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Preface

It is our great pleasure to present the proceedings of ACISP 2021, the 26th Australasian
Conference on Information Security and Privacy, held virtually during December 1–3,
2021.

ACISP was first held at the University of Wollongong in 1996 and since then has
been organized in various cities in Australia and New Zealand — Wollongong (1996,
1999, 2003, 2008, 2012, 2014, 2018), Sydney (1997, 2001, 2004, 2010), Melbourne
(2002, 2006, 2011, 2016), Brisbane (1998, 2000, 2005, 2009, 2013, 2015), Townsville
(2007), Auckland (2017), Christchurch (2019). This annual event has gained its place
among prestigious security and privacy conferences in the world. Due to the
COVID-19 pandemic, and like last year, this year’s ACISP was a virtual event.

ACISP 2021 attracted 157 submissions. All papers were reviewed by at least three
reviewers. The double-blind review phase was followed by a fortnight-long discussion
period that generated additional comments from the Program Committee members and
the external reviewers. After the discussions, and after shepherding in a few cases, 35
papers were accepted for inclusion in the program. These 35 papers were presented
during the conference, and revised versions of these papers are included in these
proceedings. Two special sessions on Blockchains and Machine Learning Security and
Privacy were organized to encourage researchers to participate in these cutting-edge
areas.

Among the accepted papers, the paper with the highest weighted review mark
received the Best Paper Award: Concise Mercurial Subvector Commitments: Defini-
tions and Constructions by Yannan Li, Willy Susilo, Guomin Yang, Tran Viet Xuan
Phuong, Yong Yu, and Dongxi Liu.

The conference would not have been possible without the hard work of the 60
Program Committee members from 18 different countries and the 126 external
reviewers, who took part in the process of reviewing and subsequent discussions. We
take this opportunity to thank the Program Committee members and the external
reviewers for their tremendous job resulting in this year’s program. It has been an
honour to work with them. We would also like to express our appreciation to Springer
for their active cooperation and timely production of these conference proceedings. In
addition to the technical talks, the program included keynote talks and a panel
discussion.

Finally, we would like to thank all the authors who submitted their work to ACISP
2021, and all the information security and privacy practitioners and enthusiasts who
attended the event. Without your spirited participation, the conference would not be a
success.

December 2021 Joonsang Baek
Sushmita Ruj
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Leakage Resilient Cheating Detectable
Secret Sharing Schemes

Sabyasachi Dutta(B) and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Calgary, Canada
{sabyasachi.dutta,rei}@ucalgary.ca

Abstract. A secret sharing scheme generates shares of a secret that
will be distributed among a set of participants such that the shares of
qualified subsets of participants can reconstruct the secret, and shares of
non-qualified subsets leak no information about the secret. Secret shar-
ing is a fundamental cryptographic primitive in multiparty computa-
tion, threshold cryptography, and secure distributed systems. Leakage
resilient secret sharing models side channel leakages from all the shares
to the adversary, rendering the adversary more powerful. In CRYPTO’19
Srinivasan and Vasudevan (SV) proposed compilers that convert a secret
sharing for a general access structure to a leakage resilient secret shar-
ing for the same access structure in two leakage models: local leakage
and strong local leakage. In this paper we consider cheater detectable
secret sharing that provides security against active (cheating) attackers
that modify their controlled shares with the goal of modifying the recon-
structed secret. We extend the SV compilers to convert a linear secret
sharing for a general access structure to a cheater detectable secret shar-
ing for the same access structure when the adversary has access to the
shares of a non-qualified subset and the leaked information from all other
shares. Our extensions add a precoding step to the SV compilers that
use Algebraic Manipulation Detection (AMD) codes, and work for both
well established models of cheater detection known as OKS and CDV
models, using weak and strong AMD codes, respectively. To prove our
results we formalize two security notions for leakage resilient cheating
detectable secret sharing, and prove relation between them, which can
be of independent interest. We discuss directions for future work.

Keywords: Secret sharing · Leakage · Extractors · AMD codes ·
Cheating

1 Introduction

Secret sharing (SS) was independently proposed by Blakely [10] and Shamir [38],
and forms a fundamental block of several important cryptographic computation
systems such as threshold cryptography [17,37], multiparty computation [8,22],
and their applications to securing decentralized systems e.g. securing wallets
[21], and storage systems [36] as well as transactions with complex authorization
c© Springer Nature Switzerland AG 2021
J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-90567-5_1
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4 S. Dutta and R. Safavi-Naini

structure. A secret sharing scheme consists of two algorithms: Share algorithm
that generates n shares of secret for n parties P = {1, 2, . . . , n}, and a Rec algo-
rithm that takes the shares of a qualified subset of parties and reconstruct the
original secret, and fails otherwise. The most widely used secret sharing scheme
is (t, n)-threshold secret sharing where any subset of at least t parties forms a
qualified subset. Shamir [38] and Blakely [10] gave efficient constructions of (t, n)-
threshold secret sharing. A secret sharing in its basic form provides correctness
that guarantees perfect recovery of the secret by any qualified subsets, and per-
fect (information theoretic) secrecy against a passive adversary that has access
to an unqualified subsets of shares. Perfect secrecy has been relaxed to statisti-
cal secrecy which requires the advantage of an adversary for distinguishing the
shares corresponding to a unqualified set of parties of two adversarially chosen
secrets to be negligible. The notion of perfect reconstructability is also relaxed
to satisfy correct recovery of the secret except with a negligible probability.

Active Adversary. Tompa and Woll [40] initiated study of secret sharing when
parties can deviate from the reconstruction protocol and showed that in Shamir’s
secret sharing a single deviating party can modify the reconstructed secret with-
out being detected, and even worse, can plan its modification such that it can
learn the correct secret, while no-one else can. They introduced cheating detec-
tion capability of secret sharing which requires arbitrary tampering of an adver-
sary with its controlled share(s) cannot result in a secret different from the
original one. That is, the reconstruction algorithm can detect an incorrectly
reconstructed secret with an overwhelming probability. Cheater detection is a
minimum correctness requirement for secret reconstruction in presence of tam-
pered shares, analogous to error detection which is the basic requirement of
reliable communication. The work of [40] has generated a long line of research in
secret sharing with security against malicious adversaries with a range of more
demanding requirements such as cheater identification [12], or less demanding
such as robustness [35] that requires the secret cannot be “destroyed” in the
sense that corruption of shares should allow the secret to remain reconstructible
from all shares. In this paper we focus on cheater detection.

Models of Cheating Detection. Cheater detection has been studied in two
related security models. In both models, adversary controls the shares of a
unqualified subset of parties. In OKS model [34]1 the adversary’s information
is limited to the shares of a non-qualified subset. A stronger adversary is consid-
ered in CDV model [13]2 where in addition to the shares of a non-qualified subset,
the adversary also knows the secret. This is a very strong adversary in terms of
available information and ability to arbitrarily modify the controlled shares, and
protection against it is the ultimate goal of cheating detection systems.

Leakage-Resilient Secret Sharing (LRSS). Leakage-resilient cryptography
[32] captures stronger adversaries that have access to the implementation of

1 The acronym is the authors’ initials.
2 The acronym is the authors’ initials.
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cryptographic systems and can partially leak secret values through side chan-
nels. Important leakage models are leakage from memory which includes bounded
retrieval model (arbitrary polynomial-time computable leakage function of the
secret key with bounded output size of this leakage function), bounded storage
model (the output length of poly-time computable leakage function is bounded
but is expressed as function of min-entropy of key), continual memory leakage
(bounded leakage at any point of time but over the time total leakage can be
unbounded); leakage from computation only and a mixture of these two models.
We refer to the survey of Kalai and Reyzin [28] and the references therein for
more elaboration on leakage-resilient cryptography.

The devastating effect of leakage in secret sharing was first implicitly observed
in a surprising result of [24] on efficient reconstruction of Reed-Solomon codes
which implied that leaking even one physical bit from all shares of a Shamir SS
over a binary (extension) field would break the secrecy property of SS in the
sense of distinguishability of two secrets.

Leakage resilience in secret sharing was first implicitly considered in [19] for
a (2, 2) secret sharing, and later defined in [23] for (t, n) threshold schemes in
the construction of non-malleable secret sharing and [9] in the context of linear
secret sharing for construction of secure multiparty computation. In all these
works the leakage is local, that is the attacker uses a vector of independently
chosen leakage functions f = (f1, f2, . . . , fn) that for each chosen j ∈ [n], the
function fj outputs the whole share sharej if j is in an unqualified set, or outputs
up to τ bits of leakage that is obtained through fj(sharej). Leakage resilience
requires that distinguishability advantage of two secrets chosen by the adversary
remains negligible given the leaked information. The model is motivated by
distributed storage systems where the leakage from each storage is independent
and adversarially chosen.

Srinivasan and Vasudevan [39] put forward a stronger notion of leakage
resilience where the leakage on the honest shares (not in the unqualified set of
shares seen by the adversary) is allowed to depend on the shares of the unquali-
fied set. This allows the adversary to choose the vector of leakage function after
learning the shares of corrupted parties. This is called strong local leakage model.

Active adversaries in leakage resilient secret sharing has been considered only
with the goal of providing non-malleability [23] for the reconstructed secret,
which requires the reconstructed secret be “independent” from the original one.
In many applications such as generating a threshold signature one needs to
detect a wrongly reconstructed secret to stop the system at the earliest time.
While non-malleability will ensure that the generated signature that results from
tampered shares of the secret key will not be verifiable and so security will be
maintained, but the signature can stay in other parts of the system and the failure
will be noticed at a later time when the signature is verified. This motivates us
to introduce the stronger security requirement of cheating detection for leakage
resilient secret sharing schemes.
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1.1 Our Work

Our main result can be stated as the following informal theorem.

Informal Theorem. There is a compiler that, given a linear secret sharing
scheme for a monotone access structure A produces a secret sharing scheme for
A that is local leakage resilient with leakage-resilience rate tending to 1, and
information rate Ω(1), and detects cheating adversaries that arbitrarily tamper
with the shares. The compiler can be adapted to work with both CDV and OKS
models of cheating. Here leakage resilient rate denotes the asymptotic fraction
of the share length that can leak to the adversary.

Outline of Our Approach. Srinivasan and Vasudevan [39] proposed a compiler
(to be denoted as SV compiler in the rest of this paper) that takes a secret
sharing for a 2-monotone general access structure and constructs an LR secret
sharing for the same access structure. They also proposed a second compiler
with similar functionality and secure against strong local leakage. Our work can
be seen as adding cheater detection property to these compilers. We describe our
results for threshold secret sharing and outline its extension to general access
structure in Sects. 4 and 4.5 respectively. SV compiler is not designed to provide
any guarantee against active adversaries. In Sect. 4.1 we show an explicit attack
(similar to Tompa and Woll’s) on the compiler output when applied to Shamir
scheme.

The basic idea of our compiler is to add a preprocessing step to SV compiler
by encoding the secret using an Algebraic Manipulation Detection (AMD) code
[16], and apply SV compiler on the AMD codeword.

AMD codes are (keyless) coding schemes that detect oblivious additive tam-
pering of a coded message: the adversary can choose an arbitrary tampering
vector x that will be added to the codeword to form the corrupted word c + x.
The adversary however does not have any access to the codeword c and the
choice of x is oblivious to c. A δ-AMD codes guarantee that any such tampering
can be detected with probability at least 1 − δ. Strong AMD codes are random-
ized codes that provide security for any message chosen by the adversary, while
weak AMD codes are deterministic codes that are used on uniformly distributed
message spaces. A systematic AMD code encodes a message m to a codeword
(m, r, f(r,m) where r is the randomness of coding, and in the case of weak AMD
codes is the empty string.

SV compiler converts a share Shi of a secret sharing scheme for access struc-
ture A and outputs a share (wi, Sh′

i ⊕ r, Si) where Sh′
i = Shi ⊕ Ext(wi, s), and

wi, r, s are random strings, Ext(wi, s) is a strong extractor, Shi is the share of the
original SS and Si’s are the shares of (r, s) using a (2, n) threshold Shamir secret
sharing. The LRRec algorithm of the compiled scheme first recovers (r, s), com-
putes Ext(wi, s) and recovers Shi, which are finally used by the Rec algorithm
of the original SS scheme to recover the secret. We require the secret sharing
that is input to the compiler to be linear, and add an AMD precoding stage
to convert a message m to a codeword AMDenc(m) which will be the input to
the SV compiled secret sharing. The intuition for using an AMD code is that
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any tampering with the compiled shares will result in ˆShi �= Shi, which if the
secret sharing is linear, will be equivalent to additive tampering of the recovered
codeword ˆAMDenc(m) and will be detected because of the security of the AMD
code.

This intuition however fails in practice because although the compiled scheme
bounds the leakage of the codeword AMDenc(m), but existence of leakage vio-
lates security model and the detection guarantee of the AMD code and so one
cannot rely on the protection of the code. Ahmadi and Safavi-Naini [3] intro-
duced leakage resilient AMD codes where the codeword is partially leaked to the
adversary. Their leakage model required min-entropy of the randomness of the
strong AMD codeword (i.e. r in (m, r, f(m, r))), or that of the message space in
weak AMD codes to remain high, given the leakage, and satisfy a lower bound.
This is necessary because AMD’s security directly relies on these entropies.

The leakage model of [3] was generalized in [31] allowing a fraction ρ of the
codeword be leaked. That is, for a codeword X of length n, the leakage to the
adversary represented by a variable Z (adversary’s information) satisfies the
lower bound H∞(X|Z) ≥ H∞(X) − ρn log q, where X ∈ Fn

q . LRSS schemes
provide “indistinguishable security”, i.e. the statistical distance between two
distributions Leak(Share(Enc(s0))) and Leak(Share(Enc(s1))) for any two secrets
s0 and s1 is bounded by a negligible quantity ε. The main challenge of the proof
of Theorem 3 is to show that the leakage of SV compiled scheme does not violate
this min-entropy bound for codeword AMDenc(m).

To express the leakage rate ρ of the AMD codeword in terms of the “mea-
sure” of secrecy of the LRSS scheme we use the average guessing probability
GP(AMDenc(M) | Z) = 2−H∞(AMDenc(M)|Z) of the encoding conditioned on the
leakage variable Z. In Sect. 3 we show that the indistinguishability based secrecy
definition in [39] implies “guessing” secrecy. This implication enables us to prove
the required bound on the leakage of the AMD codeword, and complete the proof
of Theorem 3 (in Sect. 4.2).

Cheater detection property of the SV compiler with AMD pre-coding can be
proved in OKS (the secret is uniformly distributed to the adversary) and CDV
(the secret is known to the adversary) models both, using weak AMD codes and
strong AMD codes respectively.

Efficiency. Our construction in Sect. 4.2 is efficient and achieves an information
rate Ω(1) and leakage rate of 1 which are comparable to the LRSS scheme
of [39] but is capable of detecting active tampering attack. This is because the
coding rate (ratio of message to codeword length) of strong and weak AMD codes
approaches 1 [16], and optimal constructions with very efficient computations
exist. This result also holds for LR-AMD codes because LR-AMD codes can be
constructed from AMD codes by adjusting the leakage parameters [2,3,31].

Extensions and Future Work. Due to space limitation we only consider local
leakage model; and extension to the SV strong local leakage model will be found
in the full version. Extension to general access structures is discussed in Sect. 4.5.
Leakage resilient cheater detection SS can be used to construct leakage resilient
robust secret sharing, by using the LRRec on all minimal qualified subsets until
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the correct secret is found. This is an inefficient reconstruction algorithm as
the number of minimal qualified sets could be large. Construction of LR robust
secret sharing with efficient reconstruction is an interesting direction for future
work.

1.2 Related Works

Models of cheating detection has been introduced in [11,13,34], and various
constructions have been proposed in [4,5,14,26]. None of these constructions are
designed to provide security against leakages of shares of qualified sets and do
not guarantee security in SV leakage model (local leakage and strong leakage
both).

The study of leakage resilient SS stemmed out from the code repairing appli-
cation of secret sharing (for local leakage model) by [24] and later studied in a
sequence of recent works [1,9,39]. Nielsen and Simkin [33] provided lower bounds
on share size for leakage-resilient threshold secret sharing. Kumar-Meka-Sahai
[29,30] studied an adaptive leakage model where the leakage from the shares are
modeled as the outputs of certain “bounded-collusion” protocols; and that is not
directly related to local leakage model. AMD codes were proposed in [16] and
have found many applications in [15,20,25], to name a few. Leakage-resilience
of AMD codes was first considered in [3] with follow up works [2,31] discussed
above.

2 Preliminaries

We use X to denote a random variable and x to show an instance or realization
of X.

For a random variable X with support S, the min-entropy of X is defined
as H∞(X) = min{log 1

Pr[X=s] : s ∈ S}. An (n, k)-source is a distribution on
{0, 1}n with min-entropy k.

Let X and Y denote two random variables that are defined over a set S.
The statistical distance between the two variables is defined as SD(X,Y ) =
1
2

∑
s∈S |Pr[X = s] − Pr[Y = s]|. We say X and Y are ε-close if SD(X,Y ) ≤ ε

and is denoted by X ≈ε Y . Statistical distance satisfies triangle inequality that
is, if X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2 Z.
Definition of (average) conditional min-entropy [18] is defined as follows.

Definition 1 ([18]). The average conditional min-entropy of X given W is
defined as

H̃∞(X|W ) = log
(
Ew←−W [max

x
Pr[X = x | W = w]]

)

Result: [18] If a random variable W can take at most l values, then H̃∞(X|W ) ≥
H∞(X) − log2 l.
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Definition 2 (Strong seeded extractor). A function Ext : {0, 1}n ×
{0, 1}d −→ {0, 1}m is called a strong seeded extractor for sources with min-
entropy k and error ε if for any (n, k)-source X and an independently & uni-
formly chosen random seed Ud, we must have

Ext(X,Ud)||Ud ≈ε Um||Ud,

where Um and Ud are independent. Here X||Y denotes a random variable that
is the product of X and Y .

Average case seeded extractor is defined similarly but requiring that even if source
X has average case conditional min-entropy given another random variable Z,
that is H̃∞(X|Z) > η − μ then Ext(X,Ud)||Ud ≈ε Um||Ud. The connection
between average case seeded extractor and strong seeded extractor was proved
in [18].

Result: [18] For any δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is
also a (k + log(1δ ), ε + δ)-average case strong extractor.

Definition 3 (Guessing probability [7]). For a given random variable M the
guessing probability is defined by

GP(M) = max
m

Pr(M = m) = 2−H∞(M).

Given a random variable M and a leakage variable Z, the average guessing prob-
ability is defined as

GP(M|Z) =
∑

z

Pr(Z = z) · max
m

Pr(M = m|Z = z) = 2−H̃∞(M|Z)

Secret Sharing and Cheating Detection. Consider a monotone access struc-
ture (A0, ZM ) where A0 and ZM the collections of minimal authorized sets and
maximal forbidden sets, respectively. For a (t, n)-threshold access structure any
subset of size t is a minimal qualified set and of size (t−1) is a maximal forbidden
set.

Definition 4 (Secret Sharing Scheme [6]). A secret sharing scheme S for an
access structure (A0, ZM ) consists of a pair of algorithms (Share,Rec). Share is
a probabilistic algorithm that gets as input a secret m (from a domain of secrets
S) and number of parties n, and generates n shares (sh1, . . . , shn) ←− Share(m).
Rec is a deterministic algorithm that gets as input the shares of a subset B of
parties and outputs a string. Let vB denote the restriction of a vector v to the
coordinates indexed by B. The requirements for defining a secret sharing scheme
are as follow:

1. (εc-Correctness) For every secret m ∈ S and every qualified set B ∈ A, it
must hold that Pr[Rec(Share(m)B) = m] = 1 − εc.
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2. (εs-Statistical Secrecy) For every forbidden set F ∈ ZM , for any two distinct
secrets m0 �= m1 in S and for any distinguisher D with output in {0, 1}, it
must hold that

|Pr[D(Share(m0)F ) = 1] − Pr[D(Share(m1)F ) = 1]| ≤ εs.

Cheating detectable secret sharing scheme was first defined for threshold
schemes in [40], and later formalized and studied in two related models [13,34].

Definition 5 (Cheating Detectable Secret Sharing [34]). A (k, n)-
threshold secret sharing scheme SS = (Share,Rec) consisting of share and recon-
struction algorithms such that for every secret value s in secret space S, Share(s)
outputs a vector of n shares, 	sh = (sh1, . . . , shn). Let M be the random variable
representing secret distribution over S. The scheme SS is said to be (k, n, δ)-
OKS cheating detectable if the following three conditions are satisfied.

– Perfect secrecy: for every A ⊂ {1, . . . , n} of size |A| = k − 1, the restriction
	shA to the coordinates indexed by A does not reveal information about the
secret: Pr[M = s | VA = 	shA] = Pr[M = s] for any s ∈ S. Here, VA denotes

the random variable representing joint distribution induced by 	shA on the
share space.

– Correctness: for every s ∈ S and every Q ⊂ {1, . . . , n} of size |Q| = k, it

holds that for 	sh ← Share(s) that Pr[Rec(	shQ) = s] = 1.
– Cheating detection: for s ∈ S chosen according to M, for every F ⊂ {1, . . . , n}

of size |F | = k − 1 and for any ik /∈ F , the reconstruction Rec(s̃hF , shik
) ∈

{s,⊥} except with probability δ where the modified shares corresponding to

F i.e. s̃hF only depend on 	shF .

Note 1. (i) The above definition is for any secret distribution. However, all
known constructions of secret sharing are for uniformly distributed secret. This
is often referred to as OKS.
(ii) Cheating detection in CDV model uses the same definition as above, but
for cheating detection assumes the adversary chooses the distribution, and in
particular uses a distribution with a single non-zero value.

Local leakage model and its strong version proposed in [39] are defined below.

Definition 6 (Local leakage and strong leakage [39]). Let S1 × · · ×Sn be
the domain of shares for a secret sharing scheme realizing a k-monotone access
structure A, where k-monotone means that every qualified set is of size at least
k.
Local leakage family. For any 2-monotone access structure, the family Ht,μ,
parameterized by t (size of an adversarially chosen forbidden set T ) and amount
of leakage μ from each honest share, consists of leakage functions LeakT,τ̄ where
τ̄ = (τ1, . . . , τn) such that

– |T | = t
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– τi is identity function for all i ∈ T and τj : Sj −→ {0, 1}μ for all j /∈ T .
More precisely, the function LeakT,τ̄ when given input (sh1, . . . , shn), outputs

• shi for all i ∈ T and
• μ bit leakages τj(shj) for all j ∈ {1, . . . , n} \ T .

For a (k, n)-threshold access structure |T | = t = k − 1 is an optimal choice
of parameter.
Strong local leakage family. Let 1 ≤ t ≤ t′ ≤ n and μ be natural numbers. The
parameters t, t′, μ defining a semi-local function family are adaptivity threshold,
corruption threshold, amount of leakage respectively. The family Ht,t′,μ consists
of functions hT,T ′,τ̄ (where τ̄ = (τ1, . . . , τn)) such that

– T ⊆ T ′ ⊆ {1, . . . , n}
– |T | = t and |T ′| = t′
– The function hT,T ′,τ̄ when given input (sh1, . . . , shn), outputs

• shi for all i ∈ T ′ and
• leakages τj((shi1 , . . . , shit

), shj) for all j ∈ {1, . . . , n} \ T ′ where T =
{i1, . . . , it}. That is, the leakages on the honest shares are adaptively
chosen by the adversary depending on the shares of T .

For a (k, n)-threshold scheme t′ = k − 1 and t = k − 2 are an optimal choice of
parameters for strong leakage model of [39].

The following definition of leakage-resilient secret sharing is introduced in
[23] and later used in [39].

Definition 7 (Leakage-Resilient Secret Sharing Scheme [23,39]). A
secret sharing scheme (Share,Rec) realizing a k-monotone access structure
for secret space S is said to be ε-leakage resilient against a local leak-
age family Ht,μ (resp. strong leakage family Ht,t′,μ) if for all functions
LeakT,τ̄ ∈ Ht,μ (resp. hT,T ′,τ̄ ∈ Ht,t′,μ) and for any two secrets m0,m1 ∈
S the statistical distance: SD (LeakT,τ̄ (Share(m0)), LeakT,τ̄ (Share(m1))) (resp.
SD (hT,T ′,τ̄ (Share(m0)), hT,T ′,τ̄ (Share(m1)))) is less than ε.

The leakage-resilience rate is defined as limμ→∞ μ
maxi |shi| (ratio of the number

of bits of leakage tolerated per share to the size of a share preserving the secrecy
of the scheme.

AMD Codes and its Leakage Resilience. AMD codes are defined over addi-
tive groups, with oblivious tampering in the form of a shift of the codeword. An
AMD code is said to be regular if the encoding is an one-to-one mapping from
the message space to the space of codeword.

Definition 8 (AMD code [16]).
(Strong AMD Code) Let AMDenc : Fk × F

σ −→ F
n and AMDdec : Fn −→ F

k ∪
{⊥} be a randomized coding scheme. (AMDenc,AMDdec) is a (strong) δ-AMD
code if for any message m ∈ F

k, we have Pr[AMDdec(AMDenc(m,R) + A) /∈
{m,⊥}] ≤ δ.
(Weak AMD Code) AMDenc : Fk −→ F

n and AMDdec : Fn −→ F
k ∪ {⊥} be a

deterministic coding scheme. (AMDenc,AMDdec) is a (weak) δ-AMD code if for
M uniform over Fk, we have Pr[AMDdec(AMDenc(M) + A) /∈ {M,⊥}] ≤ δ.



12 S. Dutta and R. Safavi-Naini

Note 2. An AMD code is called systematic if the message space is an additive
group and the encoding of a message m is of the AMDenc(m) = (m, r, f(r,m))
for some function f and uniformly random r chosen from a proper domain. In
case the message distribution is uniform, the random string r is replaced by
empty-string and f is only a function of message m.

We use leakage model of [2,31] to define leakage resilient AMD code.

Definition 9 (Leakage-Resilient AMD code [2,31]).
(LR-Strong AMD Code) A strong AMD coding scheme (AMDenc,AMDdec)
is a leakage-resilient strong (ρ, δ)-AMD code if for any m ∈ F

k, we have
Pr[AMDdec(AMDenc(m,R) + A(Z)) /∈ {m,⊥}] ≤ δ, where Z is a leakage vari-
able such that H∞(AMDenc(m,R)|Z) ≥ H∞(AMDenc(m,R)) − ρn log q and
A(Z) ∈ F

n is output of an arbitrary function A chosen by the adversary on
the leakage variable and q denotes the size of field F.
(LR-Weak AMD Code) A weak AMD code (AMDenc,AMDdec) is a leakage-
resilient weak (ρ, δ)-AMD code if for M uniform over F

k, we have
Pr[AMDdec(AMDenc(M) + A(Z)) /∈ {M,⊥}] ≤ δ, where Z is a leakage variable
such that H∞(AMDenc(M)|Z) ≥ H∞(AMDenc(M)) − ρn log q and A(Z) ∈ F

n

is output of an arbitrary function A chosen by the adversary on the leakage
variable and q denotes the size of field F.

The following results are proved in Aggarwal et al. [2].

Theorem 1 (weak-AMD implies LR-weak-AMD [2]). For any δ > 0,
0 < ρ < 1, any regular coding scheme AMDenc : Fk −→ F

n , AMDdec : Fn −→
F

k ∪ {⊥} that is a weak (0, δ)-AMD code is also a weak (ρ, qρnδ)-AMD code.
In particular, over a finite field F with characteristic greater than 2, there
exists (AMDenc0,AMDdec0) which is a leakage-resilient weak (ρ, q2ρ−1)-AMD
code provided 0 < ρ < 1

2 . The encoding algorithm is defined as follows:
for all m ∈ F

k, AMDenc0(m) := (m,
∑k

i=1 m2
i )

Theorem 2 (strong-AMD implies LR-strong-AMD [2]). For any δ > 0,
0 < ρ < 1, any regular coding scheme AMDenc : Fk × F

σ −→ F
n , AMDdec :

F
n −→ F

k ∪{⊥} that is a strong (0, δ)-AMD code is also a strong (ρ, qρnδ)-AMD
code.
In particular, there exists (AMDenc,AMDdec) which is a leakage-resilient strong
(ρ, 2 · q3ρ−1)-AMD code provided 0 < ρ < 1

3 . The encoding algorithm is defined
as follows: for all m ∈ F, AMDenc(m) := (m,R,R3 + mR)

3 Secrecy Notions in Leakage-Resilient Secret Sharing

Srinivasan et al.’s definition of secrecy of LRSS (as well as previous works)
is in terms of indistinshuiablity security. Using the approach in [7], we define
advantage of the adversary in breaking the “secrecy condition” as follows.
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Distinguishing Secrecy (ds):

Advds(LRShare, Leak) = max
A,m0,m1

2Pr[A(m0,m1, Leak(LRShare(mb))) = b]) − 1 (1)

= max
m0,m1

SD[Leak(LRShare(m0)); Leak(LRShare(m1))] (2)

where maximization is over all secrets m0,m1 and all adversaries, and b denotes
is a random variable uniformly distributed over {0, 1}. Here Pr[A(m0,m1,
Leak(LRShare(mb))) = b] is the probability that adversary A, given two dis-
tinct secrets m0,m1 of same length and leakages obtained from the shares of
mb, correctly identifies the random challenge bit b. A secret sharing scheme is
distinguishably secure if Advds(LRShare, Leak) ≤ ε.

A second notion of security is in terms of guessing probability defined as
below.

Guessing Probability (GP) Definition of Semantic Secrecy (SS): For
any message distribution M over S, we consider the following advantage of any
adversary.

Advss(LRShare, Leak)

= max
M

(

max
A

Pr[A(Leak(LRShare(M))) = M] − max
Sim

Pr[Sim(|S|) = M]
)

The definition uses the maximum (over all message spaces and all adversaries)
difference between the output of an adversary A with access to the leaked infor-
mation Leak(LRShare(M)) and the “best” simulator Sim of A, with access to the
message length only.

It is mentioned in [7] that the above advantage is same as the average guessing
probability

Advgp(LRShare, Leak) = sup
M

(GP(M | Leak(LRShare(M))) − GP(M)) (3)

This captures the intuition that any adversary (with the leakage information)
cannot guess the underlying secret with probability any better than what the
message distribution does. We use this last formulation to show that in secret
sharing distinguishability based secrecy implies guessing secrecy.

Distinguishability-Secrecy Implies Semantic-Secrecy. The following
proposition shows guessing security for leakage-resilient SSS follows from dis-
tinguisability security. The proof is similar to Theorem 4.1 in [7].

Proposition 1. If an LRSS is distinguishably secure in the sense of Definition 7
then it is also semantically secure.

We want to show that if Advds(LRShare, Leak) ≤ ε then Advss(LRShare, Leak) ≤
ε. We prove by the method of contradiction.
Suppose there exists an adversary Ass who has advantage strictly greater than
ε. We will construct an Ads with the help of Ass.
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– Ads specifies M0,M1 and obtains Leak(LRShare(Mb))
– Ads passes Leak(LRShare(Mb)) to Ass

– Ads obtains a value v from Ass

• Ads calculate f(M1) = M1 (f is the identity function) and checks if
v = M1, and if yes, Ads outputs 1

• else, outputs 0

Let M0,M1 be identically distributed as M but independent of each other.
Then,

Pr[Ads(M0,M1, Leak(LRShare(M1))) = 1] = Pr[Ass(Leak(LRShare(M))) = M]

Pr[Ads(M0,M1, Leak(LRShare(M0))) = 1] ≤ max
Sim

Pr[Sim(|S|) = M]

Subtracting, Pr[Ass(Leak(LRShare(M))) = M] − max
Sim

Pr[Sim(|S|) = M]

≤ 2Pr[Ads(M0,M1, Leak(LRShare(Mb))) = b] − 1

≤ max
M0,M1

2Pr[Ads(M0,M1, Leak(LRShare(Mb))) = b] − 1

Maximizing over all adversaries, Advss(LRShare, Leak) ≤ Advds(LRShare, Leak)
which is a contradiction to our assumption. This completes the proof of the
proposition.

4 Cheating Detection in Leakage-Resilient Secret Sharing

Srinivasan-Vasudevan compiler [39] is for security against passive adversaries. In
the following we show that in fact there is an explicit attack, similar to Tompa
and Woll, on SV compiled schemes.

4.1 An Explicit Attack on Existing Leakage-Resilient Schemes

In this section we show that the existing LRSS schemes are not resilient to
cheating in the sense that a cheater can modify its share to launch an attack
similar to Tompa-Woll.

Explicit Attack on SV Compiled Schemes [39]. SV compilers are outlined
in Appendix A.1 (see Fig. 2), and the attack details is presented in the following.

The basic idea of the attack for an adversary with access to t − 1 shares and
intending to “cheat” a target user ik is to construct a polynomial Δ(x) as below,
and use it to modify its shares. This results in the LRRec outputs incorrect secret.
This works because the share sh[i] is generated by running Share(t,n) algorithm
that evaluates f(i) for some suitably chosen polynomial f(x) of degree at most
t − 1. An adversary A
– obtains shi1 , . . . , shit−1

– computes a polynomial Δ(x) of degree at most t − 1 such that it has the
following property:
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• Δ(0) = α for some arbitrary value α
• Δ(it) = 0 where it denotes the identity of the honest party, the adversary

wants to cheat.
– outputs modified shares sh′

ij
= (wij

, f(ij)⊕Ext(wij
, s)⊕ r ⊕Δ(ij), sij

) for all
j = 1, . . . , t − 1 and sends to the Reconstructor.

As evident from the reconstruction algorithm LRRecSV (see Fig. 2 in Appendix
A.1), these modified shares and the honest share shik

recovers the secret value
to be m + α. We note that leakage from the honest shares are not required in
order to launch the above attack.

A similar attack can be applied on the scheme of [1] which we skip due to
space constraint.

4.2 Leakage-Resilient Cheating Detection in OKS Model

In OKS model reconstruction error is the expected value for a uniformly dis-
tributed secret. For simplicity we explain our construction for threshold scheme.
In Sect. 4.4 we extend our results to CDV model that allows an adversarially
chosen secret distribution for reconstruction algorithm.

Definition 10 (Local LR Cheating Detectable SS in OKS model). A
secret sharing scheme (Share,Rec) realizing a (t, n)-threshold access structure for
secret space S is (t, n, ε, δ)-leakage resilient cheating detectable against a local
leakage family Ht,μ if for all functions LeakT,τ̄ ∈ Ht,μ the following holds:

– correctness: for every s ∈ S and every Q ⊂ {1, . . . , n} of size |Q| = t, it

holds that for 	sh ← Share(s), Pr[Rec(	shQ) = s] = 1.
– statistical secrecy: for any two secrets s0, s1 ∈ S the statistical distance:

SD (LeakT,τ̄ (Share(s0)), LeakT,τ̄ (Share(s1))) is less than ε.
– secret reconstruction (cheating detection): Suppose s ∈ S is uniformly

chosen and T is any (adversarially chosen) subset of {1, . . . , n} with size

|T | = t − 1. Let Share(s) output a vector of shares 	sh such that adversary

obtains leak from all the shares in the form of LeakT,τ̄ (	sh) and modifies 	shT

depending on the leakage.
For the scheme to be cheating detectable it must hold that for any i /∈ T ,
the reconstruction Rec(s̃hT , shi) ∈ {s,⊥} except with probability δ where s̃hT

depends on LeakT,τ̄ (Share(s)).

Note 3. The shares in T are modified by the adversary using the shares infor-
mation in T and the extra leaked information from all shares. To extend the
above definition to the CDV model (Definition 5), we modify the third condi-
tion as follows: the secret s is chosen by the adversary and s̃hT depends on
LeakT,τ̄ (Share(s)) and s, both.
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4.3 A Compiler for LR Cheating Detectable Threshold SS

The compiler preprocesses the secret using a weak leakage resilient AMD code,
and then uses SV compiler for local leakage. A description of SV compiler is
provided in Appendix A.1.

Theorem 3. Consider any n, t, μ ∈ N such that t ≤ n and secret domain F
r

with |F| = q. Suppose for any ε ∈ [0, 1) the following exists:

– An ε-leakage resilient (t, n)-secret sharing scheme (LRShareSV , LRRecSV )
obtained from the compiler of [39] (see Appendix A.1) against leakage family
Ht,μ, with reconstruction error εc = 0 for secrets in F

r.
– A weak (regular) δ-AMD coding scheme AMDenc : Fk −→ F

r and AMDdec :
F

r −→ F
k ∪ {⊥}.

Then there exists a (t, n, ε, qρrδ)-leakage-resilient cheating detectable secret
sharing scheme for the secret space F

k where 0 ≤ ρ ≤ k
r log 1

ε

< 1
2 .

Proof. Let (Share∗,Rec∗) denote the secret sharing obtained by our compiler
described in the following Fig. 1. The correctness follows straightforwardly from
correctness of the two building blocks.

Fig. 1. Leakage-resilient cheating detectable secret sharing scheme.

Secrecy: We note that the underlying AMD code is one-to-one, and
hence the secrecy property follows from the secrecy of LRSS. The distin-
guishing secrecy of the LRSS implies that SD[LeakT,τ̄ (Share(AMDenc(s0))),
LeakT,τ̄ (Share(AMDenc(s1)))] < ε for any two uniform secrets s0, s1. The one-
to-one property of AMDenc implies that the distribution on codeword space is
same as the distribution of si’s. Therefore, the statistical distance between the



LR-Cheating Detectable SS 17

leakage distributions between s0 and s1 is equal to the above distance which
implies required secrecy of Definition 10.

Cheating Detection: In order to prove the cheating detectability of the construc-
tion we note that from the leakage resilience of LRShare algorithm we have (by
Eq. (3)), the advantage of adversary Advgp(LRShare, Leak)

= sup
M

(GP(AMDenc(M) | Leak(LRShare(AMDenc(M)))) − GP(AMDenc(M))) ≤ ε

Note that, we have assumed that the message distribution M is uni-
form over Fq and since the encoding is one-to-one therefore AMDenc(M)
is also uniform over Fq. The above inequality reduces to |GP(AMDenc(M)
| Leak(LRShare(AMDenc(M)))) − GP(AMDenc(M))| ≤ ε

Let us denote Leak(LRShare(AMDenc(M))) by the leakage variable Z. So the
above expression is simplified into GP(AMDenc(M) | Z)−GP(AMDenc(M))| ≤ ε

i.e., |2−H∞(AMDenc(M) | Z) − 2−H∞(AMDenc(M))| ≤ ε

i.e., H∞(AMDenc(M) | Z) ≥ H∞(AMDenc(M)) − log(1 + ε · qk)

and therefore, for 0 < ε < 1
qk

H∞(AMDenc(M) | Z) ≥ H∞(AMDenc(M)) − rk log q

r log 1
ε

(4)

Denote ρ = k
r log 1

ε

to be the leakage rate from the codeword. Since encoding

scheme is one-to-one (i.e. regular) k ≤ r and therefore for ε ≤ 1
qk we have ρ < 1

2 .
Thus from Eq. (4) we have, H∞(AMDenc(M) | Z) ≥ H∞(AMDenc(M))−ρr log q
with ρ < 1

2 and applying Theorem 1 we find that Pr[AMDdec(AMDenc(M) +
A(Z)) /∈ {M,⊥}] ≤ qρr · δ and this completes the proof. �

Note 4. Theorem 3 assumes the SV compiler uses a linear secret sharing scheme
viz. Shamir SS for (t, n)-threshold access structure which uses a linear Rec
algorithm for reconstruction of the secret codeword. This linearity enables the
AMDdec algorithm to detect cheating. We note that same cannot be said with
nonlinear threshold schemes. For example, consider the (2, 2) secret sharing of
Dziembowski and Faust [19]. The shares of the scheme are two vectors in Fn

q , in
particular, the two shares L = (L1, . . . , Ln) and R = (R1, . . . , Rn) are randomly
chosen vectors such that their inner-product L · R equals the secret message.
This scheme is resilient to more than log q bits of leakage. The adversary who
is in possession of share L can leak the value Rn from R. Notice that even
with this leakage from R, the secret message is statistically hidden from the
adversary. However, it can attack by setting: L1 = L2 = · · · = Ln−1 = 0 and
Ln = AMDEnc(m′)

Rn
for any message m′ of its choice. This attack reconstructs the

message m′ without being noticed.
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Instantiation. Let q denote the size of field F with characteristic greater than
2. We use the following building blocks for our instantiation.

– Consider (0, δ = 1
q ) weak-AMD code (see construction in Theorem 1) defined

by AMDenc : Fq −→ F
2
q where AMDenc(m) := (m,m2) for all m.

– Let (LRShareSV , LRRecSV ) denote an SV compiled LRSS scheme (see Fig. 2 in
Appendix A.1) with ε-statistical secrecy against the leakage class Ht,μ where
0 < ε < 1

q .

Fixing the above building blocks and using Eq. (4) from the proof of Theorem 3
we have, H∞(AMDenc(M)|Z) ≥ H∞(AMDenc(M))−2·ρ·log q, where the leakage
rate ρ from the codeword AMDenc(M) given by ρ = 1

2 log 1
ε

satisfies 0 < ρ < 1
2 .

Using Theorem 1, the resulting decoding error probability (or successful cheating
probability) equals Pr[AMDdec(AMDenc(M) + A(Z)) /∈ {M,⊥}] ≤ q2ρ · δ =

1
q1−2ρ . �
Efficiency and Share Size. Suppose there exists a threshold linear secret
sharing scheme for sharing m-bit message with rate R then the LRSS obtained
from SV-compiler has rate R/3.01 [39]. In our case, the message is pre-encoded
with a weak AMD code with rate 1/2 and this results in a rate R/6.02 for our
scheme. Leakage-resilience rate of our construction is 1, and this follows from
the scheme of [39]. In particular, if threshold Shamir scheme is used which has
rate 1 for the SV-compiler then the resulting scheme using our compiler has rate
Ω(1).

4.4 Leakage-Resilient Cheating Detectable Secret Sharing in the
CDV Model

In CDV model the secret is known to the adversary. The adversary modifies the
shares of a forbidden set using the information consisting of the secret value and
the leakages from all the shares (see Note 3 following Definition 10 for clarifica-
tion). We state our result in the following theorem.

Theorem 4. Consider any n, t, μ ∈ N such that t ≤ n and secret domain F
r

with |F| = q. Suppose for any ε ∈ [0, 1) the following exists:

– An ε-leakage-resilient (t, n)-secret sharing scheme (LRShareSV , LRRecSV )
obtained from Shamir scheme using the compiler of [39] (see Appendix A.1)
against leakage family Ht,μ with perfect reconstruction for secrets in F

r.
– A strong (regular) δ-AMD coding scheme AMDenc′ : F

k × F
σ −→ F

r and
AMDdec′ : Fr −→ F

k ∪ {⊥}.
Then there exists a (t, n, ε, qρrδ)-leakage-resilient cheating detectable secret

sharing scheme for the secret space F
k where 0 ≤ ρ ≤ σ

r log 1
ε

< 1
3 .

The compiler follows the same approach as in Fig. 1 from Sect. 4.3 but
uses strong AMD code for precoding the secret. The share generation will
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use the share generation algorithm of SV compiler to a linear secret shar-
ing for the access structure. The proof follows the same steps of Theorem
3 with suitable minor modifications. As an instantiation of the scheme, we
use the strong AMD code described in Theorem 2; that is, we encode the
secret s using AMDenc′(s) := (s,R,R3 + s · R) and then apply the LRShareSV

algorithm of Fig. 2. From Eq. (4) in the proof of Theorem 3 we now have,
H∞(AMDenc′(s,R)|Z) ≥ H∞(AMDenc′(s,R)) − 3 · ( 1

3 log 1
ε

) · log q for ε ≤ 1
q .

The leakage rate ρ = 1
3 log 1

ε

from the codeword AMDenc′(s,R) satisfies 0 < ρ < 1
3

and thus using Theorem 2, the resulting decoding error probability (or successful
cheating probability) equals Pr[AMDdec′(AMDenc′(s,R) + A(Z)) /∈ {s,⊥}] ≤
q3ρ · δ = 2

q1−3ρ .

4.5 Extension to General Monotone Access Structures

Our compiler can be extended to general 2-monotone access structures A pro-
vided there exists a linear secret sharing scheme realizing A. In Algorithm
described in Fig. 1 we will use this linear secret sharing, and employ the SV
compiler for general access structure. The leakage model and definition of cheat-
ing detection however needs to be adjusted for general access structure. In par-
ticular the leakage family for the share domain S1 × . . . × Sn is defined by
H(A,μ) = {LeakT,�τ : T /∈ A, τi : Si −→ {0, 1}μ} where LeakT,�τ (sh1, . . . , shn) =
{shi for all i ∈ T and τi(shi) for all i /∈ T}. The only restriction on T is that it
must be a forbidden set. See Definition 6 for a formal definition. With this def-
inition of local leakage family, Definition 10 can be suitably modified for access
structure A.

5 Conclusion

We initiated the study of cheating detectable secret sharing when a coalition of
forbidden set of malicious parties modify their corresponding shares based on
the leakages obtained from all the honest shares, and submit their tampered
shares during the reconstruction protocol. We considered local leakage model of
[39], and provided compilers for linear secret sharing schemes that extend LRSS
compiler of Srinivasan-Vasudevan [39] by applying an AMD precoding step to
the secret. Our compilers were adapted to OKS and CDV cheating models by
using weak and strong AMD codes, respectively. We showed a leakage resilient
cheating detectable SS can be used to construct leakage resilient robust SS and
left efficient construction of LR robust SS as an interesting open question. Other
directions for future work include deriving lower bounds on the share size of LR
cheating detectable SS, and constructions of LR cheating detectable SS in other
leakage models.
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A Appendix

A.1 The Scheme of Srinivasan-Vasudevan [39]

The compiler described in Fig. 2 was proposed in Srinivasan-Vasudevan [39].
We use Shamir’s scheme as the basic building block for a (t, n)-threshold secret
sharing scheme. Note that, the compiler proposed in [39] is independent of the
underlying basic secret sharing scheme and in fact, can transform any secret
sharing scheme for 2-monotone (general) access structure into a leakage resilient
one. Therefore in particular, we can use any linear secret sharing scheme realizing
the given access structure for instantiation – e.g., Shamir scheme for threshold
access structures and Ito-Saito-Nishizeki [27] for general access structures.

Fig. 2. Description of compiler of local leakage-resilient secret sharing for (t, n)-
threshold access structures from [39].
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Abstract. Functional encryption generates sophisticated keys for users
so that they can learn specific functions of the encrypted message. We
provide a generic construction of chosen ciphertext attacks (CCA) secure
public-key functional encryption (PKFE) for all polynomial-size circuits.
Our PKFE produces succinct ciphertexts that are independent of the size
and depth of the circuit class under consideration.

We accomplish our goal in two steps. First, we define a new
cryptographic tool called constrained witness pseudorandom function
(CWPRF) which is motivated by combining WPRF of Zhandry (TCC
2016) and constrained PRF of Boneh and Waters (ASIACRYPT 2013).
More specifically, CWPRF computes pseudorandom values associated
with NP statements and generates constrained keys for boolean func-
tions. We can recompute the pseudorandom value corresponding to a
particular statement either using a public evaluation key with a valid
witness for the statement or applying a constrained key for a function
that satisfies the statement. We construct CWPRF by coupling indistin-
guishability obfuscation (iO) and CPRF supporting all polynomial-size
functions.

In the second and main technical step, we show a generic construc-
tion of a CCA secure PKFE for all circuits utilizing our CWPRF. It has
been observed that obtaining PKFE supporting all circuits is already
a complex task and iO-based constructions of PKFEs are only proven
to be chosen plaintext attacks (CPA) secure. On the other hand, exist-
ing CCA secure functional encryption schemes are designed for specific
functions such as equality testing, membership testing, linear function
etc. We emphasize that our construction presents the first CCA secure
PKFE for all circuits along with succinct ciphertexts.

Keywords: Constrained witness pseudorandom function · Functional
encryption · Obfuscation

1 Introduction

An essential research trend in cryptography is to investigate relationships among
existing primitives and establish concrete security for the primitives that have
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several valuable applications. Exploring such correlations provide new insights
concerning the structure and security of the considered primitive. Consequently,
generic approaches in building cryptographic primitives is a significant aspect of
research.

In this paper, we generically construct a public-key functional encryption
(PKFE) scheme for all polynomial-size functions that is secure against active
adversaries. The concept of PKFE is being formalized by Boneh, Sahai and
Waters [10]. The main importance of functional encryption (FE) lies in the fact
that it simply subsumes most of the advanced public-key primitives including
identity-based encryption (IBE), attribute-based encryption (ABE) and predi-
cate encryption (PE). The goal of PKFE is to generate secret-keys dedicated
to a class of functions so that a particular secret-key enables a user to learn a
specific function of the publicly encrypted message, but remains oblivious about
the plain message.

Traditionally, encryption schemes are constructed to satisfy indistinguisha-
bility against chosen plaintext attacks (IND-CPA) where the adversary is not
given access to the decryption oracle. Intuitively, IND-CPA security for PKFE
[10] guarantees that an adversary can not distinguish between encryption of mes-
sages m0 and m1 even when it has polynomially many secret-keys for functions f
satisfying f(m0) = f(m1). However, over time the cryptographic community has
shifted towards achieving indistinguishability against chosen ciphertext attacks
(IND-CCA) for many FE schemes [12,21,32]—one of the main reasons is the fact
that IND-CCA security withstands against attackers that can make decryption
queries to keys it did not ask before and hence the encryption becomes non-
malleable [1,13]. We refer [31] for an exceptional discussion on the significance
of IND-CCA security.

To fulfil the goal of achieving IND-CCA secure PKFE, we can either generi-
cally transform existing IND-CPA secure PKFEs into IND-CCA secure schemes
or we directly construct IND-CCA secure PKFE schemes. However, the direct
construction of IND-CCA secure FE has been rarely studied in the literature.
In case of generic transformation, one of the efficient approaches is the Fujisaki-
Okamoto [14] transformation. Although it induces very low ciphertext overhead,
the security is proved in the random oracle model [2]. Another option is to fol-
low Naor-Yung dual encryption technique [25] which appends a non-interactive
zero-knowledge (NIZK) proof [6,29] determining the ciphertext is well-formed.
This approach is expensive as we need to compute NIZK proof of the encryption
circuit in a gate-by-gate manner. Moreover, the ciphertext overhead is quite high
as the proof size grows linearly with the size of the encryption circuit.

These techniques have been well studied in the context of plain public-key
encryption (PKE). While there are a number of research for IND-CCA secure
PKE [12,13,20,23], very little can be found on IND-CCA secure FE. The aim
of all prior works was centred in demonstrating IND-CCA secure FE for specific
function classes, e.g. IBE (equality testing) [19], ABE (membership testing) [21],
PE (certain relation circuits) [5,21] and inner product FE (linear functions) [3].
Evidently, IND-CPA secure PKFE for all circuits is already quite complex [15,18]
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to achieve and new cryptographic tools or techniques are required to realize the
stronger security.

Our Results. In this work, we explore a direct generic construction of IND-
CCA secure PKFE scheme for all polynomial size boolean functions. To reach
our goal, we first formalize a new cryptographic tool called constrained witness
pseudorandom function (CWPRF). We give construction of CWPRF using an
indistinguishability obfuscation (iO) [15] and a constrained pseudorandom func-
tion (CPRF) [11].

Formalization of CWPRF. Zhandry introduced the notion of WPRF [34]
to generate pseudorandom values associated to statements of an NP language
L. More precisely, WPRF has a secret function key fk and a public evaluation
key ek such that the secret-key fk is used to compute a pseudorandom value
y = F(fk, x) for any statement x (of a fixed length) and the public-key ek along
with a witness w helps to recover y if the witness proves that x is in the language.
A constrained WPRF is a natural extension of normal WPRF. For a circuit C,
a CWPRF is capable of generating a constrained key fkC using the secret-key fk
so that fkC enables one to produce the pseudorandom value F(fk, x) if C(x) = 1.
Thus, CWPRF provides finer access control to the pseudorandom values as we
can embed any functionality into the constrained keys.

Security of CWPRF. The security notions of CWPRF are defined to combine
the security of two related primitives CPRF [11] and WPRF [34]. Mainly, we
consider two flavors of security: pseudorandomness and function privacy. The
CWPRF is said to satisfy pseudorandomness at a given statement x �∈ L if an
adversary is unable to distinguish F(fk, x) from a random element even when the
adversary gets polynomially many F-values F(fk, x′) for statements x′ �= x and
many constrained keys fkC such that C(x) = 0. The function privacy of CWPRF
ensures that an adversary, given oracle access to F(fk, ·), cannot distinguish
between two constrained keys fkC0 and fkC1 for two different circuits C0 and
C1 unless the keys are trivially separated. A formal discussion on security of
CWPRF is given in Sect. 2.3.

Construction of CWPRF. We provide a generic construction of CWPRF
using indistinguishability obfuscation (iO) and CPRF. Informally, iO makes
a program unintelligible in a way that the obfuscated program preserves the
functionality of the original program. Our CWPRF is built upon the iO-based
CPRF of Boneh et al. [9] where they have used subexponential security of iO to
achieve function privacy. However, our application requires only a weak version
of function privacy for CWPRF and fortunately, the underlying CPRF of [9]
satisfies this weak function privacy assuming a polynomially secure iO (Remark
D.11 of [8]). In weak function privacy, the adversary’s ability of distinguishing
between two constrained keys fkC0 and fkC1 is negligible whenever C0 and C1

are equivalent circuits. Therefore, a polynomially secure iO [18] is sufficient for
our CWPRF (described in Sect. 3) and its applications mentioned below.

CCA secure PKFE. To demonstrate the power of CWPRF, we describe a
generic construction of CCA secure PKFE for all polynomial size boolean cir-
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cuits. The building strategy is inspired by the simulation secure secret-key FE
(SKFE) given by Boneh, Kim and Montgomery [7] in the context of proving
that simulation based function privacy is impossible to achieve for CPRF. We
emphasize that this impossibility result is restricted to simulation based privacy
whereas our work deals with indistinguishability based privacy of the primitives.

We utilize our CWPRF and the puncturable WPRF (PWPRF) proposed by
Pal and Dutta [28] to build the PKFE. Note that, a PWPRF is a restricted class
of CWPRF where the constrains are point functions. Specifically, the psudoran-
domness of PWPRF and the weak function privacy of CWPRF are employed to
realize our full adaptive CCA secure PKFE in Sect. 4. Apart from CCA security,
our PKFE enjoys an optimal size ciphertext which has not been achieved before
for FEs that supports all polynomial size circuits. In particular, encryption of a
message m has a size of |m|+ poly(λ) where |m| denotes the bit-size of m and λ
is the security parameter. The optimality of the PKFE implies succinctness of
ciphertexts [15] meaning that the size of ciphertexts is independent of the circuit
sizes or even the depths. Existing PKFE for all circuits [15] (based on iO) which
satisfies such succinctness property does not achieve optimality of ciphertexts or
strong CCA security.

In an additional application, we utilize the pseudorandomness property of
CWPRF to develop a tag-based CCA secure ABE for all circuits. Similar to
the PKFE, our ABE also produces an optimal size ciphertext. Recently, such
an optimal size CCA secure ABE has been constructed from WPRF and non-
interactive zap [27] with a motivation to get a multi-attribute fully homomorphic
encryption scheme. On the other hand, our ABE is much simpler and relies solely
on our CWPRF and a psudorandom generator (PRG). The details of ABE is
given in the full version of this paper.

Related Works. Realizing CCA security has been one of the primary goals of
the research community after CPA security is confirmed for a particular prim-
itive. For instance, a variety of IND-CCA secure PKEs [12,13,20,22,23,30,33]
are proposed starting from a IND-CPA secure PKEs. Some of these techniques
have been translated to design more advanced IND-CCA secure encryption such
as ABE and PE. Goyal et al. [17] extended the procedure given by Canetti,
Halevi, and Katz [12], of achieving any IND-CCA secure PKE from IND-CCA
secure IBE, in case of key-policy ABE where they required that the IND-CPA
secure ABE must satisfy delegatability. In a subsequent work, Yamada et al. [32]
proposed generic transformations which take advantage of certain delegatability
and verifiability properties of existing IND-CPA secure ABEs to convert these
into IND-CCA secure schemes. To make a larger class of encryption schemes
IND-CCA secure, Nandi and Pandit [24] extended the framework of [32] by intro-
ducing a weak version of delegatability and verifiability that must be present in
the original schemes. Recently, Koppula and Waters [21] presented a black box
transformation for IND-CCA security of any ABE or (one-sided) PE utilizing a
hinting PRG along with the IND-CPA security of the considered primitive.

Blömer and Liske [5] showed a non-generic IND-CCA secure PE using the
methodology of well-formedness proofs. Benhamouda et al. [3] constructed IND-
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CCA secure FEs for linear functionality from projective hash functions with
homomorphic properties. Very recently, Pal and Dutta [27] directly built IND-
CCA secure IBE and ABE for all circuits using WPRF. It can be noted that the
focus of all previous works was to consider a particular function class and depict
IND-CCA security for FE associated to that class. On the contrary, we describe
a IND-CCA secure PKFE for all circuits via a new cryptographic tool that we
believe to have more potential applications in other aspects of cryptography.

2 Preliminaries

Notations. We denote the security parameter by λ, a natural number. For
m ∈ {0, 1}∗, |m| indicated the size of the string m. To denote the sampling of
an element s uniformly at random from a set S, we use the notation s ← S. For
any probabilistic polynomial time (PPT) algorithm A, we define r ← A(s) to
denote the process of computing r by executing A with an input s using a fresh
randomness (unless A is a deterministic algorithm). All circuits and functions
are of polynomial size. We say negl is a negligible function in an input parameter
λ, if for all c > 0, there exists λ0 such that negl(λ) < λ−c for all λ > λ0.

2.1 Pseudorandom Generator

Definition 1 [Pseudorandom Generator]. A pseudorandom generator (PRG) is
a deterministic polynomial time algorithm PRG that on input a seed s ∈ {0, 1}λ

outputs a string of length �(λ) such that the following holds:

– output expansion: We require �(λ) > λ for all λ.
– pseudorandomness security : For all PPT adversary A and s ← {0, 1}λ, r ←

{0, 1}�(λ) the following advantage

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1]|
is a negligible function of λ.

2.2 Constrained Pseudorandom Function

Definition 2 [Constrained Pseudorandom Function]. A constrained pseudoran-
dom function (CPRF) is defined for a circuit class {Cλ}λ∈N and a domain X . It
consists of four PPT algorithms Setup, ConKey, ConEval, Eval that work as fol-
lows:

• Setup(1λ) → msk: The setup algorithm outputs a master secret-key msk.
• ConKey(msk, C) → skC : The constrained key algorithm generates a con-

strained key skC corresponding to a circuit C ∈ Cλ.
• ConEval(skC , x) → y: The constrained evaluation algorithm outputs a value

y ∈ Y using the constrained skC for an input x ∈ X .
• Eval(msk, x) → y: The evaluation algorithm outputs an element y ∈ Y using

the master secret-key msk for a string x ∈ X .
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A CPRF must satisfy the following requirements.

Definition 3 (Correctness). For all λ ∈ N,msk ← Setup(1λ), x ∈ X , C ∈ Cλ,
and skC ← ConKey(msk, C) we have

correctness of ConEval. Pr[ConEval(skC , x) = Eval(msk, x) s.t. C(x) = 1] = 1

Definition 4 [Adaptive Pseudorandomness]. For a security parameter λ ∈
N, a circuit class {Cλ}λ∈N and a bit b ∈ {0, 1}, we define the experiment
Adp-INDCPRF

A (1λ, b) between a challenger and a PPT adversary A in the fol-
lowing manner:

Setup: The challenger runs msk ← Setup(1λ) and prepares two empty sets Qc

and Qx.

Queries: After setup, A can make queries to the following oracles at any point
of the experiment.

– constrained key queries. On input a circuit C ∈ Cλ, the challenger returns a
constrained key skC ← ConKey(msk, C) and updates the set Qc ← Qc ∪ {C}.

– evaluation queries. On input x ∈ X , the challenger returns a pseudorandom
value y ← Eval(msk, x) and updates the set Qx ← Qx ∪ {x}.

Challenge: At some point, A submits a challenge string x∗ ∈ X . If b = 0, the
challenger returns y ← Eval(msk, x∗) to A, otherwise it returns y ← Y.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′, x∗ �∈ Qx and C(x∗) = 0 for all C ∈ Qc.
A CPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,CPRF(λ) = |Pr[Adp-INDCPRF
A (1λ, b) = 1] − 1

2
|

Definition 5 [Selective Pseudorandomness]. We define a security experiment
Sel-INDCPRF

A (1λ, b) for selective security of CPRF similarly to the experiment
Adp-INDCPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X before any oracle query. We define the advantage AdvSel-INDA,CPRF(λ)
accordingly and say that the CPRF is selectively secure if the quantity is a neg-
ligible function of λ.

Definition 6 [Function Privacy]. For a security parameter λ ∈ N, a circuit
class {Cλ}λ∈N and a bit b ∈ {0, 1}, we define the experiment FP-INDCPRF

A (1λ, b)
between a challenger and a PPT adversary A in the following manner:

Setup: The challenger runs msk ← Setup(1λ) and prepares two empty sets Qc,c

and Qx.

Queries: In any arbitrary order, A can make queries to the following oracles.
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– constrained key queries. On input a pair of circuits (C0, C1) ∈ Cλ × Cλ, the
challenger returns a constrained key skCb

← ConKey(msk, Cb) and updates
the set Qc,c ← Qc,c ∪ {(C0, C1)}.

– evaluation queries. On input x ∈ X , the challenger returns a pseudorandom
value y ← Eval(msk, x) and updates the set Qx ← Qx ∪ {x}.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′

and the following conditions hold:

1. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ Qx,
2. S(C0) ∩ S(C ′

0) = S(C1) ∩ S(C ′
1) for any two distinct pairs (C0, C1), (C ′

0, C
′
1)

of Qc,c where S(C) = {x ∈ X : C(x) = 1}
A CPRF is said to be function private if the following advantage is a negligible
function of λ:

AdvFP-INDA,CPRF(λ) = |Pr[FP-INDCPRF
A (1λ, b) = 1] − 1

2
|

The restrictions on constrained key queries in Definition 6 is necessary to
prevent A in trivially distinguishing the keys skC0 and skC1 . This has been
discussed in [8] with several examples. We define a weaker version of function
privacy where an adversary is restricted to submit pair of circuits (C0, C1) such
that C0(x) = C1(x) for all x ∈ X . Hence, the above two conditions are not
needed in this case. We call this notion as weak function privacy. It is trivial to
verify that a function private CPRF (Definition 6) is also weak function private.

Definition 7 [Weak Function Privacy]. We define a security experiment
wFP-INDCPRF

A (1λ, b) for weak function privacy security of CPRF similarly to
the experiment FP-INDCPRF

A (1λ, b) except that all the constrained key queries
{(C0, C1)} of the adversary A must satisfy the condition that C0(x) = C1(x)
for all x ∈ X and the challenger returns 1 only if b = b′ in the guess step. We
define the advantage AdvwFP-INDA,CPRF (λ) accordingly and say that the CPRF is weak
function private if the quantity is a negligible function of λ.

2.3 Constrained Witness Pseudorandom Functions

Definition 8 [Constrained Witness Pseudorandom Functions]. A constrained
witness pseudorandom function (CWPRF) is defined for a circuit class {Cλ}λ∈N

and an NP language L with a relation R : X × W → {0, 1}. It consists of five
PPT algorithms Gen, ConKey, F, ConF, Eval that work as follows:

• Gen(1λ, R) → (fk, ek): The generation algorithm outputs a secret function
key fk and a public evaluation key ek.

• ConKey(fk, C) → fkC : The constrained key algorithm generates a constrained
key fkC corresponding to a circuit C ∈ Cλ.

• F(fk, x) → y: The pseudorandom function outputs an element y ∈ Y using
the secret function key fk for a string x ∈ X .
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• ConF(fkC , x) → y: The constrained pseudorandom function algorithm outputs
a value y ∈ Yutilizing the constrained key fkC for an input x ∈ X .

• Eval(ek, x, w) → y: The evaluation algorithm outputs a value y ∈ Y using the
public evaluation key ek and a witness w ∈ W for a string x ∈ X .

A CWPRF must satisfy the following requirements.

Definition 9 (Correctness). For all λ ∈ N, (fk, ek) ← Gen(1λ, R), x ∈ X , w ∈
W, C ∈ Cλ, and fkC ← ConKey(fk, C) we have

– correctness of ConF. Pr[ConF(fkC , x) = F(fk, x) s.t. C(x) = 1] = 1
– correctness of Eval. Pr[Eval(ek, x, w) = F(fk, x) s.t. R(x,w) = 1] = 1

Definition 10 [Adaptive Pseudorandomness]. For a security parameter λ ∈ N,
a circuit class {Cλ}λ∈N, an NP language L with a relation R : X × W → {0, 1}
and a bit b ∈ {0, 1}, we define the experiment Adp-INDCWPRF

A (1λ, b) between a
challenger and a PPT adversary A in the following manner:

Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares two empty sets Qc and Qx.

Queries: After setup, A can make queries to the following oracles at any point
of the experiment.

– constrained key queries. On input a circuit C ∈ Cλ, the challenger returns a
constrained key fkC ← ConKey(fk, C) and updates the set Qc ← Qc ∪ {C}.

– pseudorandom function queries. On input x ∈ X , the challenger returns a
pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.

Challenge: At some point, A submits a challenge string x∗ ∈ X \ L. If b = 0,
the challenger returns y ← F(fk, x∗) to A, otherwise it returns y ← Y.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′, x∗ �∈ Qx and C(x∗) = 0 for all C ∈ Qc.
A CWPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,CWPRF(λ) = |Pr[Adp-INDCWPRF
A (1λ, b) = 1] − 1

2
|

Definition 11 [Selective Pseudorandomness]. We define a security experiment
Sel-INDCWPRF

A (1λ, b) for selective security of CWPRF similarly to the experiment
Adp-INDCWPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X \ L before setup phase. We define the advantage AdvSel-INDA,CWPRF(λ)
accordingly and say that the CWPRF is selectively secure if the quantity is a
negligible function of λ.

Definition 12 [Function Privacy]. For a security parameter λ ∈ N, a circuit
class {Cλ}λ∈N, an NP language L with a relation R : X × W → {0, 1} and a bit
b ∈ {0, 1}, we define the experiment FP-INDCWPRF

A (1λ, b) between a challenger
and a PPT adversary A in the following manner:
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Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares two empty sets Qc,c and Qx.

Queries: A can make queries to the following oracles in any arbitrary order.

– constrained key queries. On input a pair of circuits (C0, C1) ∈ Cλ × Cλ, the
challenger returns a constrained key fkCb

← ConKey(fk, Cb) and updates the
set Qc,c ← Qc,c ∪ {(C0, C1)}.

– pseudorandom function queries. On input x ∈ X , the challenger returns a
pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′

and the following conditions hold:

1. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ Qx,
2. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ L,
3. S(C0) ∩ S(C ′

0) = S(C1) ∩ S(C ′
1) for any two distinct pairs (C0, C1), (C ′

0, C
′
1)

of Qc,c where S(C) = {x ∈ X : C(x) = 1}
A CWPRF is said to be function private if the following advantage is a negligible
function of λ:

AdvFP-INDA,CWPRF(λ) = |Pr[FP-INDCWPRF
A (1λ, b) = 1] − 1

2
|

Definition 13 [Weak Function Privacy]. We define a security experiment
wFP-INDCWPRF

A (1λ, b) for weak function privacy security of CWPRF similarly to
the experiment FP-INDCWPRF

A (1λ, b) except that all the constrained key queries
{(C0, C1)} of the adversary A must satisfy the condition that C0(x) = C1(x)
for all x ∈ X and the challenger returns 1 only if b = b′ in the guess step. We
define the advantage AdvwFP-INDA,CWPRF(λ) accordingly and say that the CWPRF is
weak function private if the quantity is a negligible function of λ.

2.4 Puncturable Witness Pseudorandom Function

A puncturable WPRF (PWPRF) [28] is a special case of CWPRF where the
constrained keys are generated only for the point circuits, that is the cir-
cuit class {Cλ}λ∈N contains circuits of the form Cx′ for a particular point
x′ ∈ X and Cx′(x) = 1 if and only if x �= x′. Specifically, a PWPRF for
an NP language L with a relation R : X × W → {0, 1} is defined by a set
of five PPT algorithms Gen, PuncKey, F, PuncF, Eval which work in an iden-
tical way as regular CWPRF except that the PuncKey algorithm takes in a
string x ∈ X instead of a circuit C. For correctness, we require that for all
λ ∈ N, (fk, ek) ← Gen(1λ, R), x ∈ X , w ∈ W, C ∈ Cλ, and fkx′ ← PuncKey(fk, x′)
we have

– correctness of PuncF. Pr[PuncF(fkx′ , x) = F(fk, x) s.t. x �= x′] = 1
– correctness of Eval. Pr[Eval(ek, x, w) = F(fk, x) s.t. R(x,w) = 1] = 1
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We can define the Adp-IND and Sel-IND security notions of PWPRF in a simi-
lar fashion as we have described the security for CWPRF in Definition 10 and
Definition 11 (Sect. 3). The pseudorandomness of PWPRF states that the value
F(fk, x∗) remains pseudorandom even when an adversary gets a punctured key
fkx∗ where x∗ is the challenge statement lying outside the language L.

Definition 14 [Adaptive Pseudorandomness]. For a security parameter λ ∈ N,
an NP language L with a relation R : X × W → {0, 1} and a bit b ∈ {0, 1},
we define the experiment Adp-INDPWPRF

A (1λ, b) between a challenger and a PPT
adversary A in the following manner:

Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares an empty set Qx.

Queries: After setup, A can make queries to the following oracle at any point
of the experiment.

– pseudorandom function queries. On input x ∈ X , the challenger returns a
pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.

Challenge: At some point, A submits a challenge string x∗ ∈ X \ L. The
challenger computes fkx∗ ← PuncKey(fk, x∗) and sets y0 ← F(fk, x∗), y1 ← Y.
Finally, it returns (fkx∗ , yb) to A.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′ and x∗ �∈ Qx.
A PWPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,PWPRF(λ) = |Pr[Adp-INDPWPRF
A (1λ, b) = 1] − 1

2
|

Definition 15 [Selective Pseudorandomness]. We define a security experiment
Sel-INDPWPRF

A (1λ, b) for selective security of PWPRF similarly to the experiment
Adp-INDPWPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X \ L before setup phase. We define the advantage AdvSel-INDA,PWPRF(λ)
accordingly and say that the PWPRF is selectively secure if the quantity is a
negligible function of λ.

Theorem 1 [28]. Assuming indistinguishability obfuscation for all circuits and
selectively secure puncturable pseudorandom function, there exists a selectively
secure puncturable witness pseudorandom function for all NP.

2.5 Functional Encryption

Definition 16 [Public-key Functional Encryption]. A public-key functional
encryption (PKFE) is defined for a class of functions {Fλ}λ∈N and a message
space M. It consists of four PPT algorithms Setup, KeyGen, Enc, Dec that work
as follows:
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• Setup(1λ) → (msk, pp): The Setup algorithm outputs a master secret-key msk
and a public parameter pp.

• KeyGen(msk, f) → skf : The key generation algorithm generates a secret-key
skf corresponding to a function f ∈ Fλ, and outputs.

• Enc(pp, m) → ct: The encryption algorithm outputs a ciphertext ct by
encrypting a message m ∈ M using the public parameter pp.

• Dec(skf , ct) → y: The decryption algorithm decrypts the ciphertext ct using
the secret-key skf and outputs a value y.

A PKFE must satisfy the following requirements.

Definition 17 (Correctness). For all λ ∈ N, (msk, pp) ← Setup(1λ),m ∈
M, f ∈ Fλ and skf ← KeyGen(msk, f) we have

– correctness of Dec. Pr[Dec(skf ,Enc(pp,m)) = f(m)] = 1 − negl(λ)

Definition 18 [Adaptive Indistinguishability CCA security]. For a security
parameter λ ∈ N, a function class {Fλ}λ∈N, a message space M and a bit
b ∈ {0, 1}, we define the experiment Adp-INDCCAPKFE

A (1λ, b) between a chal-
lenger and a PPT adversary A in the following manner:

Setup: The challenger runs (msk, pp) ← Setup(1λ) and sends pp to A. It also
prepares two empty sets Qf and Qct,f .

Queries: After setup, A can query to the following oracles at any point of the
experiment.

– secret-key queries. On input a function f ∈ Fλ, the challenger returns a
secret-key skf ← KeyGen(msk, f) and updates the set Qf ← Qf ∪ {f}.

– decryption queries. On input a ciphertext, function pair (ct, f), the challenger
computes skf ← KeyGen(msk, f) and returns Dec(skf , ct). It also updates
Qct,f ← Qct,f ∪ {(ct, f)}

Challenge: At some point, A submits a pair of challenge messages (m0,m1) ∈
M × M. The challenger returns ct∗ ← Enc(pp,mb) to A.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′ and f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .
A PKFE is said to be adaptive indistinguishability CCA secure if the following
advantage is a negligible function of λ:

AdvAdp-INDCCA
A,PKFE (λ) = |Pr[Adp-INDCCAPKFE

A (1λ, b) = 1] − 1
2
|

2.6 Indistinguishability Obfuscation

Definition 19 [Indistinguishability Obfuscation]. An indistinguishability obf-
uscator for a class of circuits {Cλ} is a PPT algorithm iO which satisfies the
following properties:
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– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[ ˜C(x) = C(x) : ˜C ← iO(1λ, C)] = 1

– Indistinguishability : For any PPT distinguisher D and for all pair of circuits
C0, C1 ∈ Cλ that compute the same function and are of same size, the follow-
ing advantage is a negligible function of λ:

AdviO
D (λ) = |Pr[D( ˜C,C0, C1) = b s.t. ˜C ← iO(1λ, Cb), b ← {0, 1}] − 1

2
|

3 Construction of CWPRF from CPRF and iO
Our construction of CWPRF is inspired by the iO based PRF constructions of
[8,26]. Specifically, we replace the PRF in the construction of [26] with a suitable
CPRF that supports any polynomial size circuits. For constrain hiding, we require
that the ConEval algorithm of the underlying CPRF to output pseudorandom
values for inputs x such that C(x) = 0. This is due to the fact that if ConEval
outputs ⊥ on inputs where the circuit evaluates to zero then the constrained
key skC reveals information about the circuit. One such CPRF is the iO-based
construction of [8] that we may choose to instantiate our CWPRF.

We build of a selectively secure CWPRF = (Gen, ConKey, F, ConF, Eval)
for an NP language L with a witness relation R : X × W → {0, 1} using an
indistinguishability obfuscator iO and a CPRF = (Setup, ConKey, ConEval, Eval)
for a class of circuits {Cλ}λ∈N and a domain X . The CWPRF works as follows:

CWPRF.Gen(1λ, R): It computes a master secret-key msk ← CPRF.Setup(1λ) and
generate an obfuscated circuit ˜F ← iO(1λ, Fmsk,R) where the circuit Fmsk,R

is defined as follows:

Fmsk,R(x,w) =

{

CPRF.Eval(msk, x) if R(x,w) = 1
⊥ otherwise

It then outputs the function secret-key as fk = msk and the public evaluation
key as ek = ˜F .

CWPRF.ConKey(fk, C): For a circuit C ∈ Cλ, the constrained key algorithm uses
fk = msk and returns fkC ← CPRF.ConKey(msk, C).

CWPRF.ConF(fkC , x): For any x ∈ X , the constrained evaluation algorithm out-
puts CPRF.ConEval(fkC , x).

CWPRF.F(fk, x): Using the function secret-key as fk = msk, it outputs the pseu-
dorandom value corresponding to an x ∈ X as CPRF.Eval(msk, x) ∈ Y.

CWPRF.Eval(ek, x,w): It takes the evaluation key ek = ˜F and outputs ˜F (x,w)
for x ∈ X and w ∈ W.
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Correctness. The correctness of CWPRF.ConF algorithm directly follows from
the correctness of CPRF.ConEval. For the correctness of CWPRF.Eval, we note
that if w is a valid witness of the statement x then Fmsk,R(x,w) = ˜F (x,w) =
CPRF.Eval(msk, x) holds by the correctness of iO. Therefore, CWPRF.Eval(ek,
x,w) = CWPRF.F(fk, x) if R(x,w) = 1.

Theorem 2. The constrained witness pseudorandom function CWPRF described
above is Sel-IND secure (as per Definition 11) assuming the iO is a secure indis-
tinguishability obfuscator (as per Definition 19) and the CPRF is Sel-IND secure
(as per Definition 5).

Theorem 3. The constrained witness pseudorandom function CWPRF described
above is wFP-IND secure (as per Definition 13) assuming the iO is a secure
indistinguishability obfuscator (as per Definition 19) and the CPRF is wFP-IND
secure (as per Definition 7).

Proof Sketch. In the Sel-IND game of CWPRF, the challenger computes a circuit
Ex∗ which is satisfied by all inputs other than the challenge statement x∗. Now, it
sets sk∗ ← CPRF.ConKey(msk, Ex∗) and defines ek = iO(1λ, ˜F ) where ˜F (x,w) =
CPRF.ConEval(sk∗, x) if R(x,w) = 1, 0 otherwise. The circuits Fmsk,R and ˜F
are equivalent since x∗ �∈ L. Therefore, an adversary cannot detect the change
in the evaluation key ek by the security of iO and CWPRF.F(fk, x∗) remains
pseudorandom by the Sel-IND security of CPRF.

To show the wFP-IND security of CWPRF, we follow the similar technique as
above. The challenger picks a random statement x∗, computes r∗ = CPRF.Eval
(msk, x∗), sk∗ ← CPRF.ConKey(msk, Ex∗) and then sets ek = iO(1λ, ˜Fx∗,r∗).
The circuit ˜Fx∗,r∗(x,w) = CPRF.ConEval(sk∗, x) if R(x,w) = 1 and returns r∗

if x = x∗, 0 otherwise. The security of iO guarantees that this change in ek
remains indistinguishable to an adversary. Finally, we can show that WCPRF
satisfies wFP-IND security under the assumption of wFP-IND security of CPRF.
We give formal proofs in the full version of this paper.

Remark 1. The CPRF of Boneh et al. [8] requires that the underlying PRF and
iO to be secure against subexponential adversaries (Theorem 3.3 of [8]) as their
aim was to achieve (strong) function privacy (Definition 6). If the challenger
circuits given by an adversary (in the security game of Definition 6) differs only
on a polynomial number of points, then polynomial security of the PRF and iO
suffices (Remark D.11 of [8]). Since the weak function privacy (Definition 7)
restricts the challenge circuits to be equivalent, we are able to base the secu-
rity of CWPRF relying on CPRF and iO both secure against polynomial time
adversaries.

4 Construction of CCA Secure PKFE from CWPRF

Our generic construction of PKFE only requires CWPRF along with a pseu-
dorandom generator. Mainly, we translate the SKFE of Boneh et al. [8] in
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public-key setting and more importantly we achieve security against active
adversaries. Formally, we build a PKFE = (Setup, KeyGen, Enc, Dec) for all
polynomial-size boolean functions having input space M = {0, 1}�. Let us con-
sider a length doubling PRG with domain {0, 1}λ for some λ ∈ N. We take
a PWPRF = (Gen, PuncKey, F, PuncF, Eval)1 for the NP language L = {r ∈
{0, 1}2λ : ∃ s s.t. PRG(s) = r} with relation R and a CWPRF = (Gen, ConKey,
F, ConF, Eval) for the NP language Lek = {(r, c) ∈ {0, 1}2λ+� : ∃ (s,m) s.t. c =
m ⊕ PWPRF.Eval(ek, r, s)} with a relation Rek where ek is an evaluation key of
PWPRF. The PWPRF has a domain of size 2λ and the CWPRF has a domain of
size 2λ + �. We assume that the CWPRF is associated with a class of boolean
functions taking inputs from {0, 1}2λ+�.

PKFE.Setup(1λ): The setup algorithm proceeds as follows:
1. Generate a key pair (fk, ek) ← PWPRF.Gen(1λ, R) for a relation R defined

by the language L as above.
2. Define a language Lek with a relation Rek as above and generate a key

pair (fk′, ek′) ← CWPRF.Gen(1λ, Rek).
3. Return the master secret-key as msk = (fk, fk′) and the public parameter

as pp = (ek, ek′).
PKFE.KeyGen(msk, f): The key generation algorithm produces a secret-key cor-

responding to the boolean function f with input length � as follows:
1. Parse msk = (fk, fk′).
2. Define a circuit Cf,fk with constants f and fk as

Cf,fk(r, c) =

{

1 if f(PWPRF.F(fk, r) ⊕ c) = 1
0 otherwise

3. Compute the constrained key fk′
Cf,fk

← CWPRF.ConKey(fk′, Cf,fk).
4. Return the secret-key skf = fk′

Cf,fk
.

PKFE.Enc(pp, m): The encryption algorithm computes a ciphertext for the mes-
sage m ∈ {0, 1}� as follows:
1. Parse pp = (ek, ek′).
2. Pick a random string s ← {0, 1}λ and set r = PRG(s).
3. Use PWPRF to compute c = m ⊕ PWPRF.Eval(ek, r, s) where s acts like

a witness for the statement r of the language L.
4. Set a statement (r, c) of the language Lek with a witness (s,m) and gen-

erate a pseudorandom value v = CWPRF.Eval(ek′, (r, c), (s,m)).
5. Return the ciphertext as ct = (r, c, v).

PKFE.Dec(skf , ct): The decryption algorithm proceeds as follows:
1. Parse skf = fk′

Cf,fk
and ct = (r, c, v).

2. Extract the statement (r, c) of the language Lek from the ciphertext ct
and compute a pseudorandom value v′ = CWPRF.ConF(fkCf,fk

, (r, c)).
3. Return 1 if v = v′ and 0 otherwise.

