
Monero’s Building Blocks
Part 6 of 10 – Linkable Spontaneous Anonymous

Group (LSAG) signature scheme

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

ETH: 0xb79Fb9194C8Cc6221368bb70976e18609Ab9AcA8

March 29, 2018

1 Introduction

For a given ring size n, Cryptonote’s original scheme (as introduced in part 5), generates
signatures of the form (I, c1, .., cn, r1, .., rn) consisting of (2n+ 1) arguments. It turns out
that a more efficient scheme initially introduce in [3] and later adapted by Adam Back
in [1] can achieve the same security properties as Cryptonote’s with (n + 2) arguments
instead (a reduction factor that tends to 2 as n tends to ∞). The scheme introduced
in [3] is known as Linkable Spontaneous Anonymous Group signature or LSAG for short.
In part 7 of this series, we will see how [4] generalizes the LSAG construct to build the
foundation of Monero’s current ringCT signature scheme.

2 The LSAG scheme

The LSAG signature introduced in [3] is built on a group E of prime order q and generator
G. Moreover, it uses 2 statistically independent ROs:

• H1 : {0, 1}∗ −→ Fq

• H2 : {0, 1}∗ −→ E

In what follows we introduce a slightly modified LSAG scheme that will allow an easier
comparison to Cryptonote’s original scheme. We carry forward all the notation used in
the Cryptonote scheme to the current LSAG definition. In particular, we let E be a large
finite group generated by the same elliptic curve introduced in part 5 (refer to the post
entitled Elliptic Curve Groups for an introduction to the topic). The curve’s equation is
given by:

E : −x2 + y2 = 1 + dx2y2

1

2018 Bassam El Khoury Seguias c©

As described in part 5, the above equation is a polynomial over Fq where q is a very
large prime and d is a pre-defined element of Fq. We simplify the notation and refer to
the group generated by this elliptic curve as E(Fq). We recall below what we observed
in part 5:

• Elements of E(Fq) are pairs (x, y) ∈ F2
q that satisfy the above equation.

• Elliptic curve groups in general and E(Fq) in particular have a well defined
addition operation that we denote by ⊕.

• E(Fq) contains a special element G (not necessarily unique) that we refer to as
the base point. The base point has order l < q, where l is a very large prime.
That means that adding G to itself l times yields the identity element e of E(Fq).
In other terms, G⊕ ...⊕G = e. We simply write l ⊗G = e (the notation ⊗ serves
as a reminder that this is scalar multiplication associated with ⊕).

• We let {G} denote the group generated by G under the ⊕ operation of E(Fq). We
also let {G}∗ ≡ {G} − e.

• Solving the Discrete Logarithm (DL) problem on {G}∗ (and more generally on
E(Fq)) is thought to be intractable.

With a slight divergence from [3], we first introduce a hash function HT before we
define H2. The reason will become clearer in section 4 when we build the signing
simulator to prove LSAG’s resilience against EFACM.

• H1 : {0, 1}∗ −→ Fq

• HT : {G}∗ −→ F∗l × {G}∗

HT takes an element s ∈ {G}∗ and outputs a tuple (vs, vs ⊗G) ∈ F∗l × {G}∗.
Here vs is a random element chosen according to a uniform distribution over F∗l .
We then let H2(s) ≡ vs ⊗G. So H2 : {G}∗ −→ {G}∗, takes an element s ∈ {G}∗
and returns an element vs ⊗G ∈ {G}∗ where vs is randomly chosen in F∗l .

Note that [3] defines H2 as a map from {0, 1}∗ to E ≡ E(Fq). Here we restricted
the domain and the range to {G}∗ instead. This is because in this version of
LSAG, H2 is strictly applied to public keys as opposed to any element of {0, 1}∗.
Public keys are elements of E(Fq) that are scalar multiples of the base point G.
Moreover, the scalar is never equal to order(G) = l (we impose this constraint
when we introduce the key generation algorithm G). We are then justified in
restricting the domain to {G}∗. The range is arbitrarily defined to be {G}∗, which
is permissible since it preserves the injective nature of the map.

The scheme is defined by a set of 4 algorithms:

• The key generation algorithm G. On input 1k (k is the security parameter
that by design we request to satisfy k < log2|{G}∗| = log2(l − 1)), it produces a
pair (sk, pk) ≡ (x, y) of matching secret and public keys. x is randomly chosen in
F∗l ≡ {1, ..., l − 1}, and y is calculated as x⊗G. (Note that G and y are both
elements of {G}∗ ⊂ EC(Fq) while x is an element of F∗l ⊂ Fq.

2

2018 Bassam El Khoury Seguias c©

In addition to the (x, y) key pair, G computes I ≡ x⊗H2(y). I is known as the
key image (or tag). It is signer-specific since it depends only on the signer’s
private and public keys. It allows the ring linkability algorithm L to test for
independence between different signatures. G is modeled as a PPT Turing
machine. We observe that in [3], the key-image or tag is computed as part of the
ring signing algorithm Σ as opposed to G. We include it in G to ensure
consistency with Cryptonote’s original construct.

• The ring signing algorithm Σ. Suppose a user Aπ decides to sign a message m
on behalf of the ring of users L ≡ {A1, ..., An} 3 Aπ. Aπ has a key pair given by
(xπ, yπ) and a key-image (or tag) given by Iπ ≡ xπ ⊗H2(yπ). Σ does the following:

1. Choose random qπ ∈ {1, ..., l} ≡ Fl. Assign:

{ Lπ ≡ (qπ ⊗G)

{ Rπ ≡ (qπ ⊗H2(yπ))

{ cπ+1 ≡ H1(m,Lπ, Rπ) (mod l)

2. ∀i ∈ {π + 1, .., n, 1, .., π − 1}, choose random ri ∈ {1, ...l} ≡ Fl. Assign:

{ Li ≡ (ri ⊗G) ⊕ (ci ⊗ yi)
{ Ri ≡ (ri ⊗H2(yi)) ⊕ (ci ⊗ Iπ)

{ ci+1 ≡ H1(m,Li, Ri) (mod l)

where cn+1 ≡ c1

3. Set rπ ≡ qπ − cπxπ (mod l) . Here cπxπ denotes regular scalar multiplication
in modulo l arithmetic.

Σ outputs a signature σπ(m,L) ≡ (Iπ, c1, r1, .., rn). Σ is a PPT algorithm.

• The ring verification algorithm V . Given a ring signature σ, a message m,
and the set {y1, .., yn} of public keys of the ring members:

– (Verification equations #1 to #3n): let c′1 = c1. ∀i ∈ {1, ..., n},V assigns

{ L′i ≡ (ri ⊗G) ⊕ (c′i ⊗ yi)
{ R′i ≡ (ri ⊗H2(yi)) ⊕ (c′i ⊗ Iπ)

{ c′i+1 ≡ H1(m,L′i, R
′
i) (mod l)

– (Verification equation #(3n+ 1)): V checks whether

{ c1 = c′n+1, where c′n+1 ≡ H1(m,L′n, R
′
n) (mod l)

If equality holds, the signature is valid and V outputs True. Otherwise, it outputs
False. V is a deterministic algorithm.

• The ring linkability algorithm L. It takes a V-verified valid signature
σπ(m,L). It checks if the key-image Iπ was used in the past by comparing it to
previous key-images stored in a set I. If a match is found, then with
overwhelming probability the 2 signatures were produced by the same key pair (as
will be justified when we prove the exculpability of LSAG in section 5 below), and

3

2018 Bassam El Khoury Seguias c©

L outputs Linked. Otherwise, its key-image is added to I and L outputs
Independent.

3 Security analysis - Correctness

Let σπ(m,L) ≡ (Iπ, c1, r1, ..., rn) be a Σ-generated signature. Without loss of generality,
assume 1 < π ≤ n. Then ∀i, 1 ≤ i < π, we have the following implication:

If {(c′i = ci) ∩ (L′i = Li) ∩ (R′i = Ri)}, then:

{ c′i+1 = H1(m,L′i, R
′
i) (mod l) = H1(m,Li, Ri) (mod l) = ci+1

{ L′i+1 ≡ (ri+1 ⊗G) ⊕ (c′i+1 ⊗ yi+1) = (ri+1 ⊗G) ⊕ (ci+1 ⊗ yi+1) = Li+1

{ R′i+1 ≡ (ri+1 ⊗H2(yi+1)) ⊕ (c′i+1 ⊗ Iπ) = (ri+1 ⊗H2(yi+1)) ⊕ (ci+1 ⊗ Iπ) = Ri+1

Recall that c′1 = c1 (by design of V) and so L′1 = L1 and R′1 = R1. We therefore conclude
by induction on c′i that ∀i 1 ≤ i ≤ π, c′i = ci. In particular, c′π = cπ. This implies:

{ L′π = (rπ ⊗G) ⊕ (c′π ⊗ yπ) = ((qπ − cπxπ)⊗G) ⊕ (cπ ⊗ yπ) = qπ ⊗G = Lπ

{ R′π = (rπ ⊗H2(yπ)) ⊕ (c′π ⊗ Iπ) = ((qπ − cπxπ)⊗H2(yπ)) ⊕ (cπ ⊗ Iπ) =
qπ ⊗H2(yπ) = Rπ

We can then invoke a similar induction argument on c′i as the one stated earlier, but
this time for π ≤ i ≤ n. We therefore conclude that:

c1 ≡ cn+1 ≡ H1(m,Ln, Rn) (mod l) (by design of Σ)

= H1(m,L′n, R
′
n) (mod l) (by induction proof showing that L′n = Ln and R′n = Rn)

Subsequently, any Σ-generated signature will satisfy V ’s verification test.

