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Cryptocurrencies such as Bitcoin and Ethereum have seen a rapid increase
in consumer adoption over the last decade. However, their lack of privacy
guarantees has created a secondary market for more privacy-centric alternatives.
Monero is a popular cryptocurrency with $2.9 billion in market capitalization
and unique privacy properties which allow users to transact without a discernible
history, similar to cash. In a transaction, the sender, receiver, and amount are
hidden using well-established cryptographic primitives. The crux of Monero’s
strong privacy claims has historically surrounded ring signatures, used to obfus-
cate the transaction sender. A few previous works have analyzed the security of
Monero’s ring signature implementation, but none have assessed its updated
on-chain resiliency to AI-based attacks. In this work, we develop a process to
collect large-scale datasets composed of Monero transactions accompanied by
ground truth labels. Using this process, we built two datasets from the Monero
testing and staging networks and used them to explore feature engineering and
model selection. These datasets are used to train various supervised-learning
classifiers, simulating an adversary who aims to remove the anonymity set of a
Monero ring signature. Our most effective classifiers achieve a weighted F1-score
of 34.60%, predicting an out-of-sample subset, and a macro F1-score of 13.30%,
predicting against real mainnet Monero transactions. The model predictions
show a marginal 4.30% increase in accuracy compared to the random guessing
probability of 9%. Our research found that there to be minimal transaction
risk posed by on-chain information leakage, correlated with adjacent Monero
blockchains. We hope this work facilitates future multifaceted research into
strengthening the Monero protocol against attacks correlating side-channel
information.

1. Introduction

The cryptocurrency Monero has seen increased adoption and usage, largely attributed
to the on-by-default privacy features preventing onlookers from learning any substantial
information pertaining to users’ transactions. The community of Monero developers abides
by a traditional cypherpunk ethos, emphasizing end-user privacy and digital sovereignty
over most other aspects. Rudimentary properties of a Monero transaction include inputs
and outputs and can be thought of similarly to traditional cash. In a typical transaction
using fiat currency, Alice pays Bob three $5 bills. If at a later point in time Bob needed to
pay Alice a total of $10, Bob must combine two of his $5 bills as inputs into the transaction.
Relating the analogy to Monero, each of Bob’s $5 bills would be shuffled into a stack of 10
other identical counterfeit $5 bills, where Bob’s $5 bill would be considered the true spend
and the counterfeit bills are decoys. Hiding a transaction input within a group of other inputs
is done within Monero using ring sigantures to create ambiguity within the blockchain.
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Historically, most on-chain attacks have stemmed from imperfections surrounding Monero’s
use of ring signatures. These flaws led to subsequent upgrades, such as in 2017, Monero
switched to a more advanced ring signature construction, known as RingCT [1], shielding
transaction amounts.

Large, well-resourced entities have recently been taking aim at Monero. While the
cryptographic techniques used conceal transaction information from observers, companies
such as CipherTrace claim to have some ability to track Monero transactions [2]. Ciphertrace
has filed for two US patents specifically related to tracing Monero titled, Techniques and
Probabilistic Methods for Tracing Monero, and Systems and Methods for Investigating
Monero. The patent process is ongoing, and the applications have yet to be published
publicly [3]. The techniques used are believed not to be an exploit within the Monero
protocol but instead, a machine learning and graph theory analysis of the network utilizing
on- and off-chain information to produce a probabilistic estimate of the true transaction
graph [4]. Furthermore, CipherTrace has been reluctant to present evidence of its claim,
creating an inherent skepticism about the effectiveness of the company’s technology. In
September 2020, the United States Internal Revenue Service offered two separate $625,000
bounties [5] for contractors to develop tools that could be used to trace Monero transactions.
This bounty was awarded to Chainalysis and Integra-FEC to work closely with the IRS on
Monero tracking technologies. From these efforts, we see the importance of understanding
the privacy properties that Monero provides.

Previous works [6, 7] have assessed areas where Monero’s resiliency to statistical analysis
has fallen short and how the immutable nature of the blockchain poses a security risk for post
hoc deanonymization. However, around a dozen network upgrades following these works
have included significant security and privacy improvements. More recent publications [8, 9]
have evaluated post-RingCT traceability. These works revealed the ineffectiveness of past
heuristics such as guess-newest, zero mixin chain-reaction, and merging outputs, later
defined in Section 2.1. Even with the public nature of blockchain technologies, the private
nature of Monero limits the features which could be extracted for analysis.

We propose the first data collection pipeline to aggregate deanonymized Monero transac-
tions and overcome these hurdles stifling research. As only a single work [10] has briefly
assessed the AI-resilience of Monero’s ring signature implementation, we look to review the
extent of the attack surface. More specifically, we have the audacious goal to determine
which features of the blockchain may be leveraged to predict the true spend of an arbitrary
ring signature with accuracy greater than random guessing, absent external information.
Unlike blockchain analytic companies, this research will intentionally disregard the abundant
user-specific information collected and shared by various data brokers.

The contributions of this work include:

1. An open-source automated data collection system of Monero transactions to generate
large-scale datasets. We used this system to collect two open-source datasets using
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different spending patterns of users.

2. An empirical evaluation of various machine and deep-learning algorithms to predict
the true spend of a ring signature on various Monero networks, including the main
network.

2. Background

Monero emerged as an honest fork of the ByteCoin cryptocurrency, both based on the
CryptoNote protocol [11]. When a user transacts with Monero, the transaction information
is hidden on the blockchain through cryptographic assurances that achieve unlinkability
and untraceability without affecting the auditability of the ledger [12].

Unlinkability: the inability to link two addresses to the same entity.

