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1 Introduction

In the next few parts of this series, we look at various signature schemes and prove their
security in the RO model. This part is dedicated to the analysis of a generic signature
scheme introduced in [1], of which the non-interactive Schnorr scheme is an example.
The generic scheme is built around a single (sk, pk) pair. Later parts of this series will
focus on ring signature schemes. Ring signatures embed the actual signer in a ring of
other possible signers to hide her identity. We will discuss them in parts 3, 4, 5, 6, and 7.

2 Pointcheval & Stern’s generic scheme

For a given message m, our generic scheme creates a signature σ(m) ≡ (r, h, α) where
r is a random element chosen from a pre-defined set, h = H(m, r) (i.e., RO output on
query (m, r)), and α is fully determined by m, r, and h. By design, we require that the
probability of selecting any particular r be upper-bounded by 1

2k−1 for a given security
parameter k.

Schnorr ’s signature scheme is an example that fits this generic model. To see why,
recall that ΣSchnorr chooses a random commitment k ∈ Z∗q where q is a pre-defined prime
number. It then assigns r ≡ gk where g denotes a chosen generator of Z∗q. Afterwards, h
is set to H(m, r). Finally, α is calculated as k − hx where x denotes the signer’s private
key. Note that r can be any element of Z∗q and so the probability that it takes on a
specific value is equal to 1

q−1
. By design, we choose the security parameter k ≤ log2(q).

This choice of k guarantees that the aforementioned probability is upper-bounded by
1

2k−1
≤ 1

2k−1 .

3 Security analysis - Unforgeability vis-a-vis EFACM

For unforgeability proofs, we follow the 5-step approach mentioned in part 1 of this series.
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Step 1 : To prove that this generic scheme is secure against EFACM in the RO model,
we proceed by contradiction and assume that there exists a PPT adversary A such that:

Pω,r,H[A(ω)H,Σ
H(r) succeeds in EFACM ] = ε(k), for some ε non-negligible in k.

Step 2 : Next, we build a simulator S(r′) such that it:

• Does not have access to the private key of any signer.

• Has the same range as Σ (i.e., they output signatures taken from the same pool of
potential signatures over all possible choices of RO functions and respective
random tapes r and r′).

• Has indistinguishable probability distribution from that of Σ over this range .

S(r′) is specific to the particular instance of the generic scheme being used. In what
follows, we build a simulator for the case of a Schnorr signature.

Original Signer Σ(r)

x (signer’s sk) m (message)

Randomly choose k ∈ Z∗q
Assign r ≡ gk ∈ Z∗q

Send (m, r) to RO

Receive h ≡ H(m, r) ∈ Zq
Compute α ≡ k − hx ∈ Zq

H

output (r, h, α)

Verifier checks if:
1) h = H(m, r)

2) r = gαyh

Simulator S(r′) bypasses RO

y (signer’s pk) m (message)

Randomly choose k ∈ Zq
Randomly choose h∼ ∈ Zq
Assign r∼ ≡ gkyh

∼ ∈ Z∗q

Assign h to H(m, r∼)
(bypass RO)

Set α∼ ≡ k ∈ Zq

output (r∼, h∼, α∼)

Verifier checks if:
1) h∼ = H(m, r∼)
2) r∼ = gα

∼
yh
∼

By construction, the output of S will satisfy the verification equations. Moreover, it
assigns a random value for h and bypasses the RO in doing so. Next, note the following:

1. S does not use any private key.

2. Σ and S both have a range R ≡ {(ε, β, γ) ∈ (Z∗q × Zq × Zq) s.t. ε = gγ × yβ}.
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3. Σ and S have the same probability distribution over R. Indeed, ∀(ε, β, γ) ∈ R we
have:

• For Σ : P [(r, h, α) = (ε, β, γ)] = Pk 6=0,h[g
k = ε, h = β, k − hx = γ] = 1

(q−1).q
.

• For S : P [(r∼, h∼, α∼) = (ε, β, γ)] = Pr∼,h∼ [r∼ ≡ gkyh
∼

= ε, h∼ = β, α∼ ≡ k =
γ] = 1

(q−1).q
.