4 Security analysis - Unforgeability vis-a-vis

EFACM

For unforgeability proofs, we follow the 5-step approach outlined earlier in part 1.
(Recall that for ring signatures, we prove resilience against EFACM with respect to a
fixed ring attack as described in part 3 of this series).

Step 1 : To prove that this scheme is secure against EFACM in the RO model, we
proceed by contradiction and assume that there exists a PPT adversary A such that:

Pω,r,H1,HT [A(ω)H1,HT ,ΣH1,HT (r) succeeds in EFACM] = ε(k), for ε non-negligible in k.

4

2018 Bassam El Khoury Seguias c©

Step 2 : Next, we build a simulator S(r′) such that it:

• Does not have access to the private key of any signer.

• Has the same range as the original signing algorithm Σ (i.e., they output
signatures taken from the same pool of potential signatures over all possible
choices of RO functions and random tapes r′ and r).

• Has indistinguishable probability distribution from that of Σ over this range.

Original Signer Σ(r)

Fixed L ≡ {y1, ., yn}xπ Iπm

Choose rand qπ ∈ {1, ..., l} ≡ Fl.
Set Lπ ≡ (qπ ⊗G)

Calculate HT (yπ) = (vπ,H2(yπ))
(rand vπ in F∗l ,H2(yπ) ≡ vπ ⊗G)

Set Rπ ≡ (qπ ⊗H2(yπ))
Set

cπ+1 ≡ H1(m,Lπ, Rπ) (mod l)

∀i ∈ {π + 1, .., n, 1, .., π − 1}

Choose rand ri ∈ {1, ...l} ≡ Fl
Set Li ≡ (ri ⊗G)⊕ (ci ⊗ yi)

Calculate HT (yi) = (vi,H2(yi))
(rand vi in F∗l ,H2(yi) ≡ vi ⊗G)

Set Ri ≡ (ri ⊗H2(yi))⊕ (ci ⊗ Iπ)
Set ci+1 ≡ H1(m,Li, Ri) (mod l)

(where cn+1 ≡ c1)

Set rπ ≡ qπ − cπxπ (mod l)

H1

HT

output (Iπ, c1, r1, .., rn)

Verifier:
1) Let c′1 ≡ c1

2) ∀i ∈ {1, ...n}, calculate
L′i ≡ (ri ⊗G)⊕ (c′i ⊗ yi)

R′i ≡ (ri ⊗H2(yi))⊕ (c′i ⊗ Iπ)
and c′i+1 ≡ H1(m,L′i, R

′
i)

(mod l)

3) Check if
c1 = c′n+1

(≡ H1(m,L′n, R
′
n) (mod l))

Simulator S(r′) (bypasses RO H1)

Fixed L ≡ {y1, .., yn}m

Choose random π ∈ {1, .., n}
Calculate HT (yπ) = (vπ,H2(yπ))
(rand vπ in F∗l ,H2(yπ) ≡ vπ ⊗G)

Set I∼π ≡ vπ ⊗ yπ
(this implies I∼π = xπ ⊗H2(yπ))

∀i ∈ {1, .., n}
Choose random c∼i , r

∼
i ∈ Fl

Set L∼i ≡ (r∼i ⊗G)⊕ (c∼i ⊗ yi)

∀i ∈ {1, .., n}, i 6= π, calculate
HT (yi) = (vi,H2(yi))

(rand vi in F∗l ,H2(yi) ≡ vi ⊗G)

∀i ∈ {1, .., n}, Set
R∼i ≡ (r∼i ⊗H2(yi))⊕ (c∼i ⊗ Iπ)

∀i ∈ {1, .., n}, Set
H1(m,L∼i , R

∼
i) ≡ c∼i+1 (c∼n+1 ≡ c∼1)

(bypass RO H1)

HT

output (I∼π , c
∼
1 , r

∼
1 , .., r

∼
n)

Verifier:
1) Let (c∼1)′ ≡ c∼1

2) ∀i ∈ {1, .., n}, calculate
(L∼i)′ ≡ (r∼i ⊗G)⊕ ((c∼i)′ ⊗ yi)

(R∼i)′ ≡ (r∼i ⊗H2(yi))⊕ ((c∼i)′ ⊗ Iπ)
(c∼i+1)′ ≡ H1(m, (L∼i)′, (R∼i)′)

(mod l)

3) Check if
c∼1 = (c∼n+1)′

(≡ H1(m, (L∼n)′, (R∼n)′) (mod l))

5

2018 Bassam El Khoury Seguias c©

The reason we introduced HT as opposed to introducing only H2 is that the
simulator makes use of the random element vπ in order to set I∼π to the desired value.
In other words, the simulator needs to have access to the random element vπ ∈ F∗l that
is used in the calculation of H2(yπ) in order to ensure that I∼π equates to xπ ⊗H2(yπ).

By construction, the output of S will satisfy the verification equation. Moreover, it
does its own random assignments to what otherwise would be calls to RO H1 (i.e., S
bypasses RO H1). Next, note the following:

1. S does not use any private key.

2. Σ and S both have a range R ≡ {(γ, ε1, β1, ..., βn) ∈ {G}∗ × (Fl)n+1 such that
ε1 = H1(m,L′n, R

′
n) (mod l) and where L′n and R′n are calculated as follows:

• Let c′1 ≡ ε1

• ∀i ∈ {1, .., n}, compute:

{ L′i = (βi ⊗G)⊕ (c′i ⊗ yi)
{ R′i = (βi ⊗H2(yi))⊕ (c′i ⊗ γ)

{ c′i+1 = H1(m,L′i, R
′
i)

3. Σ and S have the same probability distribution over R. Indeed,
∀(γ, ε1, β1, .., βn) ∈ R, we have:

• For Σ :

P [(Iπ, c1, r1, .., rn) = (γ, ε1, β1, ..., βn)] =

PIπ∈{G}∗, c1∈Fl, ri∈Fl [(Iπ = γ) ∩ (c1 = ε1) ∩ (ri = βi, ∀i ∈ {1, ..., n})]

= 1
|{G}∗| × (1

l
)n+1 = 1

(l−1)×ln+1

The first factor is the probability of choosing the exact Iπ value in the set
{G}∗ that is equal to γ. The second factor is the probability of choosing the
exact n+ 1 values given by ε1 and the βi’s ∈ Fl.

• For S:

P [(I∼π , c
∼
1 , r

∼
1 , .., r

∼
n) = (γ, ε1, β1, ..., βn)] =

PI∼π ∈{G}∗, c∼1 ∈Fl, r∼i ∈Fl [(I
∼
π = γ) ∩ (c∼1 = ε1) ∩ (r∼i = βi, ∀i ∈ {1, ..., n})]

= 1
|{G}∗| × (1

l
)n+1 = 1

(l−1)×ln+1

Note that the range of I∼π is equal to {G}∗ by construction of S. And so the
first factor is the probability of choosing the exact I∼π value in the set {G}∗
that is equal to γ. The second factor is the probability of choosing the exact
n+ 1 values given by ε1 and the βi’s ∈ Fl.

6

2018 Bassam El Khoury Seguias c©

With S adequately built, we conclude that (refer to section 6 of part 1 of this series for
a justification):

Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′) succeeds in EFACM] = ε(k), for ε non-negligible in k.

Step 3 : We now show that the probability of faulty collisions is negligible (refer to
section 6 of part 1 of this series for an overview). The 2 tyes of collisions are:

• ColType 1: there exists i ∈ {1, .., n} such that a tuple (m,Li, Ri) that S encounters
– recall that S makes its own random assignment to H1(m,Li, Ri) and bypasses
RO H1 – also appears in the list of queries that A(ω) sends to RO H1. A conflict
in the 2 values will happen with overwhelming probability and the execution will
halt.

• ColType 2: there exists i, j ∈ {1, .., n} such that a tuple (m,Li, Ri) that S
encounters – recall that S makes its own random assignment to H1(m,Li, Ri) – is
the same as another tuple (m′, L′j, R

′
j) that S encountered earlier – here too, S

would have made its random assignment to H1(m′, L′j, R
′
j). Since the tuples are

identical (i.e., (m,Li, Ri) = (m′, L′j, R
′
j)), the assignments must match (i.e.,

H1(m,Li, Ri) = H1(m′, L′j, R
′
j)). However, the likelihood that the 2 are equal is

negligible. Hence they will be different with overwhelming probability and the
execution will halt.

The aforementioned collisions must be avoided. In order to do so, we first calculate the
probability of their occurence. We assume that during an EFACM attack, A(ω) can
make a maximum of Q1 queries to RO H1, a maximum of QT queries to RO HT , and a
maximum of QS queries to S(r′). Q1, QT , and QS are all assumed to be polynomial in
the security parameter k, since the adversary is modeled as a PPT Turing machine.