1 We assume that the co-domain of the pseudorandom function is {0, 1}� [28].
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Correctness. Let skf = fk′
Cf,fk

be a secret-key corresponding to a func-
tion f and ct = (r, c, v) be a ciphertext encrypting a message m. To show
the correctness of decryption algorithm, we first note that if Cf,fk(r, c) =
1 then by the correctness of CWPRF.ConF (Definition 8), it holds with
probability 1 that CWPRF.ConF(fk′

Cf,fk
, (r, c)) = CWPRF.F(fk′, (r, c)) =

CWPRF.Eval(ek′, (r, c), (s,m)) = v. Now, by the definition of the circuit Cf,fk

and correctness of PWPRF.Eval, we have Cf,fk(r, c) = 1 holds if

1 = f(PWPRF.F(fk, r) ⊕ c) = f(PWPRF.Eval(ek, r, s) ⊕ c) = f(m)

since c = PWPRF.Eval(ek, r, s) ⊕ m. Hence, the decryption successfully returns
f(m) = 1 by checking CWPRF.ConF(fk′

Cf,fk
, (r, c)) = v. On the other hand, the

correctness of CWPRF.Eval (Definition 8) and the pseudorandomness property
of CWPRF (Definition 11) together implies that

v = CWPRF.Eval(ek′, (r, c), (s,m)) = CWPRF.F(fk′, (r, c))

remains pseudorandom with overwhelming probability if we have a constrained
key fk′

Cf,fk
such that Cf,fk(r, c) = 0. Hence, the decryption returns f(m) = 0 with

high probability by checking CWPRF.ConF(fk′
Cf,fk

, (r, c)) �= v.

Succinctness. An FE scheme is said to be succinct [16] if the size of the
ciphertext is independent of the size of the computing function and may grow
with the depth of the function. In our PKFE construction above, the size
of a ciphertext ct = (r, c, v) encrypting a message m ∈ {0, 1}� is given by
|ct| = |r| + |c| + |v| = 2λ + � + poly(λ, �) = |m| + poly(λ) where we assume
that � is a polynomial in the security parameter λ. The ciphertext is completely
independent of the size of the computing function. Therefore, our PKFE pro-
duces not only succinct ciphertexts, the size is optimal for any public-key sys-
tem. On the other hand, the iO-based PKFE of [15] uses fully homomorphic
encryption (FHE) to encrypt messages and a NIZK proof system to prove a the
well-formedness of FHE ciphertexts. Thus, the ciphertext size of [15] is not opti-
mal and the ciphertext overhead is also huge in comparison to the ciphertext of
our PKFE.

Theorem 4. The public-key functional encryption scheme PKFE described
above is Adp-INDCCA secure (as per Definition 18) assuming the PRG is secure
(as per Definition 1), the PWPRF is Sel-IND secure (as per Definition 15) and
the CWPRF is wFP-IND secure (as per Definition 13).

Proof. The security analysis involves a sequence of hybrid experiments and prov-
ing indistinguishability between the experiments. The main idea of the proof is
to mask the challenge message with a pseudorandom value corresponding to a
statement of PWPRF that does not have any witness. Therefore, the evaluation
key of PWPRF will not help any PPT adversary A to learn anything about the
challenge message by the Sel-IND security of PWPRF. However, the main chal-
lenge comes into simulating the queries of the active adversary where we need to



Chosen Ciphertext Secure Functional Encryption 39

utilize the wFP-IND security of CWPRF. Let Hi be the event that the challenger
outputs 1 in the i-th hybrid experiment.

Hybd0: We describe the hybrid 0 which is the standard Adp-INDCCA(1λ, b)
experiment as described in Definition 18:

Setup: The challenger generates two pair of keys (fk, ek) ← PWPRF.Gen(1λ, R),
(fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends pp = (ek, ek′) to A. It creates two
empty sets Qf and Qct,f .

Queries: A can query to the following oracles at any point of the experiment.

– secret-key queries. On input a function f ∈ Fλ, the challenger computes
fk′

Cf,fk
← CWPRF.ConKey(fk′, Cf,fk) and returns skf = fk′

Cf,fk
. It updates the

set Qf ← Qf ∪ {f}.
– decryption queries. On input a ciphertext-function pair (ct, f), the challenger

parses ct = (r, c, v). It computes fk′
Cf,fk

← CWPRF.ConKey(fk′, Cf,fk) and sets
v′ = CWPRF.ConF(fk′

Cf,fk
, (r, c)). It outputs 1 if v′ = v, 0 otherwise. It updates

Qct,f ← Qct,f ∪ (ct, f)

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}� × {0, 1}�. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(s∗).
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.Eval(ek, r∗, s∗).
3. Compute a pseudorandom value v∗ = CWPRF.Eval(ek′, (r∗, c∗), (s∗,mb)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}. The challenger returns 1
if b = b′ and f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .

Hybd1: It is exactly the same as hybrid 0 except that the challenger uses the
master secret-key msk = (fk, fk′) to compute ct∗ as follows:

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}� × {0, 1}�. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(s∗).
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.F(fk, r∗).
3. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

We note that the ciphertext distributions in both the hybrids are identical since
by the correctness of PWPRF.Eval and CWPRF.Eval we have

PWPRF.Eval(ek, r∗, s∗) = PWPRF.F(fk, r∗) and

CWPRF.Eval(ek′, (r∗, c∗), (s∗,mb)) = CWPRF.F(fk′, (r∗, c∗)).

Therefore, Hybd0 and Hybd1 are identically distributed from A’s view and we
have Pr[H0] = Pr[H1].
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Hybd2: In this hybrid, the challenger chooses r∗ uniformly at random from
{0, 1}2λ instead of computing it as r∗ = PRG(s∗) for some s∗ ∈ {0, 1}λ. The rest
of the experiment is same as Hybd1. We indicate the change below.

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}� × {0, 1}�. The challenger proceeds as follows:

1. Set r∗ ← {0, 1}2λ.
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.F(fk, r∗).
3. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

The security of PRG (Definition 1) implies |Pr[H1] − Pr[H2]| = AdvPRGB1
(λ) =

negl(λ).

Hybd3: The challenger modifies hybrid 2 using a punctured key which allows it
to avoid the secret function key fk during the secret-key and decryption queries.
We describe this hybrid as follows:

Setup: The challenger generates two pair of keys (fk, ek) ← PWPRF.Gen(1λ, R),
(fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends pp = (ek, ek′) to A. It creates two
empty sets Qf and Qct,f . Next, the challenger picks r∗ ← {0, 1}2λ (to be used
in the challenge phase to mask mb) in advance and computes a punctured key
fkr∗ ← PWPRF.PuncKey(fk, r∗) and the pseudorandom value u∗ ← PWPRF.F
(fk, r∗) in the setup itself.

Queries: A can query to the following oracles at any point of the experiment.

– secret-key queries. On input a function f ∈ Fλ, the challenger defines the
circuit

Cf,fkr∗ ,u∗ (r, c) =

{
1 if (r = r∗ ∧ f(u∗ ⊕ c) = 1) ∨ (f(PWPRF.PuncF(fkr∗ , r) ⊕ c) = 1)

0 otherwise

Then, it returns the secret-key skf as the constrained key fk′
Cf,fkr∗ ,u∗ ←

CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗). It updates the set Qf ← Qf ∪ {f}.
– decryption queries. On input a ciphertext, function pair (ct, f), the chal-

lenger parses ct = (r, c, v). It defines a circuit Cf,fkr∗ ,u∗ as above and

computes fk′
Cf,fkr∗ ,u∗ ← CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗). Then, it sets v′ =

CWPRF.ConF(fk′
Cf,fkr∗ ,u∗ , (r, c)) and outputs 1 if v′ = v, 0 otherwise. It

updates Qct,f ← Qct,f ∪ (ct, f).

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}� × {0, 1}�. The challenger proceeds as follows:

1. Mask the challenge message as c∗ = mb ⊕ u∗.
2. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
3. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.
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Guess: A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′ and
f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .
We show in Lemma 1 that the advantage of A in distinguishing between the
hybrids 2 and 3 is negligible in λ.

Lemma 1. Assuming wFP-IND security of CWPRF, |Pr[H2]−Pr[H3]| = negl(λ).

Proof. We will prove this by contradiction. Suppose, the PKFE adversary A’s
advantage in hybrids 2 differs by a non-negligible quantity from its advantage in
hybrid 3, i.e. there exists a polynomial p(λ) such that

|Pr[H2] − Pr[H3]| ≥ 1
p(λ)

holds for sufficiently many λ ∈ N. We use A to construct a CWPRF adversary
B for the wFP-IND security experiment wFP-INDCWPRF

B (1λ, β) as described in
Definition 13 for some β ∈ {0, 1}. For a key pair (fk, ek) ← PWPRF.Gen(1λ, R),
the CWPRF-challenger generates (fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends
ek′ to B. We note that the NP relation circuit Rek is public and the PWPRF
key pair (fk, ek) is made available to B by the CWPRF challenger as an aux-
iliary information. There are two oracles to which B can query. Firstly, it
can send a pair of equivalent circuits (C0, C1) and learn a constrained key
fk′

Cβ
← CWPRF.ConKey(fk′, Cβ). Secondly, it may send a string x and learn

a pseudorandom value y ← CWPRF.F(fk′, x). Now, B simulates the adversary A
as follows.

B(1λ, (fk, ek), ek′):

1. It sends the master public-key pp = (ek, ek′) to A.
2. It picks a random string r∗ ← {0, 1}2λ and computes the punctured

key fkr∗ ← PWPRF.PuncKey(fk, r∗) and the pseudorandom value u∗ ←
PWPRF.F(fk, r∗). It takes an empty set Qf .

3. Whenever A queries for a secret-key corresponding to a function f , the adver-
sary B computes a pair of circuits as ̂Cf,0 = Cf,fk (as defined in the PKFE con-
struction) and ̂Cf,1 = Cf,fkr∗ ,u∗ . Now, B sends ( ̂Cf,0, ̂Cf,1) to the constrained
key oracle and receives a constrained key fk′

Ĉf,β
← CWPRF.ConKey(fk′, ̂Cf,β)

which is forwarded to A as the secret-key skf . The adversary B updates the
set Qf ← Qf ∪ {f}.

4. A can also query for decryption of a ciphertext-function pair (ct = (r, c, v), f)
at any point of the experiment. First, B creates the circuit pair ( ̂Cf,0, ̂Cf,1)
as in step 3 and learns a constrained key fk′

Ĉf,β
← CWPRF.ConKey(fk′, ̂Cf,β)

from its oracle. Then, it returns 1 if v = CWPRF.ConF(fk′
Ĉf,β

, (r, c)), 0 other-
wise. The adversary B updates the sets Qf ← Qf ∪ {f}.

5. Let m0,m1 ∈ {0, 1}� be the challenge messages given by A. Now, B chooses
b ← {0, 1} and proceeds by masking the challenge message as c∗ = mb ⊕ u∗.
Then, B makes a pseudorandom function query on the input (r∗, c∗) and gets
v∗ = CWPRF.F(fk′, (r∗, c∗)). Finally, it returns the challenge ciphertext as
ct∗ = (r∗, c∗, v∗).
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6. At the end, A outputs a guess bit which B returns as its own guess.

First, we show that B is an admissible adversary of the wFP-IND game. The
correctness of PWPRF.PuncF, it holds that PWPRF.F(fk, r) (used in the circuits
Cf,fk) is equal to PWPRF.PuncF(fkr∗ , r) (used in the circuits Cf,fkr∗ ,u∗) for all
r �= r∗. Therefore, the circuits Cf,fk and Cf,fkr∗ ,u∗ are equivalent for all f ∈ Qf .
Now, if β = 0, then B perfectly simulates the hybrid 2 as the secret-keys are
computed using the circuits of the form Cf,fk where the secret function key fk is
hardcoded. If β = 1 then B perfectly simulates the hybrid 3 as the secret-keys
are produced utilizing the circuits of the form Cf,fkr∗ ,u∗ where the punctured
key fkr∗ is constant. Therefore, for infinitely many λ, it holds that

AdvwFP-INDB,CWPRF(λ) = |Pr[H2] − Pr[H3]| ≥ 1
p(λ)

.

This is a contradiction as CWPRF is wFP-IND secure and hence we have |Pr[H2]−
Pr[H3]| = negl(λ).

Hybd4: This is exactly the same as Hybd3 except that we pick u∗ uni-
formly at random from the co-domain Y of PWPRF.F(fk, ·) instead of comput-
ing u∗ ← PWPRF.F(fk, r∗) for some r∗ ∈ {0, 1}2λ. The Sel-IND security of
PWPRF guarantees that hybrids 3 and 4 are indistinguishable for any PPT
adversary A as shown in Lemma 2. We prove this lemma in the full version of
this paper.

Lemma 2. Assuming Sel-IND security of PWPRF, |Pr[H3]−Pr[H4]| = negl(λ).

Finally, we note that in hybrid 4 the challenge message mb is masked into
c∗ = mb ⊕ u∗ where u∗ is chosen as uniformly at random from Y, indicating
that the challenge bit b is statistically hidden inside c∗. This in turn implies that
A’s advantage in guessing the bit b in hybrid 4 is at most 1

2 even when it has
access to the key generation and decryption oracles. This completes the proof of
Adp-INDCCA security of our PKFE.

5 Conclusion

In this work, we propose a generalized variant of WPRF called constrained WPRF
which provides finer access control to the pseudorandom values associated with
NP statements. We discuss a generic construction of CWPRF from iO and CPRF.
More importantly, the pseudorandomness and function privacy of our CWPRF
enable us to achieve an adaptive IND-CCA secure PKFE for all polynomial-size
functions. To the best of our knowledge, existing PKFEs are either IND-CPA
secure or supports specific class of functions. Additionally, our PKFE produces
optimal size ciphertexts which in turn implies succinctness. In literature, such
a succinct PKFE gives rise to an iO for all circuits [4]. Thus, it can be believed
that CWPRF is as good as iO, however, a direct construction of iO from CWPRF
would be more interesting which we leave as future work.
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Abstract. Recently, motivated by its increased use in real-world appli-
cations, there has been a growing interest on the reduction of trust in
the generation of the common reference string (CRS) for zero-knowledge
(ZK) proofs. This line of research was initiated by the introduction of
subversion non-interactive ZK (NIZK) proofs by Bellare et al. (ASI-
ACRYPT’16). Here, the zero-knowledge property needs to hold even in
case of a malicious generation of the CRS. Groth et al. (CRYPTO’18)
then introduced the notion of updatable zk-SNARKS, later adopted by
Lipmaa (SCN’20) to updatable quasi-adaptive NIZK (QA-NIZK) proofs.
In contrast to the subversion setting, in the updatable setting one can
achieve stronger soundness guarantees at the cost of reintroducing some
trust, resulting in a model in between the fully trusted CRS generation
and the subversion setting. It is a promising concept, but all previous
updatable constructions are ad-hoc and tailored to particular instances
of proof systems. Consequently, it is an interesting question whether it
is possible to construct updatable ZK primitives in a more modular way
from simpler building blocks.

In this work we revisit the notion of trapdoor smooth projective
hash functions (TSPHFs) in the light of an updatable CRS. TSPHFs
have been introduced by Benhamouda et al. (CRYPTO’13) and can be
seen as a special type of a 2-round ZK proof system. In doing so, we
first present a framework called lighter TSPHFs (L-TSPHFs). Build-
ing upon it, we introduce updatable L-TSPHF s as well as instantia-
tions in bilinear groups. We then show how one can generically construct
updatable quasi-adaptive zero-knowledge arguments from updatable L-
TSPHFs. Our instantiations are generic and more efficient than existing
ones. Finally, we discuss applications of (updatable) L-TSPHFs to effi-
cient (updatable) 2-round ZK arguments as well as updatable password-
authenticated key-exchange (uPAKE).

1 Introduction

Zero-knowledge (ZK) proofs were introduced by Goldwasser, Micali and Rackoff
[26] and play a central role in both the theory and practice of cryptography.
c© Springer Nature Switzerland AG 2021
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A long line of research [25,27,28,30–35,38] has led to efficient pairing-based
zero-knowledge Succint Non-interactive ARguments of Knowledge (zk-SNARKs)
and succinct Quasi-Adaptive Non-Interactive Zero-Knowledge arguments (QA-
NIZKs) in the common reference string (CRS) model. QA-NIZKs are a relaxation
of NIZK proofs where the CRS is allowed to depend on the specific language for
which proofs have to be generated [8,32,33,35–37]. In general, SNARKs (QA-
NIZKs) are succinct, in fact, they allow to prove that circuits of arbitrary size
(for linear languages) are satisfied with a constant-size proof. They are also
concretely very efficient, 3 group elements is the best SNARK construction for
arithmetic circuits [28] and 1 group element is the best QA-NIZK construction
for linear languages [35]. Recently, Campanelli et al. [16] proposed LegoSNARK,
a toolbox for commit-and-prove zk-SNARKs (CP-SNARKs), where they use
succinct QA-NIZKs as efficient zk-SNARKs for linear subspace languages.

Trust in the CRS. For the practical application of zero-knowledge primitives,
an important question is the generation of the CRS. While in theory it is simply
assumed that some trusted party will perform the CRS generation, such a party
is hard to find in the real-world. Recently, there has been an increasing interest to
reduce the trust in the generator of the CRS. Existing approaches are (1) the use
of multi-party computation to generate the CRS in a distributed way [3,11,15] or
(2) the use of CRS checking algorithms in subversion NIZKs [9], zk-SNARKS [4,
23] and QA-NIZKs [6]. Here, although the prover does not need to trust the
CRS, the zero-knowledge property (so called subversion ZK) is still preserved.
However, the verifier still needs to trust the CRS generator. Abdolmaleki et al. [6]
later studied the Kiltz-Wee QA-NIZKs [35] in a variant of the bare public-key
(BPK) model, where some part of the CRS (the language parameter) is generated
by a trusted party, but the rest of the CRS can be generated maliciously by some
untrusted party (from the prover’s perspective). Finally, (3) there is the recent
approach of a so called updatable CRS [7,17,21,29,40,41]. Here, everyone can
update a CRS such that the updates can be verified and ZK holds in front of a
malicious CRS generator and the verifier can trust the CRS (soundness holds)
as long as one operation, either the CRS creation or one of its updates, have
been performed honestly. So a verifier can do a CRS update on its own and then
send the updated CRS to the prover. Note that this updating inherently requires
communication of the prover and the verifier in such an updatable SNARK/QA-
NIZK setting, a fact that will be useful for us.

QA-ZK. In the following, we focus on ZK in the quasi-adaptive setting.
QA-NIZK were introduced by Jutla and Roy in [32] and further improved in
e.g., [33,35]. Jutla and Roy have shown that for linear languages (linear sub-
spaces of vector spaces over bilinear groups), one can obtain more efficient
computationally-sound NIZK proofs (so called arguments) when compared to
Groth-Sahai proofs [31]. They are in a slightly different quasi-adaptive setting,
which however suffices for many cryptographic applications and can be particu-
larly useful in generic toolboxes such as LegoSNARK [16]. In the quasi-adaptive
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setting, a class of parametrized languages {lpar} is considered and the CRS gen-
erator is allowed to generate the CRS based on the language parameter lpar.
As already mentioned, recently, Abdolmaleki et al. [6] made the Kiltz-Wee QA-
NIZK [35] subversion resistant and also showed that this construction is equiv-
alent to 2-round ZK arguments or more general it is a QA-NIZK in a variant
of the bare public-key (BPK) model. Then Lipmaa [40] proposed an updatable
version of the QA-NIZK construction of [6]. However, all these constructions are
ad-hoc based on and for specific proof systems and not generic.

(QA)-ZK and SPHFs. Smooth Projective Hash Functions (SPHFs) [18] (cf.
Section 2) can be viewed as honest-verifier zero-knowledge (HVZK) arguments
for the membership in specific languages [2]. HVZK is a weakened variant of
ZK, which only needs to hold for honest verifiers. Roughly speaking, to prove
membership of x ∈ L, the verifier generates the secret hashing key hk, and for
any word x she can compute the hash value H without knowledge of the witness
w by using the hashing key hk. In addition, the verifier can derive a projection
key hp from the hashing key hk and send it to the prover. By knowing a witness
w for membership of x ∈ L and having the projection key hp, the prover is able to
efficiently compute the projective hash pH for the word x such that it equals the
hash H computed by the verifier. The smoothness property implies that if x �∈ L,
one cannot guess the hash value H by knowing hp, or in other words, the hash
value H looks completely random. Benhamouda et al. [12,14] showed how one
can construct ZK instead of HVZK arguments in the CRS model by introducing
so called Trapdoor SPHFs (TSPHFs). Recently, Abdolmaleki et al. [5] defined
a variant of TSPHF with an untrusted setup, so called smooth zero-knowledge
hash functions, and show how to construct 2-round ZK arguments in the plain (or
subversion ZK arguments in the CRS) model under a non-falsifiable assumption.
Also Abdalla et al. in [1] proposed a framework for QA-(NI)ZK based on the
disjunction of two languages and SPHFs and provided an alternative view of
the Kiltz-Wee QA-NIZK construction. Compared with the ZK arguments (or
QA-NIZK in the BPK model) in [6], the QA-ZK arguments based on TSPHFs
in [12,14] are less efficient regarding proof size, computation and communication
complexity. Moreover, it does not yield a modular construction for updatable
QA-ZK, a gap that we close.

Our Contribution and Technical Overview. This work is motivated by the
lack of modular and simple building blocks to construct updatable ZK primitives.
We address this in this works as follows:

Lighter TSPHFs. We first revisit the notion of TSPHFs proposed by Ben-
hamouda et al. [12,14], which represents an extension of a classical SPHF, and
requires that the setup algorithm Pgen(1λ) outputs an additional CRS crs′ and
a trapdoor τ ′ specific to crs′. This trapdoor can be used by thash (trapdoor
hashing) to compute the hash value of words x knowing only hp. This is use-
ful to allow simulation in the construction of ZK protocols. We present a new
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approach which we call lighter TSPHFs (L-TSPHFs), allowing instantiations in
bilinear groups that are more efficient than known TSPHFs, as all three hash-
ing algorithms hash, projhash, and thash yield hash values in G1 instead of GT .
Our L-TSPHF framework that forms the basis for our TSPHF framework with
an updatable CRS (denoted uL-TSPHF ), is parametrized by a SPHF Σ and
additionally relies on a new knowledge assumption LTSPHF-KE (which we will
prove based on Hash-Algebraic Knowledge (HAK) assumptions [39])1. We stress
that our main motivation for L-TSPHFs is the construction of uL-TSPHF and
updatable QA-ZK proofs. As from [29,40] it is known that in order to have
updatability, knowledge assumptions are crucial for extracting the new trapdoor
from an updated CRS, as it might have been updated by a dishonest party, this
does not represent a limitation.

Updatable Lighter TSPHFs and QA-ZK. We present a framework for updatable
L-TSPHF s (uL-TSPHF s) which is inspired by updatable SNARKs [7,17,29,41]
and updatable QA-NIZKs [40]. In short, we add algorithms crsVer for checking
the well-formedness of the CRS, Upd for performing CRS updates (outputting a
proof of correct update) and UpdVer for checking the correctness of an update by
means of update proofs and define the security requirements for uL-TSPHF s.
In contrast to the ad-hoc constructions of updatable SNARKs [17,29,41] and
updatable QA-NIZKs [40], our updatable L-TSPHF framework is a generic
building block which can be used to modularly design updatable primitives.
Our instantiation of an uL-TSPHF is directly based on an L-TSPHF together
with a suitable additive updating procedure of the trapdoor in the CRS and
extraction based on the BDH-knowledge assumption [4], representing a simple
variant of the PKE assumption [20]. We then show as the main application of
uL-TSPHF s the construction of updatable QA-ZK arguments. When compared
with the only existing construction of updatable QA-ZK proofs in [40] (which is
ad-hoc), we can significantly reduce the proof as well as the communication size
and in particular obtain succinct proofs.

Applications. Besides updatable QA-ZK, we provide an application of the L-
TSPHF framework for constructing QA-ZK arguments2 in a modular way.
Using our instantiations under the LTSPHF-KE assumption in bilinear groups,
we show that L-TSPHFs yield a framework for constructing efficient 2-round
ZK arguments with a pairing-free verifier. The resulting ZK arguments are more
efficient than previous QA-ZK constructions in [6,14]. We also present a con-
crete instance for proving the correct encryption of a valid Waters signature.
Finally, as another interesting application, we show how to construct an updat-
able two-round Password-Authenticated Key-Exchange (uPAKE) protocol from
uL-TSPHF s, which allows to reduce trust in the setup of the PAKE.
1 HAK is essentially a concrete Algebraic Group Model (AGM) [24] version of the

generic group model with hashing that models the ability of an adversary to create
elliptic-curve group elements by using elliptic-curve hashing without knowing their
discrete logarithm.

2 We note that all ZK arguments we consider in this paper are in the quasi-adaptive
setting and we might sometimes omit to make this explicit.
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2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security param-
eter. All adversaries will be stateful. For an algorithm A, RND(A) is the random
tape of A (for a fixed choice of λ), and ω ←$RND(A) denotes the random choice of
ω from RND(A). By x ←$D we denote that x is sampled according to distribution
D or uniformly randomly if D is a set. A bilinear group generator BG.Pgen(1λ)
returns (p,G1,G2,GT , ē), where G1 and G2 are additive cyclic groups of prime
order p, and ē : G1 ×G2 → GT is a non-degenerate efficiently computable bilin-
ear pairing. We use the implicit bracket notation of [22], that is, we write [a]ι to
denote agι where gι is a fixed generator of Gι. We denote ē([a]1, [b]2) as [a]1 · [b]2.
Thus, [a]1 · [b]2 = [ab]T (also [a]2 · [b]1 = [ab]T ). We denote s[a]ι = [sa]ι for
s ∈ Zp and S · [a]ι = [Sa]T for S ∈ Gι and ι ∈ {1, 2, T}. We freely use the
bracket notation together with matrix notation, for example, if AB = C then
[A]1 · [B]2 = [C]T .

Smooth Projective Hash Functions. Smooth projective hash functions
(SPHF) [18] are families of pairs of functions (hash, projhash) defined on a lan-
guage L. They are indexed by a pair of associated keys (hk, hp), where the
hashing key hk may be viewed as the private key and the projection key hp
as the public key. On a word x ∈ L, both functions need to yield the same
result, that is, hash(hk,L, x) = projhash(hp,L, x, w), where the latter evaluation
additionally requires a witness w that x ∈ L. Thus, they can be seen as a tool
for implicit designated-verifier proofs of membership [2]. Formally SPHFs are
defined as follows (cf. [12]).

Definition 1 (SPHF). A SPHF for a language L is a tuple of PPT algorithms
(Pgen, hashkg, projkg, hash, projhash), which are defined as follows:

Pgen(1λ,L). Takes the security parameter λ and the language L, and generates
the language parameters lpar.

hashkg(L): Takes a language L and outputs a hashing key hk for L.
projkg(hk, lpar, x): Takes a hashing key hk, a language parameter lpar, and a

word x and outputs a projection key hp, possibly depending on x.
hash(hk, lpar, x): Takes a hashing key hk, a language parameter lpar, and a

word x and outputs a hash H.
projhash(hp, lpar, x, w): Takes a projection key hp, a language parameter lpar,

a word x, and a witness w for x ∈ L and outputs a hash pH.

A SPFH needs to satisfy the following properties:

Correctness. It is required that hash(hk, lpar, x) = projhash(hp, lpar, x, w) for
all x ∈ L and their corresponding witnesses w.
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Smoothness. It is required that if x �∈ L, the following distributions are statis-
tically indistinguishable:{

(L, x, hp,H) :
lpar ← Pgen(1λ,L), hk ← hashkg(L),
hp ← projkg(hk, lpar, x),H ← hash(hk, lpar, x)

}
,

{
(L, x, hp,H) :

pars ← Pgen(1λ), hk ← hashkg(L),
hp ← projkg(hk, lpar, x),H ←$Π

}
,

where the range Π is the set of hash values.
Depending on the definition of smoothness, there are three types of SPHFs

(cf. [12]):

GL-SPHF. The projection key hp can depend on word x and so the smoothness
is correctly defined only if x is chosen before having seen hp.

KV-SPHF. hp does not depend on word x and the smoothness holds even if x is
chosen after having seen hp.

CS-SPHF. hp does not depend on word x but the smoothness holds only if x is
chosen before having seen hp.

Language Representation. Similar to [12], for a language L, we assume there
exist two positive integers k and n, a function Γ : S → G

k×n, and a family of
functions Θ : S → G

1×n, such that for any word x ∈ S, (x ∈ L) iff ∃λ ∈ Z
1×k
p

such that Θ(x) = λΓ(x). In other words, we assume that x ∈ L, if and only
if, Θ(x) is a linear combination of (the exponents in) the rows of some matrix
Γ(x). For a KV-SPHF, Γ is supposed to be a constant function (independent of
the word x), otherwise one obtains a GL-SPHF. We furthermore require that,
when knowing a witness w of the membership x ∈ L, one can efficiently compute
the above linear combination λ. This may seem a quite strong requirement, but
this is satisfied by very expressive languages over ciphertexts such as ElGamal,
Cramer-Shoup (CS) and variants.

Trapdoor Smooth Projective Hash Functions. Benhamouda et al. pro-
posed an extension of a classical SPHF, called TSPHF [12]. Their framework
has an additional algorithm Pgen(1λ) outputs an additional CRS crs′ and a
trapdoor τ ′ specific to crs′, which can be used to compute the hash value of
words x knowing only hp.

TSPHFs enable to construct efficient PAKE protocols in the UC model and
also efficient ZK proofs (2-round ZK). For the latter, the trapdoor is used to
enable the simulator to simulate a prover playing against a dishonest verifier.

Definition 2 (TSPHF [12]). A TSPHF for a language L is defined by seven
algorithms:

– Pgen(1λ,L). Takes as input the security parameter λ and the language L
and generates the language parameter lpar, the CRS crs′, together with a
trapdoor τ ′.
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Fig. 1. Experiments Expsmooth−b for computational smoothness

– hashkg, projkg, hash, and projhash, are the same as for a classical SPHF.
– verhp(hp, lpar, crs′, x). Takes a language hp, lpar, crs′, and the word x and

outputs 1 if hp is a valid projection key, and 0 otherwise.
– thash(hp, lpar, crs′, x, τ ′): Takes a hashing key lpar, crs′, the word x, and

the trapdoor τ ′, and outputs the hash value of x from the projection key hp
and the trapdoor τ ′.

There is an additional property on the language L that it has to be witness
sampleable. By witness sampleable, we mean that there exists a trapdoor tclpar
for the language parameters lpar, such that tclpar enables to efficiently com-
pute the discrete logarithms of the entries of lpar. A TSPHF must satisfy the
following properties:

Correctness. For any word x ∈ L with witness w, for any hk ← hashkg(L)
and for hp ← projkg(hk,L, x) it should satisfy the two properties: hash correct-
ness, and trapdoor correctness. The fist property corresponds to correctness for
classical SPHFs, and the second one states that verhp(hp, lpar, crs′, x) = 1 and
hash(hk, lpar, crs′, x) = thash(hp, lpar, crs′, x), with overwhelming probability.

(t, ε)-soundness property. Given lpar, its trapdoor, and L and crs′, no
adversary running in time at most t can produce a projection key hp, a value
aux, a word x and valid witness w such that verhp(hp, lpar, crs′, x) = 1 but
projhash(w, lpar, crs′, x) �= thash(hp, lpar, crs′, x) with probability at least ε.

Smoothness. Is the same as for SPHFs, except that, Pgen outputs extra ele-
ments τ ′ and crs′, but while the trapdoor τ ′ of the crs′ is dropped, crs′ is
forwarded to the adversary (together with the language parameter lpar).

Notice that since hp now needs to contain enough information to compute
the hash value of any word x, the smoothness property of TSPHFs is no longer
statistical but computational. The computational smoothness is defined by the
experiments Expsmooth−b and depicted in Fig. 1.

Quasi-Adaptive Zero-Knowledge Arguments. A tuple of PPT algorithms
Π = (Pgen,Kcrs,P,V,Sim) is a QA-ZK argument system in the CRS model for
a set of witness-relations Rpars = {Rlpar}lpar∈Supp(Dpars) with lpar sampled from
a distribution Dpars over associated parameter language Lpars, if the properties
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(i-iii) hold. Here, Pgen are the public parameter pars and Kcrs the crs generation
algorithms, P is the prover, V is the verifier, and Sim is the simulator.
(i) Perfect Completeness. For any λ, pars ∈ Pgen(1λ), lpar ∈ Dpars, and
(x, w) ∈ Rlpar,

Pr [(crs, τ) ← Kcrs(lpar); 〈P(w),V〉crs(x) = 1] = 1 .

(ii) Zero-Knowledge. For any λ, pars ∈ Pgen(1λ), lpar ∈ Dpars, for any
computationally unbounded adversary A, 2 · |εzk − 1/2| ≈λ 0, where εzk :=

Pr
[
(crs, τ) ← Kcrs(lpar); (x, w) ← A(crs); b ←$ {0, 1} : 〈Pb,A〉crs(x) = 1

]
.

Where Pb terminates with ⊥ if (x, w) /∈ Rlpar. If b = 0, Pb represents P(w) and
if b = 1, Pb represents Sim(τ).
(iii) Computational Quasi-Adaptive Soundness. For any PPT A and for
all x s.t. ¬(∃w : Rlpar(x, w)),

Pr
[
(pars, lpar) ← Pgen(1λ); (crs, τ) ← Kcrs(lpar) : 〈A,V〉crs(x) = 1

] ≈λ 0 .

BDH Assumption. We require the following knowledge assumption:

Assumption 1 (BDH-Knowledge Assumption [4]). We say that Pgen is
BDH-KE secure for R if for any λ, (R, auxR) ∈ range(R(1λ)), and PPT adver-
sary A there exists a PPT extractor ExtBDH

A , such that

Pr

⎡
⎢⎣

r ←r RND(A);

([α1]1, [α2]2||a) ← (A||ExtBDH
A )(R, auxR;ωA) :

[α1]1[1]2 = [1]1[α2]2 ∧ a �= α1

⎤
⎥⎦ ≈λ 0 .

Note that the BDH assumption can be considered as a simple case of the
PKE assumptionof [20] (where A is given as an input the tuple {([xi]1, [xi]2)}n

i=0

for some n ≥ 0, and assumed that if A outputs ([α]1, [α]2) then she knows
(a0, a1, . . . , an), such that α =

∑n
i=0 aix

i. ) as used in the case of asymmetric
pairings in [20]. Thus, BDH can be seen as an asymmetric-pairing version of the
original KoE assumption [19].

3 A New Framework for TSPHFs

In this section, we present our revisited TSPHF framework. Conceptually, we
start from the GL-TSPHFs construction in [13] and show how we can modify
the framework such that all three hashing algorithms hash, projhash, and thash
yield hash values in G1 instead of GT . This yields a more efficient and “lighter”
version of TSPHFs which we call lighter TSPHF (L-TSPHF). Our framework is
parametrized by a SPHF Σ which is required to be pairing-free, but it is then
instantiated in source group Gι, ι ∈ {1, 2}, of a bilinear group (p,G1,G2,GT , ē).
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Fig. 2. Full construction of L-TSPHF[Σ].

In general, let us define the language for the SPHF Σ that fits the generic
framework in [12] as follows:

L′ =
{
x ∈ G

1×n
ι : ∃w ∈ Z

1×k
p ; x = w[Γ]ι

}
,

where Γ ∈ Z
k×n
p is the language parameter and a full rank matrix (n > k).

As with the TSPHF framework in [12], our framework provides the algorithms
verhp and thash and we recall that the verhp algorithm checks well-formedness of
the projection key hp and thash computes the hash value tH, without knowing
neither the witness w nor the hashing key hk. We recall that the hashing key of
Σ is a vector hk = α ←$Z

n
p , while the projection key is, for a word x = [θ]1,

hp = [Γ(x)]ια ∈ G
k
ι (it represents hp1 in the L-TSPHF ) and note that L-

TSPHF s in our framework are GL-style irrespective whether the underlying
SPHF Σ is GL- or KV-style.

Now, we briefly outline our construction idea. The Pgen algorithm outputs an
additional CRS crs′ = ([b]3−ι, [bΓ]ι) and its trapdoor τ = bΓ where b ←$Z

n×k
p .

Here, Γ is the language parameter which we mask in the trapdoor τ with a vector
b. This is to guarantee that thash does not know Γ but only τ = bΓ.3 Now the
idea is that for a hashing key hk := α ←$Z

n
p our projection key, besides the

projection key of the SPHF Σ, contains a second component hp2 = [τα]ι ∈ G
n
ι

which is a representation of hk and crs′ in Gι (this is similar to TSPHFs). Then,
by using the knowldege assumption LTSPHF-KE, we know that there exists an
extractor ExtA knowing the random coins of A (or the random coins of projhash)
which returns a hashing key α that could have been used to compute hp. Finally,
the thash algorithm can use this information to generate the trapdoor hash tH
(cf. Lemma 1 for details and the precise use of the LTSPHF-KE assumption).

3 We note that in the SPHF/TSPHF and their applications in zero-knowledge proofs,
one wants to simulate a proof without knowing the trapdoor Γ of the base elements
of the statement to be proven.
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3.1 Lighter-TSPHF (L-TSPHF)

Now we present our L-TSPHF framework, which relies on the knowledge assump-
tion LTSPHF-KE (cf. Assumption 2) and require that for any efficient malicious
projection key creator Z, there exists an efficient extractor ExtZ, s.t. if Z, by
using the random coins ω as an input, generates a projection key hp then ExtZ,
given the same input and ω, outputs the hashing key hk corresponding to hp.

Definition 3. A L-TSPHF[Σ] for language L based upon SPHF Σ is defined
by the following algorithms:

– Pgen(1λ,L): Takes a security parameter λ and language L. Choose the trap-
door of language parameter (Γ ←$Z

k×n
p ). Chooses the trapdoor b ←$Z

n×k
p

such that τ := bΓ is a diagonal matrix of size n × n. Sets lpar = ([Γ]ι) and
crs′ = ([b]3−ι, [τ ]ι). It outputs (τ, crs := (lpar, crs′)).

– hashkg(L): Takes a language L and outputs a hashing key hk := α ←$Z
n
p of

Σ for the language L, i.e., return hk ← Σ.hashkg(L).
– projkg(hk, crs, x): Takes a hashing key hk, a CRS crs, and a word x and

computes a projection key hp := (hp1, hp2) ∈ G
k+1
ι , where hp1 = [Γα]ι ∈ G

k
1

is the projection key of Σ, i.e., hp1 ← Σ.projkg(hk,L), hp2 = [τα]ι ∈ G
n
ι is a

representation of hashing key hk and crs′ in Gι.
– hash(hk, x): Takes a hashing key hk, and a word x and outputs a hash H =

x · α ∈ Gι, being the hash of Σ, i.e., H ← Σ.hash(hk, x).
– projhash(hp, x, w): Takes a projection key hp = (hp1, hp2), a word x, and a

witness w for x ∈ L and outputs a hash pH = w ·hp1 ∈ Gι, being the projective
hash of Σ, i.e., pH ← Σ.projhash(hp1, x, w).

– verhp(hp, crs). Takes projection key hp and CRS crs, and outputs 1 if hp is
a valid projection key, and 0 otherwise.

– thash(ω, τ, hp, crs, x): Takes random coins ω of projhash, trapdoor τ and a
projection key hp, the CRS crs and word x, and by using an Ext (underling
a knowledge assumption) extracts hk = α and outputs tH = x · α ∈ Gι.

We present the L-TSPHF[Σ] construction in Fig. 2. L-TSPHFs must satisfy
the properties correctness, zero-knowledge and computational smoothness. We
note that the zero-knowledge property is called soundness in the context of
TSPHFs in [12] and was later called zero-knowledge in [10]. We use the more
intuitive term zero-knowledge, since in a typical application of (T)SPHFs, it
guarantees that a malicious hp generator does not learn anything from seeing a
projective hash pH (which depends on the witness) compared to when she seeing
a (trapdoor) hash value H (which does not depend on the witness).

Perfect Correctness. For any (τ, crs = (lpar, crs′)) ← Pgen(1λ,L) and any
word x ∈ L with witness w, for any hk ← hashkg(L), any ω ←$RND(projkg) and
for hp ← projkg(hk, crs, x;ω), we have: verhp(hp, crs) = 1, and hash(hk, crs,
x) = thash(ω, τ, hp, crs, x).
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Fig. 3. Experiment Expzk-b(A, L, λ).

Fig. 4. Experiment Expcsmooth-b for computational smoothness.

Zero-Knowledge. There exist deterministic algorithms thash, verhp, s.t. the
following holds. For any PPT algorithm Z, there exists a PPT extractor ExtZ,
s.t. for all λ, and unbounded A, AdvzkZ,A(λ) ≈λ 0, where

AdvzkZ,A(λ) = |Pr[Expzk-0(A,L, λ) = 1] − Pr[Expzk-1(A,L, λ) = 1]|,

and the zero-knowledge experiment is defined in Fig. 3.

Computational Smoothness. Is based on that of TSPHFs and note that the
trapdoors with exception of the one to crsL = lpar are dropped and the full
crs is given to the adversary. For a language L and adversary A, the advantage
is defined as follows:

Advcsmooth
L,A (λ) = |Pr[Expcsmooth−0(A, λ) = 1] − Pr[Expcsmooth−1(A, λ) = 1]|.

The computational smoothness experiment is also defined in Fig. 4.

New Knowledge Assumption. Let L-TSPHF[Σ] be the L-TSPHF. To prove the
ZK property of our construction, we need to rely on a new assumption we call
LTSPHF-KE. Inspired by the knowledge assumption of [5], we first define a new
assumption and then prove its security under the HAK assumptions in Lemma
1. The knowledge assumption is to postulate that given a valid hp, one can
efficiently extract hk = α. More precisely, the LTSPHF-KE assumption is the
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core of the ZK proof of the L-TSPHF[Σ] construction in Theorem 1. There, we
assume that if an adversary A outputs a hp accepted by verhp, then there exists
an extractor ExtA that by knowing the secret coins of A, returns hk = α where
hk was used to compute hp.

Assumption 2 (LTSPHF-KE). Fix n > k ≥ 1. Let L-TSPHF[Σ] be the
Lighter-TSPHF. The LTSPHF-KE assumption holds relative to Pgen for any
PPT adversary A, there exists a PPT extractor ExtA, such that AdvhakA (λ) :=

Pr

[
crs ← Pgen(1λ, L); ω ←$RND(A); hp ← A(crs, ω);

hk ← ExtA(crs, ω) : hp = (hp1, hp2) ∧ verhp(hp, crs) = 1 ∧ hp1 �= Γα.

]
≈λ 0.

We now show that LTSPHF-KE is secure under a hash-algebraic knowledge
(HAK) assumption from [39].

Lemma 1 (Security of LTSPHF-KE). Fix n > k ≥ 1. Then LTSPHF-KE holds
relative to Pgen under the ε-HAK assumption.

Due to the lack of space the proof of Lemma 1 is deferred to the full version.

Theorem 1. The L-TSPHF[Σ] in Fig. 2 is complete, if the LTSPHF-KE
assumption holds, then it is zero-knowledge and if DDH holds in Gι, ι ∈ {1, 2}
then L-TSPHF[Σ] has computational smoothness.

Proof. (i: Completeness) This is straightforward from the construction.

(ii: Zero-knowledge) Let Z be a subverter that computes hp so as to break
the zero-knowledge property. The subverter Z gets as an input the language
parameter crs and a random tape ω, and outputs hp∗ and some auxiliary state
st. Let A be the adversary from Lemma 1. Note that RND(A) = RND(Z).
Under the LTSPHF-KE assumption, there exists an extractor ExtA, such that
if verhp(crs, hp∗, x) = 1 then ExtA(crs, hp∗;ω) outputs hk.

Fix crs, ω ∈ RND(Z), hp∗ and run ExtZ(crs, hp∗;ω) to obtain hk. It clearly
suffices to show that if verhp(crs, hp∗, x) = 1 and (x, w) �∈ R then

O0(x, w) =projhash(hp∗, crs, x, w) = pH ,

O1(x, w) =thash(ω, τ, hp∗, crs) = tH

have the same distribution, where O0 and O1 work as in Fig. 3. This holds since
from verhp(crs, hp, x) = 1 it follows O0(x, w) = pH = tH = O1(x, w). Hence, O0

and O1 have the same distribution.
(iii: Smoothness) The proof of smoothness is given in the full version. �

3.2 Comparison of the TSPHF Frameworks

In Table 1 we compare the efficiency of L-TSPHF with the GL-/KV-TSPHF
constructions of [12] where n > k. Note that having G1 instead of GT gives a
factor ≥ 12 of bandwidth savings and also elements in G2 are typically twice the
size of G1 for current type-III bilinear groups.
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Table 1. Comparison between GL-/KV-TSPHF and L-TSPHF.

Scheme |H| |hp|
KV-TSPHF[12] GT k × G1 + n × G2

GL-TSPHF[12] GT k × G1 + n × G2

L-TSPHF [Σ] G1 (k + n) × G1

4 Updatable L-TSPHF

In this section, we propose an updatable version of L-TSPHF s (called uL-
TSPHF s). The goal of updatability is to protect smoothness (analogous to
soundness for zk-SNARKs in [29]) in the case the crs may be subverted, by
requiring that at least one among the creator and all parties performing an
update of crs is honest.

We define uL-TSPHF s by roughly following the definitional guidelines of
[29] for updatable zk-SNARKs and [40] for updatable QA-NIZKs. But in con-
trast to these ad-hoc constructions for particular instances of proof systems,
our updatable L-TSPHF framework is generic and can be considered as a new
cryptography tool with updatable ZK (cf. Sect. 5) being one application. Similar
to QA-NIZKs, since the CRS of uL-TSPHF s depends on a language parame-
ter Γ, its security definitions are different when compared to zk-SNARKs. We
redefine updatable versions of completeness, zero-knowledge and smoothness
correspondingly. In order to satisfy the hiding property of the CRS updating
procedure (following [40] we call the CRS henceforth key), we add the require-
ment that an updated key and a fresh key are indistinguishable. Additionally
we add key-updating and update-verification algorithms with the correspond-
ing security requirements: key-update completeness, key-update hiding, strong
key-update hiding, key-update smoothness, and key-update zero-knowledge.

uL-TSPHF. An updatable L-TSPHF (uL-TSPHF) has the following PPT algo-
rithms in addition to (Pgen, hashkg, projkg, projhash, hash, verhp, thash).

– crsVer(lpar, crs′). Is a deterministic CRS verification algorithm which, given
both lpar and crs′, checks if they are well-formed.

– Upd(lpar, crs′). Is a randomized key updater algorithm, given lpar, crs′,
generates a new updated crs′ (crs′

upd), and returns (crs′
upd, crsint, tcupd)

where tcupd is some trapdoor of the updated CRS crs′
upd. crsint contains

elements which intuitively can bee seen as a proof that updating is done
correctly.

– UpdVer(lpar, crs′, crs′
upd, crsint). Is a deterministic key updated verification

algorithm which, given crs′ and crs′
upd, and crsint checks correctness of the

updating procedure.
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Fig. 5. Experiment Expu-zk-b(A, L, λ).

Security Requirements. We note that all security notions are given for a
single update, but they can be generalized for many updates by using standard
hybrid arguments (cf. [29]).

Updatable Key Correctness. For any (τ, tc, crs = (lpar, crs′)) ← Pgen
(1λ,L), (crs′

upd, crsint, tcupd) ← Upd(lpar, crs′), it holds that UpdVer(lpar,
crs′, crs′

upd, crsint) = 1. In addition, if UpdVer(lpar, crs′, crs′
upd, crsint) = 1,

then crsVer(lpar, crs′) = 1 iff crsVer(lpar, crs′
upd) = 1.

Updatable Key Hiding. For any (τ, tc, crs = (lpar, crs′)) ← Pgen(1λ,L),
(crs′

upd, crsint, tcupd) ← Upd(lpar, crs′), then we have: (crs′, tc) ≈λ (crs′
upd,

tcupd).

Updatable Strong Key Hiding. The key-update hiding holds if one of the
following holds:

– the original crs was honestly generated and the key-update verifies:
(τ, tc, crs = (lpar, crs′)) ← Pgen(1λ,L), and UpdVer(lpar, crs′, crs′

upd,
crsint) = 1.

– the original crs verifies and the key-update was honest: crsVer(lpar, crs′) =
1, and (crs′

upd, crsint, tcupd) ← Upd(lpar, crs′).

Updatable Completeness. For any (τ, tc, crs = (lpar, crs′)) ←
Pgen(1λ,L), any (crs′

upd, crsint, tcupd) ← Upd(lpar, crs′) and any word x ∈ L
with witness w, for any hk ← hashkg(L), any ω ←$RND(projkg) and hp ←
projkg(hk, crs, x;ω), we have: verhp(hp, crs, x) = 1, crsVer(lpar, crs′

upd) = 1,
and hash(hk, crs, x) = thash(ω, τ, hp, lpar, crs′

upd, x).
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Fig. 6. Experiments Expx-ucsmooth-b with x ∈ {F,B} for updatable computational
smoothness.

Updatable Zero-Knowledge. There exist deterministic algorithms thash,
verhp, s.t. the following holds. For any PPT subverter Z, there exists a PPT
extractor ExtZ, s.t. for all λ, and unbounded A, Advu-zkZ,A(λ) ≈λ 0, where

Advu-zkZ,A(λ) = |Pr[Expu-zk-0(A,L, λ) = 1] − Pr[Expu-zk-1(A,L, λ) = 1]|.
and the updatable zero-knowledge experiment is defined in Fig. 5.

Updatable Computational Smoothness. It holds iff both, the updatable
forward computational smoothness, and the updatable backward computational
smoothness as shown in Fig. 6 hold. For a language L and adversary A, the
advantage is defined as follows:

Advucsmooth
L,A (λ) = |Pr[Expucsmooth-0(A, λ) = 1] − Pr[Expucsmooth-1(A, λ) = 1]|.

Subsequently, we show that updatable smoothness and updatable zero-
knowledge follow from simpler security requirements. This means that it will suf-
fice to prove computational smoothness, zero-knowledge, completeness, updat-
able key correctness and updatable strong key hiding. The dependencies between
the security properties are summarized as follows:

Updatable Completeness. It suffices to prove updatable key correctness and
completeness.

Updatable Zero-Knowledge. It suffices to prove updatable key correctness
and the extractability of tcupd, and zero-knowledge.

Updatable Computational Smoothness. It suffices to prove updatable key
correctness, computational smoothness, and updatable strong key hiding. We
prove the above statements in the following Lemmas 2 to 4.
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Lemma 2. Assume uL-TSPHF[Σ] is updatable key correct and complete. Then
uL-TSPHF[Σ] has updatable completeness.

Lemma 3. Assume uL-TSPHF[Σ] is updatable key correct, the trapdoor
tcupd extractable and zero-knowledge. Then uL-TSPHF[Σ, ] is updatable zero-
knowledge.

Lemma 4. Assume uL-TSPHF[Σ] is computational smooth and updatable
strongly key hiding. Then (i) uL-TSPHF[Σ] is updatable forward computational
smooth. (ii) If uL-TSPHF[Σ] is additionally updatable key correct, then uL-
TSPHF[Σ] is updatable backward computational smooth.

The proofs of these lemmas are straightforward and provided in the full version.

Lemma 5. The uL-TSPHF[Σ] in Fig. 7 is (i) updatable key correct. Then
assuming b ←$DB, where the distribution DB satisfies the condition that for
independent random variables βi ←$DB, for i ∈ {1, 2}, we have β1 + β2 ←$DB;
Then the construction in Fig. 7 is (ii) updatable key hiding, (iii) updatable strong
key hiding.

Due to the lack of space we defer the proof to the full version.

Theorem 2. The uL-TSPHF[Σ] in Fig. 7 has updatable completeness, if the
LTSPHF-KE and BDH assumptions hold, it is statistically updatable zero-
knowledge, and if DDH holds in Gι, ι ∈ {1, 2} then it has updatable forward
computational smoothness. Assuming that the preconditions of Lemma 5 are sat-
isfied, then the it has updatable backward computational smoothness.

Proof.
(i: Statistically updatable completeness.) The proof follows from Lemma5
(uL-TSPHF [Σ] is updatable key correct), Theorem 1 (uL-TSPHF [Σ] is com-
plete), and Lemma 2 (updatable completeness follows from updatable key cor-
rectness and completeness).
(i: Statistically updatable zero-knowledge.) The proof follows from
Lemma 5 (uL-TSPHF [Σ] is updatable key correct), Theorem 1 (L-TSPHF [Σ]
is zero-knowledge), tcupd extractability (if UpdVer(.) = 1, more precisely
[b∗]1[1]2 = [1]1[b∗]2, then under BDH assumption, there exists an extractor
ExtBDH

Z , given random coin ωZ, outputs tcupd = b∗), and Lemma 3 (updatable
zero-knowledge follows from updatable key correctness, the tcupd extractability
and zero-knowledge).
(iii: Updatable computational smoothness.) This follows from Theorem 1
(uL-TSPHF [Σ] is computationally smooth under the DDH assumption), and
Lemma 5 (any uL-TSPHF [Σ] is updatable strongly key hiding), and Lemma4
(any computational smooth and updatable strongly key hiding uL-TSPHF [Σ]
is also updatable computational smooth). �
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Fig. 7. Full construction of updatable L-TSPHF (uL-TSPHF ).

Concrete Construction of Updatable L-TSPHF. Finally, in Fig. 7 we
present the full construction of uL-TSPHF s. Intuitively, since crs′ consists of
(bracketed) matrices, we can construct an updating process where all crs′ ele-
ments are updated additively. We remark that the subverter Z could be the
updater and A could be the malicious projection key generator and note that
we can have crs′

upd = crs′.

5 Applications of (Updatable) L-TSPHFs

In this section we discuss the application uL-TSPHF s to updatable ZK argu-
ments. Due to the lack of space we defer applications of L-TSPHF s to ZK
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Fig. 8. Updatable ZK Argument from L-TSPHF.

arguments (and an efficient ZK argument for correct encryption of a valid Waters
signature [42] as well as the applications to updatable Password-Authenticated
Key-Exchange (uPAKE) to the full version.

Updatable Zero-Knowledge Arguments. We now construct a generic
framework for updatable QA-ZK Arguments from updatable L-TSPHFs. The
generic framework is depicted in Fig. 8. Before we analyze the security of the
updatable ZK argument, we present the new definitions for updatable forward
and backward soundness.

Updatable Forward Soundness. for any lpar ∈ im(Pgen(1λ)), PPT A and
for all x s.t. ¬(∃w : Rlpar(x, w)),

Pr

[
(crs, tc) ← Kcrs(lpar); (crsupd, crsint) ← A(lpar, crs) :
UpdVer(lpar, crs, crsupd, crsint) = 1 ∧ 〈A,V〉crs(x) = 1

]
≈λ 0 .

Updatable Backward Soundness. for any lpar ∈ im(Pgen(1λ)), PPT A and
for all x s.t. ¬(∃w : Rlpar(x, w)),

Pr

[
crs ← A(lpar); (crsupd, crsint, tcupd) ← Upd(lpar, crs) :
UpdVer(lpar, crs, crsupd, crsint) = 1 ∧ 〈A,V〉crs(x) = 1

]
≈λ 0 .
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Updatable Soundness. It holds iff both, the updatable forward soundness,
and the updatable backward soundness hold.

Theorem 3. Let the uL-TSPHF be updatable key correct, updatable key hiding,
updatable strong key hiding, statistically updatable zero-knowledge, and updatable
computationally smooth. Then the updatable ZK argument in Fig. 8 is (i) updat-
able key correct, (ii) updatable key hiding, (iii) updatable strong key hiding, (iv)
updatable complete, (v) updatable zero-knowledge, and (vi) updatable sound.

The proof is straightforward and can be found in the full version.
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22. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

23. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 11

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-40041-4_25
http://eprint.iacr.org/2015/188
http://eprint.iacr.org/2013/341
https://eprint.iacr.org/2017/602
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76578-5_11


66 B. Abdolmaleki and D. Slamanig

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The Algebraic Group Model and its Appli-
cations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 2

25. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

28. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

29. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

30. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

33. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 17

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC (1992)

35. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

36. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

37. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

38. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC (2012)

39. Lipmaa, H.: Simulation-extractable snarks revisited. Cryptology ePrint Archive,
Report 2019/612. https://eprint.iacr.org/2019/612

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://eprint.iacr.org/2019/612


Updatable Trapdoor SPHFs 67

40. Lipmaa, H.: Key-and-argument-updatable QA-NIZKs. In: SCN (2020)
41. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge

SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS (2019)

42. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/11426639_7


Small Superset and Big Subset
Obfuscation

Steven D. Galbraith(B) and Trey Li(B)

Department of Mathematics, University of Auckland, Auckland, New Zealand
{s.galbraith,trey.li}@auckland.ac.nz

Abstract. Let S = {1, . . . , n} be a set of integers and X be a subset of
S. We study the boolean function fX(Y ) which outputs 1 if and only if Y
is a small enough superset (resp., big enough subset) of X. Our purpose
is to protect X from being known when the function is evasive, yet allow
evaluations of fX on any input Y ⊆ S. The corresponding research area
is called function obfuscation. The two kinds of functions are called small
superset functions (SSF) and big subset functions (BSF), respectively.
In this paper, we obfuscate SSF and BSF in a very simple and efficient
way. We prove both input-hiding security and virtual black-box (VBB)
security based on the subset product problem.

In the full version [11] of this paper, we also give a proof of input-
hiding based on the discrete logarithm problem (DLP) for the conjunc-
tion obfuscation by Bartusek et al. [4] (see Appendix A of [11]) and pro-
pose a new conjunction obfuscation based on SSF and BSF obfuscation
(see Appendix B of [11]). The security of our conjunction obfuscation
is from our new computational problem called the twin subset product
problem.

Keywords: Obfuscation · Evasive functions · Small superset · Big
subset · Conjunctions · Twin subset product problem

1 Introduction

Let n be a positive integer and S = {1, . . . , n} be the set of integers from 1 to
n. Let X be a subset of S. A small superset function (SSF) (resp., big subset
function (BSF)) is a function fX(Y ) which takes as input a set Y ⊆ S and accepts
if Y is a small superset of X (resp., big subset of X), or rejects otherwise. For
example, let S = {1, . . . , 1000}, let X ⊆ S be a randomly chosen subset of size
800, and let t = 900 (resp., t = 700) be a threshold value. Then fX(Y ) = 1 if
and only if Y ⊇ X and the size of Y is at most 900 (resp., if and only if Y ⊆ X
and the size of Y is at least 700). Our goal is to protect X from being known
when the function is evasive, yet allow the users to be able to determine whether
Y is a small superset (resp., big subset) of X, for any Y ⊆ S.

The research area is called function obfuscation. A simple example of function
obfuscation is point function obfuscation (think about password checkers), of
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J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 68–87, 2021.
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which the goal is to hide a point x ∈ {0, 1}n, yet allow determinations on whether
x = y, for any given input y ∈ {0, 1}n. A simple obfuscation for point functions
is to hash x and to evaluate by comparing the hash of x and the hash of y.

Generally speaking, the goal of function obfuscation is to prevent a function
from being recovered while preserving its functionality and time complexity. Due
to the impossibility of general purpose obfuscation [2], special purpose obfusca-
tion aims at obfuscating restricted classes of functions. An interesting class of
functions is the class of evasive functions [16]. They are the kind of functions
that are hard to find an accepting input by random sampling. Examples of
evasive functions include point functions [7,18], conjunctions [4,6], fuzzy Ham-
ming distance matching [12], hyperplane membership functions [8], compute-
and-compare functions [13,19], etc. Section 5 of [1] gives an impossibility result
for obfuscating all evasive functions.

Previous works for SSF or BSF obfuscation are [3] and [5]. SSF was first
introduced in [3] to construct public-key function-private encryption, while BSF
was first introduced in [5] to better analyze and obfuscate conjunctions. Bartusek
et al. [3] obfuscate SSF using similar techniques to [4]. The obfuscator in [4] is a
dual scheme of Bishop et al.’s conjunction obfuscator [6]. However, the security
proof of [3] is somewhat complicated and it lacks a discussion on input-hiding.
Beullens and Wee [5] obfuscate BSF from a new knowledge assumption called
the KOALA assumption, which is very strong.

In this paper we use the subset product problem to obfuscate SSF and BSF.
This is a much more simple and trustworthy assumption. This gives the main
motivation of the paper. The other motivation is to provide a construction that
is simple, efficient, and has simpler security proofs than [3] and [5].

1.1 Technical Overview

In the rest of the paper we focus on SSF since BSF can be converted into SSF.
To see this, let fX with threshold t be a BSF. Then fS\X with threshold n − t
is an SSF, where S\X is the complement of X. Also, for simplicity, we consider
function families where the sets have fixed size w.

We represent a set X ⊆ {1, . . . , n} by its characteristic vector x ∈ {0, 1}n.
Hence an SSF is a function fx : {0, 1}n → {0, 1} such that fx(y) = 1 if and only
if y − x ∈ {0, 1}n and |x| = w ≤ |y| ≤ t (where |y| denotes the Hamming weight
of y).

We explain the obfuscation as follows. The high level idea is to encode x ∈
{0, 1}n as a subset product X =

∏n
i=1 pxi

i (mod q) with respect to some small
primes p1, . . . , pn and a larger prime modulus q so that if and only if an input
y ∈ {0, 1}n is a small superset of x (which implies that x and y have many bits
in common) the product

∏n
i=1 pyi−xi

i is smaller than q and thus

Y X−1 (mod q) =
n∏

i=1

pyi−xi

i (mod q) =
n∏

i=1

pyi−xi

i

factors over {p1, . . . , pn}, where Y =
∏n

i=1 pyi

i (mod q). We explain the idea
explicitly as follows.
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Let n, t ∈ N with t < n. Let x = (x1, . . . , xn) ∈ {0, 1}n with Hamming
weight w and r = t − w. We require r ≤ n/2. To obfuscate, the obfuscator
samples n different small primes p1, . . . , pn from {2, . . . , B} for some sufficiently
large B ∈ N, and a safe prime q such that Br < q < (1 + o(1))Br. It then
computes the product X =

∏n
i=1 pxi

i (mod q) and publishes (p1, . . . , pn, q,X) as
the obfuscated function.

To evaluate with input y = (y1, . . . , yn) ∈ {0, 1}n, the obfuscated function
firstly checks if w ≤ |y| ≤ t. If not then it terminates and outputs 0. If w ≤ |y| ≤
t, then it further computes Y =

∏n
i=1 pyi

i (mod q) and E = Y X−1 (mod q) =
∏n

i=1 pyi−xi

i (mod q), and tries to factor E by dividing by the primes p1, . . . , pn

one by one. If y − x ∈ {0, 1}n then E factors over {p1, . . . , pn} and the function
outputs 1. Otherwise, if y − x /∈ {0, 1}n, which means y is not a superset of x,
then with high probability E will not factor over {p1, . . . , pn} and the function
outputs 0.

1.2 Organization

In Sect. 2 we introduce basic notions that are used in this paper and define evasive
functions and function obfuscation. In Sect. 3 we define SSF and BSF and discuss
their evasiveness. In Sect. 4 we define the subset product problem and reduce
the discrete logarithm problem to both high and low density subset product
problems. In Sect. 5 we present our obfuscation for SSF and BSF. In Sect. 6 we
prove distributional virtual black-box (VBB) security and input-hiding security
of our scheme based on the subset product problems. We discuss techniques for
potential attacks to our scheme in Sect. 7. Section 8 is a brief conclusion.

2 Preliminaries

Let S = {1, . . . , n} be a set of positive integers from 1 to n, where n ∈ N. Let X
be a subset of S. The binary string x ∈ {0, 1}n whose 1’s indicate the elements
of X is called the characteristic vector of X. In this paper we call a characteristic
vector x a set, by which we mean the set X that it represents.

Let x ∈ {0, 1}n, by |x| we mean the Hamming weight of x, which represents
the size of the set X that x represents. Let C be a circuit, by |C| we mean the size
of C. Let a ∈ R, by |a| we mean the absolute value of a. We denote continuous
intervals in the usual way as (a, b), [a, b), (a, b], or [a, b], for a, b ∈ R. We denote
discrete intervals in the usual way as {a, . . . , b}, for a, b ∈ N. We denote the
natural logarithm as ln a, for a ∈ R. We call a rational number a proper rational
if it is not an integer. Let f, g : N → R be two functions. By f ∼ g we mean
limn→∞

f(n)
g(n) = 1 and by f ≺ g we mean limn→∞

f(n)
g(n) = 0.

We say two distributions Dλ and Eλ are computationally indistinguishable
for every probabilistic polynomial time (PPT) algorithm A, for every λ ∈ N, if
there exists a negligible function μ(λ) such that

∣
∣
∣
∣ Pr
x←Dλ

[A(x) = 1] − Pr
x←Eλ

[A(x) = 1]
∣
∣
∣
∣ ≤ μ(λ),
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denoted Dλ
c≈ Eλ. To be concrete, in the rest of the paper we take μ = 1/2λ.

2.1 Obfuscation

We use circuits to represent functions. By a circuit we always mean a circuit of
minimal size that computes a specified function. The size complexity of a circuit
of minimal size is polynomial in the time complexity of the function it computes.

Evasive Functions. Evasive functions are the kind of Boolean functions that
have small fiber of 1 compared to the domain of the function.

Definition 1 (Evasive Circuit Collection [1]). A collection of circuits C =
{Cλ}λ∈N, where Cλ takes n(λ)-bit input, is evasive if there exists a negligible
function μ(λ) such that for all λ ∈ N and all x ∈ {0, 1}n(λ),

Pr
C←Cλ

[C(x) = 1] ≤ μ(λ),

where the probability is taken over the random sampling of Cλ.

Input-Hiding Obfuscation. The intuition of input-hiding is that given the
obfuscated Boolean function, it should be inefficient for any PPT algorithm to
find an element in the fiber of 1. We call elements of the fiber of 1 of a Boolean
function accepting inputs.

Definition 2 (Input-Hiding [1]). Let C = {Cλ}λ∈N be a circuit collection and
D be a class of distribution ensembles D = {Dλ}λ∈N, where Dλ is a distribution
on Cλ. A probabilistic polynomial time (PPT) algorithm O is an input-hiding
obfuscator for the family C and the distribution D if the following three conditions
are met.

1. Functionality Preserving: There is some negligible function μ(λ) such that for
all n ∈ N and for all circuits C ∈ C with input size n we have

Pr[∀x ∈ {0, 1}n : C(x) = C ′(x) | C ′ ← O(1λ, C)] ≥ 1 − μ(λ),

where the probability is over the coin tosses of O.
2. Polynomial Slowdown: For every n, every circuit C ∈ C, and every possible

sequence of coin tosses for O, there exists a polynomial p such that the circuit
O(C) runs in time at most p(|C|), i.e., |O(C)| ≤ p(|C|), where |C| denotes
the size of the circuit C.

3. Input-hiding Property: For every PPT adversary A, for every λ ∈ N and for
every auxiliary input α ∈ {0, 1}poly(λ) to A, there exists a negligible function
μ(λ) such that

Pr
C←Dλ

[C(A(O(C), α)) = 1] ≤ μ(λ),

where the probability is taken over the random sampling of Dλ and the coin
tosses of A and O.

Note that input-hiding is particularly defined for evasive functions. This is
because non-evasive functions always leak accepting inputs. Also note that input-
hiding is incomparable with VBB [1].
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Virtual Black-Box Obfuscation. The intuition of VBB obfuscation is that
anything one can efficiently compute from the obfuscated function, one should
be able to efficiently compute given just oracle access to the function [2]. It
attempts to hide everything about a circuit without affecting the usage of the
function it computes. We use the following variant of VBB.

Definition 3 (Distributional Virtual Black-Box Obfuscator (DVBB)
[19]). Let C = {Cλ}λ∈N be a family of polynomial size circuits. Let D be a
class of distribution ensembles D = {Dλ}λ∈N, where Dλ is a distribution on
Cλ and some polynomial size auxiliary information α. Let λ ∈ N be the secu-
rity parameter. A PPT algorithm O is a VBB obfuscator for the distribution
class D over the circuit family C if it satisfies the functionality preserving and
polynomial slowdown properties in Definition 2 and the following property: For
every (non-uniform) polynomial size adversary A, there exists a (non-uniform)
PPT simulator S, such that for every distribution ensemble D = {Dλ}λ∈N ∈ D,
and every (non-uniform) polynomial size predicate ϕ : C → {0, 1}, there exists a
negligible function μ(λ) such that:

∣
∣
∣
∣ Pr
(C,α)←Dλ

[A(O(C), α) = ϕ(C)] − Pr
(C,α)←Dλ

[SC(1λ, π, α) = ϕ(C)]
∣
∣
∣
∣ ≤ μ(λ), (1)

where the first probability is taken over the coin tosses of A and O, the second
probability is taken over the coin tosses of S, π is a set of parameters associated
to C (e.g., input size, output size, circuit size, etc.) which we are not required to
hide, and SC has black-box access to the circuit C.

Note that black-box access to evasive functions is useless. Hence it makes
sense to consider a definition that does not give the simulator black-box access
to the circuit C.

Definition 4 (Distributional-Indistinguishability [19]). An PPT algo-
rithm O for the distribution class D over a family of circuits C, satisfies
distributional-indistinguishability, if there exists a (non-uniform) PPT simulator
S, such that for every distribution ensemble D = {Dλ}λ∈N ∈ D, where Dλ is a
distribution on Cλ × {0, 1}poly(λ), we have that

(O(1λ, C), α)
c≈ (S(1λ, π), α),

where (C,α) ← Dλ, and α is some auxiliary information. I.e., there exists a
negligible function μ(λ) such that:

∣
∣
∣
∣ Pr
(C,α)←Dλ

[B(O(1λ, C), α) = 1] − Pr
(C,α)←Dλ

[B(S(1λ, π), α) = 1]
∣
∣
∣
∣ ≤ μ(λ), (2)

where the first probability is taken over the coin tosses of B and O, the second
probability is taken over the coin tosses of B and S.
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Distributional-indistinguishability with auxiliary information α′ = (α,ϕ(C))
implies DVBB with auxiliary information α [19], where ϕ(C) is an arbitrary 1-bit
predicate of the circuit. To state the theorem, we need the following definition
of predicate augmentation, which allows to add an arbitrary 1-bit predicate of
the circuit to the auxiliary information.

Definition 5 (Predicate Augmentation [2,19]). For a distribution class D,
we define its augmentation under predicates, denoted aug(D), as follows. For
any (non-uniform) polynomial-time predicate ϕ : {0, 1}∗ → {0, 1} and any D =
{Dλ} ∈ D the class aug(D) indicates the distribution ensemble D′ = {D′

λ} where
D′

λ samples (C,α) ← Dλ, computes α′ = (α,ϕ(C)) and outputs (C,α′).

Theorem 1 (Distributional-Indistinguishability implies DVBB [19]).
For any family of circuits C and a distribution class D over C, if an obfus-
cator O satisfies distributional-indistinguishability for the class of distributions
D′ = aug(D), i.e., if there exists a (non-uniform) PPT simulator S, such that for
every PPT distinguisher B, for every distribution ensemble D′ = {D′

λ} where
D′

λ samples (C,α) ← Dλ with C ∈ C, computes α′ = (α,ϕ(C)) and outputs
(C,α′),

∣
∣
∣
∣ Pr
(C,α′)←D′

λ

[B(O(1λ, C), α′) = 1] − Pr
(C,α′)←D′

λ

[B(S(1λ, π), α′) = 1]
∣
∣
∣
∣ ≤ μ(λ), (3)

then it also satisfies DVBB security for the distribution class D (Definition 3).

Note that the auxiliary informations α in input-hiding is some global infor-
mation for the whole function family, while the α in DVBB and distributional-
indistinguishability are some local information about the specific function being
sampled. The other commonly used names for global and local auxiliary infor-
mation are independent and dependent auxiliary information, respectively.

3 Small Superset and Big Subset Functions

3.1 Function Definition

We define small superset and big subset functions in the following.

Definition 6 (Small Superset Function, SSF). Let x ∈ {0, 1}n be a char-
acteristic vector of a subset of {1, . . . , n}. A small superset function with respect
to x is a function fx : {0, 1}n → {0, 1}, y → fx(y) such that fx(y) = 1 if and
only if y − x ∈ {0, 1}n and |y| ≤ t, where t ∈ N with 0 ≤ t ≤ n is a threshold
indicating “small”.

Definition 7 (Big Subset Function, BSF). Let x ∈ {0, 1}n be a character-
istic vector of a subset of {1, . . . , n}. A big subset function with respect to x is
a function fx : {0, 1}n → {0, 1}, y → fx(y) such that fx(y) = 1 if and only if
x − y ∈ {0, 1}n and |y| ≥ t, where t ∈ N with 0 ≤ t ≤ n is a threshold indicating
“big”.
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Note that we only need to study SSF obfuscation since BSF obfuscation can
be reduced to SSF obfuscation. To see this, let fx with threshold t be a BSF.
Then fx̄ with threshold n − t is an SSF, where x̄ is the complement of x. So if
we can obfuscate SSF we can also obfuscate BSF by firstly converting BSF to
SSF.

Also, for simplicity and to simplify the security analysis, we consider function
families where the sets have the same size. I.e., all x in the function family have
the same Hamming weight.

3.2 Evasive Function Family

Denote by Bn,w the set of binary strings of length n and Hamming weight w.
Denote by Un,w the uniform distribution on Bn,w.

Only “evasive” SSF are interesting to obfuscate since x is immediately leaked
once a small superset y of x is leaked. The attack is as follows. Let y be a small
superset of x. The attacker flips the 1’s of y one by one and queries the obfuscated
function of fx. If the y with a 1-position flipped is still a small superset of x,
then the corresponding position of x is a 0; otherwise it is 1. Running through
all 1’s in y the attacker learns x. In particular, if all the flipped y’s are rejected,
then the attacker learns that x = y.

We define evasive SSF families in the following.

Definition 8 (Evasive SSF Family). Let λ be the security parameter and
n, t, w with t ≤ n, w ≤ n be polynomial in λ. Let {Xn}n∈N be an ensemble of
distributions over Bn,w. The corresponding SSF family is said to be evasive if
there exists a negligible function μ(λ) such that for every λ ∈ N, and for every
y ∈ {0, 1}n:

Pr
x←Xn

[fx(y) = 1] ≤ μ(λ). (4)

Now we consider parameters for evasive function family. Let us start with
uniform distributions {Xn}n∈N = {Un,w}, remembering that n and w are poly-
nomials in λ.

If |y| < w or |y| > t, then y will never be a small superset of any x with
Hamming weight w hence Inequality (4) always holds. If w ≤ |y| ≤ t, then there
are at most

(
t
w

)
many x with Hamming weight |x| = w such that y is a superset

of x, Inequality (4) holds if and only if
(

t

w

)

/#Bn,w =
(

t

w

)

/

(
n

w

)

≤ 1/2λ. (5)

An asymptotic way to see this inequality is tw/nw ≤ 1/2λ. Also note that this is
the most basic requirement for t in the sense that it is obtained under the best
possible (i.e., highest entropy) distributions.

Now we consider general distributions {Xn}n∈N. We first define the following
entropy.
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Definition 9 (Conditional Small Superset Min-Entropy). Let 0 ≤ t ≤
n ∈ N. The small superset min-entropy of a random variable X conditioned on
a correlated variable Y is defined as

HSup,∞(X | Y ) = − ln
(
Ey←Y [ max

y∈{0,1}n
Pr[y − X ∈ {0, 1}n, |y| ≤ t | Y = y]]

)
.

Now let us see what exactly Inequality (4) means. In words, it means that
for every y ∈ {0, 1}n, an x sampled from the distribution Xn has negligible
probability to have y as a small superset. Intuitively, this requires that in the
space {0, 1}n, the number of points x representing SSF is large enough and at the
same time they are “well spread out” in the sense that small superset relations
between points occur sparsely and evenly in the space. Rigorously, the following
requirement implies Inequality (4). where we now include auxiliary information.

Definition 10 (Small Superset Evasive Distribution). Let X =
{(Xn, αn)}n∈N be an ensemble of distributions on Bn,w×{0, 1}poly(λ). We denote
a sample from Xn as (x, α) where α ∈ {0, 1}poly(λ) is considered to be auxiliary
information about x. We say that X is small superset evasive if the conditional
small superset min-entropy of x conditioned on α (as in Definition 9) is at least
λ.

Note that asking for a small superset is a stronger question than asking for a
“close” set. Hence the above requirement is somehow looser than the evasiveness
requirement for fuzzy Hamming distance matching. Intuitively, in the case of
fuzzy Hamming distance matching, we require that the points in the Hamming
space are spread out such that their Hamming balls do not overlap too seriously;
while in the case of SSF, the Hamming balls can overlap more seriously. For
example, let x = (01||c) and y = (10||c) be two strings with only the first two
bits different, where c ∈ {0, 1}n−2. We can see that x and y have very small
Hamming distance |x ⊕ y| = 2, but neither of them is a superset of the other.

This means that in the same space {0, 1}n, there are more evasive SSF dis-
tributions than evasive fuzzy Hamming distance matching distributions.

Nonetheless, our obfuscation for SSF has to work under the stronger require-
ment of evasive Hamming distance matching. This is because an attacker can
always recover the secret x in our scheme by merely finding a “close” set and
not necessarily a small superset. We therefore use the following Definition 12 for
evasiveness of SSF.

Definition 11 (Conditional Hamming Ball Min-Entropy [10,12]). The
Hamming ball min-entropy of random variables X conditioned on a correlated
variable Y is

HHam,∞(X | Y ) = − ln
(
Ey←Y [ max

y∈{0,1}n
Pr[|X ⊕ y| ≤ r | Y = y]]

)
,

where r < n ∈ N.
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Definition 12 (Hamming Distance Evasive Distribution [12]). Let λ be
the security parameter and n, t, w with t ≤ n, w ≤ n be polynomial in λ. Let X =
{Xn}n∈N be an ensemble of distributions on Bn,w × {0, 1}poly(λ). We say that
the distribution Xn is Hamming distance evasive if for all λ ∈ N, the conditional
Hamming ball min-entropy of x conditioned on α (as in Definition 11 with r :=
t − w) is at least λ.

4 Subset Product Problem

This section is about the computational problem that our obfuscation is based
on.

Let us keep in mind that all parameters are functions in λ with λ ≤ n. The
subset product problem is the following.

Definition 13 (Subset Product Problem, SP [12]). Given n + 1 distinct
primes p1, . . . , pn, q and an integer X ∈ Z

∗
q , find a vector (x1, . . . , xn) ∈ {0, 1}n

(if it exists) such that X =
∏n

i=1 pxi
i (mod q).

The decisional version is the following.

Definition 14 (Decisional Subset Product Problem, d-SP [12]). Given
n + 1 distinct primes p1, . . . , pn, q and an integer X ∈ Z

∗
q , decide if there exists

a vector (x1, . . . , xn) ∈ {0, 1}n such that X =
∏n

i=1 pxi
i (mod q).

In order to define hard SP, we avoid parameters that will make the problem
trivial.

If q ≥ ∏n
i=1 pxi

i , then xi is immediately leaked by checking whether pi | X.
Hence we require q <

∏n
i=1 pxi

i . In particular, we can set q to lie between a
length r prime product and a length r + 1 prime product, for some suitably
chosen r < n.

Now if r ≥ n/2, the problem is still trivial. One can just sample a uniform
y ∈ {0, 1}n and decode x from XY −1 (mod q) using the naive and improved
attacks discussed in Sect. 7, where Y =

∏n
i=1 pyi

i (mod q). The naive attack works
when the Hamming distance between x and y is ≤ r. Note that a uniform y is
expected to be n/2 away from x. Hence if r ≥ n/2, the naive attack is expected
to work. To avoid this, we require negligible probability of y being r-close to x.
I.e., Pry←{0,1}n [|x ⊕ y| ≤ r] ≤ 1/2λ, where ⊕ denotes the XOR operation. For
uniformly sampled x and y, this gives

r ≤ n

2
−

√
λn ln 2. (6)

For a proof of this, see Lemma 2 in [12].
Again, if x is from a low entropy distribution, finding a point y close to x is

easy. For example, suppose all points cluster together. Then one can just find
y by searching in the cluster. To avoid this, we require the distribution of x to
have conditional Hamming ball min-entropy (as defined by Definition 11) λ.

Now we are ready to define the hard SP distribution.



Small Superset and Big Subset Obfuscation 77

Definition 15 ((n, r,B,Xn)-SP Distribution). Let λ, n, r,B be positive inte-
gers with n ≥ λ polynomial in λ, r satisfies Inequality (6), and B larger than
the n-th prime. Let Xn be a distribution over {0, 1}n with Hamming ball min-
entropy λ. Let (x1 . . . , xn) ← Xn. Let p1, . . . , pn be distinct primes uniformly
sampled from the primes in {2, . . . , B}. Let q be a uniformly sampled safe prime
in {Br, . . . , (1 + o(1))Br}. Then we call the distribution (p1, . . . , pn, q,X) with
X =

∏n
i=1 pxi

i (mod q) the (n, r,B,Xn)-SP distribution.

The hard SP and hard d-SP are the following.

Assumption 2 (Hard SP). Let λ, n, r,B,Xn satisfy the conditions in Defi-
nition 15. Then for every PPT algorithm A and every λ ∈ N, there exists a
negligible function μ(λ) such that the probability that A solves SP of instances
sampled from the (n, r,B,Xn)-SP distribution is not greater than μ(λ).

Assumption 3 (Hard d-SP). Let λ, n, r,B,Xn satisfy the conditions in Defi-
nition 15. Let D0 = (p1, . . . , pn, q,X) be the (n, r,B,Xn)-SP distribution and let
D1 be D0 with X =

∏n
i=1 pxi

i (mod q) replaced by a random element in Z
∗
q . Then

for every PPT algorithm A and every λ ∈ N, there exists a negligible function
μ(λ) such that

∣
∣
∣
∣ Pr
d0←D0

[A(d0) = 1] − Pr
d1←D1

[A(d1) = 1]
∣
∣
∣
∣ ≤ μ(λ). (7)

By the search-to-decision reductions in [15] and [17], one can show that d-SP
is at least as hard as SP. In the following we show that SP is at least as hard
as DLP for certain parameter ranges. This gives evidence that SP is hard. An
informal statement of this result for high density SP was given in [12], where the
density of an SP instance is defined as d := n/ log2 q. In the following we give a
rigorous proof for both high and low density SP.

Definition 16 (Discrete Logarithm Problem, DLP). Let G be a finite
group of order N written in multiplicative notation. The discrete logarithm prob-
lem is given g, h ∈ G to find a (if it exists) such that h = ga.

Assumption 4 (Hard DLP). Let Z
∗
q be the multiplicative group of integers

modulo q, where q = 2p + 1 ≥ 2λ is a safe prime for some prime p. If g is
sampled uniformly from Z

∗
q and a is sampled uniformly from {0, . . . , q −2}, then

for every PPT algorithm A and every λ ∈ N, there exists a negligible function
μ(λ) such that the probability that A solves the DLP (g, ga) is not greater than
μ(λ).

Two heuristics are needed for the reduction.