Untraceability: the inability to identify the redeemed input among a set of other
equiprobable inputs.

Monero achieves these properties through a tripartite of cryptographic primitives, including
Pedersen commitments [13], ring signatures [14], and stealth addresses [15]. This differenti-
ates Monero from most other cryptocurrencies using transparent ledgers, such as Bitcoin
[16] or Ethereum [17] which are architected to record transactions and account balances
pseudonymously, often revealed by quasi-identifiers. To the detriment of public blockchains,
there is no limit to who can audit transactions, including friends, employers, corporations,
or repressive governments. This is a large shift from the status quo, where traditionally,
only banks, authorized third parties, and domestic governments have the same level of
visibility into one’s financial records.

Unlike Bitcoin, a user’s Monero wallet address never appears on the blockchain providing
unlinkability. Instead, for every transaction, a new one-time stealth address is derived from
the recipient’s public key, along with some randomness. For each transaction input, ten
other Monero users’ inputs are added as decoys to prevent an adversary from identifying
which coin was spent, providing untraceability. To shield the transaction amounts, Monero
uses homomorphic properties of Pedersen commitments [18] to verify the number of coins
input minus the coin’s output, zero-sum, without having to reveal the amounts publicly. A
zero-knowledge range proof, known as a bulletproof [19, 20], is added to prevent sending a
value that is non-negative or could inflate supply. Combining these three techniques gives
coins no clear history, achieving true fungibility, meaning that two monetarily equal units
can be exchanged without a discrepancy.

2.1. Heuristics

Notable on-chain heuristics include output merging [7, 9], chain reactions [6, 21], and
temporal analysis [6, 7, 9, 22, 23]. Output merging, shown in Figure 1a, is the process of
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(a) Output merging (b) Zero mixin chain-reaction

Figure 1: Heuristics depicted by Kumar et al [7].

linking two or more outputs of a previous transaction as inputs to a subsequent transaction.
These outputs are statistically more likely to be the true spends due to the improbable
nature of the event. The chain reaction heuristic applies to pre-RingCT transactions shown
in Figure 1b, where Tx-a’s choice to not use decoys eliminated the anonymity set from
Tx-[b,c,d]. A temporal heuristic that has become less effective after decoy selection upgrades
is the guess newest heuristic. This proposed that, given all members of a ring signature,
the newest one is likely to be the true spend.

Figure 2: A simplistic visual of how ring signatures are constructed to obscure
the true spend among decoys.

2.2. Ring Signatures

The use of membership proofs [24] within cryptocurrencies to conceal senders was first
proposed in 2013 by Saberhagen [11], and later improved and adapted into RingCT [1].
Alternatively to each input referencing a previous transactional output (TXO) stored on
the blockchain, a ring signature allows one member to digitally sign a transaction on behalf
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of multiple Monero inputs, obfuscating which input was truly spent. Monero transactions
commonly use multiple inputs for a single transaction, each of these inputs must construct
its own ring signature.

Ring signatures are composed of four distinct algorithms described by Saberhagen [11]:

1. GEN: The signer picks a random secret key x to compute public key P = xG, and
key image I = xHp(P ), where Hp is a deterministic hash function and G is a base
point on the Ed25519 elliptic curve [25].

2. SIG: The signer takes a message m, a set S′ of public keys {Pi}i ̸=s and outputs a
signature σ with a subset S = S′⋃{Ps}, where Ps is the signer’s own public key.

3. VER: The verifier checks the signature using message m, set S, and signature σ.

4. LNK: The verifier ensures I is unique and has not been used by a past signature.

The method in which ring members are enforced must be carefully considered, as previous
naive implementations allowed trivial decoy elimination using the methods shown in Figure
1b. In the past, ring signature decoys were chosen uniformly or with a triangular distribution
leading to decoy elimination through heuristics such as guess newest. More recently, decoys
have been selected using a shifted gamma distribution based on the spending patterns of
deanonymized pre-RingCT transactions, as suggested by Möser et al. [6]. This distribution
emphasizes newer outputs to mimic real user spending patterns, as shown in Figure 2.
Monero transactions are constructed autonomously and spontaneously since a user mixes
coins on their own without any latency. A constructed ring signature produces a verifiable
zero-knowledge proof, where the true spend is theoretically equiprobable to be any of the
participants. However, attackers can exploit side-channel information, the extent of which
we seek to evaluate empirically. Ring signatures are the source of the Monero blockchain
ledger obfuscation, such that tracing an output becomes exponentially difficult as the
anonymity set compounds over time. Our work evaluates Concise Linkable Spontaneous
Anonymous Groups (CLSAG) as they are the current variation of ring signatures enforced
at the consensus level for the Monero network. We acknowledge that upon the competition
of this work Monero increased the ring signature size from 11 to 16.

2.2.1. Future of Ring Signatures

There have been multiple proposals for new proofs to construct sub-linear sized linkable ring
signatures. Triptych was among the first alternatives, proposed by Noether et al. [26] to
replace CLSAG [14]. It includes a zero-knowledge proving structure with logarithmic growth
built on top of the existing ring architecture. However, Triptych’s inability to create multi-
signature transactions easily resulted in its abandonment. The most promising upgrade is
Seraphis [27], a complete redesign replacing linkable ring signatures with a combination of
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membership and authorization proofs. Seraphis achieves logarithmic transaction size growth,
similar to Triptych, and could increase the ring size from 16 to 128 while maintaining a
similar transaction size; however, the implementation is not anticipated to be finished until
2024.

