
Monero’s Building Blocks
Part 9 of 10 – RingCT and anatomy of Monero

transactions

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

ETH: 0xb79Fb9194C8Cc6221368bb70976e18609Ab9AcA8

April 30, 2018

1 Introduction

In part 7 we introduced the MLSAG ring signature scheme. Among other things, it
safeguarded the anonymity of the signer. In part 8 we discussed the notions of Pedersen
Commitments and Confidential Transactions. They were used to mask transaction
amounts without compromising the proper bookkeeping of balances on the network.

It turns out that combining both concepts in a single mathematical construct requires
additional work. In the first section, we explain why outright combination of the afore-
mentioned concepts fails to preserve the anonymity of the sender.

In the second section we remedy the situation by introducing the notion of a non-zero
commitment. This will form the basis of Monero’s ringCT scheme.

The last section goes over the mechanics of how a Monero transaction is created and
includes references to relevant parts of the code base. We introduce two variants of
ringCT, namely ringCT Type Full and ringCT Type Simple. We finally conclude with a
breakdown of the components of a real-life Monero transaction.

2 A problem with preserving anonymity

A Monero transaction is a mathematical construct that is cryptographically signed. It
details what unspent transaction outputs (UTXOs) the sender wants to use to conduct
his transfer. In essence, a UTXO is an output associated with a previous blockchain
transaction that hasn’t been spent yet. It can be subsequently used as an input to a
future transaction. In addition, a Monero transaction encapsulates details about the
recipients of the funds including the amount to be transferred to each recipient.

1



2018 Bassam El Khoury Seguias c©

Consider the following hypothetical Monero transaction:

• The sender uses two of her UTXOs with respective amounts (ain)1 = XMR 2 and
(ain)2 = XMR 4 (i.e., units of Monero currency).

• The sender transfers funds to three recipients including a transaction fee to the min-
ers, funds destined to a counterparty, and change returned to the sender. Suppose
the output amounts are respectively txfee ≡ (aout)1 = XMR 1, (aout)2 = XMR 4,
change ≡ (aout)3 = XMR 1.

• All input and output amounts are replaced with a corresponding Pederson Com-
mitment to hide the original value.

Suppose that we would also like to conceal the identity of the sender. This is tanta-
mount to hiding the origin of the funds (i.e., hiding the sender’s UTXOs). Each UTXO
is associated with a ”one-time public key” and a corresponding ”one-time private
key” (the details will be explained in part 10 when we discuss the stealth addressing
system). The sender embeds each UTXO in a set of n other UTXOs. In this example
we let n = 5. The following is a representation of this scenario where each UTXO is
identified by its transaction hash, commonly known as transaction id [2]

• First set of 5 UTXOs

{ 00 : 555...62f (1st UTXO of ring member #1)

{ 01 : 0d3...34e (1st UTXO of ring member #2)

{ 02 : 6eb...8b9 (1st UTXO of ring member #3 ≡ π (index of the signer))

{ 03 : 7d4...32a (1st UTXO of ring member #4)

{ 04 : 4a7...9fe (1st UTXO of ring member #5)

• Second set of 5 UTXOs

{ 00 : a96...54f (2nd UTXO of ring member #1)

{ 01 : 783...a9b (2nd UTXO of ring member #2)

{ 02 : 328...be3 (2nd UTXO of ring member #3 ≡ π (index of the signer))

{ 03 : 150...6e9 (2nd UTXO of ring member #4)

{ 04 : 754...3df (2nd UTXO of ring member #5)

To achieve the above, we can build an MLSAG ring signature where:

• The ”one-time private keys” of all UTXOs used by the sender are grouped
together to form his private key vector [x1π x

2
π]T . Cleary, the private key vector will

have an associated public key vector [y1π y
2
π]T where yjπ = xjπ ⊗G, j ∈ {1, 2}.

• The remaining 4 ring members will be associated with four additional public key
vectors. Each vector consists of a pair of UTXOs that are pairwise different and
different from the ones used by the sender. The total number of ring members, not
including the sender, is known as the mixin count in Monero. Our hypothetical
example has a mixin count of 4.

This set-up can be summarized in a public key matrix given by:

PK =

[
y11 y12 y1π≡3 y14 y15
y21 y22 y2π≡3 y24 y25

]
2



2018 Bassam El Khoury Seguias c©

As noted earlier, the transaction amounts associated with each UTXO are concealed
using Pedersen Commitments. Following the logic outlined in part 8, the network will
check if

∑2
i=1[(Cin)i]k =

∑3
j=1(Cout)j for some k ∈ {1, 2, 3, 4, 5} denoting the index of a

ring member. Once it identifies a ring member k whose UTXO pair satisfies this equality,
it gets the assurance that the amounts balance out without knowing what the amounts
are.

