝑖𝑛
𝑖=0 with public information {𝑔0

𝛼𝑖
}𝑖∈[𝑛], where 𝑢𝑖 is the coefficient of the

polynomial ∏ (𝑥 + 𝛼)𝑥∈𝑋 = ∏ (𝑢𝑖𝛼𝑖)𝑛
𝑖=0 .

25

3. 𝐴𝐶𝐶. 𝑊𝑖𝑡(𝑑𝑒𝑠𝑐, 𝑥𝑠, 𝑋): the relation 𝛺 w.r.t. this accumulator is defined as 𝛺(𝑤, 𝑥, 𝑣) =

1 𝑖𝑓𝑓 𝑒(𝑤, 𝑔0
𝑥, 𝑔0

𝛼) = 𝑒(𝑣, 𝑔0), a witness 𝑤𝑠 for the element 𝑥𝑠 ∈ 𝑋 ≔ {𝑥1, 𝑥2, … , 𝑥𝑛}

s.t. 𝑠 ∈ 𝑛 is computed as 𝑤𝑠 = 𝑔 ∘ 𝑓(1, 𝑋\{𝑥𝑠}) = ∏ (𝑔0
𝛼𝑖

)
𝑢𝑖𝑛−1

𝑖=0 with public information

{𝑔0
𝛼𝑖

}𝑖∈[𝑛−1], where 𝑢𝑖 is the coefficient of the polynomial ∏ (𝑥𝑖 + 𝛼)𝑛
𝑖=1,𝑖≠𝑠 =

∏ (𝑢𝑖𝛼𝑖)𝑛−1
𝑖=0 .

Simply put, the actual signer of the ring signature wants to prove that his signature is

accumulated in the value 𝑔 ∘ 𝑓(1, 𝑋), which will be called 𝑣 for simplicity. This is done by

generating a new value 𝑤 which is the accumulated value of all signatures except for the

signature of the real signer. The signer can now prove that his signature is accumulated in 𝑣 by

applying the accumulator function to 𝑤 and his own signature. The result of which should be

equal to 𝑣 if his signature is indeed accumulated in 𝑣.

A new protocol for Monero based on the short linkable ring signatures was presented in a paper

by Sun, et a. (2017), which they titled RingCT2.0. The idea is to use an accumulator to create

the ring signature and then generate a proof that the user’s real input is accumulated in that

value, as well as prove that the user has the private spend key to allow him to spend the coin.

The result is a ring signature of size 𝑂(1), instead of 𝑂(𝑛), where 𝑛 is the number of signers,

which is the case in the ring signature scheme used by Monero. This solution would therefore

incentivise users to use more mixins because it would no longer result in higher transaction

fees.

One drawback of the short linkable ring signature is that it requires a trusted setup. As discussed

in the case of Zcash trusted setups can be controversial. However, with the emergence of new

parameter generation protocols that allow a much larger number of participants, the trusted

setup would be less contested.

Given that the main privacy problem in Monero is the small anonymity set, the solution

proposed by Sun, et al. (2017) is an important one. Therefore, it would be interesting to

implement the solution and thoroughly test it in further work.

6.2. Mixin Sampling Strategy

As discussed in section 5.5 it was found that the sampling strategy used by Monero is not

representative of the actual spend-time distribution of transactions (Miller, et al., 2017).

Temporal analysis shows that most often the most recent input is the real input as well. In

Monero most transactions are usually spent within 1.8 days of receiving the transaction, whilst

26

the Monero distribution samples mixins from a triangular distribution. Therefore, it is

important to find a different sampling algorithm that represents the spend-time distribution

more closely.

Miller, et al. (2017) present a different sampling strategy that samples data using a model that

was constructed using blockchain data. Their idea was to estimate the spend-time distribution

and use this distribution to sample mixins.

In the following a different sampling distribution is presented as a possible solution to the

sampling problem. The strategy is given as follows:

For a ring size of n:

Pick n/4 inputs from the blocks 10-25 at the top of the chain, i.e. the newest blocks that

could contain freshly unlocked balances.

Pick n/4 inputs biased towards recent inputs, similar to the current input selection.

Pick n/4 inputs biased towards old inputs, with older ones being more likely.