3. Related Works

The most notable prior work was written by Borggren et al. [10] who constructed multiple
synthetic Monero blockchains including different simulated economies of miners and traders,
training a random forest and neural network to predict RingCT true spends. The authors
were able to achieve accuracies greater than random guessing and found num rings to be
the most important feature of the classifier, this is largely due to the experiment being
conducted before Monero enforced a ring size of 11. Unfortunately, this work did not
publicly release the data collection method, dataset, or trained models for future works.

An earlier publication by Möser et al. [6] in 2017 presented many novel tracing techniques
and empirically analyzed chain reaction, a previously theoretical chain-analysis attack
[21, 28]. The security posture of Monero has greatly matured since this work, and the
fundamental privacy concern, zero mixins, has long been remediated. This particular
heuristic emanated from users intentionally lowering or outright removing other ring
members from their transactions, sacrificing personal privacy to reduce fees. Interestingly,
out of the 12,158,814 transactions analyzed by the paper, 64% of them contained zero-mix-in
decoys. This demonstrates that a majority of users will opt to sacrifice privacy to reduce
fees if given a choice. In many cases, these actions linked which output on the blockchain
was used, making Monero function more closely to Bitcoin. Consequently, many Monero
users who chose an appropriate number of ring members unknowingly included previous
zero-mix-in outputs. In Figure 1b, users unintentionally reduce or eliminate plausible
deniability from future transactions. Immediately following the January 2017 network hard
fork introducing RingCT [13], the accuracy of the chain-reaction attack plummeted from
90% to about 10%.

Several well-established attacks on the Monero protocol, still effective today [29], use
coercion and chain analysis. Through social engineering, a Janus attack allows an adversary
to link multiple addresses derived from the same seed. In a scenario where two addresses
are suspected of belonging to a single entity, an attacker would send Monero to the wrong
address and subsequently ask the entity to confirm the deposit of funds. A confirmation
would prove a link between the two addresses. An EABE (Eve, Alice, Bob, Eve) attack
occurs when a single entity, such as a cryptocurrency exchange, is positioned on either
side of a single transaction and can make a deterministic link between the two individuals
transacting with one another through chain analysis. Lastly, a key-image reuse attack is a
form of chain reaction, which occurs after a network hard fork. Suppose a user spends a
Monero output on fork A of the blockchain and the same output on fork B of the chain.
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In this scenario, a passive attacker could match the key images and conclude that the
unique member included in both ring signatures was the true spend for both transactions.
If enough transactions are deanonymized in this manner, it could lead to a similar chain-
reaction as demonstrated by Möser et al. [6]. All attacks mentioned, except for key-image
reuse, assume intimate outside knowledge about the victim, not readily accessible on-chain.
The pseudonymous nature of transactions can often be de-anonymized with tracing and
real-world information about the identity of transaction owners and their outputs. Our
study disregards this information and focuses solely on the protocol as it was implemented.

While no complete Monero transaction datasets have been distributed, there are multiple
blackball lists of known spent transactions [30, 31], from pre-RingCT versions of Monero.
While useful in past situations, the half-decade-old data has become less practical over
time as the protocol advances. The lack of quality data and the difficulty of the collection
process are the leading factors deterring researchers from this field of work. Borggren et al.
[10] commented on this challenge, stating, “The difficulty in procuring labels for supervised
learning remains a central challenge, despite the accessibility of blockchain activities
themselves. In Monero, this is especially so.” While the cryptography and obfuscation
behind Monero are strong and well tested, it’s uncertain whether an implementation error or
erroneous side-channel information could allow an AI model to draw conclusions overlooked
by security researchers. No works have analyzed the security of the more recent Monero
ring signature implementation against AI attacks. Furthermore, no datasets have been
published for researchers to verify privacy claims independently.

4. Data Collection Pipeline

The data collection involved setting up servers to construct, fund, and transact between
wallet pairs over multiple months. Additional software was written [32] to extract all
outgoing transactions from thousands of wallets into csv files. The exported files were
parsed, filtered, and enriched before entering the cleaned and undersampled dataset. The
scripts used to control the wallets were written using Bash, Python, and Expect. An
Expect script allows dynamic interaction with programs that require a text-based terminal
interface. This allowed more granular control over the wallet functionality and provided
an easy way to manage and debug the process. Expect scripts were dynamically written
to create, configure, and control each Monero wallet during the data collection. All the
metadata from each transaction was later collected and enriched by feature engineering
from adjacent blockchain data.

The data collection process was performed on the Monero staging and testing networks to
achieve the most realistic results. Notably, the collection was not conducted on the Monero
main network due to serious privacy implications through chain reaction caused by public
disclosure of true ring members. User spending patterns on the staging/testing networks
are assumed to largely differ from that of the main network due to the valueless nature
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of coins. Another key distinction is that, while coinbase transactions are still present, no
known mining pools are active on these networks, excluding a potentially useful heuristic.
The benefits of collecting a real public Monero blockchain dataset, as opposed to a private
and locally simulated chain [33, 10], are that independent researchers can verify the results,
and it allows unaffiliated transactions with older histories to be included in ring signatures.

Each subsequent transaction sent by wallets, collecting the staging dataset, was delayed
by a random number of seconds sampled from a shifted gamma distribution. It should be
acknowledged that this distribution is used to simulate a perfectly ideal spending pattern
as implemented and to distribute the true spending more evenly across each ring signature
position.

