Monero’s Building Blocks
Part 9 of 10 — RingC'T and anatomy of Monero
transactions

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

ETH: 0xb79Fb9194C8Cc6221368bb70976e18609Ab9IACAS

April 30, 2018

1 Introduction

In part 7 we introduced the MLSAG ring signature scheme. Among other things, it
safeguarded the anonymity of the signer. In part 8 we discussed the notions of Pedersen
Commitments and Confidential Transactions. They were used to mask transaction
amounts without compromising the proper bookkeeping of balances on the network.

It turns out that combining both concepts in a single mathematical construct requires
additional work. In the first section, we explain why outright combination of the afore-
mentioned concepts fails to preserve the anonymity of the sender.

In the second section we remedy the situation by introducing the notion of a non-zero
commitment. This will form the basis of Monero’s ringCT scheme.

The last section goes over the mechanics of how a Monero transaction is created and
includes references to relevant parts of the code base. We introduce two variants of
ringCT, namely ringCT Type Full and ringCT Type Simple. We finally conclude with a
breakdown of the components of a real-life Monero transaction.

2 A problem with preserving anonymity

A Monero transaction is a mathematical construct that is cryptographically signed. It
details what unspent transaction outputs (UTXOs) the sender wants to use to conduct
his transfer. In essence, a UTXO is an output associated with a previous blockchain
transaction that hasn’t been spent yet. It can be subsequently used as an input to a
future transaction. In addition, a Monero transaction encapsulates details about the
recipients of the funds including the amount to be transferred to each recipient.

2018 Bassam El Khoury Seguias ©

Consider the following hypothetical Monero transaction:

e The sender uses two of her UTXOs with respective amounts (a;,); = XM R 2 and
(@in)e = XMR 4 (i.e., units of Monero currency).

e The sender transfers funds to three recipients including a transaction fee to the min-
ers, funds destined to a counterparty, and change returned to the sender. Suppose
the output amounts are respectively tx fee = (aput)1 = XMR 1, (aout)2 = XMR 4,
change = (aput)s = XMR 1.

e All input and output amounts are replaced with a corresponding Pederson Com-
mitment to hide the original value.

Suppose that we would also like to conceal the identity of the sender. This is tanta-
mount to hiding the origin of the funds (i.e., hiding the sender’s UTXOs). Each UTXO
is associated with a ”one-time public key” and a corresponding ”one-time private
key” (the details will be explained in part 10 when we discuss the stealth addressing
system). The sender embeds each UTXO in a set of n other UTXOs. In this example
we let n = 5. The following is a representation of this scenario where each UTXO is
identified by its transaction hash, commonly known as transaction id [2]

e First set of 5 UTXOs

{00 :555...62f (1°* UTXO of ring member #1)
{ 01:0d3...34e (15 UTXO of ring member #2)
{ 02:6eb...809 (1°* UTXO of ring member #3 = 7 (index of the signer))
{ 03:7d4...32a (15" UTXO of ring member #4)
{ 04:4a7..9fe (15 UTXO of ring member #5)

e Second set of 5 UTXOs

{00 :a96..54f (2" UTXO of ring member #1)
{ 01:783...a9b (2 UTXO of ring member #2)
{ 02:328...be3 (2" UTXO of ring member #3 = 7 (index of the signer))
{ 03 :150...6€9 (2" UTXO of ring member #4)
{ 04 :754...3df (2" UTXO of ring member #5)

To achieve the above, we can build an MLSAG ring signature where:

e The ”one-time private keys” of all UTXOs used by the sender are grouped
together to form his private key vector [z} z2]T. Cleary, the private key vector will
have an associated public key vector [y} y2]T where v/ = 27 @ G, j € {1,2}.

e The remaining 4 ring members will be associated with four additional public key
vectors. Each vector consists of a pair of UTXOs that are pairwise different and
different from the ones used by the sender. The total number of ring members, not
including the sender, is known as the mixin count in Monero. Our hypothetical
example has a mixin count of 4.

This set-up can be summarized in a public key matrix given by:

1 .1 .1 1 .1

Y Y2 Ypr=3 Yz VY
PK = |7 °3 73=% 75 %%
Y1 Y2 Yz=s Ys Y5

2018 Bassam El Khoury Seguias ©

As noted earlier, the transaction amounts associated with each UTXO are concealed
using Pedersen Commitments. Following the logic outlined in part 8, the network will
check if 327 [(Cin)il = Z?:l(COUt)j for some k € {1,2,3,4,5} denoting the index of a
ring member. Once it identifies a ring member k£ whose UTXO pair satisfies this equality,
it gets the assurance that the amounts balance out without knowing what the amounts

are.

Note that the index of both UTXOs in a given pair must be the same. For example,
the sender’s first UTXO appears in the 3rd position in the first UTXO set and also in
the 3rd position in the second set. This is dictated by the construction of the private key
and public key vectors in MLSAG.

However, by finding which pair of UTXOs satisfy the equation, the network would
have also discovered the index of the signer. This is because it is extremely unlikely to
select different ring members (i.e., pairs of UTXOs) such that the sum of their Pedersen
Commitments (i.e., 3o, [(Cin)i]x) matches that of the sender (i.e., S22, [(Cin)i]x). Con-
sequently, only the Pedersen Commitments of the sender will satisfy the equation. By
figuring out the index of the signer, the anonymity of the MLSAG gets jeopardized. In
order to address this problem, we introduce an amendment to the MLSAG public key
matrix.

3 Ring Confidential Transaction (RingCT)

Recall the following set-up introduced in part 8:

o Viec{l,...,m}, let (Ci)i = (zin): ® G) & ((ain); ® H) be the Pedersen
Commitment associated with amount (a;,); with blinding factor (z;,); randomly
chosen in [F;.

o Let (apu): = txfee be the miner’s transaction fee and let (Cout)r = (aout); ® H be
the Pedersen Commitment associated with ¢tz fee. The blinding factor (zy): is
deliberatly chosen to be 0 (i.e., the identity element of ;).

o Vje{l,...t —1}, let (Cow)j = ((Tour); @ G) & ((@out); ® H) be the Pedersen
Commitment associated with amount (a,y:); with blinding factor (2.,); randomly
chosen in F;. We additionaly require that > " (z); — Z;;ll (Tout); = 0 (mod 1).

By ensuring that:

L. Zgl(xm)z - Zz;ll(xout)] =0 (mod l), and

2. Vi e {1,..,m}, Vj € {1, ...t} the amounts (a;,); and (@,.); remain confined to a
pre-defined range [0,2"] C F; (refer to part 8 for more information about the
choice of r).

we got the following equivalence:

Z;;(Cin)i © Z§:1<Cout)j =0

— Z?il(@m)i - Zz':l(aout)j =0

2018 Bassam El Khoury Seguias ©

It is important to observe that the amounts balance out in actuality and not in the
more relaxed modulo [sense. This is due to the constraint we imposed on all
transaction amounts being confined to the [0,2"] range. If this were not the case, one
would be able to create or destroy Monero currency while still maintaining a balanced
equation. To see this, suppose transaction amounts can take on any value in [F; instead
of being restricted to [0,2"]. Moreover, suppose that the sender uses three UTXOs (i.e.,
m = 3) with (a;)1 = XMR (I —4), (a;n)2 = XMR 3, and (a;,)3 = XMR 5. There are
two outputs (i.e., t = 2) with (apw)1 = XMR 3, and (aou)2 = XMR 1.