Heuristic 5. The number of elements X ∈ Z
∗
q being a subset product∏n

i=1 pxi
i (mod q) over the (n, r,B, Un)-SP distribution (p1, . . . , pn, q,X) with

q ≤ 2np(n) is ≥ q/p(n), for polynomial p(n), where Un is the uniform distribu-
tion.
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This means that if q is not larger than polynomial times 2n, then a uniformly
chosen X from Z

n
q is a subset product with noticeable probability. Also notice

that the requirement q ≤ 2np(n) captures both high and low density SP.

Heuristic 6. The number of random DLP group elements ga needed for getting
polynomially many SP solutions x that span Z

n
� for each prime factor � of q − 1

is polynomial, where x ∈ {0, 1}n is such that ga =
∏n

i=1 pxi
i (mod q) and SP and

DLP are as defined in Assumption 2 and 4.

This means that when writing different DLP group elements ga in terms
of subset products

∏n
i=1 pxi

i (mod q) with respect to some random primes
p1, . . . , pn, the exponent vectors x = (x1, . . . , xn) ∈ {0, 1}n have high proba-
bility to give a full rank matrix over Z�, for each prime factor � of q − 1. This
makes sense if we think about the randomness of the primes p1, . . . , pn.

Also note that q is a safe prime, i.e., q − 1 = 2p has only two prime factors 2
and p. Hence it is not a serious requirement since there are only two spaces Z

n
2

and Z
n
p needed to satisfy.

Theorem 7. Assuming Heuristic 5 and 6, if there exists a PPT algorithm to
solve SP (as defined in Assumption 2, with q ≤ 2np(n)) with overwhelming
probability in time T , then there exists an algorithm to solve DLP (as defined in
Assumption 4) in expected time O(t(λ)T ), for some polynomial t(λ).

Proof. Let (g, h) be a DLP instance as defined in Assumption 4. Let A be a PPT
algorithm that solves SP as defined in Assumption 2, with the same q as the DLP.
We solve the DLP as follows. Sample a uniform a from {0, . . . , q − 2}, then call
A to solve (p1, . . . , pn, q, ga). If ga is a subset product, then with overwhelming
probability A can solve for an x ∈ {0, 1}n such that ga =

∏n
i=1 pxi

i (mod q).
Since q ≤ 2np(n), by Heuristic 5 we have that nSP ≥ q/p(n), where nSP is the
number of subset products in Z

∗
q . Hence the probability that ga being a subset

product is ≥ 1/p(n). We therefore expect that after np(n) samples of a, we can
solve for n vectors x ∈ {0, 1}n such that a ≡ ∑n

i=1 xi logg(pi) (mod q − 1) .
Also by Heuristic 6, with at most np(n)p′(n) samples of a, we expect to

be able to choose n vectors x ∈ {0, 1}n to span Z
n
� for each prime fac-

tor � of q − 1, for some polynomial p′(n). We therefore have n relations
a ≡ ∑n

i=1 xi logg(pi) (mod �) whose coefficient matrix is full rank, for each
prime factor � of q − 1. Then we can solve the systems of equations for different
� respectively and use the Chinese remainder theorem to lift the solutions to
Zq−1, obtaining logg(pi) (mod q − 1) for all i ∈ {1, . . . , n}.

Lastly we sample b ← {1, . . . , q − 1}, compute hgb (mod q), and call A to
solve it. With at most p(n) extra samples of b, we expect one more relation
logg(h) + b ≡ ∑n

i=1 xi logg(pi) (mod q − 1) with x ∈ {0, 1}n. Then logg(h) =∑n
i=1 xi logg(pi) − b (mod q − 1). ��
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5 Obfuscation

The obfuscator is the following.

Algorithm 1. SSF Obfuscator
Input: n, t, r, w ∈ N, x ∈ {0, 1}n with r := t − w ≤ n/2 − √

λn ln 2
Output: ((p1, . . . , pn) ∈ N

n, q ∈ N, X ∈ Z
∗
q)

1: sample distinct primes p1, . . . , pn from {2, . . . , B} where B = 3n ln n
2: sample safe prime q from {Br, . . . , 3Br}
3: compute X =

∏n
i=1 pxi

i mod q
4: return ((p1, . . . , pn), q, X)

Note that in Algorithm 1 we require r ≤ n
2 − √

λn ln 2 due to Inequality (6).
The following factoring algorithm (Algorithm 2) is a sub-procedure of the

evaluation algorithm (Algorithm 3).

Algorithm 2. Factor
Input: n ∈ N, (p1, . . . , pn) ∈ N

n, a ∈ N

Output: 0 or 1

1: for i = 1, . . . , n do
2: if pi | a then a ← a/pi

3: end for
4: return 1 if a = 1 else 0

The evaluation algorithm is the following.

Algorithm 3. SSF Evaluation (with embedded data (p1, . . . , pn) ∈ N
n, q ∈

N,X ∈ Z
∗
q)

Input: y ∈ {0, 1}n

Output: 0 or 1

1: F ← 0
2: if w ≤ |y| ≤ t then
3: compute Y =

∏n
i=1 pyi

i (mod q)
4: compute E = Y X−1 (mod q)
5: compute F ← Factor(n, (p1, . . . , pn), E)
6: end if
7: return 1 if F = 1 else 0
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5.1 Correctness

Note that the inputs y with |y| < w or |y| > t will always be correctly rejected.
We therefore only discuss the case where w ≤ |y| ≤ t.

Let E = Y X−1 (mod q) =
∏n

i=1 pei
i (mod q) with e = (e1, . . . , en) = y − x ∈

{−1, 0, 1}n. If y is a small superset of x, then e ∈ {0, 1}n and |e| ≤ r, hence∏n
i=1 pei

i < Br < q. This means E is a product of primes in {p1, . . . , pn} hence
will be reduced to 1 in Factor and y will be correctly accepted by Algorithm 3.

If y is not a small superset of x, then it will either (1) result in some E which
contains a prime factor not in {p1, . . . , pn} or e /∈ {0, 1}n; or (2) result in some
E such that E is still a product of primes in {p1, . . . , pn}. The former case will
be correctly rejected by Algorithm 3. The latter case will be falsely accepted.
We therefore call a y ∈ {0, 1}n a false positive if it is not a small superset of x
but is accepted by Algorithm 3.

Avoiding False Positives Using Lattice Arguments. Now we discuss how
to avoid false positives.

Let y be a false positive. We have that E =
∏n

i=1 pyi−xi

i (mod q) =∏n
i=1 pei

i (mod q) with
∏n

i=1 pei
i < q and e = (e1, . . . , en) ∈ {0, 1}n. I.e.,

∏n
i=1 pyi−xi−ei

i = 1 (mod q) with y − x − e �= 0. This implies a nonzero short
vector z ∈ {−2,−1, 0, 1}n of length ≤ 2

√
n in the lattice

L =

{

z ∈ Z
n

∣
∣
∣
∣
∣

n∏

i=1

pzi
i = 1 (mod q)

}

.

To avoid false positives, it is sufficient that the shortest vector in the above lattice
is longer than 2

√
n. If the primes p1, . . . , pn are sufficiently random, which means

that the lattice is sufficiently random, then we can employ the Gaussian heuristic
to estimate the length of the shortest vector as

λ1 ∼
√

n

2πe
vol(L)

1
n .

Also, by the first isomorphism theorem, the volume of the lattice vol(L) is
given by the size of the image |im φ| of the group morphism

φ : Zn → Z
∗
q ,

(x1, . . . , xn) →
n∏

i=1

pxi
i (mod q)

whose kernel defines L. Hence

vol(L) ≤ ϕ(q) = q − 1,

where ϕ is the Euler totient function. The equality holds if and only if
{p1, . . . , pn} generates Z

∗
q . So

λ1 ∼
√

n

2πe
vol(L)

1
n ≤

√
n

2πe
(q − 1)

1
n <

√
n

2πe
q

1
n .
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If we take λ1 =
√

n
2πeq

1
n and q ∼ (n ln n)r, for λ1 > 2

√
n we require that

r >
n ln(2

√
2πe)

ln(n ln n)
. (8)

If we satisfy this condition on r then heuristically there are no false positives.

Evidence for the Gaussian Heuristic in These Lattices. To provide evi-
dence for the Gaussian heuristic on the relation lattice L, we give some experi-
mental results. Due to the limitation of computational resources, we only work
with small parameters such as n = 20 or 30 or 40, r = � n

lnn� (which is an appro-
priate choice as we will be discussing in the later section about parameters), and
B = 3n ln n.

Let λ1 denote the length of the shortest vector in a lattice and let γ denote
the Gaussian heuristic. For each n = 20 or 30 or 40, we create 1000 lattices L
from random subset products, calculate the proportion of lattices that λ1/γ falls
into the 20 intervals [0.0, 0.1), [0.1, 0.2), . . . , [1.9, 2.0], respectively. The results are
as follows.

When n = 20, r = � n
lnn�, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
9
20

,
11
20

, 0, 0, 0, 0, 0, 0, 0, 0).

When n = 30, r = � n
lnn�, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0,
2

1000
,

26
1000

,
399
1000

,
557
1000

,
16

1000
, 0, 0, 0, 0, 0, 0, 0).

When n = 40, r = � n
lnn�, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0,
29

1000
,

702
1000

,
269
1000

, 0, 0, 0, 0, 0, 0, 0, 0).

We can see that for most cases λ1/γ ∈ [1.0, 1.2], which means that the Gaus-
sian heuristic is quite close to the true length of the shortest vectors most of
the time. Also λ1 tends to be larger than γ, which gives more confidence in
Inequality (8) to avoid false positives.

Dealing with False Positives by Hashing. Another way to deal with false
positives is to use a hash function or a point function obfuscator. Let us take
hash as an example. To avoid false positives, all we need to do is to compute and
output an extra value h = H(x) in Algorithm 1, where H is a collision resistant
hash function modeled as a random oracle; and in Factor, store the factors of E
in a list F and replace “return 1” with “return F”; also in Algorithm 3, add a
process to recover x from F and compare its hash value against H(x). If y is a
small superset of x, then the factors of E will tell the positions of the distinct
bits between x and y, then one can recover x by flipping y at those positions.
Otherwise if y is a false positive, then doing so will give a wrong x′ �= x which
can be detected by comparing the hash values.
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5.2 Parameters for Secure Obfuscation

Restrictions for the parameters λ, n, t, r, and q are as follows.

(1) For evasiveness, the basic requirement is Inequality (5).
(2) For the hardness of finding a y close to x such that it decodes (which will

recover x), we require r to be small enough, i.e., the Hamming ball of any
x should be small enough. This requires r(n) ≤ n/2 − √

λn ln 2. (Inequality
(6)).

(3) To avoid false positives without using a hash function or a point function
obfuscator, we require r > n ln(2

√
2πe)

ln(n lnn) (Inequality (8)).

From (2) and (3) we have that

n ln(2
√

2πe)
ln(n ln n)

< r(n) ≤ n

2
−

√
nλ ln 2.

Notice that
n ln(2

√
2πe)

ln(n ln n)
≺ n

ln n
≺ n

ln lnn
≺ n

2
−

√
nλ ln 2,

both r(n) ∼ n
lnn and r(n) ∼ n

ln lnn are possible functions for r, where by f ∼ g

we mean limn→∞
f(n)
g(n) = 1 and by f ≺ g we mean limn→∞

f(n)
g(n) = 0.

We take r(n) = � n
lnn�. Then the condition r ≤ n

2 − √
nλ ln 2 gives

√
nλ ln 2 ≤ n

(
1
2

− 1
ln n

)

⇐⇒ λ ≤ n

ln 2

(
1
2

− 1
ln n

)2

⇐= λ ≤ n

6
,

where for the last line we assume n ≥ 1024.
Hence a possible function family for the uniform distribution Bn,w is (n =

6λ, r = �n/ ln(n)�). In terms of t, it is (n = 6λ, t = w + �n/ ln(n)�). A concrete
setting is: λ = 128; n = 1024; t = 659; w = 512; B = 8161 (the 1024-th prime,
13 bits); q ≈ 2Br (about 1912 bits); Xn has conditional Hamming ball min-
entropy λ. Note that this requirement on Xn is easy to achieve with the settings
of n,w and t, because n is much larger than λ and there is a big gap between a λ
min-entropy distribution and the uniform distribution. Even when we consider
auxiliary information which reduces the entropy a little bit, it is still easy to
have a λ min-entropy distribution conditioned on the auxiliary information.

Note that an elementary requirement is that w > r since otherwise the
encoding of x, namely

∏n
i=1 pxi

i (mod q) will always be factorable and x will
be exposed immediately. Also notice that r(n) ∼ n/ ln(n) ∼ π(n), namely the
function for r is the prime counting function.
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6 Security Proofs

The security is based on hardness assumptions that are slightly different from
Assumption 2 and 3. We consider SP and d-SP over points x ∈ {0, 1}n with
fixed Hamming weight w ≈ n/2 and with auxiliary information given.

The following assumption serves the proof of input-hiding, which involves
some global auxiliary information α ∈ {0, 1}poly(λ) about the whole function
family.

Assumption 8 (Hard SP with Global Auxiliary Information). Let Xn

be a distribution on Bn,w where n/2−n/8 ≤ w ≤ n/2+n/8. Let α ∈ {0, 1}poly(λ)

be auxiliary information. For every PPT algorithm A, for every λ ∈ N, there
exists a negligible function μ(λ) such that the probability that A, provided with α,
solves an SP sampled from the (n, r,B,Xn)-SP distribution is not greater than
μ(λ).

We then state the hard d-SP assumption which serves the proof of DVBB.
Different from Assumption 8 where there is only one α for the entire func-
tion family, the following Assumption 9 assumes that d-SP is hard even given
auxiliary information α about the specific x sampled from Xn. Furthermore,
for convenience in proving distributional-indistinguishabiliy, we define the d-SP
problem in the “predicate-augmentation” style (as in Definition 5), namely to
define it over a distribution D′

b which outputs α′ = (α,ϕ(x)) instead of just α, for
any (non-uniform) polynomial size predicate ϕ : Xn → {0, 1}, where b ∈ {0, 1}.

Assumption 9 (Hard d-SP with Local Auxiliary Information). Fix a
(non-uniform) polynomial time predicate ϕ : {0, 1}n → {0, 1}. Let Xn be a
distribution on Bn,w × {0, 1}poly(λ) which samples (x, α) with α some auxil-
iary information about x that satisfies Definition 12 (i.e., the conditional Ham-
ming ball min-entropy of the distribution Xn conditioned on α is still at least
λ). Let X ′

n = (x, α′) be a distribution on Bn,w × {0, 1}poly(λ) × {0, 1}, where
α′ = (α,ϕ(x)). Let D′

0 = (p1, . . . , pn, q,X, α′) be the (n, r,B,Xn)-SP distribu-
tion corresponding to X ′

n. Let D′
1 be D′

0 with X =
∏n

i=1 pxi
i (mod q) replaced by

uniformly sampled X ′ ← Z
∗
q , but all other terms the same. Then for every PPT

algorithm A, for every λ ∈ N, there exists a negligible function μ(λ) such that
∣
∣
∣
∣ Pr
d0←D′

0

[A(d0) = 1] − Pr
d1←D′

1

[A(d1) = 1]
∣
∣
∣
∣ ≤ μ(λ). (9)

6.1 Input-Hiding

Now we show input-hiding from the hardness of SP.

Theorem 10. Let n, t, r, B satisfy Definition 15, the Gaussian Heuristic and
Inequality (8). Then assuming the hardness of SP (Assumption 8), the SSF
obfuscator given by Algorithm 1 is input-hiding.
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Proof.(1) Functionality preservation (correctness) is shown right after Algo-
rithm 3.

(2) Now we show polynomial slowdown. In the obfuscating algorithm (Algo-
rithm 1), we sample n + 1 primes, perform n − 1 modular multiplications
of integers of size < q. Therefore the time complexity of the obfuscation is
linear in the number of modular multiplications of integers of size < q.
Again, in the evaluation algorithm (Algorithm 3), we perform n−1 modular
multiplications of integers of size < q to compute Y , and 1 inversion, 1 mod-
ular multiplication of integers of size < q to compute E, also n inversions
and n modular multiplications of integers of size < q to run Factor (Algo-
rithm 2). Therefore the time complexity of the evaluation algorithm is also
linear in the number of modular multiplications of integers of size < q.
Now since q < (1+o(1))Br, we have ln q < r ln((1+o(1))B) < n ln(cn ln n) =
poly(λ), where c is a constant. Hence the time complexity of the obfuscated
function is polynomial in λ hence has polynomial slowdown.

(3) Now we show input-hiding. Let (p1, . . . , pn, q,X) with X =
∏n

i=1 pxi
i (mod q)

for some unknown x = (x1, . . . , xn) ∈ {0, 1}n be an SP instance defined in
Assumption 8, and aux ∈ {0, 1}poly(λ) be some auxiliary information. Let
A be a PPT algorithm that breaks input-hiding of the obfuscation given
by Algorithm 1–3. Then we solve the SP as follows. We directly call A on
input ((p1, . . . , pn, q,X), aux). Since r satisfies Inequality (6), i.e., there are
no false positives, A will return a small superset y of x such that E =
Y X−1 (mod q) =

∏n
i=1 pyi−xi

i (mod q) =
∏n

i=1 pei
i with e = (e1, . . . , en) ∈

{0, 1}n. Then we can factor E to get e and recover x by flipping y at the
positions i such that ei = 1. ��

6.2 DVBB

We show DVBB from the hardness of d-SP.

Theorem 11. Let Xn be a distribution over Bn,w × {0, 1}poly(λ) with condi-
tional (on α) Hamming ball min-entropy λ. Then assuming Assumption 9, the
obfuscation given by Algorithm 1–3 is DVBB (with heuristic correctness if we
use the lattice technique to avoid false positives).

Proof. Functionality preservation and polynomial slowdown are shown in the
proof of Theorem 10. Now we show distributional VBB. We show distributional-
indistinguishability, which implies DVBB by Theorem 1. Fix a predicate ϕ. For
every circuit C ← Cλ (which contains the secret x ← Xn), let O(1λ, C) =
(p1, . . . , pn, q,X) be the obfuscated function of C. We define a simulator S
which works as follows: S takes π = (n, t, B) samples n primes p′

1, . . . , p
′
n

and a modulus q′ in the same way as O, and samples X ′ ← Zq. Denote
S(1λ, π) = (p′

1, . . . , p
′
n, q′,X ′). We will show that the two probabilities in Inequal-

ity (3) equal to the two probabilities in Inequality (9) respectively.
For the first equality, we have that for every PPT distinguisher A, for every

λ ∈ N,
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Pr
(x,α′)←X′

n

[A(p1, . . . , pn, q,X, α′) = 1] = Pr
d0←D′

0

[A(d0) = 1],

where d0 = (p1, . . . , pn, q,X, α′) and both probabilities are over the randomness
of x, p1, . . . , pn, q and α′. This holds simply from the definition of D′

0 (as in
Assumption 9).

Replace x with C, X ′
n with D′

λ, and p1, . . . , pn, q,X with O(1λ, C) we have
that

Pr
(C,α′)←D′

λ

[A(O(1λ, C), α′) = 1] = Pr
d0←D′

0

[A(d0) = 1], (10)

where the first and the second probabilities are the first probabilities of Inequality
(3) and Inequality (9) respectively.

For the second equality, we have that for every PPT distinguisher A, for
every λ ∈ N,

Pr
(x,α′)←X′

n

[A(p′
1, . . . , p

′
n, q′,X ′, α′) = 1] = Pr

d1←D′
1

[A(d1) = 1],

where d1 = (p′
1, . . . , p

′
n, q′,X ′, α′) and the probability is over the randomness of

x, p′
1, . . . , p

′
n, q′, X ′ and α′. This holds from the definition of D′

1 (as in Assump-
tion 9). Note that the α′ in both probabilities are the same α′ as in Equation
(10), which is the auxiliary information about the unique real x sampled at
the beginning of the game. In particular the α′ in d1 is not generated by the
simulator but copied from the left hand side.

Replace x with C, X ′
n with D′

λ, and p′
1, . . . , p

′
n, q′,X ′ with S(1λ, π) we have

that

Pr
(C,α′)←D′

λ

[A(S(1λ, π), α′) = 1] = Pr
d1←D′

1

[A(d1) = 1], (11)

where the first and the second probabilities are the second probabilities of
Inequality (3) and Inequality (9) respectively.

By Assumption 9, there exists a negligible function μ(λ) such that the dif-
ference between the right hand sides of Equation (10) and Equation (11) is not
greater that μ(λ). Therefore the difference between the left hand sides of Equa-
tion (10) and Equation (11) is not greater that μ(λ). I.e., Inequality (3) holds.
This completes the proof. ��

7 Attacks

As we mentioned earlier, having an accepting y that is not a false positive one
can recover x by flipping the corresponding bits of y according to the factors
of E. And to recover x, it is not necessary to find a small superset of x, but a
“close” set. Hence we discuss an attack based on the following theorem.

Theorem 12 (Diophantine Approximation [14]). Let α ∈ R then there
exist fractions a/b ∈ Q such that

∣
∣α − a

b

∣
∣ < 1√

5b2
. If, on the other hand, there

exists a/b ∈ Q such that
∣
∣α − a

b

∣
∣ < 1

2b2 , then a/b is a convergent of α.
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The attack based on Theorem 12 is as follows. Having an input y such that
the Hamming distance between x and y is bounded by r, we compute E =
XY −1 (mod q) =

∏
i pxi−yi

i (mod q) = UV −1 (mod q), where UV −1 is the
lowest terms of XY −1 modulo q with U =

∏n
i=1 pui

i and V =
∏n

i=1 pvi
i , for

ui, vi ∈ {0, 1}. We have that EV − kq = U hence
∣
∣E

q − k
V

∣
∣ = U

qV . By Theorem
12, if UV < q

2 , then k
V is a convergent of E

q . Finding this convergent from the
continued fraction of E

q is efficient. So we have V and k, and thus U = EV −kq.
We then factor U and V to find all different bits between x and y, and recover
x by flipping y accordingly.

Moreover, the following theorem shows a way to push the continued fraction
algorithm beyond the naive limits given by Theorem 12.

Theorem 13 (Extended Legendre Theorem [9]). Let α be an irrational
number, let the fractions pi

qi
∈ Q be its continued fraction, and let a, b be coprime

nonzero integers satisfying the inequality
∣
∣α − a

b

∣
∣ < c

b2 , where c is a positive
real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ± sqm), for some nonnegative
integers m, r and s such that rs < 2c.

By Theorem 13 one can always find a and b by tuning c, which gets rid of
the limitation of

∣
∣α − a

b

∣
∣ < 1

2b2 . But this adds exponential overhead so does not
greatly improve the attack.

8 Conclusion

We obfuscate small superset and big subset functions using the subset product
problem, which is a more trustworthy assumption than the previous works. Our
construction is very simple and highly efficient. The correctness is simply based
on the uniqueness of integer factoring. We give security proofs for both input-
hiding and DVBB.
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Abstract. Since Keccak was selected as the SHA-3 standard, both its
hash mode and keyed mode have attracted lots of third-party crypt-
analysis. Especially in recent years, there is progress in analyzing the
collision resistance and preimage resistance of round-reduced Keccak.
However, for the preimage attacks on round-reduced Keccak-384/512,
we found that the linear relations leaked by the hash value are not well
exploited when utilizing the current linear structures. To make full use of
the 320+64×2 = 448 and 320 linear relations leaked by the hash value of
Keccak-512 and Keccak-384, respectively, we propose a dedicated alge-
braic attack by expressing the output as a quadratic boolean equation
system in terms of the input. Such a quadratic boolean equation system
can be efficiently solved with linearization techniques. Consequently, we
successfully improved the preimage attacks on 2/3/4 rounds of Keccak-
384 and 2/3 rounds of Keccak-512.

Keywords: Hash function · Keccak · Algebraic attack · Preimage

1 Introduction

Due to the breakthrough in the cryptanalysis of MD5 [23] and SHA-1 [22], NIST
started a public competition to select the SHA-3 standard in 2007 and Keccak [3]
was selected as the winner in 2012. In recent years, there is progress in the
cryptanalysis of Keccak for both its hash mode and keyed mode. Specifically, by
increasing the one-round connector [5] to two rounds [17] and three rounds [21]
with state-of-the-art algebraic methods, practical collision attacks on 5 rounds
of SHA3-224 [21] and SHA3-256 [7] have been achieved. For preimage attacks,
there was a major progress in FSE 2013 where preimage attacks could reach
up to 4 rounds using rotational cryptanalysis [16]. In ASIACRYPT 2016, the
linear structures of Keccak were proposed and several practical preimage attacks
on reduced Keccak were identified [8]. Since then, several improved preim-
age attacks based on linear structures on reduced Keccak have been proposed
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J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 91–110, 2021.
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[11,12,18]. For the keyed mode of Keccak, since the cube-attack-like cryptanal-
ysis [6] was proposed in EUROCRYPT 2015, several cube-based attacks on
Keccak-like primitives have been developed [4,9,13,14,19,20,24].

As can be seen from the preimage attacks based on linear structures on
reduced Keccak, the aim is to construct a linear equation system in order to
ensure that n bits of the hash value can be connected, thus obtaining an advan-
tage of 2n over the brute force. Such a strategy works well when the length of
the hash value is small and the rate is large since there are sufficient degrees of
freedom to achieve linearization. However, for Keccak-384/512 where the length
of the hash value is large and the rate is small, such a strategy works inefficiently.
This is because linear structures become inefficient due to the decrease of degrees
of freedom and only a few bits of the hash value can be connected.

Moreover, it seems that the time to solve a large linear equation system
is neglected in all the preimage attacks based on linear structures. While it
causes no problems for already practical attacks, it may underestimate the time
complexity of the theoretical attacks. As will be shown, the improved preimage
attack on 4-round Keccak-384 in [18] is actually not faster than brute force if
taking into account the time to solve a linear equation system of size 192. Thus,
we insist that a careful re-evaluation of the complexity1 is necessary, especially
for a fair comparison with the preimage attacks based on rotational cryptanalysis
that only requires simple calls to the round-reduced Keccak permutation.

Our Contributions. To make full use of the linear relations leaked by the hash
value of Keccak-384 and Keccak-512, we carefully control and trace the prop-
agations of the variables in order to construct a quadratic boolean equation
system that can be efficiently solved with linearization techniques. In this way,
the preimage attacks on 2 and 3 rounds of Keccak-384/512 are significantly
improved. Moreover, we point some links between the preimage attacks based
on linear structures [8] and the conditional cube attacks [9]. As a result, we
update the record for the preimage attack on 4-round Keccak-384 obtained in
FSE 2013 [16] and improve it by a factor of 23. Since our attacks are based on
solving a large linear equation system, such a cost cannot be neglected. For a
fair comparison, we simulate the gap between the time to solve a linear equation
system and to perform the underlying round-reduced permutation of Keccak, as
displayed in Table 1.

2 Preliminaries

To help understand this paper, we introduce some notations as well as the spec-
ification of Keccak in this section.

1 Note that the Keccak round function works on 64-bit words. In our implementation
of Gauss elimination, we first encode the boolean coefficient matrix by treating
every consecutive 64 bits as a 64-bit word in each row. Then, we perform the Gauss
elimination on the encoded coefficient matrix. Such a way will not add extra cost to
enumerate the solutions to the equation system after Gauss elimination.
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2.1 Notation

≪, ≫, ⊕, ∨, ∧ represent the logic operations rotate left, rotate right, exclu-
sive or, or, and, respectively. Z[i] represents the i-th bit of the 64-bit word
Z, where the least significant bit is Z[0]. For convenience, 164 represents
0xffffffffffffffff.

Table 1. Summarizing the preimage attacks on reduced Keccak. The previous preimage
attacks based on linear structures treated the “Guessing Times” as the final time
complexity. The corresponding size of the constructed linear equation system is listed
in the “Size” column. The ratio of the time to solve the equation system to the time
to perform the underlying round-reduced permutation is listed in the “Solving Time”
column. The “Final Time” column represents the time complexity when taking the
solving time into account.

Rounds Variant Memory Guessing
times

Size Solving
time

Final
time

Ref.

2 384 - 2129 256 210 2139 [8]

287 289 0 1 289 [10]

- 2113 320 211 2124 [18]

- 293 384 211 2104 Subsect. 3.2

2 512 - 2384 128 28 2392 [8]

- 2321 192 29 2330 [18]

- 2258 448 212 2270 Subsect. 3.1

3 384 - 2322 255 210 2332 [8]

- 2321 256 210 2331 [18]

- 2271 461 212 2283 Subsect. 4.2

3 512 - 2482 128 28 2490 [8]

- 2475 128 28 2483 [18]

- 2440 502 212 2452 Subsect. 4.1

4 384 - 2378 0 1 2378 [16]

- 2375 192 29 2384 [18]

- 2366 175 29 2375 Sect. 5

2.2 Description of Keccak

Keccak is a family of hash functions. Since our targets are Keccak-512 and
Keccak-384, we introduce the Keccak internal permutation fk which works on a
1600-bit state A and iterates an identical round function Rk for 24 times with
different round constants RC used in each round. The state A can be viewed as
a three-dimensional array of bits, namely A[5][5][64]. The expression A[x][y][z]
represents the bit with (x, y, z) coordinate. At lane level, A[x][y] represents the
64-bit word located at the xth column and the yth row. For the description of
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Keccak in this paper, the coordinates are considered modulo 5 for x and y and
modulo 64 for z. The round function Rk consists of five operations

Rk = ι ◦ χ ◦ π ◦ ρ ◦ θ

as follows. The influence of the π ◦ ρ operation is illustrated in Fig. 1 for better
understanding.

θ : A[x][y] = A[x][y] ⊕ (
4∑

y′=0

A[x − 1][y′]) ⊕ (
4∑

y′=0

(A[x + 1][y′] ≪ 1)).

ρ : A[x][y] = A[x][y] ≪ r[x, y].
π : A[y][2x + 3y] = A[x][y].
χ : A[x][y] = A[x][y] ⊕ (A[x + 1][y] ∧ A[x + 2][y]).
ι : A[x][y] = A[x][y] ⊕ RC.

Fig. 1. The influence of the π ◦ ρ operation

For simplicity, we denote the output state of after i rounds by Ai (1 ≤ i ≤ 24)
and the initial input state by A0. Moreover, we define Ai

θ, Ai
ρ, Ai

π and Ai
χ as

follows:

Ai θ−→ Ai
θ

ρ−→ Ai
ρ

π−→ Ai
π

χ−→ Ai
χ

ι−→ Ai+1.

2.3 The Keccak Hash Functions Keccak-512 and Keccak-384

The Keccak hash functions follow the sponge construction [2]. For Keccak-l
(l = {224, 256, 384, 512}), the message is first padded to be a message of the
form M10∗1, whose length is a multiple of (1600 − 2l). Specifically, the original
message M is first padded with a single bit “1” and then with a smallest non-
negative number of “0” and finally with a single bit “1”. Then, the message can
be divided into several (1600−2l)-bit message blocks. Starting with a predefined
1600-bit initial state, which is zero for Keccak-l, the first (1600 − 2l) bits of the
initial state is XORed with the message block, followed by the permutation fk.
Such a step is repeated until all message blocks are processed. Then, the first l
bits of the state is truncated as the hash value. We refer the readers to [3] for
more details.
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2.4 Leaked Linear Relations

For better understanding, we re-introduce some properties of the χ operation
in [8]. Denote a 5-bit input by (a[0], a[1], a[2], a[3], a[4]) ∈ F

5
2. After the χ oper-

ation, the 5-bit output is denoted by (b[0], b[1], b[2], b[3], b[4]) ∈ F
5
2. Specifically,

we have the following relation:

b[i] = a[i] ⊕ a[i + 1] ∧ a[i + 2],

where the indices are considered modulo 5.
Since χ is bijective, (a[0], a[1], a[2], a[3], a[4]) will be uniquely determined

when the 5 bits (b[0], b[1], b[2], b[3], b[4]) are known. To help understand the
attacks in this paper, we introduce some properties identified in [8].

Property 1 [8]. Given 3 consecutive output bits (b[i], b[i+1], b[i+2]), 2 linearly
independent equations can be set up on the input bits (a[0], a[1], a[2], a[3], a[4]).

For better understanding, we give a short explanation for Property 1. Observe
the expressions to compute (b[i], b[i + 1], b[i + 2]):

b[i] = a[i] ⊕ a[i + 1] ∧ a[i + 2],
b[i + 1] = a[i + 1] ⊕ a[i + 2] ∧ a[i + 3],
b[i + 2] = a[i + 2] ⊕ a[i + 3] ∧ a[i + 4].

Therefore, we have

b[i + 1] ∧ a[i + 2] = a[i + 1] ∧ a[i + 2],
b[i] = a[i] ⊕ a[i + 1] ∧ a[i + 2] = a[i] ⊕ b[i + 1] ∧ a[i + 2] ⊕ a[i + 2],
b[i + 2] ∧ a[i + 3] = a[i + 2] ∧ a[i + 3],
b[i + 1] = a[i + 1] ⊕ a[i + 2] ∧ a[i + 3] = a[i + 1] ⊕ b[i + 2] ∧ a[i + 3] ⊕ a[i + 3].

In other words, the following two linearly independent relations in terms of
(a[0], a[1], a[2], a[3], a[4]) are leaked once (b[i], b[i + 1], b[i + 2]) are given:

b[i] = a[i] ⊕ b[i + 1] ∧ a[i + 2] ⊕ a[i + 2],
b[i + 1] = a[i + 1] ⊕ b[i + 2] ∧ a[i + 3] ⊕ a[i + 3].

Property 2 [8]. Given a single output bit b[i], one probabilistic linear equation
can be set up on 1 input bit a[i], i.e. a[i] = b[i] holds with probability 0.75 ≈
2−0.42.

The Property 2 is also obvious since the probability that a[i + 1] ∧ a[i + 2] = 0
is 0.75.
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Leaked Linear Relations of Keccak-384. The hash value of Keccak-384 is com-
posed of the following 6 state words

(Ar[0][0], Ar[1][0], Ar[2][0], Ar[3][0], Ar[4][0], Ar[0][1])

when fk consists of r rounds of Rk. Therefore, according to the hash value,
(Ar−1

π [0][0], Ar−1
π [1][0], Ar−1

π [2][0], Ar−1
π [3][0], Ar−1

π [4][0]) can be uniquely deter-
mined. In addition, based on Property 2, Ar−1

π [0][1][z] = Ar[0][1][z] holds with
probability 2−0.42 for 0 ≤ z ≤ 63.

In conclusion, 5 × 64 = 320 linearly independent relations in terms of Ar−1

are leaked by the hash value. In addition, there are also 64 probabilistic linear
relations in terms of Ar−1 leaked by the hash value, each of which holds with
probability 2−0.42.

Leaked Linear Relations of Keccak-512. The hash value of Keccak-512 is com-
posed of the following 8 state words

(Ar[0][0], Ar[1][0], Ar[2][0], Ar[3][0], Ar[4][0], Ar[0][1], Ar[1][1], Ar[2][1]).

Thus, according to the hash value, we can uniquely determine

(Ar−1
π [0][0], Ar−1

π [1][0], Ar−1
π [2][0], Ar−1

π [3][0], Ar−1
π [4][0]).

In addition, based on Property 1, it also leaks 64×2 = 128 linearly independent
relations in terms of

(Ar−1
π [0][1], Ar−1

π [1][1], Ar−1
π [2][1], Ar−1

π [3][1], Ar−1
π [4][1]).

In conclusion, there are 5 × 64 + 128 = 448 linearly independent relations in
terms of Ar−1 leaked by the hash value.

2.5 Overview

We briefly introduce the basic idea of our attacks using an algebraic method.
For the preimage attack, assuming that the length of the hash value is l, if the
attacker can exhaust a space of size 2l in 2l0 time (l0 ≤ l), we say an advantage
of 2l−l0 over the brute force is obtained on the whole. To achieve it with the
algebraic method, we can first choose l − l0 free variables. Then, we guess 2l0

different values for the variables which do not belong to the set formed by the
chosen free variables. For each different guess, a linear equation system can be
constructed to uniquely determine the l− l0 free variables. If taking into account
the time T to solve such an equation system, the time complexity to exhaust a
space of size 2l is then estimated as T × 2l0 . In fact, our method can be viewed
as an efficient exhaustive search based on guess-and-determine techniques. The
technical part is to identify which bits should be guessed in order to gain more
advantages over the brute force, which is obviously non-trivial. To achieve this,
we carefully trace and control the propagations of the variables.
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3 Preimage Attacks on 2-Round Keccak-384/512

In this section, we present the preimage attacks on 2-round Keccak-384/512.
The basic idea is to make full use of the leaked linear relations from the hash
value and then to construct a quadratic boolean equation system which can be
efficiently solved with linearization techniques.

3.1 Preimage Attack on 2-Round Keccak-512

The preimage attack on 2-round Keccak-512 is illustrated in Fig. 2. Specifically,
we introduce 64×4 = 256 variables v0 = {v1

0 , v
2
0 , . . . , v

64
0 }, v1 = {v1

1 , v
2
1 , . . . , v

64
1 },

v2 = {v1
2 , v

2
2 , . . . , v

64
2 } and v3 = {v1

3 , v
2
3 , . . . , v

64
3 }. Moreover, these variables are

placed in this way: A0[0][0] = v0, A
0[0][1] = v0 ⊕ C ′

0, A0[1][0] = v1, A
0[1][1] =

v1 ⊕ C ′
1, A0[2][0] = v2, A

0[2][1] = v2 ⊕ C ′
2, A0[3][0] = v3 and A0[3][1] = v3 ⊕ C ′

3,
where C ′

i ∈ F
64
2 (0 ≤ i ≤ 3). Such a way to place the variables will prevent them

from propagating to other state bits after the θ operation in the first round,
which is the well-known CP-kernel (column parity kernel) property of the θ
operation.

Fig. 2. Preimage attack on 2-round Keccak-512

By tracing the propagations of the variables through the linear layer in the
first round, as shown in Fig. 2, we can know that there will be 64 × 3 = 192
possible quadratic terms formed by the 256 variables (v0, v1, v2, v3) after χ oper-
ation in the first round. By introducing 192 new variables v4 = {v1

4 , v
2
4 , . . . , v

192
4 }

to replace all the quadratic terms, the first round Keccak permutation can be
viewed as linear in the 256 + 192 = 448 variables (v0, v1, v2, v3, v4). Since the
hash value of Keccak-512 can leak 320 + 64 × 2 = 448 linearly independent
relations in terms of A1

π and A1
π is linear in (v0, v1, v2, v3, v4), a linear boolean

equation system of size 448 in terms of the 448 variables can be constructed.
Such an equation system is expected to have one solution. Once the solution is
generated, the corresponding value of the message is known and we can compute
the corresponding hash value and compare it with the target one.

One may also consider the case when some variables do not appear in the
equation system. In fact, this case is beneficial to our attacks as the number of
equations is always 448 and the number of variables will be smaller than 448. In
other words, this will not increase the cost of solving equations but instead help
faster check whether there is a solution to the variables.
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Complexity Evaluation. To match the hash value, it is expected to generate 2256

different values of (C ′
0, C

′
1, C

′
2, C

′
3, A

0[4][0]). For each of its value, we are required
to exhaust all the 2256 values of the 256 variables. However, by constructing
an equation system, we can traverse the 2256 values in only 1 time for each
value of (C ′

0, C
′
1, C

′
2, C

′
3, A

0[4][0]). Taking the padding rule into account, 2256+2 =
2258 different values of (C ′

0, C
′
1, C

′
2, C

′
3, A

0[4][0]) should be tried. Therefore, the
time complexity of the preimage attack on 2-round Keccak-512 is 2258, which
is equivalent to 2270 calls to the 2-round Keccak permutation when taking the
time to solve the equation system into account.

3.2 Preimage Attack on 2-Round Keccak-384

An illustration of the preimage attack on 2-round Keccak-384 is given in Fig. 3.
First of all, we introduce 128 + 128 + 64 = 320 variables v0 = {v1

0 , v
2
0 , . . . , v

64
0 },

v1 = {v1
1 , v

2
1 , . . . , v

64
1 }, v2 = {v1

2 , v
2
2 , . . . , v

64
2 }, v3 = {v1

3 , v
2
3 , . . . , v

64
3 } and v4 =

{v1
4 , v

2
4 , . . . , v

64
4 }. Then, let A0[0][0] = v0, A

0[0][1] = v1, A
0[0][2] = v0 ⊕ v1 ⊕ C ′

4,
A0[2][0] = v2, A

0[2][1] = v3, A
0[2][2] = v2 ⊕ v3 ⊕ C ′

5, A0[3][0] = v4 and A0[3][1] =
v4 ⊕ C ′

6, where C ′
i ∈ F

64
2 (4 ≤ i ≤ 6).

Fig. 3. Preimage attack on 2-round Keccak-384

According to the propagations of the variables in the linear layer of the first
round in Fig. 3, it can be observed that there will be at most 64 quadratic
terms formed by (v2, v4) in A1. Thus, we introduce 64 extra new variables v5 =
{v1

5 , v
2
5 , . . . , v

64
5 } to replace all the quadratic terms. Note that we can extract from

the hash value 320 linearly independent relations and 64 probabilistic linearly
independent relations in terms of A1

π and A1
π is now linear in (v0, v1, v2, v3, v4, v5).

In other words, we can construct a linear boolean equation system of size 320 +
64 = 384 in terms of 320 + 64 = 384 variables. Therefore, we can expect one
solution for such an equation system.

Complexity Evaluation. Note that 64 probabilistic linear relations are utilized in
our equation system, each of which holds with probability 0.75 ≈ 2−0.42. There-
fore, apart from matching the 384-bit hash value, the probabilistic linear relations
have to be fulfilled. Consequently, it is expected to try 2384+0.42×64 = 2411 possi-
ble different messages. To achieve it, we can randomly choose 2411−320 = 291 val-
ues for (A0[1][0], A0[1][1], A0[1][2], A0[4][0], A0[4][1], C ′

4, C
′
5, C

′
6). Then, traverse

the 2320 values of (v0, v1, v2, v3, v4) by solving an equation system. Such an
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equation system is expected to have only 1 solution. Thus, we can exhaust 2411

messages with time complexity 291 and the time complexity of the preimage
attack on 2-round Keccak-384 becomes 293 by taking the padding rule into con-
sideration. Taking the time to solve the equation system into account, the time
complexity is equivalent to 2104 calls to the 2-round Keccak permutation.

4 Preimage Attack on 3-Round Keccak-384/512

The improved preimage attacks on 2-round Keccak-384/512 have been described.
The basic ideas are simple since one can easily count the number of quadratic
terms. However, as can be seen from our 3-round preimage attacks, it is non-
intuitive and requires a dedicated (nontrivial) analysis of the propagation of
variables. Moreover, instead of replacing a quadratic term formed by the vari-
ables, we will replace a whole quadratic expression with a new variable.

4.1 Preimage Attack on 3-Round Keccak-512

The preimage attack on 3-round Keccak-512 is illustrated in Fig. 4. Specifically,
choose 128 variables v0 = {v1

0 , v
2
0 , . . . , v

64
0 } and v2 = {v1

2 , v
2
2 , . . . , v

64
2 }. Then, let

A0[0][0] = v0, A
0[0][1] = v0 ⊕ C0, A0[2][0] = v2 and A0[2][1] = v2 ⊕ C1, where

C0 ∈ F
64
2 and C1 ∈ F

64
2 .

Fig. 4. Preimage attack on 3-round Keccak-512

As can be seen from Fig. 4, there are several conditions on A0
θ, as shown

below.

A0
θ[1][0] = 164, A0

θ[1][1] = 0, A0
θ[1][4] = 164,

A0
θ[3][1] = 0, A0

θ[3][2] = 0,
A0

θ[4][0] = 164, A0
θ[4][4] = 164.
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The above conditions can be converted into those on A0, as specified below:

B0 = A0[0][2] ⊕ A0[0][3] ⊕ A0[0][4],
B2 = A0[2][2] ⊕ A0[2][3] ⊕ A0[2][4],
B3 = A0[3][2] ⊕ A0[3][3] ⊕ A0[3][4],
B4 = A0[4][1] ⊕ A0[4][2] ⊕ A0[4][3] ⊕ A0[4][4],
A0[1][0] ⊕ (B0 ⊕ C0) ⊕ (B2 ⊕ C1) ≪ 1 = 164,
A0[1][1] ⊕ (B0 ⊕ C0) ⊕ (B2 ⊕ C1) ≪ 1 = 0,

A0[1][4] ⊕ (B0 ⊕ C0) ⊕ (B2 ⊕ C1) ≪ 1 = 164,
A0[3][1] ⊕ (B2 ⊕ C1) ⊕ (B4 ⊕ A0[4][0]) ≪ 1 = 0,

A0[3][2] ⊕ (B2 ⊕ C1) ⊕ (B4 ⊕ A0[4][0]) ≪ 1 = 0,

A0[4][0] ⊕ (A0[3][0] ⊕ A0[3][1] ⊕ B3) ⊕ (B0 ⊕ C0) ≪ 1 = 164,
A0[4][4] ⊕ (A0[3][0] ⊕ A0[3][1] ⊕ B3) ⊕ (B0 ⊕ C0) ≪ 1 = 164.

In our preimage attack on 3-round Keccak-512, two message blocks will be used.
For the first message block, it will be randomly chosen. For each random value of
the first message block, (B0, B2, B3, A

0[1][4], A0[4][4], A0[3][2]) will become fixed
in the above equation system. As for the remaining variables marked in red, they
can be computed step by step as follows:

A0[4][0] = A0[4][4],
A0[3][1] = A0[3][2],

C1 = A0[3][2] ⊕ (B4 ⊕ A0[4][0]) ≪ 1 ⊕ B2.

A0[1][0] = A0[1][4],
A0[1][1] = A0[1][4] ⊕ 164,

C0 = A0[1][4] ⊕ (B2 ⊕ C1) ≪ 1 ⊕ B0 ⊕ 164.
A0[3][0] = A0[4][4] ⊕ (B0 ⊕ C0) ≪ 1 ⊕ (A0[3][1] ⊕ B3) ⊕ 164.

In other words, whatever the value of the first message block is, the 7 conditions
on A0

θ can always be satisfied by carefully choosing the value of the second
message block.

After the conditions on A0
θ are satisfied, at most five 64-bit words of A1

will contain variables, as shown in Fig. 4. Note that except A1[0][3], each bit
of (A1[0][0], A1[0][4], A1[1][2], A1[1][3]) must contain variables. As for A1[0][3],
which bit of A1[0][3] contains variables is uncertain and it depends on the value
of A0

π[2][3].
To control the diffusion of the variables in the first column of A1, we choose a

random value c0 ∈ F
t
2 and set up the following t (1 ≤ t ≤ 64) boolean equations

4∑

j=0

A1[0][j][z] = c0[z]

where 0 ≤ z ≤ t − 1. It can be easily observed that the t boolean equations
are independent since each equation contains a different variable of v2. In other
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words, by exhausting the 2t possible values of c0, we can traverse 2t different
values of (v0, v2).

Then, the propagation of (v0, v2) in the linear layer of the second round
can be traced as shown in Fig. 4. According to the positions which contain
variables, we can know that (A1

χ[1][1], A1
χ[2][1], A1

χ[0][3], A1
χ[1][3]) must contain

newly-generated quadratic terms and the total number of the quadratic terms
is 64 × 4 = 256. Moreover, among the expressions of the following states:

A1
χ[0][0], A1

χ[3][0], A1
χ[4][0],

A1
χ[0][1],

A1
χ[2][2], A1

χ[3][2], A1
χ[4][2],

A1
χ[4][3],

A1
χ[1][4], A1

χ[2][4], A1
χ[3][4],

there will be 11× (64− t) additional newly-generated quadratic terms2. In sum-
mary, there will be in total 256 + 11 × (64 − t) = 960 − 11t newly generated
quadratic terms.

Then, we introduce 960−11t new variables v4 = {v1
4 , . . . , v

960−11t
4 } to replace

all the newly-generated quadratic terms. In this way, the two-round Keccak
permutation can be viewed as linear in the 128+960−11t = 1088−11t variables
(v0, v2, v4).

Since the output of Keccak-512 will leak 64 × 7 = 448 linearly independent
equations in terms of A2

π and A2
π is now linear in (v0, v2, v4), 448 extra linear

equations in terms of (v0, v2, v4) can be set up. Note that we have previously
set up t linear equations in terms of (v0, v2) in order to control the diffusion of
variables in the first column of A1. Therefore, a total of 448 + t linear equations
in terms of the 1088 − 11t variables (v0, v2, v4) are set up. To ensure that the
equation system can be efficiently solved with Gauss elimination, we add the
following constraint:

1088 − 11t ≤ 448 + t.

We choose the minimum value t = 54. In this way, a linear boolean equation
system of size 502 in terms of 494 variables can be constructed. Thus, it is
expected that there is at most one solution for each guess of c0. In other words,
by exhausting 254 possible values of c0 and solving the final equation system,
we can equivalently traverse all 2128 possible values of (v0, v2) with 254 times of
solving a boolean equation system of size 502.

Complexity Evaluation. For a given value of the first message block, the second
message block can take at most 2128 possible values in order to construct a
preferred equation system. To satisfy the padding rule, we need to generate
2512−128+2 = 2386 random values of the first message block. For each value of
the first message block, the naive exhaustive search of the 2128 values of the
2 The quadratic expression (x0 ⊕ x1)x2 will be treated as one quadratic term rather

than two different quadratic terms (x0x2, x0x1).
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second message block will require 2128 time. By introducing 128 free variables
as in our way, we could construct a quadratic equation system in terms of these
128 variables. To solve the equation system efficiently, we can guess 54 linear
equations and then linearize the quadratic equation system. For each time of
guess, the number of equations will not be smaller than the number of variables
after linearization (replacing the quadratic terms with new variables) and thus
it can be solved with time complexity 1. In other words, the 2128 values can
be traversed in only 254 time. Therefore, the time complexity of the preimage
attack on 3-round Keccak-512 is 2386+54 = 2440, which is equivalent to 2452 calls
to the 3-round Keccak permutation.

Remark. In our preimage attack on 3-round Keccak-512, there are two technical
parts. The first part is to add conditions on the internal state in the first round,
which can always be satisfied by properly choosing a value for the message
block. These conditions will slow down the propagations of the variables to
the second round. However, even though the propagation is controlled in the
first round, without any guess-and-determine strategy as we performed on A1,
64 × 20 = 1280 state bits of A1

θ and A1
π will contain variables, thus making the

number of quadratic monomials in A2 much larger due to the fact that each of the
1280 bits of A1

π (the input of χ) is written as a linear expression in terms of several
free variables. Note that we can collect at most 512 equations. In other words,
at most 512 quadratic equations can be set up while there are 128 variables and
too many quadratic monomials due to the strong diffusion and confusion of the
θ and χ operations, respectively. To the best of our knowledge, there is no solver
which can solve such an equation system in practical time. Indeed, by using a
solver to solve a high-degree multivariate equation system, it is common to guess
partial bits in advance to improve the overall performance and which variables
to guess will affect the whole performance. We have to stress that our second
technical part is exactly to solve this problem, i.e. choosing the optimal guessing
strategy. We choose to guess partial bits of the sum of the first column of A1.
The reason why we do not guess partial bits of the sum of the second column is
that which bit of A1[0][3] contains variables is undetermined, which will make
the total number of quadratic terms larger if guessing the same number of bits
of the sum. We even constructed a MILP model to find the optimal guessing
strategy3 and our guessing strategy is consistent with the output of the solver.
Therefore, we indeed have taken several factors into account when choosing the
guessing strategy.

4.2 Preimage Attack on 3-Round Keccak-384

The preimage attack on 3-round Keccak-384 is illustrated in Fig. 5. Specifi-
cally, choose 256 variables v0 = {v1

0 , v
2
0 , . . . , v

64
0 }, v1 = {v1

1 , v
2
1 , . . . , v

64
1 }, v2 =

{v1
2 , v

2
2 , . . . , v

64
2 } and v3 = {v1

3 , v
2
3 , . . . , v

64
3 }. Then, let A0[0][0] = v0 ⊕ v1 ⊕

C2, A
0[0][1] = v0, A

0[0][2] = v1, A0[2][0] = v2, A
0[2][1] = v3 and A0[2][2] =

v2 ⊕ v3 ⊕ C3, where C2 ∈ F
64
2 and C3 ∈ F

64
2 .

3 This work is simple and we omit the details. Such a model was also used to verify
the guessing strategy used in the preimage attack on 3-round Keccak-384.
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Fig. 5. Preimage attack on 3-round Keccak-384

Similarly, some conditions on A0
θ are added to slow down the diffusion of the

variables, as specified below:

A0
θ[1][0] = 164, A0

θ[1][1] = 0, A0
θ[1][2] = 0, A0

θ[1][3] = 0, A0
θ[1][4] = 164,

A0
θ[3][1] = 0, A0

θ[3][2] = 0, A0
θ[3][3] = 0,

A0
θ[4][0] = 164, A0

θ[4][1] = 164, A0
θ[4][4] = 164.

Similar to the preimage attack on 3-round Keccak-512, these conditions can be
converted into those on A0 as follows:

B′
0 = A0[0][3] ⊕ A0[0][4],

B′
2 = A0[2][3] ⊕ A0[2][4],

B′
4 = A0[4][2] ⊕ A0[4][3] ⊕ A0[4][4],

X = A0[1][3],
Y = A0[1][4],
Z = A0[3][2],
W = A0[3][3],
A0[1][0] ⊕ (B′

0 ⊕ C2) ⊕ (B′
2 ⊕ C3) ≪ 1 = 164,

A0[1][1] ⊕ (B′
0 ⊕ C2) ⊕ (B′

2 ⊕ C3) ≪ 1 = 0,

A0[1][2] ⊕ (B′
0 ⊕ C2) ⊕ (B′

2 ⊕ C3) ≪ 1 = 0,

X ⊕ (B′
0 ⊕ C2) ⊕ (B′

2 ⊕ C3) ≪ 1 = 0,

Y ⊕ (B′
0 ⊕ C2) ⊕ (B′

2 ⊕ C3) ≪ 1 = 164,
A0[3][1] ⊕ (B′

2 ⊕ C3) ⊕ (B′
4 ⊕ A0[4][0] ⊕ A0[4][1]) ≪ 1 = 0,

Z ⊕ (B′
2 ⊕ C3) ⊕ (B′

4 ⊕ A0[4][0] ⊕ A0[4][1]) ≪ 1 = 0,

W ⊕ (B′
2 ⊕ C3) ⊕ (B′

4 ⊕ A0[4][0] ⊕ A0[4][1]) ≪ 1 = 0,

A0[4][0] ⊕ (B′
3 ⊕ A0[3][0] ⊕ A0[3][1]) ⊕ (B′

0 ⊕ C2) ≪ 1 = 164,
A0[4][1] ⊕ (B′

3 ⊕ A0[3][0] ⊕ A0[3][1]) ⊕ (B′
0 ⊕ C2) ≪ 1 = 164,

A0[4][4] ⊕ (B′
3 ⊕ A0[3][0] ⊕ A0[3][1]) ⊕ (B′

0 ⊕ C2) ≪ 1 = 164.
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In our preimage attack on 3-round Keccak-384, two message blocks will be
utilized. For a random value of the first message block,

(B′
0, B

′
2, B

′
4,X, Y, Z,W,A0[4][4])

in the above equation system become fixed. To make the above equation system
solvable, the following conditions on (X,Y ) and (Z,W ) have to be fulfilled:

X ⊕ Y = 164,
Z ⊕ W = 0.

Obviously, the two conditions hold with probability 2−128 for a random first
message block. Consequently, we can expect a preferred tuple (X,Y,Z,W ) after
trying 2128 random values of the first message block.

Now, let us assume that the 128 bit conditions on (X,Y ) and (Z,W ) have
been fulfilled. Then, the remaining variables marked in red in the above equation
system can be computed step by step as follows:

A0[4][0] = A0[4][4],
A0[4][1] = A0[4][4],

C3 = Z ⊕ (B′
4 ⊕ A0[4][0] ⊕ A0[4][1]) ≪ 1 ⊕ B′

2,

A0[3][1] = (B′
2 ⊕ C3) ⊕ (B′

4 ⊕ A0[4][0] ⊕ A0[4][1]) ≪ 1,

C2 = X ⊕ B′
0 ⊕ (B′

2 ⊕ C3) ≪ 1,

A0[3][0] = A0[4][4] ⊕ (B′
3 ⊕ A0[3][1]) ⊕ (B′

0 ⊕ C2) ≪ 1 ⊕ 164,
A0[1][0] = Y,

A0[1][1] = X,

A0[1][2] = X.

In other words, if a preferred capacity part is generated, i.e. the conditions on
(X,Y,Z,W ) are satisfied, we can always properly choose the value of the second
message block to make the conditions on A0

θ hold.
To slow down the diffusion of the variables in the first and third column of

A1, guess the values of
∑4

j=0 A1[0][j] and
∑4

j=0 A1[2][j], which will contribute
128 linear equations in terms of the variables (v0, v1, v2, v3). Moreover, choose
a random value c3 ∈ F

t
2 (1 ≤ t ≤ 64) and set up the following linear boolean

equations

4∑

j=0

A1[1][j][z] = c3[z],

where 0 ≤ z ≤ t − 1. In other words, we will also guess t bits of the sum of the
second column

∑4
j=0 A1[1][j] and treat the remaining (64 − t) bits as variables.

In this way, the propagations of the variables through the linear layer in the
second round can be traced. As shown in Fig. 5, the newly-generated quadratic



Algebraic Attacks on Round-Reduced Keccak 105

terms will appear at (A1
χ[1][1], A1

χ[2][1], A1
χ[0][3], A1

χ[1][3]), the number of which
is 4 × (64 − t) = 256 − 4t.

Finally, introduce 256−4t new variables v4 = {v1
4 , v

2
4 , . . . , v

256−4t
4 } to replace

all the possible quadratic terms. In this way, the first two rounds of Keccak
permutation can be viewed as linear in the 256 + 256 − 4t = 512 − 4t variables
(v0, v1, v2, v3, v4).

Since the hash value can leak 320 linear relations in terms of A2
π and A2

π

is now linear in (v0, v1, v2, v3, v4), extra 320 linear equations in terms of the
(v0, v1, v2, v3, v4) can be set up. Note that we have previously set up 128 + t
linear equations in terms of (v0, v1, v2, v3) to slow down the propagations of the
variables in the first/second/third column of A1. Therefore, 320+128+t = 448+t
linear equations have been set up. To ensure that the equation system can be
efficiently solved with Gauss elimination, we add a constraint on t as below:

512 − 4t ≤ 448 + t.

We choose the minimum value t = 13. In this way, there will be 461 linear
equations in terms of 460 variables. Therefore, we can expect at most one solution
of (v0, v1, v2, v3) for each guess of (c1, c2, c3). In other words, by exhausting all
the 2128+13 = 2141 possible values of (c1, c2, c3), we can traverse all the 2256

possible values of (v0, v1, v2, v3) by solving a boolean equation system of size
461.

Complexity Evaluation. For a given valid value of the first message block, the
second message block can take at most 2256 possible values in order to construct
a preferred equation system. In addition, we could only expect one valid value
of the first message block among 2128 random values since there are 128 bit
conditions on (X,Y ) and (Z,W ). To satisfy the padding rule, it is expected to
try 2384−256+128+2 = 2258 possible values of the first message block. Then, it is
expected that there will be 2130 valid values of the first message block. For each
valid value, the exhaustive search will require 2256 time to traverse all the 2256

values of the second message block. However, by introducing 256 free variables
as in our way, we could construct a quadratic equation system in terms of these
256 variables. To solve the equation system efficiently, we can guess 141 linear
equations and then linearize the quadratic equation system. For each time of
guess, the number of equations will not be smaller than the number of variables
after linearization (replacing the quadratic terms with new variables) and thus
it can be solved with time complexity 1. In other words, the 2256 values can
be traversed in only 2141 time. Therefore, the time complexity of the preimage
attack on 3-round Keccak-384 is 2130+141 + 2258 = 2271, which is equivalent to
2283 calls to the 3-round Keccak permutation.

Utilizing Probabilistic Linear Relations. In our preimage attack on 2-round
Keccak-384, we introduced 64 probabilistic linear equations, each of which holds
with probability 0.75 ≈ 2−0.42. It is natural to ask whether such an idea can
be applied to the 3-round preimage attack. Suppose we choose n (0 ≤ n ≤ 64)
probabilistic linear relations. Then, the time complexity of the attack becomes
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2258+0.42n + 2130+0.42n+128+t = 2258+0.42n + 2258+t+0.42n.

Moreover, the constraint on t is changed as follows:

512 − 4t ≤ 448 + t + n ⇒ 5t + n ≥ 64
⇒ t + 0.2n ≥ 12.8 ⇒ t + 0.42n ≥ 0.22n + 12.8.

To ensure 0.22n + 12.8 < 13, n < 1 must hold. Since n is an integer, it means
n = 0 and we should not utilize the probabilistic linear relations.

Remark. In our attack on 3-round Keccak-384, the sum of the second column
of A1 is partially guessed, while the sum of the first and third columns of A1

are fully guessed, respectively. This is the best strategy we identified to reduce
the number of quadratic terms if guessing the same number of linear equa-
tions in terms of the free variables. We indeed have compared different guessing
strategies. Neither fully guessing

∑4
j=0 A1[0][j] and

∑4
j=0 A1[1][j] and partially

guessing
∑4

j=0 A1[2][j] nor fully guessing
∑4

j=0 A1[1][j] and
∑4

j=0 A1[2][j] and
partially guessing

∑4
j=0 A1[0][j] can slow down the propagations of variables

in a better way than that of our chosen guessing strategy. One may also con-
sider whether partially guessing

∑4
j=0 A1[0][j],

∑4
j=0 A1[1][j] and

∑4
j=0 A1[2][j]

would be better. We deal with such a concern by constructing a simple MILP
model, i.e. guessing the smallest number of linear equations to make the number
of variables after linearization not exceed the number of equations. The output
of the solver is indeed the guessing strategy used in this paper.

5 Preimage Attack on 4-Round Keccak-384

It can be easily observed that the above preimage attacks are mainly based on the
careful manual analysis of the propagations of variables. For the preimage attack
on 4-round Keccak-384, we cannot find any similar structure which can bring
advantages over the best known result. Therefore, we turn to the conditional
cube tester [9], which shares a similar idea to slow down the propagations of
variables by adding conditions.

To establish the conditional cube tester for 7-round Keccak-384 [9], the
authors used a MILP-based method and have found 17 variables in A0 as well
as the corresponding conditions which can make A2 linear in these 17 variables.
While the aim in [9] is to find only 17 such variables to construct the 7-round
distinguisher, our aim is to find as many such variables as possible. Thus, we
implemented the MILP model in [9] and set the objective function as maximiz-
ing the number of variables. According to the results returned by the Gurobi
solver [1], there are 18 such variables v0 = {v1

0 , v
2
0 , . . . , v

18
0 }. Due to the page

limit, the parameters for these variables and the corresponding conditions can
be referred to the full version of this paper [15] (see Table 1).

Similar to our 3-round preimage attacks, two message blocks for the preim-
age attack on 4-round Keccak-384 will be utilized. The main reason is that
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A0
θ[4][2][57] = 0 and A0

θ[4][4][57] = 1 (see [15] for more details) cannot hold
simultaneously if only one message block is utilized. This is because A0[4][2] =
A0[4][3] = A0[4][4] = 0 holds in the initial value of the capacity part. Moreover,
note that there are in total 71 independent bit conditions after the condition
A0

θ[4][4][57] = A0
θ[4][2][57] ⊕ 1 is fulfilled with the first message block. On the

other hand, there are in total 64 × 13 = 832 free bits in the rate part of Keccak-
384. Since 35 positions are set as variables, the number of the remaining free
bits is 832 − 35 = 797. Moreover, the padding rule can always be satisfied by a
proper choice of the value for the second block.

Since A2 is linear in the 18 variables, there will be at most 153 quadratic
terms formed by the 18 variables in the expressions of A3. By introducing
153 new variables v1 = {v1

1 , v
2
1 , . . . , v

153
1 } to replace the 153 quadratic terms,

A3 will become linear in (v0, v1). Based on the hash value of Keccak-384,
(A3

π[0][0], A3
π[1][0], A3

π[2][0], A3
π[3][0], A3

π[4][0]) can be derived. Consequently, we
can set up 5 × 35 = 175 linear boolean equations in terms of (v0, v1) by con-
sidering 175 leaked bits (A3

π[0][0][i], A3
π[1][0][i], A3

π[2][0][i], A3
π[3][0][i], A3

π[4][0][i])
(0 ≤ i ≤ 34). Since there are only 153 + 18 = 171 variables, it is expected that
there is at most one solution to such an equation system.

Based on the above analysis, the attack procedure to find a preimage for
4-round Keccak-384 can be described as follows:

Step 1: Randomly choose a value for the first message block and check whether
A0

θ[4][4][57] = A0
θ[4][2][57]⊕ 1 holds. It is expected to try only 2 random

values.
Step 2: Properly choose a value for two bits of the second message block to make

the padding rule hold. Set up the equation system SY0 formed by the
71 independent conditions.

Step 3: Enumerate the solution of the equation system SY0. For each solution,
construct the equation system SY1 of size 175 in terms of (v0, v1) and
solve it, which is expected to have only one solution. After obtaining the
solution to SY1, the value of the second message block is fully known
and we can check whether it is a preimage by compressing it with the
4-round Keccak permutation. If a preimage is found, exit. Otherwise,
try another solution to SY0.

Complexity Evaluation. In the above attack procedure, Step 1 is expected to be
carried out twice. Step 2 is carried out only once. At Step 3, it is expected to
enumerate 2366 solutions to SY0 since the hash is a 384-bit value and there are
in total 18 variables. For each solution, the linear boolean equation system SY1

of size 175 and in terms of 153 + 18 = 171 variables will be solved. The time to
solve SY1 is dominated by the Gauss elimination. According to our estimation,
solving SY1 is equivalent to 29 calls to the 4-round Keccak permutation. Thus,
the time complexity of the preimage attack on 4-round Keccak is 2366+9 = 2375.

Remark. It can be found in the conditional cube attack [9] that the 2-round
Keccak permutation is linearized by using a dedicated control of bit conditions,
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which are used to slow down the propagations of variables. Such a dedicated
control is achieved with a MILP-based method in order to maximize the number
of free variables, which can then be exploited to construct a conditional cube
tester [9] for as many rounds as possible. For the linear structures as proposed
in [8], they are found manually and the number of variables linearizing the first
one round or two rounds of the Keccak permutation should be as many as pos-
sible. This will allow to construct a linear equation system in terms of these
variables to connect partial bits of the hash value, thus reducing the overall cost
to find a preimage. In summary, both works in [8,9] aim at maximizing the num-
ber of variables which can linearize as many rounds of the Keccak permutation
as possible by adding conditions and placing variables properly.

6 Experiments

We have implemented all the attacks in this paper. For the preimage attacks on
round-reduced Keccak, our target is to construct en equations in terms of vn
variables with en ≥ vn. If all the equations are independent, we can expect at
most one solution for each such equation system. Experiments show that the rank
of the coefficient matrix varies for different assignments of the constant value and
hash value. However, this does not affect the time complexity evaluation. The
reason is explained below.

Note that each solution to the equation system has to be further verified
by making a call to the round-reduced Keccak permutation. Once there is no
solution to the equation system, the time to make one more such call is saved.
Since the coefficient matrix is not a non-singular matrix and the equation system
is over-defined (en ≥ vn), there is a high probability that the equation system
is inconsistent, thus saving the time of re-checking. Once the equation system
is consistent, all the solutions have to be checked by making extra calls to the
round-reduced Keccak permutation. Thus, on average, it is equivalent to that
there is one solution to the equation system.

The source code can be found at https://github.com/LFKOKAMI/
KeccakXoodoo.git.

7 Conclusion

To make full use of the linear relations leaked by the hash value of Keccak-384
and Keccak-512, we carefully control and trace the propagations of the vari-
ables in order to construct a suitable quadratic boolean equation system which
can be efficiently solved with linearization techniques. As a result, significantly
improved preimage attacks on 2/3-round Keccak-512 and 3-round Keccak-384
are achieved. In addition, combining the ideas used in the conditional cube tester,
the best preimage attack on 4-round Keccak-384 is improved by a factor of 23

as well.

https://github.com/LFKOKAMI/KeccakXoodoo.git
https://github.com/LFKOKAMI/KeccakXoodoo.git
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Abstract. With the introduction of the division trail, the bit-based divi-
sion property (BDP) has become the most efficient method to search for
integral distinguishers. The notation of the division trail allows us to
automate the search process by modelling the propagation of the DBP
as a set of constraints that can be solved using generic Mixed-integer lin-
ear programming (MILP) and SMT/SAT solvers. The current models for
the basic operations and Sboxes are efficient and accurate. In contrast,
the two approaches to model the propagation of the BDP for the non-bit-
permutation linear layer are either inaccurate or inefficient. The first app-
roach relies on decomposing the matrix multiplication of the linear layer
into COPY and XOR operations. The model obtained by this approach is
efficient, in terms of the number of the constraints, but it is not accurate
and might add invalid division trails to the search space, which might
lead to missing the balanced property of some bits. The second app-
roach employs a one-to-one map between the valid division trails through
the primitive matrix represented the linear layer and its invertible sub-
matrices. Despite the fact that the current model obtained by this app-
roach is accurate, it is inefficient, i.e., it produces a large number of con-
straints for large linear layers like the one of Kuznyechik. In this paper,
we address this problem by utilizing the one-to-one map to propose a
new MILP model and a search procedure for large non-bit-permutation
layers. As a proof of the effectiveness of our approach, we improve the
previous 3- and 4-round integral distinguishers of Kuznyechik and the
4-round one of PHOTON’s internal permutation (P288). We also report,
for the fist time, a 4-round integral distinguisher for Kalyna block cipher
and a 5-round integral distinguisher for PHOTON’s internal permutation
(P288).

Keywords: Bit-based division property · Integral · Linear layer ·
MILP · Kuznyechik · Kalyna · PHOTON

1 Introduction

The division property is a generalized integral property that exploits the alge-
braic degree of the nonlinear components of block ciphers [16]. Since it was
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proposed by Todo at Eurocrypt 2015, it has become one of the most efficient
methods to build integral distinguishers. It has been used to analyze the security
claims of many symmetric-key primitives, e.g., the full round MISTY1 is broken
using a 6-round integral distinguisher found by the division property [17]. The
division property was succeeded by a more precise version called the bit-based
division property (BDP) in [18] which exploits the internal structure of the non-
linear components to analyzes block ciphers at the bit level. Even though the
BDP is more accurate and can find better integral distinguishers, handling its
propagation is computationally intensive. The first search tool utilized the bit-
based division property was limited to building integral distinguishers for block
ciphers with block size less than 32 bits since the complexity of the search is
around O(2n) where n is the block size [18].

Xiang et al. [19] have overcome the problem of the restriction on the block
size by proposing the division trails. Using the division trial, the search process
for an integral distinguisher can be converted to checking whether a specific
division trail exists or not. They also proposed a systematic method to model
the propagation rules of the BDP as a set of linear constraints. Hence, the search
process can be efficiently automated with the help of generic Mixed Integer
Linear Programming (MILP) and SAT solvers. Moreover, Xiang et al. provided
an accurate model for the propagation of the BDP through the basic operations;
COPY, XOR, and AND, in addition to an accurate model for Sboxes. With the help of
these models, it is now feasible to look for integral distinguishers for many ciphers
that utilize these operations when the used linear layer is a bit-permutation.

For ciphers with non-bit-permutation linear layers, Sun et al. [15] proposed
a model relying on decomposing the matrix corresponding to the linear layer
into its basic operations; COPY and XOR. We refer to this model through our
paper as Disjointed Representation and we will provide more details about it
in the following sections. The main two advantages of this model are: (i) it is
applicable to all kinds of linear layers, and (ii) the number of constraints needed
to model the propagation of the BDP is small, precisely, 2n where n denotes the
size of the matrix input in bits. However, this representation does not model the
propagation accurately and might add invalid division trails to the search space
which might lead to missing the balanced property of some bits.

Another model for the propagation of the BDP through non-bit-permutation
linear layers is presented by Zhang and Rijmen in [20]. They observed that there
is a one-to-one map between each valid division trail and one of the invertible
sub-matrices of the matrix, M , representing the linear layer. They were able to
convert this map to a set of MILP constraints. Unlike the first model provided
by [15], the new model is more accurate. However, the number of the MILP
constraints grows exponentially with the size of M . Recently, Hu et al. partially
solved this problem in [10] by utilizing the one-to-one relation to build a model
of 4-degree constraints that can be solved using SMT/SAT. The new number
of the constraints is proportional to the square of matrix size. Unfortunately,
this model is still not suitable for some large linear layers such as the one of
Kuznyechik [3].
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Our Contributions. In this paper, we propose a new model for the propaga-
tion of the BDP through large linear layers. In particular, we utilize the same
one-to-one map proposed by Zhang and Rijmen to derive a set of constraints
that filter out all non-invertible sub-matrices, part of them during the offline
modelling process and the other part on-the-fly during the search process. In
order to validate the correctness of our approach, we use our model to reproduce
the results of the 4- and 5-round key-dependent integral distinguishers of AES
reported in [10]. With the help of our model, we improved the previous 3- and
4-round integral distinguishers of Kuznyechik block cipher and the 4-round one
of PHOTON’s internal permutation (P288). We also report, for the fist time, a
4-round integral distinguisher for Kalyna block cipher [13] and a 5-round integral
distinguisher for PHOTON’s internal permutation (P288) [8]. Table 1 summarizes
our results.

Table 1. Integral distinguishers for Kuznyechik, Kalyna and PHOTON.

Ciphers #Rounds log2(Data) Reference

Kuznyechik 3 117� [1]

3 56 Sect. 5.1

4 127� [1]

4 120 Sect. 5.1

Kalyna-128 4† 64 Sect. 5.2

4§ 96 Sect. 5.2

4‡ 62 Sect. 5.2

PHOTON (P288) 4 48 [15]

4 40 Sect. 5.3

5 280 Sect. 5.3
� Higher-order differential.
† Without pre-whitening operation.
§ With pre-whitening operation.
‡ A key-dependent distinguisher which depends on the
32 least significant bits of the pre-whitening key.

Outline. The rest of this paper is organized as follows. In Sect. 2 we recall
some relevant definitions and revisit the MILP model for the basic operations.
In Sect. 3, we revisit the previous MILP models for the linear layers. Next, we
illustrate in details our new model and search approach in Sect. 4. In Sect. 5,
we show some applications of the new model. Finally, the paper is concluded in
Sect. 6.
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2 Preliminaries

2.1 Notations and Definitions

We represent n-bit vectors using bold letters, e.g., uuu ∈ F
n
2 . The i-th element of

uuu is expressed as ui and the Hamming weight hw(uuu) is calculated as hw(uuu) =
∑n−1

i=0 ui. For a matrix M ∈ F
p×q
2 , we use the notation M(i, j) to represent the

element of M located at the i-th row and j-th column, ri = M(i, ∗) to represent
the i-th row, and cj = M(∗, j) to represent the j-th column of M . Given two
q-bit and p-bit vectors uuu and vvv, we define Mvvv,uuu ∈ F

hw(vvv)×hw(uuu)
2 as a sub-matrix

of M as follows

Mvvv,uuu = [M(i, j)], s.t. vi = uj = 1,∀ 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1

Given a q-bit vector uuu, we define Muuu ∈ F
p×hw(uuu)
2 as a sub-matrix of M as

follows
Muuu = [M(∗, j)], s.t. uj = 1,∀ 0 ≤ j ≤ q − 1

Definition 1 (Division Trail [19]). Let f denote the round function of an
iterated block cipher. Assume that the input multiset to the block cipher has the
initial division property Dn

{k}, and denote the division property after i-round
propagation through f by Dn

Ki
. Thus, we have the following chain of division

property propagations: {k} def= K0
f−→ K1

f−→ K2
f−→ · · · f−→ Kr. Moreover, for any

vector k∗
i ∈ Ki(i ≥ 1), there must exist a vector k∗

i−1 ∈ Ki−1 such that k∗
i−1

can propagate to k∗
i by the division property propagation rules. Furthermore,

for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

2.2 MILP-Based Automated Search for Bit-Based Division
Property

As we mentioned above, the first automated search tool for the bit-based division
property was limited to building integral distinguishers for block ciphers with
block size less than 32 bits [18]. Then, Xiang et al. [19] proposed the division
trails to solve this problem. In particular, with the help of the division trial,
the search process for an integral distinguisher is converted to checking if the
division trail k0 → · · · → ei (a unit vector whose i-th element is 1) does exist or
not. If it does not exist, then the i-th bit of r-round output is balanced.

In the following, we summarize the MILP constraints that are used to model
the propagation rules of the bit-based division property through the basic oper-
ations in block ciphers. For more details, we refer the reader to [4,6,15,19].

– Model for COPY: Let (a) COPY−−−→ (b1, b2, . . . , bm) denote the division trail
through COPY function, where a single bit (a) is copied to m bits. Then,
it can be described using the following MILP constraints:

a − b1 − b2 − · · · − bm = 0, where a, b1, b2, . . . , bm are binary variables.
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– Model for XOR: Let (a1, a2, . . . , am) XOR−−→ (b) denote the division trail through
an XOR function, where m bits are compressed to a single bit (b) using an
XOR operation. Then, it can be described using the following MILP con-
straints:

a1 + a2 + · · · + am − b = 0, where a1, a2, . . . , am, b are binary variables.

– Model for Sboxes: The bit-based division property introduced in [18] is lim-
ited to bit-orientated ciphers and cannot be applied to ciphers with Sboxes.
Xiang et al. [19] complemented this work by proposing an algorithm to accu-
rately compute the bit-based division property through an Sbox. Briefly, they
represented the Sbox using its algebraic normal form (ANF). Then, the divi-
sion trail though an n-bit Sbox can be represented as a set of 2n-dimensional
binary vectors ∈ {0, 1}2n which has a convex hull. The H-Representation of
this convex hull can be computed using readily available functions such as
inequality generator() function in SageMath1 which returns a set of lin-
ear inequalities that describe these vectors. We use this set of inequalities as
MILP constraints to present the division trail though the Sbox.

3 Previous MILP-Based Modelling for Linear Layers

The propagation of the bit-based division property through bit-permutation lin-
ear layers, e.g., the linear layer of PRESENT [2], can be easily modelled by
rearranging the variables based on the permutation. In contrast, the non-bit-
permutation linear layers, e.g., the linear layers of AES and Kuznyechik [3],
needs a more complex model.

In this section, we revisit the two methods used to model the propagation
of the BDP through non-bit-permutation linear layers. These methods relay on
representing the matrix multiplication in the linear layer at the bit level. Suppose
the linear layer can be represented as a matrix multiplication over the field F2m

using the matrix M
′ ∈ F

s×s
2m . Given the irreducible polynomial of the field F2m ,

we can derive a unique equivalent matrix M ∈ F
n×n
2 called the primitive matrix

at the bit level where n = s × m.

3.1 Disjointed Representation

Since the primitive matrix M is presented at the bit level, i.e., M(i, j) ∈ {0, 1},
we can decompose the linear layer into its basic operations, i.e., AND with 0 or
1 and XOR operations. Consequently, the propagation of the BDP can be easily
modelled using the models of the basic operations [15].

Let uuu
M−→ vvv denote the division trail through the linear layer where uuu,vvv ∈ F

n
2 .

By defining a set of auxiliary binary variables ttt = {t(i,j) if M(i, j) = 1, 0 ≤ i, j ≤
n − 1}, we can model the propagation of the BDP at the bit level in two steps
as follows:
1 http://www.sagemath.org/.

http://www.sagemath.org/
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• (uj)
COPY−−−→ (t(0,j), t(1,j), . . . , t(n−1,j)) where −uj +

n−1∑

i=0
M(i,j)=1

t(i,j) = 0

• (t(i,0), t(i,1), . . . , t(i,n−1))
XOR−−→ (vi) where −vi +

n−1∑

j=0
M(i,j)=1

t(i,j) = 0

Hence, the total number of constraints #L = 2n.

Limitations. Despite the fact that this method is simple and efficient in terms of
the number of constraints, it cannot handle the cancellation between monomials
since it handles each output bit individually. Hence, it is not precise and it might
produce invalid division trails leading to missing the balanced property of some
output bits. For further details, see [20].

3.2 Compact Representation

One method to overcome the problem of the monomial cancellations is to deal
with the linear layer as a one single block like an S-box. However, the large size of
the linear layer renders this approach computationally infeasible in many cases.

In this context, Zhang and Rijmen observed that there is a one-to-one map
between the accurate division trails of the primitive matrix M and invertible
sub-matrices of M [20]. This observation is stated in the following theorem.

Theorem 1 ([20]). Let M be the n × n primitive matrix of an invertible linear
transformation and uuu,vvv ∈ F

n
2 . Then uuu

M−→ vvv is one of the valid division trails of
the linear transform M if and only if Mvvv,uuu is invertible.

Using this one-to-one map, they proposed a systematic method to model a
binary matrix M

′ ∈ F
s×s
2m as a set of MILP constraints. For more derails, see

[20]. In this case, the total number of constraints #L = m × (2s − 1).
Regarding the non-binary matrices, we can still use the same method, but

the number of constrains will exponentially increase with the size of the prim-
itive matrix, i.e., if the primitive matrix M is n × n, then the total number of
constraints #L = 2n − 1.

Hu et al. presented an updated version of Theorem 1 in [10]. They removed
the restriction that the primitive matrix M must be invertible to have valid
division trails. Consequently, the primitive matrix M could be in general of size
p × q. Hence, uuu

M−→ vvv is one of the valid division trails of M if and only if Mvvv,uuu

is invertible where uuu and vvv are q- and p-bit vectors, and hw(uuu) = hw(vvv). Hu et
al. also utilized this one-to-one map to present a new model for the propagation
of the BDP through a non-binary matrix using less number of constraints. If a
primitive matrix M is p×q, then the total number of constraints will be #L = p2.
It should be mentioned that the constraints are 4-degree ones, therefore it is
solvable using SMT/SAT solvers and cannot be handled using MILP solvers.
For more details, see [10].
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Limitations. Even though the models by Zhang and Rijmen, and Hu et al. are
accurate, they are inefficient for large linear layers, e.g., the primitive matrix
corresponding to the linear layer of Kuznyechik is 128 × 128, therefore we will
need 2128 or 1282 = 214 constraints to model a single linear layer if we use Zhang
and Rijmen and Hu et al. methods receptively. Therefore, when the distinguisher
covers many rounds, it will be computationally infeasible for current MILP/SAT
solvers to handle the model due to the large number of the constraints.