A gamma distribution is described by:

p(x) = xk−1 e
−x
θ

θk Γ(k)

Where k and θ are, respectively, the shape and
scale values proposed by Möser et al. [6].

k = 19.28, θ = 1
1.61

Additional steps were taken to guarantee the dataset’s quality and ensure it could accurately
represent various transaction scenarios. To create variety, each transaction amount was
chosen uniformly at random between the range [1× 10−4 - 1× 10−12]. Choosing different
amounts for subsequent transactions had the added benefit of breaking up coins into
unpredictable outputs within each wallet. Many smaller outputs could be selected, varying
the number of inputs for each constructed transaction. Lastly, a random transaction priority
was chosen uniformly within the range [1 - 4]. This altered the transaction fee advertised
to the miners, thus changing how quickly the network would process it. The priority levels
“unimportant”, “normal”, “elevated”, and “priority” correspond to fee multipliers of x0.2,
x1, x5, and x200, respectively. While priority levels are not enforced at the consensus level
and are subjective to each wallet’s implementation, these specific multiples were chosen as
they are implemented within the monero-wallet-cli maintained by the core developers.
To understand the distribution of transaction fees in Monero, we wrote a script [34] to

scan the last 100,000 blocks on the main Monero network, starting at block 2566273. Figure
3 shows this distribution based on the ratio of transaction fees paid with respect to the
transaction size (kB). While there were clear outliers outside of the normal priority levels,
technical limitations of the monero-wallet-cli prevent arbitrary fee amounts from being
selected. Note that a competitive fee market has yet to fully emerge within Monero.

4.1. Data Collection Scripts

An assortment of scripts first automate transactions between wallets, then export and
combine wallet data into a dataset. The extraction, cleaning, and filtering of transactions

8



Figure 3: The number of mainnet Monero tx fees/byte over 100k blocks (log
scale).

were non-trivial and required three processing stages. An Ubuntu 20.04 server configured
with an AMD Ryzen 64-core Threadripper 3970X and 256GB of RAM took roughly 54
hours to complete stages two and three of the pipeline for the stagenet dataset.

Figure 4: Run.sh execution flow chart.

The first script in the pipeline, run.sh, referenced in Figure 4, is responsible for initiating
and managing transactions performed on-chain. At the time of collection, we used the
most recent release of the official Monero software, v0.17.3. Next, the user specifies the
number of wallets to be created, funded, and automated to transact with an adjacent wallet
until a certain deadline. Notably, the automation process used Expect scripts instead of
an RPC wallet server. Each wallet independently samples a random Monero transaction
fee between [1 - 4] and an amount of Monero to send from a uniform distribution between
[1× 10−4 - 1× 10−12]. After successfully sending the transaction, the script will sleep for
a random time sampled from a user’s desired distribution. Once the sleep cycle has been
completed, the process loops back to create a new transaction. A user will specify an end
date for all transfers to halt, causing the wallets to shut down gracefully.
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Figure 5: Collect.sh execution flow chart.

The second stage of the collection process is handled by the collect.sh script, shown in
Figure 5. This script recursively locates wallet files within a given directory, opens each
one using monero-wallet-cli to execute the export transfers command, and outputs
one csv file per wallet.
The csv file, cli export.csv, is detailed in Appendix C. Next, a Monero wallet RPC

server is started to programmatically extract the wallet’s starting block height, private view
key, and private spend key. This information is appended to a temporary file and will be
used in a future step. The script cycles over the remaining wallets until each has successfully
been exported. Finally, collect.sh opens the temporary file containing the wallets’ private
keys and passes them as command line arguments to xmr2csv [35], a program that scans the
blockchain for outputs used as decoys and decrypts the true spend. This process procures
the ground truth labels for the dataset.
Due to the single-threaded implementation and resource-intensive nature of xmr2csv,

this process can be very slow for a large number of wallets. To improve performance, GNU
Parallel was used for multiprocessing to distribute the computational load across multiple
CPU cores. This dramatically increases efficiency and eliminates a bottleneck within the
pipeline. Once complete, xmr2csv outputs five csv files per wallet containing unique features
relevant to the final dataset, as shown in Appendix C.

4.2. Data Cleaning and Enrichment

Figure 6: Create dataset.py execution flow chart.
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The final stage of the pipeline starts with the data cleaning and featurization process.
The python script, Create Dataset.py, discovers all csv files associated with each wallet,
extracting only the unique characteristics of a transaction. The metadata goes through an
enrichment phase where adjacent information on the blockchain is aggregated and used to
create temporal and relational features.

The enrichment phase relies largely on a locally synced block explorer [36], as the efficiency
of this process is improved using multiprocessing to send requests in parallel. The final
dataset accumulates all metadata associated with each transaction, including features that
should be irrelevant to machine learning, such as private keys and cryptographically random
wallet addresses. These fields were intentionally not omitted from the dataset as it provides
key contextual information for other applications. Lastly, the full dataset is randomized,
undersampled, and flattened into a pandas dataframe, separating the associated labels.

5. Datasets

The three collected datasets are detailed below with the number of ground truth ring
signatures plotted in Figure 7. Each of the 11 ring members is positioned in order of their
relative age, where class 1 and class 10 are, respectively, the oldest and youngest ring
members. The two training datasets can be downloaded using the links referenced on the
Github repository [32].

• Testnet training dataset: The wallets sent subsequent transactions immediately
after the minimum lockout period of twenty minutes.

• Stagenet training dataset: The wallets sent subsequent transactions after a delay
sampled from the gamma distribution, proposed by Möser et al. [6].

• Mainnet validation dataset: The wallets sent real transactions to buy goods and
services over a year period.