Clearly, > (ain)i — Z; (aour)j = 1#0.

However, > 7" (ain); — Zé (@out); =0 (mod 1).

If this transaction gets approved by the network, we would have effectively destroyed [
units of currency. Conversely, exchanging the input and output values would allow the
creation of [units of currency out of thin air. This example demonstrates the
importance of having a balanced equation independent of modulo [arithmetic. By
confining all transaction amounts to the [0, 2"] range, we ensure that this is the case. To
prove that a transaction amount lies in a certain range, Monero makes use of the
Borromean signature construct. A more size-efficient alternative to Borromean
signatures that is currently deployed on Monero’s testnet is Bulletproof. Bulletproof
performs a range proof while potentially decreasing a Monero transaction size (and
hence transaction fees) by up to 80%. Range proofs including the Borromean and
Bulletproof constructs deserve an article on their own. We might dedicate an appendix
to expain how they work in the future. For the time being, the interested reader can
consult [3] and [1].

The problem encountered in section 2 was due to the high likelihood that only ring
member 7, 1 <7 <5 had UTXOs whose Pedersen Commitments satisfy the equation
pa((e?)Z]7r S ZJ 1(Cout)j = 0. (Note that we explicitly mention the index 7 in

Z?Zl[((jm)l]7r to highlight that these specific Pedersen Commitments are the ones
associated with the sender’s UTXOs. Other ring members have different UTXOs and
hence different commitments). The culprit is the value 0 which gave away the index =
of the sender. To remedy this shortcoming, we relax the condition: instead of requiring
that > " [(Tin)i]x — Z;;ll (Tout); = 0 (mod 1), we let it take on any scalar value z € F;,
as long as z is only known to the sender 7. We highlight that the blinding factors
[(in)i]x are the ones associated with 7’s i UTXO. Carrying over the notation from

part 8, we get the following equalities:

Y l(Con)ilx © 35-1(Cour)

=3 (Cw)ilr © Z (Cout)j © (trfee ® H) (by definition of tx fee and (Cou)t)

=Y (@)l @) @ ((am)il= @ H)} © S0 {(2ou); © G) @ ((aouw); © H)} ©
(txfee ® H)

= Zzil k([(zin)ilrs [(@in)il) © Zt ; k((xout)ja (aout)j) o (trfee® H)

2018 Bassam El Khoury Seguias ©

= k(L [(@in)ide, o1 [(@in)ile) © k(250 (Tou)j, 2o (Gow);) © (trfee® H)

(where we invoked the additive homomorphic property of the Pedersen Commitment
map k)

= (X [(@m)il) @ Gl @& (2 [(am)ilx) @ H] © (22 (@ow);) ® G] ©
[(Zt 1(aout))@ H| © [trfee® H]

7j=1

(X [@m)ile — 250 (@ou)s] ® G} © {[mfee + Y @ow); — S l(am)ile] © HY

={z @G} o {{tzfee + X i (aou); — LIi[(aim)ile] ® H}

where + and — are addition and subtraction in modulo [arithmetic over FF;, and where

we used ZZl[(xm)Z]ﬂ - Zz;i(xout)J =2z (mod I).

If the transaction amounts don’t balance out, then:

[t fee + Y50 (@out); — Zii[(@in)ila] © H # 0

And since the DL of H in base G is unknown, one can conclude that with overwhelming
probability the sender 7 would not know the DL of >~ [(Ci)i]» © Z; 1(Cour)j in
base G. The contrapositive statement ensures that if the sender can prove that he
knows this DL, then with overwhelming probability, we must have

txfee + Z;;i(aout)j - Zgl[(ain)i]ﬂ] (mod) = 0.

So by ensuring that:

LY [(@in)ile — E;;ll(xout)j =z (mod [), z € F} (only known to the sender 7),
and

2. Vie{l,...,m}, Vj € {l,...t} the amounts [(a;,);]r and (@ou); remain confined to
a pre-defined range [0,2"] C F, (refer to part 8 for more information about the
choice of r).

we can follow the same procedure outlined in part 8 and derive the following
equivalence:

> ml(Cin)ile © 3251(Cou)j = 2® G, 2 € Fy
— [221 (ain)i]ﬂ - Zz'zl (aout>j =0

The expression .7 [(Cin)ilr © S i=1(Cout)j = 2 ® G showcases z as the private key
associated with public key 27 [(Cin)ilx © 32 i=1(Cout)j- No one knows the value of 2
except the sender (note that this is possible since z is fully defined by the blinding
factors [(@in)il» and (2,4); which are only known to the sender - we will see how so
when we allude to relevant portions of the Monero code in the next section). A
signature that is verified using public key > " [(Cin)ilr © Z;zl(Cout) ; demonstrates
that its signer knows the private key z. Consequently, this demonstrates that the

5

2018 Bassam El Khoury Seguias ©

transaction amounts are balanced. That leads us to amend the MLSAG scheme by
introducing an additional key to the key vector of each user in the ring. The amended
public key matrix becomes:

vi : Ur : U
Y1 . Yn .. Yn
E?;l[(cin)ihezz'zl(cout)j X Z:ll[(czn)z}wezzzl(cout)] . z;’;l[(cin)i]nezézl(cout)j

where > [(Cin)ilk, k € {1,...,n} denotes the sum of the Pedersen Commitments
associated with all the UTXOs of ring member k. ringCT consists of conducting an
MLSAG signature on the aforementioned public key matrix, where the private-key
vector of the sender is given by [z} ... 2™ 2]T. A valid signature on this public key
matrix proves 2 things:

1. That the sender holds the private key vector [z} ... 2™]|T associated with all m
UTXOs used to source the funds (these are the first m rows of the matrix).

2. That the sender knows the secret key z associated with
Yo (Cinilr e Z;Zl(C’Om)j (this is the second row of the matrix).

The resulting scheme hides transaction amounts and safeguards the anonymity of the
signer at the same time [9].

4 Monero transactions in practice

Calculation of Pedersen Commitments: In the Monero code base,

e The Pedersen Commitment (Coy)j, j € {1,...,t} is known as outPk[;j].mask.
The "Pk” suffix probably refers to ”Public key” since Pedersen Commitments can
be thought of as public keys (recall that they are scalar multiples of G).

e The blinding factor (x4); associated with (Cout)j, 7 € {1,...,t} is known as
outSk[j].mask. The ”Sk” suffix probably refers to ”Secret key” since blinding
factors are scalars € IF;.