P [ColType 1] = P [∪all (m,Li,Ri), (i=1,..,n){(m,Li, Ri) appeared in at least one of the QS

queries to S and Q1 queries to RO H1}]

≤
∑n

i=1 P [∪all Li{Li was part of at least one of the QS queries to S and Q1 queries
to RO H1}]

≤
∑n

i=1

∑
all Li∈{G} P [∪(j=1,..,QS), (k=1,..,Q1){Li was part of at least the jth query to S

and kth queries to RO H1}]

≤
∑n

i=1

∑
all Li∈{G}

∑QS
j=1

∑Q1

k=1 P [L1 was part of at least the j
th query to S and kth

queries to RO H1]

≤
∑n

i=1

∑
all Li∈{G}

∑QS
j=1

∑Q1

k=1
1

|{G}|2 = n× |{G}| × QSQ1

|{G}|2 = n× QSQ1

|{G}| <
nQSQ1

2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

Recalling that QS and Q1 are polynomial in k, we conclude that P [ColType 1] is
negligible in k.

7

2018 Bassam El Khoury Seguias c©

Next, we compute P [ColType 2] =

P [∪all (m,Li,Ri), (i=1,..,n){(m,Li, Ri) appeared at least twice during queries to S}]

≤
∑n

i=1 P [∪all Li∈{G}{Li was part of at least 2 queries to S}]

≤
∑n

i=1

∑
Li∈{G}

(
QS
2

)
× 1
|{G}|2 < n× |{G}| ×

(
QS
2

)
× 1
|{G}|2 < n×

(
QS
2

)
× 1
|{G}| <

nQ2
S

2×2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

Recalling that QS is polynomial in k, we conclude that P [ColType 2] is negligible in k.

Putting it altogether, we find that the below quantity is negligible in k:

P [Col] = P [ColType 1 ∪ ColType 2] ≤
∑2

i=1 P [ColType i] ≤ n(
QSQ1+

Q2
S
2

2k
) ≡ δ(k)

This allows us to conclude that the below quantity is non-negligible in k (refer to
section 6 of part 1 for a justification):

Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col] ≥ ε(k)− δ(k).

Step 4 : In this step, our objective is to show that if (ω∗, r′∗,H∗1,H∗T) is a successful
tuple that generated a first EFACM forgery, then the following quantity is
non-negligible in k:

PH1 [A(ω∗)H1,H∗T ,S
HT (r′∗) succeeds in EFACM ∩ (ρα(µ~β) 6= ρ∗α(µ~β)) |

(ω∗, r′∗,H∗1,H∗T) is a succesfull first forgery, and (ρi = ρ∗i) for i ∈ {1, ...α(µ~β)− 1}]

Here α(µ~β) is an appropriate index that we will define in the proof. To further simplify
the notation, we let ρ∗i ≡ H∗1(q∗i) and ρi ≡ H1(qi) for all i ∈ 1, .., α(µ~β). (qi and q∗i
denote respectively the ith query to H1 and to H∗1).

Let’s take a closer look at Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col].

Any successful forgery (I, c1, r1, ..., rn) must pass the verification equation
c1 = H1(m,L′n, R

′
n) (mod l) where we let c′1 ≡ c1, and ∀i ∈ {1, .., n}:

{ L′i = (ri ⊗G)⊕ (c′i ⊗ yi)

{ R′i = (ri ⊗H2(yi))⊕ (c′i ⊗ I)

{ c′i+1 = H1(m,L′i, R
′
i)

We distinguish between 3 scenarios (without loss of generality, we assume that all
A-queries sent to RO H1 are distinct from each-other. Similarly, all A-queries sent to

8

2018 Bassam El Khoury Seguias c©

RO HT are distinct from each-other. This is because we can assume that A keeps a
local copy of previous query results and avoid redundant calls):

• Scenario 1: A was successful in its forgery, and

– No collisions occured, and

– ∃i ∈ {1, .., n} such that it never queried RO H1 on input (m,L′i, R
′
i).

• Scenario 2: A was successful in its forgery, and

– No collisions occured, and

– ∀i ∈ {1, .., n} it queried RO H1 on input (m,L′i, R
′
i) during execution, and

– ∃i ∈ {1, .., n} such that it queried RO HT on input yi after it had queried RO
H1 on input (m,L′i, R

′
i).

• Scenario 3: A was successful in its forgery, and

– No collisions occured, and

– ∀i ∈ {1, .., n} it queried RO H1 on input (m,L′i, R
′
i) during execution, and

– ∀i ∈ {1, .., n}, it queried RO HT on input yi before it queried RO H1 on
input (m,L′i, , R

′
i).

The probability of scenario 1 is upper-bounded by the probability that A picks c′i+1

such that it matches the value of H1(m,L′i, R
′
i). If the 2 values don’t match, then c1 will

be different than c′n+1 (by the verification algorithm V). It is upper-bounded because at
the very least, this constraint must be observed to pass the verification test. Here,
H1(m,L′i, R

′
i) is the value that RO H1 returns to V (the verification algorithm) when

verifying the validity of the forged signature. And since c′i+1 can be any value in the
range of H1 (which was defined to be Fq) we get:

P [Scenario 1] ≤ 1
q
< 1

l
= 1
|{G}| <

1
|{G}∗| ≤

1
2k

, which is negligible in k.

In scenario 2, let i ∈ {1, .., n} be an index such that A queried RO HT on input yi after
it had queried RO H1 on input (m,L′i, R

′
i). Note that during the verification process, V

will calculate R′i ≡ (ri ⊗H2(yi))⊕ (c′i ⊗ I) and hence will make a call to HT on input yi
(remember that H2 is derived from HT). The probability that the resulting R′i matches
the R′i argument previously fed to H1 is upper-bounded by 1

|{G}∗| (since the range of

H2 = |{G}∗|). Moreover, i can be any index in {1, .., n}. We get:

P [Scenario 2] ≤ n
|{G}∗| ≤

n
2k

, which is negligible in k.

So we assume that a successful forgery will likely be of the Scenario 3 type.

P [Scenario 3] =
Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col]− P [Scenario 1]

−P [Scenario 2]

≥ ε(k)− δ(k)− 1
2k
− n

2k
≡ ν(k), which is non-negligible in k

9

2018 Bassam El Khoury Seguias c©

Note that A(ω) can send queries to RO H1 and RO HT in any order it chooses to. This
gives 2 different ways of referencing the index of a particular query sent to RO H1. One
way is to count the index as it appeared in the sequence of cumulative queries sent to
both H1 and HT . In this case, indices take on values in {1, .., Q1 +QT}. The other way,
is to do the counting with respect to H1 queries only causing indices to take on values in
{1, .., Q1}. If i is the index counted in the cumulative numbering system (i.e., the former
system), we let α(i) be the equivalent index in the latter system. Clearly, α(i) ≤ i.

By definition of scenario 3, we know for a fact that ∀i ∈ {1, ..., n}, there exists an
integer li ∈ {1, ..., Q1 +QT} such that li is the index of the query (m,L′i, R

′
i). We define

Ind(ω, r′,H1,HT) to be the vector of indices (l1, ..., ln) corresponding to the queries
(m,L′i, R

′
i), i ∈ {1, ..., n} that A(ω) sends to RO H1 during execution. Here, indexing is

with respect to the cumulative numbering system. We let li =∞ if query (m,L′i, R
′
i)

was never asked by A(ω). We also define the following condition:

E ≡ {∀i ∈ {1, .., n},A(ω) queried RO HT on input yi before it queried RO H1

on input (m,L′i, R
′
i)}.

This definition allows us to build the following sets:

• S={(ω,r′,H1,HT) | A(ω)H1,HT ,S
HT (r′)succeeds in EFACM ∩ Col ∩ E ∩ maxni=1[Ind(ω,r′,H1,HT)6=∞]}

In other terms, S is the set of tuples (ω, r′,H1,HT) that yield a successful
EFACM forgery when no collisions occur, and when A(ω) queried RO H1 on
input (m,L′i, R

′
i),∀i ∈ {1, ..., n} at some point during its execution such that

condition E is met. This is none other than scenario 3.

• S~l ={(ω,r′,H1,HT) | A(ω)H1,HT ,S
HT (r′)succeeds in EFACM ∩ Col ∩ E ∩ Ind(ω,r′,H1,HT)=~l}

where

~l ∈ Nn ≡ {(l1, ., ln) | (1 ≤ li ≤ Q1 +QT) ∩ (∀i, j ∈ {1, ., n}, (i 6= j)⇒ (li 6= lj))}.

We let V(Q1+QT),n denote that the cardinality of Ln. We have

V(Q1+QT),n = (Q1 +QT).(Q1 +QT − 1)...(Q1 +QT − n+ 1).

We can see that S~l represents the set of tuples (ω, r′,H1,HT) that yield a
successful EFACM forgery when no collisions occur, and when A(ω) queried RO
H1 on all (m,L′i, R

′
i),∀i ∈ {1, ..., n} such that the index of the input query

(m,L′i, R
′
i) is equal to (~l)i (i.e., the ith component of ~l), and such that condition E

is met.