5.1. Testnet Dataset Using 20 Minute Delay

The testnet dataset was collected over 34 days between January 20, 2022, and February 23,
2022. Each of the 900 wallets transacted once every 20 minutes. This resulted in 763,314
transactions sent on the Monero testing network, including 1,333,756 ring signatures, where
the true spends formed the distribution shown in Figure 7. The large imbalance of true
ring positions is visibly left skewed, with over 250,000 transactions subject to the guess
newest heuristic. The large uptick in the 11th position is caused by the decoy selection
algorithm being unable to properly obscure the true spend if immediately spent after the
lockout period. The testing network transactions per day over the data collection period
are charted in Figure 8. A random undersampling of 14,171 ring signatures was selected to
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Figure 7: Dataset distributions of the true ring signature positions using
different time delays, before undersampling.

eliminate the guess newest heuristic and balance model training. After this was performed
on each of the 11 classes, the dataset totaled 155,881 samples, each possessing 81 features.
The feature-set used for this dataset was similar to the stagenet dataset, except for input
decoy-related metadata, shown in Appendix D.

Figure 8: Transactions/day over different data collection periods.

5.2. Stagenet Dataset Using Gamma Distribution for Delay

The stagenet dataset was collected over 73 days between April 19, 2022, and July 1,
2022, with an aggregate of 9,342 Monero wallets, 165GB in size. This resulted in 184,980
transactions sent on the Monero staging network composed of 248,723 ring signatures, where
the true spends formed the distribution shown in Figure 7. An undersampling of 14,750
ring signatures was randomly selected from the shuffled data for each of the 11 classes,
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totaling 162,250 rings with 1,741 features. The staging network transactions per day over
the data collection period are charted in Figure 8. Notably, on June 6, 2022, a power outage
required all wallets to be restarted, creating a large influx of transactions which allowed a
developer to identify a bug when the mempool contains more than 100 new transactions
and a user is connected to a restricted node [37]. This issue was subsequently fixed in v18.0
of the Monero software.

5.3. Mainnet Validation Dataset

A dataset of 53 post-RingCT mainnet transactions was sourced from various wallets owned
by the researchers. These transactions represent real usage on the Monero network to buy
goods, send donations, and transfer between self-custodial wallets. This dataset included 76
total ring signatures and was used to validate the effectiveness of the model’s predictions.
This validation dataset will not be released due to privacy concerns surrounding chain-
reaction attacks but was processed in the same manner, using the same code, as the two
previous datasets.

6. Feature Engineering and Models

6.1. Feature Engineering

Featurizing the data collected resulted in 1,741 distinct features, summarized in Appendix
D. For efficiency purposes, all cryptographically random strings or columns that did not
include more than one unique value were stripped from the feature set. For the neural
network, all features were Z-normalized prior to training and predicting tasks. Features
are differentiated, in Figure 9, between 0-hop and 1-hop. A 0-hop feature pertains to
information extracted from the transaction of interest, while a 1-hop feature incorporates
data from previous transactions in the graph relative to the transaction of interest.

Figure 9: Distinction between 0-hop and 1-hop features.
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Some 0-hop features covered using only metadata associated with the transaction of inter-
est include Tx Fee, Tx Size, Time Deltas Between Ring Members.1 2 and Total Ring -

Time Span. Examples of 1-hop features include both temporal and relational information
linking multiple transactions, such as Previous Tx Num Inputs.0, Previous Tx Block -

Num Delta, and Previous Tx TxExtra Len. Including both types of features should provide
a classifier with more context to predict the true spend of a ring signature. The integer
values within feature names represent the ring member position.

Due to the nature of ring signatures, users who send a transaction must include other
outputs already on-chain as decoy members. This means that after you send a transaction
and it is added to a block, your output will be included, as a decoy, in subsequent transactions.
We believe the number of times an output was included in other ring signatures and the
spacing between them is a novel heuristic that could identify anomalous activity. However,
discovering all occurrences of an arbitrary output is quite computationally expensive. One
must start at the output creation and exhaustively search each ring signature of every
transaction until the transaction of interest. To drastically increase the efficiency of this
process, we used a PostgreSQL database [38] to store the mapped relationships.

Hypothetically, there may be anomalous instances where one’s output does not get
included as a decoy into other rings. A large drop in daily transactions on the blockchain
could lower the number of decoy inclusions and thus push the new output into an area of
lower probability of future inclusions, seen in Figure 2.

Figure 10: Occurrences of decoys used as features.

The occurrences between the output creation and the transaction of interest are depicted
in Figure 10 with an example 5 block chain. First, the original occurrence of the output is
located in block 1. Next, the ring signatures, which include the original output as a decoy
between blocks [2 - 4], are queried using the PostgreSQL database [38]. Finally, the block
deltas between all occurrences [1-2, 2-4, 4-5] and the total number of occurrences [2] are
added as features to the dataset.
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6.2. Models

We train our machine and deep learning models as multiclass predictors to forecast which
of the 11 ring members is the true spend. An AdaBoost random forest [39], gradient-
boosted classifier, and neural network was trained on 80% of the collected datasets. The
random forest and gradient-boosted classifier were selected as traditional machine learning
models due to their ensembled learning architecture, which efficiently generalizes high-
dimensional data and provides some model interpretability. The neural network contained
26,555 trainable parameters, including a dropout and batch normalization layer, aiding
the network in better generalizing the training subset. The loss of the neural network was
calculated with cross-entropy and the adam optimizer. However, the neural network is
more of a “black box,” unable to provide insight into which features leak information but
may correlate complex relationships easier. Understanding these tradeoffs is critical to
developing improved protections, so the interpretability of the traditional machine-learning
models is valuable.