The calculation of these two values is conducted in the proveRange method which can
be found in [6]

2018 Bassam El Khoury Seguias ©

//proveRange and verRange
/i/proveRange gives C, and mask such that ‘\sumCi = C
/i c.f. http://eprint.iacr.org/2@15/1898 section 5.1
/¢ and Ci is a commitment to either @ or 2°i, i=8,...,63
ff thus this proves that "amount” is in [@, 2"64]
I mask is a such that € = aG + bH, and b = amount
/fverRange verifies that \sum Ci = C and that each Ci is a commitment to @ or 2*i
rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
sc_B8(mask.bytes);
identity(C);
bits b;
d2b(b, amount};
rangeSig sig;
key6d4 aij;
keysd4 CiH;
int i = @;
for (i =8; 1 < ATOMS; i++) {
skGen(ai[i])};
if (b[i] == @) {
scalarmultBase(sig.Ci[i], ai[i]);
}
if (b[i] == 1) {
addKeys1(sig.Ci[i], ai[i], H2[i])
}
subKeys(CiH[i], sig.Ci[i], H2[i]);
sc_add(mask.bytes, mask.bytes, ai[i].bytes);
addkeys(C, C, sig.Ci[i]);
}
sig.asig = genBorromean(ai, sig.Ci, CiH, b);

return sig;

The proveRange method takes three arguments:

1. ', which will hold the Pedersen Commitment value associated with a certain
output amount. This corresponds to (Cout)j, J € {1,...,t} in our earlier notation.

2. mask, which will hold the blinding factor value used in the calculation of this
Pedersen Commitment. This corresponds to (Tou);, j € {1,...,t} in our earlier
notation.

3. amount, which is the output amount for which the Pedersen Commitment will be
calculated. This amount corresponds to (aeut)j, J € {1,...,t} in our earlier
notation.

The method operates on amount and assigns the corresponding Pedersen Commitment
and blinding factor to C' and mask respectively.

The first step consists in initializing C' to the identity element of the group {G}. This is
done by calling the identity method found in [5]

static const key I = { {@x@1, ax08, 2x08,0x00 , Ox02, Ox0, Ox08,0x08 , ©x808, Ox88, 6x20,0x08 , Ox26, 608, 8x89,9x8d , 6x0d, 8xe8, ext

//Creates a zero elliptic curve point
inline key identity() { return I; }
inline void identity(key &Id) { memcpy(&Id, &I, 32); }

The next step iconsists in decomposing amount into its binary digits. This is done by
calling the d2b method found in [7]

2018 Bassam El Khoury Seguias ©

ffuint long long to int[64]

void d2b(bits amountb, xmr_amount val) {

int 1 = 8;

while (val = 8) {
amountb[i] = wal & 1;
i++;
val »»= 1;

}
while (1 < 64} {
amountb[i] = @;

it++;

The method d2b takes two arguments, namely amount and an array b to store the
binary digits. The number of binary digits resulting from this decomposition is capped
at a maximum of 64 (i.e., the highest transaction amount allowed is 254 atomic units,
where each X M R unit corresponds to 102 atomic units). The upper bound is stored in
the variable ATOM found in [8].

ffatomic units of moneros
#define ATOMS &4

For each binary digit 0 < i < ATOM S = 64, the proveRange method generates a
scalar by calling the skGen method found in [4].

//generates a random scalar which can be used as a secret key or mask
void skGen(key &sk) {

sk = crypto::rand<key>();

sc_reduce32(sk.bytes);

The skGen method randomly creates a secret key (i.e., a scalar € F;) and assigns it to
its argument. As a result, the expression skGen(a;[i]) (which appears in the
proveRange method) assigns a random scalar to variable g;[i]. This variable plays the
role of the blinding factor associated with binary digit <.

A binary digit can either be equal to 0 or to 1. The method d2b stores digit ¢ in
variable b[i]. If b[7] is 0, then the Pedersen Commitment associated with digit 7 is set to
Cili] = (a;]i) ® G) & (0 ® H) which is equal to (a;[i] ® G). This calculation is performed
by calling the scalarmultBase method found in [4]:

/fdoes a * G where a is a scalar and G is the curve basepoint
void scalarmultBase(key &aG,const key &a) {
ge_p3 point;
sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand!
ge_scalarmult_base(&point, aG.bytes);
ge_p3_tobytes(aG.bytes, &point);

If b[i] is 1, then the corresponding Pedersen Commitment is set to

Cili] = (a;[1] ® G) & (2' ® H). Here, 2° ® H corresponds to the H2[i] argument fed to
the addKeys1 method invoked in the proveRange method. H2[i] is retrieved in the
H?2 table which can be found in [8]. The addKeys1 method is found in [4].

2018 Bassam El Khoury Seguias ©

//addKeysl
//aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
void addKeysl(key RaGB, const key &a, const key & B) {

key aG = scalarmultBase(a)

addKeys(aGB, aG, B);

The blinding factor mask is finally set to S M5~ ¢,[i]. This is done in the

proveRange method by calling the sc_add method.

Lastly, the Pedersen Commitment C' is calculated by adding all the C;[i] computed for
0<1< ATOMS = 64. To see why this computation yields the desired Pedersen
Commitment, note the following:

C = (Cow)j = ((Tour); ® G) & ((aou); @ H)
= (DM i) @ G) @ (SIS 0] x 2') @ H)

_ j{:;47"()ﬂ4f;——1 (:%[i]

=0

In the proveRange method, this is done by invoking the addKeys method found
in [4].

f/for curve points: AB = A + B
void addKeys(key &AB, const key &A, const key &B) {
ge_p3 B2, AZ;

CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 8, "ge_frombytes_vartime failed at "+boost::lexical_ cast<std:::
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 8, “ge_frombytes_vartime failed at "+boost::lexical_cast<std::s

ge_cached tmp2;
ge_p3_to_cached(&tmp2, &B2);
ge_plpl tmp3;

ge_add(&tmp3, BA2, &tmp2);
ge_plpl to_p3(BA2, &tmp3);
ge_p3_tobytes(AB.bytes, &A2);

The C' and mask values are assigned to variables outPk[j].mask and outSk[j].mask
through the genRct method by calling the proveRange method. The genRct
method is found in [6].

2018 Bassam El Khoury Seguias ©

J//RingCT protocol

J/{genRet:

J/f creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
/f columns that are claimed as inputs, and that the sum of inputs = sum of outputs.