Note that the index of both UTXOs in a given pair must be the same. For example,
the sender’s first UTXO appears in the 3rd position in the first UTXO set and also in
the 3rd position in the second set. This is dictated by the construction of the private key
and public key vectors in MLSAG.

However, by finding which pair of UTXOs satisfy the equation, the network would
have also discovered the index of the signer. This is because it is extremely unlikely to
select different ring members (i.e., pairs of UTXOs) such that the sum of their Pedersen
Commitments (i.e.,

∑2
i=1[(Cin)i]k) matches that of the sender (i.e.,

∑2
i=1[(Cin)i]π). Con-

sequently, only the Pedersen Commitments of the sender will satisfy the equation. By
figuring out the index of the signer, the anonymity of the MLSAG gets jeopardized. In
order to address this problem, we introduce an amendment to the MLSAG public key
matrix.

3 Ring Confidential Transaction (RingCT)

Recall the following set-up introduced in part 8:

• ∀i ∈ {1, ...,m}, let (Cin)i = ((xin)i ⊗G)⊕ ((ain)i ⊗H) be the Pedersen
Commitment associated with amount (ain)i with blinding factor (xin)i randomly
chosen in Fl.

• Let (aout)t ≡ txfee be the miner’s transaction fee and let (Cout)t = (aout)j ⊗H be
the Pedersen Commitment associated with txfee. The blinding factor (xout)t is
deliberatly chosen to be 0 (i.e., the identity element of Fl).

• ∀j ∈ {1, ..., t− 1}, let (Cout)j = ((xout)j ⊗G)⊕ ((aout)j ⊗H) be the Pedersen
Commitment associated with amount (aout)j with blinding factor (xout)j randomly
chosen in Fl. We additionaly require that

∑m
i=1(xin)i −

∑t−1
j=1(xout)j = 0 (mod l).

By ensuring that:

1.
∑m

i=1(xin)i −
∑t−1

j=1(xout)j = 0 (mod l), and

2. ∀i ∈ {1, ...,m}, ∀j ∈ {1, ...t} the amounts (ain)i and (aout)j remain confined to a
pre-defined range [0, 2r] ⊂ Fl (refer to part 8 for more information about the
choice of r).

we got the following equivalence:∑m
i=1(Cin)i 	

∑t
j=1(Cout)j = 0

⇐⇒
∑m

i=1(ain)i −
∑t

j=1(aout)j = 0

3



2018 Bassam El Khoury Seguias c©

It is important to observe that the amounts balance out in actuality and not in the
more relaxed modulo l sense. This is due to the constraint we imposed on all
transaction amounts being confined to the [0, 2r] range. If this were not the case, one
would be able to create or destroy Monero currency while still maintaining a balanced
equation. To see this, suppose transaction amounts can take on any value in Fl instead
of being restricted to [0, 2r]. Moreover, suppose that the sender uses three UTXOs (i.e.,
m = 3) with (ain)1 = XMR (l − 4), (ain)2 = XMR 3, and (ain)3 = XMR 5. There are
two outputs (i.e., t = 2) with (aout)1 = XMR 3, and (aout)2 = XMR 1.

Clearly,
∑m

i=1(ain)i −
∑t

j=1(aout)j = l 6= 0.

However,
∑m

i=1(ain)i −
∑t

j=1(aout)j = 0 (mod l).

If this transaction gets approved by the network, we would have effectively destroyed l
units of currency. Conversely, exchanging the input and output values would allow the
creation of l units of currency out of thin air. This example demonstrates the
importance of having a balanced equation independent of modulo l arithmetic. By
confining all transaction amounts to the [0, 2r] range, we ensure that this is the case. To
prove that a transaction amount lies in a certain range, Monero makes use of the
Borromean signature construct. A more size-efficient alternative to Borromean
signatures that is currently deployed on Monero’s testnet is Bulletproof. Bulletproof
performs a range proof while potentially decreasing a Monero transaction size (and
hence transaction fees) by up to 80%. Range proofs including the Borromean and
Bulletproof constructs deserve an article on their own. We might dedicate an appendix
to expain how they work in the future. For the time being, the interested reader can
consult [3] and [1].

The problem encountered in section 2 was due to the high likelihood that only ring
member π, 1 ≤ π ≤ 5 had UTXOs whose Pedersen Commitments satisfy the equation∑2

i=1[(Cin)i]π 	
∑3

j=1(Cout)j = 0. (Note that we explicitly mention the index π in∑2
i=1[(Cin)i]π to highlight that these specific Pedersen Commitments are the ones

associated with the sender’s UTXOs. Other ring members have different UTXOs and
hence different commitments). The culprit is the value 0 which gave away the index π
of the sender. To remedy this shortcoming, we relax the condition: instead of requiring
that