Recall that, Pω,r′,H1,HT [(ω, r′,H1,HT) ∈ S] = P [Scenario 3] ≥ ν(k), (non-negligible in
k).

Clearly, {∪~l∈Nn S~l} partitions S. So ∑
~l∈Nn

P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S] = 1.

This implies that ∃~l ∈ Nn s.t. P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S] ≥ 1
2V(Q1+QT),n

.

10

2018 Bassam El Khoury Seguias c©

If this were not the case, then one would get the following contradiction:

1 =
∑
~l ∈ Nn

P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S] < V(Q1+QT),n× 1
2V(Q1+QT),n

= 1
2
< 1.

So we introduce the set I consisting of all vectors ~l that meet the 1
2V(Q1+QT),n

threshold,

i.e.

I = {~l ∈ Nn s.t P [(ω, r′,H1,HT) ∈ S~l | (ω, r′,H1,HT) ∈ S] ≥ 1
2V(Q1+QT),n

}

We claim that P [Ind(ω, r′,H1,HT) ∈ I | (ω, r′,H1,HT) ∈ S] ≥ 1
2
.

Proof : By definition of the sets S~l, we have:

P [Ind(ω,r′,H1,HT)∈I | (ω,r′,H1,HT)∈S] =
∑
~l in I

P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S]

= 1−
∑
~u/∈I P [(ω,r′,H1,HT)∈S~u | (ω,r′,H1,HT)∈S] > 1−

∑
~u/∈I

1
2V(Q1+QT)

> 1−
V(Q1+QT),n

2V(Q1+QT),n
= 1

2

The next step is to apply the splitting lemma to each S~l,
~l ∈ I. First note that:

Pω,r′,H1,HT [(ω, r′,H1,HT) ∈ S~l] = Pω,r′,H1,HT [(ω, r′,H1,HT) ∈ (S~l ∩ S)]

= P [(ω, r′,H1,HT) ∈ S~l | (ω, r′,H1,HT) ∈ S] × Pω,r′,H1,HT [(ω, r′,H1,HT) ∈ S]

≥ 1
2V(Q1+QT),n

× ν(k)

Let µ~l ≡ max{(~l)1, ..., (~l)n}. Referring to the notation used in the splitting lemma
(section 7 of part 1), we let:

{ A ≡ S~l

{ X ≡ (ω, r′, ρ1, ..., ρα(µ~l)−1,HT)

{ Y ≡ (ρα(µ~l)
, ..., ρQ1)

{ ε ≡ ν(k)
2V(Q1+QT),n

{ α ≡ ν(k)
4V(Q1+QT),n

= ε
2

X is defined as the space of tuples of:

• All random tapes ω

• All random tapes r′

• All possibe RO H1 answers to the first (α(µ~l)− 1) queries sent by A(ω) (note the
usage of α-indexing since indexing is done with respect to RO H1 queries only)

11

2018 Bassam El Khoury Seguias c©

• All RO HT (this means all possible RO HT answers to the QT queries sent by
A(ω)).

Y is defined as the space of all possible RO H1 answers to the last (Q1 − α(µ~l) + 1)
queries sent by A(ω). (Recall that ρj ≡ H1(qj) where qj is the jth query sent to RO H1).

The splitting lemma guarantees the existence of a subset Ω~l of tuples (ω, r′,H1,HT)
such that:

• Pω,r′,H1,HT [(ω, r′,H1,HT) ∈ Ω~l] ≥
ν(k)

4V (Q1+QT),n

• ∀[(ω∼, r′∼,H∼1 ,H∼T) ≡ (ω∼, r′∼, ρ∼1 , ., ρ
∼
α(µ~l)−1, ρ

∼
α(µ~l)

, ., ρ∼Q1
,H∼T)] ∈ Ω~l, we have

PH1
[(ω∼,r′∼, ρ∼1 ,.,ρ

∼
α(µ~l

)−1
, ρα(µ~l)

,.,ρQ1
,H∼T)∈S~l | (ω∼,r′∼,H∼1 ,H∼T)∈Ω~l] ≥

ν(k)
4V(Q1+QT),n

, and so

PH1
[(ω∼,r′∼,H1,H∼T)∈S~l | (ω∼,r′∼,H∼1 ,H∼T)∈Ω~l, ρ1=ρ∼1 ,.., ρα(µ~l)−1=ρ∼

α(µ~l
)−1

)] ≥ ν(k)
4V(Q1+QT),n

• P [(ω, r′,H1,HT) ∈ Ω~l | (ω, r′,H1,HT) ∈ S~l] ≥ (ν(k)
4V(Q1,+QT),n

)/(ν(k)
2V(Q1+QT),n

) = 1
2

We would like to compute the probability of finding a 2nd successful tuple
(ω∗, r′∗,H∼1 ,H∗T) given that (ω∗, r′∗,H∗1,H∗T) was a successful 1st tuple and such that
ρ∼j = ρ∗j , ∀j ∈ {1, .., α(µ~l)− 1}. That means finding the following probability:

PH1 [(ω
∗, r′∗,H1,H∗T) ∈ S~l | (ω∗, r′∗,H∗1,H∗T) ∈ S~l, ρ1 = ρ∗1, ..., ρα(µ~l)−1 = ρ∗α(µ~l)−1].

From the splitting lemma results, we have a (non-negligible in k) lower-bound on
PH1 [(ω

∗, r′∗,H1,H∗T) ∈ S~l | (ω∗, r′∗,H∗1,H∗T) ∈ Ω~l, ρ1 = ρ∗1, ..., ρα(µ~l)−1 = ρ∗α(µ~l)−1].

Note however, that Ω~l and S~l are generally distinct sets. And so we cannot conclude
that

PH1 [(ω
∗, r′∗,H1,H∗T) ∈ S~l | (ω∗, r′∗,H∗1,H∗T) ∈ S~l, ρ1 = ρ∗1, ..., ρα(µ~l)−1 = ρ∗α(µ~l)−1]

= PH1 [(ω
∗, r′∗,H1,H∗T) ∈ S~l | (ω∗, r′∗,H∗1,H∗T) ∈ Ω~l, ρ1 = ρ∗1, ..., ρα(µ~l)−1 = ρ∗α(µ~l)−1]

and therefore we cannot conclude that the following quantity is non-negligible in k

PH1 [(ω
∗, r′∗,H1,H∗T) ∈ S~l | (ω∗, r′∗,H∗1,H∗T) ∈ S~l, ρ1 = ρ∗1, ..., ρα(µ~l)−1 = ρ∗α(µ~l)−1]

In order to show that the above quantity is non-negligible in k, we proceed differently.
Suppose we can show that the following probability is non-negligible in k:

P(ω,r′,H1,HT)[∃~β ∈ I s.t. (ω, r′,H1,HT) ∈ (Ω~β ∩ S~β)]

This would imply that with non-negligible probability, we can find a tuple that belongs
to S~β (and hence corresponds to a successful forgery) and at the same time belongs to

12

2018 Bassam El Khoury Seguias c©

Ω~β. We can then invoke the splitting lemma result just mentioned, to find a second
tuple coresponding to a second forgery and that has the desired properties.

To prove the above, we proceed as follows:

P [∃~β ∈ I s.t. (ω, r′,H1,HT) ∈ (Ω~β ∩ S~β) | (ω, r′,H1,HT) ∈ S]

= P [∪~l∈I{(ω, r′,H1,HT) ∈ (Ω~l ∩ S~l) | (ω, r′,H1,HT) ∈ S}]

=
∑

~l∈I P [(ω, r′,H1,HT) ∈ (Ω~l ∩ S~l) | (ω, r′,H1,HT) ∈ S], since the S~l’s are disjoint.

=
∑
~l∈I{ P [(ω,r′,H1,HT)∈Ω~l | (ω,r′,H1,HT)∈(S~l∩S)] × P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S] }

=
∑
~l∈I{ P [(ω,r′,H1,HT)∈Ω~l | (ω,r′,H1,HT)∈S~l] × P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S] }

≥ 1
2

∑
~l∈I P [(ω,r′,H1,HT)∈S~l | (ω,r′,H1,HT)∈S], (3rd result of splitting lemma above)

≥ 1
2
× 1

2
(by the claim proven earlier) = 1

4
.

And so we conclude that:

P(ω,r′,H1,HT)[∃~β ∈ I s.t. (ω, r′,H1,HT) ∈ (Ω~β ∩ S~β)]

= P(ω,r′,H1,HT)[∃~β ∈ I s.t. (ω, r′,H1,HT) ∈ (Ω~β ∩ S~β ∩ S)]

= P [∃~β∈I s.t. (ω,r′,H1,HT)∈(Ω~β∩S~β) | (ω,r′,H1,HT)∈S] × P(ω,r′,H1,HT)[(ω,r
′,H1,HT)∈S] ≥ ν(k)

4

which is non-negligible in k.