' Also contains masked "amount” and “"mask" so the receiver can see how much they received

//verkct:

' verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct

//decodeRct: (c.f. http://feprint.iacr.org/2015/1898 section 5.1.1)

/f uses the attached ecdh info to find the amounts represented by each output commitment

/f must know the destination private key to find the correct amount, else will return a random number
' Note: For txn fees, the last index in the amounts vector should contain that

' Thus the amounts wector will be "one" longer than the destinations vectort

rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mis

CHECK_AND_ASSERT_THROW_MES(amounts.size()} == destinations.size() || amounts.size() == destinations.size(} + 1, “Different number od
CHECK_AND_ASSERT_THROW_MES(amount_keys.size() == destinations.size(), "Different number of amount_keys/destinations");
CHECK_AND_ASSERT_THROW_MES(index < mixRing.size(), "Bad index into mixRing");
for (size_t n = 8; n < mixRing.size(); ++n) {

CHECK_AND_ASSERT_THROW_MES{mixRing[n].size() == inSk.size(), "Bad mixRing size");
1
CHECK_AMD_ASSERT_THROW_MES((kLRki && msout) || (!kLRki && Imsout), “Only one of kLRki/msout is present");

rctSig rv;
rv.type = bulletproof ? RCTTypeFullBulletproof : RCTTypeFull;
rv.message = mMessage;
rv.outPk.resize(destinations.size());
if (bulletproof)
rv.p.bulletproofs.resize(destinations.size());
else
rv.p.rangesigs.resize(destinations.size());
rv.ecdhInfo.resize{destinations.size());
size_t i = 8;
keyV masks(destinations.size())}; //sk mask..
outSk.resize{destinations.size());
for (i = 8; i < destinations.size(); i++) {
/{add destination to sig
rv.outPk[i].dest = copy(destinatiens[i]);
//compute range proof
if (bulletproof)
rv.p.bulletproofs[i] = proveRangeBulletproof(rv.outPk[i].mask, outSk[i].mask, amounts[i]};
else
rv.p.rangesigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
#ifdef DBG
if (bulletproof)
CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs[i]), "verBulletproof failed on newly created proof");
else
CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.range5igs[i])}, "werRange failed on newly created proof");
#endif

//mask amount and mask

rv.ecdhInfo[i] .mask = copy({outSk[i].mask);

rv.ecdhInfo[i].amount = d2h({amounts[i])};

hwdev.ecdhEncode(rv.ecdhInfo[i], amount_keys[i]);
}

//set txn fee
if (amounts.size() » destinations.size())

{
rv.txnFee = amounts[destinations.size()];
1
else
{
rv.txnfFee = @;
1

key txnFeeKey = scalarmultH{d2h{rv.txnFee));

rv.mixRing = mixRing;
if (msout)
msout-rc.resize(1);
rv.p.MGs.push_back{proveRctMG(get_pre_mlsag_hash(rv, hwdev), rv.mixRing, inSk, outSk, rv.outPk, kLRki, msout ? &msout->c[8] : NULL,

return rv;

10

2018 Bassam El Khoury Seguias ©

Among other things, the genRct method takes a destinations vector as argument.
Each element of the vector consists of the address of a relevant recipient of funds for
this transaction. The length of the destinations vector corresponds to the total
number of recipients (eg., in our earlier hypothetical example, it would be 3). The
genRct method loops through all of them, each time making a call to the
proveRange method with the following arguments:

1. outPk[i].mask which stores the Pedersen Commitment associated with the
amount to be sent to the recipient. Note that the "mask” attribute in this case is

not a blinding factor. This is a matter of Monero code convention where each key
has 2 fields associated with it: 1) A dest field, and 2) A mask field

e In case the structure is a secret key (e.g., a Monero amount - recall that
amounts are elements of F; and hence are scalars, a.k.a. secret keys), the
dest field would contain the secret key, while the mask field would contain
the randomly generated blinding factor as described earlier.

e In case the structure is a public key, dest would contain the address and
mask would contain the Pedersen Commitment of the amount to be
transferred to the address. The definitions can be found in [§].

//containers For CT operations
f/if it's representing a private ctkey then "dest" contains the secret key of the address
// while "mask" contains a where C = aG + bH is CT pedersen commitment and b is the amount
f/{ (store b, the amount, separately
f/if it's representing a public ctkey, then "dest®™ = P the address, mask = C the commitment
struct ctkey {

key dest;

key mask; //C here if public

2. outSk[i].mask which stores the blinding factor associated with the amount to be
transferred to the recipient.

3. amounts[i] which corresponds to the amount to be transfered to the recipient.

For each recipient 7, this assigns

e The relevant Pedersen Commitment C' to outPk[j].mask

e The blinding factor or mask value to outSk[j].mask

Finally, the blinding factor and the amount associated with each recipient are encoded
so that they are only known to the sender and to the recipient of the funds. This
ensures that the sender is the only entity that knows the value of all the blinding factors
associated with UTXO amounts used to source the funds as well as blinding factors
associated with the amounts destined to each recipient. In other words, only the sender
7 would simultaneously know [(z,)i]x,7 € {1,...,m} and (zou);,j € {1,....,t —1}. Asa
result, the sender is the only entity that knows z = {D> 7" [(@in)i]r — Zz;]i(xout) it
(mod 1) (introduced in the previous section) that makes ringCT work properly.

The encoding is done through a call to the ecdhEncode method in genRct. It is
found in [4].

11

2018 Bassam El Khoury Seguias ©

f/{Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
/{ where C= aG + bH
void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec) {

key sharedSecl = hash_to_scalar(sharedSec);

key sharedSec2 = hash_to_scalar(sharedSecl);

/fencode

sc_add (unmasked.mask.bytes, unmasked.mask.bytes, sharedSecl.bytes);

sc_add {(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes);

The ecdhEncode method takes 2 arguments:

1. unmasked, which has 2 attributes: 1) A blinding factor known as mask, and 2)
A transaction amount.

2. sharedSec, which is a a secret key only known to the sender and the recipient of
the funds and used to encode the transaction’s blinding factor and amount.

The encryption is done as follows:

o The mask (Tou); is mapped to (Teu); + keccak(sharedSec), where keccak is the
hash function used by Monero.

o The amount (a,yt); is mapped to (apu); + keccak(keccak(sharedSec))

Building the amended public key matrix: Recall that the amended public key
matrix introduced in the previous section was given by:

yi . Un . Un
PK — . . .
Yy . Yr . Yn

S (Cin)ihioXi 1 (Cout); X [(Cin)idnrO i1 (Cout)j X2 [(Cin)iln©3 i1 (Cout);

where Y [(Ciy)ilx denotes the sum of the Pedersen Commitments associated with all
the UTXOs of ring member k € {1,...,n}.

The calculation of this matrix is performed in the proveRctMG method found in [6].
(Note that in the code below, our variable i corresponds to the code’s variable j and our
variable k corresponds to the code’s variable 7).

//Ring-ct MG sigs

f/Prove:

Ir c.f. http://eprint.iacr.org/2015/1898 section 4. definition 1@.