∑m
i=1[(xin)i]π −

∑t−1
j=1(xout)j = 0 (mod l), we let it take on any scalar value z ∈ F∗

l ,
as long as z is only known to the sender π. We highlight that the blinding factors
[(xin)i]π are the ones associated with π’s ith UTXO. Carrying over the notation from
part 8, we get the following equalities:∑m

i=1[(Cin)i]π 	
∑t

j=1(Cout)j

=
∑m

i=1[(Cin)i]π 	
∑t−1

j=1(Cout)j 	 (txfee⊗H) (by definition of txfee and (Cout)t)

=
∑m

i=1{([(xin)i]π ⊗G)⊕ ([(ain)i]π ⊗H)} 	
∑t−1

j=1{((xout)j ⊗G)⊕ ((aout)j ⊗H)} 	
(txfee⊗H)

=
∑m

i=1 k([(xin)i]π, [(ain)i]π) 	
∑t−1

j=1 k((xout)j, (aout)j) 	 (txfee⊗H)

4



2018 Bassam El Khoury Seguias c©

= k(
∑m

i=1[(xin)i]π,
∑m

i=1[(ain)i]π) 	 k(
∑t−1

j=1(xout)j,
∑t−1

j=1(aout)j) 	 (txfee⊗H)

(where we invoked the additive homomorphic property of the Pedersen Commitment
map k)

= [(
∑m

i=1[(xin)i]π)⊗G] ⊕ [(
∑m

i=1[(ain)i]π)⊗H] 	 [(
∑t−1

j=1(xout)j)⊗G] 	
[(
∑t−1

j=1(aout)j)⊗H] 	 [txfee⊗H]

=
{[
∑m

i=1[(xin)i]π −
∑t−1

j=1(xout)j]⊗G} 	 {[txfee +
∑t−1

j=1(aout)j −
∑m

i=1[(ain)i]π]⊗H}

= {z ⊗G} 	 {[txfee +
∑t−1

j=1(aout)j −
∑m

i=1[(ain)i]π]⊗H}

where + and − are addition and subtraction in modulo l arithmetic over Fl, and where
we used

∑m
i=1[(xin)i]π −

∑t−1
j=1(xout)j = z (mod l).

If the transaction amounts don’t balance out, then:

[txfee +
∑t−1

j=1(aout)j −
∑m

i=1[(ain)i]π]⊗H 6= 0

And since the DL of H in base G is unknown, one can conclude that with overwhelming
probability the sender π would not know the DL of

∑m
i=1[(Cin)i]π 	

∑t
j=1(Cout)j in

base G. The contrapositive statement ensures that if the sender can prove that he
knows this DL, then with overwhelming probability, we must have
[txfee +

∑t−1
j=1(aout)j −

∑m
i=1[(ain)i]π] (mod l) = 0.

So by ensuring that:

1.
∑m

i=1[(xin)i]π −
∑t−1

j=1(xout)j = z (mod l), z ∈ F∗
l (only known to the sender π),

and

2. ∀i ∈ {1, ...,m}, ∀j ∈ {1, ...t} the amounts [(ain)i]π and (aout)j remain confined to
a pre-defined range [0, 2r] ⊂ Fl (refer to part 8 for more information about the
choice of r).

we can follow the same procedure outlined in part 8 and derive the following
equivalence: ∑m

i=1[(Cin)i]π 	
∑t

j=1(Cout)j = z ⊗G, z ∈ F∗
l

⇐⇒ [
∑m

i=1(ain)i]π −
∑t

j=1(aout)j = 0

The expression
∑m

i=1[(Cin)i]π 	
∑t

j=1(Cout)j = z ⊗G showcases z as the private key

associated with public key
∑m

i=1[(Cin)i]π 	
∑t

j=1(Cout)j. No one knows the value of z
except the sender (note that this is possible since z is fully defined by the blinding
factors [(xin)i]π and (xout)j which are only known to the sender - we will see how so
when we allude to relevant portions of the Monero code in the next section). A
signature that is verified using public key

∑m
i=1[(Cin)i]π 	

∑t
j=1(Cout)j demonstrates

that its signer knows the private key z. Consequently, this demonstrates that the

5



2018 Bassam El Khoury Seguias c©

transaction amounts are balanced. That leads us to amend the MLSAG scheme by
introducing an additional key to the key vector of each user in the ring. The amended
public key matrix becomes:

PK =


y11 .. y1π .. y1n
.. .. .. .. ..
ym1 .. ymπ .. ymn∑m

i=1[(Cin)i]1	
∑t
j=1(Cout)j .. ∑m

i=1[(Cin)i]π	
∑t
j=1(Cout)j .. ∑m

i=1[(Cin)i]n	
∑t
j=1(Cout)j



where
∑m

i=1[(Cin)i]k, k ∈ {1, ..., n} denotes the sum of the Pedersen Commitments
associated with all the UTXOs of ring member k. ringCT consists of conducting an
MLSAG signature on the aforementioned public key matrix, where the private-key
vector of the sender is given by [x1π ... x

m
π z]T . A valid signature on this public key

matrix proves 2 things:

1. That the sender holds the private key vector [x1π ... x
m
π ]T associated with all m

UTXOs used to source the funds (these are the first m rows of the matrix).