4 MILP-Based Modelling for (Large) Linear Layers

As mentioned in the previous section, the current models for the non-bit-
permutation linear layer in the literature are either inaccurate or inefficient for
large linear layers. In this paper, we tackle this problem by proposing an accu-
rate model for the linear layer when its input division property is priorly known
before the modelling step. Thereby, this model is more suitable for the first round
of the distinguisher. Regarding the other rounds of the distinguisher when the
input division property cannot be determined during the modelling, we use the
disjointed representation described in Sect. 3.1 and address its inaccuracy by
discarding any invalid trails on-fly during the search process.

4.1 Prior-Known Input Division Property to the Linear Layer

Suppose the primitive matrix M is of size p × q and let uuu be the input division
property to M and assume it is determined a priori. Consequently, we can utilize
Theorem 1 and its updated version in [10] to derive all correct division trails.
The naive method to do so is by exhaustively trying all the values of the output
division property vvv such that hw(uuu) = hw(vvv) and checking if the sub-matrix
Mvvv,uuu is invertible. Despite the correctness of this method, we need to try

(
p

hw(uuu)

)

sub-matrices which is a very large number in almost all the cases. Moreover, we
have to find a method to encode these division trails as MILP constraints to
build a large model that covers many number of rounds. In the following, we
explain our main idea to overcome this problem.

Main Idea. Based on Theorem 1, the sub-matrix Mvvv,uuu must be invertible to

have a valid trail uuu
M−→ vvv, i.e., the sub-matrix Mvvv,uuu must not include linearly

dependent rows. Given the input division property uuu, we can construct the col-
umn matrix Muuu. Subsequently, we can get the row echelon form of Muuu using the
Gaussian eliminations, and obtain all the sets of linearly dependent rows. Then,
instead of checking each value of vvv (as in the naive method), we derive a set of
constraints that guarantee the bits vi do not lead to including any set of linearly
dependent rows from Muuu. In order to complete the model, one more constraint
should be added to enforce hw(uuu) = hw(vvv). Hence, the value of vvv that satisfies
these constraints is indeed a valid output division property.

The following examples illustrates our idea.
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Detailed Example. Assume a toy linear layer where its primitive matrix M is
8×8. Given the input division property uuu = (1, 1, 1, 1, 1, 0, 0, 0), we can construct
the column matrix Muuu by choosing the columns of M that correspond to the
nonzero bits in uuu.

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0
1 1 0 0 0 0 1 0
0 0 1 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

uuu−−−−→ Muuu =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0
0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We follow the procedure given below to derive a set of linear constraints as a
function in the output division property vvv = (v0, v1, v2, v3, v4, v5, v6, v7) to trace
the propagation of the division property for Muuu.

1. Check whether Rank(Muuu) = hw(uuu) to ensure that there is at least one full
rank (invertible) sub-matrix, and hence at least one valid division trail. Oth-
erwise, we conclude that uuu cannot be propagated to any valid vvv.

2. Use Gaussian eliminations to put Muuu in its row echelon form while keeping
track the row operations. Hence, each all-zero row in the row echelon form
implies a set of linearly dependent rows in the original matrix Muuu, e.g., the
first all-zero row in our example can be expressed as r0 + r1 + r5 = 000 which
means that the rows {r0, r1, r5} from Muuu are linearly dependent. The details
of the Gaussian elimination steps for our example can be found in [7].
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 r0
1 1 0 0 1 r1
0 1 0 0 0 r2
0 0 1 0 0 r3
0 0 0 1 0 r4
0 1 0 0 1 r5
1 1 0 0 0 r6
0 0 1 1 0 r7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Gaussian−−−−−−−−→
Elimination

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 1 r2 + r1 + r0
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 0 r6 + r2 + r0
0 0 0 0 0 r7 + r3 + r4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎧
⎪⎨

⎪⎩

r0 + r1 + r5 = 000
r0 + r2 + r6 = 000
r3 + r4 + r7 = 000

⎫
⎪⎬

⎪⎭

In general, if Muuu is p × hw(uuu), then there are p − hw(uuu) all-zero rows in the
row echelon form given that Rank(Muuu) = hw(uuu).

3. Find all the sets of linearly dependent rows. We do so by trying the com-
binations between the relations derived from all-zero rows obtained in the
previous step, e.g., combine r0 + r1 + r5 = 000 and r0 + r2 + r6 = 000 will produce
r0 + r1 + r5 + r0 + r2 + r6 = 000 ⇒ r1 + r2 + r5 + r6 = 000 which means the rows
{r1, r2, r5, r6} are linearly dependent.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0 + r1 + r5 = 000
r0 + r2 + r6 = 000
r3 + r4 + r7 = 000

r1 + r2 + r5 + r6 = 000
r0 + r1 + r3 + r4 + r5 + r7 = 000
r0 + r2 + r3 + r4 + r6 + r7 = 000

r1 + r2 + r3 + r4 + r5 + r6 + r7 = 000

4. For each set of linearly dependent rows, we derive a constraint on some bits
of vvv enforcing any selected sub-matrix to be invertible, e.g., r0 + r1 + r5 = 000
means the rows {r0, r1, r5} are linearly dependent. In other words, these rows
together must not be a part of any sub-matrix in order to have valid trails.
Reflecting on vvv, this means the bits v0, v1, v5 cannot be 1 at the same time.
We can represent this relation as a linear constrain v0 + v1 + v5 ≤ 2. The
initial model for our toy linear layer includes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 + v1 + v5 ≤ 2
v0 + v2 + v6 ≤ 2
v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3
v0 + v1 + v3 + v4 + v5 + v7 ≤ 5
v0 + v2 + v3 + v4 + v6 + v7 ≤ 5

v1 + v2 + v3 + v4 + v5 + v6 + v7 ≤ 6
v0, . . . , v7 are binary variables

(C1)
(C2)
(C3)
(C4)
(C5)
(C6)
(C7)

5. Remove the redundancy constraints, e.g., the constraint C5 is redundant
because if the constraints C1 and C3 are satisfied, then the constraint C5
is satisfied. Also, if the constraints C1 and C3 are not satisfied, then the
constraint C5 is not satisfied. In contrast, if one of the constraints C1 and C3
is satisfied and the other is not satisfied, the solution will be rejected even
though the constraint C5 is satisfied.
We can automate this step by checking if a set of dependent rows (A) is a
sub-set of another set of dependent rows (B), then the constraint on the set
B is redundant. The model for our toy linear layer is then reduced to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v0 + v1 + v5 ≤ 2
v0 + v2 + v6 ≤ 2
v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3
v0, . . . , v7 are binary variables
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6. Finally, add a constraint to enforce that hw(uuu) = hw(vvv). The model for our
toy linear layer will be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 + v1 + v5 ≤ 2
v0 + v2 + v6 ≤ 2
v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3
v0 + v1 + · · · + v7 = 5

v0, . . . , v7 are binary variables

Number of Constraints. Although we cannot count exactly the number of the
required constraints before performing the procedure, we can give the upper
bound of the number based on Step 3 as follows:

#L ≤ 1 +
p−hw(uuu)∑

i=1

(
p − hw(uuu)

i

)

= 1 + 2p−hw(uuu) − 1 = 2p−hw(uuu)

In the light of this upper bound, it is clear that the model is practically more
applicable when p − hw(uuu) is relatively small which is usually the case for the
linear layer at the first round when we search for a distinguisher that covers a
large number of rounds where the Hamming weight of the input division property
of the distinguisher (the number of active bits) is very close to the block size.

4.2 Complete Model and Search Approach

In the previous section, we presented a model for the linear layer at the first
round when its input division property is known before the modelling step. In
this section, we propose a search approach allowing us to use that model even
though the targeted distinguisher does not start from a linear layer. We also
complete the model for the targeted distinguisher by showing how to handle the
intermediate linear layers.

Intermediate Linear Layers. We use the disjointed representation described
in Sect. 3.1 to model the intermediate linear layers. When a candidate division
tail is obtained by solving the complete model, we then extract the values of
the input and the output division property of each matrix multiplication in the
trail. After that, we check whether Mvvv,uuu is invertible or not for each matrix
multiplications. If one of them is not invertible, we discard the trail by updating
the model through adding a special craft constraint and resolving the updated
model.

Discarding Invalid Trails. Let (u0, . . . , un−1) and (v0, . . . , vn−1) be the variables
in the model representing the input and the output division property of a matrix
multiplication where Mvvv,uuu is not invertible in the current solution of the model.
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Let Iu0 (Iu1 ) be the indices of uuu’s variables that equal to 0 (1) in the current
solution. Similarly, let Iv0 (Iv1 ) be the indices of vvv’s variables that equal to 0 (1)
in the current solution. We update the model based on the current solution by
adding the following constraint

∑

i∈Iu
0

(ui) +
∑

i∈Iu
1

(1 − ui) +
∑

i∈Iv
0

(vi) +
∑

i∈Iv
1

(1 − vi) ≥ 1

Therefore, when we attempt to resolve the updated model, the current solu-
tion, i.e., the invalid trial, will violate the new constraint and the solver will not
consider it as a solution and try to obtain another solution.

Implementation. Although the models for both the first linear layer with known
input division property and the intermediate linear layers with the discarding
approach above are applicable using MILP and SMT/SAT, the approach to
discard invalid trails is more efficient using MILP solvers via the callback function
and the concept of lazy constraints [9,11] without needing to resolve the model
from scratch.

Last Linear Layer. When the distinguisher ends with a linear layer, we can
model it using the disjointed representation (like the intermediate linear lay-
ers) or we can efficiently model it using the model for XOR operation. Let
(u0, . . . , un−1) and (v0, . . . , vn−1) be the variables in the model which represent
the input and the output division property of the matrix multiplication in the
last linear layer. Suppose we check if there is a division trail from the input
division property of the distinguisher to the unit vector ei, i.e., checking if the
i-th bit of the output is balanced or not. Therefore, the variables that represent
the output division property will be set to

{
vi = 1
vl = 0, 0 ≤ l ≤ n − 1, l 	= i

Consequently, during modelling, we focus on row ri = M(i, ∗) of the primitive
matrix M and the constraints on the input division property of the matrix
multiplication will be

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n−1∑

j=0
M(i,j)=1

uj = 1

uj = 0, 0 ≤ j ≤ n − 1,M(i, j) = 0

After solving the model, if there is a division trail from the input division prop-
erty of the distinguisher to the unit vector ei, we conclude that there are other
division trails from the same input division property of the distinguisher to other
unit vectors without creating/solving their corresponding models. The original
division trial can be split into two sub-trails; from the input division property
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of the distinguisher to the input division property of the last linear layer uuu, and
from uuu to the unit vector ei where hw(uuu) = hw(vvv) = 1, i.e., only one variable
from (u0, . . . , un−1) is 1 and the other are 0. Suppose this variable is uj . There-
fore, the column matrix Muuu can be created from a single column cj = M(∗, j).
Based on Theorem 1, the division trail from the input division property of the
distinguisher to the unit vector el, passing through uuu, exists for the l-th output
bit if M(l, j) = 1 where 0 ≤ l ≤ n − 1.

Search Approach. If the targeted distinguisher starts from a linear layer, the
input division property of this linear layer is known and we can use the model
described in Sect. 4.1. Hence, we create only one model for the distinguisher.
Otherwise, we perform the following search approach:

1. We firstly determine all the possible values of the input division property
of the first linear layer by propagating the input division property of the
distinguisher through other parts of the first round, which is usually a non-
linear layer of Sboxes.

2. Then, we check the i-th output bit by creating a group of sub-models starting
from the first linear layer with different input division property, thereby, we
can employ the model described in Sect. 4.1 for the first linear layer in each
sub-model.

3. Finally, we solve the sub-models independently in parallel by dividing our
computational power between them. If the valid division trail that ends at
the unity vector ei exists for a sub-model, we terminate the search process
for the other sub-models. If it does not exist for all sub-models, then the i-th
output bit is balanced. The last two steps are repeated for all output bits.

Remark. Even though the model for the linear layer using the disjointed repre-
sentation with discarding invalid trails approach is applicable to the first linear
layer, we believe that modelling the first linear layer accurately from the begin-
ning is important. Our reasoning for that is as follows. First, the Hamming weight
of the input/output division property for the first linear layer is the highest com-
pared to the successive linear layers, i.e., the number of its possible propagation
is high and the chance to find invalid sub-trails will increase, which leads to the
second reason. Since every sub-trail in early rounds is branched to many trails in
the successive rounds, invalid sub-trails in the first round have a larger effect on
expanding the search space, and hence increasing the time of solving the model.
We verified our hypothesis experimentally by comparing the running time to find
the 4-round key-dependent integral distinguish of AES reported in [10] using the
same platform in the two cases; the case when the first linear layer is modelled
accurately from the beginning and the other case when we model the first linear
layer using the disjointed representation with discarding approach. In the first
case, the solver found the distinguisher in around 50 min. In contrast, the solver
did not finish in the second case even after running for more than a day.
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5 Applications of Our New Approach

In this section, we report our findings when applying our approach to Kuznyechik
and Kalyna block ciphers and a variant of PHOTON permutations. We also have
reproduced the results of the 4- and 5-round dependent-key integral distinguish-
ers of AES reported in [10].

During our experiments, We use either Gurobi2 solver [9] or the CPLEX
optimizer [11] to solve the models. Our source codes are available at https://
github.com/mhgharieb/MILP DivisionProprerty LinearLayer.

We use the following notation to present the integral property of each byte
in the plaintext and ciphertext:

– C: Each bit of the byte at the plaintext is fixed to constant.
– A: All bits of the byte at the plaintext are active.
– B: Each bit of the byte at the ciphertext is balanced (the XOR sum is zero).
– U : A byte at the ciphertext with unknown status (the XOR sum is unknown).

When each bit of a byte has a different property, we use lowercase letters to
present the property, i.e., c, a and b will represent a constant bit, an active bit,
and a balanced bit, respectively. For example, caaaaaaa represents a byte where
the most significant bit is constant and the other bits are active.

In general during our experiments, when an R-round distinguisher is found,
we follow two different paths in parallel as a next step; we examine whether
(R + 1)-round exists or not, and we try to find another R-round distinguisher
that needs a less number of active bits, i.e., less data complexity.

5.1 Application to Kuznyechik

The Russian encryption standard—Kuznyechik [3], also known as GOST 34.12-
2015, is a 9-round SPN-based block cipher with a 128-bit block size and 256
bits of key. The encryption procedure is performed as follows. After loading a
block of 128-bit plaintext to a 16-byte internal state xxx = (x0, . . . , x15) where x0

is the least significant byte, the state is Xored with a whitening round key (XOR
Layer (X)). Then, the state is updated 9 times using an identical round function
denoted as R = (X ◦ L ◦ S) that consists of:

– Non-linear Layer (S): Each byte of the state is mapped using 8-bit Sbox.
– Linear Layer (L): The 16-byte state is multiplied by 16×16 MDS matrix over

the field F28 with the irreducible polynomial X8 + X7 + X6 + X + 1.
– XOR Layer (X): The state is Xored with the corresponding round key.

In [1], Biryukov et al. studied Kuznyechik security against the multiset-
algebraic cryptanalysis in which they reported the 3- and 4-round integral dis-
tinguisher based on their algebraic degree.
2 We use the version of Groubi that has some problems reported in [5]. Therefore,

when we find some balanced bits by solving a model using Gurobi and we could not
verify this results by propagating the traditional integral property, we resolve the
model again using the CPLEX optimizer in order to validate the results.

https://github.com/mhgharieb/MILP_DivisionProprerty_LinearLayer
https://github.com/mhgharieb/MILP_DivisionProprerty_LinearLayer
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3-Round Integral Distinguishers. Biryukov et al. reported that the 3-round
has degree at most 116 [1]. Therefore the XOR sum over a set of plaintexts with
dimension 117 will be zero, i.e., the 3-round integral distinguisher exists with
the data complexity of 2117. However, we found several 3-round integral distin-
guishers with a much lower data complexity of 256. One of these distinguishers
is

(C, C, C, C, C, C, C, C, C,A,A,A,A,A,A,A)
⇓ 3R ◦ X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

4-Round Integral Distinguishers. Biryukov et al. also reported a 4-round
distinguisher with the data complexity of 2127 depending on the 4-round has
degree at most 126 [1]. We were able to find several 4-round integral distinguish-
ers with data complexity of 2120 (120 active bits). One of these distinguishers
is

(C,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)
⇓ 4R ◦ X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

Other Experiments. Biryukov et al. extended the 4-round key-independent
integral distinguisher to a 5-round key-dependent one with the same data com-
plexity by appending the linear layer (L) before the 4-round one. The new dis-
tinguisher depends on the least significant byte of the master key. We were able
to verify the existence of this distinguisher using our model by setting one bit
to a constant and the other bits to active as shown below.

(caaaaaaa,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)
⇓ 4R ◦ X ◦ L

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

As a next step, we employ the search approach proposed in the previous
section to check the existence of the 5-round key-independent distinguisher with
a single bit constant and 127 bits active, and we confirmed that this distinguisher
does not exist even with the use of the accurate propagation of the BDP.

5.2 Application to Kalyna

The Ukrainian standard Kalyna [13], also known as DSTU 7624:2014, is a
family of five SPN-based block ciphers denoted as Kalyna-l/k where l, k ∈
{128, 256, 512} are the block size and the key size, respectively, such that k = l
or k = 2 × l. The number of rounds depends on the key size.

We targeted the two members with the block size of 128 bits, Kalyna-128.
The encryption procedure is performed as follows. The 16 bytes of the plaintext
block xxx = (x0, . . . , x15) where x0 is the least significant byte, is loaded to the 8×2
16-byte state matrix in column-wise order. After that, pre-whitening round key
is added to each column independently using addition modulo 264. We denote
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this operation as (�64). Then, The following round function denoted as R =
(X ◦ L ◦ SR ◦ S) is iterated 10 or 14 times depending on the key size:

– Non-linear Layer (S): 4 different 8-bit Sboxes πs, s ∈ {0, 1, 2, 3} are used to
map the bytes of the state matrix where the i-th byte (xi) is substituted by
πi mod 4(xi).

– ShiftRows (SR): The bytes of each row in the state matrix are cyclically
shifted to right by � i

4 where i, 0 ≤ i ≤ 7 is the row index.
– Linear Layer (L): Each 8-byte column of the state matrix is independently

multiplied by 8 × 8 MDS matrix over the field F28 with the irreducible poly-
nomial X8 + X4 + X3 + X2 + 1.

– XOR Layer (X): the state is Xored with the corresponding round key.

In the last round, the XOR Layer (X) is replaced by a post-whitening mod-
ular key addition modulo 264.

4-Round Integral Distinguishers Without Pre-whitening. During our
experiments, we found two 4-round integral distinguisher starting after the pre-
whitening step with 8 active bytes as depicted below. The correctness of these
distinguishers can be easily verified by propagating the integral properties though
the equivalent structure of the round function. Given that, each 8-bit Sbox is
reused every 4 bytes and the first (second) 4 rows of the state matrix is shifted
by the same step, the state matrix can be reconstructed as 2×2 matrix such that
each 4 successive bytes are concatenated in a 32-bit word and the 4 different 8-bit
Sboxes build a 32-bit super Sbox. Therefore, when the diagonal (anti-diagonal)
words of the new state matrix are active, i.e., take all possible values from
F
2
232 , the output after 4-rounds will be balanced similar to the 4-round integral

distinguisher of AES [12].
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C A
C A
C A
C A
A C
A C
A C
A C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

OR

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A C
A C
A C
A C
C A
C A
C A
C A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4R=⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B B
B B
B B
B B
B B
B B
B B
B B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appending �64−−−−−−−−−−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C A
C A
C A
C A
A A
A A
A A
A A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

OR

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A C
A C
A C
A C
A A
A A
A A
A A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4R◦�64=====⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B B
B B
B B
B B
B B
B B
B B
B B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4-Round Integral Distinguishers with Pre-whitening. We were able to
extend each of the previous 4-round distinguishers to cover the pre-whitening
operation. The new distinguishers need 12 active bytes as depicted above. In the
following, we illustrate the way we use to select a set of plaintexts so that it
satisfies the input division property of the 4-round distinguisher after applying
the pre-whitening operation.

Since the pre-whitening operation is performed per column, we focus on each
column independently. Suppose X, Y , and K denote a 64-bit word of the input,
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the output and the whitening key, respectively, such that Y = X �64 K. Each
64-bit word can be considered as the concatenation of two 32-bit words, i.e.,
X = Xl||Xr, Y = Yl||Yr, and K = Kl||Kr. Therefore, Yr = Xr �32 Kr and
Yl = Xl �32 Kl �32 C where �32 denotes the addition modulo 232 and C is the
carry from the first addition part.

Consequently, a set of plaintexts such that Xr is fixed to constant and the 4
bytes of Xl takes all the possible values from F

4
28 , will give an output set such

that Yr will be constant and the 4 bytes of Yr will take all the possible values
from F

4
28 . This is because the whitening key is constant and the carry will be

fixed over all the set’s elements based on the previous two questions. As the
result, we can easily satisfy one of the two column in the 4-round distinguishers.

The same method cannot be applied to the other column because if Xr

takes all the possible values, Yr will take all the possible values, but, the value
of the carry will change depending on the value of the whitening key. Hence,
we cannot adapt the values of Xl to enforce Yl to be fixed over the set. To
overcome this problem, we construct a set of plaintexts such that the 8 bytes
of X take all the possible values from F

8
28 , hence, the 8 bytes of Y will take all

the possible values from F
8
28 . As the result, the output set Y can be considered

as 232 sub-sets in which each sub-set satisfies the input division property of the
other column of the 4-round distinguisher. Combining these two approaches, the
4-round distinguishers with the pre-whitening need 12 active bytes.

Using the BDP, we are able to verify the existence of these distinguishers
with the help of the propagation model of the BDP through modular addition
with a constant proposed in [4]. Additionally, we have tried to reduce the number
of active bits by iterating over the active bits one-by-one and set it to constant
then check if the distinguisher still exists. Unfortunately, the distinguisher does
not exist.

Other Experiments. During our experiments, we build a 4-round key-
dependent distinguisher using 62 active bits. The new distinguisher depends
on the 32 least significant bits of the pre-whitening key. The distinguisher starts
at the linear layer of the first round with the input division property. For more
details, we refer the redear to the long version of this paper [7].

5.3 Application to PHOTON

PHOTON [8] is a family of lightweight hash functions proposed by Guo et al. at
CRYPTO 2011 and it has been standardized in ISO/IEC 29192-5:2016. PHO-
TON has 5 variants with 5 internal unkeyed permutations denoted as Pt where
t ∈ {100, 144, 196, 256, 288} is the internal state size. We target here the internal
permutation P288. The structure of the internal permutation follows the struc-
ture of AES where the internal state is represented as a d × d square matrix
of cells. Thus, the internal state of P288 is a 6 × 6 matrix of bytes. Its round
function consists of:
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– AddConstants (X): Each byte of the 1st column of the state matrix is Xored
with a round-dependent constant.

– SubCells (S): Each byte (xi) of the state is substituted by Sbox(xi) where
Sbox is the 8-bit Sbox of AES.

– ShiftRows (SR): The bytes of each row in state are cyclically shifted to left
by i where i ∈ 0 ≤ i ≤ 5 is the row index.

– MixColumnsSerial (L): Each column of the state is independently multiplied
by 6 × 6 MDS matrix over F28 with the irreducible polynomial X8 + X4 +
X3 + X + 1.

3- and 4-Round Integral Distinguishers. Since the permutation is followed
the AES structure, there are 3- and 4-round distinguishers that exploit the struc-
ture itself and independent on the used Sboxes and the MDS matrix. In par-
ticular, when the state matrix has a single byte active and the other bytes are
constant (the data complexity is 28), each output bit after 3 rounds will have
zero-sum (balanced). Also, there is a 4-round distinguisher when all diagonal’s
bytes of the state matrix are active (the data complexity is 248). In [15], Sun et
al. verified the existence of these 3- and 4-round distinguishers using the MILP
models for the propagation of the BDP. They have modelled the linear layer
using the disjointed representation.

New 4-Round Integral Distinguisher. At Crypto 2016, Sun et al. exploited
a specific property of the matrix used in AES to introduce the first 5-round
key-dependent integral distinguisher [14]. This property is that each column of
the matrix has two equal elements. We employ a similar property to reduce the
date complexity of the 4-round distinguisher of P288 and build a new 5-round
one.

Suppose MP and M−1
P denote the matrix and its inverse that are used in

P288 where

MP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

02 03 01 02 01 04
08 0e 07 09 06 11
22 3b 1f 25 18 42
84 e4 79 9b 67 0b
16 99 ef 6f 90 4b
96 cb d2 79 24 a7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M−1
P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 50 eb 62 79 99
29 a5 c9 c2 fb 2b
56 54 8e 9f e9 57
ae af 03 20 c8 ae
47 47 01 44 8e 46
8c 8d 01 8d 02 8d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Suppose xxx = (x0, x1, x2, x3, x4, x4)T and yyy = (y0, y1, y2, y3, y4, y5)T be the
input and the output vectors to the matrix MP such that yyy = MP ×xxx. Suppose
xxx take 25×8=40 values where each of x0, x1, x2, x3 and x4 take all the possible
values from F28 . Therefore, yyy will take 240 values. Also, xxx = M−1

P × yyy can be
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expressed as shown below
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

x1

x2

x3

x4

x4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 50 eb 62 79 99
29 a5 c9 c2 fb 2b
56 54 8e 9f e9 57
ae af 03 20 c8 ae
47 47 01 44 8e 46
8c 8d 01 8d 02 8d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0
y1
y2
y3
y4
y5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence, we can express x4 as follows in Eqs. (1) and (2).

x4 = 47 · y0 ⊕ 47 · y1 ⊕ 01 · y2 ⊕ 44 · y3 ⊕ 8e · y4 ⊕ 46 · y5

x4 = 8c · y0 ⊕ 8d · y1 ⊕ 01 · y2 ⊕ 8d · y3 ⊕ 02 · y4 ⊕ 8d · y5

00 = cb · y0 ⊕ ca · y1 ⊕ 00 · y2 ⊕ c9 · y3 ⊕ 8c · y4 ⊕ cb · y5

(1)
(2)
(3)

From (1) and (2), we can derive the Eq. (3) which implies that {y0, y1, y3,
y4, y5} are linearly dependent, i.e., they can take at most 24×8=32 values. Since
yyy takes 240 values, y2 must take 28 values, i.e., y2 is an active bye and takes its
all possible values (A).

Constructing 4-Round Integral Distinguisher. We construct a set of 240 chosen
plaintexts such that the state matrix is as follows. The first 4 elements of the
diagonal are active, the last two elements of the diagonal are equal and active
(denoted as Ā), and the other elements of the state matrix are fixed to constant as
shown below. After applying the three operations: AddConstants (X), SubCells
(S), and ShiftRows (SR), the first column of the state matrix will be in the form
of the vector xxx. Therefore, the output set, after applying the MixColumnsSerial
(L) operation (a full round from the input set), can be divided into 232 sub-
set so that each has one active byte and the other are constant. Consequently,
after another 3 rounds, each bit of the output will have zero-sum as mentioned
previously in the 3-round distinguisher section.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A C C C C C
C A C C C C
C C A C C C
C C C A C C
C C C C Ā C
C C C C C Ā

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

SR◦S◦X=====⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A C C C C C
A C C C C C
A C C C C C
A C C C C C
Ā C C C C C
Ā C C C C C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

L=⇒ 232 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C C C C C C
C C C C C C
A C C C C C
C C C C C C
C C C C C C
C C C C C C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

3R=⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

MILP for the New 4-Round Distinguisher. Our model can be started at
the MixColumnsSerial (L) operation of the first round, therefore, we can use the
accurate model for the propagation of the BDP described in Sect. 4.1. The first
column of the state matrix (in the form of xxx) will be multiplied by MP . Since
the last two element of the vector xxx are equal, we can express the multiplication
operation yyy = MP ×xxx as yyy = M̂P × x̂xx where x̂xx = (x0, x1, x2, x3, x4)T and M̂P is
as follows.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0
y1
y2
y3
y4
y5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

02 03 01 02 05
08 0e 07 09 17
22 3b 1f 25 5a
84 e4 79 9b 6c
16 99 ef 6f db
96 cb d2 79 83

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x0

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦

� M̂P

⎡

⎢
⎢
⎢
⎢
⎣

x0

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦

Consequently, we use the primitive matrix of M̂P for the first column and the
primitive matrix of MP for other columns. Regarding the intermediate linear
layers, we use the disjointed representation with discarding the invalid trails
approach presented at Sect. 4.2. The result of solving the model is that a valid
division trail that ends at a unit vector does not exist for any output bits, i.e.,
each output bit after 4 rounds will have zero-sum. It should be mentioned that
the model of the first linear layer using the disjointed representation and not
discarding the invalid trails leads some bits to be imbalanced.

5-Round Integral Distinguisher. Similar to the new 4-round one, we
employed the same property of the matrix MP to build the 5-round distin-
guisher. We firstly construct a set of 2280 chosen plaintexts where the last two
elements of the diagonal are active and equal (denoted as Ā), and the other
elements of the state matrix are active. This set can be divided, after the first
round, into 2232 sub-sets such that every sub-set has 6 bytes active at specific
positions as shown below. Therefore, each sub-set can be considered as an input
to 4-round distinguisher that exploit the structure of the round function.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A A A A A A
A A A A A A
A A A A A A
A A A A A A
A A A A Ā A
A A A A A Ā

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

SR◦S◦X=====⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A A A A A A
A A A A A A
A A A A A A
A A A A A A
Ā A A A A A
Ā A A A A A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

L=⇒ 2232 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C C C C A C
C C C C C A
A C C C C C
C A C C C C
C C A C C C
C C C A C C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

4R=⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

MILP for the 5-Round Distinguisher. We have followed the same steps as
modelling the 4-round distinguisher to model the 5-round one, where we use the
primitive matrix of M̂P for the first column multiplication in the first round at
which the model starts and the primitive matrix of MP for the other columns.
The result of solving the model indicates that each output bit after 5 rounds is
balanced.

Other Experiments. We have employed our search approach (Sect. 4.2) to
build a regular 5-round distinguisher that does not exploit the previous property
of the matrix. We verified that this kind of distinguisher does not exist even when
the number of active bits are 287 bits. Also, we have tried to reduce the number
of active bits in both the regular and the new 4-round distinguisher by setting
one of the active bits to constant and resolving the model. We verified that a
distinguisher using less number of active bits does not exist.
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6 Conclusions

In this paper, we proposed a new MILP model for the propagation of the BDP
through non-bit-permutation linear layers. To the best of our knowledge, this
model is the most efficient one for large linear layers. With the help of our model,
we improved the previous 3- and 4-round integral distinguishers of Kuznyechik
and the 4-round one of PHOTON’s internal permutation (P288). We also found,
for the first time, two 4-round integral distinguishers for Kalyna block cipher and
a 5-round integral distinguisher for PHOTON’s internal permutation (P288).

References

1. Biryukov, A., Khovratovich, D., Perrin, L.: Multiset-algebraic cryptanalysis of
reduced Kuznyechik, Khazad, and secret SPNs. IACR Trans. Symmetric Cryp-
tol. 2016(2), 226–247 (2017)

2. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

3. Dolmatov, V.: GOST R 34.12-2015: Block Cipher “Kuznyechik”. RFC 7801, RFC
Editor, March 2016. https://tools.ietf.org/html/rfc7801

4. ElSheikh, M., Tolba, M., Youssef, A.M.: Integral attacks on round-reduced Bel-T-
256. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 73–91.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 4

5. ElSheikh, M., Youssef, A.M.: A cautionary note on the use of Gurobi for crypt-
analysis. Cryptology ePrint Archive, Report 2020/1112 (2020). https://eprint.iacr.
org/2020/1112

6. ElSheikh, M., Youssef, A.M.: Integral cryptanalysis of reduced-round tweakable
TWINE. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol.
12579, pp. 485–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65411-5 24

7. ElSheikh, M., Youssef, A.M.: On MILP-based automatic search for bit-based divi-
sion property for ciphers with (large) linear layers. Cryptology ePrint Archive,
Report 2021/643 (2021). https://eprint.iacr.org/2021/643

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

9. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2020). http://
www.gurobi.com

10. Hu, K., Wang, Q., Wang, M.: Finding bit-based division property for ciphers
with complex linear layers. IACR Trans. Symmetric Cryptol. 2020(1), 396–
424 (2020). https://doi.org/10.13154/tosc.v2020.i1.396-424. https://tosc.iacr.org/
index.php/ToSC/article/view/8570

11. IBM: IBM ILOG CPLEX 12.10 User’s Manual (2020). https://www.ibm.com/
support/knowledgecenter/SSSA5P 12.10.0/COS KC home.html

12. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

https://doi.org/10.1007/978-3-540-74735-2_31
https://tools.ietf.org/html/rfc7801
https://doi.org/10.1007/978-3-030-10970-7_4
https://eprint.iacr.org/2020/1112
https://eprint.iacr.org/2020/1112
https://doi.org/10.1007/978-3-030-65411-5_24
https://doi.org/10.1007/978-3-030-65411-5_24
https://eprint.iacr.org/2021/643
https://doi.org/10.1007/978-3-642-22792-9_13
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://tosc.iacr.org/index.php/ToSC/article/view/8570
https://tosc.iacr.org/index.php/ToSC/article/view/8570
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9


MILP-Based Automatic Search for Bit-Based Division Property 131

13. Oliynykov, R., et al.: A new encryption standard of Ukraine: the Kalyna block
cipher. Cryptology ePrint Archive, Report 2015/650 (2015). https://eprint.iacr.
org/2015/650

14. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 22

15. Sun, L., Wang, W., Wang, M.Q.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IET Inf. Secur. 14, 12–20 (2020).
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5283

16. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

17. Todo, Y.: Integral cryptanalysis on full MISTY1. J. Cryptol. 30(3), 920–959 (2016).
https://doi.org/10.1007/s00145-016-9240-x

18. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

19. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

20. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary dif-
fusion layer. IET Inf. Secur. 13, 87–95 (2019). https://digital-library.theiet.org/
content/journals/10.1049/iet-ifs.2018.5151

https://eprint.iacr.org/2015/650
https://eprint.iacr.org/2015/650
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5283
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/s00145-016-9240-x
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-53887-6_24
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5151
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5151


Constructions of Iterative Near-MDS
Matrices with the Lowest XOR Count

Xiaodan Li1,2(B) and Wenling Wu1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software
Chinese Academy of Sciences, Beijing 100190, China

{xiaodan2018,wenling}@iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Compared with maximum distance separable (MDS) matri-
ces, Near-MDS matrices which have sub-optimal branch numbers provide
better trade-offs between security and efficiency when used in lightweight
cryptography as a diffusion layer. In this paper, we construct some iter-
ative Near-MDS matrices that can be used to design lightweight linear
diffusion layers. Firstly, we identify the lower bound of the cost for 4× 4
iterative Near-MDS block matrices is 1 XOR gate, and the corresponding
lower bound of iterations is also provided. Moreover, in order to make
some trade-offs between the Near-MDS order and area, we also explore
some other iterative Near-MDS matrices with lower iterations and prove
the bounds of the optimal solutions. Finally, we prove the lower bound of
the cost for 5×5 iterative Near-MDS block matrices is also 1, and mean-
while, we also give some other improved results. To our knowledge, this
is the first time to construct iterative Near-MDS matrices. This paper
presents quite a few sparse diffusion layers that may retain very strong
security guarantees in combination with well-chosen ShiftRows.

Keywords: Lightweight cryptography · Diffusion layer · Near-MDS
matrix · Iterative construction · XOR counts

1 Introduction

In recent years, with the rapid development of the Internet of Things, the appli-
cation of wireless radio frequency technology and sensor networks, and other
micro-devices is becoming more and more common. To protect the confidential-
ity of the communication data, the lightweight block cipher algorithm which is
suitable for resource limitation has become a research hotspot. Confusion and
diffusion are two important cryptographic properties [1]. The confusion is respon-
sible for making the relation between key and ciphertext as complex as possible,
and the diffusion is to spread the internal dependencies as much as possible.
Both concepts are very important for the overall security and efficiency of the
ciphers. And the confusion layers are usually formed by local nonlinear mapping
(S-Boxes) [2] while the diffusion layers are formed by local linear mappings [3,4]
mixing the output of the different S-Boxes.
c© Springer Nature Switzerland AG 2021
J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 132–150, 2021.
https://doi.org/10.1007/978-3-030-90567-5_7
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In practice, optimal diffusion layers can be constructed from the Maximal
Distance Separable (MDS) matrices, which are defined from MDS codes [5] and
provide maximum diffusion. Most of the modern block ciphers (e.g., AES [6],
CLEFIA [7], Piccolo [8]), hash functions (e.g., Whirlpool [9]) use MDS matrices
to incorporate the diffusion property. In general, the method to construct MDS
matrices is based on some special matrix types such as circulant matrices [4,
10], Hadamard matrices [3], Cauchy matrices [11], Vandermonde matrices [12,
13], companion matrices [14,15] and Toeplitz matrices [16]. Generalizing the
matrix entries from finite field elements to general linear transformations leads
to considerable improvements [10,17]. However, in practice, MDS matrices might
not offer an optimal trade-off between security and efficiency in a design targeting
resource-constrained devices. To further reduce the hardware cost, Guo proposed
an approach of recursive (or serial) MDS matrices, which used to construct the
block cipher LED [18] and the hash function PHOTON [14] and they all have
low areas in hardware. More and more scholars focus on the design of iterative
diffusion layer, and a large number of research results have emerged [19–22].

So far, we have a fairly deep understanding of the problem concerning local
optimizations. Hence recent work tends to deal with the problem at a more
essential level, viewing it as the well-known Shortest Linear straight-line Problem
(SLP) that was first used in [23] to globally optimize the implementation of a
predefined linear function. With this method, more lightweight MDS matrices
are obtained [24,25].

However, very often the price for MDS matrices is the heavy implementation
cost in either hardware or software implementation. Near-MDS have sub-optimal
branch numbers (more details in Sect. 2.1) while they require less area than
MDS matrices. Moreover, [26] showed that Near-MDS matrices with a well-
chosen nonlinear layer can provide sufficient security against differential and
linear cryptanalysis. Thus, Near-MDS matrices may offer an optimal trade-off
between security and efficiency. Recently, FIDES [27], MANTIS [28], PRINCE
[29], PRIDE [30] and Midori [31] use Near-MDS matrices as their diffusion layer.
In particular, for the design of AES-like ciphers, it is known one can not increase
the minimum number of active S-boxes by deviating from the ShiftRows-type
permutation when using an MDS matrix. However, using a matrix with non-
optimal branch number, the choice of the ShiftRows-type permutation can actu-
ally improve the security of the primitive. Moreover, as far as we know, no block
cipher uses the iterative Near-MDS matrix as its diffusion layer. However, the
sparse matrix which can be the Near-MDS matrix after several iterations can
offer the best security/performance trade-off in combination with ShiftRows.
And by carefully choosing the ShiftRows, this construction manages to retain
very strong security guarantees. And this is the recent trend of having an SPN
cipher with locally non-optimal internal components but performs better when
looked over multiple iterations. On the one hand, lightweight block ciphers with
low power consumption, low energy, or low latency are becoming more and more
important. On the other hand, the constructions of the Near-MDS matrices are
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not enough. These motivate us to present more results on linear diffusion layers
constructed from (iterative) Near-MDS matrices.

1.1 Contribution

In this paper, we give a method to construct iterative Near-MDS matrices. In
symmetric cryptography algorithms, the most often used S-boxes are 4-bit and
8-bit S-boxes. Therefore, we mainly focus on matrices in Mn(Mm(F2)) with
m = 4, 8. In [32], they construct many iterative MDS matrices in M4(Mm(F2)).
Among them, the lowest XOR gates are 3, but the iterations are up to 451.
Inspired by them, we investigate the constructions of iterative Near-MDS matri-
ces in Mn(Mm(F2)). Note that, this is the first time to construct iterative Near-
MDS matrices. And we get the following conclusion:

(1) We prove that a 4 × 4 or 5 × 5 iterative Near-MDS matrix has at least
5 nonzero blocks. For n = 4, 5,m = 4, 8, the lightest iterative Near-MDS
matrices in Mn(Mm(F2)) can all be implemented with only 1 XOR gates.
And we also give their corresponding iterations. Meanwhile, for some other
iterative Near-MDS matrices with less nonzero blocks, we prove the lower
bounds of their XOR gates and corresponding iterations. Compared with
iterative MDS matrices, the implementation cost is significantly reduced.

(2) We investigate the iterative Near-MDS matrices with small iterations. We
find some sparse matrices that can be iterative Near-MDS matrices with 2,
3, 5, and 7 iterations. These results make great trade-offs between the area
and Near-MDS order. In addition, these results contain the Mixcolumn of
SKINNY. Thus, compared with general sparse matrices, we presume these
results we found can offer a great security/performance trade-off in combina-
tion with well-chosen ShiftRows. This is also the trend of the diffusion layer
with locally non-optimal internal components, but global security optimal.

All the experiment results we found and the comparison with previous results
are given in Table 1.

2 Preliminaries

Let Fq be the finite field with q elements and Mn(R) be the set of all n × n
matrices whose entries are in a ring R. Then, The binary representation of L in
Mn(Mm(F2)) can represent as a nm×nm binary matrix in Mnm(F2). Typically,
a matrix L ∈ Mn(Mm(F2)) can be represented by a block matrix as follows

L =

⎛
⎜⎝

L1,1 · · · L1,n

...
. . .

...
Ln,1 · · · Ln,n

⎞
⎟⎠ ,

whose entries or blocks are m × m binary matrices. The m × m identity matrix
is denoted as I, and O denotes the m × m zero matrix throughout this paper.
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Table 1. Comparison of iterative Near-MDS matrices and iterative MDS matrices in
Mn(Mm(F2))

Element Matrix type � Nonzero blocks � XOR gates Clock cycles Ref

M4(M4(F2)) MDS 5 3 451 [32]

MDS 5 7 14 [32]

Near-MDS 5 1 34 Ex. 3

Near-MDS 6 2 16 Ex. 4

Near-MDS 7 3 10 Ex. 6

Near-MDS 5 4 7 Ex. 10

Near-MDS 5 7 5 Ex. 9

Near-MDS 6 8 3 Ex. 8

Near-MDS 8 12 2 Ex. 7

M4(M8(F2)) MDS 5 6 451 [32]

MDS 5 14 14 [32]

MDS 6 18 4 [32]

Near-MDS 5 1 66 Ex. 3

Near-MDS 5 2 34 Ex. 5

Near-MDS 6 4 16 Ex. 4

Near-MDS 7 6 10 Ex. 6

Near-MDS 5 8 7 Ex. 10

Near-MDS 6 16 3 Ex. 8

Near-MDS 8 24 2 Ex. 7

M5(M4(F2)) MDS 6 6 981 [32]

MDS 8 15 8 [32]

MDS 9 18 5 [14]

Near-MDS 6 1 86 Ex. 11

Near-MDS 6 2 46 Ex. 13

Near-MDS 6 3 20 Ex. 14

Near-MDS 6 4 15 Ex. 15

Near-MDS 7 8 8 Ex. 16

M5(M8(F2)) MDS 6 12 981 [32]

MDS 8 30 5 [32]

Near-MDS 6 1 120 Ex. 11

Near-MDS 6 2 86 Ex. 12

Near-MDS 6 4 46 Ex. 13

Near-MDS 6 6 20 Ex. 14

Near-MDS 6 8 15 Ex. 15

Near-MDS 7 16 8 Ex. 16
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Also, the number of nonzero m × m binary blocks of L can be denoted by θ(L),
that is,

θ(L) = #{Li,j �= 0 : 1 ≤ i, j ≤ n}.

For Li,j ∈ Mm(F2), a simplified representation is given by extracting the nonzero
positions in each row of Li,j . Particularly, if there is no nonzero position in one
row, we represent this row as ∗. For example, suppose

L1,1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

then it can be represented as L1,1 = [2, ∗, [1, 3], 4].

2.1 Branch Number and Near-MDS Matrix

Definition 1. Given a binary vector x ∈ Fnm
2 which is regarded as the concate-

nation of n m-bit words. The Hamming weight of x over Fm
2 is defined as the

number of non-zero m-bit words of x, and is denoted by wt(x).

Definition 2 [33]. The differential branch number of a matrix L ∈ Mn(Mm(F))
over Fm

2 is defined as

Bd(L) = min
x∈Fnm

2 \{0}
{wt(x) + wt(Lx)},

and the linear branch number of L is defined as

Bl(L) = min
x∈Fnm

2 \{0}
{wt(x) + wt(LTx)},

where LT is the transposition of L

Definition 3 [26]. An n × n matrix L is called a Near-MDS matrix if Bd(L) =
Bl(L) = n.

Lemma 1 [34]. Let L be a non-MDS matrix of order n, where n is a positive
integer with n ≥ 2. Then L is Near-MDS if and only if for any 1 ≤ g ≤ n − 1
each g×(g+1) and (g+1)×g submatrix of L has at least one g×g non-singular
submatrix.

Corollary 1. Suppose L ∈ Mn(Mm(F)) is a Near-MDS matrix, then each row
and each column of L has at most one zero matrix.

Lemma 2 [4]. For any permutation matrices P1 and P2, the two matrices L
and P1LP2 have the same differential and linear branch numbers.

Definition 4. Let L ∈ Mn(Mm(F)). L is called an iterative Near-MDS matrix
with order t, denoted by ord(L) = t, if t is the smallest positive integer such that
Lt is Near-MDS.
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2.2 XOR Count

The XOR count is very useful in estimating the hardware implementation cost
of the diffusion layer of a block cipher [40]. The metric XOR count is proposed
as follows.

Definition 5 [3]. The XOR count of an element α ∈ Fm
2 is the number of

XOR operations required to implement the multiplication of α with an arbitrary
element β ∈ Fm

2 .

There are generally three metrics discussed in the literature, i.e., d-XOR,
s-XOR, and g-XOR [35]. Though d-XOR is intuitive and easy to compute, it
is not sufficient to use d-XOR to measure the implementation cost of a matrix
since implementing a linear matrix under d-XOR metric may compute the same
intermediate value several times. And g-XOR count corresponds to the Shortest
Linear Program (SLP) problem that is NP-hard [23]. This problem attracted
much attention in recent years because it can get fairly good solutions compared
with the previous method [35–37]. Besides, [38] explored some connections and
properties of d-XOR and s-XOR metrics and got some theoretical results. In this
paper, all the results are computed using SLP, and we use C⊕(·) to represent the
global minimum of the cost in terms of circuit area.

Lemma 3 [32]. Let a block matrix L = (A|B), where A and B are m × m
invertible binary matrices. Then C⊕(L) ≥ m, and C⊕(L) = m if and only if A
and B are both permutation matrices.

Corollary 2. Suppose a block matrix

L =
(

A B
C O

)
∈ M2(M4(F2)),

where A,B,C are all invertible matrices, then C⊕(L) ≥ 4.

3 Iterative Near-MDS Matrices

In this section, we investigate the constructions of iterative Near-MDS matrices.
Generally speaking, the matrix with fewer nonzero blocks may lead to less XOR
count and a smaller number of iterations means the low latency. Thus, bases
on the theoretical significance, we try to find the lightest iterative Near-MDS
matrices from the sparse matrices with less nonzero blocks. However, the iterative
Near-MDS matrix with less XOR must lead to larger iterations that are not
available in practical applications. Hence, we also consider constructing iterative
Near-MDS matrices with small order that may be available in the future when
designing a new block cipher. Our strategy is described as follows:

Step 1: Determine the sets S of all matrices that may be Near-MDS matrices
after iteration, and the matrices have the same number of nonzero blocks and
the same nonzero block position in one set;

Step 2: Detects whether the matrix in the set is a Near-MDS matrix after
iteration using Lemma 1. In this step, we consider two cases:
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1) The search starts from the matrix set with the small XOR number, and
the corresponding iterations are obtained respectively. This case can get the
iterative Near-MDS matrices with the lowest XOR count. In this case, we
refer to Strategy 1 in the rest of paper.

2) Fix the number of iterations, searching the matrix sets by increasing the
XOR count to get iterative Near-MDS matrices. In this case, the iterative
Near-MDS matrix with the lowest XOR count can be obtained under the
fixed number of iterations. In this case, we refer to Strategy 2 in the rest
of paper.

In the implementation of the search strategy, the focus is on how to reduce
the search space, that is, how to reduce the matrix sets that meet the criteria to
avoid the unnecessary search.

3.1 Method of Construct Iterative Near-MDS Matrices in
M4(Mm (F2))

According to Strategy 1 and 2, we should first identify the lower bound of the
nonzero blocks and the upper bound of the iterations of an iterative Near-MDS
matrix in M4(Mm(F2)).

Theorem 1. Let L ∈ M4(Mm(F2)) with at most four nonzero blocks(i.e.,
θ(L) ≤ 4). Then Lt is not Near-MDS for any positive integer t.

Proof. Assume that L ∈ M4(Mm(F2)) has only four nonzero blocks. When t = 1,
L can not be a Near-MDS matrix obviously. When t > 1, there are two cases:

(1) If there is at least one four zero blocks in the same row or same column,
then Lt must have at least one four zero blocks in the same row or same
column. In this case, Lt can not be a Near-MDS matrix.

(2) If the four nonzero blocks of L are in different rows and different columns
respectively, then Lt at most has four nonzero blocks, at the same time, the
four nonzero blocks are all in the leading diagonal. Therefore, L can never
be iterative-Near-MDS.

Corollary 3. An iterative Near-MDS matrix in M4(Mm(F2)) has at least 5
nonzero blocks.

Lemma 4. Let L ∈ M4(Mm(F2)) be an iterative Near-MDS matrix, then
ord(L) ≤ 65535.

Proof. It can be verified from Lemma 5 of [32].

Next, we only need to consider the sparse matrices with more than 4 nonzero
blocks to construct iterative Near-MDS matrices and the iterations are less than
65535. And we present several lemmas to reduce the search space further.

Lemma 5. L ∈ Mn(Mm(F2)) is an iterative Near-MDS matrix if and only if
PLP−1 is an iterative Near-MDS matrix, where P is a block permutation matrix.
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Proof. It comes from (PLP−1)t = PLtP−1 and Lemma 2.

Next, we show which type of matrix with 5 nonzero blocks might be an
iterative Near-MDS matrix.

Lemma 6 [32]. Let L be a 4×4 iterative Near-MDS with 5 nonzero blocks, then 4
nonzero blocks of L are row-column separated, it can be decomposed as L = B+Z,
where B has 4 nonzero blocks from L which are placed at different columns, and
Z has a single nonzero block from L. For the convenience of discussion, we say
that B is the principal component of L, and Z is the minor component of L.

Example 1. Let

L =

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

be a block matrix with 5 nonzero blocks, then it can be decomposed as

L =

⎛
⎜⎜⎝

O A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

O O M O
O O O O
O O O O
O O O O

⎞
⎟⎟⎠ .

Next, for the convenience of later description, we use the cycle decomposition
to denote the type of 4 × 4 block matrix with 4 nonzero blocks. They are all
4 × 4 permutation matrices that can be denoted by permutations of 4 elements.
Further, any permutation can be decomposed as a product of cycles with disjoint
supports. For the facilitate understanding, we give the following example to
illustrate the cycle decomposition.

Example 2. Let L1 and L2 be 4 × 4 block matrix with 4 nonzero blocks,

L1 =

⎛
⎜⎜⎝

A1 O O O
O O A2 O
O O O A3

O A4 O O

⎞
⎟⎟⎠ and L2 =

⎛
⎜⎜⎝

O A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

then L1 and L2 are corresponding to permutations {1, 3, 4, 2} and {2, 3, 4, 1}
respectively, and the cycle decomposition are (1)(2, 3, 4) and (1, 2, 3, 4), respec-
tively.

Lemma 7 [39]. Two elements of Sn are conjugate in Sn if and only if they have
the same cycle type. That is, given the permutations σ, τ as

σ = (s1, · · · , sd1)(sd1+1, · · · , sd2) · · · (sdm−1+1, · · · , sdm
)

τ = (t1, · · · , td1)(td1+1, · · · , td2) · · · (tdm−1+1, · · · , tdm
)

in cycle notation, one can find some permutation π ∈ Sn such that πσπ−1 = σ.
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Lemma 8. Let L be a 4 × 4 iterative Near-MDS matrix with θ(L) = 5. Then
for any positive integer t, to make Lt be a Near-MDS matrix, we only need to
consider the case that the principal component of L is (1, 2, 3, 4).

Proof. Let L be a 4×4 iterative Near-MDS matrix with 5 nonzero blocks. Then
the positions of the 4 nonzero blocks of the principal component of L is highly
restricted to 24 possibilities. According to Lemma 7, the 24 possibilities belong
to one of the following types: (1)(2)(3)(4), (1)(2)(3, 4), (1)(2, 3, 4), (1, 2)(3, 4),
(1, 2, 3, 4). However, in these 5 types, (1)(2)(3)(4), (1)(2)(3, 4), (1)(2, 3, 4) or
(1, 2)(3, 4) is always an upper or lower triangular block matrix after many iter-
ations. Therefore, to make Lt be a Near-MDS matrix, we only need to consider
the case that the principal component of L is (1, 2, 3, 4).

At this point, the search space is restricted to 12 cases. However, according
to the Lemma 2 only following three cases need to be considered:

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ , and

⎛
⎜⎜⎝

O A1 O M
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ .

However, if

L =

⎛
⎜⎜⎝

O A1 O M
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

Lt always exists the row with two zero blocks and can’t be a Near-MDS matrix.
Now only two cases left:

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ .

Lemma 9. Let ⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠

be an iterative Near-MDS matrix in M4(Mm(F2)), then A1, A2, A3 and A4 are
nonsingular.

Proof. Suppose one of A1, A2, A3 or A4 is singular, then it always have more
than 2 singular matrices in each row. Then for 2 × 1 sub matrix may have no
nonsingular matrix. Thus, it can never be an iterative Near-MDS matrix from
Lemma 1.
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3.2 Lightest Iterative Near-MDS Matrices in M4(Mm (F2))

In this section, we discuss the lightest iterative Near-MDS matrices in
M4(Mm(F2)). First, we identify the lower bound of XOR gate.

Theorem 2. Let L ∈ M4(M4(F2)) be an iterative Near-MDS matrix, then the
lower bound of C⊕(L) is 1. And iterations of an iterative Near-MDS matrix with
1-XOR are greater than or equal to 34.

Proof. Suppose there is a matrix with five nonzero blocks in M4(M4(F2)), then
it can be one of following cases:

A =

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ or B =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ .

For brevity, we only show that C⊕(A) ≥ 1. The proof of C⊕(B) ≥ 1 is similar.
We exhaustively search through all matrices using Strategy 1, and then we can
find the iterative Near-MDS matrices which comply with C⊕(A) = 1. Note that in
the search, we can fix C⊕(M) = 1 and A1, A2, A3 and A4 can be all permutation
matrices. And meanwhile, we can find the lower bound of ord(A) is 34.

Suppose L ∈ M4(M4(F2)) has 6 nonzero blocks, and C⊕(L) = 1, then it must
need reuse the XOR operations, then its possible case is like following:

⎛
⎜⎜⎝

O A1 M O
O N A2 O
O O O I
I O O O

⎞
⎟⎟⎠ ,

where C⊕(M) = C⊕(N) = 1, A1, A2 are all permutation matrices. At this time,
if it exists the reuse of XOR operations, it must exist two identical rows, then it
can’t be an iterative Near-MDS matrix obviously.

If L ∈ M4(M4(F2)) has more than 6 nonzero blocks, it is impossible to exist
1-XOR matrix.

Similarly, we can get following theorem in the same way.

Theorem 3. Let L ∈ M4(M8(F2)) be an iterative Near-MDS matrix, then the
lower bound of C⊕(L) is 1. And iterations of an iterative Near-MDS matrix with
1-XOR is greater than or equal to 66.

Example 3. Let L ∈ M4(Mm(F2)) with θ(L) = 5, the lightest iterative Near-
MDS matrix we find costs 1 XOR gates, such as:

L =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,
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(1) m = 4, ord(L) = 34, A1 = A2 = A3 = I,M = [∗, ∗, ∗, 3], A4 = [3, 4, 2, 1].
(2) m = 8, ord(L) = 66, A2 = A3 = A4 = I,M = [5, ∗, ∗, ∗, ∗, ∗, ∗, ∗], A1 =

[2, 3, 4, 5, 6, 7, 8, 1].

Moreover, we increase the nonzero blocks to get the iterative Near-MDS
matrices with smaller XOR gates, and then give the lower bound in some fixed
nonzero blocks in M4(M4(F2)). As to the matrices in M4(M8(F2)), we didn’t
consider to find the iterative Near-MDS matrices through the direct search sub-
jected to the time costs. However, we use the method “Subfield construction”
that proposed in [40], some lighter iterative Near-MDS matrices in M4(M8(F2))
can be constructed.

Theorem 4. Let L ∈ M4(M4(F2)) be an iterative Near-MDS matrix with
C⊕(L) = 2 and θ(L) < 7, then the lower bound of ord(L) is 16.

Proof. If L ∈ M4(M4(F2)) is an iterative Near-MDS matrix with 5 nonzero
blocks and 2 − XOR, then we only need to consider following two cases:

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

where C⊕(A1 | M) = 2 or C⊕(M | A1) = 2, then using Strategy 1, we can get
that 18 is the lower bound.

If L ∈ M4(M4(F2)) is an iterative Near-MDS matrix with 6 nonzero blocks
and 2-XOR, then we only consider two possible distributions of the nonzero
blocks for the four rows: 3 + 1 + 1 + 1 and 2 + 2 + 1 + 1. According to Lemma 2,
the number of cases of A is greatly reduced. Then through search using Strategy
1, we can get that 16 is the lower bound.

Example 4. Let L ∈ M4(Mm(F2)) with θ(L) = 6, and ord(L) = 16, we find
following iterative Near-MDS matrices:

L =

⎛
⎜⎜⎝

M1 A1 O M2

O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

(1) m = 4, C⊕(L) = 2, A2 = A3 = A4 = I,M1 = [∗, ∗, ∗, 4],M2 =
[∗, ∗, 1, ∗], A1 = [2, 3, 4, 1].

(2) m = 8, C⊕(L) = 4, A2 = A3 = A4 = I,M1 = [∗, ∗, ∗, 4, ∗, ∗, ∗, 8],M2 =
[∗, ∗, 1, ∗, ∗, ∗, 5, ∗], A1 = [2, 3, 4, 1, 6, 7, 8, 5].

Example 5. Let L ∈ M4(M8(F2)) with θ(L) = 5, the lightest iterative Near-
MDS matrix we find costs 2 XOR gates with ord(L) = 34, for example:

L =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,
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where A1 = A2 = A3 = I,M = [∗, ∗, ∗, 3, ∗, ∗, ∗, 7], A4 = [3, 4, 2, 1, 7, 8, 6, 5].

Theorem 5. Let L ∈ M4(M4(F2)) be an iterative Near-MDS matrix with
C⊕(L) = 3 and θ(L) < 8, then the lower bound of ord(L) is 10.

Proof. If L ∈ M4(M4(F2)) is an iterative Near-MDS matrix with 3-XOR and
less than 7 nonzero blocks, the proof is the same as before, we omit it here.

If L ∈ M4(M4(F2)) is an iterative Near-MDS matrix with 7 nonzero blocks
and 3-XOR, then we only consider three possible distributions of the nonzero
blocks for the four rows: 4 + 1 + 1 + 1, 3 + 2 + 1 + 1 and 2 + 2 + 2 + 1. According
to Lemma 2, the number of cases of A is greatly reduced. Then using Strategy
1, we can get that 10 is the lower bound.

Example 6. Let L ∈ M4(Mm(F2)) with θ(L) = 7, and ord(L) = 10, we find
following iterative Near-MDS matrices:

L =

⎛
⎜⎜⎝

M1 A1 O O
O M2 A2 O
O O M3 A3

A4 O O O

⎞
⎟⎟⎠ ,

(1) m = 4, C⊕(L) = 3, A1 = A4 = I, M1 = [∗, ∗, ∗, 3], M2 = [2, ∗, ∗, ∗],M3 =
[∗, ∗, ∗, 2], A2 = [1, 3, 4, 2], A3 = [2, 1, 4, 3].

(2) m = 8, C⊕(L) = 6, A1 = A4 = I,M1 = [∗, ∗, ∗, 3, ∗, ∗, ∗, 7],M2 =
[2, ∗, ∗, ∗, 6, ∗, ∗, ∗], M3 = [∗, ∗, ∗, 2, ∗, ∗, ∗, 6], A2 = [1, 3, 4, 2, 5, 7, 8, 6], A3 =
[2, 1, 4, 3, 6, 5, 8, 7].

3.3 Lightweight Iterative Near-MDS Matrices with Small Order

In this section, we construct some lightweight iterative Near-MDS matrices with
small order to make trade-offs between the area and Near-MDS order. And we
get the following results.

Theorem 6. Let L ∈ M4(Mm(F2)) be an iterative Near-MDS matrix with
θ(L) = 6, then the lower bound of ord(L) is 3. Moreover, when ord(L) = 3,
there are only two possibilities for the distribution of the nonzero blocks of L:

⎛
⎜⎜⎝

A1 O O A2

O A3 A4 O
A5 O O O
O A6 O O

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

O A1 A2 O
A3 O O A4

O A5 O O
A6 O O O

⎞
⎟⎟⎠ .

Proof. Without loss of generality, we can assume that the numbers of nonzero
blocks of the first row, second row, third row, and fourth row are in non-
increasing order. Then we have two possible distributions of the nonzero blocks
for the four rows: 3 + 1 + 1 + 1 or 2 + 2 + 1 + 1, which leads to 528 possibilities
with respect to the positions of the nonzero blocks. According to Lemma 2, there
are only 80 possibilities left. Then using Strategy 2 it can be verified that all
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the possible structures need at least 3 iterations to be Near-MDS matrices and
only the matrices with the structures shown above can be Near-MDS matrices
in their 3rd power.

Similar to the method of Theorem 6, using Strategy 2 we give following
theorems.

Theorem 7. Let L ∈ M4(Mm(F2)) be an iterative Near-MDS matrix with
θ(L) = 7, then the lower bound of ord(L) is 3. And suppose L ∈ M4(Mm(F2))
with θ(L) = 8, then the lower bound of ord(L) is 2.

Example 7. For matrices in L ∈ M4(Mm(F2)), we find following iterative Near-
MDS matrices with ord(L) = 2:

L =

⎛
⎜⎜⎝

I O I I
I O O O
O I I O
I O I O

⎞
⎟⎟⎠ .

(1) when m = 4, C⊕(L) = 12.
(2) when m = 8, C⊕(L) = 24.

Remark 1. Note that the matrix L we find in Example 7 is used in block
cipher SKINNY [28]. Although the single-round diffusivity is not excellent, it
can achieve great diffusivity after several iterations in combination with the
ShiftRows operation, and due to its low hardware cost, this has obvious advan-
tages in the global implementation of the algorithm. Although the search app-
roach is completely different, we presume that in the AES-like algorithm, the
matrix found in this section may be used as the MixColumns operation, and
by selecting the appropriate ShiftRows operation, it can achieve great diffusion
while taking into account the small hardware cost. This raises a question, how to
choose the appropriate ShiftRows operation when fixed MixColumns operation,
this will be a very meaningful topic, we will take it as future work.

Theorem 8. Let L ∈ M4(M4(F2)) be an iterative Near-MDS matrix with
θ(L) = 6, and ord(L) = 3, then the lower bound of C⊕(L) is 8.

Proof. According to Theorem 6, the form of L has only two possibilities. Here we
only prove for the first possibility shown in above, the other case can be proved
similarly. Let

L =

⎛
⎜⎜⎝

A1 O O A2

O A3 A4 O
A5 O O O
O A6 O O

⎞
⎟⎟⎠ ,

which can be decomposed into two disjoint parts

L1 =
(

A1 A2

A5 O

)
and L2 =

(
A3 A4

A6 O

)
,

with this decomposition, we have C⊕(L) = C⊕(L1)+C⊕(L2). According to Corol-
lary 2, C⊕(L1) ≥ 4, and C⊕(L2) ≥ 4, then C⊕(L) ≥ 8.
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Example 8. For matrices in L ∈ M4(Mm(F2)), we find following iterative Near-
MDS matrices with ord(L) = 3:

L =

⎛
⎜⎜⎝

I O O I
O I I O
I O O O
O I O O

⎞
⎟⎟⎠ .

(1) when m = 4, C⊕(L) = 8.
(2) when m = 8, C⊕(L) = 16.

Theorem 9. Let L ∈ M4(M4(F2)) be an iterative Near-MDS matrix with
θ(L) = 5, then the lower bound of ord(L) is 5.

Proof. Suppose L ∈ M4(M4(F2)) with five nonzero blocks, then L can be one of
following cases:

A =

⎛
⎜⎜⎝

O A1 M O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ or B =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ .

To make A be an iterative Near-MDS matrix, it can be verified that it needs
at least 5 iterations using Strategy 2. Similarly, To make B be an iterative Near-
MDS matrix, it needs at least 7 iterations. Thus, the lower bound of ord(A) is
5.

Example 9. Let L ∈ M4(Mm(F2)) with θ(L) = 5 and ord(L) = 5, we find
following iterative Near-MDS matrices:

L =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

(1) when m = 4, C⊕(L) = 7, A2 = A3 = A4 = I, M = [4, 3, [2, 4], [1, 3, 4]],
A1 = [[1, 3, 4], 2, [1, 3], [1, 2]].

(2) when m = 8, C⊕(L) = 14, A2 = A3 = A4 = I, M = [4, 3, [2, 4], [1, 3, 4],
8, 7, [6, 8], [5, 7, 8]], A1 = [[1, 3, 4], 2, [1, 3], [1, 2], [5, 7, 8], 6, [5, 7], [5, 6]].

Besides, we also get following matrices:

Example 10. Let L ∈ M4(Mm(F2)) with θ(L) = 5 and ord(L) = 7, we find
following iterative Near-MDS matrices:

L =

⎛
⎜⎜⎝

M A1 O O
O O A2 O
O O O A3

A4 O O O

⎞
⎟⎟⎠ ,

(1) when m = 4, C⊕(L) = 4, A2 = A3 = A4 = I, M = [4, 2, 1, 3], A1 = [2, 1, 4, 3].
(2) when m = 8, C⊕(L) = 8, A2 = A3 = A4 = I, M = [4, 2, 1, 3, 8, 6, 5, 7], A1 =

[2, 1, 4, 3, 6, 5, 8, 7].
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3.4 Lightweight Iterative Near-MDS Matrices in M5(Mm (F2))

In this section, we construct the lightest iterative Near-MDS matrices in
M5(Mm(F2)). And we also give some competitive results to make trade-offs
between area and order. The proofs of the theorems in this section is similar to
Theorems in Sect. 3.2 and 3.3, and omit here.

Theorem 10. Let L ∈ M5(Mm(F2)) be an iterative Near-MDS matrix, then
the lower bound of C⊕(L) is 1. The iterations of an iterative Near-MDS matrix
with 1-XOR in M5(M4(F2)) is greater than or equal to 86, and the lowest order
of the iterative Near-MDS matrix with 1-XOR in M5(M8(F2)) is 120.

Example 11. Let L ∈ M5(Mm(F2)) with C⊕(L) = 1, we find following iterative
Near-MDS matrices:

L =

⎛
⎜⎜⎜⎜⎝

M A O O O
O O I O O
O O O I O
O O O O I
I O O O O

⎞
⎟⎟⎟⎟⎠

,

(1) m = 4, ord(L) = 86, M = [∗, ∗, ∗, 2], A = [2, 3, 4, 1].
(2) m = 8, ord(L) = 120, M = [7, ∗, ∗, ∗, ∗, ∗, ∗, ∗], A = [2, 3, 4, 5, 6, 7, 8, 1].

Example 12. Let L ∈ M5(M8(F2)) with θ(L) = 6, the lightest iterative Near-
MDS matrix we find costs 2 XOR gates with ord(L) = 86, for example:

L =

⎛
⎜⎜⎜⎜⎝

M A O O O
O O I O O
O O O I O
O O O O I
I O O O O

⎞
⎟⎟⎟⎟⎠

,

where M = [∗, ∗, ∗, 2, ∗, ∗, ∗, 6], A = [2, 3, 4, 1, 6, 7, 8, 5].

Theorem 11. If L is an iterative Near-MDS matrix in M5(Mm(F2)) with
θ(L) ≤ 9, then ord(L) ≥ 4.

However, we cannot find any iterative Near-MDS matrix in M5(Mm(F2))
with order 4. For matrix in M5(M8(F2)), to make trade-offs between area and
order, we find following iterative Near-MDS matrices. In particular, the matrices
in M5(M8(F2)) we find are all through the method “Subfield construction”.

Example 13. Let L ∈ M5(M4(F2)) and ord(L) = 46, we find following iterative
Near-MDS matrices:

L =

⎛
⎜⎜⎜⎜⎝

M A O O O
O O I O O
O O O I O
O O O O I
I O O O O

⎞
⎟⎟⎟⎟⎠

,
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(1) m = 4, C⊕(L) = 2, M = [∗, 4, ∗, 1], A = [2, 1, 4, 3].
(2) m = 8, C⊕(L) = 4, M = [∗, 4, ∗, 1, ∗, 8, ∗, 5], A = [2, 1, 4, 3, 6, 5, 8, 7].

Example 14. Let L ∈ M5(Mm(F2)) with ord(L) = 20, we find following iterative
Near-MDS matrices:

L =

⎛
⎜⎜⎜⎜⎝

M A O O O
O O I O O
O O O I O
O O O O I
I O O O O

⎞
⎟⎟⎟⎟⎠

,

(1) m = 4, C⊕(L) = 3, M = [4, 1, 3, ∗], A = [1, 3, 4, 2].
(2) m = 8, C⊕(L) = 6, M = [4, 1, 3, ∗, 8, 5, 7, ∗], A = [1, 3, 4, 2, 5, 7, 8, 6].

Example 15. Let L ∈ M5(Mm(F2)) with ord(L) = 15, we find following iterative
Near-MDS matrices:

L =

⎛
⎜⎜⎜⎜⎝

M A O O O
O O I O O
O O O I O
O O O O I
I O O O O

⎞
⎟⎟⎟⎟⎠

,

(1) m = 4, C⊕(L) = 4, A = [1, 3, 4, 2],M = [4, [1, 4], ∗, 2].
(2) m = 8, C⊕(L) = 8, A = [1, 3, 4, 2, 5, 7, 8, 6],M = [4, [1, 4], ∗, 2, 8, [5, 8], ∗, 6].

Example 16. Let L ∈ M5(Mm(F2)) with ord(L) = 8, we find following iterative
Near-MDS matrices:

L =

⎛
⎜⎜⎜⎜⎝

M O O I O
O A I O O
I O O O O
O O O O I
O I O O O

⎞
⎟⎟⎟⎟⎠

,

(1) when m = 4, C⊕(L) = 8, M = [∗, [3, 4], 1, 2], A = [4, ∗, [2, 3], 4].
(2) when m = 8, C⊕(L) = 16, M = [∗, [3, 4], 1, 2, ∗, [7, 8], 5, 6], A =

[4, ∗, [2, 3], 4, 8, ∗, [6, 7], 8].

The comparison with iterative MDS matrices is given in Table 1. Compared
with iterative MDS matrices, iterative Near-MDS matrices we construct provide
better trade-offs between security and efficiency.

4 Conclusion

In this work, we present new designs of lightweight linear diffusion layer from
Near-MDS matrices. First, we investigate the iterative Near-MDS matrices in
Mn(Mm(F2)). We show the lower bounds of XOR gates and order for iterative
Near-MDS matrices when n = 4, 5 and m = 4, 8 which have great theoret-
ical significance. Meanwhile, we also give some iterative Near-MDS matrices



148 X. Li and W. Wu

with a small order. These sparse matrices may be effective when used to design
lightweight block cipher in combination with well-chosen ShiftRows. Our con-
structions help to improve the diversity of component design and this is the
recent trend to design lightweight block cipher with locally non-optimal internal
components, but global security optimal. Thus, how to choose the well-chosen
ShiftRows to match with these sparse matrices we found to achieve the best
security/performance trade-off is a direction worthy of in-depth study in the
future.
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Abstract. Searching the optimal circuit implementation of a Boolean
function is still an open problem. This work proposes a new optimizing
scheme, which could find circuit expressions with optimal gate equiva-
lent complexity (GEC) using SAT solvers under a depth-L framework.
To obtain a better GEC performance in the optimizing scheme, we first
propose the ternary and area profile models for SAT problems. The for-
mer introduces multiple efficient 3-input logic gates, and the latter takes
the different weights of various gates into account in solving. To demon-
strate the validity and usefulness, we use our optimizing methodology to
search optimized implementation of a given 4-bit S-box with the forced
independent property. For an S-box hardware implementation, its forced
independent property can ensure that no gate is shared between every
two component-circuits, which is beneficial to prevent Differential Fault
Analysis (DFA). Finally, we evaluate the implementation performances
of two models (i.e., ternary and binary models) and two implementation
approaches (i.e., Table-based and Boolean expression methods) by case
studies covering several know S-boxes. The experimental results show
that our models and approach have better area performance for the S-
boxes with forced independence property in most instances.

Keywords: S-box · Forced independence property · Ternary model ·
Area profile model · SAT solver

1 Introduction

Lightweight cryptographic devices usually need to meet some security require-
ments for authentication or transmission of private and sensitive data in the
Internet of Things (IoT). While the adversary might easily obtain and manip-
ulate such a device to recover some cryptographic secrets through physical
c© Springer Nature Switzerland AG 2021
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attacks [1–3]. One of the most effective means of such threats is Differential Fault
Analysis (DFA) [2], where the attackers inject faults in the devices during cryp-
tographic algorithms operation. DFA attack can recover the secret information
hidden in the tamper-resistant device using various fault models and different
cryptanalytic techniques [2]. The intuitive countermeasure to DFA attack is the
Concurrent Error Detection (CED) scheme [4,5], which can perform fault detec-
tion simultaneously with the computation by adding redundancy in the imple-
mentation. Aghaie et al. [6] proposed a code-based CED scheme constructed over
Error Detecting Code (EDC) and the forced independence property of circuit
implementation. Such a mechanism introduces the forced independence strat-
egy to limit the fault propagation effect. It can guarantee security against fault
attacks with a bounded number of faulty cells in the entire circuit.

Nevertheless, the CED countermeasure faces the issue of fault propagation,
i.e., the fault of a internal variable may affect several variables in the circuit of a
function. To mitigate this issue, it is strongly recommended that the implemen-
tation of the CED countermeasure should fulfill the forced independence prop-
erty [6], which requires that there is no shared gate between any two component-
circuits.

Fig. 1. Different types of optimized implementation methods for an S-box.

In this work, we concentrate on proposing a new scheme that can be used
to optimize the implementation of any 4-bit S-box with forced independence
property. As shown in Fig. 1, there are two approaches to implement an S-box
in the RTL codes: the table-based and Boolean expressions methods. In most
cases, one can use table-based method to realize an S-box in RTL codes1, and
leave the optimization of an S-box to synthesizer [7]. Although the synthesizer
can achieve a good effect on optimizing the generic functions’ performance, their
1 https://github.com/emsec/ImpeccableCircuits.

https://github.com/emsec/ImpeccableCircuits
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output might not be optimal [8]. In this respect, we propose a pre-optimization
method to optimize Boolean expressions of the given S-boxes for gate equivalent
complexity (GEC) optimization criteria by applying a SAT solver. The optimiza-
tion effect of table-based implementation method only depends on synthesizer,
but that of Boolean expressions is related to two optimization steps, i.e., our
pre-optimization method and the optimization process of synthesizer. Most of
the time, the joint use of two optimization steps will obtain a lower area cost.

At the same time, it is still an open problem to search the optimal Boolean
expressions of given functions, especially for non-linear cryptographic component
(e.g., S-boxes). To the best of our knowledge, the known optimizing methods on
S-boxes have applied some general criteria, e.g., the circuit depth [9–11] and
GEC [8,11], but never consider the forced independence property.

1.1 Our Contributions

In this work, we concentrate on proposing an optimizing scheme that takes the
S-box look-up table and target value of GEC as inputs and S-box’s optimized
Boolean expressions as outputs. Our main contributions are given below. Specif-
ically, to encode the SAT decision problem for the GEC criterion, we propose
two new models, i.e., the ternary and area profile models. The former introduces
multiple types of 3-input gates into the S-box optimization implementation with
a SAT solver. The latter provides a heuristic method to encode the weighted-
costs of different logic gates for SAT problem to achieve the GEC optimization
goals.

– Depth-L GEC Optimizing Scheme using A SAT Solver. We introduce
a GEC optimizing scheme that can find the optimal GCE implementation
under the framework of L depth complexity (Depth) using a SAT solver.
Because of limited depth, this scheme provides a good trade-off between area
and energy. We enumerate all the specific logic gates on the 0-th depth layer
to reduce search space, encode the type of gates using q∗ and t∗ and create a
set of constraints on wiring by the variables a∗ and b∗ for other depth layers.

– A New Ternary Model. We propose a new ternary model based on Stoffe-
len’s binary model [9]. The new ternary model can encode both 2-input and
3-input gates, while the binary model can only encode 2-input gates. Most
standard cell libraries support both 2-input and 3-input gates. In general, for
the identical Boolean, the area cost of a 3-input gate is less than the area of
two 2-input gates. In the optimizing scheme applying a SAT solver, we con-
vert the binary model with only a 2-input gate to a ternary model containing
both 2 and 3-input gates to improve the optimized effect for GEC criterion.

– Area Profile Model for SAT Problems. We first propose an area profile
model for SAT problems to the best of our knowledge, which can encode dif-
ferent area weights for various gates. In the previous optimization methods
of the S-boxes using a SAT solver [9,12], the authors give some optimization
criteria only related to the number of gates, e.g., multiplicative complexity
(MC), bitslice gate complexity (BGC), gate complexity (GC), depth com-
plexity (Depth), and level-D multiplicative complexity (MCD). In our scheme
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based on the SAT solver, we no longer count the number of gates but con-
sider the corresponding gates’ cost weight. Our method can produce GEC
optimized implementation of a small Boolean function given the available
gates and corresponding weighted-costs.

Table 1. Optimized GEC performance evaluation results. The unit of values is GE.

Type Binary
model

Ternary
model

Table-based Boolean
expressions

Golden S3 S 33.00 33.00 25.50 22.73

S′ 34.5 31.50 28.25 26.75

Golden S1 S 32.00 32.00 31.25 25.50

S′ 39.25 27.50 23.00 23.00

Khazad P S 32.25 31.25 29.75 26.00

S′ 31.75 30.75 26.75 25.50

PRESENT S 32.75 30.50 25.25 23.25

S′ 32.00 31.00 25.00 24.75

TWINE S 30.50 28.50 23.50 22.75

S′ 33.50 32.50 26.75 25.75

Serpent S6 S 33.00 30.75 27.50 26.00

S′ 31.50 28.75 26.11 25.50

Rectangle S 29.00 29.00 24.75 24.00

S′ 29.75 27.75 23.00 22.50

GIFT S 24.00 23.75 21.75 21.25

S′ 32.50 31.50 27.25 26.25

SKINNY S 20.25 19.75 18.25 18.25

S′ 34.25 31.00 26.00 25.50

– Performance Evaluation. We use our optimizing methodology to search
optimized implementation of some given 4-bit S-boxes with the forced inde-
pendent property and evaluate the implementation performance.
To compare the ternary model with the previous binary model, we apply
these two models in the optimizing method and experiment on several given
original S-boxes S and their redundant S-boxes S

′
. The experimental results

in Table 1 indicate our ternary model can find equally good or better imple-
mentations than the binary model for the entire S-boxes in most cases.
For comparing our optimized Boolean expressions with the previous table-
based method, we realize these two implementations means for several S-boxes
and use the Synopsys Design Compiler with UMC 55nm standard cell library
to synthesize the S-boxes RTL codes. The synthesis results in Table 1 show
that the optimized Boolean expressions can achieve better area performance
than table-based means in most instances.
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1.2 Organization

We organize the rest of this paper as follows. Section 2 gives some necessary
notation and preliminaries. Section 3 provides an optimizing scheme, a ternary
model, and an area profile model. Based on the two models, we could obtain
the optimal GEC implementations for the S-boxes with forced independence
using a SAT solver. In Sect. 4, we apply the new models and optimized scheme
on several known S-boxes and give comparisons of experiment results. Finally,
Sect. 5 concludes the paper and discusses future research problems.

2 Notations and Preliminaries

2.1 Notations and Definitions

Some notations used in the rest of this paper are listed in Table 2, and the
relevant definitions are restated as follows.

Definition 1. Coordinates of S-box [13]. An S-box S: F
n
2 → F

m
2 has m coor-

dinates, defined as Sei
(i ∈ (m − 1]). Sei

is a Boolean function in n binary
variables and represents the i-th output bit of S:

Sei
: F

n
2 → F2.

Definition 2. Gate Equivalent Complexity (GEC) [11]. GEC is defined
as the smallest number of Gate Equivalents required to implement a function,
given the area cost of different gates from some standard cell libraries, e.g., in
Table 3.

In Table 3, the unit of gate size is Gate Equivalent (GE), where one GE equals
the area of a 2-input NAND gate. The cost of other gates in terms of GE is a
normalized ratio between their area and one NAND gate area. As Table 3 shows,
the area cost of the 3-input logic gates is lower than the area of two 2-input gates.
For instance, implementation circuit of Boolean function f(a, b, c) = (a∧b∧c) is
either type-(1) two 2-input AND gates or type-(2) one 3-input AND gate. The
area cost of type-(1) (resp. type-(2)) is 2.5 GE (resp. 1.5 GE) in the UMC 55nm
standard cell library. Therefore, we try to profile 3-input gates to improve the
optimizing implementation of an S-box when using a SAT solver.

Let GEgate denote the area cost of gate in term of GE and Cgate denote the
cost value of gate in the algorithms implementation. The relationship between
GEgate and Cgate is as follows:

Cgate = 100 ∗ GEgate,

where Cgate ∈ Z
+ is introduced for the convenience of calculation. gate can

be represented as nand3, nor3, and3, or3, nand, nor, and, or, xor, or xnor. For
instance, GEnand3 is equal to 1.25 in the UMC 55nm standard cell library, and
Cnand3 is equal to 125.
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Table 2. List of Notations.