I This does the MG sig on the "dest” part of the given key matrix, and

I the last row is the sum of input commitments from that column - sum output commitments
/f this shows that sum inputs = sum outputs

fiver:

// wverifies the above sig is created corretly

mg5ig proveRctMG({const key &message, const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, const multis:

12

2018 Bassam El Khoury Seguias ©

keyM M{cols, tmp);
//create the matrix to mg sig
for (i =8; i ¢ cols; i++) {
M[i][rows] = identity();
for (j = @; J < rows; j++) {
M[i]1[7] = pubs[i][]].dest;
addkeys(M[1][rows], M[i][rows], pubs[i][j].mask); //add input commitments in last row
}
}
for {1 =8; 1 ¢ cols; i++) {
for (size_t j = @; j < outPk.size(); j++) {
subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row

1
[i/subtract txn fee output in last row

subKeys(M[i][rows], M[i][rows], txnFeeKey);

For each ring member k € {1,...,n}, the input Pedersen Commitments
[(Cin)ilk, © € {1,...,m} are added. Then the output Pedersen Commitments
(Cout)js J € {1,...,t} are subtracted.

RCTTypeFull vs. RCTTypeSimple : The signature scheme along with the
amended public key matrix that we introduced thus far is known as RCTTypeFull
(also referred to as Type 1 in Monero’s code base). It treats all UTXOs at once as part
of a single ring signature structure: if we have m UTXOs and a mixin count of n — 1,
RCTTypefull creates a public key matrix of size (m + 1) x n and signs the transaction
in one go. As we previously noted in our hypothetical example, it is imperative that the
index of each UTXO used by the sender be the same (recall that in our hypothetical
example the index 7 was equal to 3 for each of the 2 UTXOs). This is dictated by the
structure of the public key matrix.

Monero uses a signature of type RCTTypeFull (i.e., of Type 1) when a transaction
has only 1 UTXO. Whenever a sender uses more that 1 UTXO to conduct a transfer,
Monero invokes a more efficient variant known as RCTTypeSimple (also known as Type
2). An enumeration of Monero’s RCT Types is found in [8].

enum {
RCTTypeNull = @,
RCTTypeFull = 1,
RCTTypesimple = 2,
RCTTypeFullBulletproof = 3,
RCTTypeSimpleBulletproof = 4,

A Type 0 corresponds to a coinbase transaction. Simply put, it is a particular type of
transaction issued by a miner whenever a new block is successfully created. It takes no
input, but creates new currency units to reward the miner for her successful work.
Types 0, 3, and 4 are not within the scope of this work. We now describe the
RCTTypeSimple variant of the ringCT signature.

We derived the following equality in section 3:

S (Cin)ile © X5—1(Cow)j = {2 ® G} & {[tzfee + 317 (aou); — >oimy [(@in)il<] © H}

13

2018 Bassam El Khoury Seguias ©

where z € F} is a scalar equal to [> " [(%in)ilr — Z;;ll(xout)j] (mod 1)

Let’s define a new set of commitments that we call pseudo-output commitments or
Cy. We create one for each index i € {1,...,m} as follows:

o Vic{l ..,m—1}

{ Generate random scalar (x,);
{ Compute (Cy)i = [(#y)i ® G] @ [[(tin)i]~ @ H]

e For i = m, set

{ (@)m =2 ll(fcout) = 20 ()i
{ (Cp)m = [(2y)m @ G] & [[(aim)mlx © H]

The above construction ensures that > " (zy); = Z;;ll (Tout)

We can re-write the original equality as:

{ZLlCn)ils © SL(Ch)i} @ {S71(Cw)i © Y50(Cou)j © (tufee® H)}
= {2®G} & {27 [(@in)ids — 3501 (Gou); — tafee] H}

Note the following:

@D If we can prove that " [(Cin)ilr © > ini(Cy)i = 2z ® G, we can conclude that
S(Cy)i © X1 (Cow); © (trfee® H) =
Do [(ain)ile — 3521 (aou); — twfee] @ H

@ If we can furthermore show that > (Cy); © E;;ll(cout)j O (trfee® H) is

equal to 0, then we can conclude that Y " [(ain)i]r = thl (@out)j + tx fee

7=1
(mod 1), and hence that the amounts are balanced modulo [

@ If in addition, we can prove that the amounts [(@;)i|» and (a.u:); are confined to
a pre-defined range [0,2"] C [F; (refer to part 8 for more information about the
choice of r), then we can conclude that Y ."[(@in)ilr = E;;ll(aout)j + tz fee, and
hence that the amounts are balanced independent of modulo [arithmetic.

We observe that if Vi € {1,...,m}, we have [(Cn)i]= © (Cy); = 2; such that

Yo,z = z, then (D will certainly hold. In essence, this corresponds to having a total
of m signatures, each signed with a relevant z; since [(Ci,):]r © (Cy); can be thought
of as a public key associated with secret key z;

So in RCTTypeSimple, we do not create a single public key matrix and hence do not
apply MLSAG only once. Instead, we create m different public key matrices with each
having its own MLSAG. The m public key matrices are elements of {G}**" and are
given by:

14

2018 Bassam El Khoury Seguias ©

P — vi : U : Ui
‘ [(Cin)ilh © (Cy)i o [(Cin)ilxr © (Cy)i -+ [(Cin)iln © (Cyp)i

[(Cin)ilx refers to the Pedersen Commitment associated with the i UTXO

((i € {1,...,m}) of ring member k (k € {1,...,n}). Note that Vi € {1, ..., m}, the value of
(Cy); is the same Vk € {1, ...,n}. We can think of this as being a separate MLSAG on
each UTXO used by the sender. It proves 2 things:

1. That the sender holds the private key z% associated with his i*» UTXO (this is the
first row of the matrix).

2. That the sender knows the secret key z; associated with [(Ci,):]r © (Cy); (this is
the second row of the matrix).

In Monero’s code base, the creation of the pseudo-output commitments
(Cy)k, k €{l,...,n} is done in the genRctSimple method found in [6]:

rctSig genRctSimple(const key Bmessage, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vectc

CHECK_AND_ASSERT_THROW_MES(inamounts.size() > @, “"Empty inamounts");
CHECK_AND_ASSERT_THROW_MES(inamounts.size() == inSk.size(), "Different number of inamounts/insSk");
CHECK_AND_ASSERT_THROW_MES(outamounts.size() == destinations.size(), "Different number of amounts/destinations");
CHECK_AND_ASSERT_THROW_MES(amount_keys.size() == destinations.size(), "Different number of amount_keys/destinations”);
CHECK_AND_ASSERT_THROW_MES(index.size() == inSk.size(), "Different number of index/inSk"};
CHECK_AND_ASSERT_THROW_MES(mixRing.size() == inSk.size(), "Different number of mixRing/inSk"};
for (size_t n = 8; n ¢ mixRing.size(); ++n) {

CHECK_AND_ASSERT_THROW_MES (index[n] < mixRing[n].size(), "Bad index into mixRing");
}
CHECK_AND_ASSERT_THROW_MES((kLRki && msout) || (!kLRki & !msout), "Only one of kLRki/msout is present");
if (kLRki && msout) {