2. That the sender knows the secret key z associated with∑m
i=1[(Cin)i]π 	

∑t
j=1(Cout)j (this is the second row of the matrix).

The resulting scheme hides transaction amounts and safeguards the anonymity of the
signer at the same time [9].

4 Monero transactions in practice

Calculation of Pedersen Commitments: In the Monero code base,

• The Pedersen Commitment (Cout)j, j ∈ {1, ..., t} is known as outPk[j].mask.
The ”Pk” suffix probably refers to ”Public key” since Pedersen Commitments can
be thought of as public keys (recall that they are scalar multiples of G).

• The blinding factor (xout)j associated with (Cout)j, j ∈ {1, ..., t} is known as
outSk[j].mask. The ”Sk” suffix probably refers to ”Secret key” since blinding
factors are scalars ∈ Fl.

The calculation of these two values is conducted in the proveRange method which can
be found in [6]

6



2018 Bassam El Khoury Seguias c©

The proveRange method takes three arguments:

1. C, which will hold the Pedersen Commitment value associated with a certain
output amount. This corresponds to (Cout)j, j ∈ {1, ..., t} in our earlier notation.

2. mask, which will hold the blinding factor value used in the calculation of this
Pedersen Commitment. This corresponds to (xout)j, j ∈ {1, ..., t} in our earlier
notation.

3. amount, which is the output amount for which the Pedersen Commitment will be
calculated. This amount corresponds to (aout)j, j ∈ {1, ..., t} in our earlier
notation.

The method operates on amount and assigns the corresponding Pedersen Commitment
and blinding factor to C and mask respectively.

The first step consists in initializing C to the identity element of the group {G}. This is
done by calling the identity method found in [5]

The next step iconsists in decomposing amount into its binary digits. This is done by
calling the d2b method found in [7]

7



2018 Bassam El Khoury Seguias c©

The method d2b takes two arguments, namely amount and an array b to store the
binary digits. The number of binary digits resulting from this decomposition is capped
at a maximum of 64 (i.e., the highest transaction amount allowed is 264 atomic units,
where each XMR unit corresponds to 1012 atomic units). The upper bound is stored in
the variable ATOM found in [8].

For each binary digit 0 ≤ i < ATOMS ≡ 64, the proveRange method generates a
scalar by calling the skGen method found in [4].

The skGen method randomly creates a secret key (i.e., a scalar ∈ Fl) and assigns it to
its argument. As a result, the expression skGen(ai[i]) (which appears in the
proveRange method) assigns a random scalar to variable ai[i]. This variable plays the
role of the blinding factor associated with binary digit i.

A binary digit can either be equal to 0 or to 1. The method d2b stores digit i in
variable b[i]. If b[i] is 0, then the Pedersen Commitment associated with digit i is set to
Ci[i] ≡ (ai[i]⊗G)⊕ (0⊗H) which is equal to (ai[i]⊗G). This calculation is performed
by calling the scalarmultBase method found in [4]:

If b[i] is 1, then the corresponding Pedersen Commitment is set to
Ci[i] ≡ (ai[i]⊗G)⊕ (2i ⊗H). Here, 2i ⊗H corresponds to the H2[i] argument fed to
the addKeys1 method invoked in the proveRange method. H2[i] is retrieved in the
H2 table which can be found in [8]. The addKeys1 method is found in [4].

8



2018 Bassam El Khoury Seguias c©

The blinding factor mask is finally set to
∑ATOMS−1

i=0 ai[i]. This is done in the
proveRange method by calling the sc add method.

Lastly, the Pedersen Commitment C is calculated by adding all the Ci[i] computed for
0 ≤ i < ATOMS ≡ 64. To see why this computation yields the desired Pedersen
Commitment, note the following:

C ≡ (Cout)j = ((xout)j ⊗G) ⊕ ((aout)j ⊗H)

= ((
∑ATOMS−1

i=0 ai[i])⊗G) ⊕ ((
∑ATOMS−1

i=0 b[i]× 2i)⊗H)

=
∑ATOMS−1

i=0 Ci[i]

In the proveRange method, this is done by invoking the addKeys method found
in [4].

The C and mask values are assigned to variables outPk[j].mask and outSk[j].mask
through the genRct method by calling the proveRange method. The genRct
method is found in [6].