Notations Definitions

[i] Let the set [i] := {1, 2, . . . , i}, where i ∈ Z
+

(i] Let the set (i] := {0} ∪ {1, 2, . . . , i}, where i ∈ Z
+

L L represents the total number of depth layers required in the
scheme

xi (resp. yj) For an n × m S-box, variables xi (resp. yj) ∈ F2 represent the
S-box inputs (resp. outputs), where i ∈ (n − 1], and j ∈ (m − 1]

tl n The n-th gate output on the l-th layer, tl n ∈ F2

ql n The n-th gate input on the l-th layer, ql n ∈ F2

al n m Variables al n m ∈ F2 represent wiring between gates. The values
of al n m determine which input (i.e., xi) or gate (i.e., tk n,
k ∈ (l − 1]) is wired to ql n

ao n Variables ao n ∈ F2 represent wiring between gates and S-box
outputs. The values of ao n determine which gate (i.e., tl n,
l ∈ (L − 1]) is wired to the output of S-box yi

bl n m Variables bl n m ∈ F2 represent wiring ‘inside’ gates. The values of
bl n m determine the operations types of tl n

NSI Let f : F
n
2 → F

m
2 be an S-box, the number of NSI is n

TNl TNl is the number of gates tl n on the l-th layer, TNl ∈ Z
+

TTNBl The sum of number of gates from all the previous layers, i.e., 0 to
(l − 1)-th layers. TTNBl ∈ N, if l = 0, then TTNB0 = 0. If l ≥ 1,
then TTNBl =

∑l−1
i=0 TNi

Cgate Variables Cgate ∈ Z
+ represent the area cost of various gates. The

gate can be denoted as nand3, nor3, and3, or3, nand, nor, and, or,
xor, or xnor

Atl n , Aql n Atl n ∈ Z
+ represents the area cost of tl n. Aql n ∈ Z

+ represents
the total area cost of gate connected to ql n

AStl n AStl n ∈ Z
+ represents the sum of area costs of all gates related to

tl n

TAyi
Total area cost of one output of an S-box yi : F

n
2 → F2, TAyi

∈ Z
+

+ To make a distinction, in an equation (e.g., a = b + c), if a ∈ F2

then + represents addition of F2, and if a ∈ Z
+ (resp. N) then +

represents addition of Z
+ (resp. N)

Table 3. Area cost of typical combinatorial cells under various technique libraries.
The values are given in GE.

Techniques AND NOT NAND XOR AND3 NAND3

OR NOR XNOR OR3 NOR3

TSMC 90 nm 1.25 0.75 1.00 2.5 1.5 1.25

UMC 55 nm 1.25 0.75 1.00 2.25 1.75 1.25
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Definition 3. Depth Complexity (Depth) [9]. The depth of a function’s cir-
cuit is defined as the sum number of gates in the longest paths from the function
input to output.

Depth is tightly related to the energy consumption of the circuit [14]. In
general, a pure GEC optimized implementation usually takes relatively more
depth layers. The implementer can reduce energy consumption by limiting the
depth of the circuit without using significantly more gates [9]. To make a good
trade-off between energy and area, we give the following definition.

Definition 4. Depth- L GEC. The depth-L GEC of a function F is defined
as GEC of F when the maximum number of depth layers is constrained to L.

The value of L is obtained by a testing method. In the test process, without
limiting the GEC value, we tune the number of L from small to large until
the condition (i.e., for all the 4-bit S-boxes under test, the SAT solver could
successfully find an implementation) is satisfied. In this work, when L = 4, the
SAT solver can find an implementation for all the tested 4-bit S-boxes. However,
when L = 3, the SAT solver can’t find any implementation for some S-boxes.
At the framework of depth-L, optimal GEC of the function F is our goal of
optimizing implementation.

Definition 5. Forced Independence Property [6]. The target function T :
F

k
2 → F

q
2 with k input bits and q output bits can be denoted as T (x) = y :<

y1, . . . , yq >. T (x) = y has q coordinate-functions: ∀i, T i(x) = yi, where T i :
F

k
2 → F2. T i(·) can be physically implemented by the component-circuits with a

set of gates denoted as Gi. If ∀i, j; i �= j,Gi ∩ Gj = ∅ ( i.e., no gate is shared
between every two component-circuits), such a set of component-circuits have
forced independence property.

Maintaining the given circuit’s forced independence property can effectively
restrict the impact of fault propagation and guarantee security against fault
attacks with a bounded number of faulty cells in the entire circuit [6]. How the
forced independent properties limit fault propagation is given in AppendixA.
Taking 4-bit S-box S : F

4
2 → F

4
2 as an example, we give its forced independence

property in Fig. 2. The entire circuit of the 4-bit S-box is split up into four
component-circuits. Each component-circuit calculates exactly one output bit
to maintain the independence property. In addition to circuit implementation
with forced independence property, to avoid synthesizer optimizations between
different component-circuits, the designer should instantiate a unique component
for each component-function in the RTL designs and force synthesizer to keep
the hierarchy by synthesis constraints.
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Fig. 2. Forced independence implementation of a 4-bit S-box.

In the area redundancy constructions for fault detection proposed in [6], the
original S-box S and its redundancy S′ need to be implemented according to
forced independence property. Let S′ = F ◦ S ◦ F−1 with F : x 
→ x · P . In this
paper, we consider the case for the redundancy size m = 4, where the matrix P
is the extended Hamming code [15], which is given as follows:

P =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

2.2 Binary Model

Stoffelen [9] proposed a binary model to encode logic gates in optimizing for gate
complexity. The binary model can be represented as:

t = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2.

where t represents a logic gate output, q represents logic gate inputs, and the
variables bi (i ∈ (2]) determine the kind of gate t. As shown in Table 4, the
binary model can encode 2-input gates, e.g., AND, OR, NAND, NOR, XOR,
and XNOR. In Boolean expressions, ∧, ∨, ⊕, and ¬ are denoted as AND, OR,
XOR, and NOT, respectively.
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Table 4. The gate types in the binary model proposed in [9].

b0 b1 b2 Expression of t Gate type

0 1 0 (q0 ⊕ q1) XOR

0 1 1 ¬(q0 ⊕ q1) XNOR

1 0 0 (q0 ∧ q1) AND

1 0 1 ¬(q0 ∧ q1) NAND

1 1 0 (q0 ∨ q1) OR

1 1 1 ¬(q0 ∨ q1) NOR

3 Optimizing Implementations for the S-Boxes with
Forced Independence Property

For an S-box implementation fulfilling the forced independence property, the area
cost of the S-box S : F

n
2 → F

m
2 is equal to the sum of the area for implementing m

Boolean coordinate functions. Therefore, optimizing implementations for the S-
box with forced independence is equivalent to optimizing m coordinate-functions
of the S-box. In this section, we provide an optimizing scheme, a ternary model,
and an area profile model. Based on the two models, the optimizing scheme could
obtain the optimal GEC of a given Boolean function at depth-L framework using
a SAT solver.

3.1 Depth-L GEC Optimizing Scheme

Given a function f , a depth number L, and a Gate Equivalents (GEs) value TA,
the optimizing decision problem can be defined as: “is there a circuit with depth
L and at most TA GEs required to implement function f?” When a SAT solver
is used to solve the decision problem, it can find a circuit for some value TA but
outputs UNSAT for TA − 1. Then, the value of TA is the optimal GEC value
for the function f . In order to use the SAT solver to solve the decision problem,
we should encode the problem in logical formulas in conjunctive normal form
(CNF). In this section, we present the gate and area encoding models with a
set of equations. We use CVC language to realize the models and convert CVC
language to CNF that can be understood by the SAT solver before solving the
decision problem.

This section provides the depth-L GEC optimizing scheme for small Boolean
function (e.g., one coordinate-function of a 4-bit S-box) using a SAT solver. In
Fig. 3, we give a framework with four depth layers (i.e., L = 4) to show the
scheme’s principle. The reason for taking L = 4 as an example is that the SAT
solver can successfully find an implementation for all tested 4-bit S-boxes when
L = 4 without limiting the value of GEC. However, the condition above is not
satisfied when L = 3.

This scheme encodes 1-input gate (i.e., NOT), 2-input gate (i.e., AND,
NAND, OR, NOR, XOR, and XNOR), and 3-input gate (i.e., AND3, NAND3,
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Fig. 3. GEC optimizing implementations for one coordinate-function of a 4-bit S-box
under the depth-L framework using a SAT solver.

OR3, and NOR3) to optimize GEC implementation at the framework with
depth-L. Gates in the 0-th depth layer are directly encoded. Meanwhile, gates in
0-th ∼ 3-th depth layers are encoded by using the new ternary model in Sect. 3.2.
For the 0-th depth layer, we enumerate all the specific gates for two reasons: (1)
having a small number of types of gates, and (2) reducing the variable number
and the searching space. The encoding equations of gates in the 0-th depth layer
are given in AppendixB. For the other depth layers, the encoding method of
gates is similar to Stoffelen’s work [9], where q∗ and t∗ denote gate inputs and
outputs, respectively. Note that the paper [9] uses the binary model to encode
only 2-input gates, but we use the new ternary model to encode both 2-input
and 3-input gates. The encoding model for gates in the �-th (� ≥ 1) depth layer
is represented in AppendixC.

In the 0-th depth layer, the inputs of the gates t0 i (i ∈ (55]) can be any S-
box input. In the �-th depth layer, the inputs of the gates t� i can be any S-box
input and any gate in all previous layers (i.e., 0-th to (� − 1)-th depth layers),
where if � = 1, i ∈ (3], if � = 2, i ∈ (1], and if � = 3, i = 0. The S-box output
bit yn (n ∈ (3]) can be wired to any gate output in the 0-th to (L − 1)-th depth
layers. The output bit yn is represented as follows:

yn =
∑L−1

i=0 (
∑TNi−1

j=0 ao (j+TTNBi) · ti j). (1)

To encode an ‘at most one’ wire on the output bit of the S-box, we give a
constraint below:

ao u · ao v = 0, (2)

where u ∈ {0, . . . , (TTNB(L−1) − 2)}, v ∈ {u + 1, . . . , (TTNB(L−1) − 1)}.



Forced Independent Optimized Implementation of 4-Bit S-Box 161

Our optimizing scheme takes the S-box lookup tables and the target value of
GEC denoted as VGEC as inputs. TAyn

is defined as the total area of component-
circuit corresponding to output bit yn when solving the optimal GEC decision
problem. In the solving process, the SAT solver compares TAyn

with VGEC . If the
SAT solver successfully finds a circuit for the value VGEC but outputs UNSAT
for VGEC − 1, then VGEC is the optimal value. TAyn

can be solved by the area
profile model in Sect. 3.3.

3.2 New Ternary Model

Stoffelen [9] uses a binary model to encode 2-input gates in Table 4. In our work,
we give a ternary model that can encode both 2-input and 3-input gates. Its
profile model is represented by Eq. 3:

t = b0 · q0 · q1 · q2 + (b0 · b1) · (q0 + q1 + q2 + q0 · q1 + q0 · q2 + q1 · q2)
+ b2 · q0 · q1 + b3 · (q0 + q1) + b4 · (q0 · q2) + b5 · (q0 + q2) + b6 · q1 · q2

+ b7 · (q1 + q2) + b8.

(3)

In Eq. 3, q0, q1, and q2 are defined as the three inputs of gate t, and bi (i ∈ (8])
determine which kind of gate t represents. Table 5 gives the different types of
gates in the ternary model. To make sure that t is one gate from Table 5, we give
the additional constraints on b0 to b7 below:

C0 = b4 + b7, C0 ≤ 1, C1 = b5 + b6, C1 ≤ 1,

C2 = b2 + b5 + b7, C2 ≤ 1, C3 = b3 + b4 + b6, C3 ≤ 1,

C4 = b0 + b2 + b4 + b6, C4 ≤ 1, C5 = b0 + b3 + b5 + b7, C5 ≤ 1,

C6 = b0 + b0 · b1 + b2 + b3 + b4 + b5 + b6 + b7, C6 ≥ 1,

where Ci ∈ N. Constraints C0 ∼ C6 as a whole could ensure that the Boolean
expression of t is one of the cases in Table 5. For instance, if b3 = 1, then
b0 = b4 = b5 = b6 = b7 = 0 under the constraints C3 and C5, but the value of b2
is uncertain according to the constraints C2, C4, C6. There are no restrictions
on the value of b8. Therefore, the expression of t is uniquely determined by the
value of b2, b3, and b8, and its selection range is No.7 ∼ 10 in Table 5.

In addition to the 2-input gates, the ternary model introduces some efficient
3-input gates (i.e., AND3, NAND3, OR3, and NOR3), which can further improve
the optimization effect.
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Table 5. The gate types in the ternary model.

No b0 b0 · b1 b2 b3 b4 b5 b6 b7 b8 Expression of t Gate type

1 1 0 0 0 0 0 0 0 0 (q0 ∧ q1 ∧ q2) AND3

2 1 0 0 0 0 0 0 0 1 ¬(q0 ∧ q1 ∧ q2) NAND3

3 1 1 0 0 0 0 0 0 0 (q0 ∨ q1 ∨ q2) OR3

4 1 1 0 0 0 0 0 0 1 ¬(q0 ∨ q1 ∨ q2) NOR3

5 0 0 1 0 0 0 0 0 0 (q0 ∧ q1) AND

6 0 0 1 0 0 0 0 0 1 ¬(q0 ∧ q1) NAND

7 0 0 1 1 0 0 0 0 0 (q0 ∨ q1) OR

8 0 0 1 1 0 0 0 0 1 ¬(q0 ∨ q1) NOR

9 0 0 0 1 0 0 0 0 0 (q0 ⊕ q1) XOR

10 0 0 0 1 0 0 0 0 1 ¬(q0 ⊕ q1) XNOR

11 0 0 0 0 1 0 0 0 0 (q0 ∧ q2) AND

12 0 0 0 0 1 0 0 0 1 ¬(q0 ∧ q2) NAND

13 0 0 0 0 1 1 0 0 0 (q0 ∨ q2) OR

14 0 0 0 0 1 1 0 0 1 ¬(q0 ∨ q2) NOR

15 0 0 0 0 0 1 0 0 0 (q0 ⊕ q2) XOR

16 0 0 0 0 0 1 0 0 1 ¬(q0 ⊕ q2) XNOR

17 0 0 0 0 0 0 1 0 0 (q1 ∧ q2) AND

18 0 0 0 0 0 0 1 0 1 ¬(q1 ∧ q2) NAND

19 0 0 0 0 0 0 1 1 0 (q1 ∨ q2) OR

20 0 0 0 0 0 0 1 1 1 ¬(q1 ∨ q2) NOR

21 0 0 0 0 0 0 0 1 0 (q1 ⊕ q2) XOR

22 0 0 0 0 0 0 0 1 1 ¬(q1 ⊕ q2) XNOR

3.3 New Area Profile Model

In the process of solving the optimal GEC decision problem, we use TAyn
to

represent the total area of component-circuit corresponding to output bit yn.
For a coordinate function of an S-box yn : F

n
2 → F2, its total area (i.e., GEC)

TAyn
can be obtained by the following equation:

TAyn
=

∑L−1
i=0 (

∑TNi−1
j=0 ao (j+TTNBi) · ASti j

), (4)

where ASti j
can be calculated by Eq. 5 or 6.

In the 0-th depth layer, the inputs of t0 n can only be the S-box inputs.
Therefore, different area costs about t0 n have the following relation:

ASt0 n
= At0 n

, (5)

where n ∈ (TN0], At0 n
is a fixed cost value related to the corresponding gate,

e.g., for t0 4 = x0 · x1, At0 4 = Cand = 125 for UMC 55nm standard cell library.
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In the �-th (� ∈ [L − 1]) depth layer, the inputs of t� n can be selected from
q� (3n), q� (3n+1), and q� (3n+2) according to the values of variables b� n i, i ∈ (8].
The sum of area costs of all gates relate to t� n can be expressed as follows:

ASt� n
= At� n

+ ab67
t� n

· Aq� (3n) + ab45
t� n

· Aq� (3n+1) + ab23
t� n

· Aq� (3n+2) , (6)

where ab67
t� n

= ¬(b� n 6∨b� n 7), ab45
t� n

= ¬(b� n 4∨b� n 5), ab23
t� n

= ¬(b� n 2∨b� n 3),
and At� n

and Aq� k
(i.e., k ∈ {3n, 3n + 1, 3n + 2}) can be solved by Eq. 7 and 8,

respectively.
The value of At� n

is equal to the area cost of t� n. Equation of At� n
is given

below:

At� n
= par1t� n

·Cand3+par2t� n
·Cnand3+par3t� n

·Cand+par4t� n
·Cnand+par5t� n

·Cxor

(7)
where

par1t� n
= (b� n 0 ∧ (¬b� n 1) ∧ (¬b� n 8)) ∨ (b� n 0 ∧ b� n 1 ∧ (¬b� n 8)),

par2t� n
= (b� n 0 ∧ (¬b� n 1) ∧ b� n 8) ∨ (b� n 0 ∧ b� n 1 ∧ b� n 8),

par3t� n
= (b� n 2 ∧ (¬b� n 3) ∧ (¬b� n 8)) ∨ (b� n 2 ∧ b� n 3 ∧ (¬b� n 8))∨

(b� n 4 ∧ (¬b� n 5) ∧ (¬b� n 8)) ∨ (b� n 4 ∧ b� n 5 ∧ (¬b� n 8))∨
(b� n 6 ∧ (¬b� n 7) ∧ (¬b� n 8)) ∨ (b� n 6 ∧ b� n 7 ∧ (¬b� n 8)),

par4t� n
= (b� n 2 ∧ (¬b� n 3) ∧ b� n 8) ∨ (b� n 2 ∧ b� n 3 ∧ b� n 8)∨

(b� n 4 ∧ (¬b� n 5) ∧ b� n 8) ∨ (b� n 4 ∧ b� n 5 ∧ b� n 8) ∨ (b� n 6

∧ (¬b� n 7) ∧ b� n 8) ∨ (b� n 6 ∧ b� n 7 ∧ b� n 8),

par5t� n
= ((¬b� n 2) ∧ b� n 3 ∧ (¬b� n 8)) ∨ ((¬b� n 2) ∧ b� n 3 ∧ b� n 8)∨

((¬b� n 4) ∧ b� n 5 ∧ (¬b� n 8)) ∨ ((¬b� n 4) ∧ b� n 5 ∧ b� n 8)∨
((¬b� n 6) ∧ b� n 7 ∧ (¬b� n 8)) ∨ ((¬b� n 6) ∧ b� n 7 ∧ b� n 8).

In most standard cell libraries, e.g., in Table 3, two types of gates may have
the same cost (e.g., Cnand3 = Cnor3, Cand3 = Cor3, Cand = Cor, Cnand = Cnor,
and Cxor = Cxnor). Therefore, in Eq. 7, we only use five types of gate costs to
represent all possible types of the gate for t� n.

Aq� k
represents the total area cost of gate related to q� k. Aq� (3n), Aq� (3n+1),

and Aq� (3n+2) in Eq. 6 can be calculated by the following equation:

Aq� k
=

∑�−1
i=0(

∑TNi−1
j=0 a� k (j+NSI+TTNBi) · ASti j

) (8)

In the area profile model, we introduce the weighted-cost of gates. Given
the available gates and their cost weight, the area profile model could solve
the GEC optimization implementation of component-circuit corresponding to
output bi yn.

4 Application to 4-Bit S-Boxes

To demonstrate the validity and usefulness of our optimized scheme, we use
the pre-optimization method in Sect. 3 to obtain optimized Boolean expressions.
Based on the Boolean expressions, we use the synthesizer to further optimize the
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circuit implementation. In the pre-optimization phase, we use the new ternary
model to obtain Boolean expressions with better performance and produce the
comparison results with the binary model in Sect. 4.1. For synthesis results, the
implementation method of Boolean expressions has better performance, and the
comparison results with table-based method are given in Sect. 4.2. In the pre-
optimization phase, our algorithm can find the optimal GEC implementation
under depth-L framework in a few minutes to a few hours depending on the
target function, using a 24-core machine (with Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz and 64GB memory).

4.1 Comparison with the Binary Model

Stoffelen [9] introduced the binary model to encode 2-input logic gates. We pro-
pose a ternary model to encode both 2-input and 3-input gates. The ternary
model improves some results of optimized implementation by introducing some
efficient 3-input gates. For comparison, we select nine 4-bit S-boxes in the lit-
erature to test the optimized effect. Five S-boxes are used in lightweight block
ciphers [16–20]. Two golden S-boxes (i.e., Golden S1 and Golden S3) [21] have
ideal cryptographic properties. Serpent S6 is one of the seven S-boxes presented
in Serpent [22]. Khazad P [23] is the P mini-box in Khazad block cipher.

In the cipher implementation with efficient protection against DFA attacks,
the original and redundant S-boxes should maintain the forced independence
property. For any given original S-box S and its redundancy S′, we apply two pro-
file models of logic gate (i.e., binary and ternary models) in the pre-optimization
phase and give their optimized results of GEC in Table 6. Regarding coordinates
of the S-boxes, the ternary model improves 28 out of 72 cases, the improve-
ment ratio is 38.89%, and the maximum performance improvement efficiency is
21.2%. For the overall S-box, the ternary model improves 15 out of 18 cases,
the improvement ratio is 83.33%, and the maximum performance improvement
efficiency is 9.49%.

4.2 Comparison with Table-Based Method Using UMC 55nm
Technology Library

To compare the optimization effects of the two means (i.e., table-based method
and pre-optimization), we implement two version of RTL codes and synthesize
these RTL codes using the Synopsys Design Compiler with UMC 55nm standard
cell library. In the synthesis process, the implementor should set the constraint to
force the synthesizer to keep the hierarchy, ensuring that the component-circuits
have forced independence property.

As shown in Table 6, the ternary model’s optimized results is better than
or equal to that of the binary model. Therefore, in this part, when compar-
ing area synthesis results in two different RTL code designs, we only provide
the synthesized results based on the ternary model for the realization means of
pre-optimization. We select nine S-boxes in Table 6 to test the synthesis effect
and give the Comparison results of table-based method and pre-optimization
in Table 7. For the overall S-box, compared with table-based method, their
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Table 6. The GEC result of optimized Boolean expressions under binary and ternary
models using SAT solvers.

Type Binary model (GE) Ternary model (GE)

y0 y1 y2 y3 Tot. y0 y1 y2 y3 Tot.

Golden S3 S 8.25 7.75 8.25 8.75 33.00 8.25 7.75 8.25 8.75 33.00

S′ 9.00 7.50 9.00 9.00 34.50 8.00 7.50 8.25 7.75 31.50

Golden S1 S 8.50 8.50 8.25 6.75 32.00 8.50 8.50 8.25 6.75 32.00

S′ 7.50 7.25 9.00 5.50 29.25 7.50 6.25 8.25 5.50 27.50

Khazad P S 7.75 7.00 8.75 8.75 32.25 7.75 7.00 7.75 8.75 31.25

S′ 7.75 8.50 9.00 6.50 31.75 7.75 8.50 8.00 6.50 30.75

PRESENT S 6.25 8.50 9.00 9.00 32.75 6.25 8.00 8.25 8.00 30.50

S′ 7.50 9.25 6.00 9.25 32.00 7.50 8.75 6.00 8.75 31.00

TWINE S 7.25 7.50 8.25 7.50 30.50 7.25 7.25 6.50 7.50 28.50

S′ 8.25 8.25 8.25 8.75 33.50 7.25 8.25 8.25 8.75 32.50

Serpent S6 S 9.50 5.50 9.50 8.50 33.00 8.00 5.50 8.75 8.50 30.75

S′ 9.25 9.00 9.25 4.00 31.50 8.50 7.75 8.50 4.00 28.75

Rectangle S 6.25 6.25 7.75 8.75 29.00 6.25 6.25 7.75 8.75 29.00

S′ 7.00 6.25 7.75 8.75 29.75 7.00 5.50 6.50 8.75 27.75

GIFT S 5.50 5.50 7.75 5.25 24.00 5.50 5.50 7.50 5.25 23.75

S′ 7.50 7.00 8.50 9.50 32.50 7.50 7.00 8.00 9.00 31.50

SKINNY S 8.50 5.25 3.25 3.25 20.25 8.00 5.25 3.25 3.25 19.75

S′ 8.50 7.50 9.00 9.25 34.25 7.75 7.50 7.25 8.50 31.00

Table 7. Area synthesis results using the UMC 55nm technology library.

Type Table-based (GE) Boolean expression (GE) Improve (%)

Golden S3 S 33.00 25.50 22.73

S′ 28.25 26.75 5.31

Golden S1 S 31.25 25.50 18.40

S′ 23.00 23.00 0

Khazad P S 29.75 26.00 12.61

S′ 26.75 25.50 4.67

PRESENT S 25.25 23.25 7.92

S′ 25.00 24.75 1.00

TWINE S 23.50 22.75 3.19

S′ 26.75 25.75 3.74

Serpent S6 S 27.50 26.00 5.45

S′ 26.11 25.50 2.34

Rectangle S 24.75 24.00 3.03

S′ 23.00 22.50 2.17

GIFT S 21.75 21.25 2.30

S′ 27.25 26.25 3.67

SKINNY S 18.25 18.25 0

S′ 26.00 25.50 1.92
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implementations with optimized pre-optimizations improve 16 out of 18 cases,
the improvement ratio is 88.89%, and the maximum improvement efficiency of
area synthesis result is 22.73%.

5 Conclusion

This paper proposes an optimizing scheme and two new models (i.e., ternary
model and area profile model). We use SAT solvers to obtain optimized Boolean
expressions and improve the S-boxes’ implementation performance of forced
independence property. In the future, two intriguing works are worth consid-
ering. First, for SAT problem, how to develop an effective model to encode more
complex logic gates (e.g., 4-input gates) in the standard cell library to improve
optimizing effect without too much overhead? Secondly, we believe that the area
profile model can be further applied to solve accurate depth complexity defined
in [11] after simple modification, which requires further research.

Acknowledgements. This work has been supported by the National Natural Sci-
ence Foundation of China (Grant No. 62032014), the National Key Research and
Development Program of China (Grant No. 2018YFA0704702), the National Natu-
ral Science Foundation of China (Grant No. 62002204), the Major Basic Research
Project of Natural Science Foundation of Shandong Province, China (Grant No.
ZR202010220025), and the Program of Qilu Young Scholars of Shandong University
(Grant No. 61580082063088).

A Fault Propagation and Forced Independence Property

The attacker tries to hit some circuit cells as many times as he needs to recover
the secret, which depends on the adversary model in the DFA attack. In this
paper, we use the univariate adversary model Mt [6], where the attacker can
make up to t faulty gates at one clock cycle in a given circuit. If an input of
a gate in the circuit is faulty, the worst-case for fault propagation is that one
faulty input of a gate results in the faulty output. In the case of fault propagation,
Mt-bounded adversary might achieve tp faulty gates with t ≤ tp ≤ |G|, where
|G| denotes the number of gates in the underlying circuit. The designers can
restrict the impact of fault propagation by keeping the given circuit’s forced
independence property. For an Mt=1 adversary, fault propagation number tp is
equal to faulty cells number t (i.e., tp = t = 1) in a given circuit with forced
independence property, while tp ≥ t for the given circuit without this property.

B Gates in the 0-th Depth Layer

For 4-bit S-boxes, the number of gate types is limited and few in 0-th depth level
L0, so we enumerate all types of gates. There are 56 gates (i.e., 4 1-input gates,
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36 2-input gates, and 16 3-input gates) in all in the depth layer L0. The Boolean
equations of 1-input gates {t0 0, t0 1, t0 2, t0 3} can be represented as:

t0 (k) = xk + 1, k ∈ (3]. (9)

The Boolean equations of 2-input gates {t0 4, t0 5, . . . , t0 39} are given as fol-
lows:

t0 (6ctr1+4) = xi · xj , t0 (6ctr1+5) = xi · xj + 1,

t0 (6ctr1+6) = xi · xj + xi + xj , t0 (6ctr1+7) = xi · xj + xi + xj + 1,

t0 (6ctr1+8) = xi + xj , t0 (6ctr1+9) = xi + xj + 1,

(10)

where i ∈ (2], j ∈ [3], ctr1 ∈ (5], and the concrete values are given below:

– if (ctr1 = 0) ∨ (ctr1 = 1) ∨ (ctr1 = 2),then (i, j) = (0, ctr1 + 1),
– if (ctr1 = 3) ∨ (ctr1 = 4),then (i, j) = (1, ctr1 − 1), and
– if ctr1 = 5,then (i, j) = (2, 3).

Regarding 3-input gates {t0 40, t0 41, . . . , t0 55}, their Boolean equations is
give as follows:

t0 (4ctr2+40) = xl · xm · xn, t0 (4ctr2+41) = xl · xm · xn + 1,

t0 (4ctr2+42) = xl · xm · xn + xl · xm + xl · xn + xm · xn + xl + xm + xn,

t0 (4ctr2+43) = xl · xm · xn + xl · xm + xl · xn + xm · xn + xl + xm + xn + 1,
(11)

where l ∈ (1], m ∈ [2], n ∈ {2, 3}, ctr2 ∈ (3], and their concrete values are given
below:

– if (ctr2 = 0),then (l,m, n) = (0, 1, 2),
– if (ctr2 = 1),then (l,m, n) = (0, 1, 3),
– if (ctr2 = 2),then (l,m, n) = (0, 2, 3), and
– if (ctr2 = 3),then (l,m, n) = (1, 2, 3).

C Encoding Model for Gates in the �-th (� ≥ 1) Depth
Layer

In the �-th (� ≥ 1) depth layer, the equations of gate outputs t� n can be repre-
sented as:

t� n =b� n 0 · q� (3n) · q� (3n+1) · q� (3n+2) + (b� n 0 · b� n 1) · (q� (3n) + q� (3n+1)

+ q� (3n+2) + q� (3n) · q� (3n+1) + q� (3n) · q� (3n+2) + q� (3n+1) · q� (3n+2))
+ b� n 2 · q� (3n) · q� (3n+1) + b� n 3 · (q� (3n) + q� (3n+1)) + b� n 4 · (q� (3n)

· q� (3n+2)) + b� n 5 · (q� (3n) + q� (3n+2)) + b� n 6 · q� (3n+1) · q� (3n+2)

+ b7 · (q� (3n+1) + q� (3n+2)) + b� n 8,
(12)
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where if � = 1 then n ∈ (3], if � = 2 then n ∈ (1], and if � = 3 then n = 0.
The variables b� n i (i ∈ (8]) determine the Boolean function of t� n, as can be
seen in Table 5. To ensure that the Boolean function of t� n can only be selected
from the cases listed in Table 5, we give some constraints on the variables b� n i

as follows:

C0t� n
= b� n 4 + b� n 7, C0t� n

≤ 1

C1t� n
= b� n 5 + b� n 6, C1t� n

≤ 1

C2t� n
= b� n 2 + b� n 5 + b� n 7, C2t� n

≤ 1

C3t� n
= b� n 3 + b� n 4 + b� n 6, C3t� n

≤ 1

C4t� n
= b� n 0 + b� n 2 + b� n 4 + b� n 6, C4t� n

≤ 1

C5t� n
= b� n 0 + b� n 3 + b� n 5 + b� n 7, C5t� n

≤ 1

C6t� n
= b� n 0 + b� n 0 · b� n 1 + b� n 2 + b� n 3 + b� n 4 + b� n 5 + b� n 6 + b� n 7,

C6t� n
≥ 1,

where Cit� n
∈ N.

Variables q� n denote the inputs of the gates t� n. q� n can be wired to any
S-box input bit or any gate outputs in the depth layers 0-th to (� − 1)-th. We
encode q� n as the equation given below:

q� n =
∑NSI−1

j=0 a� n j · xj +
∑�−1

i=0(
∑TNi−1

j=0 a� n (j+NSI+TTNBi) · ti j), (13)

where if � = 1 then n ∈ (11], if � = 2 then n ∈ (5], and if � = 3 then n ∈ (2]. In
the framework of L = 4, the specific values of TN0, TN1, TN2, and TN3 are
56, 4, 2, and 1, respectively.

Regarding the parameters a� n i, a constraint is given below to encode an ‘at
most one’ wire on the gate inputs q� n:

a� n u · a� n v = 0, (14)

where u ∈ {0, . . . , (SIN +TTNB(�−1)−2)}, v ∈ {u+1, . . . , (SIN +TTNB(�−1)−
1)}.
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Abstract. This paper proposes distinguishing and key recovery attacks
on the reduced-round versions of the SNOW-V stream cipher. First, we
construct a MILP model to search for integral characteristics using the
division property, and find the best integral distinguisher in the 3-, 4-,
and 5-round versions with time complexities of 28, 216, and 248, respec-
tively. Next, we construct a bit-level MILP model to efficiently search
for differential characteristics, and find the best differential character-
istics in the 3- and 4-round versions. These characteristics lead to the
3- and 4-round differential distinguishers with time complexities of 217

and 297, respectively. Then, we consider single-bit and dual-bit differen-
tial cryptanalysis, which is inspired by the existing study on Salsa and
ChaCha. By carefully choosing the IV values and differences, we observe
the best bit-wise differential biases with 2−1.733 and 2−17.934 in the 4-
and 5-round versions, respectively. This is feasible to construct a very
practical distinguisher with a time complexity of 24.466 for the 4-round
version, and a distinguisher with a time complexity of at least 236.868 for
the 5-round version. Finally, we improve the existing differential attack
based on probabilistic neutral bits, which is also inspired by the existing
study on Salsa and ChaCha. As a result, we present the best key recovery
attack on the 4-round version with a time complexity of 2153.97 and data
complexity of 226.96. Consequently, we significantly improve the existing
best attacks in the initialization phase by the designers.

Keywords: SNOW · Stream cipher · 5G · Integral attack ·
Differential attack · Probabilistic Neutral Bits (PNB)

1 Introduction

1.1 Background

SNOW-V, which is a new variant of a family of SNOW stream ciphers, was
proposed for a standard encryption scheme for the 5G mobile communication
c© Springer Nature Switzerland AG 2021
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system in 2019 by Ekdahl et al. [4]. To achieve the strong security requirements
by the 3GPP standardization organization for the 5G system, SNOW-V provides
a 256-bit security level against key recovery attacks with a 256-bit key and 128-
bit IV, while the claimed security of distinguishing attacks is only 264, i.e., the
length of keystreams is limited to at most 264 and also for a fixed key, the number
of different keystreams should be less than 264.

SNOW-V consists of a Linear Feedback Shift Register (LFSR) and Finite
State Machine (FSM). The overall structure of SNOW-V follows the design
strategy of SNOW 2.0 and SNOW-3G. It takes advantage of AES-NI and some
SIMD operations for efficient implementation in high-end software environments.
Each round has two AES-round operations to update the states of the FSM. As a
result, SNOW-V achieves very impressive performance in software, e.g., 58 Gbps
for a long message, which is almost six times faster than that of SNOW-3G.

Regarding the security analysis of SNOW-V, the designers evaluated the
security of division-property-based cube, time-memory tradeoff, linear/correla-
tion distinguishing, algebraic, and guess-and-determine attacks [4]. Among them,
they found a key recovery attack on the 3-round SNOW-V by cube attacks, and
concluded that more than four rounds provides sufficient security against these
attacks as the division-property-based distinguisher reaches only four rounds of
AES [14]. As a third-party evaluation, Jiao et al. proposed a byte-based guess-
and-determine attack with a time complexity of 2406 [8]. They improved the
authors’ evaluation, but its cost is still much larger than the exhaustive 256-bit
key search. Thus, to the best of our knowledge, the best attack on SNOW-V is
the 3-round cube attack by the designers.

1.2 Our Contribution

In this study, we investigate the security of SNOW-V with three attack vec-
tors, namely, integral, differential, and bit-wise differential attacks. These attacks
are well-known attacks for stream ciphers. Nevertheless, the designers did not
perform the security evaluations for these important attacks. To fill this gap,
we evaluate thorough security against these attacks with state-of-the-art search
tools and techniques, and we show that these attacks sufficiently improve the
previous best attacks with respect to the attacked number of rounds and attack
complexity, as shown in Table 1. The details of our attacks are given as follows.

Integral Attack. By using a MILP-aided search method for the division prop-
erty, we show practical integral distinguishers in the 3/4-round distinguishers
with time complexities of 28 and 216. Furthermore, we find a 5-round integral
distinguisher with a time complexity of 248 for the initialization of SNOW-V.

Differential Attack. We perform a MILP-aided search for the differential
characteristics in the chosen-IV setting where differences are inserted in the
IV domain. Specifically, we build a bit-level model for each operation, such as
the modular addition, S-box, and linear operations. As a result, we find the
3/4-round differential characteristics with probabilities of 2−17 and 2−97, respec-
tively. Although the 4-round distinguishing attack exceeds the data limitation
of 264, it is important to improve the understanding of the security of SNOW-V.
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Table 1. Summary of our results.

Attack type Rounds Data Time Reference

Integral/Distinguisher 3 28.00 28.00 Sect. 3

Integral/Distinguisher 4 216.00 216.00 Sect. 3

Integral/Distinguisher 5 248.00 248.00 Sect. 3

Differential/Distinguisher 3 217.00 217.00 See full version [6]

Differential/Distinguisher 4 297.00 297.00 See full version [6]

Differential Bias/Distinguisher 4 24.47 24.50 Sect. 4

Differential Bias/Distinguisher 5 236.87 236.87 Sect. 4

Cube/Key Recovery 3 215.00 2255.00 [4]

Differential Bias/Key Recovery 4 226.96 2153.97 Sect. 5

Bit-Wise Differential Attack. We conduct a single-bit and dual-bit differen-
tial attack based on the existing study on the reduced-round Salsa and ChaCha
as reported by Choudhuri and Maitra [2]. In addition, we analyze the source
code of the LFSR update algorithm in SNOW-V, and suggest that choosing IVs
by limiting the domain should suppress the propagation of differences through-
out the internal state of SNOW-V. As a result, we find a practical bit-wise
differential distinguisher for the 4-round SNOW-V. Surprisingly, it is feasible
by only 24.466 samples. We further observe the 5-round differential biases, and
we present a theoretical distinguisher with time complexity of at least 236.868

for the 5-round SNOW-V. No study has been reported on applying the bit-wise
differential attack to LFSR-based stream ciphers; thus, in this study, we have
demonstrated the effectiveness of the bit-wise differential attack on LFSR-based
stream ciphers.

Key Recovery Attack. We apply the differential attack based on probabilistic
neutral bits (PNB), which was proposed by Aumasson et al. [1], to a key recovery
attack on SNOW-V. To apply an existing attack, it is necessary to perform the
backwards computation in the target cipher, but it is difficult to perform this
in SNOW-V. To solve this problem, we replace all the backwards computations
in the existing attack procedure with forwards computations. As a result, we
present a key recovery attack on the 4-round SNOW-V with a time complexity
of 2153.97 and data complexity of 226.96. To the best of our knowledge, our attack
is the best key recovery attack on the reduced-round SNOW-V.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 2, we briefly describe the
specification of the SNOW-V stream cipher. In Sect. 3, we show the MILP model
for searching integral characteristics and provide integral distinguishers for 3, 4,
and 5 rounds of SNOW-V. In Sect. 4, we introduce the existing cryptanalysis
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Fig. 1. Overall structure of SNOW-V.

method for bit-wise differential cryptanalysis and present the efficient chosen-IV
technique. We then provide bit-wise differential distinguishers for 4 and 5 rounds
of SNOW-V. In Sect. 5, we describe our improvements to the existing differential
attack and present the best key recovery attack on the 4-round SNOW-V. Finally,
Sect. 6 concludes the paper.

2 Description of SNOW-V

2.1 Structure

The overall structure of SNOW-V is shown in Fig. 1. It consists of a Linear
Feedback Shift Register (LFSR) part and Finite State Machine (FSM) part.

The LFSR part takes a circular construction consisting of two shift registers
called LFSR-A and LFSR-B, both involving 16 cells with each cell size of 16
bits denoted by a15, . . . , a0 and b15, . . . , b0, respectively. Each cell represents an
element in F

16
2 , and the elements of LFSR-A and LFSR-B are generated by the

following polynomials in F2[x]:

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x + 1, (1)
gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x + 1. (2)

Let α ∈ F
A
216 be a root of gA(x) and β ∈ F

B
216 be a root of gB(x). At time

t ≥ 0, the LFSRs update sequences (a(t)
15 , . . . , a

(t)
0 ) and (b(t)15 , . . . , b

(t)
0 ) using the

following expressions:
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a
(t+1)
15 = b

(t)
0 + αa

(t)
0 + a

(t)
1 + α−1a

(t)
8 mod gA(α), (3)

a
(t+1)
i = a

(t)
i+1, (4)

b
(t+1)
15 = a

(t)
0 + βb

(t)
0 + a

(t)
3 + β−1b

(t)
8 mod gB(β), (5)

b
(t+1)
i = b

(t)
i+1, (6)

for i = 0, . . . , 14. The LFSRs update the internal state eight times in a single
step, i.e., 16 cells of the total 32 cells in the LFSR part can be updated in a
single step, and the two taps T1 and T2 will have the following new values:

T1(t) = (b(8t)
15 , . . . , b

(8t)
8 ), (7)

T2(t) = (a(8t)
7 , . . . , a

(8t)
0 ). (8)

The FSM part takes the two taps, T1 and T2, from the LFSR part as the
inputs and generates a 128-bit keystream block z(t) at time t ≥ 0 as the output.
It consists of three 128-bit registers R1, R2, and R3. The symbol ⊕ denotes a
bit-wise XOR operation, and the symbol �32 denotes parallel application of four
additions modulo 232. The four 32-bit parts of the 128-bit words are added with
carry, but the carry does not propagate from a lower 32-bit word to a higher
one. At time t ≥ 0, the FSM first outputs the keystream block, z(t), using the
following expression:

z(t) = (R1(t) �32 T1(t)) ⊕ R2(t). (9)

Then, registers R2 and R3 are updated throughout a full AES encryption round
function as SubBytes, ShiftRows, MixColumns, and AddRoundKey, which are
denoted by AESR(IN,KEY ) with a 128-bit input block IN and a roundkey
KEY . The three registers are updated by the following expressions:

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))), (10)
R2(t) = AESR(R1(t), 0), (11)
R3(t) = AESR(R2(t), 0), (12)

where σ is a byte-oriented permutation given by

σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15]. (13)

2.2 Initialization

Let K = (k15, . . . , k0) denote a 256-bit key and IV = (iv7, . . . , iv0) denote a
128-bit initialization vector (IV), where each ki and ivj are 16-bit vectors for
0 ≤ i ≤ 15 and 0 ≤ j ≤ 7, respectively. The initialization begins with loading
the key and IV into the LFSRs and setting zero into the three registers using
the following expressions:

(a15, . . . , a0) = (k7, . . . , k0, iv7, . . . , iv0), (14)
(b15, . . . , b0) = (k15, . . . , k8, 0, . . . , 0), (15)
R1 = 0, R2 = 0, R3 = 0. (16)



176 J. Hoki et al.

The initialization consists of r steps (r = 16 in the original version), where the
structure is updated in the same way as in the keystream generation, with the
exception that the 128-bit keystream block z is not an output but is XORed into
the LFSR-A to positions (a15, . . . , a8) in every step. Additionally, at the two last
steps of the initialization, the 256-bit key is loaded into the register R1 using
the following expressions:

R1(r−2) = R1(r−2) ⊕ (k7, . . . , k0), (17)
R1(r−1) = R1(r−1) ⊕ (k15, . . . , k8), (18)

where time t = r − 1 denotes the last step of the initialization.
The designers limited the length of the keystream to a maximum of 264 bits

for a single key-IV pair and the number of different IVs to a maximum of 264

for each key.

3 MILP-Aided Integral Distinguisher

In this section, we explore the security of SNOW-V against integral attacks. To
efficiently search for integral distinguishers in the initialization phase of SNOW-
V, we exploit the division property proposed by Todo [13]. Specifically, we utilize
the MILP-based method [15] to evaluate the propagation of the bit-based divi-
sion property [14].

3.1 The MILP Model

In this part, we describe how to construct the linear inequalities to model the
propagation of the division property for SNOW-V. First, we will show the con-
straints for the propagation of the bit-based division property through COPY, XOR,
and AND operations based on the work by Xiang et al. [15]. Then, we elaborate
the MILP model for SNOW-V based on these constraints.

To find an integral distinguisher with the division property with MILP, we
do not need to optimize the objective function. Instead, we only need to confirm
whether the constructed MILP model is feasible or not, because we search the
properties such that the output is balanced or not by bit-wise. If it is infeasible,
an integral distinguisher can be obtained.

Xiang et al. first proposed the modeling method [15] for the propagation of
the bit-based division property through COPY, XOR, and AND operations. Then,
Sun et al. generalized these models [11] as specified below, which will be the
components in our MILP model for SNOW-V.

MILP Model of COPY [11] :

{
M.var ← a, b1, . . . , bm as binary.

M.con ← a + b1 + · · · + bm = 0.

MILP Model of XOR [11] :

{
M.var ← a1, . . . , am, b as binary.

M.con ← a1 + · · · + am + b = 0.
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MILP Model of AND [15] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M.var ← a1, a2, b as binary.

M.con ← b − a1 ≥ 0,

M.con ← b − a2 ≥ 0,

M.con ← b − a1 − a2 ≤ 0.

The pseudo code of our MILP model for SNOW-V is displayed in Algo-
rithm1, where R denotes the number of rounds in the initialization phase and
the explanations for load, funcADD, funcAES, sigma, and funcLFSR are given
below.

load. K and IV are loaded into internal states.
funcADD. This function is a model for the 32-bit modular addition. We use the

modeling method proposed by Sun et al. [12] with COPY, XOR, and AND.
funcAES. This function consists of SubBytes, ShiftRow, MixColumns, and

AddRoundKey of AES. For the modeling of the S-box, we use the mod-
eling method proposed in [15]. Logic Friday [3] is utilized to generate the
constraints for the S-box. Thus, we obtain 241 linear inequalities to model
the S-box of AES. For the modeling of MixColumns, we use the modeling
method proposed in [11]. Specifically, the 4 × 4 MDS matrix over the filed
F
8
2 is converted to a 32 × 32 binary matrix over the field, F2 [10]. Then,

we construct the model for MixColumn with COPY and XOR. Thus, 64 linear
inequalities can be used to model the MDS matrix used in AES.

sigma. This function is used to permute the state in a byte-wise way as described
in Sect. 2.

funcLFSR. There are the operations of α, α−1, β, β−1, and XOR. It is a linear
transformation; thus, the division property of the input and the output are
constant. Hence, we can use the method from Sun et al. [11], and α, α−1,
β, and β−1 are each represented with a 16 × 16 matrix over field F2, and we
obtain 64 linear inequalities.

3.2 Our Search and Results

Since there are a total of 2128 patterns for IV , it is computationally infeasible to
take all of them into account when searching for integral distinguishers. Thus,
we use a 3-step approach to efficiently find the integral distinguisher. As an
explanation of our method, a, c, b, and u represent an active bit, a constant bit,
a balanced bit, and an unknown bit, respectively. In addition, A, C, B, and U
denote an active byte, a constant byte, a balanced byte, and an unknown byte,
respectively. Our search used Gurobi optimization 9.0 [7] as the solver with a
48-core Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40 GHz for our experiments.

Step 1. We try to find the longest integral distinguisher by setting the 128-bit
IV as all A.

Step 2. To reduce the data complexity, we consider the case where there is at
least one byte in IV assigned to C and at least one byte assigned to A. When
16-byte input is all A, it is the same as Step 1. Also, when 16-byte input is all
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Algorithm 1. MILP model of division property for SNOW-V
1: procedure SNOWVcore(round R)
2: for out = 0 to 127 do
3: Prepare an empty MILP model M
4: M.var ← Kj , IVj for j ∈ {0, . . . , 127}
5: M.var ← Sr

j for j ∈ {0, . . . , 511} and for r ∈ {0, . . . , R + 1}
6: M.var ← R1r

j , R2r
j , R3r

j for j ∈ {0, . . . , 127} and for r ∈ {0, . . . , R + 1}
7: M.var ← Zr

j for j ∈ {0, . . . , 127} and for r ∈ {0, . . . , R}
8: M.con ← K = 0
9: (M, IV ) ⇐ initial division property (Section 3.2)

10: (M,S0) = load(M,K , IV )
11: M.con ← R10 = 0,R20 = 0,R30 = 0
12: for r = 0 to R do
13: (M,T 2r, Sr,0

128,...,255) = COPY(M, Sr
128,...,255)

14: (M,T 1r, Sr,0
256,...,383) = COPY(M, Sr

256,...,383)
15: (M,Xr

R1,Y
r
R1) = COPY(M,R1r)

16: (M,Xr
R2,Y

r
R2,W

r
R2) = COPY(M,R2r)

17: M.con ← Sr,0
0,...,127 = Sr

0,...,127

18: M.con ← Sr,0
384,...,511 = Sr

384,...,511

19: (M,U r) = funcADD(M,T 1r,Xr
R1)

20: (M,Zr) = XOR(M,U r,Xr
R2)

21: (M,R2r+1) = funcAES(M,Y r
R1)

22: (M,R3r+1) = funcAES(M,Y r
R2)

23: (M,V r) = XOR(M,T 2r,R3r)
24: (M, tmpr) = funcADD(M,V r,W r

R2)
25: (M,R1r+1) = sigma(M, tmpr)
26: for i = 0 to 7 do
27: (M,Sr,i+1) = funcLFSR(M,Sr,i)

28: if r = R then
29: M.con ← Sr+1

0,...,511 = Sr,8
0,...,511

30: else
31: (M,Sr+1

0,...,127) = XOR(M,Sr,8
0,...,127,Z

r)

32: M.con ← Sr+1
128,...,511 = Sr,8

128,...,511

33: M.con ← SR+1 = 0
34: M.con ← R1R+1 = 0,R2R+1 = 0,R3R+1 = 0
35: for j = 0 to 127 do
36: if j = out then
37: M.con ← Zj = 1
38: else
39: M.con ← Zj = 0

C, the outputs becomes constants. Thus, these two patterns can be omitted.
As a result, there are 216 − 2 such patterns in total.

Step 3. We utilize the method [5] to reduce the data complexity. In [5], a is
only assigned to the MSB of each byte. First, we consider the case when
there is only one active bit and the total number of such patterns is

(
16
1

)
.
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Table 2. 3-round integral distinguisher of SNOW-V

iv7 cccccccc cccccccc

iv6 cccccccc cccccccc

iv5 cccccccc cccccccc

iv4 cccccccc cccccccc

iv3 aaaaaaaa cccccccc

iv2 cccccccc cccccccc

iv1 cccccccc cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu bbbbbbbb bbbbbbbb

uuuuuuuu uuuuuuuu bbbbbbbb bbbbbbbb

Then, we increase the number of a if we can find an integral distinguisher,
i.e., consider the case when there are 2, 3, 4, . . . , 16 active bits because IV is
a 16-byte value. Thus, a total of 216 − 1 patterns is taken into account in our
search.

Our search found integral distinguishers in 3- and 4-round distinguishers with
time complexities of 28 and 216, as shown in Tables 2 and 3. Moreover, we can
find a 5-round integral distinguisher for the initialization phase of SNOW-V, as
shown in Table 4. Specifically, when iv7, iv6, iv4 and iv0 is constant, the least
significant byte of iv2 and iv1 is constant, and the remaining bytes of IV take all
the possible 248 values, we can compute the sum of the keystreams, z, generated
by these 248 different IV ; thus, the sum in each of the least two significant bits
of z is always zero.

4 Bit-Wise Differential Distinguisher

In this section, we first introduce single-bit and dual-bit differential cryptanalysis
based on the study by Choudhuri and Maitra [2]. Then, we present an effective
chosen-IV technique for our cryptanalysis of the 4-round SNOW-V. Finally, we
provide the experimental results for bit-wise differential biases using the chosen-
IV technique.

4.1 Single-Bit and Dual-Bit Differential Cryptanalysis

To find bit-wise differential biases of the reduced-round SNOW-V, we utilize
single-bit and dual-bit differential cryptanalysis based on the study on the
reduced-round Salsa and ChaCha, as reported by Choudhuri and Maitra [2].

Let ivi[j] be the j-th bit of the i-th element in IV for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 15
and let iv′

i[j] be an associated bit with the input difference Δ
(0)
i,j = ivi[j]⊕ iv′

i[j],
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Table 3. 4-round integral distinguisher of SNOW-V

iv7 aaaaaaaa cccccccc

iv6 cccccccc cccccccc

iv5 aaaaaaaa cccccccc

iv4 cccccccc cccccccc

iv3 cccccccc cccccccc

iv2 cccccccc cccccccc

iv1 cccccccc cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu uuuuuubb bbbbbbbb

Table 4. 5-round integral distinguisher of SNOW-V

iv7 cccccccc cccccccc

iv6 cccccccc cccccccc

iv5 aaaaaaaa aaaaaaaa

iv4 cccccccc cccccccc

iv3 aaaaaaaa aaaaaaaa

iv2 aaaaaaaa cccccccc

iv1 aaaaaaaa cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuubb

which is described as ID. Let zp[q] be the q-th bit of the p-th word in the first
output keystream block z for 0 ≤ p ≤ 15 and 0 ≤ q ≤ 7 and let z′

p[q] be an

associated bit with the r-round output difference Δ
(r)
p,q = zp[q] ⊕ z′

p[q], which is
described as OD. Note that iv0[0] and iv7[15] are the least significant bit (LSB)
and most significant bit (MSB) of IV, and z0[0] and z15[7] are the LSB and MSB
of z, respectively. For a fixed key and all possible choices of IVs, single-bit and
dual-bit differential probabilities are defined by

Pr
(
Δ(r)

p,q = 1 | Δ
(0)
i,j = 1

)
=

1
2
(1 + εd), (19)

Pr
(
Δ(r)

p0,q0 ⊕ Δ(r)
p1,q1 = 1 | Δ

(0)
i,j = 1

)
=

1
2
(1 + εd), (20)
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where εd denotes the bias of the OD.
To distinguish the first keystream block z generated by the reduced-round

SNOW-V from true random number sequences, we utilize the following theorem
proved by Mantin and Shamir [9].

Theorem 1 ([9, Theorem 2]). Let X and Y be two distributions, and suppose
that the event e occurs in X with a probability p and Y with a probability p·(1+q).
Then, for small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with
a constant probability of success.

Let X be a distribution of the OD of true random number sequences, and Y be a
distribution of the OD of the first keystream block z generated by the reduced-
round SNOW-V. Based on single-bit and dual-bit differential probabilities, the
number of samples to distinguish X and Y is O( 2

ε2d
) since p and q are equal to 1

2

and εd, respectively.

4.2 Chosen-IV Technique

We analyze the source code of the LFSR update algorithm in SNOW-V and
notice the following two properties.

Listing 1. lfsr update algorithm

1: typedef uint16_t u16;
2: u16 A[16], B[16]; // The 32 cells of the two LFSRs
3:
4: void lfsr_update ( void ){
5: for ( int i=0; i<8; i++ ){
6: u16 u = mul_x ( A[0], 0x990f ) ^ A[1] ^ mul_x_inv ( A[8], 0xcc87 ) ^ B[0];
7: u16 v = mul_x ( B[0], 0xc963 ) ^ B[3] ^ mul_x_inv ( B[8], 0xe4b1 ) ^ A[0];
8: for ( int j=0; j<15; j++ ){
9: A[j] = A[j+1];

10: B[j] = B[j+1];
11: }
12: A[15] = u;
13: B[15] = v;
14: }
15: }

Listing 2. mul x function

1: typedef uint16_t u16;
2:
3: u16 mul_x ( u16 v, u16 c ){
4: if ( v & 0x8000 ){
5: return ( v << 1 ) ^ c;
6: } else {
7: return ( v << 1 );
8: }
9: }

Listing 3. mul x inv function

1: typedef uint16_t u16;
2:
3: u16 mul_x_inv ( u16 v, u16 d ){
4: if ( v & 0x0001 ){
5: return ( v >> 1 ) ^ d;
6: } else {
7: return ( v >> 1 );
8: }
9: }

Property 1. The mul x function is executed 16 times in the LFSR update algo-
rithm, and the output varies with the value of the MSB.



182 J. Hoki et al.

Property 2. The mul x inv function is executed 16 times in the LFSR update
algorithm, and the output varies with the value of the LSB.

When the MSB of the input v to the mul x function is 0, the output bits are
not properly mixed because the input v is only shifted one bit to the left (see
step 7 in Listing 2). On the contrary, when the MSB of the input v to the mul x
function is 1, the output bits are sufficiently mixed since the input v shifted one
bit to the left is XORed with another input c (see step 5 in Listing 2). These lead
to Property 1 that the MSB of the input v to the mul x function affects whether
the output bits are mixed or not. Since the mul x inv function is calculated in
the similar manner as the mul x function, Property 2 implies that the LSB of
the input v to the mul x inv function affects whether the output bits are mixed
or not. Furthermore, these properties may be considered to affect whether the
propagation of differences is diffused or not.

Based on the two properties of the LFSR update algorithm in SNOW-V, we
present an effective chosen-IV technique for our cryptanalysis of the reduced-
round SNOW-V. In the SNOW-V initialization, IV is loaded into the eight cells
in the LFSR-A by assigning (a7, a6, . . . , a0) = (iv7, iv6, . . . , iv0). In addition, the
adversaries can choose arbitrary IVs as the ID. Therefore, choosing IVs whose
MSBs and LSBs are 0 should suppress the propagation of differences throughout
the internal state of SNOW-V during the initialization phase. We define the
following eight domains for single-bit and dual-bit differential cryptanalysis.

V0 = {xxxxxxxxxxxxxxxx(2) | x ∈ {0, 1}},
V1 = {0xxxxxxxxxxxxxx0(2) | x ∈ {0, 1}},
V2 = {00xxxxxxxxxxxx00(2) | x ∈ {0, 1}},
V3 = {000xxxxxxxxxx000(2) | x ∈ {0, 1}},
V4 = {0000xxxxxxxx0000(2) | x ∈ {0, 1}},
V5 = {00000xxxxxx00000(2) | x ∈ {0, 1}},
V6 = {000000xxxx000000(2) | x ∈ {0, 1}},
V7 = {0000000xx0000000(2) | x ∈ {0, 1}}.

4.3 Experimental Results

We have conducted experiments to find the bit-wise differential biases of the
reduced-round SNOW-V. The following is our experimental environment: five
Linux machines with 40-core Intel(R) Xeon(R) CPU E5-2660 v3 (2.60 GHz),
128.0 GB of main memory, a gcc 7.2.0 compiler, and the C programming lan-
guage. To find single-bit (or dual-bit) differential biases, our experiments have
been conducted with 28 (or 26) trials using 224 IDs for each key, excluding
domain V7. Since domain V7 contains only 216 elements, we have conducted
experiments with 216 (or 214) trials using 216 IDs for each key to find the
single-bit (or dual-bit) differential biases.

Tables 5 and 6 show the best single-bit and dual-bit differential biases for
the four and five rounds of SNOW-V. As shown in Table 5, we obtain higher
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Table 5. Best single-bit and dual-bit differential biases (log2) for 4-round SNOW-V.

Domain Single-bit Dual-bit

ID OD |εd| ID OD |εd|
V0 Δ

(0)
10,7 Δ

(4)
0,0 −10.299 Δ

(0)
4,1 Δ

(4)
0,1 ⊕ Δ

(4)
1,1 −9.432

V1 Δ
(0)
3,1 Δ

(4)
0,0 −10.114 Δ

(0)
4,1 Δ

(4)
0,1 ⊕ Δ

(4)
1,1 −9.243

V2 Δ
(0)
4,2 Δ

(4)
0,0 −9.804 Δ

(0)
4,2 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 −9.069

V3 Δ
(0)
0,5 Δ

(4)
2,4 −9.121 Δ

(0)
4,1 Δ

(4)
0,1 ⊕ Δ

(4)
1,1 −8.825

V4 Δ
(0)
6,6 Δ

(4)
8,2 −8.975 Δ

(0)
14,7 Δ

(4)
0,1 ⊕ Δ

(4)
1,1 −7.343

V5 Δ
(0)
13,4 Δ

(4)
7,3 −7.904 Δ

(0)
6,7 Δ

(4)
2,2 ⊕ Δ

(4)
3,2 −5.675

V6 Δ
(0)
13,1 Δ

(4)
5,4 −6.197 Δ

(0)
0,6 Δ

(4)
0,0 ⊕ Δ

(4)
1,7 −3.725

V7 Δ
(0)
14,1 Δ

(4)
12,3 −4.268 Δ

(0)
9,0 Δ

(4)
0,1 ⊕ Δ

(4)
3,2 −1.733

Table 6. Best single-bit and dual-bit differential biases (log2) for 5-round SNOW-V.

Domain Single-bit Dual-bit

ID OD |εd| ID OD |εd|
V0 Δ

(0)
12,6 Δ

(5)
12,3 −13.943 Δ

(0)
7,7 Δ

(5)
4,2 ⊕ Δ

(5)
15,5 −12.771

V1 Δ
(0)
0,5 Δ

(5)
10,6 −13.971 Δ

(0)
0,1 Δ

(5)
3,3 ⊕ Δ

(5)
13,2 −12.819

V2 Δ
(0)
14,7 Δ

(5)
2,3 −14.055 Δ

(0)
4,4 Δ

(5)
4,0 ⊕ Δ

(5)
14,6 −12.622

V3 Δ
(0)
4,0 Δ

(5)
15,1 −14.021 Δ

(0)
11,0 Δ

(5)
9,3 ⊕ Δ

(5)
11,7 −12.671

V4 Δ
(0)
1,4 Δ

(5)
5,2 −14.147 Δ

(0)
9,1 Δ

(5)
8,3 ⊕ Δ

(5)
14,3 −12.713

V5 Δ
(0)
15,4 Δ

(5)
2,0 −14.047 Δ

(0)
6,7 Δ

(5)
7,5 ⊕ Δ

(5)
15,4 −12.669

V6 Δ
(0)
2,5 Δ

(5)
15,6 −14.081 Δ

(0)
11,1 Δ

(5)
4,0 ⊕ Δ

(5)
15,2 −12.820

V7 Δ
(0)
6,7 Δ

(5)
6,7 −13.589 Δ

(0)
0,7 Δ

(5)
1,2 ⊕ Δ

(5)
6,1 −12.408

biases when the domain is restricted using the chosen-IV technique. For example,
we obtain the best single-bit (or dual-bit) differential bias of |εd| = 2−4.268 (or
2−1.733) for domain V7, whereas we find |εd| = 2−10.299 (or 2−9.432) for domain V0.
However, as shown in Table 6, all of the best single-bit and dual-bit differential
biases are almost constant regardless of the domain in the 5-round SNOW-V.
These results demonstrate that the chosen-IV technique is valid for the 4-round
SNOW-V, but not for the 5-round SNOW-V.

For the 4-round SNOW-V, the best dual-bit differential bias in domain V7,
i.e., |εd| = 2−1.733, provides a practical differential distinguisher. According to
Theorem 1, 24.466 samples suffice to distinguish the 4-round SNOW-V from a
true random number generator with a constant probability of success. Similarly,
for the 5-round SNOW-V, the best dual-bit differential bias in domain V2, i.e.,
|εd| = 2−12.622, provides the best differential distinguisher. Although the best
dual-bit differential bias in domain V7 is higher than that in V2, i.e., |εd| =
2−12.408, that in domain V7 cannot provide the best differential distinguisher
because domain V7 contains only 216 elements. Thus, 226.244 samples suffice
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to distinguish the 5-round SNOW-V from a true random number generator;
however, the accuracy of the experimental results may be insufficient because we
have conducted experiments with only 224 IDs to observe the differential biases.
To find more precise dual-bit differential biases for the 5-round SNOW-V, we
have focused on the best ID-OD pair in each domain (excluding domain V7)
listed in Table 6, and have conducted additional experiments with 28 trials using
232 IDs for each key. Consequently, we obtain the best dual-bit differential biases
in domain V4, such that ID is Δ

(0)
9,1, OD is Δ

(5)
8,3⊕Δ

(5)
14,3, and |εd| is approximately

2−17.934. Thus, our experiments have revealed that at least 236.868 samples suffice
to distinguish the 5-round SNOW-V from a true random number generator.

5 Key Recovery Attack on the 4-Round SNOW-V

In this section, we describe a key recovery attack on the 4-round SNOW-V. To
the best of our knowledge, our attack is the best key recovery attack on the
reduced-round SNOW-V since the cube attack on the 3-round SNOW-V pro-
posed by Ekdahl et al. [4], which was the best to date. Our proposed attack is
an improvement on the differential attack based on a technique called probabilis-
tic neutral bits (PNB) proposed by Aumasson et al. [1].

5.1 Differential Attack Based on Probabilistic Neutral Bits (PNB)

Aummason et al. proposed a differential attack based on PNB and applied it to
Salsa and ChaCha [1]. In this subsection, we introduce their attack to clarify the
difference from our proposed attack, which is described in Sect. 5.2. Their attack
consists of two phases: precomputation and online phases. The precomputation
phase is further divided into three phases: differential characteristic search (as
described in Sect. 4.1), PNB identification, and probabilistic backwards compu-
tation phases.

PNB Identification Phase. PNB is a concept which divides the secret key
bits into two sets: m-bit significant key bits and n-bit non-significant key bits.
To identify these two sets, Aumasson et al. focused on the amount of influence
which each secret key bit has on the output difference OD, and defined that
amount as neutral measure.

Definition 1 ([1, Definition 1]). The neutral measure of the key bit κi with
respect to the output difference OD is defined as γi, where Pr = 1

2 (1 + γi) is the
probability that complementing the key bit κi does not change the OD.

For example, according to Definition 1, we have the following singular cases of
the neutral measure:

– γi = 1: OD does not depend on the i-th key bit, i.e., it is non-significant.
– γi = 0: OD is statistically independent of the i-th key bit, i.e., it is significant.
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To identify the PNB by using the concept of the neutral measure, we perform
the following procedure after the differential characteristic search phase:

Step 1. Compute the keystream pair Z,Z ′ corresponding to the input pair
X(0),X ′(0) with the input difference Δ

(0)
i,j . Note that the keystream Z is

derived by X(0) + X(R) in the case of Salsa and ChaCha.
Step 2. Prepare a new input pair X

(0)
,X ′(0) with the key bit position i of the

original input pair X(0),X ′(0) flipped by one bit.
Step 3. Compute the internal state pair Y (r), Y ′(r) with Z − X

(0)
, Z ′ − X ′(0)

for r < R, as inputs to the inverse function of the initialization in the case
of Salsa and ChaCha.

Step 4. Compute Γ
(r)
p,q = yp[q] ⊕ y′

p[q], where yp[q] and y′
p[q] are the q-th bit of

the p-th word of Y (r) and Y ′(r), respectively.
Step 5. Repeatedly perform Steps 1–4 by using different input pairs with the

same Δ
(0)
i,j ; compute the neutral measure as Pr(Δ(r)

p,q = Γ
(r)
p,q | Δ

(0)
i,j = 1) =

1
2 (1 + γi), where Δ

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Sect. 4.1).
Step 6. Set a threshold γ and put all key bits with γi < γ into a set of significant

key bits (of size m) and those with γi ≥ γ into a set of non-significant key
bits (of size n).

Probabilistic Backwards Computation Phase. In the differential charac-
teristic search phase, we derive the r-th round differential biases from input pairs
with the chosen input difference, i.e., this implies that we perform the forwards
computation in the target cipher. However, in the case of Salsa and ChaCha, we
can also derive the r-th round differential biases from the obtained keystream
by performing the backwards computation, which is called the probabilistic back-
wards computation.

In the probabilistic backwards computation phase, we perform the following
procedure after the PNB identification phase:

Step 1. Compute the keystream pair Z,Z ′ corresponding to the input pair
X(0),X ′(0) with the input difference Δ

(0)
i,j .

Step 2. Prepare a new input pair X̂(0), X̂ ′(0) with only non-significant key bits
reset to a fixed value (e.g., all zero) from the original input pair X(0),X ′(0).

Step 3. Compute the internal state pair Ŷ (r), Ŷ ′(r) with Z − X̂(0), Z ′ − X̂ ′(0)

for r < R, as inputs to the inverse function of the initialization in the case
of Salsa and ChaCha.

Step 4. Compute Γ̂
(r)
p,q = ŷp[q] ⊕ ŷ′

p[q], where ŷp[q] and ŷ′
p[q] are the q-th bit of

the p-th word of Ŷ (r) and Ŷ ′(r), respectively.
Step 5. Repeatedly perform Steps 1–4 by using different input pairs with the

same Δ
(0)
i,j ; compute the r-round bias εa as Pr(Δ(r)

p,q = Γ̂
(r)
p,q | Δ

(0)
i,j = 1) =

1
2 (1 + εa), where Δ

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Sect. 4.1).
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According to [1], the bias ε is approximated as εd · εa and considered to compute
the overall complexity of the attack on the R-round target cipher.

Online Phase. According to [1], we perform the following procedure after the
precomputation phase:

Step 1. For an unknown key, we collect N keystream pairs where each pair is
generated by a random input pair (satisfying the relevant input difference).

Step 2. For each choice of the subkey (i.e., the m-bit significant key bits) do:
Step 2-1. Derive the r-th round differential biases from the N keystream

pairs by performing the backwards computation.
Step 2-2. If the optimal distinguisher legitimates the subkeys candidate as

a (possibly) correct one, we perform an additional exhaustive search over
the n non-significant key bits in order to check the correctness of this
filtered subkey and to find the non-significant key bits.

Step 2–3. Stop if the correct key is found, and output the recovered key.

Complexity Estimation. According to [1,2], given samples N and probability
of false alarm is Pfa = 2−α, the time complexity of the attack is given by

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√

1 − ε2

ε

)2

,

for probability of non-detection Pnd = 1.3 × 10−3. In practice, α (and hence N)
is chosen such that it minimizes the time complexity of the attack.

5.2 Application to SNOW-V

In this subsection, we present how to apply the differential attack based on PNB,
as described in Sect. 5.1, to the reduced-round SNOW-V. However, its applica-
tion to SNOW-V, unlike the existing attacks on Salsa and ChaCha, is difficult to
compute the difference biases from the obtained keystreams by performing the
backwards computation, i.e., it is difficult to perform in the same procedure as
Step 3 in the PNB identification phase and Step 3 in the probabilistic backwards
computation phase, as described in Sect. 5.1.

To solve this problem, in our proposed attack, we replace the backwards
computations in these steps with the forwards computations. Our attack consists
of three precomputation phases: differential characteristic search (as described
in Sect. 4.1), PNB identification, and probabilistic forwards computation phases.
The online phase is a similar procedure to that described in Sect. 5.1, i.e., we
simply replace the backwards computation with the forwards computation in
Step 2-1 of the online phase.
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PNB Identification Phase. In the PNB identification phase, we replace Step
3 in the existing phase with a step to perform the forwards computation. Addi-
tionally, it is not necessary to perform Step 1 in the existing phase because no
backwards computation is performed. In summary, for the application to SNOW-
V, we perform the following procedure after the differential characteristic search
phase:

Step 1. Prepare a new input pair X
(0)

,X ′(0) with the key bit position i of the
original input pair X(0),X ′(0) flipped by one bit. Note that, according to
Sect. 2.2, an input X(0) of SNOW-V is initialized from a secret key and an
initialization vector.

Step 2. Compute the keystream pair z, z′ with X
(0)

, X ′(0) as inputs to the
r-round initialization of SNOW-V.

Step 3. Compute Γ
(r)
p,q = zp[q] ⊕ z′

p[q], where zp[q] and z′
p[q] are the q-th bit of

the p-th word of z and z′, respectively.
Step 4. Repeatedly perform Steps 1–4 by using different input pairs with the

same Δ
(0)
i,j ; compute the neutral measure as Pr(Δ(r)

p,q = Γ
(r)
p,q | Δ

(0)
i,j = 1) =

1
2 (1 + γi), where Δ

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Sect. 4.1).
Step 5. Set a threshold γ, put all key bits with γi < γ into a set of significant

key bits (of size m) and those with γi ≥ γ into a set of non-significant key
bits (of size n).

Probabilistic Forwards Computation Phase. Similar to the proposed PNB
identification phase, we improve the existing probabilistic backwards computa-
tion phase. In summary, for the application to SNOW-V, we perform the follow-
ing procedure after the PNB identification phase:

Step 1. Prepare a new input pair X̂(0), X̂ ′(0) with only non-significant key bits
reset to a fixed value (e.g., all zero) from the original input pair X(0),X ′(0).

Step 2. Compute the keystream pair ẑ, ẑ′ with X̂(0), X̂ ′(0) as inputs to the
r-round initialization of SNOW-V.

Step 3. Compute Γ̂
(r)
p,q = ẑp[q] ⊕ ẑ′

p[q], where ẑp[q] and ẑ′
p[q] are the q-th bit of

the p-th word of ẑ(r) and ẑ′(r), respectively.
Step 4. Repeatedly perform Steps 1–4 by using different input pairs with the

same Δ
(0)
i,j ; compute the r-round bias εa as Pr(Δ(r)

p,q = Γ̂
(r)
p,q | Δ

(0)
i,j = 1) =

1
2 (1 + εa), where Δ

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Sect. 4.1).

Complexity Estimation. In our proposed attack, we can construct the fol-
lowing two independent distinguishers:

– A distinguisher based on the differential bias εd.
– A distinguisher based on the bias εa.
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Table 7. The best parameters for our attack in domain V0 for the 4-round SNOW-V
for each threshold γ, where m is the size of significant key bits.

γ ID OD m εa εd α Data Time Probability

1.00 Δ
(0)
4,3 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 127 1.000 2−9.548 109 226.96 2153.97 1.000

0.90 Δ
(0)
4,0 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 82 2−0.183 2−9.546 154 227.36 2109.37 0.958

0.80 Δ
(0)
4,0 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 72 2−0.538 2−9.546 164 227.44 299.45 0.729

0.70 Δ
(0)
4,0 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 67 2−0.714 2−9.546 169 227.48 294.48 0.650

0.60 Δ
(0)
4,0 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 66 2−0.830 2−9.546 170 227.48 293.49 0.542

0.50 Δ
(0)
4,3 Δ

(4)
0,0 ⊕ Δ

(4)
1,0 61 2−1.388 2−9.548 175 227.52 288.53 0.334

Table 8. The best parameters for our attack in domain V7 for the 4-round SNOW-V
for each threshold γ, where m is the size of significant key bits.

γ ID OD m εa εd α Data Time Probability

1.00 Δ
(0)
1,6 Δ

(4)
0,0 ⊕ Δ

(4)
1,1 149 1.000 2−1.878 108 211.59 2154.60 1.000

0.90 Δ
(0)
10,7 Δ

(4)
0,0 ⊕ Δ

(4)
2,7 84 2−0.123 2−1.747 167 211.84 295.86 0.858

0.80 Δ
(0)
10,7 Δ

(4)
0,0 ⊕ Δ

(4)
2,7 74 2−0.570 2−1.747 177 211.91 285.93 0.253

0.70 Δ
(0)
10,7 Δ

(4)
0,0 ⊕ Δ

(4)
2,7 71 2−0.646 2−1.747 181 211.94 281.95 0.150

0.60 Δ
(0)
10,7 Δ

(4)
0,0 ⊕ Δ

(4)
2,7 64 2−1.037 2−1.747 187 211.98 275.99 0.012

0.50 Δ
(0)
1,6 Δ

(4)
0,0 ⊕ Δ

(4)
1,1 47 2−1.742 2−1.878 203 212.35 260.35 0.000

This is because these biases are derived from the (secret) internal states in
the existing attacks, whereas they are derived from the keystreams, which are
obtained by an adversary under the known plaintext attack scenario, in the
application to SNOW-V. Thus, the number of samples N for our attack is given
by

N ≈ max
((√

α log 4 + 3
√

1 − ε2d
εd

)2

,

(√
α log 4 + 3

√
1 − ε2a

εa

)2)
.

Additionally, the time complexity of our attack is given in the same way as that
of the existing attacks [1,2], as described in Sect. 5.1.

5.3 Experimental Results

Based on the attack procedure proposed in the previous subsection, we have
conducted experiments to find the best parameters for our attack on the 4-round
SNOW-V. The following is our experimental environment: five Linux machines
with 40-core Intel(R) Xeon(R) CPU E5-2660 v3 (2.60 GHz), 128.0 GB of main
memory, a gcc 7.2.0 compiler, and the C programming language. To find the
best parameters for our attack, our experiments have been conducted with 28

trials using 224 IDs for each key excluding domain V7. Since domain V7 contains
only 216 elements, we have conducted experiments with 216 trials using 216 IDs
for each key. In addition, we need to consider the possibility that our attack
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has no validity because the application to SNOW-V, unlike the existing attacks
on Salsa and ChaCha, only perform the forwards computation throughout all
phases. To calculate the success probability of our attack, our experiments have
been conducted with 1000 trials by using the best parameters obtained from the
experiments. In our experiments, we consider the attack to be failed if we can
guess a subkey candidate with a higher bias ε∗

a than the bias εa obtained from
the correctly guessed subkey.

Tables 7 and 8 show the best parameters for our attack in domains V0 and
V7 on the 4-round SNOW-V for each threshold γ. Based on these tables, we
appear to be able to perform our attack on the 4-round SNOW-V with the least
time complexity of 260.35 by using the parameter for the threshold γ = 0.50 in
domain V7, but it has no validity because its success probability is zero. However,
as shown in these tables, we can perform our attack with a success probability
of one by using the parameter for the threshold γ = 1.00 in both domains V0

and V7. This is because all key bits with a threshold γi ≥ γ = 1.00 are put into
the set of non-significant key bits, and these have no influence on the output
difference, i.e., this implies that we can always guess all the m-bits subkeys in
the online phase. As a result, we can perform our attack on the 4-round SNOW-
V with a time complexity of 2153.97 and data complexity of 226.96 by using the
parameter for the threshold γ = 1.00 in domain V0; this is the best key recovery
attack on the reduced-round SNOW-V.

6 Conclusion

In this study, we analyzed the security of SNOW-V with three attacks: the
MILP-aided integral attack, the MILP-aided differential attack, and the bit-
wise differential bias attack. These attacks allow us to construct distinguishers
of up to five rounds. Furthermore, the differential biases obtained by the bit-wise
differential bias attack can be integrated into our improved key recovery attack
based on probabilistic neutral bits, which is inspired by the existing study on
Salsa and ChaCha [1,2]. As a result, we present the best key recovery attack
on the 4-round version with a time complexity of 2153.97 and data complex-
ity of 226.96. Consequently, we have improved the best existing attack, which
was evaluated by the designers, in the initialization phase of the reduced-round
SNOW-V.

Acknowledgments. Takanori Isobe is supported by JST, PRESTO Grant Number
JPMJPR2031 and SECOM science and technology foundation.
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Abstract. The emergence of public-key encryption with keyword search
(PEKS) has provided an elegant approach to enable keyword search over
encrypted content. Due to its high computational complexity propor-
tional to the number of intended receivers, the trivial way of deploying
PEKS for data sharing with multiple receivers is impractical, which moti-
vates the development of a new PEKS framework for broadcast mode.
However, existing works suffer from either the vulnerability to keyword
guessing attacks (KGA) or high computation and communication com-
plexity. In this work, a new primitive for keyword search in broadcast
mode, named broadcast authenticated encryption with keyword search
(BAEKS), is introduced, in which the sender not only encrypts the key-
word but also authenticates it, eliminating the threats of KGA. Moreover,
on top of keyword privacy, we formalize the notion of user anonymity
(or key privacy) for BAEKS, which echoes the notion of key privacy for
public-key encryption introduced by Bellare et al. (ASIACRYPT’01). We
present a practical BAEKS construction that achieves all the desirable
features, including keyword privacy of both searchable ciphertext and
trapdoor, KGA-resistance, receiver anonymity of both searchable cipher-
text and trapdoor, and universal keyword set scalability. Moreover, the
trapdoor of our scheme achieves constant computation and communica-
tion cost, making it more suitable for broadcast mode where trapdoors
are generated by multiple receivers in the search operations. The security
of our scheme is proved under the standard DBDH assumption.
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authenticated encryption with keyword search · Anonymity · Keyword
guessing attack

1 Introduction

Public-key encryption with keyword search (PEKS) [4] was introduced by Boneh
et al. to enable keyword search on encrypted content. However, in the textbook
PEKS model, anyone can encrypt a keyword of interest and then use it to test
a searching trapdoor, which is known as the keyword guessing attack (KGA)
[9,36]. To address the aforementioned problem, techniques such as public-key
authenticated encryption with keyword search (PAEKS) [22], dual-server PEKS
(DS-PEKS) [11], and server-aided public key encryption with keyword search
(SA-PEKS) [10], were proposed to eliminate the threat. In PAEKS, in addition
to encrypting the keyword, the sender authenticates it by taking the sender’s
secret key as part of the input, thus preventing others from freely generating a
ciphertext for testing.

While PEKS and PAEKS are designed for the single receiver setting, there are
demands for allowing multiple receivers to perform keyword search in practice.
For instance, due to the city lock-down caused by COVID-19, internet video-
on-demand services have become popular. Without losing generality, we assume
that a service provider is offering various videos that are stored in cloud storage
for a paying viewer to watch at any time. The available videos can be labeled
by the content type, such as “Animation”, “Sports”, “News”, and “Movie”, or
the genre, such as “Comedy”, “Action”, and “Thriller”. If security and privacy
are not a concern, a viewer can search the videos of interest by simply providing
the searching keywords to the cloud server, which will perform the search and
return the results to the user.

In the above application scenario, to protect the content of the videos
uploaded by the service provider and the privacy of the search queries made
by the viewers, a secure and practical searchable encryption scheme for multiple
receivers is required. However, some prominent issues need to be addressed. On
the service provider side, how to support multi-user accessing should be first
considered. The trivial way is to share an identical key with every paying user,
but it suffers from the key compromise issue. If any user is compromised or cor-
rupted, the security of the entire system collapses and it is nearly impossible
to trace the traitor. To avoid the risk of key compromise, public-key solutions
for keyword search supporting multi-user access are more promising. The triv-
ial way is to issue a separate PEKS (or PAEKS) key pair for each user and
encrypt a video’s keyword under each user’s public key. Later, the user gener-
ates a trapdoor with her/his secret key, and the server tests the trapdoor with
each video’s searchable ciphertext (encrypted keyword) to locate the matching
ones without learning the keyword being located1. However, such a trivial solu-
1 The video content should also be encrypted, e.g., by using a standard mechanism

such as broadcast encryption. We only focus on the searching phase in this paper.
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tion is impractical for a large group of receivers due to the repetitive keyword
encryption operations, massive storage overhead and a booming of transmission
bandwidth. Thus, mitigating operation overhead, data redundancy, and com-
munication cost turns to be the main challenge in deploying public-key based
keyword search for multiple receivers.