Pick n/4 inputs uniformly across all possible choices.

From all the chosen inputs, replace the input that is closest to the real one with the real

input. (Distinctive Multiple, 2018)

The idea is that this sampling strategy would account for different types of transactions whilst

providing a uniform mixin selection. Given the most common scenario, where a user spends

his/her transaction within 1.8 days, it would be difficult to guess which input the real input is

given inputs from the above sampling strategy. The “Guess Newest” heuristic would not be

effective, given that there will usually be a more recent input, namely one from the blocks 10-

25 at the top of the chain.

This sampling strategy also accounts for more unique cases, for example where a transaction

is spent after a much longer time. If samples were only sampled from within 1.8 days, an older

transaction would stand out amongst the other inputs sampled from the spend-time distribution.

In this sampling algorithm, that problem is avoided because there will always be at least one

more old input in the transaction.

In addition, the sampling algorithm ensures that no information can be deduced simply by

looking at the mixin samples. Consider the case where there are four decoy mixins, each chosen

27

from the four different distributions. Now if the actual input were simply added to the mixin

list, there would be two inputs closely related to the same sampling distribution. This means

that an onlooker can now deduce that one of those two must be the real input. In the proposed

sampling strategy one of the decoy mixins is replaced by the actual input which mitigates

against this type of analysis.

The above sampling strategy was implemented and can be found on the github repository, as

described in the Appendix. In order to test the algorithm, the test performed by Miller, et al.

(2017) for their sampling strategy was reproduced. It consisted of running the algorithm 3500

times, for ring sizes of 2-16 (1-15 decoy mixins). Then the probability of each mixin being the

real mixin was calculated. The code for which (effective_untraceability.py) can also be found

in the github repository. Using the resulting probabilities, the guessing entropy 𝐺𝑒 was

calculated as follows (Miller, et al., 2017):

𝐺𝑒 = ∑ 𝑖 𝑝𝑖

Where 𝑝𝑖 is the set of probabilities, sorted from highest probability to lowest.

Finally, using the guessing entropy, the effective untraceability was calculated as follows:

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑈𝑛𝑡𝑟𝑎𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 + 2𝐺𝑒

The effective untraceability results can be found in Figure 6. The results for the sampling

algorithm used by Monero, the sampling algorithm presented by Miller, et al. (2017) and the

ideal sampling algorithm were taken from the work by Miller, et. al (2017). The new suggested

sampling strategy has an overall higher effective untraceability than the sampling algorithm in

Monero. However, it performs slightly worse than the suggested implementation from Miller,

et al. (2017). It can be reasoned that the results of the latter are better because the sampling

strategy described is fitted to the spend-time distribution of Monero. This means that the

sampling algorithm is much more representative of the actual spending behaviour in Monero.

In the ideal case each mixin would have an equal probability of being the real mixin. However,

this is a difficult feature to achieve because of this spend-time distribution.

28

6.3. Stealth Address Security Improvement

The stealth address used in Monero is vulnerable to a bad random attack (Courtois & Mercer,

2017). The attack is enabled if a user uses two identical random numbers when generating an

ECDSA signature. The ECDSA signature algorithm to sign a message 𝑚 is defined as:

1. Choose 𝑘 randomly in {1, … , 𝑞 − 1}

2. Let 𝑇 = 𝑘𝑃

3. Let 𝑟 = 𝑓(𝑇). If 𝑟 = 0 start again

4. Let 𝑒 = 𝐻(𝑚)

5. Let 𝑠 = (𝑒 + 𝑥𝑟)/𝑘 𝑚𝑜𝑑 𝑞. If 𝑠 = 0 start again

6. Return (𝑟, 𝑠)

The bad random attack allows for an attacker to recover secret key 𝑥 if the same random 𝑘 is

chosen for two different signatures. The attack works as follows:

1. Set 𝑘 = (𝑒 + 𝑥𝑟)/𝑠 and 𝑘′ = (𝑒 ′ + 𝑥𝑟′)/𝑠′

Figure 6 Effective untraceability of each sampling algorithm

29

2. Since 𝑘 = 𝑘′ we can set
𝑒+𝑥𝑟

𝑠
=

𝑒′+𝑥𝑟′

𝑠′

3. Now 𝑥 =
(𝑒 ′𝑠−𝑒𝑠′)

(𝑟𝑠′ −𝑟′𝑠)