9



2018 Bassam El Khoury Seguias c©

10



2018 Bassam El Khoury Seguias c©

Among other things, the genRct method takes a destinations vector as argument.
Each element of the vector consists of the address of a relevant recipient of funds for
this transaction. The length of the destinations vector corresponds to the total
number of recipients (eg., in our earlier hypothetical example, it would be 3). The
genRct method loops through all of them, each time making a call to the
proveRange method with the following arguments:

1. outPk[i].mask which stores the Pedersen Commitment associated with the
amount to be sent to the recipient. Note that the ”mask” attribute in this case is
not a blinding factor. This is a matter of Monero code convention where each key
has 2 fields associated with it: 1) A dest field, and 2) A mask field

• In case the structure is a secret key (e.g., a Monero amount - recall that
amounts are elements of Fl and hence are scalars, a.k.a. secret keys), the
dest field would contain the secret key, while the mask field would contain
the randomly generated blinding factor as described earlier.

• In case the structure is a public key, dest would contain the address and
mask would contain the Pedersen Commitment of the amount to be
transferred to the address. The definitions can be found in [8].

2. outSk[i].mask which stores the blinding factor associated with the amount to be
transferred to the recipient.

3. amounts[i] which corresponds to the amount to be transfered to the recipient.

For each recipient j, this assigns

• The relevant Pedersen Commitment C to outPk[j].mask

• The blinding factor or mask value to outSk[j].mask

Finally, the blinding factor and the amount associated with each recipient are encoded
so that they are only known to the sender and to the recipient of the funds. This
ensures that the sender is the only entity that knows the value of all the blinding factors
associated with UTXO amounts used to source the funds as well as blinding factors
associated with the amounts destined to each recipient. In other words, only the sender
π would simultaneously know [(xin)i]π, i ∈ {1, ...,m} and (xout)j, j ∈ {1, ..., t− 1}. As a
result, the sender is the only entity that knows z ≡ {

∑m
i=1[(xin)i]π −

∑t−1
j=1(xout)j}

(mod l) (introduced in the previous section) that makes ringCT work properly.

The encoding is done through a call to the ecdhEncode method in genRct. It is
found in [4].

11



2018 Bassam El Khoury Seguias c©

The ecdhEncode method takes 2 arguments:

1. unmasked, which has 2 attributes: 1) A blinding factor known as mask, and 2)
A transaction amount.

2. sharedSec, which is a a secret key only known to the sender and the recipient of
the funds and used to encode the transaction’s blinding factor and amount.

The encryption is done as follows:

• The mask (xout)j is mapped to (xout)j + keccak(sharedSec), where keccak is the
hash function used by Monero.

• The amount (aout)j is mapped to (aout)j + keccak(keccak(sharedSec))

Building the amended public key matrix: Recall that the amended public key
matrix introduced in the previous section was given by:

PK =


y11 .. y1π .. y1n
.. .. .. .. ..
ym1 .. ymπ .. ymn∑m

i=1[(Cin)i]1	
∑t
j=1(Cout)j ..

∑m
i=1[(Cin)i]π	

∑t
j=1(Cout)j ..

∑m
i=1[(Cin)i]n	

∑t
j=1(Cout)j



where
∑m

i=1[(Cin)i]k denotes the sum of the Pedersen Commitments associated with all
the UTXOs of ring member k ∈ {1, ..., n}.

The calculation of this matrix is performed in the proveRctMG method found in [6].
(Note that in the code below, our variable i corresponds to the code’s variable j and our
variable k corresponds to the code’s variable i).

12



2018 Bassam El Khoury Seguias c©

For each ring member k ∈ {1, ..., n}, the input Pedersen Commitments
[(Cin)i]k, i ∈ {1, ...,m} are added. Then the output Pedersen Commitments
(Cout)j, j ∈ {1, ..., t} are subtracted.

RCTTypeFull vs. RCTTypeSimple : The signature scheme along with the
amended public key matrix that we introduced thus far is known as RCTTypeFull
(also referred to as Type 1 in Monero’s code base). It treats all UTXOs at once as part
of a single ring signature structure: if we have m UTXOs and a mixin count of n− 1,
RCTTypefull creates a public key matrix of size (m+ 1)× n and signs the transaction
in one go. As we previously noted in our hypothetical example, it is imperative that the
index of each UTXO used by the sender be the same (recall that in our hypothetical
example the index π was equal to 3 for each of the 2 UTXOs). This is dictated by the
structure of the public key matrix.

Monero uses a signature of type RCTTypeFull (i.e., of Type 1) when a transaction
has only 1 UTXO. Whenever a sender uses more that 1 UTXO to conduct a transfer,
Monero invokes a more efficient variant known as RCTTypeSimple (also known as Type
2). An enumeration of Monero’s RCT Types is found in [8].

A Type 0 corresponds to a coinbase transaction. Simply put, it is a particular type of
transaction issued by a miner whenever a new block is successfully created. It takes no
input, but creates new currency units to reward the miner for her successful work.
Types 0, 3, and 4 are not within the scope of this work. We now describe the
RCTTypeSimple variant of the ringCT signature.