Although PEKS and its variants considered the keyword privacy in a cipher-
text and/or trapdoor, the identity privacy has been neglected in the prior
research. Identity privacy means given a searchable ciphertext, the identity of
the intended receiver is protected. In addition, for PEKS with multiple receivers,
it is also desirable to protect the identity of the searching user who generates
a searching trapdoor. As multiple nations and regions issued user privacy acts
[18,35], the collection, storage, and analysis of any user information have been
regulated, and user identity privacy plays a role as important as user data pri-
vacy. In traditional public-key encryption, a similar security notion named “key-
privacy” or “anonymity”2 has been formalized by Bellare et al. in [3], demanding
that given a ciphertext, eavesdroppers should not be able to tell under which
specific public key the given ciphertext is generated. In order to provide pri-
vacy protection for the users from all the angles, the key privacy should also
be taken into consideration in PEKS (or PAEKS), i.e., a searchable ciphertext
ought not to reveal the user identities of all intended/target receivers. On the
other hand, different from the traditional public-key encryption in which only
the ciphertext is exposed, in PEKS, the trapdoor is another potential spot of
user identity exposure to the cloud server and other attackers. Back to the inter-
net video-on-demand application, besides the security concern that no viewer
would like parties other than the service provider to know whom a searchable
ciphertext is prepared for, another practical privacy consideration is to conceal
who is searching for the videos, i.e., the identity of a searching user should not
be inferred from a searching trapdoor. We name such a key-privacy property
regarding the trapdoor as “trapdoor anonymity”.

Taking the aforementioned internet video-on-demand service as an example,
we summarize the desirable security and functionality features of a privacy-
preserving keyword search scheme for multiple receivers as follows:

– supporting the multi-receiver setting;
– minimizing the online computation and communication overhead (trapdoor

computation, trapdoor size, and testing);
– ensuring content confidentiality (searchable ciphertext semantic security);
– preserving search (trapdoor) privacy;
– allowing system expansion (scalable universal keyword set);
– maintaining receipient identity privacy for whom the searchable ciphertext is

created (anonymity); and
– concealing user identity privacy from whom the trapdoor is submitted (trap-

door anonymity).
2 The anonymity we discuss here only considers the application layer, hiding user

identity using techniques on other layers such as IP address anonymization is beyond
the scope of our work.
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To the best of our knowledge, no existing PEKS (or PAEKS) scheme can
satisfy all the above features. PAEKS [22] is not capable of supporting mul-
tiple receivers decrypting the same ciphertext. Similarly, searchable symmetric
encryption (SSE) [34] is also not qualified because of the key management issue.
The public-key primitive, broadcast encryption (BE) [6,13,16] seems suitable to
be integrated with keyword search. Unfortunately, these schemes are not anony-
mous, exposing user identity information since the broadcast receiver set is taken
as the input of the decryption algorithm. Its combination [31] with SSE realizes
the multi-receiver setting and mitigates the key compromise but has unpromising
communication performance for their multi-round interactions of token (trap-
door) generation and disallows universal keyword set expansion. The existing
integrations [1,23,26] of BE and keyword search are unsatisfactory as well. Nei-
ther the content confidentiality nor the search (trapdoor) privacy is ensured by
[1]. The test algorithm of [26] takes as input the set of intended receiver identi-
ties, not considering the security requirement of anonymity. Besides the public
parameter size, the trapdoor size of [23] is also linear to the maximal number
of receivers, resulting in large computational and communication overhead. It
additionally suffers from limited expressive ability, i.e., a fixed universal keyword
set. Moreover, their testing algorithm takes the broadcast receiver set as input,
allowing the cloud server to access more sensitive information like all viewers’
identities in the aforementioned scenario.

1.1 Contribution

Motivated by the broadcast scenario mentioned earlier, and the remaining
unsolved challenges, we incorporate PAEKS with BE to present a new primi-
tive called broadcast authenticated encryption with keyword search (or BAEKS,
for short), followed by a concrete scheme. In particular, we provide a formal
and comprehensive treatment for the user anonymity regarding both searchable
ciphertext and trapdoor for BAEKS. Below we first outline the system architec-
ture as Fig. 1, and then give a high-level description of our construction idea.

After setting up system parameters, KGC distributes a unique key pair
(pk, sk) to each entity (sender or receiver). A sender S processes the under-
lying keyword w′ of its document to generate the searchable ciphertext C, using
its own secret key and all target receivers’ public keys, and then uploads the
document together with C to the cloud server. Any receiver R can compute the
trapdoor Tw for the keyword w of interest with its own secret key and a sender’s
public key, and send Tw to the cloud server for a search query. The cloud server
can test on C and Tw without knowing the receiver’s identity, and the corre-
sponding document will be returned if all the following hold: their underlying
keywords are the same (w′ = w), the trapdoor Tw is for querying the content
from the sender S rather than other senders, and the receiver R is one of the
target receivers of the searchable ciphertext C.

To prevent keyword guessing attack, the sender’s secret key is taken as an
input of the encryption algorithm to ensure parties other than the sender cannot
manufacture the ciphertext. Assume there are t intended receivers, the sender
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processes the sender’s secret key, each intended receiver’s public key, and the
keyword to obtain a secret value Vi, and utilizes these t secret values as roots
to construct a t-degree polynomial. Then the sender hides a randomly chosen
secret element k in the polynomial and then includes the coefficients in the
ciphertext. The remaining ciphertext components are calculated based on k. On
the receiver side, the trapdoor generation algorithm takes the sender’s public
key, the receiver’s secret key and the keyword of interest as the input and will
get a trapdoor corresponding to the secret value Vi. On the cloud server side, the
test algorithm takes the trapdoor and coefficients in the ciphertext to recover a
value k′. Note that if the keyword is identical in the ciphertext and the trapdoor,
then k′ = k. With the help of k, the server can do further tests on the remaining
ciphertext components to confirm whether the current ciphertext matches the
trapdoor. However, the above construction has a security issue: two keyword
ciphertexts can be linked if they have the same keyword and common receivers.
To address the problem, we further randomize the polynomial in generating a
keyword ciphertext to break the linkage.

Based on our above construction idea, we can see that neither the receiver nor
the server requires the knowledge of intended receiver set in order to generate a
trapdoor or perform a test, thus not impeding receiver anonymity, i.e., the cur-
rent receiver needs not to recognize other intended receivers in order to search,
and given ciphertext, the server learns nothing about intended receivers. Besides
that the searchable ciphertext hides target receivers’ identities (anonymity), a
by-product is that the trapdoor hides the recipient identity in search (trap-
door anonymity), i.e., the server and other eavesdroppers cannot tell the recip-
ient identity by observing the trapdoor, though they may be granted access to
searchable ciphertexts (simulated by the ciphertext queries in security model).
In addition, no predetermined universal keyword set is demanded and any key-
word could be encrypted or searched, thereby maximizing the system scalability
and flexibility. Moreover, the size and computational cost of public parameter
and trapdoor are constant, which is more practical for the multi-receiver setting
where a large number of trapdoors would be generated by different receivers.

1.2 Related Work

Broadcast encryption (BE) [15] was introduced in 1993. It is for broadcast-
ing messages through public channel while keeping confidentiality. The message
sender is to encrypt the message for a specified set of receivers so that only the
intended receivers can access the message. BE outweighs the traditional point-
to-point encryption in terms of that intended users are able to get the message
by decrypting the same ciphertext. BE has been applied to content subscription
and digital rights management in subsequent decades. The first fully collusion
resistant scheme [6] was presented in 2005, where constant-size ciphertexts and
private keys are obtained, but the size of public keys is still proportional to
the maximal number of receivers. In 2007, the first identity-based broadcast
encryption (IBBE) scheme [13] with constant-size ciphertexts and private keys
was proposed by Delerablee, which is against adaptive chosen-ciphertext attacks
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Fig. 1. BAEKS System Model. KGC: key generation center; CS: cloud server; Si: a
sender; Rj : a receiver.

(CCA) in the random oracle model. In 2009, Gentry and Waters first achieved
the adaptive security in the standard model for IBBE [16]. In 2015, Kim et
al. presented an adaptively CCA-secure IBBE scheme in the standard model
[27] with a dual-system encryption technique. Researchers also worked on BE
with special features such as user revocation [6,32,33] and constant-size cipher-
texts and private keys [13,16]. Anonymity is one of the desirable properties.
With the digitization of each piece of information, identity is undoubtedly a
kind of sensitive information. Conventional BE takes a receiver set as a part of
ciphertext, exposing the identities of intended receivers. Anonymous BE schemes
[2,14,20,21,30] were then constructed to tackle this problem.

Searchable encryption [34] is divided into two categories, searchable sym-
metric encryption (SSE) [12,17,24,25,28,29] and PEKS [4]. Due to its intrinsic
public-key characteristic, PEKS helps address the dilemma of key management
and key abuse in the symmetric-key setting. However, PEKS encountered great
challenges from KGA [9,36] where adversaries can manufacture whatever cipher-
texts of keywords of interest to test with a real trapdoor, learning the keywords
being searched. One of the solutions to resisting such attacks is PAEKS [22].
PAEKS takes the sender’s secret key as input in addition to the receiver’s pub-
lic key to ensure that no one else can forge a ciphertext for the test. There
are also conceptions or applications such as certificateless PAEKS [19] derived
from PAEKS. Another solution is to utilize the server-aided technique [10,11],
in which an assistant server is deployed to help resist KGA.
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The idea of combining PEKS with BE is not new. In 2014, Ali et al. con-
structed a broadcast searchable encryption scheme [1] converted from Boneh et
al.’s broadcast encryption [7]. Unfortunately, [1] is insecure against KGA. KGA
can be launched on their scheme as follows. Anyone is able to manufacture a
searchable ciphertext to test either their real searchable ciphertext or their real
trapdoor, thereby unfolding the underlying keyword. In addition, it sounds quite
unreasonable that their both trapdoor generation and test algorithm take the
broadcast receiver set as input, which means anonymity is never guaranteed. In
2016, Kiayias et al. presented a broadcast keyword search scheme [26]. Unfor-
tunately, the security models regarding anonymity were still not formalized in
their work and their presented scheme’s test algorithm still takes as input the set
of intended receiver identities. In 2019, Jiang et al. introduced a primitive called
identity-based broadcast encryption with keyword search [23] (IBEKS), combin-
ing PEKS with identity-based broadcast encryption to enable multiple intended
receivers to search and decrypt the same ciphertext. Its searchable ciphertext
generation takes the sender’s secret key as input, preventing adversaries from
manufacturing ciphertext to test real trapdoors. However, their trapdoor size
and trapdoor computational complexity are linear to the number of the maxi-
mal number of receivers in the system. Moreover, the test algorithm requires the
broadcast receiver set as input, which means the server needs to recognize all
intended receivers before testing. A universal keyword set is chosen and prede-
termined in setup algorithm and keywords out of the set cannot be processed.
Their security is proved on the intractability of Multi-Sequence of Exponents
Decisional Diffie-Hellman Assumption (MSE-DDH). In conclusion, to the best
of our knowledge, there has been no existing work addressed all the above prob-
lems simultaneously, including anonymity regarding both searchable ciphertext
and trapdoor, defending KGA, and with universal keyword set scalability.

2 Preliminaries

2.1 Bilinear Map

Let e : G×G → GT be a bilinear map, where G,GT are two multiplicative cyclic
groups of the same prime order p. It has the following properties [5]:

– Bilinearity: for any a, b ∈ Zp, g, h ∈ G, e(ga, hb) = e(g, h)ab.
– Non-degeneracy: for any generator g ∈ G, e(g, g) �= 1.
– Computability: for any g, h ∈ G, e(g, h) can be computed efficiently.

2.2 Decisional Bilinear Diffie Hellman Assumption

Given a generator g ∈ G and elements ga, gb, gc ∈ G where a, b, c ∈ Zp are
randomly chosen elements, it is hard to distinguish e(g, g)abc from a random
element Z ∈ GT [8].
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3 Syntax and Security Definitions

In this section, we first present the syntax and five algorithms of BAEKS. Then
the formal security definitions of BAEKS including trapdoor privacy, ciphertext
indistinguishability, trapdoor anonymity, and anonymity are presented.

3.1 Broadcast Authenticated Encryption with Keyword Search

– Setup(1λ) → param: Taking as input the security parameter 1λ, it generates
the public parameters param.

– KeyGen(param) → (pk, sk): Taking as input the public parameter param, it
generates a public/secret key pair (pk, sk) of an entity.

– BAEKS(w, skS ,R) → C: Taking as input the keyword w, the sender’s secret
key skS and all intended receivers’ public keys R = {pkR1 , pkR2 , · · · , pkRt

},
it generates the searchable ciphertext C.

– Trapdoor(w, pkS , skRi
) → Tw: Taking as input the keyword w, the sender’s

public key pkS and the receiver’s secret key skRi
, it generates trapdoor Tw.

– Test(Tw, C) → 1/0: Taking as input a trapdoor Tw and a ciphertext C, it
outputs 1 or 0.

Correctness. For any sender’s keys (pkS , skS) ← KeyGen(param) and any
receiver’ keys (pkRi

, skRi
) ← KeyGen(param) for Ri ∈ R, given a trapdoor

Tw ← Trapdoor(w, pkS , skRi
) generated by the receiver Ri of the broadcast set

R and a searchable ciphertext C ← BAEKS(w, skS ,R) generated by the sender S,
the testing result must be 1 ← Test(Tw, C).

3.2 Security Models

Trapdoor Privacy. From intuition, the trapdoor should not reveal any sensi-
tive information about its underlying keyword. Thus, we formulate a keyword
distinguishing game to depict the security requirement for trapdoors given two
trapdoors for distinct keywords from the same sender to the same receiver. To
be noted, querying ciphertexts from the challenge sender and any receiver set
containing the challenge receiver is prohibited to avoid trivial testing attacks.

1. Setup: Given the security parameter 1λ, the challenger C sends param ←
Setup(1λ), the challenge sender’s public key pkS and the challenge receiver’s
public key pkR to the adversary A.

2. Phase1: A is allowed to adaptively issue the following queries.
– Hash Queries: C responds to hash queries with random numbers.
– Ciphertext Queries: Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1 ,
˜pkR2 , · · · , ˜pkRt

}, it computes the ciphertext C with respect to skS

and R̃, and returns it to A.
– Trapdoor Queries: Given a keyword w, a sender’s public key ˜pkS , it

returns the trapdoor Tw with respect to skR and ˜pkS to A.
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3. Challenge: A chooses two keywords w0, w1 such that (w0,R) and (w1,R)
have not been queried for ciphertexts where pkR ∈ R, and (w0, pkS) and
(w1, pkS) have not been queried for trapdoors, and sends them to C. C ran-
domly chooses a bit b ∈ {0, 1}, computes Twb

← Trapdoor(wb, pkS , skR) and
returns it to A.

4. Phase2: A continues to issue queries as above, with restriction that neither
(w0,R) nor (w1,R) can be queried for ciphertext where pkR ∈ R, and neither
(w0, pkS) nor (w1, pkS) can be queried for trapdoor.

5. Guess: A outputs a bit b′ ∈ {0, 1}. It wins the game if b′ = b.

We define the adversary A’s advantage of successfully distinguishing the trap-
doors of BAEKS as

AdvT
A,BAEKS(λ) = |Pr[b′ = b] − 1

2
|.

Ciphertext Indistinguishability. Ciphertexts are required not to reveal any
sensitive information about its underlying keyword as well. Thus, a keyword dis-
tinguishing game to set forth the security requirement for ciphertexts given two
ciphertexts for different keywords from the same sender to the same broadcast
receiver set. Here trapdoor queries from the challenge sender and any receiver
of the challenge broadcast set should be refused to avoid trivial testing attacks.

1. Setup: Given the security parameter λ, the challenger C sends param ←
Setup(λ), the challenge sender’s public key pkS and the challenge receiver
set’s public keys R = {pkR1 , pkR2 , · · · , pkRt

} to the adversary A.
2. Phase1: A is allowed to adaptively issue the following queries.

– Hash Queries: C responds to hash queries with random numbers.
– Ciphertext Queries: Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1 ,
˜pkR2 , · · · , ˜pkRt

}, it returns the ciphertext C with respect to skS

and R̃ to A.
– Trapdoor Queries: Given a keyword w, a sender’s public key ˜pkS , a chosen

public key pkRi
∈ R, it computes the trapdoor Tw with respect to skRi

and ˜pkS , returns it to A.
3. Challenge: A chooses two keywords w0, w1 such that (w0, pkS) and (w1, pkS)

have not been queried for trapdoors, and sends them to C. C randomly chooses
a bit b ∈ {0, 1}, computes Cb ← BAEKS(wb, skS ,R) and returns it to A.

4. Phase2: A continues to issue queries as above, with restriction that neither
(w0, pkS) nor (w1, pkS) can be queried for trapdoor.

5. Guess: A outputs a bit b′ ∈ {0, 1}. It wins the game if b′ = b.

We define the adversary A’s advantage of successfully distinguishing the cipher-
texts of BAEKS as

AdvC
A,BAEKS(λ) = |Pr[b′ = b] − 1

2
|.
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Anonymity. Similar to anonymous broadcast encryption, ciphertexts are
required not to reveal any sensitive information about their intended receivers.
A broadcast receiver set distinguishing game describes the security requirement,
in which adversary is to tell under which one of the two public key sets the
challenge ciphertext for the identical keyword from the same sender is created.
Here the two sets contain public keys of only one distinct receiver’s public key
pkR0/pkR1 and t − 1 identical receivers’ public keys. Trapdoor queries from the
challenge sender and any of the two distinct receivers should not be responded
to avoid trivial testing attacks.

1. Setup: Given the security parameter λ, the challenger C sends param ←
Setup(λ), the challenge sender’s public key pkS and two different receiver
set’s public keys R0 = {pkR0 , pkR2 , · · · , pkRt

},R1 = {pkR1 , pkR2 , · · · , pkRt
}

of the same size to the adversary A.
2. Phase1: A is allowed to adaptively issue the following queries.

– Hash Queries: C responds to hash queries with random numbers.
– Ciphertext Queries: Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1 ,
˜pkR2 , · · · , ˜pkRt

}, it returns the ciphertext C with respect to skS

and R̃ to A.
– Trapdoor Queries: Given a keyword w, a sender’s public key ˜pkS , a chosen

public key from {pkR0 , pkR1}, it computes the trapdoor Tw with respect
to skR0 or skR1 , and ˜pkS , returns it to A.

3. Challenge: A chooses a keyword w∗ such that (w∗, pkS) has not been queried
for trapdoors, and sends them to C. C randomly chooses a bit b ∈ {0, 1},
computes Cb ← BAEKS(w∗, skS ,Rb) and returns it to A.

4. Phase2: A continues to issue queries as above, with restriction that (w∗, pkS)
cannot be queried for trapdoor.

5. Guess: A outputs a bit b′ ∈ {0, 1}. It wins the game if b′ = b.

We define the adversary A’s advantage of successfully breaking the anonymity
of BAEKS as

AdvANO
A,BAEKS(λ) = |Pr[b′ = b] − 1

2
|.

Trapdoor Anonymity. While anonymity means that searchable ciphertext
should not reveal intended recipients’ identity, trapdoor anonymity implies that
the trapdoor should not disclose any sensitive identity information about their
maker, i.e., the receiver who is searching at present. Specifically, given two
candidate receivers, the trapdoor fails to link the query to the user identity
though testing on the current ciphertext can be utilized. A distinguishing game
describes the security requirement for trapdoors for the identical keyword from
the same sender to two distinct receivers. Of course, it should be restricted that
both challenge receivers have the same inclusion relationship with the intended
receiver set of the queried ciphertext C for the challenge keyword w∗, i.e., either
pkR0 , pkR1 ∈ R̃ or pkR0 , pkR1 /∈ R̃ in order to exclude the trivial testing attacks,
i.e., distinguishing between the two receivers by running Test(Tw∗,b, C) → 1/0.
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1. Setup: Given the security parameter λ, the challenger C sends param ←
Setup(λ), the challenge sender’s public key pkS and two different receivers’
public keys pkR0 , pkR1 to the adversary A.

2. Phase1: A is allowed to adaptively issue the following queries.
– Hash Queries: C responds to hash queries with random numbers.
– Ciphertext Queries: Given a keyword w, a receiver set’s public keys R̃ =

{ ˜pkR1 ,
˜pkR2 , · · · , ˜pkRt

}, it returns the ciphertext C with respect to skS

and R̃ to A.
– Trapdoor Queries: Given a keyword w, a sender’s public key ˜pkS , a chosen

public key from {pkR0 , pkR1}, it computes the trapdoor Tw with respect
to skR0 or skR1 , and ˜pkS , returns it to A.

3. Challenge: A chooses a keyword w∗ such that (w∗, pkS) has not been queried
for trapdoors, and (w∗,R) has not been queried for ciphertexts where R0, R1

have different inclusion relationships with R, and sends it to C. C randomly
chooses a bit b ∈ {0, 1}, computes Tw∗,b ← Trapdoor(w∗, pkS , skRb

) and
returns it to A.

4. Phase2: A continues to issue queries as above, with restriction that neither
(w∗, pkS) can be queried for trapdoor, nor (w∗,R) can be queried for cipher-
texts where R0, R1 have different inclusion relationships with R.

5. Guess: A outputs a bit b′ ∈ {0, 1}. It wins the game if b′ = b.

We define the adversary A’s advantage of successfully breaking the trapdoor
anonymity of BAEKS as

AdvT−ANO
A,BAEKS(λ) = |Pr[b′ = b] − 1

2
|.

4 Broadcast Authenticated Encryption with Keyword
Search

In this section, a concrete BAEKS scheme is proposed which has all the desired
features as our expectation, followed by the correctness analysis.

4.1 Construction

– Setup(1λ) → param: Taking as input the security parameter 1λ, it generates
a bilinear map system (p,G,GT , e), where p is a prime s.t. |p| = λ, G and
GT are two cyclic groups with the same order p, e is a bilinear map e :
G × G → GT . It picks random generators g, u, v, z ∈ G, hash functions H1 :
{0, 1}∗ → G,H2 : GT → Zp,H3 : {0, 1}∗ → Zp. The public parameters are
param = {p,G,GT , e, g, u, v, z,H1,H2,H3}.

– KeyGen(param) → (pk, sk): Taking as input the public parameter param, it
generates a random element x ∈ Z

∗
p, sets sk = x, pk = gx and outputs a

public/secret key pair (pk, sk).
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– BAEKS(w, skS ,R) → C: Taking as input the keyword w, the sender’s secret
key skS and all intended receivers’ public keys R = {pkR1 , pkR2 , · · · , pkRt

},
it chooses random elements τ, k, y ∈ Z

∗
p. For i = 1, 2, · · · , t, computes Vi =

H2(e(H1(w)skS , pkRi
)) and f(x) = (x − y)

∏
i∈R(x − Vi) + k =

∑t
j=0 ajx

j +
xt+1(mod p), where aj is the coefficient corresponding to xj . It computes
Aj = gaj for j = 0, 1, · · · , t, C0 = gk, h = H3(C0, A0, A1, · · · , At), C1 =
(uhvτz)k and sets C = (τ, C1, A0, A1, · · · , At).

– Trapdoor(w, pkS , skRi
) → Tw: Taking as input the keyword w, the sender’s

public key pkS , and the receiver’s secret key skRi
, it computes the trapdoor

Tw = H2(e(H1(w)skRi , pkS)).
– Test(Tw, C) → 1/0: Taking as input a trapdoor Tw and a ciphertext

C = (τ, C1, A0, A1, · · · , At), it computes C0 =
∏t

j=0 A
T j

w
j · gT t+1

w , h =
H3(C0, A0, A1, · · · , At). It outputs 1 if e(C1, g) = e(uhvτz, C0); and 0 oth-
erwise.

4.2 Correctness

Assume a trapdoor Tw and a searchable ciphertext C = (τ, C1, A0, A1, · · · , At)
are given to the server. Note that a trapdoor Tw generated by an intended
receiver whose pkRi

∈ R is actually Vi that is used for constructing the searchable
ciphertext:

Vi = e(H1(w)sks , pkRi
) = e(H1(w)skRi , pkS) = Tw.

Then the server can recover the implied C ′
0 using Tw as follows:

C ′
0 =

t∏

j=0

A
T j

w
0 · gT t+1

w = g
∑t

j=0 ajT j
w+T t+1

w = gf(Tw) = gf(Vi) = gk′
.

Obviously, the server can verify the searchable ciphertext C is the target one for
the trapdoor Tw if the following equation holds:

e(C1, g) = e((uhvτz)k, g) = e(uh′
vτz, gk′

) = e(uh′
vτz, C ′

0)

where h′ = H3(C ′
0, A0, A1, · · · , At).

Remark (Ciphertext Unlinkability). The random element y ∈ Z
∗
p ran-

domizes the searchable ciphertext C, specifically, the polynomial coefficients
a0, a1, · · · , at, or A0, A1, · · · , At. Even in the case that two ciphertexts are
encrypted for the same receiver set R and the same keyword w, such random-
ization ensures the unlinkability for the two searchable ciphertexts.

5 Proof

In this section, we prove that our concrete scheme satisfies trapdoor privacy
and ciphertext indistinguishability in accordance with our formulated security
models. Due to space limitation, we only include theorems, and the proof of
anonymity and trapdoor anonymity is detailed in the full version of this paper.
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5.1 Trapdoor Privacy

Theorem 1. If the adversary A wins the trapdoor privacy game with advantage
εT , then there exists a probabilistic polynomial time (PPT) adversary B which
can solve the DBDH problem with advantage

εDBDH ≥ εT · 2
(qT + qC)e

where qT is the number of trapdoor queries and qC is the number of ciphertext
queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor
Privacy of our BAEKS scheme with a non-negligible advantage εC , then we can
use it to construct another PPT algorithm B to solve the DBDH problem.

– Setup: B takes as input a DBDH problem instance, i.e. (G,GT , e, p, g, ga,
gb, gc, Z), where a, b, c are randomly chosen from Zp, and Z is either e(g, g)abc

or a random element of GT . Let β be a bit such that β = 0 if Z = e(g, g)abc,
and β = 1 if Z is random. B randomly chooses generators u, v, z ∈R G, hash
functions H1 : {0, 1}∗ → G,H2 : GT → Zp,H3 : {0, 1}∗ → Zp and sets
param = (p,G,GT , e, g, u, v, z,H1,H2,H3). B sets pkS = ga, pkR = gb, sends
param and public keys to A.

– Phase 1: A is allowed to adaptively issue the following queries.
• H1 Queries: B maintains a list L1 , which is initiated empty and contains
tuples 〈w, ·, ·〉. Upon a query wl, if the tuple 〈wl, dl, h1,l〉 is already in L1,
B returns h1; otherwise, B randomly chooses dl ∈ Z∗

q , tosses a coin γl

such that Pr[γl = 0] = δ.
1. If γl = 0, computes h1,l = gc·dl ;
2. otherwise, computes h1,l = gdl .
B adds 〈wl, γl, dl, h1,l〉 to L1 and returns h1,l.
• H2 Queries: B maintains a list L2, which is initiated empty and contains
tuples 〈α, ·〉. Upon a query α, if the tuple 〈α, h2〉 is already in L2, B

returns h2; otherwise, B randomly chooses h2 ∈ Z
∗
p, adds 〈α, h2〉 to L2

and returns h2.
• H3 Queries: B maintains a list L3, which is initiated empty and contains
tuples 〈γ, ·〉. Upon a query γ, if the tuple 〈γ, h3〉 is already in L3, B returns
h3; otherwise, B randomly chooses h3 ∈ Z

∗
p, adds 〈γ, h3〉 to L3 and returns

h3.
• Ciphertext Queries: Given a keyword wl, a receiver set’s public keys
R̃ = { ˜pkR1 ,

˜pkR2 , · · · , ˜pkRt
}, B first looks up L1 to find the entry

〈wl, γl, dl, h1,l〉.
1. If γl = 0, aborts;
2. otherwise, for each ˜pkRi

∈ R̃, computes αi = e(ga, ˜pkRi
)dl ,

looks up L2 to find the entry 〈αi, h2,i〉. If there is no such entry, ran-
domly chooses h2,i ∈ Z

∗
p, adds 〈αi, h2,i〉 to L2, and sets Vi = h2,i. B
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randomly picks τ, k, y ∈R Z
∗
p, computes f(x) = (x − y)

∏
i∈R̃(x −

Vi) + k =
∑t

j=0 ajx
j + xt+1(mod p), where aj is the coefficient

corresponding to xj . It computes Aj = gaj for j = 0, 1, · · · , t,
C0 = gk, h = H3(C0, A0, A1, · · · , At), C1 = (uhvτz)k and sets C =
(τ, C1, A0, A1, · · · , At).

• Trapdoor Queries: Given a keyword wl, a sender’s public key ˜pkS , B
first looks up L1 to find the entry 〈wl, γl, dl, h1,l〉.
1. If γl = 0, aborts;
2. otherwise, computes α = e(gb, ˜pkS)dl , looks up to L2 to find the

entry 〈α, h2〉. If there is no such entry, randomly chooses h2 ∈ Z
∗
p,

adds 〈α, h2〉 to L2, and returns Tw = h2.
– Challenge: A chooses two distinct keywords w0, w1 such that (w0,R) and

(w1,R) have not been queried for ciphertexts where pkR ∈ R, and (w0, pkS)
and (w1, pkS) have not been queried for trapdoors, and sends them to B.
B randomly chooses a bit β ∈ {0, 1}, looks up L1 to find the entries
〈w0, γ0, d0, h1,0〉 and 〈w1, γ1, d1, h1,1〉,
1. if γ0 = γ1 = 1, aborts;
2. otherwise, computes α = Zdβ , looks up to L2 to find the entry 〈α, h2〉

and returns T ∗
w = h2 to A.

– Phase2: A continues to issue queries as above, with restriction that neither
(w0,R) nor (w1,R) can be queried for ciphertext where pkR ∈ R, and neither
(w0, pkS) nor (w1, pkS) can be queried for trapdoor.

– Guess: A outputs a bit β′. If β′ = β, B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two
cases in which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as
abt1. The probability that abt1 does not happen:

Pr[¬abt1] = (1 − δ)qT +qC

2. The event that γ0 = γ1 = 1 in challenge. We denote it as abt2. The probability
that abt2 does not happen:

Pr[¬abt2] = 1 − (1 − δ)2

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] · Pr[¬abt2] = (1 − δ)qT +qC · (1 − (1 − δ)2).

When δ = 1 −
√

qT +qC

qT +qC+2 , the above probability takes the maximum, Pr[¬abt]
approximately equals 2

(qT +qC)e , which is non-negligible since qT , qC are polyno-
mials and e is the natural logarithm base.
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Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b ∧ abt] + Pr[b′ = b ∧ ¬abt]
= Pr[b′ = b|abt] · Pr[abt] + Pr[b′ = b|¬abt] · Pr[¬abt]
=

1
2

· (1 − Pr[¬abt]) + (εT +
1
2
) · Pr[¬abt]

=
1
2

+ εT · Pr[¬abt]

If εT and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b] − 1
2
| ≥ εT · 2

(qT + qC)e
.

5.2 Ciphertext Indistinguishability

Theorem 2. If the adversary A wins the ciphertext indistinguishability game
with advantage εC , then there exists a PPT adversary B which can solve the
DBDH problem with advantage

εDBDH ≥ εC · 2
(qT + qC)e

where qT is the number of trapdoor queries and qC is the number of ciphertext
queries.

Proof. Assume that there is a PPT adversary A which breaks the Trapdoor
Privacy of our BAEKS scheme with a non-negligible advantage εC , then we can
use it to construct another PPT algorithm B to solve the DBDH problem.

– Setup: Public parameter generation is same as Trapdoor Privacy game. B
sets pkS = ga, R = {pkR∗

1
, pkR∗

2
, · · · , pkR∗

t
} = {gb·r∗

1 , gb·r∗
2 , · · · , gb·r∗

t } where
r∗
i ∈R Z

∗
p, and sends param and public keys to A.

– Phase 1: A is allowed to adaptively issue the following queries.
• H1, H2, H3 and Ciphertext Queries: same as Trapdoor Privacy game.
• Trapdoor Queries: Given a keyword wl, a sender’s public key ˜pkS ,
a chosen public key pkR∗

i
∈ R, B first looks up L1 to find the entry

〈wl, γl, dl, h1,l〉.
1. If γl = 0, aborts;
2. otherwise, computes α = e(gb, ˜pkS)r∗

i ·dl , looks up to L2 to find the
entry 〈α, h2〉. If there is no such entry, randomly chooses h2 ∈ Z

∗
p,

adds 〈α, h2〉 to L2, and returns Tw = h2.
– Challenge: A chooses two distinct keywords w0, w1 such that (w0, pkS) and

(w1, pkS) have not been queried for trapdoors, and sends them to B. B ran-
domly chooses a bit β ∈ {0, 1}, looks up L1 to find the entries 〈w0, γ0, d0, h1,0〉
and 〈w1, γ1, d1, h1,1〉,
1. if γ0 = γ1 = 1, aborts;
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2. otherwise, for each pkR∗
i

∈ R computes αi = Zdβ ·r∗
i , looks up L2 to find

the entry 〈αi, h2,i〉 and sets Vi = h2,i. Randomly picks τ, k, y ∈R Z
∗
p,

computes f(x) = (x − y)
∏

i∈R(x − Vi) + k =
∑t

j=0 ajx
j + xt+1(mod p),

where aj is the coefficient corresponding to xj . It computes Aj = gaj for
j = 0, 1, · · · , t, C0 = gk, h = H3(C0, A0, A1, · · · , At), C1 = (uhvτz)k and
sets C = (τ, C1, A0, A1, · · · , At).

– Phase2: A continues to issue queries as above, with restriction that neither
(w0, pkS) nor (w1, pkS) can be queried for trapdoor.

– Guess: A outputs a bit β′. If β′ = β, B outputs 0, otherwise 1.

Here we use abt to denote the event that B aborts in the game. There are two
cases in which abt happens.

1. The event that γl = 0 in trapdoor and ciphertext queries. We denote it as
abt1. The probability that abt1 does not happen:

Pr[¬abt1] = (1 − δ)qT +qC

2. The event that γ0 = γ1 = 1 in challenge. We denote it as abt2. The probability
that abt2 does not happen:

Pr[¬abt2] = 1 − (1 − δ)2

Then the probability that B does not abort is:

Pr[¬abt] = Pr[¬abt1] · Pr[¬abt2] = (1 − δ)qT +qC · (1 − (1 − δ)2).

When δ = 1 −
√

qT +qC

qT +qC+2 , the above probability takes the maximum, Pr[¬abt]
approximately equals 2

(qT +qC)e , which is non-negligible since qT , qC are polyno-
mials and e is the natural logarithm base.

Thus, the probability that B solves the DBDH problem is

Pr[b′ = b] = Pr[b′ = b ∧ abt] + Pr[b′ = b ∧ ¬abt]
= Pr[b′ = b|abt] · Pr[abt] + Pr[b′ = b|¬abt] · Pr[¬abt]
=

1
2

· (1 − Pr[¬abt]) + (εC +
1
2
) · Pr[¬abt]

=
1
2

+ εC · Pr[¬abt]

If εC and Pr[¬abt] are non-negligible, so is

εDBDH = |Pr[b′ = b] − 1
2
| ≥ εC · 2

(qT + qC)e
.
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5.3 Anonymity and Trapdoor Anonymity

Theorem 3. If the adversary A wins the anonymity game with advantage εANO,
then there exists a PPT adversary B which can solve the DBDH problem with
advantage

εDBDH ≥ εANO · 1
(qT + qC + 1)e

where qT is the number of trapdoor queries and qC is the number of ciphertext
queries.

Theorem 4. If the adversary A wins the trapdoor anonymity game with advan-
tage εT−ANO, then there exists a PPT adversary B which can solve the DBDH
problem with advantage

εDBDH ≥ εT−ANO · 1
(qT + qC + 1)e

where qT is the number of trapdoor queries and qC is the number of ciphertext
queries.

6 Comparison with Existing Works

To the best of our knowledge, the IBEKS of [23] is the only existing multi-receiver
keyword search scheme with KGA resistance before this work. A detailed func-
tionality comparison between IBEKS [23] and our BAEKS is given in Table 1.
Table 2 and Table 3 provide comparisons of computation cost and communication

Table 1. Functionality Comparison between [23] and Ours

KGA resistance Anonymity Universal keyword set scalability Assumption

[23] � × × MSE-DDH

Ours � � � DBDH

Table 2. Computation Cost Comparison

Encrypt Trapdoor Test

[23] (2n + 4)Ge (2n + 2)Ge+nGp 2tGe + 3Gp

Ours (2t + 5)Ge + tGp Ge + Gp (t + 4)Ge + 2Gp

Table 3. Communication Complexity Comparison

Public parameter size Secret key size Trapdoor size Ciphertext size

[23] ((2n + 1) + l(n + 2))|G| |Zp| + 2|G| (n + 1)|G| + n|GT | 3|G|
Ours 4|G| |Zp| |Zp| |Zp| + (t + 2)|G|
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overhead. � means “satisfy”, × refers to “not satisfy”. n denotes the maximal
number of receivers in the system, t denotes the number of intended broadcast
receivers and l denotes the number of keywords of the universal keyword set.
|Zp| refers to the element size of field Zp, |G| refers to the element bit-length
of group G, and |GT | refers to the element bit-length of group GT . Ge refers to
exponentiation, Gp refers to pairing.

As described in Table 1, both [23] and our scheme takes the sender’s secret key
as input to authenticate the keyword when encrypting, hence they are immune
to KGA. In terms of anonymity, [23] takes all the broadcast receiver identity
information as the input of the test algorithm, while ours needs no such input
and is proven to ensure anonymity as well as trapdoor anonymity. The universal
keyword set is predetermined in setup algorithm and keywords out of the uni-
versal set cannot be encrypted and searched in [23], while there is no keyword
limitation when encrypting or searching in ours. [23] is proved secure based on
MSE-DDH, while our scheme is proved secure based on a simple and standard
assumption DBDH.

Since calculation other than exponentiation and pairing are far less time-
consuming, we merely evaluate and analyze the complexity of exponentiation
and pairing. The computational complexity of [23]’s encryption is linear to the
number of the maximal number of receivers O(n), so is that of their trapdoor
generation. In contrast, our encryption computational complexity is only pro-
portional to the number of intended broadcast receivers O(t), which is no greater
than the maximal number of receivers. Our trapdoor generation complexity is
constant O(1). In the comparison of test computation, even though both schemes’
cost is linear to the number of intended broadcast receivers O(t), our scheme’s
actual cost is less than [23]. Details can be found in Table 2.

According to Table 3, in spite of the ciphertext size of [23] is constant O(1)
and smaller than ours O(t), our performance on all the remaining sizes (public
parameter size, secret key size, and trapdoor size) is better than theirs. Their
public parameter size is not only linear to the maximal number of receivers in
the system n but also proportional to the number of the universal keyword set
size l, while ours is constant. Both schemes’ secret key size is constant but our
specific complexity is smaller. Their trapdoor size grows with the number of the
maximal number of receivers n, while ours remains unchanged.

In short, our scheme outperforms [23] on functionality, computation cost and
communication complexity.

7 Conclusion

We first introduced a cryptographic primitive called broadcast authenticated
encryption with keyword search that engages in authenticated keyword search
in broadcast mode. The subsequent detailed scheme elegantly avoids the trap-
door size increasing with the number of broadcast receivers, requires no universal
keyword set and is proved secure based on a simple and standard assumption.
Moreover, its desirable properties, i.e., anonymity and trapdoor anonymity sur-
pass the performance of existing constructions. Therefore, it accommodates the
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demand for multi-user access, achieves competitive computational complexity
and comprehensive security. We leave reducing the ciphertext size to a constant
as an open problem and our future work.
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Abstract. Broadcast Encryption is a fundamental cryptographic prim-
itive, that gives the ability to send a secure message to any chosen target
set among registered users. In this work, we investigate broadcast encryp-
tion with anonymous revocation, in which ciphertexts do not reveal any
information on which users have been revoked. We provide a scheme
whose ciphertext size grows linearly with the number of revoked users.
Moreover, our system also achieves traceability in the black-box confir-
mation model.

Technically, our contribution is threefold. First, we develop a generic
transformation of linear functional encryption toward trace-and-revoke
systems. It is inspired from the transformation by Agrawal et al.
(CCS’17) with the novelty of achieving anonymity. Our second contribu-
tion is to instantiate the underlying linear functional encryptions from
standard assumptions. We propose a DDH-based construction which does
no longer require discrete logarithm evaluation during the decryption
and thus significantly improves the performance compared to the DDH-
based construction of Agrawal et al.. In the LWE-based setting, we tried
to instantiate our construction by relying on the scheme from Wang et
al. (PKC’19) but finally found an attack to this scheme. Our third con-
tribution is to extend the 1-bit encryption from the generic transforma-
tion to n-bit encryption. By introducing matrix multiplication functional
encryption, which essentially performs a fixed number of parallel calls on
functional encryptions with the same randomness, we can prove the secu-
rity of the final scheme with a tight reduction that does not depend on
n, in contrast to employing the hybrid argument.

Keywords: Anonymity · Trace and revoke · Functional encryption

1 Introduction

Trace-and-revoke systems, introduced in [21,22] have been studied extensively
in many works, including [4,11,14,18,24]. A trace-and-revoke system is a multi-
recipient encryption scheme in which a content distributor can find malicious
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users and revoke their decryption capability. Note that a user might share its
secret key with non-legitimate entity. In such a case, it should be possible to
identify the user, so that it is revoked from further accessing new content. A
traitor tracing system guarantees that if a coalition of users pool their secret keys
to construct a pirate decoder box that can decrypt ciphertexts, then there is an
efficient trace algorithm to find at least one guilty user provided the algorithm is
given access to the decoder. Then the content distributor can use the revocation
functionality to prohibit guilty users from accessing the data in the future. A
revocation system ensures that if a coalition of illegitimate users pools their
secret keys, they still cannot decrypt the ciphertext. A natural question occurs
if one can devise a protocol where a revoked user is not able to find out if it has
been revoked. One may further request that, given a ciphertext, no legitimate
user will get any information about the users who have been revoked.

Anonymity of receivers is important in numerous real-life applications and
have been considered in multiple works, such as [7,13,15,19,20]. The standard
notion of anonymity requires that the adversary cannot distinguish between
ciphertexts of two targeted sets of its choice, even if it can corrupt any user in
the intersection of these two sets or outside of the two sets. Unfortunately, it
turned out to be extremely difficult to achieve this anonymity level in the general
case without any restriction on the size of the target set. The state-of-the-art
constructions by Barth et al. [7] and Libert et al. [20] start from a public-key
encryption and result in schemes with ciphertext size which is N times larger,
where N denotes the total number of users. Moreover, Kiayias and Samari [17]
proved that ciphertext size will be linear in N in the general case.

For revoke systems, the efficiency is often negatively correlated to the upper
bound on the number of revoked users. One of the most important applications
of broadcast encryption is Pay-TV and it can typically be in the form of a
revoke system: the service broadcasts to all users except revoked users who were
detected as traitors or who unsubscribed from the system. The state-of-the-art
revoke systems [4,11,21,22] have compact ciphertext sizes that grow as O(r)
for r the bound of revoked users and which is not dependent in the number of
users. None of these schemes is anonymous. An attempt was made to consider
outsider adversaries, who can only corrupt users outside of the two targeted
sets. In this limited setting, Fazio and Perera [15] showed that one can get
key and ciphertext sizes that are sublinear in the number of users. We observe
totally different situations for getting anonymity in broadcast encryption and in
revoke systems: in broadcast encryption, optimal solutions exist [6,9] but one
cannot get the anonymity with sublinear ciphertext size in the total number of
users; in revoke systems, no impossibility result has been settled and it does
not exclude the possibility to get an anonymous schemes which is as efficient as
non-anonymous ones, namely ciphertext size is O(r), independent in the number
of users. In this paper, we show that we can design anonymous schemes with
O(r) ciphertext size. Moreover, we also handle traceability to achieve anonymous
trace-and-revoke systems.
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1.1 Contributions

Our primary contribution is to develop the first symmetric-key trace-and-revoke
scheme with traceability and anonymous revocation. We give two constructions
of trace-and-revoke schemes, namely TR0 and TR1 from so-called linear func-
tional encryptions. The former TR0 is generically constructed from inner prod-
uct functional encryption (IPFE) and encrypts single bit messages. Similarly,
TR1 is constructed from matrix multiplication functional encryption (MMFE)
to support n-bit messages. Interestingly, unlike [4], our DDH instantiations do
not require discrete-log evaluation for ciphertext decryption.

Our second contribution is to propose efficient constructions. We give an
efficient construction of MMFE in the prime-order groups and prove that our
MMFE construction is indeed tightly secure under the standard matDH assump-
tion. As IPFE construction and its security proof follow from those of MMFE,
we omit them here and describe them in the full version. This construction can
be seen as tweaking Tomida’s tightly secure IPFE for the symmetric-key set-
tings [25]. However, we note that our security argument is somewhat different
from Tomida’s. On top of that, our tightly secure MMFE is more efficient than
applying [25] naively.

Our third contribution is a cryptanalysis on the LWE-based IPFE construc-
tion of [26]. This justifies our choice of LWE-based IPFE to instantiate TR0.

Anonymous Revocation. Before describing our results, we discuss the notion
of anonymous revocation in trace-and-revoke schemes. The Enc algorithm of
any trace-and-revoke scheme takes a message m and a revoked user set descrip-
tion R and computes a ciphertext that can only be decrypted by users outside R.
The anonymity property intuitively means that no information on R should be
inferred from the ciphertext. A typical multi-challenge security model is defined
by polynomially many challenge phases where the adversary adaptively produces
(m(t),R(t)

0 ,R(t)
1 ) on the t-th phase and gets an encryption of (m(t),R(t)

β ) for the
same β ← {0, 1} throughout the phases. However, this security model is quite
strong and there are practical scenarios that do not require such stronger defi-
nition. For example, a typical trace-and-revoke scheme revokes more and more
users over time. If a revoked user wants to get access to the system again, it
has to contact the broadcaster, which can give the user a new key. In such a
scenario, the revoked user set increases with time, such that R(t−1) ⊆ R(t) for
any timestamp t > 1. We model this scenario by introducing the restriction
that, for any t, if the adversary produces the challenge (m(t),R(t)

0 ,R(t)
1 ), then

R(t−1)
0 ⊆ R(t)

0 and R(t−1)
1 ⊆ R(t)

1 , and call the resulting security property multi-
challenge monotonic anonymity mIND-ID-CPA.

1.2 Technical Overview

We start with a basic description of the trace-and-revoke scheme by Agrawal et
al. [4] (in the bounded collusion model). Each user id in this scheme is associated
with a vector xid and, correspondingly, a set R is associated with XR, the vector
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space spanned by (xid)id∈R. Then, the predicate ‘id /∈ R’ can be emulated by
testing if ‘〈xid,vR〉 = 0’ for vR orthogonal to XR. Using this relation, one
encrypts a message m by encrypting m · vR using an IPFE. An IPFE key for
xid is used to evaluate id /∈ R in the encrypted domain. We now describe the
decryption algorithm of [4] to clarify that this construction does not achieve
anonymity of the revocation set. Decryption takes a ciphertext ct for (m,R)
and a secret key sk for id and runs IPFE decryption to obtain an intermediate
Res = 〈xid,m · vR〉. The correctness then follows from the fact that decryption
can compute 〈xid,vR〉 and divide Res by it to retrieve m. This is the reason why
the description of R is provided as part of the ciphertext. Thus, the Agrawal et
al. scheme does not achieve revocation set hiding.

Our constructions build on [4], but avoid the above difficulty by exploiting
the fact that if we consider the message to be single bit (i.e., m ∈ {0, 1}), we
have the following four cases:

– m = 0, id ∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is zero.
– m = 1, id ∈ R: Same as above where the value of 〈xid,yR〉 = m · 〈xid,vR〉 is

zero; therefore, when id ∈ R, the message m is hidden.
– m = 0, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is again zero.
– m = 1, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is non-zero.

The above list of cases shows that a secret key for xid decrypts an IPFE ciphertext
for m ·vR and retrieves m ∈ {0, 1} correctly if id /∈ R. Note that the decryption
algorithm no longer requires the description of the revoked set R. Based on this
observation, our constructions translate (m,R) into a vector m·vR where vR is a
random vector orthogonal to XR and id to a non-zero vector xid. The monotonic
anonymity (in the mIND-ID-CPA security model discussed above) then follows
from the fact that the underlying IPFE hides the plaintext vector (here m ·vR).
For an n-bit message space, we can run independent and parallel executions of
the IPFE that allow bit-by-bit retrieval of the message encrypted.1 We propose
a more efficient alternative, namely, matrix multiplication functional encryption
(MMFE). Our generic transformation above ensures that any efficient instan-
tiation of MMFE will result in efficient trace-and-revoke scheme. We discuss
constructions of MMFE in both the group-based settings and in the lattice-
based settings. We further show that our group-based construction of MMFE is
tightly secure under standard assumptions. For lattice-based setting, we suggest
to use [4] as we could mount a concrete attack on the state-of-the-art [26], ren-
dering it insecure. Lastly, we note that tracing is performed in a similar fashion
to [4].

An Attack on the Wang et al. IPFE. Here, we show that the IPFE construction
by Wang et al. can be broken for the parameters chosen in [26]. Our attack
can be thwarted by increasing the parameters, but then the scheme does not
1 In practice, we use this scheme to send 128-bit session keys or a stream: if an user is

in the targeted set then it decrypts correctly and if the user is not in the targeted set
then it gets all 0s (and therefore the equivalent of a trivial decryptor which generates
0 all the time).



218 O. Blazy et al.

enjoy great efficiency compared to the one from [4]. Here, we give the overview
LWE-based IPFE from [26]. The dimension n of the LWE secrets is proportional
to the security parameter λ, the parameters �,m, p, q are polynomial in n. The
master secret key is Z, uniform over {0, . . . , p − 1}�×m. The public key is of
the form pk = (A ∈ Z

m×n
q ,T = ZA ∈ Z

�×n
q ). The secret key for the vector

x ∈ Z
�
p is skx = xt · Z. The ciphertext for a vector y ∈ Z

�
p is of the form

(c0 ≈ As, c1 ≈ Ts+(q/p)·y). The authors state that under the LWE assumption,
this IPFE is adaptively secure for chosen message distributions, assuming that
the secret key queries are linearly independent. We will give an algorithm that
can recover the master key from the public key and ciphertexts (i.e., recover z
from Xt and Xtz, where z ← {0, . . . , p − 1}� and X ∈ {0, . . . , p − 1}�×(�−1) is
chosen by the adversary). We remark that z belongs to a coset of the lattice
orthogonal of X defined by t. The crux of the attack is that for parameters as
above, the minimum of this lattice is larger than ‖z‖. This means that we have a
Bounded Distance Decoding problem instance in a lattice of dimension 1. Finally,
we also explain why our attack does not extend to the schemes from [4,5].

Organization of the Paper. In Sect. 2, we present some important definitions.
In Sect. 3, we present black-box transformations to convert linear functional
encryptions into trace-and-revoke systems with traceability and anonymity of
revocation. Before we present group-based MMFE construction, in Sect. 4, we
show an attack of a recent LWE-based IPFE construction [26]. Then, in Sect. 5,
we present a construction of MMFE in the prime-order groups.

2 Definitions and Preliminaries

For a, b ∈ N such that a ≤ b, we often use [a, b] to denote {a, . . . , b}. Given a set
of vectors S, we use Matrix(S) to denote the matrix whose each row is a distinct
vector from S. For any two sets S and R, we define SΔR = (S \ R) ∪ (R \ S).
For a dictionary D = (k, vk)k, D.vals() gives the set {vk : k ∈ D}. For a vector
space V over a field K, the corresponding orthogonal space is denoted by V⊥.
For a distribution D, we write x ← D to say that x is sampled from D. The
ppt abbreviation stands for probabilistic polynomial time. We denote Ggen(1λ, p)
→ (g,G) such that G is a cyclic group of prime order p and g generates G. For
A = (aij) ∈ Z

β×α
p we denote [A] = (gaij ) ∈ Z

β×α
p . For m, k ∈ N for m > k, we

use M ← Dm,k to get a full rank matrix M ∈ Z
m×k
p where the first k rows are

linearly independent.

2.1 Linear Functional Encryption

A functional encryption scheme [10] allows a user, having a secret key skf corre-
sponding to a function f , to evaluate f(z) securely given a ciphertext ctz for a
plaintext z. The inner product function, being one of the simplest functionalities,
has received a tremendous amount of exposure [1–3,5,12,25]. We here define an
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extended version for IPFE in symmetric-key settings called Matrix Multiplica-
tion Functional Encryption (MMFE). Informally speaking, having a secret key
skx for x ∈ Z

�
p, given a ciphertext ctM for for M ∈ Z

n×�
p , MMFE outputs a binary

vector of length n where the ith component indicates if Mix = 0 for i ∈ [n] in
terms of a predicate f : Zp → {0, 1}. Precisely, MMFE .Dec(skx, ctM) outputs

(f(M1x), . . . , f(Mnx)) where f(z) =

{
0 if z = 0
1 otherwise

. We say that an MMFE

scheme MMFE is IND-CPA-secure if no polynomial adversary can distinguish a
ciphertext ctM(0) from another ciphertext ctM(1) for distinct M(0),M(1) ∈ Z

n×�
p .

Thus, IPFE scheme IPFE is basically MMFE with n = 1. We present the defini-
tions more formally in the full version of the paper due to page limitation.

2.2 Trace-and-Revoke Systems

A symmetric key traitor tracing encryption scheme is a multi-recipient encryp-
tion system in which a broadcasting office has the master secret key for encryp-
tion and there are many users with decryption capabilities, each having its
own secret key. Additionally, the encryption scheme provides a feature to let
the broadcaster identify at least one user from a coalition T of malicious users
(traitors) that built an unauthorized decryption device D. The following is the
blackbox confirmation model [8], in which an efficient tracing algorithm Trace is
given oracle access to D, which we denote by OD. The oracle OD takes as input
any message-ciphertext pair (m,C) and returns 1 if D(C) = m and 0 otherwise.
Given as input a set S of suspected users containing T , the Trace algorithm
should disclose the identity of at least one user from the set T . For security, a
traitor coalition should not be able to design a useful box that escapes tracing,
i.e., such that the Trace algorithm replies ⊥ or frames an innocent user in S \T .

Following [4], the probability of decryption of decoder D, can be estimated by
repeatedly querying the oracle OD with plaintext-ciphertext pairs. Therefore, we
assume the decryption device D correctly decrypts a properly generated cipher-
text with significant probability. The following is a description of D, reproduced
from [4] and modified for the symmetric-key setting. Let R be any set of revoked
users, of size ≤ r. Let the message m be sampled uniformly at random from the
message space M and let CR be the output of the encryption algorithm Enc
using the master secret key msk and R as the set of revoked users. With CR as
input, the device D is assumed to output m with probability significantly more
than 1/|M|:

Pr
m ← U(M)

CR ← Enc(msk, pp, R, m)

[
OD(CR,m) = 1

]
≥ 1

|M| +
1
λc

, (1)

for some constant c > 0.
We let the identity space ID and the message space M be implicit arguments

to the setup algorithm below. We let the secret key space K, the ciphertext
space C (along with ID and M) and the descriptions of mathematical tools that
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are used be part of the public parameters output by the setup algorithm. We
adapt the definition from [4] to the symmetric-key setting.

Definition 1. A dynamic trace-and-revoke scheme TR in the black-box confir-
mation model is a tuple TR = (Setup,KeyGen,Enc,Dec,Trace) of five ppt algo-
rithms with the following specifications.

• Setup(1λ, 1r, 1t) takes as input the security parameter λ, the bound t on the
size of traitor coalitions and the bound r on the number of revoked users. It
outputs (msk, pp, dir) containing the master secret key msk, the public param-
eters pp and the initially empty user directory dir. Here, unlike [4], dir is kept
secret.

• KeyGen(pp,msk, dir, id) takes as input the public parameters pp, the master
secret msk, the user directory dir and an identity id ∈ ID of a user. It out-
puts the corresponding secret key skid and some information uid for the given
identity id. It also updates dir to include uid.

• Enc(pp,msk, dir,R,m) takes as input the public parameters pp, the master
secret msk, the user directory dir, a set R of size ≤ r which contains the uid
of each revoked user in dir, and a plaintext message m ∈ M. It outputs a
ciphertext CR ∈ C.

• Dec(pp, skid, CR) takes as input the public parameters pp, a secret key skid of a
user with identity id and a ciphertext CR ∈ C. It outputs a plaintext m′ ∈ M.

• Trace(pp,msk, dir,R,S,OD) is a tracing algorithm in the black-box confirma-
tion model that takes as input the public parameters pp, the master secret
key msk, the user directory dir, a set R of ≤ r revoked users, a set S of ≤ t
suspect users, and has black-box access to the pirate decoder D through the
oracle OD. It outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the
randomness used by the algorithms, for (pp,msk, dir) ← Setup(1λ, 1r, 1t), for any
set R of ≤ r revoked users:

∀m ∈ M, ∀id ∈ ID \ R : Dec(pp, skid,Enc(pp,msk, dir,R,m)) = m.

In this work, we consider three security properties for a trace-and-revoke
scheme: message hiding, revocation set hiding, and traceability.

2.2.1 Message Hiding
The IND-CPA security of a trace-and-revoke scheme TR is defined based on the
following game. Informally speaking, neither a system outsider nor a revoked
user must be able to get any information about the encrypted message.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public param-
eters pp to the adversary A. The adversary may ask the challenger to add
polynomially many users in the system (these user addition queries can be
adaptive and take place at any time in the game). The challenger updates dir
accordingly.
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• The adversary can adaptively make up to r secret key queries and a single
challenge ciphertext query, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given the challenge ciphertext query (m0,m1,R) with R ⊂ ID of size ≤ r,
the challenger samples β ← {0, 1} and provides C(β) ← Enc(pp,msk,
dir,R,mβ) to A.

These queries are subject to the restriction that every queried id belongs to R.
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the

challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as

AdvIND-CPA
TR,A = |Pr[β = β′] − 1/2|.

A trace-and-revoke scheme TR is said to be IND-CPA secure if AdvIND-CPA
TR,A is

negligible for all ppt adversary A.

2.2.2 Revocation Set Hiding
The anonymity of a trace-and-revoke scheme TR captures the idea of hiding the
revocation set in the ciphertext: if tth challenge ciphertext is created for one of
the two adversarially chosen revoked sets (R(t)

0 ,R(t)
1 ) on the tth challenge phase,

then the adversary cannot distinguish if R(t)
0 or R(t)

1 was used for the encryption
for all of t.

As we already have mentioned in the Introduction, we aim for a multi-
challenge security settings that properly emulates the following scenario: A typ-
ical trace-and-revoke scheme traces and revokes more and more users over the
time. In such a scenario, each new ciphertext is created for growing revoked user
sets. We call this setting as monotonic anonymity security model (mIND-ID-CPA)
and define it as following.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public param-
eter pp to the adversary A. The adversary may ask the challenger to add
polynomially many users in the system (these user addition queries can be
adaptive and take place at any time in the game). The challenger updates dir
accordingly.

• The adversary can adaptively make up to (r + t) secret key queries and
polynomially many anonymity challenge queries, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given a challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of
size ≤ r, the challenger samples β ← {0, 1} and provides C(β) ←
Enc(pp,msk, dir,Rβ ,m) to A.

These queries are subject to the restriction that for every queried id, either
id ∈ R0 ∩R1 or id ∈ ID\ (R0 ∪R1). Among all the key queries that have been
made, at most t of them could be satisfying id ∈ ID \ (R0 ∪ R1) and at most
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r of them could be satisfying id ∈ R0 ∩ R1. The challenge anonymity queries
also have a natural restriction that R(i)

0 ⊆ R(j)
0 and R(i)

1 ⊆ R(j)
1 for all i ≤ j

where the tth challenge anonymity query was made on (m(t),R(t)
0 ,R(t)

1 ).
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the

challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as

AdvmIND-ID-CPA
TR,A = |Pr[β = β′] − 1/2|.

A trace-and-revoke scheme TR is said to be mIND-ID-CPA secure if
AdvmIND-ID-CPA

TR,A is negligible for all ppt adversary A.

2.2.3 Traceability
The notion of traceability considers a suspected set S of users who might have
produced the pirate decoder D. Then the tracing algorithm Trace outputs an
id ∈ S \ T where T is the set of traitors who are already detected. This require-
ment is formalized using the following game, denoted by AD-TT, between an
adversary A and a challenger. We reproduce the security model from [4] for sake
of completeness.2 More precisely, the authors of [4] achieved public-traceability :
for this purpose, the public-key Enc algorithm was used to construct so-called
probe ciphertexts to query OD and identify a traitor. Our trace-and-revoke
scheme relies on a symmetric key Enc algorithm, and hence tracing relies on
the master secret key msk (in particular, tracing is not public).

• The challenger runs Setup(1λ, 1r, 1t) and gives pp to A. The adversary may
ask the challenger to add polynomially many users in the system (these user
addition queries can be adaptive and take place at any time in the game).
The challenger updates dir accordingly.

• Adversary A makes adaptive traitor key queries on at most t distinct users.
For every id queried, the challenger checks to find uid ← dir[id]. If available,
records id in T and returns skid. Otherwise, adds uid to dir[id], records id in
T and returns skid ← KeyGen(pp,msk, id).

• Adversary A sends an adaptively chosen revocation set R ⊂ ID of size ≤ r
and gets back all the secret keys {skid ← KeyGen(pp,msk, id)}id∈R.

• Adversary A then produces a pirate decoder D and gives the challenger its
access in terms of an oracle OD. A also produces a suspect set S of size ≤ t
containing T and sends it to the challenger.

2 Recently, a more general model of pirate, called pirate distinguisher, have been intro-
duced and considered in [16,24]. However, as proven in [13], in the bit-encryption
setting, such a notion of pirate distinguisher is equivalent to the pirate decoder.
In this section, we consider bit-encryption and in the next section about multi-bit
encryption, the tracing is reduced to the tracing in the bit-encryption sub schemes.
Therefore, we keep using the definition from [4] (adapted to the symmetric-key set-
ting).
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• The challenger then runs Trace(pp,msk, dir,R,S,OD). The adversary wins if
both of the following hold:

∗ Equation (1) is satisfied for the set of revoked users R chosen by the
adversary (i.e., decoder D is useful),

∗ the execution of Trace outputs ⊥ or outputs an id ∈ S\T with probability
≥ 1/λc.

We define the tracing advantage AdvAD-TT
TR,A as the probability of A’s win. A trace-

and-revoke scheme TR is said to be AD-TT secure if the advantage AdvAD-TT
TR,A is

negligible for all ppt adversary A.

3 Trace-and-Revoke from Linear Functional Encryption

In this section, we construct a trace-and-revoke system from a linear functional
encryption scheme that achieves traceability and anonymous revocation. This is
achieved in two steps. First, a trace-and-revoke system for single-bit messages is
constructed from inner product functional encryption. Then we extend such a
trace-and-revoke system to support arbitrary fixed length strings.

We first define a generic transformation similar to the one of [4], which con-
verts an IND-CPA secure inner product functional encryption scheme IPFE into
a trace-and-revoke system TR0 for the restricted message space M = {0, 1}
that enjoys anonymous revocation. Note that this transformation converts an
IND-CPA secure IPFE in the bounded collusion model to a trace-and-revoke
system TR0 that supports an exponential number of users like [4]. Then we pro-
vide another generic transformation that converts an IND-CPA secure matrix
multiplication functional encryption scheme (MMFE) into a trace-and-revoke
system TR1 for the message space M = {0, 1}n for n as large as poly(λ). This
transformation also ensures that TR1 achieves anonymous revocation along with
supporting an exponential number of users.

As, our primary contribution in this paper, is to introduce trace-and-revoke
schemes with anonymous revocation, our presentation mainly focuses on the con-
struction and the anonymity security of TR0 and TR1. Nevertheless, in Sect. 3.1,
we have provided a complete description of the TR0 that includes an explicit
description of the Trace function. For the sake of simplicity, we however have
presented the general trace-and-revoke systems TR1 in Sect. 3.2 without a Trace.
Note that, TR1 can use the Trace algorithm of TR0.

3.1 Trace-and-Revoke for Single Bit Messages

We construct a trace-and-revoke scheme TR0 following the specifications of Def-
inition 1 for the message space M = {0, 1}. TR0 relies on a user directory dir
which contains the identities of all the users that have been assigned keys in the
system. This user directory is initially empty. Unlike [4], we assume that dir can
only be accessed by the central authority, which is the sender as well as the key
generator. TR0 relies on an inner product functional encryption scheme IPFE for
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the �-dimensional vector space on Zp, where the value � is a function of r and t.
Recall that, in a typical trace-and-revoke scheme, the bound on the number of
revoked users r and the bound on the number of suspected users (traitors) t
are given as the system parameters. Our description of IPFE (simpler form of
MMFE as noted in Sect. 2.1) comes with an injective map f whose description
is included in the public parameters pp. To define the trace-and-revoke scheme
TR0, we define a special element in the range of the map elem∗ = f(0). Concretely,
in case of a group-based construction of IPFE , we take the exponentiation map
f : x �→ [x] and have elem∗ = [0]. In case of a lattice-based construction, we take
the identity map f : x �→ x and have elem∗ = 0.

1. Setup(1λ, 1r, 1t). Upon input the security parameter λ, the bound t on the
number of the suspected users, and the bound r on the number of revoked
users, set p = λω(1) and proceed as follows:
(a) Let (pp,msk) ← IPFE .Setup(1λ, 1�, p), where we set � = 2r + t + 1. The

key space K and ciphertext space C are the IPFE key space and ciphertext
space, respectively.

(b) Create an empty directory dir.
(c) Output the public parameter pp, master secret key msk and the (empty)

user directory dir.
2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master

secret key msk, the user directory dir and a user identity id ∈ ID, proceed as
follows:
(a) Sample xid ← Z

�
p. The pair uid = (id,xid) is then appended to dir.

(b) Let skid ← IPFE .KeyGen(pp,msk,xid).
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameters pp, the master
secret key msk, the user directory dir, a set of revoked users R of size ≤ r and
a plaintext message m ∈ M = {0, 1}, proceed as follows:
(a) Sample vR ← X⊥

R where XR = {xid : id ∈ R}.
(b) Compute yR = m · vR.
(c) Output CR = IPFE .Enc(pp,msk,yR).

4. Dec(pp, (skid,xid), CR). Upon input the public parameters pp, the secret
key skid for user id and a ciphertext CR, proceed as follows:
(a) Compute Res = IPFE .Dec(pp, (skid,xid), CR).
(b) If Res = elem∗, then output 0. Otherwise output 1.

5. Trace(pp,msk, dir,R,S,OD). Upon input the master secret key msk, the user
directory dir, a revoked set of users R, a suspect set of users S and given
access to the oracle OD, proceed as follows:
(a) Suppose the users in the suspect set S can distinguish between the mes-

sages m = 0 and m′ = 1 except with negligible probability provided these
users can access the oracle OD.3

(b) Set S1 = {id1, id2, . . .} = S \ R.
(c) Sample vR ← X⊥

R where XR = {xid : id ∈ R}.

3 Note that [4] used Hoeffding’s inequality to ensure that one can efficiently find such
distinguishable m and m′. In our case, it is simpler, as M = {0, 1}.
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(d) For all i = 1, 2, . . . , t,
– If i = 1, set vSi

= 0. If Si = ∅, set vSi
= (m′ − m) · vR.

– Otherwise, sample vSi
← X⊥

R∪Si
∩

(
X⊥

S1\Si
+ (m′ − m) · vR

)
where

XR∪Si
= {xid : id ∈ R ∪ Si} and XS1\Si

= {xid : id ∈ S1 \ Si}.
– Construct yi = vSi

+ m · vR;
– Provide the oracle OD with (CSi

,m) as input and get a binary value bi

as output. Suppose the probability of bi = 1 is pi.
– The probe ciphertext is CSi

= IPFE .Enc(pp,msk,yi); We note that,
the decryption result of the probe ciphertext CSi

is m if id ∈ Si and
m′ if id ∈ S \ Si.

– If i > 1 and |pi − pi−1| is non-negligible,
• Output idi−1 as the traitor identity and abort;
• If Si = φ, output ⊥ and abort. Otherwise, set Si+1 = Si \ {idi}.

We state the following theorems that are essential for the correctness and defer
the proofs to the full version of the paper, due to page limitation.

Theorem 1. Assume that p = λω(1). Then, for every set R of revoked users of
size ≤ r, every id /∈ R and every m ∈ M = {0, 1}, we have

Dec(pp, (skid,xid),Enc(pp,msk, dir,R,m)) = m,

with probability ≥ 1 − λ−ω(1).

Theorem 2. Let R be arbitrary of size ≤ r and assume Eq. (1) holds for OD

and R. Then we have:∣∣∣∣ Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1] − Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1]
∣∣∣∣ ≥ 2

λc
,

with probability ≥ 1 − λ−ω(1) and for some constant c > 0.

Security. We prove that the base scheme TR0 enjoys message hiding, revocation
set hiding and traceability. We defer these proofs to the full version.

Theorem 3. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to r key extraction queries, then TR0 is IND-CPA secure.

Theorem 4. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to (t + r) key extraction queries, then TR0 is mIND-ID-CPA
secure.

Theorem 5. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing (r + t) queries, then TR0 is AD-TT secure.
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3.2 Efficient Trace-and-Revoke for Bit Strings

We present a trace-and-revoke scheme TR1 for M = {0, 1}n that does not run
parallel independent n executions of TR0. However, we note that, we omit the
description of Trace here as it follows from the Trace algorithm of TR0. This
scheme again assumes the existence of a user directory dir which is initialized
to be empty, contains the identities of the users that have been assigned keys in
the system. We assume that dir can only be modified by the central authority
who is the sender as well as the key generator. Here, we assume existence of
an efficient matrix multiplication functional encryption MMFE that encrypts
matrices of n × � dimension. The intuitive idea here is that, we utilize n copies
of inner product of � dimensional vectors as a linear system of equations Mx
where M ∈ Z

n×�
p and x ∈ Z

�
p. Each of the rows of M is used to encrypt each

message bit.

1. Setup(1λ, 1n, 1r, 1t). Upon input the security parameter λ, the message bit-
length n, the bound t on the number of the suspected users and the bound r
on the number of revoked users, set p = λω(1) and proceed as follows:
(a) Let (pp,msk) ← MMFE .Setup(1λ, 1�, 1n, p), where we set � = 2r+t+n+1.
(b) Output the public parameter pp, master secret key msk and an empty

user directory dir.
2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master

secret key msk, the user directory dir and a user identity id ∈ ID, proceed as
follows:
(a) Sample xid ← Z

�
p. The pair uid = (id,xid) is then appended to the user

directory dir.
(b) Let skid ← MMFE .KeyGen(pp,msk,xid) ∈ MMFE .K.
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameter pp, the master secret
key msk, the user directory dir, a set of revoked users R of size ≤ r and a
plaintext messages m ∈ M = {0, 1}n, proceed as follows:
(a) Sample vR,1, . . . ,vR,n ← X⊥

R where XR = {xid ∈ Z
�
p : id ∈ R}.

(b) Compute yR,i = mi · vR,i for i ∈ [1, n].
(c) Define a matrix MR = (yR,1, . . . ,yR,n)	.
(d) Output CR = MMFE .Enc(pp,msk,MR).

4. Dec(pp, (xid, skid), CR). Upon input the public parameters pp, the secret
key skid for user id and a ciphertext CR considering the revoked set R, proceed
as follows:
(a) Compute t = MMFE .Dec(pp, (xid, skid), CR).
(b) Output m′ = (m′

1, . . . ,m
′
n) ∈ {0, 1}n where for all i ∈ [1, n], m′

i = 0 if
ti = elem∗; else m′

i = 1.

Correctness. The correctness basically follows from the correctness of TR0

above. The main difference is that, functionally, Enc of TR1 is some-what n
many copies of Enc of TR0. Thus, Dec must concatenate all the bits to get back
the message. Therefore, TR1 is correct if Dec of TR1 retrieves all the bits mi

correctly. Now, if ∃i ∈ [1, n], such that Dec of TR1 didn’t compute mi correctly,
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this can be extended to an attack on the correctness of Dec of TR0. This basically
ensures the correctness of TR1.

Security. We prove that TR1 enjoys message hiding and revocation set hiding.
We defer these proofs to the full version due to page limitation.

Theorem 6. If MMFE is an IND-CPA secure matrix multiplication functional
encryption scheme, then TR1 is IND-CPA secure.

Theorem 7. If MMFE is an IND-CPA secure matrix-multiplication functional
encryption scheme allowing at most (t + r − 1) key extraction queries, then TR1

is mIND-ID-CPA secure.

Construction TR0 and TR1. Note that, available IPFE schemes [4,5] suffice to
construct of TR0 and TR1. In particular, withholding the public keys of available
IPFE schemes, one can get symmetric-key IPFE schemes and use them to con-
struct TR0. Furthermore, TR1 can be constructed from running n independent
instances of any symmetric-key IPFE scheme. We in fact use this technique to
construct TR0 and TR1 in the lattice-based settings withholding the public key of
Agrawal et al.’s IPFE [4]. In the group-based settings, however, we can achieve
more efficient constructions than naively hiding the public key of the public-
key IPFE. In Sect. 5, we propose new constructions of symmetric-key IPFE and
symmetric-key MMFE in the prime-order groups.

4 Cryptanalysis of the Wang et al. IPFE Construction

As we mention above, the schemes from Sect. 3 can be instantiated with the
LWE-based IPFE scheme from [4]. Note that the latter does not enjoy IND-CPA
security, but it was showed to enjoy a weaker security property that still suffices
for the trace-and-revoke scheme from [4]. That weaker security property restricts
the number of key requests to be significantly smaller than the dimension of the
vector space, and imposes that the vectors of the key queries are uniformly
sampled. This relaxation of IND-CPA security also suffices for our adaptation
from Sect. 3.

IPFE scheme from [26], note that the LWE-based IPFE scheme from [26] is
also claimed to enjoy a security property that is stronger than IND-CPA security
(which the authors leverage to obtain a decentralized Attribute-Based Encryp-
tion scheme). In fact, as we will show below, this scheme can be broken for
the parameters suggested in [26]. Before showing an attack, we first recall some
definitions.

Lattices. Given n linear independent vectors b1, . . . ,bn ∈ R
m, the lattice gen-

erated by them is defined as

L(B) := {Bz =
∑

i∈[1,n]

zibi : z ∈ Z
n}.
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The rank of this lattice is n and its dimension is m.
We define the determinant of L as det(L) :=

√
det(BtB). For a rank-n

matrix B ∈ R
m×n, there exist orthogonal matrices U,V and a diagonal matrix

Σ = Diag(σ1, . . . , σn) ∈ R
m×n such that B = UΣVt and σ1 ≥ · · · ≥ σn > 0.

From this decomposition, we see that det(L(B)) =
∏

i∈[1,n] ‖σi‖.
For i ∈ [1, n], the i-th successive minimum λi(L) is defined as

λi(L) := inf{r : dim(Span(L ∩ B(r))) ≥ i},

where B(r) denotes the closed zero-centered Euclidean ball of radius r.

Definition 2. Let m > n ≥ 1 be integers and q ≥ 2 be prime. Let X ∈ Z
m×n.

The orthogonal lattice Λ⊥(X) is the integral lattice whose vectors are
orthogonal to the rows of X, i.e.,

Λ⊥(X) := {u ∈ Z
m : Xtu = 0}.

We note that if X has rank n (over the integers), then Λ⊥(X) has rank (m−n).

Definition 3. The bounded distance decoding problem BDDγ is as follows: given
a basis B of an n-rank lattice L, t ∈ R

n, and real d ≤ λ1
2 such that dist(t, L) ≤ d,

find the unique v ∈ L closest to t. Note that this is equivalent to finding e ∈ t+L
such that ‖e‖ ≤ d.

We now describe here a simplified version of the security property that this
scheme aims to achieve, and the corresponding simplified version of the scheme
(this corresponds to setting k = 1 in the definition from [26]; our attack readily
extends to k ≥ 1). In the challenge phase, the adversary sends to the chal-
lenger descriptions of two distributions D0 and D1 over plaintext vectors. The
challenger chooses β ← {0, 1} and samples y ← Dβ ; it encrypts it under the
public key pk and the resulting ciphertext Encpk(y) is given to the adversary.
The adversary can adaptively make key queries x, before or after the challenge
phase. The security property, called adaptive security for chosen message dis-
tributions, requires that the adversary cannot guess β correctly, as long as the
distributions D0 and D1 remain indistinguishable given the replies to the key
queries.

We review their construction based on LWE.

• IPFE .Setup(1n, 1�, p). Set integers m, q = pe for some integer e, and
reals α, α′ ∈ (0, 1). Sample A ← Z

m×n
q , Z ← {0, . . . , p − 1}�×m,4 com-

pute T = ZA ∈ Z
�×n
q , define

msk := Z and pk := (A,T).

4 In [26], the notation Z
�×m
p is used instead of {0, . . . , p − 1}�×m. We stress that it

should indeed be interpreted as {0, 1, . . . , p−1}�×m. In particular, the operation xtZ
in the IPFE .KeyGen algorithm is over Z and not modulo p, as otherwise decryption
correctness would not hold.
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• IPFE .KeyGen(msk,x). Given x ∈ Z
�
p, set zx = xtZ ∈ Z

m (interpreting each
coordinate of x as an integer in {0, . . . , p − 1}), and output skx = zx.

• IPFE .Enc(pk,y). To encrypt a vector y ∈ Z
�
p, sample s ← Z

n
q , e0 ← DZm,αq,

e1 ← DZl,α′q and compute

c0 = As + e0 ∈ Z
m
q , c1 = Ts + e1 + pe−1 · y ∈ Z

�
q.

Then, return the ciphertext C = (c0, c1).
• IPFE .Dec(sk, C). Given C = (c0, c1) and secret key skx = zx, compute μ′ =

〈x, c1〉 − 〈zx, c0〉 mod q, and output the value μ ∈ Zp that minimize |μ′ −
pe−1μ|.
In [26], the dimensions n is proportional to the security parameter λ, the

parameters �,m, p, q, 1/α, 1/α′ are polynomial in n, and e is a constant. In [26,
Theorem 3.5], the authors state that under the LWE assumption, the above
functional encryption for inner products is adaptively secure for chosen message
distributions, assuming that the secret key queries corresponding are linearly
independent.

Below, we describe a cryptanalysis of the scheme above with the specified
parameters. We then explain why this attack does not apply to the schemes
from [5] and [4].

We show that even for with challenge vectors rather than distributions, key
queries allow to recover the master secret key msk. Concretely, we can recover Z
from Xt and XtZ, where Z ← {0, . . . , p−1}�×m and X ∈ {0, . . . , p−1}�×(�−1) is
chosen by the adversary. We let our adversary sample X ← {0, . . . , p−1}�×(�−1)

(recall that the multiplication XtZ is over Z). The fact that X has only � − 1
columns means that we can find distinct challenge plaintexts (which are elements
of Z�

p) so that the columns of X are valid key queries.
It suffices to show how the adversary can recover the first column z of Z

from Xtz, as it can proceed similarly for all columns of Z. Given t = Xtz
and X, we know that z belongs to a coset of the lattice Λ⊥(X) defined by t.

Let us now study the lattice Λ⊥(X). As X ← {0, . . . , p − 1}�×(�−1), its
columns are expected to be linearly independent with overwhelming probability
and det(XZ

�−1) is expected to grow as pΩ(�). These properties would be easier
to prove if the entries of X were Gaussian with standard deviation p, but it can
be experimentally checked that this behaviour also holds for this distribution.
We also expect the lattice XZ

�−1 to be primitive, i.e., that Xt
Z

� = Z
�−1. By [23,

p. 30], we hence have that det(Λ⊥(X)) = det(XZ
�−1). As X is full column-rank,

we known that dim(Λ⊥(X)) = 1, and hence we expect that λ1(Λ⊥(X)) = pΩ(�).
Finally, note that the orthogonal lattice can be efficiently computed, by using a
Hermite Normal Form algorithm.

Now, recall that we want to recover z from a known coset of Λ⊥(X). As ‖z‖ ≤√
�p, by the above analysis of Λ⊥(X), we expect to have

‖z‖ < λ1(Λ⊥(X))/2.

This implies that z is uniquely determined from the coset. Moreover, this is a
Bounded Distance Decoding problem instance in a lattice of dimension 1, which
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can be solved efficiently. Concretely, if Λ⊥(X) = bZ and we are given b and
kb + z, we can recover k = �〈kb + z,b〉/‖b‖2� and hence z.

Remarks. Our proof shows that the scheme from [26] is not secure with the
specified parameters. We explain here why the above attack does not work for
the [5] and [4] schemes. First, in the mod-p scheme from [5, Section 4.1], the
authors take z from a discrete Gaussian distribution with a large standard devi-
ation. With the parameters specified in [5], we then have that ‖z‖ is significantly
larger than λ1(Λ⊥(X)). This implies that there is a large amount of entropy left
in z given t = Xtz. Also, this attack does not work for the [5] scheme over Z,
because in that case, the matrix X and hence the lattice Λ⊥(X) are not random
at all. Indeed, the kernel lattice is forced to be (y0 −y1)Z�, where y0 and y1 are
the challenge vectors. By assumption on the scheme, these challenge vectors are
small. Put differently, in that setting, if we first do (�−1) random queries, there
does not exist y0 − y1 �= 0 short anymore that allows us to create a non-trivial
challenge phase. Finally, the attack does not work for the [4] scheme variant,
because in that case, the matrix X has much fewer columns than rows. This
increases the dimension of Λ⊥(X) enough to make λ1(Λ⊥(X)) much smaller,
and in particular smaller than ‖z‖.

5 Linear Functional Encryptions in Prime-Order Groups

As outlined in Sect. 3, our trace-and-revoke schemes are instantiated using differ-
ent linear functional encryption schemes. In this section, we give a construction
of MMFE in the symmetric-key setting. For n = 1, the MMFE construction
reduces to IPFE . Due to space restraint, we omit the description of IPFE and
present the MMFE below. The point of interest being, the Dec in our MMFE
(and in our IPFE) does not compute the discrete log.

5.1 MMFE from Dk-matDH

We propose a construction of matrix multiplication functional encryption
(MMFE) from Dk-matDH. Since, the complete matrix M = (y1, . . . ,yn)	 is
available to Enc at once, our construction can reuse the randomness for all
yi ∈ Z

�
p. This also allows the proof to be tightly reduced to Dk-matDH. For this,

we require n matrices W1, . . . ,Wn unlike IPFE from Dk-matDH that required
only one. We emphasize that, similar to IPFE above, MMFE also does not need
to evaluate discrete logarithm algorithm.

• Setup(1λ, 1�, 1n, p). Run (g,G) ← Ggen(1λ, p). Sample A ← Dk and W1, . . . ,
Wn ← Z

�×k�n
p . Define msk = (W1, . . . ,Wn) and pp = ([1]).