Since the one-time secret key 𝑥 has been recovered, it can now be used to find the secret

spending key 𝑏 of the receiver. Recall, the one-time secret key is defined as follows:

𝑥 = 𝐻𝑠(𝑣𝑅) + 𝑏

Consequently 𝑏 can now be found by setting 𝑏 = 𝐻𝑠(𝑣𝑅) − 𝑥. An attacker can now spend all

coins sent to the receiver’s public address. Note that for this attack to work, the attacker would

also have to have knowledge of the secret viewing key 𝑣.

The solution proposed by Courtois & Mercer (2017) suggests that each user has one view key

pair (𝑉, 𝑣) as in the current version of Monero, but several spend key pairs (𝐵𝑖 , 𝑏𝑖). The new

stealth address protocol is laid out as follows:

1. Sender chooses random 𝑟 and sets 𝑅 = 𝑟𝐺 , where 𝐺 is the base point of the elliptic

curve.

2. Sender computes one-time public key 𝑃 = 𝐻(𝑟𝑉)𝐺 + ∑ 𝐻(𝑟𝑉)𝐵𝑖 where 𝑉 is the public

viewing key of the receiver and 𝐵𝑖 are the public spending keys of the receiver.

3. Sender publishes 𝑅 and 𝑃 on the blockchain

4. Receiver scans the blockchain and computes 𝑃′ = 𝐻(𝑣𝑅)𝐺 + ∑ 𝐻(𝑣𝑅)𝐵𝑖 where 𝑣 is

the private view key of the receiver.

5. Receiver checks whether 𝑃′ = 𝑃.

6. If yes, the receiver computes corresponding secret key 𝑥 = 𝐻(𝑣𝑅) + ∑ 𝐻(𝑣𝑅)𝑏𝑖

The new stealth address generation algorithm was implemented and instructions on running

the code can be found in the Appendix.

The new one-time secret key is more robust than the one used in Monero, because an attacker

would have to recover all 𝑏𝑖 to be able to spend the funds of the receiver. Even if an attacker

were able to recover some parts of the secret spending key, he would have to solve a linear set

of equations to find the spending key, which is considered a hard problem.

30

Whilst this solution is effective in protecting the secret spend key against a bad random attack

it introduces a scalability issue. The problem being that the address size would grow linearly

with the number of spend key pairs that are included. The size of addresses in Monero is already

relatively large compared to other cryptocurrencies. This means that a trade-off needs to be

considered between security and scalability.

The above attack only works if the attacker has knowledge of the secret viewing key 𝑣.

Therefore, the above solution is not recommended to users who do not need to share their secret

viewing key as their security is much less likely to be compromised with this type of attack.

However, consider the case of a company that needs to be audited regularly. The company

would have to share their secret viewing key, exposing themselves to the possibility of the

above attack. In this case it would be recommended to construct the stealth addresses as

described above.

7. Conclusion

The Monero and Zcash protocols show that there are different ways to achieve privacy. They

are also a clear example of how cryptographic applications must achieve a balance between

privacy, usability, and efficiency. In Monero the ring signatures provide a user-friendly way of

achieving privacy. However, the privacy assumptions are less strong than in Zcash, which in

turn suffers from less usability.

It has been shown that Monero’s privacy heavily depends on the number of mixins used in its

ring signatures. The current version prevents users from increasing their ring signature size

because of the growing transaction fees. Short linkable ring signatures were presented to solve

this problem and it was argued that they offer a good improvement because they decrease the

signature size from 𝑂(𝑛) to 𝑂(1). In further work it would be important to implement the short

linkable ring signature and test it to fully assess the importance of the improvement.

Furthermore, an additional problem in Monero was identified. The fact that mixins are sampled

from a distribution not representative of the spend-time distribution allows an outsider to

correctly guess which input the real input is the majority of the cases. A different sampling

algorithm was implemented and tested, showing that its effective untraceability was better than

in the current version of Monero. In addition, it was seen that the solution proposed by Miller,

et al. (2017) offered even better effective untraceability. Therefore, an extension of this study

could look further into their sampling solution and attempt to improve it to further ameliorate

the sampling strategy.