CHECK_AND_ASSERT_THROW_MES (kLRki->size() == inamounts.size(}, “Mismatched kLRki/inamounts sizes");
}

rctSig rv;
rv.type = bulletproof ? RCTTypeSimpleBulletproof : RCTTypeSimple;
rv.message = Message;
rv.outPk.resize(destinations.size());
if (bulletproof)
rv.p.bulletproofs.resize(destinations.size());
else
rv.p.rangesigs.resize(destinations.size());

rv.ecdhInfo.resize(destinations.size());

size_t i;

keyV masks(destinations.size()); //sk mask..
outSk.resize(destinations.size());

key sumout = zero();

for (i = @; i < destinations.size(); i++) {

//add destination to sig
rv.outPk[i].dest = copy(destinations[i])};
//compute range proof

if (bulletproof)

15

2018 Bassam El Khoury Seguias ©

rv.p.bulletproofs[i] = proveRangeBulletproof({rv.outPk[i].mask, outSk[i].mask, outamounts[i]};
else
rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, outamounts[i]);
#ifdef DBG
if (bulletproof)
CHECK_AND_ASSERT_THROW_MES (verBulletproof(rv.p.bulletproofs[i]), "verBulletproof failed on newly created proof");
else
CHECK_AND_ASSERT_THROW_MES (verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof"};
tendif

sc_add{sumout.bytes, outSk[i].mask.bytes, sumout.bytes);

//mask amount and mask
rv.ecdhInfo[i].mask = copy{outSk[i].mask);
rv.ecdhInfo[i].amount = d2h{outamounts[i]);

hwdev.ecdhEncode({rv.ecdhInfo[i], amount_keys[i]);

//set txn fee
rv.txnFee = txnFee;
i TODO: unused ??
I key txnFeeKey = scalarmultH(d2h(rv.txnFee));
rv.mixRing = mixRing;
keyV &pseudoOuts = bulletproof ? rv.p.pseudoQuts : rv.pseudoOuts;
pseudoCuts.resize(inamounts.size());
rv.p.MGs.resize(inamounts.size());
key sumpouts = zero(); //sum pseudoOut masks
keyV a(inamounts.size());
for (i =8 ; 1 < inamounts.size() - 1; i++) {
skGen(a[i]);
sc_add{sumpouts.bytes, a[i].bytes, sumpouts.bytes);
genC({pseudoOuts[i], a[i], inamounts[i]};
}
rv.mixRing = mixRing;
sc_sub(a[i].bytes, sumout.bytes, sumpouts.bytes);
genC(pseudoOuts[i], a[i], inamounts[i]);

DP{pseudoOuts[i]);

key full message = get_pre_mlsag_hash{rv,hwdev);
if (msout)
msout->c.resize{inamounts.size());
for (i =8 ; i < inamounts.size(}; i++) {
rv.p.MGs[i] = proveRctMG5imple(full_message, rv.mixRing[i], imSk[i], a[i], pseudoOuts[i], kLRki ? &(*kLRki)[i]: NULL, msout ? &m
}

return rv;

e For each recipient appearing in the destinations vector, genRctSimple makes a
call to the proveRange method previouly introduced. It stores the Pedersen
Commitment (Cy,;); associated with output amount (ae);, j € {1,...,t} in
variable outPk[j].mask. The corresponding blinding factor (zyy); is stored in
variable outSk[j].mask.

e genRctSimple will then call the sc_add method to sum all the the blinding

factors outSk[j]. The result (Z;;ll (Zout);) is stored in variable sumout.

e Each output amount and its corresponding blinding factor are then encoded by
calling the ecdhEncode method.

e The next step consists in calculating the pseudo-output commitments
(Cy)i, i € {1,...,m} and their corresponding blinding factors (z,);. This is done
as follows:

16

2018 Bassam El Khoury Seguias ©

{ Vi e {1,...,m — 1} (where m corresponds to inamounts.size()), the
blinding factor (z4); is randomly generated by calling the method skGen
and stored in variable al].

{ The pseudo-output commitment (Cy); is then calculated by calling the
method genC on amount [(a;,);]» which is stored in variable inamountsl[i]
and blinding factor (z,); stored in variable afi]. (Cy); is stored in variable
pseudoOutsli].

{ The method keeps track of >.77"(x,); in a variable called sumpouts. The
sum is calculated by calling the method sc_add. Hence sumpouts

=0 ali).
{ (xy)m is then set to a[m]| = sumout - sumpouts. This is done by calling
the sc_sub method.

{ Finally, the pseudo-output commitment (Cy),, is constructed by calling the
genC method on amount [(a;,)m]- (stored in variable inamounts[m]) and
blinding factor (zy)., (stored in variable a[m]). (Cy)., is stored in variable
pseudoOuts[m].

With pseudo-output commitments calculated, genRctSimple makes m calls to the
proveRctMGSimple method found in [6]

//Ring-ct MG sigs Simple
/4 Simple wersion for when we assume only
M post rct inputs
i here pubs is a vector of (P, C) length mixin
/f insk is x, a_in corresponding to signing index
' a_out, Cout is for the output commitment
i index is the signing index..
mgsig proveRctMGSimple(const key &message, const ctkeyV & pubs, const ctkey & inSk, const key &a , const key &Cout, const multisig kLRk
mgSig mg;
//setup vars
size_t rows = 1;
size_t cols = pubs.size();
CHECK_AND_ASSERT_THROW_MES(cols »= 1, “Empty pubs");
CHECK_AND_ASSERT_THROW_MES{{kLRki && mscout) || (!kLRki && !mscout), "Only one of kLRki/mscout is present");
keyV tmp(rows + 1);
keyV sk(rows + 1);
size_t i;
keyM M{cols, tmp);

sk[8] = copy(inSk.dest);
sc_sub{sk[1].bytes, inSk.mask.bytes, a.bytes);
for (i =8; 1 < cols; i++) {
M[i][@] = pubs[i].dest;
subKeys(M[1][1], pubs[i].mask, Cout};
1

return MLSAG_Gen{message, M, sk, kLRki, mscout, index, rows, hwdev)

The code is self explanatory and the m calls generate m different public key matrices as

described earlier. Recall that each matrix is an element of {G}**".

A validation of the m signatures proves that there exists an element 1 < m < n of the
ring for which 1" [(Cin)ilr © >t (Cy)i = 2 ® G (refer to the observation made
about (@) earlier).