So let ~β be such an index and (ω∗, r′∗,H∗1,H∗T) such a tuple. From the result above, we
know that finding such a (ω∗, r′∗,H∗1,H∗T) ∈ (Ω~β ∩ S~β) can be done with non-negligible
probability. And since (Ω~β ∩ S~β) ⊂ Ω~β, we must have (ω∗, r′∗,H∗1,H∗T) ∈ Ω~β. We can

then invoke the 2nd consequence of the splitting lemma and write:

PH1 [(ω
∗, r′∗,H1,H∗T) ∈ S~β | (ω∗, r′∗,H∗1,H∗T) ∈ S~β, ρ1 = ρ∗1, .., ρα(µ~β)−1 = ρ∗α(µ~β)−1)] =

PH1
[(ω∗,r′∗,H1,H∗T)∈S~β | (ω∗,r′∗,H∗1,H∗T)∈Ω~β , ρ1=ρ∗1,..,ρα(µ~β)−1 = ρ∗

α(µ~β
)−1

)] ≥ ν(k)
4V(Q1+QT),n

We still have one last constraint to impose and that is that ρ∗α(µ~β) 6= ρα(µ~β). We show

that the following quantity is non-negligible:

PH1 [((ω
∗, r′∗,H1,H∗T) ∈ S~β) ∩ (ρα(µ~β) 6= ρ∗α(µ~β))| (ω∗, r′∗,H∗1,H∗T) ∈ S~β, ρ1 =

ρ∗1, ..., ρα(µ~β)−1 = ρ∗α(µ~β)−1)]

To prove this, we use the same technique employed in part 2 and part 4 of this series.
Note that if B and C are independent events, then we can write:

13

2018 Bassam El Khoury Seguias c©

P [A|C] = P [A ∩B|C] + P [A ∩B|C] ≤ P [A ∩B|C] + P [B|C] = P [A ∩B|C] + P [B]

And so we get P [A ∩B|C] ≥ P [A|C]− P [B].

This result allows us to write:

PH1
[((ω∗,r′∗,H1,H∗T) ∈ S~β) ∩ (ρα(µ~β) 6=ρ∗α(µ~β)

) | (ω∗,r′∗,H∗1,H∗T) ∈S~β , ρ1=ρ∗1 ..., ρα(µ~β)−1=ρ∗
α(µ~β

)−1
)]

≥ PH1
[(ω∗,r′∗,H1,H∗T) ∈ S~β | (ω∗,r′∗,H∗1,H∗T) ∈ S~β , ρ1=ρ∗1 ,..., ρα(µ~β)−1=ρ∗

α(µ~β
)−1

)] − PH1
[ρα(µ~β) = ρ∗

α(µ~β
)
]

= PH1
[(ω∗,r′∗,H1,H∗T) ∈ S~β | (ω∗,r′∗,H∗1,H∗T) ∈ Ω~β , ρ1=ρ∗1 ,..., ρα(µ~β)−1=ρ∗

α(µ~β
)−1

)] − PH1
[ρα(µ~β) = ρ∗

α(µ~β
)
]

(because we chose (ω∗, r′∗,H∗1,H∗T) ∈ Ω~β ∩ S~β)

≥ ν(k)
4V(Q1+QT),n

− 1
2k

, which is non-negligible in k.

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple

(ω∗, r′∗,H∗1,H∗T), s.t. (ω∗, r′∗,H∗1,H∗T) ∈ (Ω~β ∩ S~β) for some vector of indices ~β ∈ I.
By running A a number of times polynomial in k, we can find such a tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4V(Q1+QT),n
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼1 ,H∗T)

s.t. (ω∗, r′∗,H∼1 ,H∗T) ∈ S~β and (ρ∼1 = ρ∗1), .., (ρ∼α(µ~β)−1 = ρ∗α(µ~β)−1), (ρ∼α(µ~β) 6= ρ∗α(µ~β)).

Let (ω∗, r′∗,H∗1,H∗T) correspond to forgery σa(ma, L) ≡ (Ia, (c1)a, (r1)a, .., (rn)a), and
(ω∗, r′∗,H∼,H∗T) correspond to forgery σb(mb, L) ≡ (Ib, (c1)b, (r1)b, .., (rn)b).

Recall that α(µ~β) is the index of the last query of the form (m,L′i, R
′
i), i ∈ {1, ..., n}

that A sends to RO H1 (µ~β = maxni=1(~β)i). Since the 2 experiments corresponding to
the 2 successful tuples have:

• The same random tapes ω∗ and r′∗

• The same RO H∗T

• ROs H∗1 and H∼1 behave the same way on the first α(µ~β)− 1 queries,

we can be confident that the first α(µ~β) queries sent to the 2 ROs H∗1 and H∼1 are
identical. In other words, we have (ma, (L

′
i)a, (R

′
i)a) = (mb, (L

′
i)b, (R

′
i)b),∀i ∈ {1, ..., n}.

Without loss of generality, let (m,L′ζ , R
′
ζ), (where ζ ∈ {1, ..., n}), correspond to the last

query of this type sent to RO H1. That means that (m,L′ζ , R
′
ζ) is the µth~β query sent to

RO H1. We have:

(ma, (L
′
ζ+1)a, (R

′
ζ+1)a) = (mb, (L

′
ζ+1)b, (R

′
ζ+1)b) (where (ζ + 1) ≡ 1 whenever ζ = n)

14

2018 Bassam El Khoury Seguias c©

=⇒ (L′ζ+1)a = (L′ζ+1)b

=⇒ ((rζ+1)a ⊗G)⊕ ((c′ζ+1)a ⊗ yζ+1) = ((rζ+1)b ⊗G)⊕ ((c′ζ+1)b ⊗ yζ+1),

=⇒ xζ+1[(c′ζ+1)a − (c′ζ+1)b] = (rζ+1)b − (rζ+1)a (mod l) (by writing yζ+1 = xζ+1 ⊗G)

Moreover, we have

(c′ζ+1)a = H∗1(ma, (L
′
ζ)a, (R

′
ζ)a) (mod l) (by definition of c′ in V)

= ρ∗α(µ~β) 6= ρ∼α(µ~β) (by design of the forgery tuples)

= H∼1 (mb, (L
′
ζ)b, (R

′
ζ)b) (mod l) = (c′ζ+1)b (by definition of c′ in V)

That means that we can solve for xζ+1 =
(rζ+1)b−(rζ+1)a
(c′ζ+1)a−(c′ζ+1)b

(mod l) in polynomial time,

contradicting the intractability of DL on elliptic curve groups. We conclude that the
signature scheme is secure against EFACM in the RO model.

5 Security analysis - Exculpability

In part 5 of this series we discussed 2 different notions of exculpability. One of them
had to do with the security property of anonymity and the other with the security
property of unforgeability. Exculpability in the anonymity sense roughly meant that a
signer’s identity can not be established even if her private key gets compromised (i.e.,
no one can prove that she was the actual signer under any circumstance). This section
is concerned with the notion of exculpability from an unforgeability standpoint as
described in [2].

The setting is similar to the one previously described in part 5. Suppose (n− 1)
private keys have been compromised in an n-ring setting. Let π denote the index of the
only non-compromised private key xπ, and let Iπ denote the key-image (or tag)
associated with the key pair (xπ, yπ). We investigate whether it is likely to produce a
valid forgery with key-image Iπ. In what follows, we show that this can only happen
with negligible probability. In essence, this means that a non-compromised honest ring
member (by honest we mean a ring member that signs at most once using his private
key) does not run the risk of encountering a forged signature that carries his key-image.
In the context of Cryptonote, this implies that a non-compromised honest ring member
cannot be accused of signing twice using the same key image or tag, and hence is
exculpable.

Note that since the adversary A(ω) has access to the (n− 1) compromised private
keys, it can easily calculate their corresponding public keys. Doing so will allow it to
identify the public key yπ of the non-compromised ring member. That means that it
can determine the index π of the non-compromised member in the ring L ≡ {y1, .., yn}.
In order to prove the exculpability of LSAG, we follow an almost identical proof to that
of the previous section (i.e., unforgeability vis-a-vis EFACM) and apply the same 5-step
approach. The objective is to show that this particular type of forgery would imply the

15

2018 Bassam El Khoury Seguias c©

ability to solve the DL of yπ. The nuance resides in the specific index π for which the
DL will be solved, as opposed to any other index. This is because we assume that all
the other members are compromised and hence their DLs (i.e., private keys) are
common-knowledge.

Step 1 : We proceed by contradiction and assume that there exists a PPT adversary
A such that:

Pω,r,H1,HT [A(ω)H1,HT ,{x1,..,x̂π ,..,xn},ΣH1,HT (r) succeeds in creating a forgery σ(m,L) ≡
(Iπ, c1, r1, ..rn)] = ε(k), for ε non-negligible in k.

We refer to the event succeeds in creating a forgery σ(m,L) ≡ (Iπ, c1, r1, ..rn) as
succeeds in EFACMExπ . We re-write the above equation as:

Pω,r,H1,HT [A(ω)H1,HT ,{x1,..,x̂π ,..,xn},ΣH1,HT (r) succeeds in EFACMExπ] = ε(k), for ε
non-negligible in k.

The notation used makes it explicit that A(ω) can access the set of compromised keys
{x1, .., x̂π, .., xn} with xπ excluded. Success is defined as issuing a forged signature with
key image or tag equal to Iπ ≡ xπ ⊗H2(yπ). (Recall that H2 is derived from HT).