With S adequately built for the Schnorr scheme, we conclude that (refer to section 6 of
part 1 of this series for a justification):

Pω,r,′H[A(ω)H,S(r′) succeeds in EFACM ] = ε(k), for some ε non-negligible in k.

Step 3 : We now show that the probability of faulty collisions is negligible (refer to
section 6 of part 1 of this series for a description of collision types). The 2 tyes of
collisions fo the generic scheme are:

• ColType 1: A tuple (m, r) that S encounters – it makes its own random assignment
to H(m, r) and bypasses RO – also appears in the list of queries that A(ω) sends
to RO. A conflict in the 2 values will happen with overwhelming probability and
the execution will halt.

• ColType 2: A tuple (m, r) that S encounters – it makes its own random assignment
to H(m, r) – is the same as another tuple (m′, r′) that S encountered at an earlier
time instance – here too, S would have made its own random assignment to
H(m′, r′). Since the 2 tuples are identical (i.e., (m, r) = (m′, r′)), it must be that
the 2 random assignments match (i.e., H(m, r) = H(m′, r′)). With overwhelming
probability, the 2 values will be different and the execution will halt.

The aforementioned collisions must be avoided. In order to do so, we first calculate the
probability of their occurence. We assume that during an EFACM attack, A(ω) can
make a maximum of Q queries to RO and a maximum of QS queries to S(r′). Q and
QS are both assumed to be polynomial in the security parameter k, since the adversary
is modeled as a PPT Turing machine.

P [ColType 1] =P [∪all (m,r){(m,r) appeared in at least one of the QS queries to S and Q queries to RO}]

≤P [∪all r{r was part of at least one of the QS queries to S and Q queries to RO}]

≤
∑

all r∈Z∗q
P [∪(j=1,..,QS), (k=1,...,Q){r was part of at least the jth query to S and kth queries to RO}]

≤
∑

all r∈Z∗q
∑QS

j=1

∑Q
k=1 P [r was part of at least the jth query to S and kth queries to RO]

≤
∑

all r∈Z∗q

∑QS

j=1

∑Q
k=1( 1

q−1
)2 = (q − 1)× QSQ

(q−1)2
= QSQ

(q−1)
≤ QSQ

2k−1

Since QS and Q are polynomial in k, we conclude that P [ColType 1] is negligible in k.

Next, we compute P [ColType 2] :
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P [ColType 2] =P [∪all (m,r){(m,r) appeared at least twice in some of the queries to S}]

≤P [∪r∈Z∗q {r was part of at least 2 queries to S}]

≤
∑

r∈Z∗q

(
QS

2

)
× 1

(q−1)2
=
(
QS

2

)
× q−1

(q−1)2
= QS(QS−1)

2(q−1)
≤ Q2

S

2×2k−1

And so P [ColType 2] is also negligible in k.

We then have:

P [Col] = P [ColType 1 ∪ ColType 1] ≤ P [ColType 1] + P [ColType 2] ≤ QSQ+
Q2
S
2

2k−1 ≡ δ(k)

which is negligible in k. We can finally conclude (as was shown in section 6 of part 1),
that:

Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col] ≥ ε(k)− δ(k), (non-negligible in k)

Step 4 : In this step, our objective is to show that if (ω∗, r′∗,H∗) is a successful tuple
that generated a first EFACM forgery, then the following quantity is non-negligible in k:

PH[A(ω∗)H,S(r′∗) succeeds in EFACM ∩ (ρβ 6= ρ∗β) | (ω∗, r′∗,H∗) is a succesfull first
forgery, and (ρi = ρ∗i ) for i ∈ {1, ...β − 1}]

Here β is an appropriate index that we will define in the proof. And to further simplify
the notation, we let ρ∗i ≡ H∗(q∗i ) and ρi ≡ H(qi). (q∗i and qi denote respectively the ith

query to H∗ and H) for all i ∈ 1, ...β.

Let’s take a closer look at Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col].

Any successful forgery must pass the verification test. One of the verification equations
is to check if h = H(m, r). So we distinguish between 2 scenarios (w.l.o.g. we assume
that all A-queries sent to RO are distinct from each-other since A can keep a local copy
of previous query results and avoid redundant calls):

• Scenario 1: A was successful in its forgery, and no collisions occured, and it never
queried RO on input (m, r).