We derived the following equality in section 3:∑m
i=1[(Cin)i]π 	

∑t
j=1(Cout)j = {z ⊗G} 	 {[txfee+

∑t−1
j=1(aout)j −

∑m
i=1[(ain)i]π]⊗H}

13



2018 Bassam El Khoury Seguias c©

where z ∈ F∗
l is a scalar equal to [

∑m
i=1[(xin)i]π −

∑t−1
j=1(xout)j] (mod l)

Let’s define a new set of commitments that we call pseudo-output commitments or
Cψ. We create one for each index i ∈ {1, ...,m} as follows:

• ∀i ∈ {1, ...,m− 1}

{ Generate random scalar (xψ)i

{ Compute (Cψ)i = [(xψ)i ⊗ G] ⊕ [[(ain)i]π ⊗H]

• For i = m, set

{ (xψ)m =
∑t−1

j=1(xout)j −
∑m−1

i=1 (xψ)i

{ (Cψ)m = [(xψ)m ⊗ G] ⊕ [[(ain)m]π ⊗H]

The above construction ensures that
∑m

i=1(xψ)i =
∑t−1

j=1(xout)j

We can re-write the original equality as:

{
∑m

i=1[(Cin)i]π 	
∑m

i=1(Cψ)i} ⊕ {
∑m

i=1(Cψ)i 	
∑t−1

j=1(Cout)j 	 (txfee⊗H)}

= {z ⊗G} ⊕ {[
∑m

i=1[(ain)i]π −
∑t−1

j=1(aout)j − txfee]⊗H}

Note the following:

1© If we can prove that
∑m

i=1[(Cin)i]π 	
∑m

i=1(Cψ)i = z ⊗G, we can conclude that∑m
i=1(Cψ)i 	

∑t−1
j=1(Cout)j 	 (txfee⊗H) =

[
∑m

i=1[(ain)i]π −
∑t−1

j=1(aout)j − txfee]⊗H

2© If we can furthermore show that
∑m

i=1(Cψ)i 	
∑t−1

j=1(Cout)j 	 (txfee⊗H) is

equal to 0, then we can conclude that
∑m

i=1[(ain)i]π =
∑t−1

j=1(aout)j + txfee
(mod l), and hence that the amounts are balanced modulo l

3© If in addition, we can prove that the amounts [(ain)i]π and (aout)j are confined to
a pre-defined range [0, 2r] ⊂ Fl (refer to part 8 for more information about the
choice of r), then we can conclude that

∑m
i=1[(ain)i]π =

∑t−1
j=1(aout)j + txfee, and

hence that the amounts are balanced independent of modulo l arithmetic.

We observe that if ∀i ∈ {1, ...,m}, we have [(Cin)i]π 	 (Cψ)i = zi such that∑m
i=1 zi = z, then 1© will certainly hold. In essence, this corresponds to having a total

of m signatures, each signed with a relevant zi since [(Cin)i]π 	 (Cψ)i can be thought
of as a public key associated with secret key zi

So in RCTTypeSimple, we do not create a single public key matrix and hence do not
apply MLSAG only once. Instead, we create m different public key matrices with each
having its own MLSAG. The m public key matrices are elements of {G}2×n and are
given by:

14



2018 Bassam El Khoury Seguias c©

PKi =

[
yi1 .. yiπ .. yin

[(Cin)i]1 	 (Cψ)i .. [(Cin)i]π 	 (Cψ)i .. [(Cin)i]n 	 (Cψ)i

]

[(Cin)i]k refers to the Pedersen Commitment associated with the ith UTXO
((i ∈ {1, ...,m}) of ring member k (k ∈ {1, ..., n}). Note that ∀i ∈ {1, ...,m}, the value of
(Cψ)i is the same ∀k ∈ {1, ..., n}. We can think of this as being a separate MLSAG on
each UTXO used by the sender. It proves 2 things:

1. That the sender holds the private key xiπ associated with his ith UTXO (this is the
first row of the matrix).

2. That the sender knows the secret key zi associated with [(Cin)i]π 	 (Cψ)i (this is
the second row of the matrix).

In Monero’s code base, the creation of the pseudo-output commitments
(Cψ)k, k ∈ {1, ..., n} is done in the genRctSimple method found in [6]:

15



2018 Bassam El Khoury Seguias c©

• For each recipient appearing in the destinations vector, genRctSimple makes a
call to the proveRange method previouly introduced. It stores the Pedersen
Commitment (Cout)j associated with output amount (aout)j, j ∈ {1, ..., t} in
variable outPk[j].mask. The corresponding blinding factor (xout)j is stored in
variable outSk[j].mask.

• genRctSimple will then call the sc add method to sum all the the blinding
factors outSk[j]. The result (

∑t−1
j=1(xout)j) is stored in variable sumout.

• Each output amount and its corresponding blinding factor are then encoded by
calling the ecdhEncode method.