(D then leads us to conclude that

17

2018 Bassam El Khoury Seguias ©

Sri(C)i © Y01 (Cow); © (tafee@ H) = [0 [(@m)ile — 25— (Gour); — txfee] @ H
The next step is to validate (2), and show that
SL(Cw)i © YT (Cow)j © (tufee® H) =0

Once proven, it allows us to conclude that Y ;" [(@im)i]~ = Z;;ll(aout)j +txfee (mod 1),

and hence that the amounts are balanced modulo /. The verification of this step is done
as part of the verRetSimple method found in [6]. We include below the relevant

portion of the method that does the verification.

if (semantics) {
key sumDutpks = identity();
for (size_t i = @; i < rv.outPk.size(); i++) {
addkeys(sumOutpks, sumOutpks, rv.outPk[i].mask);

b

DP{sumDutpks);

key txnFeeKey = scalarmultH({d2h(rv.txnFee));
addKeys(sumOutpks, txnFeeKey, sumOutpks);

key sumPseudoQuts = identity();
for (size_t i = @ ; i < pseudoOuts.size() ; i++) {
addkeys(sumPseudoOuts, sumPseudoOuts, pseudoOuts[i]);

}
DP{sumPseudoOuts);

f/check pseudoOuts vs Outs.
if (legualkKeys(sumPseudoOuts, sumOutpks)) {

LOG_PRINT_L1({"Sum check failed");

return false;

The variable sumOutpks is first initialized to the identity element of the elliptic group.
It is then built up iteratively by calling the addKeys method. The final result is given
by Z;;ll outPk[j].mask which is none other than Z;;ll((]out) j-

Next, the Pedersen Commitment associated with the miner’s tx fee and given by
trfee ® H is added to sumOutpks.

A similar procedure is followed to calculate sumPseudoOuts =)" | pseudoOuts][i].
This is none other than = >"1" (Cy);.

The 2 sums are subsequently compared and a boolean value returned.

Lastly, the Borromean signature construct (out of the scope of this series) is used to

validate (@), and conclude that Y ." | (ain); = Z;;ll(aout)j + tx fee (i.e., ensuring that the

equality holds independently of modulo [arithmetic).

5 Example of a real Monero transaction

On moneroexplorer.com, we retrieve the transaction with tx hash given by

55ca673862¢14c7987e f0d5bea? f0d3568dadc946¢c1d31e6584cb12caele fafc.

18

2018 Bassam El Khoury Seguias ©

Here is a breakdown of the JSON representation of this transaction:

JSON representation of tx
Tx hash: : 55ca673862c14c7987ef0d Shea2f0d3568dadc046cld31e6584ch12caelefafc
{

"yersion'': 2,

The transaction version field is equal to 2. This means that this transaction
implements ringCT. This is in contrast to the earlier version 1 which implemented a
regular ring signature scheme.

"win": [{
"key': |
"amount"; 0,
"key offsets": [2019406, 1111194, 1398546, 235800, 10617

l.
"k_image": "beetadedb6a23a84 1110d434ef7bf010864ccececd 127 123b0c3b7 1051135a564"
i
bl
"key": {
"amount": 0,
"key_offsets": [1414191, 971662, 1571700, 626268, 191640

I,
"k_image": "cdc74af87d2293509f16f93dd 905edb B3608816d 702d1 55c67aldd0511d89635"

I
t
I

e There are 2 Vin sets. This means that 2 UTXOs are used to source funds to
transfer to recipients. The sender’s UTXOs are concealed in a ring of size 5 each.
This means that the mixin count is equal to 4.

e The first Vin set is identified by the array of key_offsets
(2019406, 1111194, 1398546, 235800, 10617], while the second is identified by
(1414191, 971662, 1571790, 626968, 191640].

e A key offset is a relative index corresponding to a particular UTXO. In Monero,
all UTXOs holding the same amount value are listed sequentially, and the key
offset is a way to reference a specific UTXO in that list. The rationale for doing
so has to do with the earlier version of Monero. Prior to ringCT, Monero’s ring
signature scheme had to group UTXOs of the same amount together in order to
safeguard the anonymity of the signer. If different amounts were allowed to be
grouped together, it would be very likely for the index of the signer to be
identified since it would be the only one for which the input/output amount
equation balances out. The reasoning is similar to the one we employed earlier
when we discussed the shortcoming of using a commitment to 0. The difference is
that in the latter case, we operate on Pedersen Commitments, while in the former
we operate on the actual amounts. With the advent of ringCT, all UTXO
amounts became concealed and given the value 0 as an indication that they are
hidden. This is reflected in the amount field.

e The key offsets associated with the first Vin set are then the relative indices of
UTXOs with hidden amounts (i.e., whose amount field is set to 0). For the first
Vin set, the first UTXO appears at index 2019406, the second at index
(2019406 + 1111194), the third at index (2019406 + 1111194 + 1398546) and so on.

19

2018 Bassam El Khoury Seguias ©

e The k_image field holds the key image or tag associated with the signer’s UTXO.
We will see in part 10 that a UTXO is associated with a ”one-time private
key” and a ”one-time public key”. This unique pair is used to calculate the
key image as described in part 7 of this series. The key image associated with the
signer’s first UTXO (each ring member has 2 UTXOs in this example) is given by

L= ok @ Ho(yt)

where the superscript 1 refers to the first set of Vin and 7 refers to the index of
the signer in the ring. Recall that the key-image construct ensures that MLSAG is
linkable, which in turn helps prevent the doublespending problem.

"wout™: [{
"amount'": 0,
"target": |
"key': "83%e866a6d485da2Efa2e2874fdahad 9326694999597 cca 1f6c32adbad 27130"
t
b
"amount'; 0,
"target': {
"key": "04d0f8bb f214059885817h 20454 6act 74 5db 54025324b 3dbb Ge 1fOch82eBf1h E"
t
i
l.

The above exerpt shows that there are 2 recipients of funds (probably a counterparty
and a change address). Here too, the amounts are concealed and the amount field is
set to 0. Note that the key field of each recipient holds a stealth address (i.e., unique
address) that helps conceal his identity. We will introduce stealth addresses in part 10.

"ret_signatures": {
“type": 2,
"tnFee": 11478320000,
"pseudoOuts"; ["d5a06a7a5c75dB0ad51617cth 307cdac2e5fh19de7 22661553b4 122f98316b ag", "9affSdbd33d3c7247561%e0f3e 7a%h 7d40762a34 82996755 3eebc33 0056 9938,
"ecdhinfo': [{
"mask": "d3773186164a081f5c65df3d63 78a3a8c6954 134d 720611 3beaffh 688 799302",
"amaunt": "2976df1a00b6915el1 7e576e34 1h2acBl 13292 06c53 196a6 743 77644 3ac6h00"
B
"mask"; " 8cd f147c5ca8580155b9b0516533e348d 6 1fbd36 d40c5706 1h 83f7h 0360 300",
"amaunt": "811b6ab 769684122h06aadf6f954h 700953381 1612 F9c%ed3alal 5e3f5340590e"

1.
"outPk": ["0bcdddebdBa7d967d87h 9514725d a7 30c8%ea73c983a5532ae070d0d 56h85fh ", "c017a2e53c7d28d3012h37f930e24 a5 146 93b 2cc0680f8850e 2fab3ha2c25h 3"
2

e The type field is set to 2. Type 1 is for RCT Type Full, while type 2 is for
RCT Type Simple. Recall that type 1 is implemented if there is only one
UTXO (i.e., Vin = 1). If there are more than a single Vin, then type 2 is
implemented.

e The txnfee field specifies the transaction fee paid to the miners. It is expressed in
picoNero or atomic units (recall that each Monero unit corresponds to 10'? atomic
units).

e The pseudoOuts field contains the pseudo-output commitments which
correspond to the (Cy);, ¢ € {1,...,m} introduced earlier. In this case, m = 2,

20

2018 Bassam El Khoury Seguias ©

since there are 2 Vin sets.

e The ecdhInfo section contains the encoded values of the blinding factor and
amount associated with each Vout. Recall that

{ mask ; = (,u); + keccak(sharedSec), where keccak is the hash function
used by Monero, and sharedSec is a shared secret as was introduced in the
previous section.