• KeyGen(pp,msk,x ∈ Z
�
p). Set skx ← (x	W1, . . . ,x	Wn,x).

• Enc(pp,msk,M = (y1, . . . ,yn)	 ∈ Z
n×�
p ) proceeds as follows to encrypt

the given vectors y1, . . . ,yn ∈ Z
�
p. Sample s ← Z

k�n
p . Set ctM ← ([s] ,

[y1 + W1s] , . . . , [yn + Wns]).
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• Dec(pp, skx, ctM). Parse ctM = ([c0] , [c1] , . . . , [cn]). Return t = (t1, . . . , tn)
where ti =

[
x	ci

]
· [skx · c0]

−1.

The correctness is easy to verify.
We show a rough comparison of our scheme with [25] if their scheme was

used for symmetric key settings directly. Section 1 shows that the symmetric key
variant resulted from hiding the public key of [25] has bigger public parameters
and bigger ciphertext i.e. contain more group elements than our scheme. On the
other hand, our secret key contains more elements from Zp. Both the schemes
are proven secure under same assumption Dk-matDH with constant degradation.
We further compare the result for the SXDH based instances which shows that
their scheme outputs ciphertext that is 1.5 times bigger than us.

Table 1. Comparison of naive application of [25] with our construction in symmetric-
key settings. The sizes of pp and ct are in number of group elements, whereas those of
the sk column are in number of elements of Zp.

|pp| |sk| |ct| Degradation Assumption

[25] k3(k + 1)�2 + k2�2 (k + 1)k� n((k + 1)k� + �) 4 Dk-matDH

2�2 + �2 2� 3n� 4 SXDH

This work 1 k�n2 k�n + �n k + 1 Dk-matDH

1 n2� 2n� 2 SXDH

Security. Next, we argue the security of MMFE in the IND-CPA security model.
Our construction is basically a modification of [25] for symmetric-key settings.
This improves upon the performance in terms of ciphertext size and removes
the usage of public parameters completely. Note that, this modification required
us to argue the security proof in a different manner. Although the overall proof
strategy stayed more-or-less the same, our proof presents a completely new proof
for an essential lemma. We state the security theorem next and defer the proof
to the full version due to space restraint.

Theorem 8. For any adversary A of the construction MMFE in the IND-CPA
security model that makes at most qsk secret key queries (for qsk < �) and qct
challenge ciphertext queries in an interleaved manner, there exists adversary C
such that,

AdvIND-CPA
MMFE,A(λ) ≤ (k + 1) · AdvDk-matDH

C (λ).
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Abstract. In the wake of the global COVID-19 pandemic, video confer-
ence systems have become essential for not only business purposes, but
also private, academic, and educational uses. Among the various systems,
Zoom is the most widely deployed video conference system. In October
2020, Zoom Video Communications rolled out their end-to-end encryp-
tion (E2EE) to protect conversations in a meeting from even insiders,
namely, the service provider Zoom. In this study, we conduct thorough
security evaluations of the E2EE of Zoom (version 2.3.1) by analyzing
their cryptographic protocols. We discover several attacks more powerful
than those expected by Zoom according to their whitepaper. Specifically,
if insiders collude with meeting participants, they can impersonate any
Zoom user in target meetings, whereas Zoom indicates that they can
impersonate only the current meeting participants. Besides, even with-
out relying on malicious participants, insiders can impersonate any Zoom
user in target meetings though they cannot decrypt meeting streams. In
addition, we demonstrate several impersonation attacks by meeting par-
ticipants or insiders colluding with meeting participants. Although these
attacks may be beyond the scope of the security claims made by Zoom
or may be already mentioned in the whitepaper, we reveal the details of
the attack procedures and their feasibility in the real-world setting and
propose effective countermeasures in this paper. Our findings are not an
immediate threat to the E2EE of Zoom; however, we believe that these
security evaluations are of value for deeply understanding the security of
E2EE of Zoom.

Keywords: Zoom · End-to-end encryption · Impersonation attacks

1 Introduction

Video conference systems are being increasingly used for a variety of purposes
– for business meetings and functioning, private communications, educational
purposes, and so on – since the Covid-19 pandemic has severely limited the
practicality of physical meetings. Hence, security measures such as end-to-end
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encryption (E2EE) have become essential. In this study, the E2EE of Zoom,
which is one of the most used software for video communication worldwide today,
is thoroughly examined for potential security gaps.

1.1 Background

E2EE. E2EE is a secure communication scheme for messaging applications
and video conference systems in which only the people who are communicating
can send and read the messages. That is, nobody except each participant, not
even the service provider, has access to the encryption keys that are used to
encrypt the contents. After Edward Snowden’s revelations regarding surveillance
programs, the E2EE receives much attentions as a technology to protect a user
privacy from the mass interception and surveillance of communications carried
out by governmental organizations such as the NSA (National Security Agency)
of the US government.

Signal Protocol is the widely used E2EE protocol. The core of Signal Protocol
has been adopted by WhatsApp, Facebook Messenger, and Google Duo. A novel
technology called the “ratcheting” key update structure enables advanced secu-
rity properties such as perfect forward secrecy and so-called the post-compromise
security [6]. Since Signal Protocol is an open-source application and its source
code for Android and iOS are available on Github [22], its security has been
thoroughly studied by the cryptographic community.

iMessage, which is a widely deployed messaging application of Apple, sup-
ports an original E2EE protocol in which a message that is compressed by gzip
is encrypted by a sender’s secret key and distributed with a digital signature for
guaranteeing the integrity to the recipient. Unfortunately, the initial iMessage
had several security flaws as pointed out in November 2015 [9]. These vulnera-
bilities originated from the misuse of cryptographic primitives. Apple fixed these
problems and released the new version in March 2016. LINE, which is a widely
used message application in East Asia, is also based on an original E2EE proto-
col for efficient software performance. The previous version of the E2EE schemes
of LINE was called Letter Sealing; its message integrity was broken by exploiting
the vulnerabilities of cryptographic primitives and protocols [14]. In response to
this, in October 2019, LINE released the new version of Letter Sealing to address
these security issues.

Thus, analysis of the E2EE protocol is crucial for enhancing the security of
E2EE as E2EE technologies are not mature enough and their security is not well
understood yet despite of their wide use in the real world.

Zoom. Zoom is, at present, the most widely deployed video conference system
in the world. The number of daily active users in the world was about 300 million
in April 2020. It is currently a key platform for business and online education
worldwide.

Zoom Video Communications first announced their plan to support E2EE in
May 2020 to protect conversations in the meeting; they published the technical
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details of encryption schemes published as a whitepaper [15]. In October 2020,
Zoom rolled out phase 1 out of 4 of their E2EE project, and made E2EE available
globally for paid and free Zoom users for 30 days as a technical preview.

E2EE of Zoom is based on AES-GCM [2], HKDF algorithm [17], Diffie–
Hellman over Curve25519 [3], and EdDSA over Ed25519 [4] as an authenticated
encryption, key derivation, key exchange, and signature schemes, respectively.
To launch an E2EE session for a Zoom meeting, a meeting leader generates a
meeting key and securely distributes it to other participants via a bulletin board
by key exchange, key derivation function, and signature schemes. Thereafter,
each meeting stream is encrypted by AES-GCM with the shared meeting key.

In the whitepaper [15], Zoom claims the security goals of confidentiality,
integrity, and abused prevention against insiders, outsiders, and meeting partici-
pants, where insiders are the service providers, namely, Zoom, and outsiders are
the legitimate users of Zoom but not participants in the target meeting.

1.2 Our Contribution

In this study, we conduct thorough security evaluations of the E2EE of Zoom
(version 2.3.1), and consider several attacks. For comparison, we consider an
unavoidable attack in which the meeting participants colluding with malicious
insiders send a meeting key to insiders. In this case, insiders can break the
confidentiality of contents in the meeting. We will explore attacks beyond
this unavoidable attack by exploiting the vulnerabilities of the E2EE protocol
and underlying primitives. Specifically, we propose the following impersonation
attacks and their countermeasures.

Impersonation Based on No Entity Authentication. First, we discuss
impersonation attacks by malicious meeting participants without colluding with
insiders. This attack exploits the fact that there is no entity authentication of
a meeting stream in a group meeting. Specifically, the stream data sent from
any meeting participant are encrypted by AES-GCM with the same meeting
key. Although this vulnerability is pointed out in the whitepaper [15], we reveal
the details of the attack procedures, their feasibility, and the impacts on real-
world applications. Besides, we discuss a simple countermeasure, which is also
mentioned in the whitepaper [15].

Impersonation of Any Zoom User. We show that insiders without colluding
with participants can impersonate any legitimate Zoom user, even an uninvited
user, for the target meeting. This attack exploits the fact that insiders have free
access to bulletin boards and they can issue a meeting ID and UUID, which
functions as the nonce of binding information to identify users. Using these
facts, insiders can reuse the binding information of Zoom users, which is posted
on bulletin boards in previous meetings, for target meetings. Note that in this
attack, insiders cannot decrypt the meeting stream as the meeting key of the
target meeting is unknown. However, it can have adverse effects; for example,
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in the case of a negotiation, the fact that an influential person is attending can
impose a silent pressure on others. Thus, this attack makes sense in the practical
case.

Furthermore, if colluding with participants, insiders can get the meeting key.
Then, they fully impersonate any legitimate user, i.e., they can actively attend
the target meeting as a target user. This is obviously beyond the unavoidable
attack in which insiders can only passively eavesdrop the meeting streams. In
addition, we show that it can be easily fixed by adding time information to
binding information.

Impersonation of Another User on a Shared Device. Finally, we show
impersonation attacks in the case where multiple users share a device for Zoom
meetings by colluding with insiders. In this attack, a malicious user can obtain
the device key of another user who utilizes the same device for Zoom meetings.
This attack exploits the fact that the key for encrypting the device key is stored
in the Zoom server. In the E2EE setting, insiders cannot be trusted; nevertheless,
insiders hold these keys.

Further Security Evaluations. We discuss some security issues of E2EE in
Zoom. The first one is the use of the authenticated encryption mode, GCM. It
is well known that if the same nonce is used, it is easy to recover an authenti-
cation key from only ciphertexts [8,16,19]. The whitepaper [15] describes that
nonces are generated by counters. However, the client application is made by
Zoom. Under the E2EE assumption, Zoom can inject a trapdoor such that the
same nonce is used in some points to the software. To avoid such suspicions, we
recommend using a more secure authenticated encryption scheme that has the
nonce-misuse resistance in E2EE, or the client application should be public as
an open source software so that third parties can audit it. Besides the security
issues, we discuss the denial of service to target users by insiders.

1.3 Uncovered Results and Limitation

Table 1 summarizes our results. Zoom deems some attacks, including in-meeting
impersonation attacks in which a malicious but otherwise authorized meeting
participant colluding with a malicious server can masquerade as another autho-
rized meeting participant, as out of scope. Since some of our impersonation
attacks involve colluding with insiders, these may be beyond the security claims
of Zoom. However, we uncover several attacks more powerful than that expected
by Zoom.

– If insiders collude with meeting participants, they can impersonate any Zoom
user in target meetings, while the whitepaper [15] claims that they can imper-
sonate only current meeting participants.

– Even without relying on malicious participants, insiders can impersonate
any Zoom user for target meetings though they cannot decrypt the meet-
ing stream.
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Table 1. Summary of our results: impersonation, tampering, and denial of service
attacks. Each type of attack is classified into two types: active and passive attacks.
In an active-type attack, an adversary can not only join the target meeting, but also
properly send and receive the meeting streams. In a passive-type attack, an adversary
can perform the attack, but cannot properly send and receive the meeting streams.
The adversary and victim models consist of an insider, outsider, meeting leader, and
meeting participant, which are denoted as I, O, L, and P, respectively. We use “c.w.”
as an abbreviation of “colluding with”.

Attack Type Adversary Victim Reference

Impersonation Active L/P L/P Sect. 4.1
Impersonation Passive I L/P/O Sect. 5.1
Impersonation Active I c.w. L L/P/O Sect. 5.1
Impersonation Active O c.w. I, L L/P/O Sect. 5.2
Impersonation Active O c.w. L L/P/O Sect. 5.2
Impersonation Active O c.w. I O See full version [13]
Tampering Passive I L/P Sect. 6.1
Denial of service Passive I P See full version [13]

Our results are based on the whitepaper [15] and we have analyzed only
the cryptographic protocol of E2EE (version 2.3.1). In order to demonstrate the
feasibility of the proposed attacks, we should have implemented and tested the
proposed attacks, however, this paper only presents the theoretical evaluations
of E2EE for Zoom because the source code of E2EE for Zoom is not available.
Therefore, we discussed with Zoom to confirm the feasibility of the proposed
attacks (refer to Sect. 1.4 for detail).

Our findings are not an immediate threat to E2EE for Zoom. However, our
results show that there is room of improvement in the E2EE for Zoom as a
cryptographic scheme. We believe that these security evaluations are of value
for understanding well and enhancing the security of E2EE for Zoom.

1.4 Responsible Disclosure

In November 2020, we informed Zoom of our findings in this paper via the
vulnerability disclosure platform of Hacker One [12]. They acknowledged our
impersonation attacks and other attacks while they already recognized some
attacks as discussed before. They told us that they have a plan to address these
issues in the future version or clearly state these as limitations of the current
version of their E2EE in the whitepaper. In each section, we describe the details
of their responses and results of the discussion with Zoom.

1.5 Organization of This Paper

The rest of the paper is organized as follows. In Sect. 2, we define adversary mod-
els and security goals of E2EE for Zoom. In Sect. 3, we briefly describe the E2EE
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specifications for Zoom meetings. In Sect. 4, we introduce impersonating attacks
based on no entity authentication. In Sect. 5, we explain how a malicious insider
or a malicious outsider can impersonate any Zoom user, including users who are
not invited to the target meeting. In Sects. 6, we evaluate the security against
tampering. Sections 4, 5 and 6 also present the feasibilities and countermeasures
for these attacks. Finally, Sect. 7 concludes the paper.

2 Adversary Models and Security Goals

This section explains the adversary models and security goals of the E2EE for
Zoom meetings. Although our definitions are primarily based on the whitepaper
[15], we also consider the security models described in some other papers [14,20].

2.1 Adversary Models

In the whitepaper [15], the designers defined insiders, outsiders, and meeting
participants as the adversary models. With reference to the adversary models
reported by Isobe and Minematsu [14], we redefine these models for our security
analysis:

Definition 1 (Insiders). Insiders develop and maintain Zoom’s server infras-
tructure and its cloud providers. A malicious insider can intercept, read, and
modify any meeting streams sent over the network, and has full access to Zoom’s
server infrastructure.

Definition 2 (Outsiders). Outsiders are legitimate users of Zoom meetings
but not part of Zoom’s trusted infrastructure and do not have access to non-
public meeting access control information. A malicious outsider may monitor,
intercept, and modify network traffic and may attempt to break one of the security
goals in other E2EE sessions by maliciously manipulating the protocol.

Definition 3 (Meeting Participants). Meeting participants can access a
meeting, because they know the ID and password of the meeting or exercise other
qualifying credentials. A malicious meeting participant attempts to break one of
the security goals by deviating from the protocol.

According to the whitepaper [15], there exists a meeting leader among the
meeting participants, and he/she has higher authority than other meeting par-
ticipants as follows:

Definition 4 (Meeting Leader). A meeting leader has the responsibility of
generating the shared meeting key, authorizing new meeting participants, remov-
ing unwanted participants from the meeting, and distributing keys. A malicious
meeting leader attempts to break one of the security goals by deviating from the
protocol.

As described in the paper reported by Isobe and Minematsu [14], a malicious
outsider, a malicious meeting participant, and a malicious meeting leader can
collude with a malicious insider, or a malicious insider himself/herself can be a
malicious meeting participant or a malicious meeting leader.
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2.2 Security Goals

In the whitepaper [15], the designers defined confidentiality, integrity, and abuse
prevention as the security goals. With reference to the security goals of E2EE
reported by Isobe and Minematsu [14], we redefine these goals, excluding abuse
prevention, for our security analysis:

Definition 5 (Confidentiality). If only legitimate meeting participants can
view the decrypted meeting streams, then it ensures the confidentiality that the
meeting stream is kept secret from all but those who are authorized to view it.

Definition 6 (Integrity). If a meeting stream is received and successfully veri-
fied as message authentication, then it ensures the data integrity that the meeting
stream has not been altered by unauthorized or unknown means.

In our security analysis, we focus on authenticity rather than abuse prevention,
and this term is defined with reference to the handbook written by Manezes et
al. [20] as follows:

Definition 7 (Authenticity). If a meeting stream is received and successfully
verified as entity authentication, then it ensures the authenticity that the meeting
stream was indeed sent by a particular meeting participants.

3 E2EE Specifications for Zoom Meetings

The E2EE specifications for Zoom meetings is written in the whitepaper pub-
lished by Zoom [15]. This section describes the system components, crypto-
graphic algorithms, and protocol flow, which is the focus of our security analysis.

3.1 System Components

This subsection describes the signaling channel and bulletin board among the
system components.

The signaling channel is used to distribute encrypted messages between meet-
ing participants. Meeting participants route control messages on TLS tunnels
over TCP, through the multimedia routers, which are a part of the Zoom infras-
tructure. TLS is terminated at the Zoom servers.

Each meeting has its own bulletin board that is accessible to the meeting par-
ticipants. Meeting participants can post cryptographic messages to the bulletin
board, which is implemented over the signaling channel.

The Zoom server controls the signaling channel and the bulletin board, and
therefore, it can tamper with the cryptographic messages posted on the bulletin
board.
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3.2 Cryptographic Algorithms

The E2EE for Zoom meetings adopts the following cryptographic algorithmsand
uses the signing scheme and authenticated public-key encryption scheme:

– All meeting streams are encrypted with AES-GCM [2].
– Key derivation uses the HKDF algorithm [17].
– Diffie–Hellman (DH) over Curve25519 is used for key exchange [3].
– EdDSA over Ed25519 is used for signing [4].

The signing scheme consists of the key generation algorithm Sign.KeyGen,the
signing algorithm Sign.Sign, and the verification algorithm Sign.Verify. The
authenticated public-key encryption scheme consists of the key generation algo-
rithm Box.KeyGen, the encryption algorithm Box.Enc, and the decryption algo-
rithm Box.Dec. These schemes are described in detail in Appendix A.

When Zoom user i upgrades their Zoom application to the first version that
supports E2EE, they generate a long-term signature key pair (IVK i, ISK i) with
Sign.KeyGen, where IVK i and ISK i denote a verification key and a signing key
for user i, respectively. Subsequently, they post IVK i to the Zoom server, and
store ISK i on their device. They continue to use the long-term signing key pair
unless they reinstall the OS or applications and destroy the disk.

3.3 Join/Leave Protocol Flow

The protocol to establish an E2EE session for Zoom meetings consists of four
phases: participant key generation, leader join, participant join (leader), and par-
ticipant join (non-leader) phase. After the E2EE session is established, the meet-
ing leader/participants encrypt all meeting streams with AES-GCM using the
meeting key MK shared during the participant join (leader/non-leader) phase as
an input. We call this phase the encryption phase.

Participant Key Generation Phase. When any participant i joins the meet-
ing meetingID on their device deviceID, they perform the following procedures:

1. Generate a new keypair (pki, ski) ← Box.KeyGen() for the DH key exchange.
2. Query the insider for the server-generated meetingUUID for the meeting. No

participant has any control over the meetingUUID.
3. Compute Bindingi ← (meetingID‖meetingUUID‖ i‖deviceID‖IVK i ‖pki).
4. Define Context ← ”Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement”.
5. Compute Sigi ← Sign.Sign(ISK i,Context,Bindingi).
6. Store ski for the duration of the meeting.
7. Post Sigi to the bulletin board, so that all participants can see it.

Leader Join Phase. When any leader joins the meeting meetingID, they per-
form the following procedures:

1. Fetch meetingUUID from the insider.
2. Generate a 32-byte seed MK using a secure random number generator
3. Get the full list of meeting participants I from the insider.
4. Perform the “Participant Join (Leader)” phase for each participant i ∈ I.
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Participant Join (Leader) Phase. When a leader � and a participant i join
the meeting meetingID on deviceID, the leader performs the following procedures:

1. Fetches IVK i from the insider.
2. Fetches Sigi and pki from the bulletin board in the meeting.
3. Computes Bindingi ← (meetingID‖meetingUUID‖ i‖deviceID‖IVK i ‖pki).
4. Defines Contextsign ← ”Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnounce

ment”.
5. Verifies the signature: Sign.Verify(IVK i,Sigi,Contextsign,Bindingi).
6. If verification fails, it is aborted.
7. Computes Meta ← (meetingID‖meetingUUID‖�‖ i).
8. Defines ContextKDF ← ”Zoombase-1-ClientOnly-KDF-KeyMeetingSeed”.
9. Defines Contextcipher ← ”Zoombase-1-ClientOnly-Sig-EncryptionKeyMeeting

Seed”.
10. Computes Ci ← Box.Enc(sk�, pki,ContextKDF,Contextcipher,Meta,MK).
11. Posts (i, Ci) to the bulletin board.

Participant Join (Non-leader) Phase. When any participant i joins the
meeting meetingID on deviceID, they perform the following procedures:

1. Fetch IVK � for the leader � and the meetingUUID from the insider.
2. Fetch Sig�, pk�, and (i, Ci) from the bulletin board in the meeting.
3. Compute Binding� ← (meetingID‖meetingUUID‖�‖deviceID‖IVK � ‖pk�).
4. Define Contextsign ← ”Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnounce

ment”.
5. Verify the signature: Sign.Verify(IVK �,Sig�,Contextsign,Binding�).
6. If verification fails, it is aborted.
7. Compute Meta ← (meetingID‖meetingUUID‖�‖ i).
8. Define ContextKDF ← ”Zoombase-1-ClientOnly-KDF-KeyMeetingSeed”.
9. Define Contextcipher ← ”Zoombase-1-ClientOnly-Sig-EncryptionKeyMeeting

Seed”.
10. Compute MK ← Box.Dec(ski, pk�,ContextKDF,Contextcipher,Meta, Ci).

4 Impersonation Based on No Entity Authentication

This section describes how a malicious meeting leader/participant who possesses
the shared meeting key can impersonate other legitimate meeting participants.
This exploits the following vulnerability during the encryption phase.

Vulnerability 1 (No Entity Authentication). Even if a meeting stream is
received from a particular meeting participant, the authenticity of the meeting
stream is not ensured because there is no entity authentication.
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Fig. 1. Impersonation based on Vulnerability 1.

In the encryption phase, all meeting participants broadcast the meeting streams
encrypted with AES-GCM. Although AES-GCM ensures the confidentiality and
integrity of the meeting streams, it does not ensure the authenticity because
of the lack of the entity authentication. In fact, Sect. 3.12 of the whitepaper
[15] states that properly signing all meeting streams is a challenge from the
perspective of performance and repudiation, i.e., it is clear that there is no entity
authentication in the encryption phase.

In this section, we show a practical attack scenario and provide its feasibilities
and countermeasure.

4.1 Impersonation Based on Vulnerability 1

By exploiting Vulnerability 1, a malicious meeting leader/participant imperson-
ates any legitimate meeting participant (victim) in the following scenario (see
also Fig. 1):

1. A malicious meeting leader/participant joins the meeting as a legitimate
meeting leader/participant and derives the shared meeting key MK during
the participant join (leader/non-leader) phase.

2. They encrypt meeting streams M with MK and broadcasts the encrypted
meeting streams C with the victim’s metadata, e.g., sender ID, to all meeting
participants via Zoom infrastructure.

Since the meeting stream M is encrypted with meeting key MK shared among
all meeting participants, they can decrypt it and successfully verify it as message
authentication. In addition, the attached metadata makes non-victim meeting
participants unaware that the encrypted meeting stream C was broadcast by the
malicious meeting leader/participant. The victim should be aware of this fact but
cannot formally refute it because of the lack of the entity authentication. There-
fore, this reveals that the E2EE for Zoom meetings does not ensure the authen-
ticity of the meeting streams against a malicious meeting leader/participant.
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4.2 Discussion

This subsection discusses feasibilities and a countermeasure against the imper-
sonation attack described in the previous subsection.

Feasibility. To impersonate any legitimate meeting participant (victim), a mali-
cious meeting leader/participant must prepare the victim’s meeting streams in
advance. This is feasible by collecting the meeting streams from the meetings
the victim previously joined and editing them. The impersonating based on Vul-
nerability 1 has the following feasibilities:

– If the victim is not broadcasting a meeting stream, then other meeting partici-
pants properly receive a meeting stream prepared in advance by the malicious
meeting leader/participant. This causes the victim to lose the trust of other
meeting participants, depending on the content of the broadcast meeting
stream.

– If the victim is broadcasting a meeting stream, then his meeting stream con-
flicts with a meeting stream prepared in advance by a malicious meeting
leader/participant. This causes interference in the victim’s communication
and prevents other meeting participants from properly receiving the content
of their meeting stream.

Countermeasure. To prevent the impersonation based on Vulnerability 1, all
meeting streams should be properly signed as entity authentication. As men-
tioned earlier, the whitepaper [15] states this countermeasure as a challenge
from the perspective of performance and repudiation, and therefore, it will be
an important task in the future.

Note that other E2EE schemes, such as WhatsApp [24], Facebook Messenger
[5], and Google Duo [21], also have the same limitation in their current-deployed
version. On the other hand, SFrame [7], which is an end-to-end media encryption
mechanism, has an optional feature to sign all media stream by the sender’s
signature key.

4.3 Response from Zoom

Zoom also recognized this type of impersonating attacks as discussed in the
whitepaper [15]. Due to performance and repudiability concerns, they are cur-
rently not ready to implement the countermeasure. However they told us that
they will be open to re-evaluating it in the future.

5 Impersonation of Any Zoom User

This section presents how a malicious insider or a malicious outsider can imper-
sonate even any legitimate Zoom user who is uninvited to the target meeting.
This exploits the following vulnerabilities in addition to Vulnerability 1 described
in Sect. 4.



Security Analysis of End-to-End Encryption for Zoom Meetings 245

Vulnerability 2 (Free Access to the Bulletin Broad). Insiders and meet-
ing participants have free access to the bulletin board. Particularly, insiders are
free to collect and tamper with all values, including the signatures and public
keys generated by individual participants, posted on the bulletin board.

This vulnerability is based on the description of the bulletin board in
Sect. 3.1. During the participant join (leader/non-leader) phase, the encrypted
meeting key and the public key and signature pairs for all meeting participants
are posted on the bulletin board. Hence, this vulnerability allows the insiders
and all meeting participants to collect them, and further allows the insiders to
tamper with them.

Vulnerability 3 (Same Binding as in the Previous Meeting). If the
meeting IDs, which are meetingID and meetingUUID, generated by the insiders
and the public key generated by the meeting participant are reused, then the
metadata Binding of the meeting participant has the same value. Since the signing
key pair of the meeting participant is utilized for a long-term period, the same
signature Sig is always generated from the same metadata Binding.

The metadata Bindingi of the meeting participant i is computed as described
in Sect. 3.3 (see Step 3 during the participant join (leader) phase). Meeting
participants reuse i, deviceID, and IVK i as fixed values in all meetings excluding
special cases, e.g., after the Zoom application is reinstalled. Hence, if you get the
tuple (meetingID,meetingUUID, pki) used in the previous meeting, then you can
compute Bindingi used in the previous meeting. Only the insiders are involved
in generating both meetingID and meetingUUID, i.e., only malicious insiders can
exploit Vulnerability 3.

Vulnerability 4 (Leader-generated Meeting Key). Only the meeting
leader is involved in generating a 256-bit shared meeting key.

This vulnerability implies that a malicious meeting leader may intentionally
reuse the meeting key MK used in the previous meeting.

5.1 Impersonation Based on Vulnerabilities 1, 2 and 3

By exploiting Vulnerabilities 2 and 3, a malicious insider can impersonate even
any legitimate Zoom user A uninvited to the target meeting in the following
scenario (see also Fig. 2):

1. A malicious insider stores SigA and pkA posted on the bulletin board in the
previous meeting.

2. They reuse meetingID and meetingUUID used in the previous meeting.
3. They post SigA and pkA to the bulletin board in the new meeting.

During the participant join (leader) phase, a meeting leader can compute
BindingA used in the previous meeting from the same meetingID, meetingUUID,
and pkA. Since SigA is the value derived from signing BindingA with ISKA, the
meeting leader can successfully verify SigA with IVKA. Therefore, this reveals
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Fig. 2. Impersonation based on Vulnerabilities 2 and 3.

that a malicious insider can impersonate any legitimate Zoom user A without
being noticed by him. The malicious insider cannot derived MK in the meet-
ing because they do not know skA corresponding to pkA, i.e., they can join the
meeting but cannot decrypt the meeting streams.

Now, we suppose that the malicious insider colludes with the malicious meet-
ing leader. In this scenario, if the malicious insider obtains the shared meeting
key MK from the malicious meeting leader, then the malicious insider can com-
pletely impersonate legitimate Zoom user A. Hence, the malicious insider will
be able to not only join the meeting as Zoom user A, but also properly broad-
cast and receive the meeting streams by exploiting Vulnerability 1. Given that
non-legitimate meeting participants cannot completely impersonate by simply
obtaining the shared meeting key MK, such a scenario is not trivial.

5.2 Impersonation Based on Vulnerabilities 1, 2, 3 and 4

By exploiting Vulnerabilities 1, 2, 3 and 4, a malicious outsider can impersonates
even any legitimate Zoom user B uninvited to the target meeting in the following
scenario (see also Fig. 3):

1. A malicious meeting leader stores SigB and pkB posted on the bulletin board
in the previous meeting and provides them to a malicious outsider.

2. A malicious insider reuses meetingID and meetingUUID used in the previous
meeting.

3. The malicious meeting leader reuses MK used in the previous meeting and
provides it to the malicious outsider.

4. The malicious outsider posts SigB and pkB to the bulletin board in the new
meeting.

For the above scenario to be reality, the malicious outsider has to collude with
the malicious insider and malicious meeting leader. This scenario is similar to the
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Fig. 3. Impersonation based on Vulnerabilities 1–4. Note that the malicious meeting
leader and the malicious outsider join the previous and new meetings.

one discussed in Sect. 5.1, but this scenario supposes that the malicious meeting
leader wants the malicious outsider to impersonate Zoom user B. In addition,
by exploiting Vulnerabilities 1 and 4, she can not only join the meeting, but also
properly broadcast and receive meeting streams.

In Appendix B, we further discuss how a malicious outsider can impersonate
even any legitimate Zoom User B uninvited to the meeting without colluding
with a malicious insider.

5.3 Discussion

This subsection discusses feasibilities and two countermeasures against the
impersonating described in the previous subsections.

Feasibility. It can be effective in some cases to show other meeting partici-
pants that a specific individual is just joining a meeting without broadcasting
anything. For example, suppose you want to make some negotiations proceed
smoothly but the negotiating partner has joined the meeting with a malicious
insider who impersonates an influential person, as described in Sect. 5.1. You
may feel that the partner imposes silent pressure, and the negotiation may not
proceed as desired (rather, we think that the negotiations proceed at the part-
ner’s pace). Since a malicious insider can easily perform such impersonation, we
suppose a scenario in which meeting participants request the malicious insider
to impersonate a specific individual. Therefore, the impersonation described in
the previous subsections is feasible.

Countermeasure. To prevent the impersonating described in the previous
subsections, we propose the following countermeasures against Vulnerability 3:
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1. Add time information time, e.g., the date and time when the meeting starts,
to the metadata Bindingi as follows:

Bindingi ← (meetingID ‖ meetingUUID ‖ i ‖ deviceID ‖ IVK i ‖ pki ‖ time).

2. Add a procedure to verify the time information when verifying the signature.

If an adversary attempts to exploit Vulnerability 3, then the time information
must be the same as that in the previous meeting. In addition, even if the adver-
sary uses the same time information as in the previous meeting, by detecting
the time information mismatch when verifying the signature, the adversary can
be prevented from exploiting Vulnerability 3.

5.4 Response from Zoom

Zoom acknowledged these limitations for user identification in the current ver-
sion. They told us that they will clearly state it as a limitation of the currently-
deployed end-to-end encryption (Phase 1), and update the protocol to prevent
it before the next phases are deployed (Phase 2 and 3).

To be more specific, in the currently deployed version, there are no cryp-
tographic mechanisms preventing anyone from changing their display name to
whatever they please. They will address this issue before Phase 2 is deployed. For
completeness, note that in some cases an account admin can instruct the Zoom
server to prevent display name changes for its members, but this server-enforced
feature is not meant to protect against Zoom insiders.

6 Security Against Tampering with Meeting Streams

This section evaluates the security against tampering with meeting streams dur-
ing the encryption phase. Now, the following vulnerability related to AES-GCM
is exploited.

Vulnerability 5 (Misuse of Nonce). All meeting streams are encrypted with
AES-GCM. If nonce is misused during the meeting, the existing attack on AES-
GCM [8,16,19] will be executed and the authentication key will be exposed to
third parties.

Section 3.10 of the whitepaper [15] states that nonces are generated by counters.
However, the possibility that a malicious insider could intentionally embed a
vulnerability that allows meeting participants to reuse the same nonce should
be considered.

6.1 Tampering Based on Vulnerability 5

By exploiting Vulnerability 5, a malicious insider tampers with the encrypted
meeting streams in the following nonce-misused scenario:
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1. A malicious insider embeds a vulnerability that allows meeting participants
to reuse the same nonce.

2. A meeting leader/participant encrypts meeting streams with the reused nonce
and broadcasts them to the meeting participants.

3. The malicious insider intercepts the streams sent over the network.
4. The malicious insider derives the authentication key from the streams based

on the existing attack on AES-GCM in the nonce-misused setting [8,16,19].

The malicious insider cannot obtain the shared meeting key, but they can
derive the authentication key in the meeting. Hence, in the above scenario,
although there is no tampering with the meaningful meeting stream, the tam-
pered streams can be successfully verified as message authentication.

6.2 Discussion

Even if a malicious insider does not intentionally embed a vulnerability, flaws in
the Zoom system may lead to misuse of the nonce. To prevent exploitation of
Vulnerability 5, we propose to adopt a misuse-resistant authenticated encryp-
tion (MRAE), which was formalized by Rogaway and Shrimpton [23], instead
of AES-GCM. Numerous MRAEs are available, for example, the authenticated
encryptions selected as finalists in the CAESAR project [1] and the AES-GCM-
SIV standardized by the Internet Engineering Task Force [11]. Therefore, we
strongly recommend the transition from AES-GCM, which has low misuse resis-
tance, to a MRAE.

6.3 Response from Zoom

In Sect. 1.3 of the whitepaper [15], Zoom acknowledged that any unknown back-
doors and bugs in their client code would compromise the confidentiality of their
E2EE system. However, they argued that they have no such known backdoors,
and they routinely commission audits by external companies to mitigate this
threat - making it a highly unlikely attack vector.

They also provided examples of other attack vectors. For example, the back-
door could target the key generation algorithm or exfiltrate keys through other
covert channels. In terms of such attack vectors, they stated that switching GCM
with a MRAE would be an ineffective countermeasure; however, we emphasize
that a MRAE is useful for enhancing the security of E2EE of Zoom.

7 Conclusion

In this study, we evaluated the security of E2EE of Zoom (version 2.3.1) and
revealed several attacks more powerful than that expected by Zoom according to
their whitepaper. Specifically, if insiders collude with meeting participants, they
can impersonate any Zoom user in target meetings, whereas Zoom indicates that
they can impersonate only current meeting participants. Besides, even without
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relying on malicious participants, insiders can impersonate any Zoom user for
target meetings though they cannot decrypt the meeting stream. In addition,
we discussed several impersonation attacks conducted by meeting participants
or insiders colluding with meeting participants and discussed their feasibility in
real-world scenarios. We also discussed effective countermeasures. We hope that
our results are useful for enhancing the security of E2EE of Zoom.

Acknowledgments. The authors are grateful to security team of Zoom Video Com-
munications, Inc. for the fruitful discussion and feedback about our findings. Takanori
Isobe is supported by JST, PRESTO Grant Number JPMJPR2031 and SECOM sci-
ence and technology foundation.

A Cryptographic Algorithms

A.1 Signing

Signing scheme consists of Sign.KeyGen, Sign.Sign, and Sign.Verify as follows:

– Sign.KeyGen generates a keypair (vk, sk), where vk and sk denote a verifica-
tion key and a signing key, respectively.

– Sign.Sign takes a context string Context and a message M as the inputs and
outputs a signature Sig over SHA256(Context)‖SHA256(M).

– Sign.Verify takes a signature Sig a context string Context and a message M as
the inputs, and outputs True upon verification success and False upon failure.

A.2 Authenticated Public-Key Encryption

Authenticated public-key encryption scheme consists of Box.KeyGen, Box.Enc,
and Box.Dex.

Box.KeyGen generates a keypair (pkBox, skBox), where pkBox and skBox denote a
public key and a secret key, respectively.

Box.Enc takes the sender’s secret key skS
Box, receiver’s public key pkR

Box, a context
string ContextKDF and Contextcipher, metadata Meta, and a message M as the
inputs, and outputs a ciphertext C as follows:

1. Generate a 192-bit random string RandomNonce.
2. Compute K ′ ← DHKE(pkR

Box, sk
S
Box), which is the DH key exchange.

3. Compute K ← HKDF(K ′,ContextKDF), using an empty HKDF salt.
4. Compute D ← SHA256(Contextcipher) ‖ SHA256(Meta).
5. Encrypt the plaintext M with XChaCha20/Poly-1305 taken the symmetric

key K, the associated data D, and the nonce RandomNonce as the inputs,
and return the ciphertext C ′.

6. Output C ← (C ′,RandomNonce).
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Box.Dec. takes the receiver’s secret key skR
Box, sender’s public key pkS

Box, a context
string ContextKDF and Contextcipher, metadata Meta, and a ciphertext C as inputs,
and outputs a message M or error as follows:

1. Parse C as (C ′,RandomNonce).
2. Compute K ′ ← DHKE(pkR

Box, sk
S
Box), which is the DH key exchange.

3. Compute K ← HKDF(K ′,ContextKDF), using an empty HKDF salt.
4. Compute D ← SHA256(Contextcipher) ‖ SHA256(Meta).
5. Encrypt the ciphertext C ′ with XChaCha20/Poly-1305 taken the symmetric

key K, the associated data D, and the nonce RandomNonce as the inputs,
and return the plaintext M .

6. If decryption fails, then output error. Otherwise, output M .

B Further Discussion in Sect. 5

This section further expounds on the discussion in Sect. 5.2.

B.1 Impersonation Based on Vulnerabilities 1–4 without Colluding
with a Malicious Insider

We explain how a malicious outsider can impersonate even any legitimate Zoom
User B uninvited to the target meeting without colluding with a malicious insider
in the following scenario:

1. A malicious outsider stores SigB and pkB posted on the bulletin board in the
previous meeting.

2. A malicious meeting leader uses meetingID as the personal meeting ID.
3. The malicious outsider collects the meetingUUID generated by a malicious

insider with the meetingUUID used in the previous meeting.
4. The malicious meeting leader reuses the MK used in the previous meeting.
5. The malicious outsider posts SigB and pkB to the bulletin board in the new

meeting.

To realize the above scenario, the malicious outsider only needs to collude with
the malicious meeting leader. To generate meetingID, a meeting leader can choose
to automatically generate it with the help of the insiders or use a fixed value as
the personal meeting ID. If a malicious meeting leader generates meetingID as
a personal meeting ID, then the meeting participants use the same meetingID
as the previous meeting. In addition, if meetingUUID is generated according to
RFC 4122 [18] (although we do not know if this is actually correct because the
generation process of a MeetingUUID is not disclosed in the whitepaper), the
meetingUUID is identical to the previous meetingUUID in 261 trials by executing
a birthday attack. Based on these procedures, the malicious outsider can proba-
bilistically use the same meetingID and meetingUUID as in the previous meeting
without colluding with a malicious insider.
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B.2 Discussion

This subsection discusses the feasibilities against the impersonation described in
the previous subsection.

Zoom Video Communications announced on its blog that more than 300
million daily meeting participants join Zoom meetings as of April 2020 [25].
Assuming that all meetings have only two participants, only 235.67 meetings will
be held worldwide in a year. Therefore, there is not much feasibility of executing
a birthday attack with 261 trials to make meetingUUID coincide with the previous
meetingUUID.

Even if the meetingUUID coincides with the previous meetingUUID, how a
malicious outsider posts SigB and pkB to the bulletin board implemented on
the signaling channel is an open problem. We suggest that a malicious meeting
leader posts SigB and pkB on behalf of a malicious outsider as one solution, but
we cannot confirm the feasibility of this attack.

In summary, although there is not much feasibility of impersonating even any
legitimate Zoom User B uninvited to the target meeting without colluding with
a malicious insider, the protocol must include countermeasures, as described in
Sect. 5.3, in the event of such an impersonation.
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Abstract. Non-zero inner product encryption (NIPE) is a type of inner
product encryption where a message can be recovered from a cipher-
text if the inner product between the attribute and predicate vectors
is non-zero. Most of the existing NIPEs focus on hiding messages and
the associated attributes are trivially included in the ciphertexts. In
this work, we add the attribute-hiding feature to a NIPE system pro-
viding security in the chosen-ciphertext attack (CCA) model. We present
a generic transformation of an attribute-hiding CCA secure NIPE from
an inner product functional encryption (IPFE) and a quasi-adaptive non-
interactive zero-knowledge (QANIZK) proof system. This leads us to a
set of attribute-hiding NIPEs (AHNIPE) with security based on several
assumptions such as plain Decisional Diffie-Hellman (DDH), Learning
With Errors (LWE) and Decision Composite Reciprocity (DCR). Further-
more, to reduce the ciphertext size of our generic DDH-based AHNIPE,
we give a more efficient and concrete construction of a CCA secure
AHNIPE based on DDH and Kernel Matrix Diffie-Hellman (KerMDH)
assumption. Considering the fact that DDH implies KerMDH, the latter
construction achieves a CCA secure AHNIPE from minimal assumption
to date. Towards the applications of AHNIPE, we show that AHNIPE
directly implies an anonymous identity-based revocation (IBR) scheme.
Consequently, we get the first CCA secure IBR based on plain DDH plus
KerMDH assumptions, improving the security of any previous anony-
mous CCA secure IBR scheme which was known only from pairing-based
assumptions in the random oracle model. Moreover, we extend our IBR
to achieve efficient anonymous identity-based trace and revoked schemes.

Keywords: Non-zero inner product encryptions · Chosen-ciphertext ·
Attribute-hiding

1 Introduction

To remedy all-or-nothing approach to data access, plain public-key encryptions
(PKE) are refined over the years into more advanced primitives like identity-based
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encryption, broadcast encryption, attribute-based encryption [18,28]. All these
primitives can be unified under the general umbrella of functional encryption
(FE) introduced much later by Boneh et al. [10]. Realizing FE for general class
of functions employs heavy cryptographic tools [15], and as a result, existing
constructions are inefficient for day-to-day use. However, FEs for certain type
of functionalities such as Boolean formulae, inner product predicate, keyword
search [18,23] are built from standard assumptions, hence are mostly practical.

In attribute-based encryption (ABE), a secret-key sky is generated corre-
sponding to a predicate y and a ciphertext CTx for a message M is associated
with an attribute x. Using a secret-key sky , the decryption successfully recov-
ers the message M from CTx if a relation R(x,y) holds. This paper studies a
primitive called non-zero inner product encryption (NIPE) [5] that considers the
predicate and attribute space to be a subset of Z� and the relation R is defined
as R(x,y) = 1 if and only if 〈x,y〉 �= 0. In recent years, inner product encryp-
tions have emerged with several applications in identity-based encryption, poly-
nomial evaluation, disjunctions/conjunctions equality test, proxy-re-encryption
[11,23,24] etc. Since NIPE is a negated subclass of IPE, the above primitives
with negation (such as identity-based revocation (IBR), polynomial non-equality
and so on) are captured in applications of NIPEs [4,5].

Mostly, the security of a NIPE scheme is considered in payload-hiding setting
where the challenge ciphertext is required to hide only the message associated
with a single challenge attribute. The attributes are assumed to be a part of
ciphertexts. In many applications, for example, anonymous identity-based revo-
cation (ANON-IBR) or broadcast schemes [9,28,37], the attributes may contain
user-specific sensitive information. Leakage of this information is a strict viola-
tion of users privacy. Therefore, such applications demand to hide the attributes
along with messages while encryption. This additional security feature is guaran-
teed by attribute-hiding NIPE (AHNIPE) where the adversary is asked to submit
two attribute-message pairs (xb,Mb) for b ∈ {0, 1}. Given encryption for a pair
(xb,Mb), it is required that for any PPT adversary, the probability of guessing
the bit b is at most 1/2. The secret-key queries for the predicate vectors y are
restricted to satisfy that 〈x0,y〉 = 〈x1,y〉 = 0 if M0 �= M1, else 〈x0−x1,y〉 = 0.
This is slightly weaker than the full attribute-hiding notion of [31] where we
allow secret-key queries for y such that 〈x0,y〉 �= 〈x1,y〉 if M0 = M1. But,
our model defines stronger security than the weak attribute-hiding notion of [31]
which totaly excludes the case M0 = M1. The attribute-hiding notion considered
in this work is sufficient for many applications discussed latter in this section.

Background. The first NIPE construction was designed by Attrapadung and
Libert [5]. The scheme is co-selectively (not adaptively) secure under the Decision
Linear (DLIN) and Decision Bilinear Diffie-Hellman (DBDH) assumptions. As an
application, [5] built an IBR scheme [27] with constant size ciphertext. Despite
its involvement in realizing many useful primitives, the security of NIPEs has not
much improved in standard models. Most of the prior works [5,6,13,14,30,36]
have focused on reducing the size of ciphertexts or secret-keys (or both), but they
end up with a paring based system that is secure either in co-selective or selective
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model. Okamoto and Takashima [31] gave the first adaptively secure NIPE from
DLIN assumption. Recently, a learning with errors (LWE) based NIPE is proposed
by Katsumata and Yamada [22] which is selectively secure and capable of one-bit
encryption. In the multi-bit variant of the scheme, sizes of the master public-
keys, ciphertexts and secret-keys increase at least linearly with the bit-length
of the message. Although the generic construction of [22] delivers adaptively
secure NIPEs via inner product functional encryptions (IPFE) of Agrawal et al.
[3] in standard models, they are only payload-hiding and chosen-plaintext attack
(CPA) secure like all previously known NIPEs.

In literature, hiding attribute in ABE is termed as predicate encryption (PE)
[11,19,23]. The notion of AHNIPE corresponds to a particular function class of
a PE scheme and hence a PE for all circuits such as [19] by Gorbunov et al.
readily gives an indirect construction of AHNIPE. However, the LWE-based PE
of [19] uses a fully homomorphic encryption (FHE) scheme [17] to evaluate pred-
icate circuits on attributes which are encrypted under the FHE. Consequently,
the resulting scheme becomes complex and expensive for simple function classes
such as AHNIPE. Overcoming this limitation, Patranabis et al. [32] built a sub-
set non-membership encryption (SNME) relying on the DDH-based IPFE of [3]
which includes the function class needed for AHNIPE. The scheme is CPA secure
under the Matrix DDH (MDDH) assumption. Therefore, a direct construction of
AHNIPE hardly exists and the efficiency of existing indirect schemes has been
compromised in order to support a broader class of predicates. While PEs are
mostly proved secure in CPA model, recently Koppula and Waters [26] provided a
generic and black box transformation to achieve chosen-ciphertext attack (CCA)
secure one-sided1 PEs. The transformation additionally needs to utilize a signa-
ture scheme, a public-key encryption and a special pseudorandom generator and
loses practical efficiency when applied to simple function classes.

Contribution. Our contribution is mainly two-fold.

Firstly, we give a generic transformation to achieve a chosen-ciphertext attack
(CCA) secure tag-based AHNIPE from an indistinguishability based CPA secure
IPFE [3] and a quasi-adaptive non-interactive zero-knowledge (QANIZK) proof
system [1,25]. We introduce tag-based AHNIPE where the encryption algorithm
takes a tag as an additional input along with an attribute and a message. Note
that decryption with a tag is successful only if the same tag is used for encryp-
tion. However, we can always avoid the tag through a generic transformation by
using a one-time signature on the tags. We show that the classic Naor-Yung dual
encryption technique [29] can be applied in the setting of inner product encryp-
tion. We replace the PKE with IPFE in the transformation of [29] to achieve
a CCA secure AHNIPE scheme. The generic NIPE of [22] is also based on IPFE
and provides payload-hiding CPA security whereas our transformation delivers
stronger security of attribute-hiding and additionally, we get CCA security with
the help of a QANIZK proof system. If we drop QANIZK our transformation, gen-
eralizing the MDDH-based AHNIPE of [32], leads to the first CPA secure AHNIPE

1 One-sided security corresponds to weak-attribute hiding, that is, the adversary is
not allowed to get a secret-key which can decrypt the challenge ciphertext.
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Table 1. Comparison with existing adaptively secure AHNIPEs where � denotes the
length of an attribute or predicate. The columns |MSK|, |MPK|, |sky | and |CT| refer
to the number of group elements in a cyclic group G of prime order or the number
of Z elements. The row PMR19 corresponds to k = 1 of the SNME scheme of [32].
We instantiate our generic AHNIPE with DDH-based IPFE of [3] and KerMDH-based
QANIZK of [25].

Scheme |MSK| |MPK| |sky | |CT| Assumption CCA

PMR19 [32] 4�|Z| (2� + 2)|G| (� + 4)|G| (2� + 4)|G| MDDH ✗

Ours generic (2� + 8)|Z| (4� + 14)|G| 2|Z| (4� + 16)|G| DDH + KerMDH �
Ours concrete (4� + 8)|Z| (2� + 12)|G| 4|Z| (2� + 4)|G| DDH + KerMDH �

schemes based on various assumptions such as DDH, LWE, DCR, DDH − f and
HSM when equipped with the IPFEs of [3,12]. We note that any simulation sound
NIZK scheme based on either paring or LWE [20,33,35] can be used in our trans-
formation instead of QANIZK. Alternatively, one may avoid the use of QANIZK
by considering CCA secure IPFEs of [7] in our transformation to achieve CCA
secure AHNIPE, but this would require additional MDDH assumption and the
resulting AHNIPE can not be completely based on LWE assumption. However,
the Naor-Yung transformation doubles the ciphertext size of our CCA secure
AHNIPE which needs more storage and communicational power. To overcome
this inefficiency we require different approach compatible with existing IPFE
schemes.

Next, we give a concrete instantiation of a CCA secure AHNIPE based on plain
DDH assumption. Our generic transformation needs four ciphertexts of an IPFE
and the QANIZK proof adds more elements to it. For example, a ciphertext of
our DDH-based AHNIPE contains at least 4�+16 group elements when using the
DDH-based IPFE of [3] and the Kernel Matrix Diffie-Hellman (KerMDH) based
QANIZK of [25]. Note that the IPFE contributes 4�+8 elements to the ciphertext
and the rest are coming from the QANIZK proof. We show how to reduce the
ciphertext size to only 2�+4 elements using a technique proposed by Biagioni et
al. [8]. Main idea is to use a shared randomness in Naor-Yung dual encryptions.
This helps us to reduce the ciphertext and public-key sizes significantly. More
precisely, we present a CCA secure AHNIPE based on the DDH-based IPFE of
[3] and the KerMDH-based QANIZK of [25]. Interestingly, DDH implies KerMDH
which is a computational assumption [25], and hence the AHNIPE is solely based
on plain DDH assumption. The ciphertext of the MDDH-based AHNIPE of [32]
also contains 2� + 4 group elements but achieves only CPA security. In addition
to CCA security, our AHNIPEs are well comparable with the work of [32] in terms
of ciphertext size and hardness assumption as shown in Table 1.

There are interesting implications of our results. Following the blueprint of
[5], we show that any AHNIPE system directly implies an anonymous identity-
based revocation (ANON-IBR) (or anonymous identity-based broadcast encryp-
tion [37]) scheme. Recall that an IBR allows one to encrypt messages with respect
to a list of revoked users and only the users lying outside the revoked list can
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decrypt the ciphertext. We call the IBR anonymous if the ciphertext does not
reveal revoked users identities. Our DDH-based CCA secure AHNIPE yields the
first CCA secure ANON-IBR from plain DDH assumption in the standard model.
Prior work [21] achieves anonymity and CCA security based on BDDH assump-
tions in the random oracle model. Inspired from the IBTR scheme of Agrawal
et al. [2], we extend the IBR to efficient CPA secure anonymous identity-based
trace and revoke (ANON-IBTR) schemes where the security can be based on
DDH, LWE and DCR assumptions.

2 Preliminaries

Notations. We denote by x ← D the process of sampling a value x according
to the distribution of D. We consider x ← S as the process of random sampling
of a value x according to the uniform distribution over a finite set S. We assume
that the predicate and attribute vectors are of same length �. The inner product
between two vectors x,y ∈ Z

� is written as 〈x,y〉 =
∑�

i=1 xiyi = xT y. For any
λ > λ0, if a non-negative function negl satisfies negl(λ) < 1/λc, c is a constant,
then negl is called a negligible function over the positive integers.

2.1 Pairing Groups and Hardness Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = {G1,G2,GT , p, g1, g2, e} of asymmetric pairing
groups where Gs be a cyclic group of order p (for a λ-bit prime p) with a
generator gs for each s ∈ {1, 2, T}, and e : G1 × G2 → GT is an efficiently
computable (non-degenerate) bilinear map such that gT = e(g1, g2). We use
implicit representation of group elements as [a]s = ga

s ∈ Gs for any a ∈ Zp and
s ∈ {1, 2, T}. More generally, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as

the implicit representation of A in Gs:

[A]s =

⎛

⎝
ga11

s · · · ga1m
s

gan1
s · · · ganm

s

⎞

⎠

Given [a]1 and [b]2 one can efficiently compute [a · b]T using the pairing e. For
matrices A and B of matching dimensions, we define [AB]T = e([A]1, [B]2). We
now recall the DDH and KerMDH assumptions.

Definition 1 (Decisional Diffie-Hellman assumption). Let s ∈ {1, 2, T}. We
say that decisional Diffie-Hellman (DDH) assumption holds relative to GGen in
group Gs (GGens), if for all PPT adversary A,

AdvDDH
A,GGens

(λ) = |Pr[A(Gs, [a]s, [ar]s) = 1] − Pr[A(Gs, [a]s, [u]s) = 1]|

is negligible in λ where the probability is taken over Gs = (Gs, gs, p) ←
GGens(1λ), (a, r) ← Z

2
p,u ← Z

2
p and a = (1, a).
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Definition 2 (Kernel Matrix Diffie-Hellman assumption) [25]. Let k ∈ N and
Dk be a matrix distribution which outputs matrices in Z

(k+1)×k
p of full rank

k in polynomial time. Let s ∈ {1, 2}. We say that Dk-Kernel Diffie-Hellman
(Dk-KerMDH) assumption holds relative to GGens in group Gs, if for all PPT
adversary A,

AdvDk-KerMDH
A,GGens

(λ) = Pr[c�A = 0 ∧ c �= 0 : [c]3−s ← A(Gs, [A]s)]

is negligible in λ where the probability is taken over Gs = (Gs, gs, p) ←
GGens(1λ), A ← Dk. If k = 1, we denote it by KerMDH where Dk is assumed to
output non-zero vectors from Z

2
p. Note that, DDH implies KerMDH assumption

[25].

2.2 Inner Product Functional Encryption

Definition 3 (Inner product functional encryption). An inner product func-
tional encryption (IPFE) scheme for a predicate space P, an attribute space
Q and an inner product space I consists of four PPT algorithms IPFE =
(Setup,KeyGen,Enc,Dec) satisfying the following requirement:

– (MPK,MSK) ← Setup(1λ, 1�): on input a security parameter λ, a vector length
parameter � (a natural number that is a polynomial in λ), outputs a master
public-key MPK and a master secret-key MSK.

– ct ← Enc(MPK,x): returns ct which is an encryption of an attribute x ∈ Q.
– sky ← KeyGen(MPK,MSK,y): returns a secret-key sky for a predicate y ∈ P.
– ⊥ or ζ ← Dec(MPK, sky , ct): a deterministic algorithm that decrypts the

ciphertext ct using a secret-key sky and outputs either a message ζ ∈ I or a
symbol ⊥ indicating failure.

Correctness: For any λ, � ∈ N, y ∈ P, x ∈ Q, (MPK,MSK) ← Setup(1λ, 1�),
sky ← KeyGen(MPK,MSK,y), ct ← Enc(MPK,x) we have

Pr
[
〈x,y〉 = Dec(MPK, sky , ct)

]
= 1 − negl(λ)

Definition 4 (Indistinguishability-based security for IPFE). An inner product
functional encryption scheme IPFE = (Setup,Keygen,Enc,Dec) for a predicate
space P, an attribute space Q and an inner product space I is said to be adap-
tively secure under chosen-plaintext attacks (IND-IPFE) if, for any PPT adver-
sary A, for any λ ∈ N, the advantage

AdvIND-IPFE
A,CPA (λ) =

∣
∣
∣
∣Pr[ExptIND-IPFE

A,CPA (1λ, 0) = 1] − Pr[ExptIND-IPFE
A,CPA (1λ, 1) = 1]

∣
∣
∣
∣

is negligible in λ where ExptIND-IPFE
A,CPA (1λ, b) is defined as

ExptIND-IPFE
A,CPA (1λ, b)

1. (MPK,MSK) ← Setup(1λ, 1�)

2. (x0, x1) ← AOKG(·)(1λ,MPK)
3. ct∗ ← Enc(MPK, xb)

4. b′ ← AOKG(·)(ct∗)
5. return b′

OKG(·)
1. input: y ∈ P
2. return KeyGen(MPK,MSK, y)
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with the restriction that all secret-key queries {y} made to the key generation
oracle OKG(·) should satisfy 〈x0,y〉 = 〈x1,y〉.

2.3 Non-zero Inner Product Encryption

Definition 5 (Non-zero inner product encryption with tag). A non-zero inner
product functional encryption (NIPE) scheme (with tag) for a predicate space
P, an attribute space Q, an inner product space I, a tag space T and a message
space M consists of four probabilistic polynomial time (PPT) algorithms NIPE =
(Setup,Keygen,Enc,Dec) operating as follows:

– (MPK,MSK) ← Setup(1λ, 1�): on input a security parameter λ, a vector length
parameter � (a natural number that is a polynomial in λ), outputs a master
public-key MPK and a master secret-key MSK.

– CT ← Enc(MPK, τ,x,M): returns CT which is an encryption of a message
M ∈ M with a tag τ ∈ T and an attribute x ∈ Q.

– sky ← KeyGen(MPK,MSK,y): returns a secret-key sky for a predicate y ∈ P.
– ⊥ or ζ ← Dec(MPK, τ, sky ,CT): a deterministic algorithm that decrypts the

ciphertext CT using a secret-key sky and tag τ and outputs either a message
ζ ∈ M or a symbol ⊥ indicating failure.

Correctness: For any security parameter λ, � ∈ N, any tag τ ∈ T , y ∈ P,
x ∈ Q, (MPK,MSK) ← Setup(1λ, 1�), sky ← KeyGen(MPK,MSK,y) and CT ←
Enc(MPK, τ,x,M) we have:

1. Pr
[
M = Dec(MPK, τ, sky ,CT) : 〈x,y〉 �= 0

]
= 1 − negl(λ)

2. Pr
[

⊥= Dec(MPK, τ, sky ,CT) : 〈x,y〉 = 0
]

= 1 − negl(λ)

Definition 6 (Adaptively attribute-hiding CCA security for NIPE). A non-zero
inner product encryption scheme NIPE = (Setup,Keygen,Enc,Dec) for a pred-
icate space P, an attribute space Q, a tag space T , an inner product space I
and a message space M is said to be adaptively attribute-hiding secure under
chosen-ciphertext attacks (AHNIPE) if, for any PPT adversary A, for any λ ∈ N,
the advantage

AdvAH-NIPE
A,CCA (λ) =

∣
∣
∣
∣Pr[ExptAHNIPEA,CCA (1λ, 0) = 1] − Pr[ExptAHNIPEA,CCA (1λ, 1) = 1]

∣
∣
∣
∣

is negligible in λ, where ExptAHNIPEA,CCA (1λ, b) is defined as

ExptAHNIPE
A,CCA (1

λ, b)

1. (MPK,MSK) ← Setup(1λ, 1�)

2. (τ∗, (x0, M0), (x1, M1)) ← AOKG(·),ODec(·,·,·)(1λ,MPK)
3. CT∗ ← Enc(MPK, τ∗, xb, Mb)

4. b′ ← AOKG(·),ODec(·,·,·)(CT∗)
5. return b′

OKG(·):
1. input: y ∈ P
2. return KeyGen(MPK,MSK, y)
ODec(·, ·, ·):
1. input: τ ∈ T ,CT, y ∈ P
2. sky ← KeyGen(msk, y)
3. return Dec(MPK, τ, sky ,CT)

with the following restriction on A’s queries:
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– All secret-key queries {y} to the key generation oracle OKG(·) should satisfy
〈x0,y〉 = 〈x1,y〉 = 0 if M0 �= M1 and 〈x0 − x1,y〉 = 0 if M0 = M1.

– All decryption queries {(τ,CT,y)} to the decryption oracle ODec(·, ·, ·) should
satisfy that τ �= τ∗.

2.4 Quasi-adaptive Non-interactive Zero-Knowledge Proof

A quasi-adaptive non-interactive zero knowledge argument (QANIZK) is a type
of NIZK where the common reference string (crs) is allowed to depend on the
specific parameter defined by the language for which proofs have to be generated.
For public parameters par, let Dpar be a probability distribution over a collection
of relations R = {Rρ} parameterized by ρ with as associated language Lρ = {x :
∃ w s.t. Rρ(x,w) = 1}.

Definition 7 (Quasi-adaptive non-interactive zero knowledge argument). A
quasi-adaptive non-interactive zero knowledege argument (QANIZK) for a lan-
guage distribution Dpar consists of five PPT algorithms QANIZK = (Genpar,
Gencrs,Prv,Sim,Vrfy) working as follows:

– par ← Genpar(λ): returns the public parameters par.
– (crs, trap) ← Gencrs(par, ρ): on input par and a string ρ, outputs crs and a

trapdoor trap. We assume that crs implicitly contains par and ρ, and that it
defines a tag space T .

– π ← Prv(crs, τ, x, w): on input a crs, a tag τ ∈ T , a statement x ∈ Lρ and a
witness w, outputs a proof π.

– 1 or 0 ← Vrfy(crs, τ, x, π): a deterministic algorithm that on input a crs, a tag
τ , a statement x and a proof π, outputs 1 if π is a valid proof that x ∈ Lρ

with respect to the tag τ ; otherwise it returns 0.
– π ← Sim(crs, trap, τ, x): a deterministic algorithm that returns a simulated

proof π (not necessarily in Lρ).

We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by
Dpar, all (x,w) with Rρ(x,w) = 1, all τ ∈ T , we have

Pr
[

Vrfy(crs, τ, x, π) = 1
∣
∣
∣
∣
(crs, trap) ← Gencrs(par, ρ)

π ← Prv(crs, τ, x, w)

]

= 1

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by
Dpar, all (crs, trap) output by Gencrs(par, ρ), all (x,w) with Rρ(x,w) = 1, all
τ ∈ T , the distributions

Prv(crs, τ, x, w) and Sim(crs, trap, τ, x)

are the same (where the coin tosses are taken over Prv and Sim).
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Fig. 1. CCA secure AHNIPE from IPFE and QANIZK

Simulation soundness. For all PPT adversary A and any QANIZK the follow-
ing advantage

AdvSSA (λ) = Pr

[
Vrfy(crs, τ∗, x∗, π∗) = 1
∧x∗ �∈ Lρ ∧ τ∗ �∈ Tsim

∣
∣
∣
∣
∣

par ← Genpar(λ); ρ ← Dpar;
(crs, trap) ← Gencrs(par, ρ);
(τ∗, x∗, π∗) ← AOsim(·,·)(crs)

]

is negligible, where Osim(τ, x) returns π ← Sim(crs, trap, τ, x) and Tsim is the
set of all tags queried by A. We call QANIZK to satisfy one-time simulation
soundness (OTSS) if A is allowed to make only one query to Osim(·, ·), and
the corresponding advantage is denoted as AdvOTSS

A (λ).
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Lemma 1 (core lemma for one-time soundness of QANIZK) [25]. Let n, t, k ∈ N.
For any M ∈ Z

n×t
p ,A ∈ Z

(k+1)×k
p and any (possibly unbounded) adversary A,

Pr
[

y �∈ Span(M) ∧ τ �= τ̂
∧z� = y�(K0 + τ̂K1)

∣
∣
∣
∣

K0,K1 ← Z
n×(k+1)
p ;

(z,y, τ) ← AO(·)(M�K0,M�K1,K0A,K1A)

]

≤ 1
p

where O(τ̂) returns K0 + τ̂K1 and may be called only once.

3 Generic Approach: AHNIPE from IPFE and QANIZK

We describe how to use the indistinguishability-based security of a IPFE [3]
to achieve the attribute-hiding security for a NIPE through a generic transfor-
mation. Our technique is compatible with the CCA transformation given by
Sahai [35] which obtains CCA security of a public-key encryption via NIZK
proofs. However, we use QANIZK proofs in our transformation to achieve CCA
security. Let us consider an IPFE = (Setup,KeyGen,Enc,Dec) with a predicate
space P ′, an attribute space Q′ and an inner product space I ′. We construct
a NIPE = (Setup,KeyGen,Enc,Dec) with the same predicate space P = P ′, the
attribute space Q, the inner product space I = I ′ and a message space M such
that P,Q,Q′ ⊆ Il, M ⊂ I and for any x = (x1, . . . , xl) ∈ Q, M ∈ M it holds
that M · x ∈ Q′ where M · x = (Mx1, . . . ,Mxl). It is also required that the
division operation can be efficiently executed in I, that is for any product value
α · β ∈ I, one can easily compute β if α is known. We also consider a QANIZK
= (Genpar,Gencrs, Prv,Sim,Vrfy) for the language

Lmpk =

⎧
⎪⎪⎨

⎪⎪⎩
({ct1,i, ct2,i}2i=1) :

∃(x,M, r1, s1, r2, s2) s.t.
∧i=1,2(ct1,i ← IPFE.Enc(mpki,x; ri)∧
ct2,i ← IPFE.Enc(mpki,M · x; si))

⎫
⎪⎪⎬

⎪⎪⎭
(1)

and par is a part of the system parameters of IPFE. Our CCA secure attribute-
hiding NIPE is described in Fig. 1. QANIZK is employed to prove that the two
IPFE ciphertexts ct1,i, ct2,i, main part of the NIPE ciphertext, corresponds to the
same attribute x for each i = 1, 2. If a ciphertext CT = ({ct1,i, ct2,i}2i=1, π) passes
the verification, by the correctness of IPFE, μ = 〈x,y〉 and μ′ = M〈x,y〉. So, M
can be recovered if μ is non-zero. The proof of following theorem is available in
the full version of the paper.

Theorem 1. Assuming the underlying IPFE is indistinguishability-based secure
under chosen plaintext attacks and QANIZK is a one-time simulation sound, the
AHNIPE described in Fig. 1 is adaptively attribute-hiding secure under chosen-
ciphertext attacks. More specifically, for any PPT adversary A, there exists PPT
adversaries B1 and B2 such that:

AdvAHNIPEA,CCA (λ) ≤ 4 · AdvIND-IPFE
B1,CPA (λ) + 3QDec · AdvOTSS

B2
(λ)

where QDec denotes the total number of decryption queries made by the adversary.
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Remark 1. From the generic transformation, it is clear that we need QANIZK
for the CCA security of AHNIPE. If CPA secure AHNIPE is sufficient for an appli-
cation then our transformation leads to a more efficient CPA secure AHNIPE
from any CPA secure IPFE scheme where we need only one pair (mpk,msk) of
IPFE keys. More specifically, the ciphertext CT consists of only two components
ct1 ← IPFE.Enc(mpk,x) and ct2 ← IPFE.Enc(mpk,M · x). Using a secret-key
sky ← KeyGen(mpk,msk,y) one can easily recover M from (ct1, ct2). Therefore,
dropping QANIZK and considering IPFEs of [3,12], our transformation accom-
plishes CPA secure AHNIPEs based on various assumptions such as DDH, LWE,
DCR, DDH-f and HSM. For CCA security of the AHNIPE, any one-time sim-
ulation sound NIZK (OTSS − NIZK) is sufficient. Constructions of NIZK proof
systems for any arbitrary NP language based on bilinear pairing [20] and (plain)
LWE assumption [33] can be found in the existing literature. A transformation
from NIZK to OTSS-NIZK is also well known [35]. Using such OTSS-NIZK proof
system we can get a tag-free version of our AHNIPEs and all decryption queries
of the form (CT∗,y) should satisfy that 〈xb,y〉 = 0 for b ∈ {0, 1}. However,
the reason behind selecting QANIZK over OTSS-NIZK for our application is that
QANIZK proof sizes [1,25] for certain languages are much shorter than the exist-
ing OTSS-NIZK.

4 CCA Secure AHNIPE from DDH and KerMDH

In this section, we present a more efficient construction of AHNIPE from plain
DDH assumption. First, we recall the DDH-based IPFE of [3]. The construction
is inspired by the generic approach of Sect. 3 and the DDH-based IPFE of [3].
Instead of two independent encryption, we encrypt the vectors x and M ·x using
the same randomness which certainly helps us to reduce the ciphertext size. In
particular, we consider the QANIZK of Kiltz and Wee [25] based on KerMDH
assumption (with k = 1) for the language L[a] = {[c] : ∃r ∈ Zp s.t. c = ar}.
Note that a QANIZK proof for the language given in Eq. 1 (of Sect. 3) contains
at least eight group elements, whereas proofs of the statements belonging to L[a]

consist of only two group elements.
We describe our AHNIPE for P = Q = Z

�
p, I = T = Zp and M ⊂ I, in

Fig. 2 where PG = {G1,G2,GT , p, g1, g2, e} ← GGen(1λ). We assume that M is
polynomially bounded so that messages can be recovered by discrete logarithm.

Correctness. For all x,y ∈ Z
�
p, τ ∈ Zp,M ∈ M we have

e(π, [α]2) = e([(ϑ1 + τϑ2)r]1, [α]2)
= e([(K1 + τK2)c]1, [α]2) (when c = ar)
= e([c]1, [(K1 + τK2)α]2)
= e([c]1, [β1 + τβ2)

which verifies the ciphertext component c = ar. Next, we note that

〈υ1, ς1〉 =
(

c
x + U1c

)� (
−U�

1 y
y

)

= −(U1c)�y + (x + U1c)�y = x�y.
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Fig. 2. CCA secure AHNIPE from DDH assumption

Therefore, μ = [〈x,y〉]1 and similarly one can show that μ′ = [M · 〈x,y〉]1. If
μ �= [0]1, we recover the message as M = logg1

(μ′ · μ−1).

Theorem 2. Assuming the DDH and the KerMDH assumptions hold in the
groups G1 and G2 respectively, the AHNIPE described in Fig. 2 is adaptively
attribute-hiding secure under chosen-ciphertext attacks. More specifically, for any
PPT adversary A, there exist PPT adversaries B1 and B2 such that:

AdvAHNIPEA,CCA (λ) ≤ 2 · AdvDDH
B1,GGen1(λ) + 2QDec · AdvKerMDH

B2,GGen2(λ) + negl(λ)
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Fig. 3. Sequence of Games used in the proof of Theorem 2
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where QDec denotes the total number of decryption queries made by the adversary.

Proof. We prove this theorem using a sequence of hybrid games {Game j}j∈[7]

described in Fig. 3 where game 0 is the standard AHNIPE experiment
ExptAHNIPEA,CCA (1λ, 0) (Definition 6). Let Gj denotes the event b = b′ in game j
where b′ is the bit output by the adversary A. Further, we assume that A’s
queries are consistent with the restrictions described in Definition 6.

Game 1: In this game, we compute the proof π∗ for the statement [c∗]1 without
using the witness r, that is, we set π∗ := [(K1 + τ∗K2)c∗]1. The distributions of
π∗ in both the games 0 and 1 are identical since

π∗ = [(ϑ1 + τ∗ϑ2)r]1
︸ ︷︷ ︸

(Game 0)

= [(K1 + τ∗K2)ar]1 = [(K1 + τ∗K2)c∗]1
︸ ︷︷ ︸

(Game 1)

(2)

Therefore, we have Pr[G0] = Pr[G1].

Game 2: It is exactly the same as game 1 except that we choose c∗ uniformly
at random from Z

2
p. For indistinguishability between games 1 and 2, we rely on

the DDH assumption in group G1.
Suppose, B1 be a DDH adversary which receives a tuple ([a]1, [c∗]1) from its

challenger. It then selects (U1,U2) ← (Z�×2
p )2, α ← D1, K1,K1 ← Z

2×2
p and

simulates A as defined in Fig. 3, using [c∗]1 to compute [ct∗]1. We note that, if
c∗ = ar for some r ∈ Zp then B1 plays the role of a challenger in game 1 and
if c∗ is picked uniformly at random from Z

2
p then B1 simulates game 2. By the

DDH assumption, we get |Pr[G1] − Pr[G2]| ≤ AdvDDH
B1,GGen1(λ).

In this game, we observe that c∗ �∈ Span(a) with overwhelming probability
as the probability of c∗ belonging to Span(a) is 1

p which is negligible in λ. Hence,
there exits a vector a⊥ ∈ Z

2
p such that a�a⊥ = 0 and c∗�a⊥ = 1.

Game 3: It is identical to game 2, except that in the decryption oracle we
perform an additional check on the queried ciphertext CT = ([ct]1, π). With the
usual verification of ([c]1, π), the oracle also returns ⊥ if [c�a⊥]1 �= [0]1 where
[c]1 is the first component of [ct]1.

If the additional check fails, but the tuple (τ, [c]1, π) passes the verification
e(π, [α]2) = e([c]1, [β1 + τβ2]2), then we construct a PPT adversary B2 against
KerMDH assumption in G2 (Definition 2). On receiving a challenge vector [α]2
from its challenger, B2 picks a = (1, a) ← Z

2
p, (U1,U2) ← (Z�×2

p ), K1,K2 ←
Z
2×2
p and simulates the game for A as defined in Fig. 3. Note that, A already gets

a simulated proof as π∗ = [(K1 + τ∗K2)c]1 included in the challenge ciphertext.
Suppose A submits a decryption query (τ,CT,y) where CT = ([ct]1, π),

[ct]1 =
[
c c1 c2

]�
1

such that the tuple (τ �= τ∗, [c]1, π = [z]1) satisfies [c�a⊥]1 �=
[0]1 and e([z]1, [α]2) = e([c]1, [β1 + τβ2]2). Thus it holds that c �∈ Span(a) and
z�α = c�(β1+τβ2) = c�(K1+τK2)α. Let [α⊥]1 = [z−(K1+τK2)�c]1. From
Lemma 1 of Sect. 2.4, with n = 2, t = k = 1, we have Pr[z−(K1+τK2)�c = 0] ≤
1
p . Now, B2 is able to find a (non-zero) vector [α⊥]1 ∈ G

2
1 such that α�α⊥ = 0.

Therefore, B2 violates the KerMDH assumption in group G2, if A is able to find
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such a decryption query. If QDec is the total number of decryption queries of A,
then we have |Pr[G2] − Pr[G3]| ≤ QDec · AdvKerMDH

B2,GGen2(λ) + negl(λ).

Game 4: In this game, we replace the pair (x0,M0) in the challenge ciphertext
with the pair (x1,M1). In particular, last two components of ct∗ become x1 +
U1c∗ and M1 · x1 +U2c∗. We claim that the two games 3 and 4 are identical in
A’s view. In other words, we show that Pr[G3] = Pr[G4].

First, we assume that A chooses the challenge pair ((x0,M0), (x1,M1)) inde-
pendent of MPK and the corresponding advantages of A in game 3 and 4 are
Pr[Gsel

3 ] and Pr[Gsel
4 ] respectively. Then guessing the challenge pair in the adap-

tive game will incur an exponential security loss, i.e. Pr[Gj ] = p2�|M| Pr[Gsel
j ]

for j = 3, 4. If we can show that Pr[Gsel
3 ] = Pr[Gsel

4 ] (in selective experiment) then
this automatically leads to Pr[G3] = Pr[G4].

Finally, we assume that the challenge pair ((x0,M0), (x1,M1)) is indepen-
dent of MPK. Since (U1,U2) are chosen uniformly at random from (Z�×2

p )2, the
following distributions are identical over (Z�×2

p )2:

(U1,U2) and (U1 + (x1 − x0)(a⊥)�,U2 + (M1 · x1 − M0 · x0)(a⊥)�)

The corresponding changes in MPK, OKG(·), ODec(·, ·, ·) and OEnc(·, ·) are:

MPK: (U1 +(x1 −x0)(a⊥)�)a = U1a, (U2 +(M1 ·x1 −M0 ·x0)(a⊥)�)a = U2a

OKG(y): sky :=

⎛

⎝
−U�

1 y + a⊥(x1 − x0)�y

−U�
2 y + a⊥(M1 · x1 − M0 · x0)�y

y

⎞

⎠ =

⎛

⎝
s1
s2
y

⎞

⎠

ODec(τ,CT = ([ct]1, π),y): Let [ct]1 =

⎡

⎣
c
c1
c2

⎤

⎦

1

, [υ1]1 :=
[
c
c1

]

1

, [υ2]1 :=
[
c
c2

]

1

. If

[c�a⊥]1 �= [0]1, then the oracle returns ⊥. The oracle computes a secret-key sky

as above and set ς1 :=
(
s1
y

)

, ς2 :=
(
s2
y

)

. We observe that

μ := [〈υ1, ς1〉]1 =
[
〈−(U1 + (x1 − x0)(a⊥)�)�y, c〉

〈y, c1〉

]

1

=

[(
−U�

1 y
y

)�
·
(
c
c1

)]

1

(when [c�a⊥]1 = [0]1)

and similarly μ′ := [〈υ2, ς2〉]1 =

[(
−U�

2 y
y

)�
·
(
c
c2

)]

1

. Therefore, decryption

performs correctly.
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OEnc(τ∗, {xb,Mb}b∈{0,1}): The challenge ciphertext component is distributed as

[ct∗]1 :=

⎡

⎣
c∗

x0 + U1c∗

M0 · x0 + U2c∗

⎤

⎦

1

(in Game 3)

≈

⎡

⎣
c∗

x0 + (U1 + (x1 − x0)(a⊥)�)c∗

M0 · x0 + (U2 + (M1 · x1 − M0 · x0)(a⊥)�)c∗

⎤

⎦

1

(statistically close)

=

⎡

⎣
c∗

x1 + U1c∗

M1 · x1 + U2c∗

⎤

⎦

1

(as c∗�a⊥ = 1
in Game 4)

Hence, we have Pr[Gsel
3 ] = Pr[Gsel

4 ] which directly implies Pr[G3] = Pr[G4].

Game 5: It is identical to game 4, except that we omit the additional check
in decryption oracle. For a query (τ,CT,y), the decryption oracle only verifies
e(π, [α]2) = e([c]1, [β1+τβ2]2) to proceed further. Following the same argument
as in game 3, we get |Pr[G4] − Pr[G5]| ≤ QDec · AdvKerMDH

B2,GGen2(λ) + negl(λ).

Game 6: In this game instead of picking c∗ uniformly from Z
2
p, we set c∗ := ar

for r ← Zp. Relying on DDH assumption in group G1, as in game 2, we get
|Pr[G5] − Pr[G6]| ≤ AdvDDH

B1,GGen1(λ).

Game 7: Finally, we use the witness r to set the proof π∗ := [(ϑ1 + τ∗ϑ2)r]1.
From Eq. 2, we have Pr[G6] = Pr[G7]. Note that, game 7 is the standard AHNIPE
experiment ExptAHNIPEA,CCA (1λ, 1) and hence we conclude the proof.

5 Application: Anonymous Identity-Based Revocation

In this section, we present one particular application of our AHNIPE as
ANON − IBR scheme. Attrapadung and Libert [5] showed that an NIPE can be
used to build an IBR with constant size ciphertext. As their NIPE is only payload-
hiding, the resulting IBR system fails to provide users anonymity. We strengthen
the security of an IBR system using our AHNIPE following the technique of [5].
Recall that, in an IBR system messages are encrypted with respect to a revoked
set R and a secret-key skid corresponding to an identity id can recover the mes-
sage only if id �∈ R. Given all the secret-keys associated to the identities in R, an
adversary remains oblivious about the message. The ciphertexts of NIPE-based
IBR of [5] trivially contain the list of all revoked users which often becomes unac-
ceptable in many applications where identities include sensitive users credentials
[9,28,37].

Definition 8 (Identity-based revocation with tag). An identity-based revocation
(IBR) scheme (with tag) for an identity space ID, a tag-space T and a message
space M consists of four PPT algorithms IBR = (Setup,Enc,KeyGen,Dec) and
works as follows:
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– (MSK,MPK) ← Setup(1λ, 1r): The setup algorithm takes as input a security
parameter λ and a bound on the number of revoked users r, and generates a
master public-key MPK and a master secret-key MSK.

– CT ← Enc(MPK, τ, R,M): A data owner encrypts a message M ∈ M with a
tag τ ∈ T and a revoked list R ⊂ ID containing at most r identities using
the master public-key MPK, and publishes a ciphertext CT. Note that CT
does not include the list R, but may contain the tag τ .

– skid ← KeyGen(MPK,MSK, id): A trusted authority generates a secret-key skid
for an identity id ∈ ID using the master secret-key MSK. The identity may
contain user’s sensitive information.

– ⊥ or M ← Dec(MPK, τ, skid,CT): A user decrypts a ciphertext CT associated
with a tag τ using the master public-key MPK and its own secret-key skid to
either recover a message M ∈ M or face a failure.