31

By implementing a more secure stealth address generation scheme, it was shown that the new

scheme effectively keeps an attacker from retrieving a user’s secret spending key, even in the

event of a bad random attack. It was argued that the new scheme is useful in cases where a user

has to share their secret viewing key, as this makes them more vulnerable to the attack.

However, the suggested improvement also results in increased address sizes, which is a

consequence an average user, who does not need to share her/his viewing key, may not want

to incur. In further work it would be interesting to research whether there is a way of keeping

the addresses constant sized, whilst incorporating the new scheme.

32

References

Au, M.H., Chow, S.S., Susilo, W. and Tsang, P.P., 2006, June. Short linkable ring signatures

revisited. In European Public Key Infrastructure Workshop (pp. 101-115). Springer, Berlin,

Heidelberg.

Au, M.H., Liu, J.K., Susilo, W. and Yuen, T.H., 2013. Secure ID-based linkable and

revocable-iff-linked ring signature with constant-size construction. Theoretical Computer

Science, 469, pp.1-14.

Bitansky, N., Canetti, R., Chiesa, A. and Tromer, E., 2012, January. From extractable

collision resistance to succinct non-interactive arguments of knowledge, and back again.

In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (pp. 326-

349). ACM.

Bowe, S., Gabizon, A. and Green, M.D., 2017. A multi-party protocol for constructing the

public parameters of the Pinocchio zk-SNARK. TR 2017/602, IACR.

Bowe, S., Gabizon, A. and Miers, I., 2017. Scalable multiparty computation for zk-SNARK

parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050.

Chaum, D. and Van Heyst, E., 1991, April. Group signatures. In Workshop on the Theory and

Application of of Cryptographic Techniques (pp. 257-265). Springer, Berlin, Heidelberg.

Chow, S.S., Susilo, W. and Yuen, T.H., 2006. Escrowed linkability of ring signatures and its

applications. In Progress in Cryptology-VIETCRYPT 2006 (pp. 175-192). Springer, Berlin,

Heidelberg.

Conti, M., Kumar, S., Lal, C. and Ruj, S., 2018. A survey on security and privacy issues of

bitcoin. IEEE Communications Surveys & Tutorials.

Courtois, N.T. and Mercer, R., 2017. Stealth Address and Key Management Techniques in

Blockchain Systems. In ICISSP(pp. 559-566).

Distinctive Multiple, 2018. “Multidistributed input selection for large ring sizes”

https://github.com/monero-project/monero/issues/3112 [accessed 30 august 2018]

Fujisaki, E. and Suzuki, K., 2007, April. Traceable ring signature. In International Workshop

on Public Key Cryptography (pp. 181-200). Springer, Berlin, Heidelberg.

Hopwood, D., Bowe, S., Hornby, T. and Wilcox, N., 2016. Zcash protocol specification.

Technical report, 2016–1.10. Zerocoin Electric Coin Company.

Intelligent Trading, 2018. Intelligent Trading. [Online]

Available at: https://intelligenttrading.org/wp-content/uploads/ITF-Privacy-Coins-Report.pdf

[Accessed 26 08 2018].

Kappos, G., Yousaf, H., Maller, M. and Meiklejohn, S., 2018. An Empirical Analysis of

Anonymity in Zcash. arXiv preprint arXiv:1805.03180.

https://github.com/monero-project/monero/issues/3112

33

Kumar, A., Fischer, C., Tople, S. and Saxena, P., 2017, September. A traceability analysis of

Monero’s blockchain. In European Symposium on Research in Computer Security (pp. 153-

173). Springer, Cham.

Liu, J.K., Wei, V.K. and Wong, D.S., 2004, July. Linkable spontaneous anonymous group

signature for ad hoc groups. In Australasian Conference on Information Security and

Privacy (pp. 325-335). Springer, Berlin, Heidelberg.

Maxwell, G., 2015. Confidential transactions. URL: https://people.xiph.org/~

greg/confidential_values.txt (Accessed 09/05/2016).