• The next step consists in calculating the pseudo-output commitments
(Cψ)i, i ∈ {1, ...,m} and their corresponding blinding factors (xφ)i. This is done
as follows:

16



2018 Bassam El Khoury Seguias c©

{ ∀i ∈ {1, ...,m− 1} (where m corresponds to inamounts.size()), the
blinding factor (xφ)i is randomly generated by calling the method skGen
and stored in variable a[i].

{ The pseudo-output commitment (Cψ)i is then calculated by calling the
method genC on amount [(ain)i]π which is stored in variable inamounts[i]
and blinding factor (xψ)i stored in variable a[i]. (Cψ)i is stored in variable
pseudoOuts[i].

{ The method keeps track of
∑m−1

i=1 (xψ)i in a variable called sumpouts. The
sum is calculated by calling the method sc add. Hence sumpouts
=
∑m−1

i=1 a[i].

{ (xψ)m is then set to a[m] = sumout - sumpouts. This is done by calling
the sc sub method.

{ Finally, the pseudo-output commitment (Cψ)m is constructed by calling the
genC method on amount [(ain)m]π (stored in variable inamounts[m]) and
blinding factor (xψ)m (stored in variable a[m]). (Cψ)m is stored in variable
pseudoOuts[m].

With pseudo-output commitments calculated, genRctSimple makes m calls to the
proveRctMGSimple method found in [6]

The code is self explanatory and the m calls generate m different public key matrices as
described earlier. Recall that each matrix is an element of {G}2×n.

A validation of the m signatures proves that there exists an element 1 ≤ π ≤ n of the
ring for which

∑m
i=1[(Cin)i]π 	

∑m
i=1(Cψ)i = z ⊗G (refer to the observation made

about 1© earlier).

1© then leads us to conclude that

17



2018 Bassam El Khoury Seguias c©

∑m
i=1(Cψ)i 	

∑t−1
j=1(Cout)j 	 (txfee⊗H) = [

∑m
i=1[(ain)i]π−

∑t−1
j=1(aout)j− txfee]⊗H

The next step is to validate 2©, and show that∑m
i=1(Cψ)i 	

∑t−1
j=1(Cout)j 	 (txfee⊗H) = 0

Once proven, it allows us to conclude that
∑m

i=1[(ain)i]π =
∑t−1

j=1(aout)j + txfee (mod l),
and hence that the amounts are balanced modulo l. The verification of this step is done
as part of the verRctSimple method found in [6]. We include below the relevant
portion of the method that does the verification.

The variable sumOutpks is first initialized to the identity element of the elliptic group.
It is then built up iteratively by calling the addKeys method. The final result is given
by
∑t−1

j=1 outPk[j].mask which is none other than
∑t−1

j=1(Cout)j.

Next, the Pedersen Commitment associated with the miner’s txfee and given by
txfee⊗H is added to sumOutpks.

A similar procedure is followed to calculate sumPseudoOuts =
∑m

i=1 pseudoOuts[i].
This is none other than =

∑m
i=1(Cψ)i.

The 2 sums are subsequently compared and a boolean value returned.

Lastly, the Borromean signature construct (out of the scope of this series) is used to
validate 3©, and conclude that

∑m
i=1(ain)i =

∑t−1
j=1(aout)j + txfee (i.e., ensuring that the

equality holds independently of modulo l arithmetic).

5 Example of a real Monero transaction

On moneroexplorer.com, we retrieve the transaction with tx hash given by

55ca673862c14c7987ef0d5bea2f0d3568da4c946c1d31e6584cb12cae1efafc.

18



2018 Bassam El Khoury Seguias c©

Here is a breakdown of the JSON representation of this transaction:

The transaction version field is equal to 2. This means that this transaction
implements ringCT. This is in contrast to the earlier version 1 which implemented a
regular ring signature scheme.

• There are 2 Vin sets. This means that 2 UTXOs are used to source funds to
transfer to recipients. The sender’s UTXOs are concealed in a ring of size 5 each.
This means that the mixin count is equal to 4.

• The first Vin set is identified by the array of key offsets
[2019406, 1111194, 1398546, 235800, 10617], while the second is identified by
[1414191, 971662, 1571790, 626968, 191640].

• A key offset is a relative index corresponding to a particular UTXO. In Monero,
all UTXOs holding the same amount value are listed sequentially, and the key
offset is a way to reference a specific UTXO in that list. The rationale for doing
so has to do with the earlier version of Monero. Prior to ringCT, Monero’s ring
signature scheme had to group UTXOs of the same amount together in order to
safeguard the anonymity of the signer. If different amounts were allowed to be
grouped together, it would be very likely for the index of the signer to be
identified since it would be the only one for which the input/output amount
equation balances out. The reasoning is similar to the one we employed earlier
when we discussed the shortcoming of using a commitment to 0. The difference is
that in the latter case, we operate on Pedersen Commitments, while in the former
we operate on the actual amounts. With the advent of ringCT, all UTXO
amounts became concealed and given the value 0 as an indication that they are
hidden. This is reflected in the amount field.