Step 2 : The next step consists in building a simulator S(r′) such that it:

• Does not have access to the private key of any signer.

• Has the same range as the original signing algorithm Σ (i.e., they output
signatures taken from the same pool of potential signatures over all possible
choices of RO functions and respective random tapes r′ and r).

• Has indistinguishable probability distribution from that of Σ over this range.

The simulator S(r′) is the same as the one we built in the previous section. The only
nuance is that S(r′) does not choose a random index π, since A(ω) already knows the
index of the non-compromised ring member.

Step 3 : The logical reasoning and procedure are identical to those of the previous
section. We conclude that

Pω,r,′H1,HT [A(ω)H1,HT ,{x1,..,x̂π ,..,xn},SHT (r′)succeeds in EFACMExπ ∩ Col] ≥ ε(k)− δ(k).

Step 4 : Here too, the logical reasoning and procedure are identical to those of the
previous section. In particular, we define the following sets in a similar way:

• S=

{(ω,r′,H1,HT)| A(ω)H1,HT ,{x1,..,x̂π,..,xn}, S
HT (r′)succeeds in EFACMExxπ

∩ Col∩E∩ maxni=1[Ind(ω,r′,H1,HT)6=∞]}

16

2018 Bassam El Khoury Seguias c©

• S~l=

{(ω,r′,H1,HT)| A(ω)H1,HT ,{x1,..,x̂π,..,xn}, S
HT (r′)succeeds in EFACMExxπ

∩ Col∩E∩ Ind(ω,r′,H1,HT)=~l}

and conclude that:

PH1
[((ω∗,r′∗,H1,H∗T) ∈ S~β) ∩ (ρα(µ~β) 6=ρ∗α(µ~β)

) | (ω∗,r′∗,H∗1,H∗T) ∈S~β , ρ1=ρ∗1 ..., ρα(µ~β)−1=ρ∗
α(µ~β

)−1
)]

≥ ν(k)
4V(Q1+QT),n

− 1
2k

, which is non-negligible in k.

Here α(µ~β), as before, is an appropriately defined index, ρ∗i ≡ H∗1(qi), and ρi ≡ H1(qi)

for all i ∈ 1, .., α(µ~β).(qi denotes the ith query sent to RO).

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple

(ω∗, r′∗,H∗1,H∗T), s.t. (ω∗, r′∗,H∗1,H∗T) ∈ (Ω~β ∩ S~β) for some vector of indices ~β ∈ I.
By running A a number of times polynomial in k, we can find such a tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4V(Q1+QT),n
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼1 ,H∗T)

s.t. (ω∗, r′∗,H∼1 ,H∗T) ∈ S~β and (ρ∼1 = ρ∗1), .., (ρ∼α(µ~β)−1 = ρ∗α(µ~β)−1), (ρ∼α(µ~β) 6= ρ∗α(µ~β)).

Let (ω∗, r′∗,H∗1,H∗T) correspond to forgery σa(ma, L) ≡ (Iπ, (c1)a, (r1)a, .., (rn)a), and
(ω∗, r′∗,H∼,H∗T) correspond to forgery σb(mb, L) ≡ (Iπ, (c1)b, (r1)b, .., (rn)b).

Recall that α(µ~β) is the index of the last query of the form (m,L′i, R
′
i), i ∈ {1, ..., n}

that A sends to RO H1 (µ~β = maxni=1(~β)i). Since the 2 experiments corresponding to
the 2 successful tuples have:

• The same random tapes ω∗ and r′∗

• The same RO H∗T

• ROs H∗1 and H∼1 behave the same way on the first α(µ~β)− 1 queries,

we can be confident that the first α(µ~β) queries sent to the 2 ROs H∗1 and H∼1 are
identical. In other words, we have (ma, (L

′
i)a, (R

′
i)a) = (mb, (L

′
i)b, (R

′
i)b),∀i ∈ {1, ..., n}.

=⇒ ∀i ∈ {1, .., n}, (L′i)a = (L′i)b, and (R′i)a = (R′i)b

Let R′i ≡ (R′i)a = (R′i)b, and L′i ≡ (L′i)a = (L′i)b. For each i ∈ {1, .., n}, we get 2 identical
systems of 2 equations dictated by V ’s verification computation:

First system of 2 linear equations

{ R′i = ((ri)a ⊗H2(yi))⊕ ((c′i)a ⊗ Iπ)

{ L′i = ((ri)a ⊗G)⊕ ((c′i)a ⊗ yi)
where (c′1)a ≡ (c1)a, and (c′i+1)a =
H1(ma, (L

′
i)a, (R

′
i)a) ∀i ∈ {1, ..., n}

17

2018 Bassam El Khoury Seguias c©

Second system of 2 linear equations

{ R′i = ((ri)b ⊗H2(yi))⊕ ((c′i)b ⊗ Iπ)

{ L′i = ((ri)b ⊗G)⊕ ((c′i)b ⊗ yi)

where (c′1)b ≡ (c1)b, and (c′i+1)b =
H1(mb, (L

′
i)a, (R

′
i)b) ∀i ∈ {1, ..., n}

∀i ∈ {1, .., n}, the first system is a linear system of 2 equations in variables (ri)a and
(c′i)a. Similarly, the second system is a linear system of 2 equations in variables (ri)b
and (c′i)b. The 2 systems are identical with different variable names. Hence, if
((ri)

∗
a, (c

′
i)
∗
a) is a unique solution to the first system and ((ri)

∗
b , (c

′
i)
∗
b) a unique solution to

the second, we can be confident that ((ri)
∗
a = (ri)

∗
b and (c′i)

∗
a = (c′i)

∗
b . (Note that when

we previously proved resilience against EFACM in section 4, the 2 forged signatures did
not necessarily share the same tag Iπ and so the 2 systems of linear equations would
have been different from each other). For either system to admit a unique solution, the
2 equations must be linearly independent. We re-write the 2 systems as follows:

First system of 2 linear equations

{ R′i = ((ri)a ⊗H2(yi))⊕ ((c′i)a ⊗ Iπ)

{ logG(L′i) = (ri)a + (c′i)a xi

where (c′1)a ≡ (c1)a, and (c′i+1)a =
H1(ma, (L

′
i)a, (R

′
i)a) ∀i ∈ {1, ..., n}

Second system of 2 linear equations

{ R′i = ((ri)b ⊗H2(yi))⊕ ((c′i)b ⊗ Iπ)

{ logG(L′i) = (ri)b + (c′i)b xi

where (c′1)b ≡ (c1)b, and (c′i+1)b =
H1(mb, (L

′
i)a, (R

′
i)b) ∀i ∈ {1, ..., n}

If we multiply the second equation by H2(yi) (multiplication refers to ⊗), we see that a
sufficient condition for the system to be linearly independent is to have
[xi ⊗H2(yi)] 6= Iπ ≡ [xπ ⊗H2(yπ)]. Next, we show that with overwhelming probability,
the system of linear equations is indeed independent for all i ∈ {1, .., n}, i 6= π:

• Recall that the range of H2 is {G}∗ and that the order of {G}∗ = (l − 1).

• Therefore, ∃ vi, vπ ∈ F∗l such that H2(yi) = vi ⊗G and H2(yπ) = vπ ⊗G.

• We can then re-write the sufficient condition as xivi 6= xπvπ (mod l).

• Note that given xi, xπ, and vπ, there is at most one value of vi ∈ F∗l that satisfies
xivi = xπvπ (mod l). Otherwise, we would have vi, v

′
i ∈ F∗l , vi 6= v′i (mod l), and

xivi = xπvπ = xiv
′
i. This would imply that vi ≡ v′i (mod l), a contradiction.

• Noting that each vi corresponds to a distinct H2(yi), we conclude that given xi, xπ
and H2(yπ) there is at most one H2(yi) s.t. [xi ⊗H2(yi)] = Iπ ≡ [xπ ⊗H2(yπ)].

• Since H2 is a RO outputing random values, the probability of getting the right
value of H2(yi) is ≤ 1

|{G}∗| <
1
|{G}| <

1
2k

(negligible in k).

∀i ∈ {1, .., n}, i 6= π, we therefore conclude that with overwhelming probability we have
[xi ⊗H2(yi)] 6= Iπ. We can then be confident that the linear system of 2 equations has a
unique solution. Hence, ∀i ∈ {1, .., n}, i 6= π, we have (ri)a = (ri)b, and (c′i)a = (c′i)b.

Moreover, by design of the 2 forgeries, we know that there exists one and only one
ζ ∈ {1, ..., n} (corresponding to the µth~β query sent to RO H1) that satisfies

18

2018 Bassam El Khoury Seguias c©

(c′ζ+1)a = H∗1(ma, (L
′
ζ)a, (R

′
ζ)a) (mod l) (by definition of c′ in V)

= ρ∗α(µ~β) 6= ρ∼α(µ~β) (by design of the forgery tuples)

= H∼1 (mb, (L
′
ζ)b, (R

′
ζ)b) (mod l) = (c′ζ+1)b (by definition of c′ in V)

(where (ζ + 1) ≡ 1 whenever ζ = n)

But ∀i ∈ {1, .., n}, i 6= π, we showed that with overwhelming probability (c′i)a = (c′i)b.
Therefore, it must be that (ζ + 1) = π and so (c′π)a 6= (c′π)b.