• Scenario 2: A was successful in its forgery, and no collisions occured, and it
queried RO on input (m, r) during its execution.

The probability of scenario 1 is upperbounded by the probability that A picks a value
for h that matches the value of H(m, r). Here, H(m, r) is the value that RO returns to
V (the verification algorithm) when verifying the validity of the forged signature. (It is
upper-bounded because at the very least, the constraint h = H(m, r) must be observed
for a valid signature). And since h can be any value in Zq, we get:
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P [Scenario 1] ≤ 1
q
≤ 1

2k
, which is negligible in k.

So we assume that a successful forgery will likely be of the Scenario 2 type. We have:

P [Scenario 2] = Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col]− P [Scenario 1]

≥ ε(k)− δ(k)− 1
2k
≡ ν(k), which is non-negligible in k

We then define Ind(ω, r′,H) to be the index of the query (m, r) sent by A(ω) to RO
during execution. We let Ind(ω, r′,H) =∞ if the query (m, r) was never asked by
A(ω). This definition allows us to build the following sets:

• S = {(ω, r′,H) | A(ω)H,S(r′)succeeds in EFACM ∩ Col ∩ Ind(ω, r′,H) 6=∞}

In other terms, S is the set of tuples (ω, r′,H) that yield a successful EFACM
forgery when no collisions occur, and when A(ω) queried RO on input (m, r) at
some point during its execution (i.e., scenario 2).

• Si = {(ω, r′,H) | A(ω)H,S(r′)succeeds in EFACM ∩ Col ∩ Ind(ω, r′,H) = i}

In other terms, Si is the set of tuples (ω, r′,H) that yield a successful EFACM
forgery when no collisions occur, and when the index of the A(ω)-query on input
(m, r) sent to RO is equal to i.

Recall that, Pω,r′,H[(ω, r′,H) ∈ S] = P [Scenario2] ≥ ν(k), which is non-negligible in k.

And clearly, {∪Qi=1Si} partitions S. So
∑Q

i=1 P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S] = 1.

This implies that ∃i ∈ {1, ...Q} s.t. P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S] ≥ 1
2Q

.

If this were not the case, then one would get the following contradiction:

1 =
∑Q

i=1 P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S] < Q× 1
2Q

= 1
2
< 1.

So we introduce the set I consisting of all indices that meet the 1
2Q

threshold, i.e.

I = {i ∈ {1, ...Q} | P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S] ≥ 1
2Q
}

We claim that P [Ind(ω, r′,H) ∈ I | (ω, r′,H) ∈ S] ≥ 1
2
.

Proof By definition of the sets Si we have:

P [Ind(ω, r′,H) ∈ I | (ω, r′,H) ∈ S] =
∑

i∈I P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S]

= 1−
∑

j /∈I P [(ω, r′,H) ∈ Sj | (ω, r′,H) ∈ S] > 1−
∑

j /∈I
1

2Q
> 1− Q

2Q
= 1

2
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The next step is to apply the splitting lemma to each Si, i ∈ I. First note that:

Pω,r′,H[(ω, r′,H) ∈ Si] = P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S]× Pω,r′,H[(ω, r′,H) ∈ S]

≥ 1
2Q
× ν(k)

Referring to the notation used in the splitting lemma (section 7 of part 1), we let:

A ≡ Si, X ≡ (ω, r′, ρ1, ..., ρi−1), Y ≡ (ρi, ..., ρQ), ε ≡ ν(k)
2Q

, and α ≡ ν(k)
4Q

= ε
2

X is defined as the space of tuples of all random tapes ω, all random tapes r′, and all
possibe RO answers to the first i− 1 queries sent by A(ω). Y is defined as the space of
all possible RO answers to the last (Q− i+ 1) queries sent by A(ω). (Recall that
ρi ≡ H(qi)). The splitting lemma guarantees the existence of a subset Ωi of tuples
(ω, r′,H) such that:

• Pω,r′,H[(ω, r′,H) ∈ Ωi] ≥ ν(k)
4Q

• ∀[(ω∼, r′∼,H∼) ≡ (ω∼, r′∼, ρ∼1 , ..., ρ
∼
i−1, ρ

∼
i ...ρ

∼
Q]) ∈ Ωi, we have

PH[(ω∼, r′∼, ρ∼1 , ..., ρ
∼
i−1, ρi...ρQ) ∈ Si | (ω∼, r′∼,H∼) ∈ Ωi] ≥ ν(k)