• The key offsets associated with the first Vin set are then the relative indices of
UTXOs with hidden amounts (i.e., whose amount field is set to 0). For the first
Vin set, the first UTXO appears at index 2019406, the second at index
(2019406 + 1111194), the third at index (2019406 + 1111194 + 1398546) and so on.

19



2018 Bassam El Khoury Seguias c©

• The k image field holds the key image or tag associated with the signer’s UTXO.
We will see in part 10 that a UTXO is associated with a ”one-time private
key” and a ”one-time public key”. This unique pair is used to calculate the
key image as described in part 7 of this series. The key image associated with the
signer’s first UTXO (each ring member has 2 UTXOs in this example) is given by

I1π = x1π ⊗H2(y
1
π)

where the superscript 1 refers to the first set of Vin and π refers to the index of
the signer in the ring. Recall that the key-image construct ensures that MLSAG is
linkable, which in turn helps prevent the doublespending problem.

The above exerpt shows that there are 2 recipients of funds (probably a counterparty
and a change address). Here too, the amounts are concealed and the amount field is
set to 0. Note that the key field of each recipient holds a stealth address (i.e., unique
address) that helps conceal his identity. We will introduce stealth addresses in part 10.

• The type field is set to 2. Type 1 is for RCT Type Full, while type 2 is for
RCT Type Simple. Recall that type 1 is implemented if there is only one
UTXO (i.e., Vin = 1). If there are more than a single Vin, then type 2 is
implemented.

• The txnfee field specifies the transaction fee paid to the miners. It is expressed in
picoNero or atomic units (recall that each Monero unit corresponds to 1012 atomic
units).

• The pseudoOuts field contains the pseudo-output commitments which
correspond to the (Cψ)i, i ∈ {1, ...,m} introduced earlier. In this case, m = 2,

20



2018 Bassam El Khoury Seguias c©

since there are 2 Vin sets.

• The ecdhInfo section contains the encoded values of the blinding factor and
amount associated with each Vout. Recall that

{ mask j = (xout)j + keccak(sharedSec), where keccak is the hash function
used by Monero, and sharedSec is a shared secret as was introduced in the
previous section.

{ amount j = (aout)j + keccak(keccak(sharedSec))

where j ∈ {1, ...t}. In this case t = 2, since there are 2 Vout’s.

• The outPk field corresponds to the output Pedersen Commitments. These are
the (Cout)j, j ∈ {1, ..., t} introduced in the previous section. Here t = 2, since
there are 2 Vout’s.

This portion contains information pertaining to the proof that transaction amounts are
confined to a specific range (i.e., [0, 2r] as was described previously). The mechanics of
Borromean signatures and range proofs were not included in this work.

Since this transaction implements RCTTypeSimple, it creates 2 amended public key
matrices PK1 and PK2 (1 for each Vin set). It then runs an MLSAG on each matrix.
As we previously saw in part 7 of this series, an MLSAG signature issued by signer π on
message m and public key matrix PKi is of the form:

σπ(m,PKi) = (I1π, ..., I
m
π , c1, r

1
1, ..., r

m
1 , ..., r

1
n, ..., r

m
n )

In this case m = 2 (since the matrix has 2 rows) and n = 5 (since the mixin count is
equal to 4). Each of the 2 signatures will then be of the form:

21



2018 Bassam El Khoury Seguias c©

σπ(m,PKi) = (I1π, I
2
π, c1, r

1
1, r

2
1, ..., r

1
5, r

2
5)

• The ss values correspond to the rji ’s where for example in the first MLSAG
signature, [”d9dd...8409”, ”8443...b1dc”] corresponds to [r11, r

2
1].

• The cc value corresponds to c1 that appears in the MLSAG signature

References

[1] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. Stanford, 2016.

[2] knaccc. What is the transaction id.
https://monero.stackexchange.com/questions/5660/what-is-the-transaction-id-and-
how-its-calculated.

[3] G. Maxwell and A. Poelstra. Borromean ring signatures. -, 2015.

[4] Monero. rctops.cpp.
https://github.com/monero-project/monero/blob/master/src/ringct/rctOps.cpp.

[5] Monero. rctops.h.
https://github.com/monero-project/monero/blob/master/src/ringct/rctOps.h.

[6] Monero. rctsigs.cpp.
https://github.com/monero-project/monero/blob/master/src/ringct/rctSigs.cpp.

[7] Monero. rcttypes.cpp.
https://github.com/monero-project/monero/blob/master/src/ringct/rctTypes.cpp.

[8] Monero. rcttypes.h.
https://github.com/monero-project/monero/blob/master/src/ringct/rctTypes.h.

[9] S. Noether and A. Mackenzie. Ring confidential transactions. Monero Research Lab,
2016.

22