6.2.1. Hyperparameter Tuning

The random forest and gradient-boosted classifier were hyperparameter-tuned using an
exhaustive search over specified parameters taking an average 5-fold cross-validation. Models
were trained in parallel across all available CPU cores [40] to reduce the time the search
took. The Adaboost random forest’s tunable parameters included the number of estimators
and learning rate, while the gradient boosted classifier’s tunable parameters included the
learning rate, depth, and the number of estimators. The neural network layers were also
subject to an exhaustive search using various amounts of neurons within the three hidden
layers, dropout rate, and the number of epochs. The parameters which performed the
highest were chosen to fit the final models.

7. Evaluation

7.1. Classification Performance

Respective Dataset (Weighted F1-score) Mainnet Dataset (Macro F1-score)

Dataset
Transaction

Delay
GBC NN RF GBC NN RF

Random
Guessing

Stagenet
Gamma

Distribution
25.27% ± 0.05 18.95% ± 0.50 22.53% ± 0.00 13.24% ± 2.47 5.74% ± 2.64 12.90% ± 0.03 9%

Testnet
Twenty
Minutes

34.60% ± 0.02 21.17% ± 1.38 28.52% ± 0.00 8.00% ± 1.70 5.60% ± 2.21 13.30% ± 0.04 9%

Table 1: Performance: weighted and macro F1-scores over 10 runs with ± standard deviation.
GBC = Gradient Boosted Classifier, NN = Neural Network, RF = Random Forest.
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A random forest, neural network, and gradient-boosted classifier were fit to each of the
three datasets and, after hyperparameter tuning, achieved the accuracies displayed in Table
1. The model weights can be downloaded using the links referenced at the Github repository
[32]. We evaluate our model in a multiclass setting and calculate the weighted precision,
recall, and f1-score. For each class, a true positive (TP) is the correct identification of the
true spend, a false positive (FP) is an incorrect identification of the true spend, and a false
negative prediction (FN) is the incorrect identification of a decoy.

Precision =
Tp

Tp + Fp
Recall =

Tp

Tp + Fn

F1 -Score = 2 ∗ Precision ∗Recall

Precision+Recall

Precision measures the number of times a ring member position was correctly classified
compared to all true instances of the same position. Recall measures the number of times
a ring member position was correctly classified compared to all predictions of the same
position. Accuracies can often be misleading, especially with unbalanced data, thus we
used variations of the F1-score metric. The macro F1-score was calculated to represent the
macro-average of the harmonic mean between precision and recall, where N is the number
of classes and i is the class index. This metric is insensitive to the imbalance of the classes
and treats them all as equal, putting more value on the minority class, which is ideal for
predicting on an unbalanced dataset such as our Mainnet dataset.

Weighted F1 -Score =

N∑
i=0

F1 -Scorei ∗Wi

Macro F1 -Score =
1

N

N∑
i=0

F1 -Scorei

The out-of-sample accuracies in the respective dataset column use a weighted-f1 score,
where the weight W represents the number of true instances for each class. The stagenet and
testnet datasets were previously undersampled before an 80%-20% train-test split, thus each
class would likely have a similar number of samples. Notably, high scores for each model
are emphasized in bold. The highest scores achieved for the respective datasets were both
predicted by the gradient-boosted classifier. Due to the small number of mainnet samples
collected, the dataset was not undersampled, and classes were imbalanced. The mainnet
dataset, used for validation, saw a split of highest accuracies between the gradient-boosted
classifier and the Adaboost random forest. The random forest achieved the most consistent
accuracies throughout and overfitted the least. Notably, the neural network performed
slightly worse than the machine learning models when tested against the respective datasets
and significantly below the random guessing threshold when tested against mainnet samples.
We theorize that the neural network drastically overfitted the training sets, leading to poor
predictive performance.
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7.2. Analysis

AdaBoost Random Forest
Features

Importance
Gradient Boosted Classifier

Features
Importance

Tx Size 3.43% Input.Previous Tx TxExtra Len.0 9.65%

Tx Fee 3.00% Input.Previous Tx TxExtra Len.2 8.30%

Input.Previous Tx Time Deltas.9 2.14% Input.Previous Tx TxExtra Len.1 8.27%

Input.Previous Tx Time Deltas.10 2.14% Tx Size 6.96%

Input.Previous Tx Num Inputs.0 1.71% Input.Previous Tx TxExtra Len.3 4.71%

Input.Time Deltas Between Ring -
Members.1 2

1.71%
Input.Previous Tx Block Num -

Delta.10
3.96%

Block Size 1.71% Input.Previous Tx Num Outputs.1 3.77%

Input.Previous Tx Time Deltas.2 1.43% Input.Previous Tx Num Outputs.2 2.23%

Total Block Tx Fees 1.43% Input.Previous Tx TxExtra Len.4 2.15%

Time Since Last Block 1.43% Input.Total Ring Time Span 2.10%

Table 2: Top ten important features extracted from machine learning classifiers trained on
the stagenet dataset.

A confusion matrix for each best-performing model is displayed using heatmaps below.
Each box within the matrix shows the precision of the model, where the diagonal line
indicates an accurate prediction. Class 0 denotes the oldest ring member, whereas class 10
is the youngest member relative to the Monero blockchain. Each machine learning model’s
top 10 most important features were extracted and shown in Table 2. Feature importances
are computed as the mean and standard deviation of accumulation of the impurity decrease
within each tree.