4Q
, and so

PH[(ω∼, r′∼,H) ∈ Si | (ω∼, r′∼,H∼) ∈ Ωi, ρ1 = ρ∼1 , ..., ρi−1 = ρ∼i−1)] ≥ ν(k)
4Q

• P [(ω, r′,H) ∈ Ωi | (ω, r′,H) ∈ Si] ≥ (ν(k)
4Q

)/(ν(k)
2Q

) = 1
2

We would like to compute the probability of finding a 2nd successful tuple (ω∗, r′∗,H∼)
given that (ω∗, r′∗,H∗) was a successful 1st tuple and s.t. ρ∼j = ρ∗j , j = 1, ...i− 1.
That means finding the following probability:

PH[(ω∗, r′∗,H) ∈ Si | (ω∗, r′∗,H∗) ∈ Si, ρ1 = ρ∗1, ..., ρi−1 = ρ∗i−1].

From the splitting lemma results, we have a (non-negligible in k) lower-bound on
PH[(ω∗, r′∗,H) ∈ Si | (ω∗, r′∗,H∗) ∈ Ωi, ρ1 = ρ∗1, ..., ρi−1 = ρ∗i−1].

Note however, that Ωi and Si are generally distinct sets. And so we cannot conclude
that

PH[(ω∗, r′∗,H) ∈ Si | (ω∗, r′∗,H∗) ∈ Si, ρ1 = ρ∗1, ..., ρi−1 = ρ∗i−1]

= PH[(ω∗, r′∗,H) ∈ Si | (ω∗, r′∗,H∗) ∈ Ωi, ρ1 = ρ∗1, ..., ρi−1 = ρ∗i−1]
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and therefore we cannot conclude that the following quantity is non-negligible in k

PH[(ω∗, r′∗,H) ∈ Si | (ω∗, r′∗,H∗) ∈ Si, ρ1 = ρ∗1, ..., ρi−1 = ρ∗i−1]

In order to show that the above quantity is non-negligible in k, we proceed differently.
Suppose we can show that the following probability is non-negligible in k:

P(ω,r′,H)[∃β ∈ I s.t. (ω, r′,H) ∈ (Ωβ ∩ Sβ)]

This would imply that with non-negligible probability, we can find a tuple that belongs
to Sβ (and hence corresponds to a successful forgery) and at the same time belongs to
Ωβ. We can then invoke the splitting lemma result just mentioned, to find a second
tuple coresponding to a second forgery and that has the desired properties.

To prove the above, we proceed as follows:

P [∃β ∈ I s.t. (ω, r′,H) ∈ (Ωβ ∩ Sβ) | (ω, r′,H) ∈ S]

= P [∪i∈I{(ω, r′,H) ∈ (Ωi ∩ Si) | (ω, r′,H) ∈ S}]

=
∑

i∈I P [(ω, r′,H) ∈ (Ωi ∩ Si) | (ω, r′,H) ∈ S], since the Si’s are disjoint.

=∑
i∈I{P [(ω, r′,H) ∈ Ωi | (ω, r′,H) ∈ Si]× P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S]}

≥ 1
2

∑
i∈I P [(ω, r′,H) ∈ Si | (ω, r′,H) ∈ S], (3rd result of splitting lemma above)

≥ 1
2
× 1

2
(by the claim proven earlier) = 1

4
.

And so we conclude that:

P(ω,r′,H)[∃β ∈ I s.t. (ω, r′,H) ∈ (Ωβ ∩ Sβ)]

= P [∃β ∈ I s.t. (ω, r′,H) ∈ (Ωβ ∩ Sβ) | (ω, r′,H) ∈ S]× P(ω,r′,H)[(ω, r
′,H) ∈ S]

≥ ν(k)
4

, which is non-negligible in k.