Going back to the system of 2 equations associated with i = π, we write:

(rπ)a + (c′π)a xπ = logG(L′π) = (rπ)b + (c′π)b xπ

That means that we can solve for xπ = (rπ)b−(rπ)a
(c′π)a−(c′π)b

(mod l) in polynomial time,
contradicting the intractability of DL on elliptic curve groups. We conclude that the
signature scheme is exculpable and secure against EFACMExπ in the RO model.

6 Security analysis - Anonymity

In this section, we show that the LSAG scheme satisfies the weaker anonymity
definition #2 introduced in part 3 of this series. Note that as we previously observed in
part 5, linkable signatures cannot satisfy anonymity definition #1.

More formally, let A(ω) be a PPT adversary with random tape ω that takes 4 inputs:

• Any message m.

• A ring L ≡ {y1, ...yn} that includes the public key yπ of the actual signer.

• A list Dt ≡ {x̂1, ...x̂t} of compromised private keys of ring members (0 ≤ t ≤ n).
Dt can be empty, and x̂i may be different than xi, but Dt ⊆ {x1, ..., xn}

• A valid signature σπ(m,L) on message m, ring L and actual signer private key xπ.

A(ω) outputs an index in L that it thinks is the actual signer. Definition # 2 mandates
that for any polynomial in security parameter k Q(k), we have:

1
n−t −

1
Q(k)
≤ P [A(ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] ≤ 1

n−t + 1
Q(k)

if xπ /∈ Dt and 0 ≤ t < n− 1.

P [A(ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] > 1− 1
Q(k)

if xπ ∈ Dt or t = n− 1.

In the RO model, A(ω) can send a number of queries (polynomial in k) to RO H1 and
RO HT . The probability of A’s success is computed over the distributions of ω,H1 and
HT . Making explicit the dependence on the ROs, definition # 2’s condition becomes:

19

2018 Bassam El Khoury Seguias c©

1
n−t−

1
Q(k)
≤ Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] ≤ 1

n−t+
1

Q(k)

if xπ /∈ Dt and 0 ≤ t < n− 1.

Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] > 1− 1
Q(k)

if xπ ∈ Dt or t = n− 1.

In order to prove that anonymity holds in the above sense, we proceed by contradiction
and rely on the intractability of the Decisional Diffie Hellman problem (DDH for
short). (Refer to part 5 for a discussion of DDH). We consider 3 separate cases:

• Case 1: xπ /∈ Dt and 0 ≤ t < n− 1.

Suppose that ∃ A(ω) in PPT(k) and ε(k) non-negligible in k such that

Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] > 1
n−t + ε(k)

if xπ /∈ Dt and 0 ≤ t < n− 1

Recall that since xπ /∈ Dt, one can automatically rule out all the compromised
ring members as possible signers (the logic was described in the anonymity section
of part 5). One can then limit the guessing range of the identity of the signer to
the uncompromised batch of (n− t) remaining members.

We now build M ∈ PPT(k) that colludes with A(ω) to solve the DDH problem.
M ’s input consists of 1) The tuple (α, β, γ) being tested for DDH, 2) A certain
ring size n (randomly chosen), 3) A number 0 ≤ t < n− 1 of compromised
members (randomly chosen), and 4) A message m (randomly chosen).

M outputs a tuple consisting of 1) The message m, 2) A randomly generated ring
L of size n, 3) A randomly chosen set Dt of t compromised secret keys, and 4) A
not-necessarily valid signature σπ(L,m) assigned to ring member π s.t. xπ /∈ Dt.

We let M run the following algorithm:

20

2018 Bassam El Khoury Seguias c©

(α, β, γ)n t m

Randomly choose π in {1, .., n} (index of M ’s signer).

Let π’s sk be xπ ≡ αβ, and yπ = xπ ⊗G ≡ αβ ⊗G

∀i ∈ {1, ..., n}, i 6= π, choose random xi ∈ F∗l .
Let yi = xi ⊗G. Let L = {y1, .., yn}

∀i ∈ {1, ..., n}, get HT (yi) = (vi, vi ⊗G) ≡ (vi,H2(yi)).
(Recall that vi’s are random in F∗l).

∀i ∈ {1, ..., n}, randomly choose ci, ri ∈ Fl
Calculate Li = (ri ⊗G)⊕ (ci ⊗ yi)

Calculate Ri = (ri ⊗H2(yi))⊕ (ciαβ ⊗H2(yπ))
Set H1(m,Li, Ri) ≡ ci+1 (Bypass H1)

(where cn+1 ≡ c1)

Generate Dt by randomly chosing t xi’s s.t. xπ /∈ Dt.

Set σπ(L,m) ≡ (γ ⊗H2(yπ), c1, r1, .., rn)

HT

output (m,L,Dt, σπ(L,m))

M feeds its output (m,L,Dt, σπ(L,m)) to A(ω). In order for A(ω) to use its
advantage in guessing the signer’s identity, it must be given a valid signature (i.e.,
a signature that is an element of the range of acceptable signatures over all RO
H1. For σπ(L,m) to be a valid signature, (G,α⊗G, β ⊗G, γ ⊗G) must be a
DDH instance. Indeed, let H1 be partially defined as per the design of M . We
show that for this particular H1, the signature obtained is an element of the range
of acceptable signatures. First note that:

If (γ = αβ) ∩ (c′i = ci) ∩ (L′i = Li) ∩ (R′i = Ri) then we get:

{ c′i+1 = H1(m,L′i, R
′
i) (mod l) = H1(m,Li, Ri) (mod l) = ci+1

{ L′i+1 ≡ (ri+1 ⊗G) ⊕ (c′i+1 ⊗ yi+1) = (ri+1 ⊗G) ⊕ (ci+1 ⊗ yi+1) = Li+1

{ R′i+1 ≡ (ri+1 ⊗H2(yi+1)) ⊕ (c′i+1γ ⊗H2(yπ)) =
(ri+1 ⊗H2(yi+1)) ⊕ (ci+1αβ ⊗H2(yπ)) = Ri+1

Since (G,α⊗G, β ⊗G, γ ⊗G) is a DDH instance then we necessarily have γ = αβ

Moreover, recall that c′1 = c1 (by design of V). And so L′1 = L1 and R′1 = R1. We
therefore conclude by induction on c′i that ∀i ∈ {1, .., n+ 1}, c′i = ci. In particular,
c′n+1 = cn+1 = c1. This in turn implies that σπ(L,m) is a valid signature.

On the other hand, if (G,α⊗G, β ⊗G, γ ⊗G) is not a DDH instance, then
Ri 6= R′i and with overwhelming probability σπ(L,m) is not a valid signature.

21

2018 Bassam El Khoury Seguias c©

Recall that A(ω) can send queries to H1 and HT during execution. It is important
to enforce consistency between M and A(ω)’s query results obtained from RO H1

and RO HT on the same input. There are no risks of faulty collisions in so far as
HT is concerned (by design of M). However, M bypasses RO H1 and conducts its
own backpatching to H1(m,Li, Ri), ∀i ∈ {1, ..., n}. If ∃i ∈ {1, ..., n} such that
A(ω) queries H1 on input (m,Li, Ri), then with overwhelming probability, it will
conflict with M ’s backpatched value causing the execution to halt. The
aforementioned collision must be avoided. In order to do so, we first calculate the
probability of its occurence. We assume that during execution, A(ω) can make a
maximum of Q1 queries to RO H1. Q1 is assumed to be polynomial in the security
parameter k, since the adversary is modeled as a PPT Turing machine.

P [Col] = P [∪i∈{1,...,n}, all (m,Li,Ri){(m,Li, Ri) appeared in M
and in at least one of the Q1 queries to RO H1}]

≤
∑n

i=1 P [∪all Li{Li appeared in M and was part of at least one of
the Q1 queries to RO H1}]

≤
∑n

i=1

∑
all Li∈{G} P [∪(j=1,..,Q1){Li appeared in M and was part of at least the

jth query to RO H1}]

≤
∑n

i=1

∑
all Li∈{G}

∑Q1

j=1 P [Li appeared in M and was part of at least the

jth query to RO H1]

≤
∑n

i=1

∑
all Li∈{G}

∑Q1

j=1
1

|{G}|2 = n|{G}| × Q1

|{G}|2 = nQ1

|{G}| <
nQ1

2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

and so we conclude that:

Pω,H1,HT [(AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π) ∩ Col | σπ(m,L) is valid] =

Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] −
Pω,H1,HT [(AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π) ∩ Col | σπ(m,L) is valid]

> Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] − P [Col]

> Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] − nQ1

2k

> 1
n−t + ν(k)

whenever xπ /∈ Dt and 0 ≤ t < n− 1. Here, ν(k) ≡ ε(k)− nQ1

2k
is non-negligibale in

k

After execution, A(ω) returns to M an integer 1 ≤ j ≤ n. M then outputs 1 if
j = π, or outputs 0/1 with equal probability otherwise. The following diagram

22

2018 Bassam El Khoury Seguias c©

summarizes the process:

Using the setting described above, we now calculate the probability of M guessing
whether (G,α⊗G, β ⊗G, γ ⊗G) is DDH or not. The calculation is the same as
the one previously conducted in part 5. In what follows we make use of the
following notational simplifications:

– We refer to M(α⊗G, β ⊗G, γ ⊗G) simply as M .