{ amount ; = (a,u); + keccak(keccak(sharedSec))
where j € {1,...t}. In this case t = 2, since there are 2 Vout’s.

e The outPk field corresponds to the output Pedersen Commitments. These are
the (Cout)j, 7 € {1,...,t} introduced in the previous section. Here ¢ = 2, since
there are 2 Vout'’s.

"rangesSigs": [{
"aslg': "a7fofcch321ce7ad 1eflddd 7552 187h6be 233 fad8 766 0alE3 3813550e5aad 104472800063 5d5d3 15983d97 e 1eab3 flced72ebd Oc013c2753109d.....040e",
"Ci': "8715a7chd 740c3d3636ch 8205462 1 f6 FdE0b 3614 1273h f16b06 18fabfed0cIaba lafdd 8132591421 f 1faalelco 7571 ebad 1f55c3 8008204 742 18e8...a265"

b {
"asig': " Feabbch 34 7fdb 226345224 2ed002644 2bb27 226330584 54 14f7FfacteD6 507882305 b 838e 74 386 ad Scef06d fod 0Bab cF ch 30207458506 38ec2cs...b2 0",
"Ci': "c35d2a63f101ab974 87 735a765070539303a4 5fdedB9 58c3 {75221 096b2c7a22603eebd c581 SdcdacB30301h9adcch 72002931d 0a2 16 cc2ba3842... 0 "

1l

This portion contains information pertaining to the proof that transaction amounts are
confined to a specific range (i.e., [0,2"] as was described previously). The mechanics of
Borromean signatures and range proofs were not included in this work.

"MGs": [{
"ss'": [["d9ddb 150b53f8e0b38a0954d67ald 3737441017441b56c4bE8 7al17383758409", "8443eSbf0dee7129963d4502fchald3191eale1de52bdal 939 75928cc8 b1dcl 8",
["eFcc?f1531b13322dak100Feb45feSea?aelaltBa16861be2bBEfedd 37d0e708", "e5d0ce33d DaBFe?a3c0f6a536012356F028f373c20b 0d368058f08ec588210d"],
["ch1f33d681f32feff3c9ch 30dff25c652ba2d fd 354926664 del11433f69f7100d", "39af4123adadB4bdbe1123dd76229a0e765bf459ef9abad 7c1 03021906260 "],
["444f6107cFefd4cc296e21d67635515d24aadb? ccld 2abecf348234bbbidf10e", "9f8d0116243b811 d46ccabl1d7d 3119dalcab18ca? 364502727753 04alba4a07"],
["fal?f0ceb131d B854 8305bffeelSa5eekbice0als7536a7abale080bB15279802", "c352121c33875215e680fh7fd 103ee3baf0b0al 5322d 708846 12ath4027 10 ”]],

"cc': "35d33eb0bb4834 12f{08a8bc2ed 5aeeb2519d5c1f4077b celedd 56b22a623d 0!
I

"sg': [["01ledd0e?h7325fb13dcShbe2fhid 08ce127h1af2619dB0681f22f3dcBbeten0l", "E2d02e2b23a72e28a4daf147 1 fOfE7a60dfOb 787fdabetdd c75catedbh 3c53700",
["2af534982ef35909f0735d 1eb6b23 4 9800cd502a3b 7ela3bd 1f673ca54 13507, "1bh676236f565bead fi9coad9bB0f553643 8808182228325 1addd S 7664c0a04"],
["db2d33bBE1d 7481fe0f22c19a%f62ebla7109d 94a53 dB6dd 0cfi97e943706c0f", "eca8li92e274f 1ea/b05344 84 cfc52793dd 64 6d262d 2acd be2159a9 FcBa4cBe"],
["B¥B4c332f70352605555a0b Bdacs Sha7607aa1f199621b 0fedeab 66287 aadb03", "c27c73721031316b0dbabf4f5076 12ef250h 743268541 7d333 dab204abb 1eb02"],
["4c09932ebc71ba294c8c48097h 1eal580bf09333 7cabeeceb 3d48b 0029c710a", "hE320246e423a2dcdafhfo a5 7203 1ba2267c2b97fa74 92344980 2031e3b5 504"],

"cc' "ad50107cS 826207781 2bAf2 7 ee2aFcffScafd 31364 cBadcd 2c7 25050 107"
il

Since this transaction implements RCTTypeSimple, it creates 2 amended public key
matrices PK; and PK; (1 for each Vin set). It then runs an MLSAG on each matrix.
As we previously saw in part 7 of this series, an MLSAG signature issued by signer 7 on
message m and public key matrix PK; is of the form:

or(m, PK;) = (I}, ..., I™ cy,ri, o r rk o r™)
In this case m = 2 (since the matrix has 2 rows) and n = 5 (since the mixin count is
equal to 4). Each of the 2 signatures will then be of the form:

21

2018 Bassam El Khoury Seguias ©

or(m, PK;) = (I} 12, ¢y ri,ri, .. rd rd)

T T

e The ss values correspond to the rf ’s where for example in the first MLSAG
signature, [?d9dd...8409”,78443...b1dc”] corresponds to [r],r%].

e The cc value corresponds to ¢; that appears in the MLSAG signature

References

[1] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. Stanford, 2016.

2] knaccc. What is the transaction id.
https://monero.stackexchange.com/questions/5660/what-is-the-transaction-id-and-
how-its-calculated.

[3] G. Maxwell and A. Poelstra. Borromean ring signatures. -, 2015.

[4] Monero. rctops.cpp.
https://github.com/monero-project /monero/blob/master/src/ringct /rctOps.cpp.

[5] Monero. rctops.h.
https://github.com/monero-project /monero/blob/master/src/ringct /rctOps.h.

[6] Monero. rctsigs.cpp.
https://github.com/monero-project /monero/blob /master /src/ringct /rctSigs.cpp.

[7] Monero. rcttypes.cpp.
https://github.com/monero-project /monero/blob /master /src/ringct /ret Types.cpp.

[8] Monero. rcttypes.h.
https://github.com/monero-project /monero/blob /master /src/ringct /rct Types.h.

[9] S. Noether and A. Mackenzie. Ring confidential transactions. Monero Research Lab,
2016.

22