So let β be such an index and (ω∗, r′∗,H∗) such a tuple. From the result above, we
know that finding such a (ω∗, r′∗,H∗) ∈ (Ωβ ∩ Sβ) can be done with non-negligible
probability. And since (Ωβ ∩ Sβ) ⊂ Ωβ, we must have (ω∗, r′∗,H∗) ∈ Ωβ. We can then
invoke the 2nd consequence of the splitting lemma, and write:

PH[(ω∗, r′∗,H) ∈ Sβ | (ω∗, r′∗,H∗) ∈ Sβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)] =

PH[(ω∗, r′∗,H) ∈ Sβ | (ω∗, r′∗,H∗) ∈ Ωβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)] ≥ ν(k)
4Q

We still have one last constraint to impose and that is that ρ∗β 6= ρ∼β . We show that the
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following quantity is non-negligible:

PH[((ω∗, r′∗,H) ∈ Sβ) ∩ (ρβ 6= ρ∗β)| (ω∗, r′∗,H∗) ∈ Sβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)]

To prove this, note that if B and C are independent events, then we can write:

P [A|C] = P [A ∩B|C] + P [A ∩B|C] ≤ P [A ∩B|C] + P [B|C] = P [A ∩B|C] + P [B]

And so we get P [A ∩B|C] ≥ P [A|C]− P [B]. This results allows us to write:

PH[((ω∗, r′∗,H) ∈ Sβ) ∩ (ρβ 6= ρ∗β)| (ω∗, r′∗,H∗) ∈ Sβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)]

≥ PH[(ω∗, r′∗,H) ∈ Sβ| (ω∗, r′∗,H∗) ∈ Sβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)]− PH[ρβ = ρ∗β]

= PH[(ω∗, r′∗,H) ∈ Sβ| (ω∗, r′∗,H∗) ∈ Ωβ, ρ1 = ρ∗1, ..., ρβ−1 = ρ∗β−1)]− PH[ρβ = ρ∗β]

(because we chose (ω∗, r′∗,H∗) ∈ Ωβ ∩ Sβ)

≥ ν(k)
4Q
− 1

2k
, which is non-negligible in k.

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple
(ω∗, r′∗,H∗), s.t. (ω∗, r′∗,H∗) ∈ (Ωβ ∩ Sβ) for some index β ∈ I. So by running A
a number of times polynomial in k, we can confidently find such a tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4Q
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼) such that

(ω∗, r′∗,H∼) ∈ Sβ and (ρ∼1 = ρ∗1), ..., (ρ∼β−1 = ρ∗β−1), but (ρ∼β 6= ρ∗β).

W.l.o.g, let (ω∗, r′∗,H∗) correspond to σforge(m1) ≡ (r1, h1, α1), and (ω∗, r′∗,H∼)
correspond to σforge(m2) ≡ (r2, h2, α2).

Recall that β is the index of the query (m1, r1) that A sends to the RO. Since the 2
experiments corresponding to the 2 successful tuples have the same random tapes ω∗

and r′∗, and since the 2 corresponding ROs H∗ and H∼ behave the same way on the
first β − 1 queries, we can be confident that the first β queries sent to the 2 ROs are
identical. In particular the two βth queries are the same (i.e., (m1, r1) = (m2, r2)).
Moreover by design, h1 = H∗(m1, r1) = ρ∗β 6= ρ∼β = H∼(m1, r1) = h2.

So we have 2 successful forgeries σforge(m1) ≡ (r1, h1, α1) and σforge(m1) ≡ (r1, h2, α2),
with h1 6= h2. Since both are valid signatures, they must satisfy the verification
equations. For the particular case of a Schnorr signature scheme , they must satisfy the
following 2 equations (1 verification equation per signature):

• r1 = gα1yh1 , where y is the public key of the signer whose signature A is forging.

• r1 = gα2yh2 , where y is the public key of the signer whose signature A is forging.
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Writing y = gx (x is the secret key of the signer whose signature A is forging), we get:

gα1+xh1 = gα2+xh2 ⇐⇒ α1 + xh1 = α2 + xh2 −→ x = α1−α2

h2−h1 .

Since, h1 6= h2, we can solve for x (the DL of y) in polynomial time. This contradicts the
intractability of DL on multiplicative cyclic groups and we conclude that our signature
scheme (in this case the Schnorr’s scheme) is secure against EFACM in the RO model.
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