The AdaBoost random forest appears to distribute the correlation more evenly across
features, indicated by the lower priorities, and greatly emphasized temporal features and
standard metadata such as Tx Fee, and Block Size. Only a single overlapping feature
between the two lists, Tx Size, strongly indicates that no single feature leaks a large amount
of information. Instead, the models likely relied on behavioral patterns. The gradient
boosted classifier indicated that previous Tx Extra lengths were largely informative during
the prediction, with the number one feature importance being almost three times higher
than that of the random forest.
The Tx Extra field contains a transaction public key and other arbitrary data. This

field’s removal has been debated as the ability to append arbitrary data hurts transaction
uniformity. The length of the Tx Extra could identify patterns of users who modify this
field, compared to users who do not. With the data collection taking place on development
versions of the Monero blockchain, the types of users are more likely to manipulate this
field value manually.
Each model performed exceptionally well on the out-of-sample testing split of the

databases. However, the patterns extracted did not transfer well to mainnet transac-
tions. This could be attributed to the spending patterns chosen not accurately representing
Monero’s mainnet.
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GBC prediction confusion matrix on
the testing split of the training dataset

GBC prediction confusion matrix on
the validation dataset

Figure 11: Precision heatmap of GBC models trained on the stagenet dataset.

The highest ranking gradient boosted classifier, trained on the stagenet dataset, could
accurately predict the majority of classes greater than random guessing. The first three
classes were predicted with precision above 38% whereas class 0 was predicted correctly
83% of the time. This accuracy surpasses random guessing by over nine times. However,
when tasked with predicting the mainnet validation dataset, the predictions appear much
more sparse and random. Shockingly, using a more realistic spending pattern, compared to
Figure 12, the GBC achieved 83% precision, 20% higher, when predicting the oldest ring
member.

RF prediction confusion matrix on
the testing split of the training dataset

RF prediction confusion matrix on
the validation dataset

Figure 12: Precision heatmap of RF models trained on the testnet dataset.

18



The AdaBoost random forest, shown in Figure 11, predicted every class with precision
greater than random guessing, shown in Figure 12 when trained on the testnet dataset.
However, when the model predicted mainnet transactions, it frequently guessed the newest
ring member. We believe the model did not learn the guess-newest heuristic. Instead, this
is due to the bias of the training data. Subsequent transactions were sent with only a
20-minute delay, whereas mainnet transactions represent real user activity and could span
weeks, months, or years. Since the classifier learned temporal information about a short
timespan, it proved to be inadequate to predict on real transactions.

NN prediction confusion matrix on
the testing split of the training dataset

NN prediction confusion matrix on
the validation dataset

Figure 13: Precision heatmap of NN models trained on the testnet dataset.

The neural network also showed a strong precision when predicting the true spend of the
testnet dataset testing-split. However, it is quite apparent that the predictions deviate from
the true positive diagonal and are clustered around the surrounding true spend leading to
more false positives. While the neural network performed adequately on the testing split,
when tasked with predicting real mainnet transactions, it resorted to almost exclusively
predicting the first and last ring members. Due to the black-box nature of neural networks,
there is no way to extract feature importance to understand the predictions further.

8. Conclusion

The key cryptographic primitive, ring signatures, of the privacy-centric cryptocurrency
Monero, has been tested by limited previous works against AI attacks. This work contributed
a first-of-its-kind pipeline to produce de-anonymized datasets of Monero transactions. The
two datasets published represent various user spending patterns. One mimics the expected
distribution of the blockchain, while the other represents users who spend Monero as fast
as possible. Additionally, we explored the effectiveness of two machine learning models and
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one deep learning model in the task to identify the true spend of an arbitrary Monero ring
signature, absent external information. Our best performing models achieved accuracies
upwards of 34.60% predicting on an out-of-sample subset of the dataset and 13.30% on real
mainnet transactions. Compared to the 9% accuracy achieved by random guessing, the
Monero protocol, as implemented, has shown significant resilience to on-chain information
leakage. We hope our open-source datasets and collection pipeline enable future works to
test the weaknesses of Monero against various adversarial scenarios.

9. Future Work

Train Models with Full Transaction Context. The models trained in this work were
given access to information regarding a single ring signature within a transaction. As most
transactions are composed of multiple ring signatures, the added context could aid a model
in achieving higher accuracies or understanding heuristics such as merging outputs [7, 9].
This could be accomplished with the datasets released.

Wallet Fee Fingerprinting. One of the notable features not enforced at the consensus
level is transaction fee amounts per priority level. It is believed [41] that wallets using
non-uniform fees create anonymity puddles. It is unknown if an unsupervised model could
cluster different wallets based on the fee-to-kB ratio paid. Different wallet implementations
of the decoy selection algorithm have been cataloged by the Monero Research Lab [42].

Replay Mainnet Transaction. It is possible to replay real transactions from the main
Monero network, including all relevant metadata such as tx extra and similar decoys onto
a testing network. This method would replicate real instances of users incorporating plain
text messages into their transactions. However, it is unclear what privacy implications this
could have for users and thus should first be evaluated by an ethics board.
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Appendix

A. Exhaustive Dataset Fields of Transaction Metadata

Transaction Metadata

Block Number The block position within the chain containing the transaction.

Direction The direction with respect to the sender’s crypto wallet. (Ex. “in”, “out”)

Block Timestamp The timestamp reported by the miner when the block was created.

Block Timestamp Epoch The block timestamp converted into epoch (Unix) time.

Amount1 The amount of Monero sent in the transaction.

Wallet Balance1 The amount of Monero held by the wallet at the time of sending the transaction.

Tx Fee The amount of Monero paid to the miners for the transaction to be processed.

Destination Address1 The wallet address which the Monero is being sent to.

Sender Address1 The wallet address where the Monero is being sent from.

Network The broadcasted network. (Ex. “mainnet”,“testnet”,“stagenet”)

Tx Version The Monero transaction version.

Tx Public Key The public key of the transaction, commonly stored in the tx extra field.

Output Pub Key2 The public key of the output is returned to the sender’s wallet as “change.”