– We refer to AH1,HT (ω)(m,L,Dt, σπ(m,L)) simply as A(ω).

We start by noticing that

P [M = b] = P [M = b|b = 1]× P [b = 1] + P [M = b|b = 0]× P [b = 0]

= 1
2
× P [M = b|b = 1] + 1

2
× P [M = b|b = 0]

1. Case (b = 1): In this case, (G,α⊗G, β ⊗G, γ ⊗G) is a DDH instance and so
as we saw earlier, σπ(m,L) will be a valid signature. A(ω) would then use its
hypothetical advantage to guess the index of the signer among the (n− t)
non-compromised ring members. We get:

P [M = b|b = 1] ≥ P [(M = b) ∩ (Col) |b = 1] = P [(M = b) ∩ (A(ω) =
π) ∩ (Col) |b = 1]+ P [(M = b) ∩ (A(ω) 6= π) ∩ (Col)|b = 1]

= P [M = b | (b = 1), (A(ω) = π), (Col)]× P [(A(ω) = π) ∩ (Col) | (b = 1)]+
P [M = b | (b = 1), (A(ω) 6= π), (Col)]× P [(A(ω) 6= π) ∩ (Col) | (b = 1)]

= 1× P [(A(ω) = π) ∩ (Col) | (b = 1)] + 1
2
× P [(A(ω) 6= π) ∩ (Col) | (b = 1)]

(by design of M).

Since σπ(m,L) is a valid signature, we have:

23

2018 Bassam El Khoury Seguias c©

P [(A(ω) = π) ∩ (Col) | (b = 1)] > 1
n−t + ν(k), for ν non-negligible in k. Let

P [(A(ω) = π) ∩ (Col) | (b = 1)] = 1
n−t + ζ for some ζ ≥ ν(k). Hence

P [(A(ω) 6= π) ∩ (Col) | (b = 1)] = 1− 1
n−t − ζ. We get:

P [M = b|b = 1] ≥ 1× (1
n−t + ζ) + 1

2
× (1− 1

n−t − ζ)

= 1
2

+ 1
2(n−t) + ζ

2
≥ 1

2
+ 1

2(n−t) + ν(k)
2

2. Case (b = 0): In this case, we do not know if (G,α⊗G, β ⊗G, γ ⊗G) is a
DDH instance or not, and hence can not be sure whether σπ(m,L) is a valid
signature. Consequently, A(ω) can no longer use its advantage in guessing
the index of the signer, because this advantage works only when it is fed a
valid signature. We get:

P [M = b|b = 0] ≥ P [(M = b) ∩ (Col) |b = 0] = P [(M = b) ∩ (A(ω) =
π) ∩ (Col) |b = 0]+ P [(M = b) ∩ (A(ω) 6= π) ∩ (Col) |b = 0]

= P [M = b | (b = 0), (A(ω) = π), (Col)]× P [(A(ω) = π) ∩ (Col) | (b = 0)]+
P [M = b | (b = 0), (A(ω) 6= π), (Col)]× P [(A(ω) 6= π) ∩ (Col) | (b = 0)]

= 0× P [(A(ω) = π) ∩ (Col) | (b = 0)] + 1
2
× P [(A(ω) 6= π) ∩ (Col) | (b = 0)]

(by design of M).

and since A(ω) can no longer use its advantage to guess the index of the
signer, the best thing it can do is random guessing among non-compromised
members. Hence P [(A(ω) = π) ∩ (Col) | (b = 0)] = 1

n−t , and

P [(A(ω) 6= π) ∩ (Col) | (b = 0)] = 1− 1
n−t . We get:

P [M = b|b = 0] ≥ 0× (1
n−t) + 1

2
× (1− 1

n−t) = 1
2
− 1

2(n−t)

Putting it altogether, we conclude that:

P [M = b] ≥ 1
2
× (1

2
+ 1

2(n−t) + ν(k)
2

) + 1
2
× (1

2
− 1

2(n−t)) = 1
2

+ ν(k)
4

Since ν(k) is non-negligible in k, the above probability outperforms random
guessing. This contradicts the intractability of DDH. Similarly, we can show
Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π] | σπ(m,L) is valid] is also bounded
from below. We finally conclude that for any polynomial Q(k):

1
n−t −

1
Q(k)
≤ Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,L)) = π | σπ(m,L) is valid] ≤

1
n−t + 1

Q(k)
, if xπ /∈ Dt and 0 ≤ t < n− 1.

• Case 2: xπ /∈ Dt and t = n− 1.

In this case, A(ω) can check if Iπ (the key-image or tag of σπ(m,L)) matches any
of the compromised tags x̂i ⊗H2(x̂i ⊗G), for i ∈ {1, .., t = (n− 1)}. With

24

2018 Bassam El Khoury Seguias c©

overwhelming probability, none of them will match since we proved that the
scheme is exculpable and so no one can forge a signature with a tag of a
non-compromised member. Proceeding by elimination, A(ω) can then conclude
that the signer is π.

• Case 3: xπ ∈ Dt.

In this case, A(ω) can check which of the compromised tags x̂i ⊗H2(x̂i ⊗G)
(i ∈ {1, .., t}) matches Iπ (the key-image or tag of σπ(m,L)). Only one of them
will match (due to exculpability), subsequently revealing the identity of the signer.

7 Security analysis - Linkability

Recall that the linkability property means that if a secret key is used to issue more
than one signature, then the resulting signatures will be linked and flagged by L (the
linkability algorithm).

We proved in part 5 of this series that a signature scheme is linkable if and only if
∀n ∈ {1, .., l − 1},∀L ≡ {y1, .., yn} a ring of n members, it is not possible to produce
(n+ 1) valid signatures with pairwise different key-images such that all of them get
labeled independent by L.

To prove that the LSAG scheme is linkable we follow a reductio ad absurdum approach,
similar to the one described in part 5 of this series:

• Assume that the LSAG scheme is not linkable.

• The equivalence above would imply that ∃L ≡ {y1, .., yn} such that it can produce
(n+ 1) valid signatures with pairwise different key-images
(i.e.,∀i, j ∈ {1, .., n}, i 6= j ⇒ (Ii ≡ xi ⊗H2(yi)) 6= (Ij ≡ xj ⊗H2(yj))), and such
that all of them get labeled independent by L.

• This means that there must exist a signature (from the set of (n+ 1) valid
signatures) with key-image Iδ such that ∀i ∈ {1, .., n}, Iδ 6= Ii ≡ xi ⊗H2(yi).
Denote this signature by σδ ≡ (Iδ, c1, r1, .., rn).

• When verifying the validity of σδ, V will first compute the following:

– c′1 ≡ c1

– for all i ∈ {1, .., n}:
{ L′i = (ri ⊗G)⊕ (c′i ⊗ yi)
{ R′i = (ri ⊗H2(yi))⊕ (c′i ⊗ Iδ)
{ c′i+1 = H1(m,L′i, R

′
i)

• ∀i ∈ {1, .., n}, the system of 2 equations given by L′i and R′i can be equivalently
written as:

25

2018 Bassam El Khoury Seguias c©

{ ri + c′ixi = logG(L′i)

{ ri ⊗H2(yi))⊕ (c′i ⊗ Iδ) = R′i

For a given L′i, R
′
i, and i ∈ {1, .., n}, this constitutes a system of 2 equations in

variables ri and c′i.

• Since ∀i ∈ {1, .., n}, Iδ 6= xi ⊗H2(yi), the system of 2 equations corresponding to
each i is independent and admits a unique solution (r∗i , (c

′
i)
∗) for any given L′i, and

R′i. In particular, that means that the value c′1 ≡ c1 is well defined and equal to
(c′1)∗.

• By virtue of being a valid signature, σδ must satisfy V ’s verification equation.
More specifically, it must be that c1 = H1(m,L′n, R

′
n) (mod l). But RO H1 is

random by definition. The probability that it outputs a specific value is eqal to 1
q

(recall that the range of H1 = Fq). Since by design we have 2k < l − 1 < l < q, we
conclude that the probability that H1(m,L′n, R

′
n) (mod l) = (c′1)∗ is

upper-bounded by 1
2k

and is hence negligible. In other terms, the probability that
σδ is a valid signature is negligible.

We can then conclude that with overwhelming probability, the ring L ≡ {y1, .., yn} can
not produce (n+ 1) valid signatures with pairwise different key-images and such that all
of them get labeled independent by L. The LSAG scheme as we introdued it is hence
linkable.

References

[1] A. Back. Ring signature efficiency. https://bit.ly/2GIQ6Ag, 2015.

[2] E. Fujisaki and K. Suzuki. Traceable ring signatures. Public Key Cryptography,
pages 181–200, 2007.

[3] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups. ACISP, Lecture Notes in Computer
Science(3108):325–335, 2004.

[4] S. Noether and A. Mackenzie. Ring confidential transactions. Monero Research Lab,
2016.

26