Miers, I., Garman, C., Green, M. and Rubin, A.D., 2013, May. Zerocoin: Anonymous

distributed e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on (pp.

397-411). IEEE.

Miller, A., Möser, M., Lee, K. and Narayanan, A., 2017. An empirical analysis of linkability

in the Monero blockchain. arXiv preprint, 1704.

Monero Blocks, 2018. “Mixins used in transactions (%)”,

https://moneroblocks.info/stats/ring-size [accessed 01 Sept 2018]

Noether, S. and Mackenzie, A., 2014. A note on chain reactions in traceability in cryptonote

2.0. Research Bulletin MRL-0001. Monero Research Lab, 1, pp.1-8.

Noether, S. and Mackenzie, A., 2016. Ring confidential transactions. Ledger, 1, pp.1-18.

Parno, B., Howell, J., Gentry, C. and Raykova, M., 2013, May. Pinocchio: Nearly practical

verifiable computation. In 2013 IEEE Symposium on Security and Privacy (pp. 238-252).

IEEE.

Pedersen, T.P., 1991, August. Non-interactive and information-theoretic secure verifiable

secret sharing. In Annual International Cryptology Conference (pp. 129-140). Springer,

Berlin, Heidelberg.

Quesnelle, J., 2017. On the linkability of Zcash transactions. arXiv preprint

arXiv:1712.01210.

Rivest, R.L., Shamir, A. and Tauman, Y., 2001, December. How to leak a secret.

In International Conference on the Theory and Application of Cryptology and Information

Security(pp. 552-565). Springer, Berlin, Heidelberg.

Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E. and Virza, M., 2014,

May. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium

on Security and Privacy (SP) (pp. 459-474). IEEE.

Sun, S.F., Au, M.H., Liu, J.K. and Yuen, T.H., 2017, September. RingCT 2.0: a compact

accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero.

In European Symposium on Research in Computer Security (pp. 456-474). Springer, Cham.

Tsang, P.P. and Wei, V.K., 2005, April. Short linkable ring signatures for e-voting, e-cash

and attestation. In International Conference on Information Security Practice and

Experience(pp. 48-60). Springer, Berlin, Heidelberg.

https://moneroblocks.info/stats/ring-size

34

Van Saberhagen, N., 2013. CryptoNote v 2.0.

Wijaya, D.A., Liu, J., Steinfeld, R. and Liu, D., Monero Ring Attack: Recreating Zero Mixin

Transaction Effect.

35

Appendix

The project was uploaded on the gitlab repository. To download the project please run

git clone https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2017/sxc1058

The repository consists of two folders. Sampling Algorithm holds the code for the

implementation and testing of the sampling algorithm. Stealth Address holds the code for the

implementation of the new stealth address.

1. Sampling algorithm

Tested with Python3.6 on Ubuntu 17.10

The following packages are needed to run the code:

Matplotlib (use command pip3 install matplotlib)

Tkinter (use command sudo apt install python3-tk)

Pandas (use command pip3 install pandas)

Instructions:

Unzip blockchain_data.zip

First run python3 sampling.py

The code takes as input the database and runs the sampling algorithm a specified number of

times on the specified number of mixins. It outputs 16 new csv files holding the index

numbers of the real inputs for each number of mixins the sampling algorithm was run on.
(Due to the large size of the database, running the code can take a considerable amount of

time)

Now run python3 effective_untraceability.py

The code takes as input the csv files from the sampling algorithm and calculates the effective

untraceability for each ring signature size (2-16). Then plots the results against the results

taken from (Miller, et al., 2018).

2. Stealth Address

Tested with Python 3.6 on Ubuntu 17.10

The following package is needed to run the code:

ed25519 (use command pip3 install ed25519)

To run the code, run python3 address.py

address.py simulates a stealth address generation using the ed25519 elliptic curve that is used

in Monero.

sender.py simulates the sender of a transaction used in address.py

ed25519ietf.py implements basic functions for computations on the ed25519 elliptic curve.

The code was written by Joseffson, taken from https://tools.ietf.org/html/draft-josefsson-

eddsa-ed25519-00#section-4

https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2017/sxc1058
https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-00#section-4
https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-00#section-4