Output Key Img2 The key image of the output returned to the sender’s wallet as “change.”

Out idx2 The index identifying the output returned to the sender’s wallet as “change.”

Wallet Output Number Spent1 The index of the TXO within the sender’s wallet before being sent.

Tx Size The size of the transaction in bytes.

Tx Fee Per Byte The transaction fee divided by the transaction size.

Num Confirmations The number of blocks mined after the transaction was added to the chain.

Time Of Enrichment The epoch time when create dataset.py was run.

Tx Extra A field which contains public keys and arbitrary data.

Tx Extra Length The number of characters used in the Tx Extra field.

Ring CT Type The RingCT signature version.

Payment ID A (Deprecated) 32 byte ID assigned by merchants or exchanges.

Payment ID8 An encrypted version of the payment ID.

Total Block Tx Fees The sum of all transaction fees within the same block.

Block Size The cumulative size of the block in bytes.

Time Since Last Block The epoch time difference between the current block and the prior block.

Num Inputs The number of inputs used for the transaction.

Num Outputs The number of outputs used for the transaction.

Table 3: Generic transaction metadata dataset fields.

1Private data only known by the sender, not by a passive blockchain observer.
2Public data viewable by everyone, except the knowledge of which output was returned to the sender.
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B. Exhaustive Dataset Fields of Input and Output Metadata

Input Metadata

Amount Input amount is a legacy field for pre-RingCT transactions. (Always set to 0)

Key Image A one-way function of the private key to prevent double-spends.

Ring Member → block no The block number from where the ring member originated.

Ring Member → public key The stealth address of the ring member.

Ring Member → tx hash The transaction hash from where the ring member originated.

Previous Tx Num Output A dictionary containing the number of outputs in the previous transaction for each ring member.

Previous Tx Num Input A dictionary containing the number of inputs in the previous transaction for each ring member.

Previous Tx Time Delta A dictionary of time deltas of the current block time and each ring member’s block time.

Previous Tx Block Num Delta A dictionary of block deltas of the current block and each ring member’s block number.

Previous Tx TxExtra Len A dictionary of the TxExtra length for each ring member’s previous transaction.

Time Deltas Between Ring Members A dictionary of the time deltas between each subsequent ring member.

Total Ring Time Span The difference in time between the newest and oldest ring members.

Time Delta From Newest Ring To Block The time between the current transaction and the newest ring member.

Time Delta From Oldest Ring To Block The time between the current transaction and the oldest ring member.

Mean Ring Time The average time of the ring members.

Median Ring Time The median time of the ring members.

Ring no/Ring size1 The position of the true spend within the ring signature.

Input Decoys

On Chain Decoy Block Deltas
A dictionary of block deltas between each occurrence of the ring member used on-chain from
its creation until the block containing the transaction in question.

Number Of On Chain Decoys
The number of times the ring member’s stealth address was included in other transactions
between its creation and the block containing the transaction in question.

Output Metadata
Amount A legacy field used in pre-ringCT transactions. (Always set to 0)

Stealth Address A one-time address derived from the recipients public key.

Table 4: Transaction input and output metadata field descriptions.

C. Unique Fields of Exported CSV Files

xmr report.csv xmr2csv start time.csv xmr report ring members.csv cli export.csv

Tx Version xmr2csv Data Collection Time Stealth Address Direction

Tx Public Key xmr report ring members freq.csv Output Pub Key Amount

Output Pub Key Ring Member Freq Block Number Wallet Balance

Output Key Img xmr report outgoing txs.csv Block Timestamp Tx Fee

Out idx Ring no/Ring size Key image Destination Address

Wallet Output Number Spent Tx Hash Block Timestamp Epoch

Ring no/Ring size

Table 5: The unique fields for each of the exported CSV files.
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D. Dataset Features for Machine and Deep Learning

Transaction Metadata

Tx Fee The amount of Monero paid to the miners for the transaction to be processed.

Tx Size The size of the transaction in bytes.

Tx Fee Per Byte The transaction fee divided by the transaction size.

Tx Extra Length The number of characters used in the Tx Extra field.

Total Block Tx Fees The sum of all transaction fees within the same block.

Block Size The cumulative size of the block in bytes.

Time Since Last Block The epoch time difference between the current block and the prior block.

Num Inputs The number of inputs used for the transaction.

Num Outputs The number of outputs used for the transaction.

Input Metadata

Previous Tx Num Output A dictionary containing the number of outputs in the previous transaction for each ring member.

Previous Tx Num Input A dictionary containing the number of inputs in the previous transaction for each ring member.

Previous Tx Time Delta A dictionary of time deltas of the current block time and each ring member’s block time.

Previous Tx Block Num Delta A dictionary of block deltas of the current block and each ring member’s block number.

Previous Tx TxExtra Len A dictionary of the TxExtra length for each ring member’s previous transaction.

Time Deltas Between Ring Members A dictionary of the time deltas between each subsequent ring member.

Total Ring Time Span The difference in time between the newest and oldest ring members.

Time Delta From Newest Ring To Block The time between the current transaction and the newest ring member.

Time Delta From Oldest Ring To Block The time between the current transaction and the oldest ring member.

Mean Ring Time The average time of the ring members.

Median Ring Time The median time of the ring members.

Input Decoys

On Chain Decoy Block Deltas
A dictionary of block deltas between each occurrence of the ring member used on-chain from
its creation until the block containing the transaction in question.

Number Of On Chain Decoys
The number of times the ring member’s stealth address was included in other transactions
between its creation and the block containing the transaction in question.

Table 6: Dataset features used for machine and deep learning.
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