Correctness: For any λ, r ∈ N, id ∈ ID, τ ∈ T , M ∈ M, (MPK,MSK) ←
Setup(1λ, 1r), skid ← KeyGen(MPK,MSK, id), CT ← Enc(MPK, τ, R,M) we have

Pr[M = Dec(MPK, τ, skid,CT)] = 1 − negl(λ)

Definition 9 (Adaptively anonymous CCA security for IBR). An identity-based
revocation scheme IBR = (Setup,Enc,KeyGen,Dec) for an identity space ID, a
tag-space T and a message space M is said to be adaptively anonymously secure
under chosen-ciphertext attacks (ANON-IBR) if, for any PPT adversary A, for
any λ ∈ N, the advantage

AdvANON-IBR
A,CCA (λ) =

∣
∣
∣
∣Pr[ExptANON-IBR

A,CCA (1λ, 0) = 1] − Pr[ExptANON-IBR
A,CCA (1λ, 1) = 1]

∣
∣
∣
∣

is negligible in λ, where ExptANON-IBR
A,CCA (1λ, b) is defined as

ExptANON-IBR
A,CCA (1λ, b)

1. (MPK,MSK) ← Setup(1λ, 1r)

2. (τ∗, (R0, M0), (R1, M1)) ← AOKG(·),ODec(·,·,·)(1λ)
3. CT∗ ← Enc(MPK, τ∗, Rb, Mb)

4. b′ ← AOKG(·),ODec(·,·,·)(CT∗)
5. return b′

OKG(·):
1. input: id ∈ ID
2. return KeyGen(MPK,MSK, id)
ODec(·, ·, ·):
1. input: τ ∈ T ,CT, id ∈ ID
2. skid ← KeyGen(MPK,MSK, id)
3. return Dec(MPK, τ, skid,CT)

with the following restriction on A’s queries:

– All secret-key queries {id} to the key generation oracle OKG(·) should satisfy
that id ∈ R0 ∩ R1.

– All decryption queries {(τ,CT, id)} to the decryption oracle ODec(·, ·, ·) should
satisfy that τ �= τ∗.

Construction. Let us consider an AHNIPE = (Setup,Enc,KeyGen,Dec) for P =
Q = Z

r+1
p , T = I = Zp and M ⊂ Zp. We build an ANON − IBR scheme for

ID = Zp with the same message and tag spaces:

– Setup(1λ, 1r): It returns (MSK,MPK) ← AHNIPE.Setup(1λ, 1r+1).
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– Enc(MPK, τ, R,M): Let R = {id1, . . . , idr} ⊂ Zp be the set of revoked identi-
ties (without loss of generality we take |R| = r). Then it computes a polyno-
mial P (X) = (X − id1) · · · (X − idr) = x0+x1X + · · ·+xrX

r ∈ Zp[X] and sets
xR = (x0, . . . , xr) ∈ Z

r+1
p . It returns CT ← AHNIPE.Enc(MPK, τ,xR,M).

– KeyGen(MSK, id): For an identity id ∈ Zp, it sets yid = (1, id, . . . , idr) ∈ Z
r+1
p .

Then it returns skid ← AHNIPE.KeyGen(MSK,yid).
– Dec(MPK, τ, skid,CT): It returns AHNIPE.Dec(MPK, τ, skid,CT).

We note that 〈xR,yid〉 = P (id) = 0 if and only if id ∈ R. Therefore, correctness
of the above IBR follows directly from the AHNIPE system. For security, we
assume that A adaptively submits a challenge tuple (τ∗, (R0,M0), (R1,M1)).
Then, 〈xR0 ,yid〉 = 〈xR1 ,yid〉 = 0 for all id queried by A to the key generation
oracle. Moreover, A cannot query a tuple (τ∗,CT, id) for decryption. Therefore,
adaptively attribute-hiding CCA security of AHNIPE ensures that the challenge
ciphertext CT∗ ← AHNIPE.Enc(MPK, τ∗,xRb

,Mb) hides b from A’s view. We
state the security of the IBR in the following theorem.

Theorem 3. Assuming the AHNIPE is a tag-based adaptively attribute-hiding
CCA secure non-zero inner product encryption, the ANON-IBR described above is
a tag-based adaptively anonymous CCA secure identity-based revocation scheme.

Remark 2. Using the generic AHNIPEs of Sect. 3, we achieve CCA secure
ANON-IBR schemes from various assumptions such as DDH, LWE, DCR, DDH-f
and HSM along with a QANIZK proof system. We also instantiate the ANON-
IBR scheme using our CCA secure AHNIPE from Sect. 4 based on plain DDH and
KerMDH assumptions. A secret-key skid consists of only 4 elements of Z and a
ciphertext associated to a revoked list of size r contains 2r + 6 group elements.
We formally state the security in the following theorem.

Theorem 4. Assuming the DDH assumption holds in the group G1 and the
KerMDH assumption holds in the group G2, there exists an ANON − IBR scheme
which is adaptively anonymously secure under chosen-ciphertext attacks. More
specifically, for any PPT adversary A, there exist PPT adversaries B1 and B2

such that:

AdvANON−IBR
A,CCA (λ) ≤ 2 · AdvDDH

B1,GGen1(λ) + 2QDec · AdvKerMDH
B2,GGen2(λ) + negl(λ)

where QDec denotes the total number of decryption queries made by A.
Going through the state of art, the ANON-IBR improves the security assump-

tion where existing CPA secure IBR schemes either hide only messages based on
DDH like assumptions in both groups G1,G2 (i.e. similar to SXDH assumption)
[16,34] or provide anonymity from pairing-based DH assumptions [37]. The only
CCA secure ANON-IBR of [21] is proven secure relying on BDDH assumption
in the random oracle model whereas we provide anonymity based on plain DDH
assumption and CCA security based on a simple computational KerMDH (weaker
than the DDH [25]) assumption in the standard model.
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Remark 3. Agrawal et al. [2] gave a generic transformation of an identity-based
trace and revoke (IBTR) scheme from any IPFE. Based on the IPFEs of [3], the
transformation leads us to IBTR schemes from various standard assumptions
such as DDH, LWE and DCR. IBTR works in the same way as an IBR system
except that it has an additional trace algorithm. The purpose of tracing is to
identify malicious users who build pirate decoders. We extend our ANON-IBR
to achieve anonymous IBTRs (ANON-IBTR) by (slightly) modifying the tracing
algorithm of Agrawal et al.’s scheme [2]. The tracing procedure compatible with
our AHNIPE is described in the full version of this paper. Note that, the cipher-
texts of the IBTR of [2] do not hide the revoked list whereas our ANON-IBTR
achieves anonymity of users identities. Therefore, the generic AHNIPE of Sect.
3 without the QANIZK leads us to CPA secure ANON-IBTR schemes based on
DDH, LWE and DCR assumptions.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 3

2. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
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Abstract. One of the most important verifiability techniques for mix
nets is randomized partial checking (RPC). This method is employed in
a number of prominent secure e-voting systems, including Prêt à Voter,
Civitas, and Scantegrity II, some of which have also been used for real
political elections including in Australia.

Unfortunately, it turned out that there exists a significant gap between
the intended and the actual verifiability tolerance of the original RPC
protocol. This mismatch affects exactly the “Achilles heel” of RPC,
namely those application scenarios where manipulating a few messages
can swap the final result (e.g., in close runoff elections).

In this work, we propose the first RPC protocol which closes the afore-
mentioned gap for decryption mix nets. We prove that our new RPC
protocol achieves an optimal verifiability level, without introducing any
disadvantages. Current implementations of RPC for decryption mix nets,
in particular for real-world secure e-voting, should adopt our changes to
improve their security.

Keywords: Mix nets · Verifiability · E-voting · RPC

1 Introduction

Mix nets are indispensable building blocks of many secure e-voting systems.
Essentially, a mix net consists of a sequence of mix servers which take as input the
encrypted messages provided by the senders (e.g., the voters’ ballots), secretely
shuffle them, and eventually output the permutated plain messages (e.g., votes).
Unless all mix servers are corrupted, the mixing breaks the individual connec-
tions between the senders and their revealed messages in the output. In the
context of e-voting, this property guarantees vote privacy.

For secure e-voting, it is also important to ensure that the voters’ intent be
reflected correctly in the election result, even if the mix servers are corrupted
and actively try to tamper with the votes. For this purpose, a mix net must
be verifiable to guarantee that manipulating the senders’ input, and generally
incorrect mixing, can be detected. In the literature, numerous mix nets have been
proposed that aim to achieve verifiability (see, e.g., [1,2,10,14–16,18,18,21–23]).
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One of the most prominent verifiability techniques for mix nets is random-
ized partial checking (RPC), originally introduced by Jakobsson, Juels, and
Rivest [15]. RPC combines several advantageous features:

– Wide field of applications: RPC allows one to realize secure electronic elec-
tions even if the voters’ choices are complex. This is the case for Instant
Runoff Voting (IRV) or Single Transferable Vote (STV) which are commonly
used in political elections all over the world, for example in Australia, India,
Ireland and the UK. Such elections cannot be handled easily by homomorphic
e-voting schemes.

– Intuitive concept : The main idea of RPC is exceptionally simple: Once a mix
server has completed its mixing, the mix server is challenged to open the links
between a number of randomly chosen output messages and the respective
input ciphertexts. If the mix server manipulated (i.e., dropped or replaced)
one of the associated input ciphertexts, then this will be detected.

– Lightweight and simple crypto: The computational overhead of RPC is small.
Moreover, RPC requires well-studied black-box cryptographic primitives only.
This is particularly advantageous when it comes to implementing a verifiable
mix net correctly in practice. For example, the recently discovered attacks on
the Internet voting scheme that was supposed to be employed in Swiss federal
elections [11] mainly reduce to the fact that the sophisticated cryptographic
components related to the underlying proof of shuffle were not implemented
correctly.

Due to these features, RPC mix nets are used in several prominent secure
e-voting systems, including Prêt à Voter [7], Civitas [8], and Scantegrity II [5].
Some of these systems have also been used for real political elections, for example
in the Australian state of Victoria [3].

Unfortunately, it turned out that the verifiability tolerance of the original
RPC protocol [15] is significantly worse than intended. Jakobsson et al. [15]
stated that manipulating k messages in the original RPC protocol remains unde-
tected with probability at most (12 )k but this claim was disproven subsequently.
A number of pitfalls were discovered [17,20] that allow for manipulating k mes-
sages in the original RPC protocol but which remain undetected with probability
( 34 )k. This gap affects exactly the “Achilles heel” of RPC, namely those appli-
cation scenarios where manipulating a few messages can swap the final result
(e.g., in close runoff elections). In such cases, the asymptotic behaviour of the
verifiability tolerance is rather irrelevant; instead, it is important that the base
of the exponential function is small. We illustrate this in Fig. 1.

Elections with close margins are fairly common. For example, in the 2020
Queensland election, Bundaberg had a margin of 9 which the original RPC pro-
tocol would have allowed to be changed undetectably with probability 7.5%.
On the contrary, in an RPC protocol with optimal verifiability tolerance, i.e.,
( 12 )k, swapping the election result would have been caught with 99.8% probabil-
ity. Designing such an optimal RPC protocol and proving it secure is the main
objective of this paper.
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Fig. 1. Difference in concrete verifiability tolerances between original RPC (blue) and
optimal RPC (red). (Color figure online)

Contributions. In this paper, we provide the following contributions:

1. We propose an optimal RPC protocol for decryption mix nets. Our new proto-
col preserves all advantages of the original RPC protocol: it is widely applica-
ble, intuitive, lightweight, and does not require any cryptographic primitives
in addition to the basic ones employed in original RPC.

2. We formally prove that the new RPC protocol improves the verifiability toler-
ance of the original one from (34 )k down to (12 )k under the same cryptographic
and trust assumptions. For this purpose, we use the verifiability framework
by Küsters, Truderung, and Vogt [19] which was already applied in [20] to
analyze the original version of RPC decryption mix nets, as well as all other
techniques for verifiable mix nets (see [13]). We emphasize that the attacks
discovered on the original RPC protocol demonstrate the importance of such
a formal treatment.

Current implementations of RPC for decryption mix nets, in particular for
real-world secure e-voting, should adopt our changes to improve their security.

Structure of the Paper. We discuss the relation between our new optimal RPC
protocol and the other techniques for verifiable mix nets from the literature in
Sect. 2. In Sect. 3, we explain how a decryption mix net works at a conceptual
level, and in Sect. 4, we describe how it can be extended by the original RPC
protocol. In Sect. 5, we recall the pitfalls of the original RPC protocol and how
they can be exploited to attack it. In Sect. 6, we propose our new RPC protocol
for decryption mix nets. In Sect. 7, we state that our new RPC protocol is indeed
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optimal. We conclude in Sect. 8. The complete formal analysis is provided in the
full version of this paper [12].

2 Related Work

Many verifiable mix nets have been proposed in the literature. According to
a recent systemization-of-knowledge [13], the underlying verifiability techniques
can be classified as follows: message tracing [18,22], verification codes [18,21],
original RPC [15], trip wires [2,16], message replication [16], and proofs of shuffle
(e.g., [1,10,14,23]). Optimal RPC and the other verifiability techniques relate
as follows.1 We will provide more details on the relation between original and
optimal RPC in the subsequent sections.

Let us first elaborate on the verifiability tolerances, i.e., the probability
that manipulating more than k messages remains undetected, of the different
techniques and their relationships. Together with the message tracing, verifica-
tion codes, original RPC, and trip wires technique, the optimal RPC technique
belongs to a class of verifiability techniques which have a verifiability tolerance
of the form fk+1 where f is some linear function. Compared to original RPC
for which f = 3

4 holds true, we have f = 1
2 for optimal RPC. This shows that,

on the one hand, the verifiability tolerance of the original and the new RPC
protocol are asymptotically equivalent, but on the other hand, our new version
significantly improves the “Achilles heel” of RPC, i.e., the range of small values
of k, where some cheating may remain undetected with non-negligible probabil-
ity (see Fig. 1). Compared to the remaining techniques in this class, f is constant
both for optimal and original RPC. This property is, typically, superior to the
verifiability tolerance of the message tracing and verification codes technique
for which the base f = (1 − p) depends on the senders’ individual, and thus
uncertain, verification probability p. Compared to the trip wire technique for
which the base f = nh

S/(nh
S +ntw) can be decreased by increasing the number of

trip wire messages ntw for a given number of honest senders nh
S , the verifiability

tolerance of original and optimal RPC is inferior. However, tripwires unlike RPC
allows manipulation of dishonest senders’ messages without detection which is
unacceptable in many circumstances.

Both original and optimal RPC for decryption mix nets employ moderate
cryptographic primitives (black-box NIZKP of correct decryption), require a
(temporarily) trusted auditor whose role can easily be distributed, and guaran-
tee individual accountability (i.e., each misbehaving mix server can be identified
individually).

3 Decryption Mix Nets

A decryption mix net [6] consists of a sequence of mix servers, denoted by
M1, . . . ,MnMS

. Each mix server Mj holds a public/private key pair (pkj , skj)
1 Since the optimal RPC technique proposed in this paper is tailored to decryption

mix nets, we restrict our attention to verifiability techniques for these mix nets in
what follows and refer to [13] for further details.
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of an IND-CCA2-secure public key encryption scheme E = (KeyGen,Enc,Dec).
Each sender S encrypts her message m under the mix servers’ public keys in
reverse order:

c = Enc(pk1,Enc(. . .Enc(pknMS
,m))).

The first mix server M1 takes as input the senders’ nested input ciphertexts,
decrypts them using its secret key sk1, permutes the result uniformly at random,
and forwards the shuffled list to M2. The remaining mix servers M2, . . . ,MnMS

repeat the same steps using their secret keys sk2, . . . , sknMS
. Eventually, the last

mix server MnMS
returns the senders’ original plain input messages in randomly

permuted order.
The main purpose of a mix net is to ensure message privacy by “breaking”

the individual links between the senders and their plain messages. To this end,
at least one mix server should not be corrupted but keep its secret key as well
as its internal permutation secret.

Note that if a number of senders were dishonest and aimed for breaking
message privacy of some honest sender, then the dishonest senders could sim-
ply duplicate the honest sender’s input ciphertext multiple times. By this, the
targeted honest sender’s message would be amplified in the final outcome. This
means that an honest sender’s message privacy could be undermined even if all
mix servers are perfectly honest. In order to protect against such replay attacks,
each mix server removes all duplicates (except for one per duplicate group) from
its input vector.

4 Original RPC

We recall the general idea of the original RPC protocol for decryption mix nets
as proposed by Jakobsson, Juels, and Rivest [15].

If at least one mix server in a “plain” decryption mix net (as described in
Sect. 3) is corrupted and actively deviates from its protocol specification, then
it is not possible to verify (without further means) whether the final outcome
consists of the senders’ original messages. In order to extend a “plain” decryption
mix net so that the correctness of the final outcome can publicly be verified,
Jakobsson, Juels, and Rivest [15] proposed the concept of randomized partial
checking (RPC).

The main idea of RPC is to challenge each mix server Mj as follows. After the
mixing phase, an auditor A chooses a fraction of Mj ’s input ciphertexts uniformly
at random. For each chosen ciphertext c, the mix server has to “open” the link
between c and its decryption c′ in its output. For this purpose, the mix server
Mj generates a non-interactive zero-knowledge proof (NIZKP) which proves the
respective decryption relation w.r.t. Mj ’s public key pkj . Then, the auditor (and
everybody else) can verify the NIZKPs returned by Mj . If the check for one of
the chosen ciphertexts fails, then Mj is held accountable and the final outcome
is rejected. Because the mix server does not know in advance which links it needs
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Fig. 2. Examplified illustration of RPC : The left box shows the internal view of mix
server Mj during the mixing process. The right box shows the public view of the links
revealed by Mj during RPC for challenge αj = (1,−1, 1,−1).

to open during audit, the probability that the mix server can manipulate some
messages undetectably decreases with the number of links to be opened.

Typically, pairs of mix servers are audited to ensure that traces through the
mix net are not revealed completely.2 We will therefore assume that each mix
server Mj has two public/private key pairs (pk1j , sk

1
j ), (pk

2
j , sk

2
j ) and performs two

mixing steps. We denote Mj ’s input by c0j , its intermediate ciphertext vector
by c1j , and its output by c2j . Now, the idea is that for any randomly chosen
intermediate ciphertext c1 ∈ c1j , the mix server has to open either its link to
c0 ∈ c0j or its link to c2 ∈ c2j . In this way, one of c1’s links, the one to c0 or the
one to c2, remains secret. We denote the auditor’s challenge vector for Mj by
αj , where αj [i] = −1 if the left link of c1j [i], αj [i] = 1 if the right link of c1j [i],
and αj [i] = 0 if none of the links of c1j [i] is supposed to be opened. We illustrate
this approach in Fig. 2.

5 Attacks on Original RPC

Jakobsson, Juels, and Rivest [15] claimed that the original RPC technique
(Sect. 4) provides the following verifiability guarantee (if always the left or the
right link of an intermediate ciphertext is supposed to be opened).

Claim ([15]). Suppose that the adversary alters elements in the mix net such
that the observed election tally differs by k votes from the honest one. Then the
probability that the adversary goes undetected is ≤ (12 )k.

This claim was disproven subsequently. Khazaei and Wikström [17] as well as
Küsters, Truderung, and Vogt [20] discovered attacks on original RPC which
2 This could happen if the links of an input ciphertext need to be opened for each mix

server. In this case, the sender’s message privacy would be broken.



Optimal Randomized Partial Checking for Decryption Mix Nets 283

allow for manipulating k messages in such a way that the tampering remains
undetected with probability (34 )k.

In this work, we describe for the first time how to do RPC protocol such that
optimal verifiability tolerance (12 )k is achieved. Our RPC protocol solves the
vulnerabilities of the original RPC protocol that allow for the attacks mentioned
above. In this way, not only these specific but all possible attacks are prevented
that would go undetected with probability > (12 )k. To illustrate our solution, we
recall the two attacks with full technical details in what follows.

Fig. 3. Cheating of the last mix server : The left box shows the correct execution of
mix server MnMS . The right box shows an attack of MnMS where the first two output
messages are identical but the second one is replaced by a different output message.
The remaining output message is linked to both ciphertexts of the identical output
messages. By this, the second output message is effectively dropped. The attack is
detected if and only if αnMS = (1, 1, �, �).

Cheating of the Last Mix Server. This attack by [20] is illustrated in Fig. 3. Recall
that the final outcome c2nMS

is returned by the last mix server MnMS
. Assume

that the adversary controls the last mix server MnMS
and, say, favors candidate

A over candidate B. If there are two distinct ciphertexts c1nMS
[i], c1nMS

[i′] in the
intermediate ciphertext vector c1nMS

which both decrypt to candidate B under
sk2nMS

, then the malicious mix server MnMS
replaces one of them by candidate

B in its output c2nMS
. If the mix server is supposed to open the right link of

c1nMS
[i] or c1nMS

[i′], then it opens the link to B in both cases. Effectively, MnMS
’s

manipulation is detected if and only if the right links of both c1nMS
[i] and c1nMS

[i′]
are to be opened. The probability of this event is 1

2 · 1
2 = 1

4 . Hence, the attack
remains undetected with probability 3

4 .

Cheating of an Arbitrary Mix Server. This attack by [17] is illustrated in Fig. 4.
Assume that the adversary controls an arbitrary mix server Mj . Let c0j [i] and
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Fig. 4. Cheating of an arbitrary mix server : The left box shows the correct execution
of mix server Mj . The right box shows an attack of Mj where the first intermediate
ciphertext is replaced by a duplicate of the third intermediate ciphertext. In the clean-
ing phase of the next mix server Mj+1, one of these two duplicates will be removed.
By this, the message contained in the first intermediate ciphertext vector is effectively
dropped. The attack is detected if and only if αj = (−1, �,−1, �).

c0j [i
′] be two arbitrary elements of Mj ’s input vector c0j . Assume that c0j [i]

decrypts to c̃1 under sk1j and that c̃1 decrypts to c̃2 under sk2j . Assume that
c0j [i

′] decrypts to c1 under sk1j and that c1 decrypts to c2 under sk2j . Now, the
malicious mix server Mj replaces c̃1 by c1 in its intermediate ciphertext vector
c1j , and c̃2 by c2 in its output ciphertext vector c2j . In this way, the choice in c̃0

is effectively dropped. The choice in c0 is temporarily copied but one of these
copies will be removed again due to the duplicate removal of the next mix server
Mj+1. If Mj is supposed to open the left link of one of the two identical inter-
mediate ciphertexts c1 ∈ c1j , then in both cases it opens the link to c0. By this,
Mj ’s manipulation is detected if and only if the left links of both copies of c1

are to be opened. The probability of this event is 1
2 · 1

2 = 1
4 . Hence, the attack

remains undetected with probability 3
4 .

6 Optimal RPC

We propose an RPC protocol for decryption mix nets which achieves optimal
verifiability tolerance (12 )k. We first explain the general idea of our solution
(Sect. 6.1) and then describe the optimal RPC protocol with full technical details
(Sect. 6.2).

6.1 Idea

Recall that the attacks described in Sect. 5 exploit the following two properties
of the original RPC protocol:
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1. It is possible that there exist duplicate plaintext messages in the final outcome
c2nMS

.
2. If a duplicate ciphertext appears during mixing, then this ciphertext is

removed but it is not necessarily checked whether it was injected by a mali-
cious mix server.

Based on these observations, we designed a new RPC protocol which extends
the original RPC protocol as follows:

1. Adding innermost encryption layer :3 The auditor A creates a public/secret
key pair (pkA, skA). Each sender S encrypts her message m first under the
auditor’s public key pkA and afterwards under the mix servers’ public keys. By
this, the mixing is performed over encrypted rather than plain messages. Due
to the IND-CCA2-security of the PKE scheme, the probability that there exist
(honestly generated) duplicate entries in the outcome of the mixing phase c2nMS

is negligible. Once the auditing phase succeeded, the auditor reveals its secret
key skA so that all ciphertexts in c2nMS

can be decrypted (publicly).4

2. Opening duplicate links: If during the mixing of an arbitrary mix server Mj ,
a duplicate ciphertext appears, then Mj explicitly opens the complete local
trace of the two (or more) identical ciphertexts through its mix. All dupli-
cate ciphertexts are removed and not taken into account for the RPC in the
auditing phase. In this way, we ensure that, in contrast to the original RPC
protocol, the (deterministic) mixing function is bijective. As a result, for each
intermediate ciphertext c1 ∈ c1j , there exists exactly one correct link to an
element in c0j and exactly one correct link to an element in c2j .

Due to these two extensions, the resulting RPC decryption mix net achieves
optimal verifiability tolerance without affecting privacy.

Impact on Verifiability. Our formal verifiability analysis will demonstrate that
these two modifications in combination protect against all possible attacks for
manipulating k messages that would remain undetected with probability > (12 )k.
While it is easy to see that the two attacks described in Sect. 5 are prevented by
the two modifications above, proving that this holds true for all possible attacks
of the same kind is more challenging (see App. A of the full version [12]).

Impact on Privacy. At a first sight, one may think that opening the local links of
all identical ciphertexts undermines privacy of honest senders. That is, in collab-
oration with a dishonest mix server, a dishonest sender could simply duplicate
an honest sender’s intermediate ciphertext. In this way, the honest sender’s local
link would be revealed. However, observe that for privacy to be guaranteed, all

3 Even though this idea was already mentioned in prior work [20], it was dismissed
because it does not improve verifiability/accountability by itself.

4 Not releasing the secret key until after auditing provides an extra degree of privacy
protection if any mixer server was dishonest but the secrecy of the key is not required
for integrity.



286 T. Haines and J. Müller

mix nets assume that at least one mix server is honest. Due to the IND-CCA2-
security of the underlying PKE scheme, a dishonest sender can only duplicate
honest ciphertexts outside the honest mix server’s encryption layer. In such a
case, the local link of an honest sender’s ciphertext trace may only be revealed
prior to the honest mixing phase. This argument demonstrates that privacy of
the original RPC protocol is preserved.

6.2 Protocol

We describe the optimal RPC protocol with full technical details.

Remark. Due to the IND-CCA2-security of the underlying public-key encryption
scheme, permuting the decrypted ciphertexts uniformly at random is equivalent
from a privacy perspective to sorting them lexicographically. Unlike the original
RPC protocol, we chose the latter version because it makes commitments dis-
pensable. This will simplify the protocol description without affecting security.

Parameters and Algorithms. We use the following parameters and algorithms:

– p ∈ (0, 1]: probability for opening either a left or right link (as opposed to
opening neither of them).

– λ > 1: security parameter.
– Algorithm App: Takes as input a vector c and element c. Appends element c

to vector c.
– Algorithm Ins: Takes as input a lexicographically sorted vector c and element

c. Inserts element c into vector c according to its lexicographic position.

Cryptographic Primitives. We use the following cryptographic primitives:

– An IND-CCA2-secure public-key encryption scheme E = (KeyGen,Enc,Dec).
– A NIZKP proof of correct decryption (Prove,Verify) for E . The underlying

relation is

R = {((c,m, pk), sk) : m = Dec(sk, c)∧
(∃r : (pk, sk) = KeyGen(r))}.

To instantiate these primitives, one can combine for example the IND-CCA2-
secure PKE by Cramer-Shoup [9] with the NIZKP by Camenisch-Shoup [4].

Protocol Participants. The protocol is run among the following participants:

– Bulletin board B (append-only).
– Senders S1, . . . , SnS

.
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– Mix servers M1, . . . ,MnMS
.

– Auditor A.5

We assume that there exist mutually authenticated channels between the
bulletin board B and all other participants.

Setup Phase. Each mix server Mj creates two public/secret key pairs as follows:

1. (pk1j , sk
1
j ) ← KeyGen(1λ)

2. (pk2j , sk
2
j ) ← KeyGen(1λ)

3. Send (pk1j , pk
2
j ) to B

The auditor A creates a public/secret key pair as well:

1. (pkA, skA) ← KeyGen(1λ)
2. Send pkA to B

Submission Phase. Each sender S takes as input the mix servers’ public keys
(pk1j , pk

2
j )

nMS
j=1 as well as the auditor’s public key pkA and iteratively encrypts m

as follows

1. c2nMS
← Enc(pkA,m)

2. for j = nMS to 1:
(a) c1j ← Enc(pk2j , c

2
j )

(b) c2j−1 ← Enc(pk1j , c
1
j )

3. Send c20 to B

We denote the (initially empty) vector of input ciphertexts by c20. For each
incoming ciphertext c20 from some sender S, the bulletin board B performs the
following steps to ensure that S can neither submit multiple nor duplicated
inputs:

1. if S already submitted c ∈ c20, then abort
2. elseif c20 ∈ c20, then abort
3. else c20 ← App(c20, c

2
0)

The ciphertext vector c20 is the senders’ joint input to the subsequent mixing
phase.

5 The role of the auditor can easily be distributed. For example, each auditor could
first commit to its randomness (using a non-malleable commitment scheme), and
once all auditors have published their commitments, they open them and combine
the results using XOR. For the sake of simplicity, we consider a single auditor only.
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Mixing Phase. Starting with M1, each mix server Mj takes c2j−1 as input and
decrypts these input ciphertexts first under sk1j and then under sk2j . The main
idea of the optimal RPC protocol is the following one: If, during the mixing
process, a mix server Mj decrypts a ciphertext to a duplicate message, then the
mix server explicitly opens the complete local links (i.e., the left and right side)
of both identical messages. These opened links are stored in dj and the duplicate
message is discarded. Similarly, the mix server also opens the links of all invalid
messages, stores the opened links in ij , and discards the invalid message.

In what follows, c0j , c
1
j , c

2
j denote the (initially empty) ciphertext vectors, pj

denotes the (initially empty) list of local traces, ij denotes the (initially empty)
list of invalid messages, and dj denotes the (initially empty) list of duplicate
messages. Now, each mix server Mj executes the following steps for all c0 ∈ c2j−1:

1. Decrypt :
(a) c1 ← Dec(sk1j , c

0)
(b) c2 ← Dec(sk2j , c

1)
2. Open invalids: if c1 = ⊥ or c2 = ⊥ then

(a) π1 ← Prove((pk1j , sk
1
j ), c

0, c1)
(b) π2 ← Prove((pk2j , sk

2
j ), c

1, c2)
(c) ij ← App(ij , (c0, c1, c2, π1, π2))

3. Open intermediate duplicates: elseif c1 ∈ c1j then
(a) π1 ← Prove((pk1j , sk

1
j ), c

0, c1)
(b) π2 ← Prove((pk2j , sk

2
j ), c

1, c2)
(c) c̃0, c̃2 s.t. (c̃0, c1, c̃2) ∈ pj

(d) π̃1 ← Prove((pk1j , sk
1
j ), c̃

0, c1)
(e) π̃2 ← Prove((pk2j , sk

2
j ), c

1, c̃2)
(f) dj ← App(dj , ((c0, c1, c2, π1, π2), (c̃0, c1, c̃2, π̃1, π̃2)))

4. Open outcome duplicates: elseif c2 ∈ c2j then
(a) π1 ← Prove((pk1j , sk

1
j ), c

0, c1)
(b) π2 ← Prove((pk2j , sk

2
j ), c

1, c2)
(c) c̃0, c̃1 s.t. (c̃0, c̃1, c2) ∈ pj

(d) π̃1 ← Prove((pk1j , sk
1
j ), c̃

0, c̃1)
(e) π̃2 ← Prove((pk2j , sk

2
j ), c̃

1, c2)
(f) dj ← App(dj , ((c0, c1, c2, π1, π2), (c̃0, c̃1, c2, π̃1, π̃2)))

5. Store links and insert : else
(a) pj ← App(pj , (c0, c1, c2))
(b) c0j ← Ins(c0j , c

0)
(c) c1j ← Ins(c1j , c

1)
(d) c2j ← Ins(c2j , c

2)

Eventually, Mj sends (c0j , c
1
j , c

2
j , ij ,dj) to B. Observe that, in contrast to the

original RPC protocol, the elements in the final mix server’s ciphertext vector
c2nMS

are still encrypted under the auditor’s public key pkA. If all checks in the
subsequent auditing phase are successful, then A publishes its secret key skA on
the bulletin board so that c2nMS

can be decrypted publicly.
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Auditing Phase. For each mix server Mj , the auditor A checks whether invalid
and duplicate messages were correctly discarded and whether the respective links
were opened correctly. Precisely, A runs the following program:

1. Initialize:
(a) b ← 1

2. Verify :
(a) Consistency :

i. if ¬(|c0j | = |c1j | = |c2j |), then b ← 0
ii. if c2j−1 �= c0j ∪ (c0)(c0,...)∈ij ∪ (c0)((c0,...),...)∈dj

as multisets, then b ← 0
(b) Invalids removal :

i. if ⊥ ∈ c1j , then b ← 0
ii. if ⊥ ∈ c2j , then b ← 0

(c) Duplicate removal :
i. if ∃i �= i′ : c1j [i] = c1j [i

′], then b ← 0
ii. if ∃i �= i′ : c2j [i] = c2j [i

′], then b ← 0
(d) Invalids links: for all (c0, c1, c2, π1, π2) ∈ ij :

i. if c1 �= ⊥ and c2 �= ⊥, then b ← 0
ii. if Verify(pk1j , c

0, c1, π1) = 0, then b ← 0
iii. if Verify(pk2j , c

1, c2, π2) = 0, then b ← 0
(e) Duplicate links: for all ((c0, c1, c2, π1, π2), (c̃0, c̃1, c̃2, π̃1, π̃2)) ∈ dj :

i. if c1 /∈ c1j and c2 /∈ c2j , then b ← 0
ii. if c1 �= c̃1 and c2 �= c̃2, then b ← 0
iii. if Verify(pk1j , c

0, c1, π1) = 0, then b ← 0
iv. if Verify(pk2j , c

1, c2, π2) = 0, then b ← 0
v. if Verify(pk1j , c̃

0, c̃1, π̃1) = 0, then b ← 0
vi. if Verify(pk2j , c̃

1, c̃2, π̃2) = 0, then b ← 0
3. Return b

The remaining part of the auditing phase (i.e., generating the challenges αj ,
creating the proofs πj , and verifying them) works as in the original RPC. If all
of these checks are successful, then A publishes its secret key skA on the bulletin
board so that the mix net’s outcome ciphertext vector c2nMS

can be decrypted
publicly. Otherwise, if one of the previously described checks fails, then the
auditor outputs dis(Mj) to state that Mj misbehaved.

7 Formal Verifiability Analysis

We formally analyze verifiability of the optimal RPC protocol (Sect. 6) using the
same generic verifiability framework [19] that was previously applied by Küsters,
Truderung, and Vogt [20] to analyze the original RPC protocol (Sect. 4). We
summarize our formal result in what follows and refer to App. A (of the full
version [12]) for full details and our formal proof.
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Assumptions. We make the following assumptions:

(V1) The public-key encryption scheme E is IND-CPA-secure.6

(V2) (Prove,Verify) is a non-interactive proof (NIP) of correct decryption.7

(V3) The bulletin board B and the auditor are honest.

Note that these assumptions are the same as for the original RPC protocol.

Result. Under the assumptions above, we obtain the following verifiability result
for the optimal RPC protocol. We refer to Theorem 2 (App. A in the full version)
for the completely formal statement.

Theorem 1 (Verifiability (informal)). Under the assumptions (V1) to (V3)
stated above, the probability that in a run of the optimal RPC protocol with verifi-
cation probability p more than k inputs of honest senders have been manipulated
but the auditing procedure is nevertheless successfull is bounded by (1 − p

2 )k+1.

8 Conclusion

We proposed a new RPC protocol for decryption mix nets. We proved that our
new version improves the verifiability level of the original RPC protocol from
( 34 )k down to (12 )k which is optimal for RPC. By this, we improve the “Achilles
heel” of RPC, i.e., the range of small values of k, where some cheating may
remain undetected with non-negligible probability. Current implementations of
RPC for decryption mix nets, in particular for real-world secure e-voting, should
adopt our changes to improve their security.
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18. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: a lightweight verifiable
remote voting system. In: IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, 27 June–1 July 2016, pp. 341–354 (2016)

https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-319-70697-9_4
https://eprint.iacr.org/2021/520
https://eprint.iacr.org/2021/520
https://doi.org/10.1007/978-3-030-45388-6_21
https://doi.org/10.1007/978-3-030-45388-6_21
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-642-36095-4_8


292 T. Haines and J. Müller
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Abstract. Shuffling is one of the most important techniques for privacy-
preserving protocols. Its applications are manifold, including, for exam-
ple, e-voting, anonymous broadcast, or privacy-preserving machine-
learning. For many applications, such as secure e-voting, it is crucial
that the correctness of the shuffling operation be (publicly) verifiable.
To this end, numerous proofs of shuffle have been proposed in the liter-
ature. Several of these proofs are actually employed in the real world.

In this work, we propose a generic compiler which can transform any
“shuffle-compatible” Σ-protocol (including, among others, Σ-protocols
for re-randomization, decryption, or key shifting) into a Σ-protocol for
permutations of the underlying relation. The resulting proof of shuffle is
black-box, easily implementable, simple to explain, and comes with an
acceptable computational overhead over the state-of-the-art. Because we
machine-checked our compiler in Coq, the new proof of shuffle is partic-
ularly suitable for applications that require a superior level of security
assurance (e.g., high-stake elections).

Keywords: Mix net · Verifiable · Zero-knowledge proof

1 Introduction

Proofs of shuffles are fundamental building blocks in many privacy-preserving
technologies. Most prominently, they are employed in verifiable mix nets [26]
that are often used for secure e-voting. Numerous proofs of shuffles have been
proposed in the literature. Some of them, such as the state-of-the-art proofs of
shuffles by Terelius-Wikström [41,43] and Bayer-Groth [5], were deployed in gov-
ernment elections in Switzerland, Estonia, Australia, and Norway. Additionally,
they have also processed millions of ballots in low-stake elections. However, these
state-of-the-art proof systems have some disadvantages:

1. Design complexity: Implementing cryptography is notoriously difficult [19,
24,27,39,40], and this is even more the case for the highly complex proofs of
shuffles from [5,13,41,43]. Theoretical superiority can be useless if a protocol
is not implemented correctly in practice. Indeed, the vVote project [10] in
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the Australian state of Victoria took this issue into account: they used a
technique called random partial checking [28] since it was easier to implement
even though it provides weaker security from a theoretical perspective.

2. Cryptographic security proofs: Due to their complexity, cryptographic security
proofs tend to be error-prone. For example, the original proof of the OAEP
construction [6] needed to be fixed multiple times [15,16,38]. On the con-
trary, machine-checked proofs (e.g., [1] for OAEP) in reasonable frameworks
guarantee higher assurance. However, there do not exist such proofs in the
literature for the state-of-the-art proofs of shuffles [5,13], even though this
would be particularly desirable due to their involved concepts.

3. Specific design: In order to build modular security protocols (e.g., e-
voting protocols), it is advantageous if sub-protocols (e.g., mix nets) are
black-box. By this, interfaces can be simplified, and sub-protocols can be
replaced/updated more easily. Unfortunately, state-of-the-art proofs of shuf-
fles [5,13,41,43] have very specific protocol structures and can thus support
particular data structures only.

In applications like electronic voting, mix nets are by far the most com-
plicated pieces of cryptography implemented, and, overwhelmingly, see utterly
inadequate scrutiny, even compared to the poor base level for deployed e-voting
schemes, more generally. Given the long list of verifiable mix nets shown to be
flawed (see, e.g., [29–32,42]), a trusted methodology for checking the security of
verifiable mix nets—both in the design and implementation—is of paramount
importance. Indeed, the SwissPost e-voting system for national elections in
Switzerland was withdrawn from use in 2019 in part due to an insecure mix
net implementation [24]. Unlike in regularly used security protocols (e.g., key
exchange), efficiency is of less concern in high-stake e-voting. Instead, for such
elections, it is far more important that the e-voting system does in fact provide
the security properties it is supposed to achieve; in short: “security assurance �
top-notch performance”.

In this paper, we follow a novel and radically different approach in order to
address the aforementioned requirements. We propose a conceptually simple and
widely applicable proof of shuffle that we machine-checked in Coq to demonstrate
its superior level of security assurance. More precisely, we provide the following
contributions.

Contributions.

1. We introduce and formalize the notion of shuffle-compatible Σ-protocols
(SCSP). We show that several commonly used Σ-protocols are shuffle-
compatible. This includes, among others, Σ-protocols for re-encryption of
arbitrary homomorphic ciphertexts, for re-randomisation of arbitrary homo-
morphic commitments (including lattice-based ones), for key shifting in ElGa-
mal PKE, and for decryption in ElGamal PKE.

2. We propose a generic and conceptually simple compiler which can transform
any SCSP into a Σ-protocol for permutations of the underlying relation.
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The resulting proofs of shuffle have particularly interesting properties in the
interactive setting.

3. We provide machine-checked (and cryptographic) security proofs for the
generic compiler and the SCSPs mentioned before. To this end, we used the
interactive theorem prover Coq [7].1

Structure of the Paper. We start with related work in Sect. 2. After that, in
Sect. 3, we describe the main technical idea of our generic compiler as well as
a number of interesting Σ-protocols to which it can be applied. In Sect. 4, we
formalize the notion of SCSP and show that the interesting Σ-protocols from
Sect. 4 provide this property. We describe our generic compiler in Sect. 5 and
analyze its complexity in Sect. 6. We conclude in Sect. 7. The full version of this
paper [25] also includes the appendices.

2 Related Work

2.1 Proofs of Shuffle

Proofs of shuffles are often used to make mix nets verifiable. Beyond proofs of
shuffles, several different techniques have been proposed for this purpose (see [26]
for a recent systemization-of-knowledge). Since proofs of shuffles are the only
known technique to provide an ideal verifiability level for mix nets (i.e., where
manipulating at least one message is detected with overwhelming probability),
we will restrict our attention to proofs of shuffles in what follows.

In practice, the most common proofs of correct shuffle are [41,43] (which
are foundation of the prominent Verificatum mix net [44]) and [5]. There are
also more efficient proofs of correct shuffle which have since emerged [12–14].
These new proofs are roughly three times faster than [5,41,43] but require trust
assumptions which are typically undesirable in practice (see [26]).

Historically, the first technique for verifiable mix nets was proposed in [34].
Their technique was a straightforward cut-and-choose zero-knowledge proof. The
proof is fairly effective but was considered to be computational impractical.
We show the cut-and-choose based approach introduced in this paper is not
only more generic and machine-checked but it also has acceptable performance
overhead compared with state-of-the-art protocols [5,41,43] (see Sect. 6). More
specifically, in the most common case (mixing ElGamal ciphertexts) our proof of
shuffle has, depending on the batch techniques we apply, either computational
cost or size within a small factor of the state-of-the-art, but not both at the
same time. We leave as future work the investigation of batch techniques which
would reduce both size and computational cost. Nevertheless, we believe that,
for applications like high-stake e-voting, the simplicity, generality and machine-
checked security of our approach more than justifies the performance trade-off.

1 The Coq code can be found at https://github.com/gerlion/Exponentially-Secure-
Cut-and-Choose.

https://github.com/gerlion/Exponentially-Secure-Cut-and-Choose
https://github.com/gerlion/Exponentially-Secure-Cut-and-Choose
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To test the practicality, we simulated a test election using commodity hard-
ware with 1,000,000 voters. We employed the proof of shuffle produced by our
transform on the ElGamal re-encryption SCSP implemented over the prime-
order Ristretto subgroup of Curve25519 using curve25519-dalek [33] and the
optimisations detailed in Sect. 6.3. The proof generation and verification time
was 40 min. The proof size is 128 megabytes (which is denominated by sending
the encrypted votes). Larger elections might require either additional cores or
checking the proof overnight.

2.2 Machine-Checked Proofs

Interactive theorem provers are tools to encode mathematically rigorous defini-
tions and algorithms. Desired properties can be encoded as theorems which are
interactively proved (machine-checked).

The machine-checked proofs of our compiler and the SCSPs are in the interac-
tive theorem prover Coq [7]. Coq is based upon Coquand’s Calculus of Construc-
tions and has been developed for decades. A significant body of work has already
been completed on verifying cryptography in Coq, most notably, the CertiCrypt
project [2]. Because the proofs we give are straight reductions without utilizing
game hopping, we do not use CertiCrypt. Moreover, CertiCrypt appears to have
been abandoned in favor of EasyCrypt.2 EasyCrypt is a separate interactive
proof system which is designed specifically for verifying cryptographic proofs.
Early versions of EasyCrypt were compatible with CertiCrypt but this has since
been discontinued. EasyCrypt is seeing exciting developments but at present is
far less mature than Coq.

Interactive theorem provers, particularly mature ones, give higher confidence
in the security of the proofs. However, do they not (necessarily) increase confi-
dence in the definitions. For this reason, we prove our transform under estab-
lished definitions. We use the definition of a Σ-protocol from [23] which was
subsequently refined in [22].

One advantage of using Coq is that we able to take advantage of it’s well-
established code extraction facility to produce practical implementations of
the verified specifications. This has been done before by Haines et al. [22,23]
who proved the security of the underlying sigma protocol in the Terelius-
Wikström [41,43] proof of shuffle and used the extraction facility to produce
a verifier to check real elections. Compared to their work ours is more general in
that Terelius-Wikström was only proved for re-encryption and re-randomisation
whereas we cover a much wider class of underlying relations. Moreover, they
only checked the completeness and zero-knowledge of the underlying sigma pro-
tocol but not that this suffices for the completeness and zero-knowledge of the
Terelius-Wikström mix net. In contrast we machine check the entire proof of
shuffle.

2 See http://certicrypt.gforge.inria.fr/#related.

http://certicrypt.gforge.inria.fr/#related
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3 Technical Overview

We first describe the main idea of our generic proof of shuffle. We then elaborate
on a number of concrete interesting applications.

3.1 Main Idea

We now explain the main idea of the generic compiler which takes as input an
arbitrary SCSP for relation R and outputs a (standard) Σ-protocol for relation

RShuffle = {((xj), π), (yj , y
′
j)j∈[τ ]) : ∀j ∈ [τ ] : ((xj), (yj , yπ(j))) ∈ R},

where τ denotes the size of the shuffled vector.3 To illustrate our approach, we
first describe the notion of SCSPs, i.e., how they differ from general Σ-protocols.
After that, we explain the main technique of our compiler.
Shuffle-Compatible Σ Protocols (SCSP). In general, a Σ-protocol for relation R
is a particular form of interactive zero-knowledge proof between a prover P and
verifier V . The joint input for P and V is a statement y, and the secret input
to P is a witness x for y, i.e., (x, y) ∈ R. In the first step, the prover creates a
so-called commitment a, sends it to the verifier, who then replies with a random
challenge e in the second step. In the third step, the prover computes a response
z which it sends to the verifier. Eventually, the verifier on input statement y and
transcript (a, e, z) either outputs “accept” or “reject”. Each Σ-protocol guaran-
tees completeness (if the prover and the verifier run their specified programs and
(x, y) ∈ R, then the verifier outputs “accept”), special soundness (if the prover
is able to output valid responses z and z′ for two different challenges e and e′ but
for the same commitment a, then the prover knows a witness x for statement y),
and special honest verifier zero-knowledge (the interaction between the prover
and the verifier can be simulated when the challenge e is given). The formal
definition of a Σ-protocol is given in Sect. 4.1.

Now, a SCSP is essentially a (standard) cut-and-choose Σ-protocol, where
the statement y is of the form (prm, c0, c1). That is, the statement consists of
some parameters prm and two elements c0 and c1; for example, a public key and
two ciphertexts. In the commitment phase, the prover constructs an intermediary
value a between c0 and c1. After it receives a challenge bit e, the prover responds
with a message z that reveals the relationship between a and ce. In particular, the
verifier can check the correctness of the transcript (a, e, z) using only the partial
statement (prm, ce). We will formally define the notion of SCSPs in Sect. 4.2. As
we shall see below, many interesting Σ-protocols are actually shuffle-compatible.
Compiler. Let us now explain the main concept of our generic compiler. The
compiler takes as input a SCSP for relation R, and outputs a (standard) Σ-
protocol ΣShuffle for relation

RShuffle = {(((xj)j∈[τ ], π), (prm, (cj
0)j∈[τ ], (c

j
1)j∈[τ ])) :

∀j ∈ [τ ] : (xj , (prm, c
π(j)
0 , cj

1)) ∈ R}.
3 We will refine RShuffle further below.
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To this end, the compiler constructs ΣShuffle (Fig. 1) as follows:

Commit phase: The prover P first runs the commit algorithm of the underlying
SCSP for each entry j to obtain a commitment aj (plus some internal state
αj). Then, the prover shuffles (aj)j∈[τ ] according to a uniformly random
permutation πa, and returns commitment (aπa(j))j∈[τ ].

Response phase: The prover first runs the response algorithm of the under-
lying SCSP for each entry j to obtain a response zj . If the challenge bit e
was 0, the prover responds with (π ◦ πa, (zπa(j))j∈[τ ]), and otherwise with
(πa, (zπa(j))j∈[τ ]). That is, the prover either “opens” the right links while the
left ones remain hidden by πa, or the prover “opens” the left links while the
right ones remain hidden by π.

Verification phase: The verifier checks whether the opened links are correct,
i.e., for each j, the verifier runs the check of the underlying SCSP for partial
statement (prm, c

πz(j)
e ) and transcript (aj , e, zj).

We will define ΣShuffle formally in Sect. 5. We provide both a machine-checked
proof of our compiler in Coq [7] (module ProofOfShuffle) as well as a crypto-
graphic one in the full version of this paper [25].

3.2 Applications

We list a number of concrete SCSPs that can be transformed by our generic com-
piler into Σ-protocols of shuffle with interesting applications. We formally define
these examples in the full version. The following list is by no means exhaustive;
there likely exists many further potentially interesting SCSPs.

Re-encryption of Ciphertexts. In every homomorphic PKE scheme, it is possible
to re-encrypt a given ciphertext c = Enc(pk,m; r) into a different ciphertext
c′ = Enc(pk,m; r′) (which still encrypts the same message m under the same
public key pk but with different randomness r′) without knowledge of the secret
key sk, message m, or randomness r. Prominent examples of such schemes include
ElGamal PKE [18] and Paillier PKE [35]. We have shown in the full version
that a (common) generic Σ-protocol for proving that c′ is a re-encryption of c is
actually SCSP. Now, by transforming this SCSP with our generic compiler from
Sect. 5, we can use the resulting Σ-protocol for making any re-encryption mix
net verifiable [26]. These protocols are often used in secure e-voting to guarantee
vote privacy (e.g., in Civitas [9]).

Re-randomization of Commitments. In every homomorphic commitment
scheme, it is possible to re-randomize a commitment c = Com(pk,m; r) into
a different commitment c′ = Com(pk,m; r′) without knowledge of the opening
(m, r). A prominent example of such schemes is Pedersen’s one [36]. Similarly
to the previous application, a (common) generic Σ-protocol for proving that c′

is a re-randomized commitment of c is shuffle-compatible as well.
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In the case of homomorphic commitments (unlike encryption), it is particu-
larly interesting that our novel compiler can, in principle, not only be used to
construct an efficient proof of shuffle for “traditional” commitment schemes but
also for lattice-based ones. The reason is that a number of zero-knowledge proofs
for the required underlying relations have been proposed (e.g., [4,11]) that can
be employed very efficiently in our scenario because they can be amortized by
performing many of them in parallel.

Key Shifting in ElGamal PKE. In several applications of the ElGamal PKE,
the key is distributed across multiple authorities. For this reason, we need to
do a key shifting (sometimes called partial decryption) mix [17] rather than a
decryption mix. In addition, to prevent senders tracking their own ciphertext
through the mix net, we want to simultaneously re-randomise and do a key shift
at each point.

Decryption of ElGamal Ciphertexts. A commonly used Σ-protocol for proving
that an ElGamal ciphertext was decrypted correctly is shuffle-compatible as well.

4 Sigma Protocols

In this section, we first recall the general concept of Σ-protocols. After that,
we describe a class of Σ-protocols which are compatible with the novel proof
of shuffle that we will introduce in Sect. 5. This class includes numerous Σ-
protocols for commonly used relations, such as re-randomisation of commitments
or ciphertexts, decryption, and key shifting.

4.1 General Sigma Protocols

We start with recalling the general definition of Σ-protocols.

Definition 1 (Sigma protocol). Let R ⊆ X × Y be an NP relation. A Σ-
protocol for R with challenge length t ≥ 1 is a pair of probabilistic polynomial-
time (ppt) interactive Turing machines (P, V ), where

– the prover P takes as input a witness-statement pair (x, y) ∈ R,
– the verifier V takes as input a statement y ∈ Y, and returns 0 or 1,
– the structure of the interaction between P and V is as follows:

1. P : compute commitment a and send a to V
2. V : compute challenge e

r←− {0, 1}t and send e to P
3. P : compute response z and send z to V
4. V : output either 0 or 1 (as a function of y and (a, e, z)).

– completeness (Definition 2), special soundness (Definition 3), and special
honest verifier zero-knowledge (Definition 4) are guaranteed.

We say that trans(〈P (x, y), V (y)〉) := (a, e, z), where a, e, z are as above, is a
transcript of the conversation between P and V . We say that (a, e, z) is an
accepting transcript (for y) if and only if V returns 1 in this conversation.
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Definition 2 (Completeness). Let (P, V ) be as in Definition 1. We say that
(P, V ) achieves completeness if and only if for all (x, y) ∈ R:

Pr (〈P (x, y), V (y)〉 = 1) = 1.

Definition 3 (Special soundness). Let (P, V ) be as in Definition 1. We say
that (P, V ) achieves special soundness if and only if there exists a polynomial-
time extractor algorithm Ext, where

– Ext takes as input statement y ∈ Y, and two accepting transcripts (a, e, z),
(a, e′, z′) where e �= e′,

– Ext outputs witness x such that (x, y) ∈ R.

Definition 4 (Special honest verifier zero-knowledge). Let (P, V ) be
as in Definition 1. We say that (P, V ) achieves special honest verifier zero-
knowledge if and only if there exists a ppt simulator algorithm Sim, where

– Sim takes as input statement y ∈ Y and challenge e,
– Sim outputs an accepting transcript (a, e, z) such that

Sim(y, e) = trans(〈P (x, y), V e(y)〉)
holds true (i.e., the simulator’s output Sim(y, e) and the transcript between
P (x, y) and V (y) who chooses challenge e have same distributions).

4.2 Shuffle-Compatible Sigma Protocols (SCSP)

We now characterize those Σ-protocols which are compatible with the proof of
shuffle introduced in Sect. 5.

The main characteristic of these SCSP is that the public statement y can be
expressed as y = (prm, c0, c1), where c0 will be the “input” element to the shuffle
and c1 will be the “output” element. Now, for a given challenge e ∈ {0, 1},4 the
input to the verifier’s final check can be restricted to the partial public statement
(prm, ce) (and the transcript (a, e, z) as before). Furthermore, SCSPs require the
following stronger variant of special honest verifier zero-knowledge: the simulator
Sim takes as input the challenge e ∈ {0, 1} (as before) but only the partial public
statement (prm, ce).

Definition 5 (Shuffle-compatible sigma protocol). Let R ⊆ X × Y be
an NP relation where elements from Y are of the form (prm, c0, c1). A shuffle-
compatible Σ-protocol (SCSP) (with challenge length 1) is a pair of ppt inter-
active Turing machines (P, V ), where

– the prover P takes as input a witness-statement pair (x, (prm, c0, c1)) ∈ R,
– the verifier V takes as input a statement y = (prm, c0, c1), and returns 0 or

1,
4 Without loss of generality, we restrict our attention to Σ-protocols with challenge

length t = 1.
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– the structure of the interaction between P and V is as follows:
1. P : compute (a, α) ← Com(x, y) and send commitment a to V

2. V : compute challenge e
r←− {0, 1} and send e to P

3. P : compute response z ← Resp(x, y, (a, α), e) and send z to V
4. V : output 0/1 ← Check((prm, ce), (a, e, z))

– completeness (Definition 2), special soundness (Definition 3), and a variant
of special honest verifier zero-knowledge (Definition 6) are guaranteed.

We say that (a, e, z) is an accepting transcript if and only if V outputs 1, i.e.,
Check((prm, ce), (a, e, z)) = 1, in this conversation.

Definition 6 (Shuffle-compatible special honest verifier ZK). Let (P, V )
be as in Definition 5. We say that (P, V ) achieves shuffle-compatible special hon-
est verifier zero-knowledge if and only if there exists a ppt simulator algorithm
Sim, where

– Sim takes as input partial statement (prm, ce) and challenge e,
– Sim outputs an accepting transcript (a, e, z) such that

Sim(prm, ce, e) = trans(〈P (x, y), V e(y)〉)
holds true.

The Coq definition of a shuffle-compatible Σ-protocol is the module type
SigmaOfFunction. This module defines a shuffle-compatible Σ-protocol as a Σ-
protocol with the restrictions on the verifier and simulator.

In appendices of the full version of this paper, we included SCSPs (and
accompanying proofs) for many common relationships including re-encryption
of ciphertexts for arbitrary homomorphic public key encryption schemes, re-
randomisation of commitments for homomorphic commitment schemes, re-
randomisation of lattice-based commitments.

5 Transform

In this section, we present our main contribution: a generic Σ-protocol of correct
shuffle ΣShuffle which can invoke any SCSP, as specified in Definition 5. The
protocol ΣShuffle is described in Fig. 1. The formal relation to be proven is

RShuffle = {(((xj)j∈[τ ], π), (prm, (cj
0)j∈[τ ], (c

j
1)j∈[τ ])) :

∀j ∈ [τ ] : (xj , (prm, c
π(j)
0 , cj

1)) ∈ R},
where R is the relation of the underlying shuffle-compatible Σ-protocol. We refer
to Sect. 3 for the main idea of ΣShuffle.

We provide two proofs that ΣShuffle is a Σ-protocol for relation RShuffle. The
first proof is a machine-checked one using Coq. The Coq encoding of the trans-
form is given by the module ProofOfShuffle. The module defines the proof of
shuffle as defined in Fig. 1 and then proves that it is a Σ-protocol for the relation
ΣShuffle. The second proof is a cryptographic proof which is provided in the full
version.



302 T. Haines and J. Müller

Fig. 1. Σ-protocol of correct shuffle ΣShuffle. The protocol ΣShuffle invokes the abstract
SCSP Σ specified in Definition 5. In particular, the algorithms Com, Resp, and Check
employed in ΣShuffle are the ones of the underlying shuffle-compatible Σ-protocol.

6 Complexity

The basic complexity (computational performance and proof size) of the new
proof of shuffle is straightforward. At the same time, the new proof of shuffle
comes with some interesting properties that make its performance more multi-
faceted. To illustrate this, in what follows, we first elaborate on the proof’s basic
complexity and then we describe useful trade-offs in the interactive setting as
well as some optimisations. After that, we compare the complexity of the new
proof of shuffle with state-of-the-art protocols. Eventually, we provide concrete
values for performance and proof size for large-scale elections.

6.1 Basic Complexity

Let s be the proof size of the underlying Σ-protocol and let cP and cV be the
prover and verifier complexity in Σ, respectively. Then, the proof size of ΣShuffle

is τ · s group and field elements and the permutation. The prover’s complexity
is τ · cP , and the verifier’s complexity is τ · cV , where τ is the number of items
being shuffled. Consequently, if λ is the number of times we repeat ΣShuffle to
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improve the soundness level down to 2−λ, then the proof size is τ · s · λ, the
prover’s complexity is τ · cp · λ, and the verifier’s complexity is τ · cV · λ.5

6.2 Interactive vs Non-interactive

Existing protocols in the literature do not gain much performance advantage
by reducing the security parameter λ. On the contrary, the new proof of shuffle
has linear complexity for both the prover and verifier in λ. This means that
the interactive variant provides the following interesting trade-off. For example,
if we use our protocol for secure e-voting, then we can first run an interactive
variant with low security parameter, say λ = 10, which will allow the generation
of a proof hundreds of times faster (in the online phase) than any other proof of
shuffle. This will give 99.9% immediate confidence in the integrity of the election
outcome while a higher confidence can be produced in the coming hours.

6.3 Optimisations

We describe two options to optimize the new proof of shuffle: amortising and
pre-computation.

Amortising. In all examples considered, it is possible to significantly reduce the
computational cost by amortising the underlying operations. In the case of the
lattice example, this is explicit. The ElGamal example presents two possible
ways to amortise:

Speed Since all exponentations are to a fixed base, we can use Gordon’s [20]
Radix-R method. More precisely, if we are handling x ciphertexts in a group
order y, then we set R as 2d where d is chosen to minimise 2d log2d 2y +
x log 2d2y. Consequently, in practice, when handling millions of ciphertexts
on a group of order roughly 2256, this reduces the cost of exponentiation to
less than 1

10 of the cost of a normal exponentiation.
Space Batch techniques could be applied to reduce the size of the proof, for

instance [37]. It is straightforward to apply such techniques (in the ElGamal
examples) to get a proof with a number of group and field elements inde-
pendent of the number of messages. However, the suggested computational
optimisations would no longer be effective.

Pre-computation. In prominent use cases (like electronic voting), there is a sig-
nificant period of time (vote casting period), followed by a shorter period in
which the proof must be computed (tally phase). It is therefore advantageous
when proof of shuffles have the option to do significant amounts of their compu-
tation before knowing the exact ciphertexts to be mixed. This is similar to the
application scenario of modern secure multi-party computation (MPC) protocols

5 We have assumed that both Com and Resp contain at least one expensive operation
(such as exponentiation) which will dwarf the cost of handling the permutations.
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which split their computational cost into a rather slow offline phase (which can
be computed ahead of time without knowing the inputs) and a very fast online
phase (which depends on the specific inputs). Similarly, as explained next, our
new proof of shuffle offers a particularly useful offline/online split since the offline
computation does not depend on the exact number of items to be shuffled (in
contrast to all other state-of-the-art proofs).6

Observe that in the re-randomisation examples considered, the prover’s com-
putationally most expensive parts are independent of the statement to proven.
More precisely, in the ElGamal-based examples, only the commitment algorithm
Com contains exponentations and these can be executed without knowledge of
the statement; all other calculations by the prover are computationally minor.
Similarly, in the lattice-based examples, computationally expensive Gaussian
sampling appears only in the commitment algorithm Com and can be executed
independently of the statement. Therefore, all expensive steps in these examples
can be pre-computed in an offline phase so that the online phase is blazingly
fast.

6.4 Comparison

Table 1. Comparison of ΣShuffle applied to re-encryption of ElGamal ciphertexts with
state-of-the-art protocols [5] and [41,43]. The security parameter is λ = 128. We denote
the prover’s computational complexity by cP and the verifier’s one by cV . We denote
by F the size of a field element and by G the size of a group element.

Size Offline cP Online cP Complexity cV

Our protocol (speed) τ(4G + 128(2G + F + log(τ))) 24τ 0 24τ

Our protocol (space) τ4G + 128(2G + F + τ log(τ)) 0 256τ 256τ

[5] τ4G + 11mG + 5nF 0 2 log(m)τ 4τ

[41,43] τ(11G + 2F ) 0 5τ 8τ

In practice, proofs of shuffles are most commonly used for re-encryption of
ElGamal. Therefore, we compare the efficiency of our compiler (using the compu-
tational optimisations) in this case with the state-of-the-art protocols [5,41,43]
for the concrete choice of security parameter λ = 128. We measure size as the
combination of the proof size and the statement since both must be sent in prac-
tice. We denote by F the size of a field element and by G the size of a group
element. We measure computational complexity in the number of exponentia-
tions.7 We have chosen to present the other proofs in their most efficent variants
which do not seperate the online and offline phases. While, it is possible to do

6 There are approaches to overcome this for the state-of-the-art proofs (e.g. appending
dummy ciphertexts to reach some limit) but they complicate the protocols.

7 Protocol [5] has an additional parameters m and n such that τ = m · n where m is
often set to 8 in practice. We have drawn on [21] for the analysis of [41].
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some pre-computation in both [5] and [41,43] there is still O(τ) exponentiations
in the online phase.

As can seen from Table 1, our protocol is either:

– much faster in the online phase and only a small factor different overall with
a proof size roughly 40 times larger than the state-of-the-art,

– or of comparable size with longer computation.

6.5 Concrete Efficiency

Note that the motivation of using our work with ElGamal is not higher per-
formance than state-of-the-art protocols but simpler and thus less error-prone
implementation as well as superior security assurance due to machine-checked
proofs. We have seen that this unique property comes at a cost; the performance
of our new proof of shuffle is significantly worse than the state-of-the-art. Never-
theless, if we enter concrete values, we shall see that the space optimised variant
still offers acceptable performance even for large scale elections.

Consider an election with 1,000,000 voters using the proof of shuffle produced
by our transform on the ElGamal re-encryption SCSP implemented over the
prime-order Ristretto subgroup of Curve25519 using curve25519-dalek [33].
Depending on the optimisations used, we either have a proof generation and
verification time of 4 min and a proof size of 8.3 gigabytes, or a proof generation
and verification time of 40 min and a proof size of 128 megabytes. In practice,
we expect the latter would be preferred. Larger elections might require either
additional cores or checking the proof overnight.

7 Conclusion

We have presented a novel proof of shuffle with black box applicability, sim-
ple design and machine-checked proofs. Our technique converts any shuffle-
compatible Σ-protocol into a proof of shuffle for the underlying relation. We
have shown that the computational cost of our technique (when used on a re-
encryption ElGamal shuffle) is within a small factor of the state-of-the-art. Inter-
active versions of the techniques can provide highly efficient and small proofs
with a small error term. We have, also, shown that our technique is applicable
to verifiably shuffling lattice-based commitments.

Future work

Mixing Post-quantum Encryption Schemes. It is relatively straightforward to
construct a shuffle-compatible Σ-protocol for lattice-based encryption schemes
(e.g., [8]) using zero-knowledge proofs of linear relations (e.g., [3]). However,
to do so, would be computationally expensive and result in large proofs. An
interesting area of future work is to develop amortised proofs of linear relations
to allow efficient shuffling of these encryption schemes following the idea of our
novel proof of shuffle.
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Batch Techniques. We have mentioned techniques which give either significant
speed ups or reduced size. However, the techniques appear to be mutually exclu-
sive. We leave as future work the investigation of combing the techniques to gain
both increased computational efficiency and reduced size.
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22. Haines, T., Goré, R., Sharma, B.: Did you mix me? Formally verifying verifiable
mix nets in voting. In: 2021 IEEE Symposium on Security and Privacy, SP 2021.
IEEE (2021)
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Abstract. Multiparty computation (MPC) is a cryptographic method
that enables a set of parties to compute an arbitrary joint function of
the private inputs of all parties and does not reveal any information
other than the output. MPC based on a secret sharing scheme (SS-MPC)
and garbled circuit (GC) is known as the most common MPC schemes.
Another cryptographic method, homomorphic encryption (HE), com-
putes an arbitrary function represented as a circuit by using ciphertexts
without decrypting it. These technologies are in a trade-off relationship
for the communication/round complexities, and the computation cost.

The private decision tree evaluation (PDTE) is one of the key appli-
cations of these technologies. There exist several constant-round PDTE
protocols based on GC, HE, or the hybrid schemes that are secure even
if a malicious adversary who can deviate from protocol specifications
corrupts some parties. There also exist other protocols based only on
SS-MPC that are secure only if a semi-honest adversary who follows the
protocol specification corrupts some parties. However, to the best of our
knowledge, there are currently no constant-round PDTE protocols based
only on SS-MPC that are secure against a malicious adversary.

In this work, we propose a constant-round four-party PDTE proto-
col that achieves malicious security. Our protocol provides the PDTE
securely and efficiently even when the communication environment has
a large latency.

Keywords: Privacy preserving machine learning · Private decision
tree evaluation · Multiparty computation · Constant-round protocol

1 Introduction

1.1 Backgrounds

Multiparty computation (MPC) [19,41] is a cryptographic method that enables
a set of parties to compute an arbitrary joint function and does not reveal any
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information other than the output even if an adversary corrupts some of the
parties. There are two main types of adversary: a semi -honest adversary , who
attempts to obtain as much information as possible under the condition that cor-
rupted parties follow the specifications of the protocol correctly, and a malicious
adversary , who not only attempts to obtain as much information as possible
but also tampers with computation results under the condition that corrupted
parties do not follow the specifications of the protocol.

The security notions related to the delivery of outputs against malicious
adversaries are particularly important. The security with abort notion guaran-
tees that the protocol is aborted if it detects cheating by malicious parties.
However, in the protocol that achieves the security with abort, honest parties
may not receive the correct outputs while the malicious parties may receive it.
The fairness guarantees that all parties (including malicious parties) get either
the correct outputs or nothing. Hence, fairness is a stronger security notion than
security with abort. Robustness guarantees that all parties always get the correct
outputs and thus implies fairness.

Two of the most common types of MPC are garbled circuit (GC ) [41] and
secret sharing − based MPC (SS -MPC ) [7,19]. While a GC protocol requires a
small computational cost and constant number of communication rounds, it also
needs a large number of communication bits. An SS-MPC protocol requires a
small computational cost and small number of communication bits, but it also
needs many communication rounds. A homomorphic encryption (HE ) [17,20,32]
is another cryptographic method that can compute a function securely. HE
requires no communications during computation, but incurs a large computa-
tional cost.

Hence, these technologies have a trade-off relationship with respect to the
communication/round complexities and the computation cost. Several hybrid
protocols combining these technologies [13,18,24,30] have been studied to mit-
igate this trade-off. The offline-online paradigm is also widely known as the
common technique to mitigate it. The offline-online paradigm can reduce the
communication cost of the online phase (where part of the computation depends
on the actual inputs of the parties) even if it increases the communication cost of
the offline phase (where part of the computation does not depend on the actual
inputs) and the computation as whole.

The private decision tree evaluation (PDTE) [3,6,8] is a key application of
these technologies. A decision tree is a popular tool for classification and is widely
utilized in machine learning. It is essentially a kind of flowchart organized in a
tree structure. In a (non-private) decision tree evaluation, at each internal node,
conditional branching decisions are made for input attributes. Each branch rep-
resents the result of these conditional branching decisions. Each leaf node has
a class label, and a decision tree evaluation outputs the class label assigned
to the leaf node as the classification result. In comparison, at each internal
node in the PDTE protocol, conditional branching decisions are made for input
attributes, obliviously. That is, the input attributes, comparison operator, deci-
sion threshold value, and comparison results are all hidden by a cryptographic
method. Each leaf node has an encrypted class label, and the PDTE protocol
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outputs the encrypted class label assigned to the leaf node as the classification
result without revealing information about the tree or the input attributes. Kiss
et al. [27] divided PDTE into three phases: feature selection, comparison, and
path evaluation. In the feature selection phase, the feature used for conditional
branching at each internal node is selected from the input feature vector while
keeping the values of the input feature vector, selected feature, and index secret.
In the comparison phase, the selected feature is compared with the decision
threshold value while keeping the value of the selected feature, decision thresh-
old, and comparison result secret. In the path evaluation phase, the classification
result is output while keeping the comparison results secret.

Kiss et al. [27] focused on the PDTE protocol with constant rounds by using
GC, HE, and hybrid schemes, but did not mention any schemes based only
on the SS-MPC. Tsuchida et al. proposed a constant-round PDTE protocol
based only on the semi-honest secure three-party computation (3PC) protocol
[37]. However, they left the simultaneous achievement of constant round and
malicious security as an open problem. There are trade-offs about communica-
tion/computational cost in GC, HE, and SS-MPC, making it difficult to choose
the optimal technology, but there is currently no protocol based only on SS-MPC
with constant rounds and malicious security yet. Taking into account the poten-
tial risks related to technology compromise, it is also desirable to have a variety
of methods to construct the constant-round PDTE protocol. For this reason, it
will be meaningful to devise a construction of constant-round PDTE protocol
with a malicious security based on not only GC, HE, and the hybrid protocols
but also (only) SS-MPC.

Thus, we ask the following: Could we construct a constant-round PDTE
protocol using only the maliciously secure SS-MPC over the ring (that needs
only the small communication bits and computational cost because the modulus
operation over the ring can be lightweight)?

1.2 Our Results

We propose a maliciously secure PDTE protocol with constant rounds using
Trident [13], a fair 4PC1 [13]. Our contributions are as follows:

1. We propose maliciously secure shuffle and most significant bit (MSB) extrac-
tion protocols with fairness and constant rounds. Tables 1 and 2 show that
only our protocols achieve malicious security and fairness with constant
rounds. Table 1 also shows that the number of the communication rounds
of our shuffle in the online phase is the same as semi-honest secure shuffle
[14] and the number of communication bits of our shuffle in the online phase
is lower than [14].

2. By using our proposed shuffle and MSB extraction along with Trident, we
construct each maliciously secure protocol related to each phase with con-

1 Trident [13] includes not only the SS-MPC but also the GC. We use only the SS-MPC
in our protocol.
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Table 1. Comparison of communication complexity of the oblivious shuffle protocols
(Rounds: the number of communication rounds, Comm.: the number of (amortized)
communication bits per all parties, n: the number of parties, t: the number of corrup-
tions, nCt: the number of subset of t distinct elements of n parties, i.e., n!/t!(n − t)!,
m: the length of array, p: prime number, L(> 1): arbitrary integer, |(com+zk) round|:
the number of rounds of commitments and zero-knowledge proof, |(com+ zk) comm.|:
the number of communication bits of commitments and zero-knowledge proof., -: We
consider fairness only against a malicious adversary, not semi-honest adversary.

Corruption,
security

Fairness Rounds Comm.

Offline Online Offline Online

Resharing-based
shuffle [29]

t < n/2,
semi-honest

- 0 2 · nCt 0 nCt · (t(n − t)
+(n − t)(n − 1)) · m log2 L

Resharing-based
shuffle [29]

t < n/2,
malicious

(abort) 0 2 · nCt

+|(com+zk) round|
0 nCt · (t(n − t) + (n − t)(n − 1)) ·

m log2 L +|(com + zk) comm.|
[22,23] t < n/2,

semi-honest
- 0 6 0 18m log2 p

[14] t < n/2,
semi-honest

- 0 3 0 6m log2 L

Ours t < n/3
malicious

� 4 3 9m log2 L 3m log2 L

stant rounds and fairness. Table 3 shows that only our protocol achieves mali-
cious security stronger than [37] with constant rounds. It also shows that the
number of rounds of our protocol in the online phase is smaller than naive
construction in the practical setting that the parameters m (the number of
features), h (the height of tree), and k (the bit length of the modulus) are
greater than m = 256, h = 16, and k = 512 respectively2. Therefore, our
scheme can not only solve the theoretical open problem of [37] but also be
run efficiently and securely even in the communication environment has a
large latency.

1.3 Related Work

To the best of our knowledge, none of the currently available maliciously secure
shuffle, MSB extraction, or PDTE protocols are based only on SS-MPC with
constant rounds, as discussed below.
2 For example, the typical datasets for the privacy-preserving machine learning, Texas

(that contains hospital dischage data [2]) and Purchase (that contains purchasing
histories [1]), have 600 and 6170 features, respectively. Araki et al. [3] conducted
an experiment about the private evaluation of a concrete decision tree at heights
from 4 to 30 for credit decisions [35] using 3PC. The modulus size of residue ring
needs to be 128, 256, 512, or even larger to guarantee the accuracy of the fixed-point
calculations. If users need to train the decision tree securely via ID3 [34] and MPC
before PDTE, training process contains the logarithmic calculations via MPC with
guaranteed high accuracy. As another case, in the hybrid model of the decision tree
and regression model (i.e., each regression model is assigned to each leaf), the larger
ring size is required to guarantee high accuracy.
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Table 2. Comparison of communication complexity of the MSB extraction protocols
via (only) secret sharing over the ring (Rounds: the number of communication rounds,
Comm.: the number of (amortized) communication bits per all parties, n: the number of
parties, t(= 1): the number of corruptions, p: the smallest prime number larger than k,
-: We consider fairness only against a malicious adversary, not semi-honest adversary.)

Corruption,
security

Fairness Rounds Comm.

Offline Online Offline Online

[37] t < n/2,
semi-honest

- 1 7 6k2 − 6k 11k + 3(k − 1) log2 p + 4

ABY3
[30]+[4]

t < n/2,
malicious

(abort) 4 1 + log2 k 24k 18k

BLAZE
[33]

t < n/2,
malicious

� 4 1 + log2 k 9k 9k

Trident
[13]

t < n/3,
malicious

� 1 1 + log2 k 3k 7k

FLASH
[9]

t < n/3,
malicious

�
(Robustness)

2 3 + log2 k 4k 24k

SWIFT
[28]

t < n/3,
malicious

�
(Robustness)

1 log2 k 7k − 6 7k − 6

Ours t < n/3,
malicious

� 16 9 6k2 + 10k + (69k − 57) log2 p (18k − 18) log2 p + 9k

Oblivious Shuffle Protocol. The oblivious shuffle protocol shuffles the input
(secret-shared) array while keeping the array elements and the shuffling order
secret. It is known as a useful subprotocol for database operations. For example,
oblivious sorting protocols [14,22,23] use it as a subprotocol.

The resharing-based shuffling protocol [29] is a typical oblivious shuffling pro-
tocol. In particular, in the case of semi-honest secure 3PC with single corruption,
the resharing-based shuffling protocol can achieve constant rounds [14,22,23]. As
a different direct approach, by using the MPC protocols for the arbitrary function
and the permutation networks, the oblivious shuffling protocol can be achieved
[25,31]. However, this approach requires many rounds depending on the size of
the permutation networks.

MSB Extraction Protocol. The MSB extraction protocol extracts the (secret-
shared) MSB from the (secret-shared) input while keeping the input and its MSB
secret. It is known as a useful subprotocol for computing the mixed circuits (e.g.,
less-than protocol).

A semi-honest MSB extraction protocol with constant rounds over the field
has been proposed [11]. However, the field-based MPC protocol has greater com-
putational complexity than the ring-based one. Furthermore, the authors of [11]
did not propose a maliciously secure construction with constant rounds. One
of the existing MSB extraction protocols over the ring uses the GC to achieve
constant rounds [12,30,33]. As another example, existing MSB extraction pro-
tocols over the ring use the circuit-based approach based only on SS-MPC
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Table 3. Comparison of communication complexity of the PDTE protocols via (only)
secret sharing over the ring (Rounds: the number of communication rounds, Comm.:
the number of (amortized) communication bits per all parties, n: the number of parties,
t(= 1): the number of corruptions, m: number of features, k: bit length of ring, p: the
smallest prime number greater than k, h: height of the tree)

Corruption,
security

Rounds in offline Comm. in offline

Rounds in online Comm. in online

Protocol 9 in [37] t < n/2,
semi-honest

0 0

log2(m) + 2 log2(k)
+ log2(h) + 9

(2h − 1) · (3 log2(m) + 3 log2(m) · log2(log2 m) +
6m log2 m +4mk + 2m + 17k + 6k log2 k + 3) +
2h · (3h − 3 + 6k) + 3k

[15] t < n/2,
semi-honest

0 0

h + log2(k) + 5 (2h − 1) · (10m log2(m) + 30k − 10 log2(k) −
20) + 2h · 10hk

Protocol 8 in [37] t < n/2,
semi-honest

1 (2h − 1) · (log2(m) · 6k2 + 18k2)

26 (2h − 1) · log2(m) · (9k + (3k − 3) log2 p + 4)
+(2h−1)·(27k+(9k−9) log2 p+22)+2h(6k+9h)

Naive construction t < n/3,
malicious

log2 h + 11 2h · (30k + 3h) − 30k − 3

log2 log2 m + log2 k
+ log2 h + 9

2h ·(17 log2 m+33k+3h+2)−17 log2 m−33k−4

Ours t < n/3,
malicious

42 (2h − 1) · (12mk2 + 23mk + (128k −
114)m log2 p + 3m + 33k +18k2 + (207k −
171) log2 p + 6) + 9 ∗ 2h ∗ (h + 1)(k + h)

27 (2h − 1) · (36m(k − 1) log2 p + 21km + 4m + 24k
+54(k−1) log2 p+6)+3·2h ·(h+1)(k+h)+4·2h ·h

[9,13,28].3 In recent years, the constant-round MSB extraction protocol via
only SS-MPC [37,39] has been proposed. However, this protocol achieves only
semi-honest security.

Private Decision Tree Evaluation Protocol. Several PDTE protocols,
including those based on HE [36,40] and GC+HE [6,8], have been proposed.
The SoK paper of Kiss et al. [27] mainly focused on constant-round protocols
using GC or HE. The (non constant-round) PDTE protocol based on ORAM
was proposed in [26,38].

Cock et al. [15] proposed an efficient PDTE protocol via commodity-based
two-party computation based on secret sharing scheme. However, their protocol
is not a constant-round protocol. Tsuchida et al. [37] proposed a semi-honest
secure PDTE protocol with constant rounds via 3PC based on a secret sharing
scheme.

3 FLASH [9] and Trident [13] in the conference version of this paper include a constant-
round MSB extraction protocol. However, a flaw was found in FLASH and was fixed
in the preprint version of FLASH (uploaded to ePrint). The MSB extraction protocol
of Trident used the same approach as FLASH and had the same flaw. The fixed MSB
extraction protocols of [9,13] need many communication rounds depending on the
size of modulus.
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2 Preliminaries

Notations. We denote the residue class ring modulo 2, 2k or p by Z2, Z2k or
Zp(=Fp, where p is the smallest prime number larger than k), respectively. Let
⊕ and · be the exclusive OR (XOR) and AND operator, respectively. We also
denote the multiplication operator on ZL where L = 2, 2k, or p by ·. Let also
Pi be the i-th party (i = 0, 1, 2, 3). The security parameter is denoted by κ.
The κ-bit bit string is {0, 1}κ. We use the (cryptographically secure) pseudo-
random functions FL : {0, 1}κ × {0, 1}κ → ZL where L = 2, 2k or p. We also
use Fp∗ : {0, 1}κ × {0, 1}κ → Zp∗ and the (collision-resistant) hash function H.

Let z|j ∈ Z2 be the j-th bit of z ∈ Z2k . We also denote by z|j,...,i ∈ Z2k

the partial bit string of z ∈ Z2k from j(≥ i)-th bit to i-th bit. Let msb(z) be
the MSB of z. For example, if z = 001(2) = 1 ∈ Z23 , we have z|0 = 1, z|1 = 0,
z|2 = msb(z) = 0, and z|1,...,0 = 01(2) = 1. We denote the set of permutations of
an array that has M elements on ZL by SM .

We use the (public) unique identifier, uid ∈ {0, 1}κ (e.g., counter values).
That is, any parties can know these values.

Fair 4PC Based on 2-out-of-4 Replicated Secret Sharing Scheme
((2,4)-RSS) and Building Blocks. We use the (2,4)-RSS in [13]. We
denote the (2,4)-RSS’s shares of x on ZL as [x]L. P0 has the share [x]L,0 =
(λx,1, λx,2, λx,3). Pi (i ∈ {1, 2, 3}) has the share [x]L,i = (mx, λx,i+1, λx,i−1),
where λx,3+1 = λx,1. It holds that mx = x + λx mod L and λx = λx,1 + λx,2 +
λx,3 mod L where mx, λx, λx,1, λx,2, λx,3 ∈ ZL.

We use the same addition and multiplication of shares as [13] and denote
them by [x]L + [y]L and [x]L · [y]L, respectively. We also use the same scalar
addition and multiplication of shares as [13] and denote them as c + [x]L and
c · [x]L where c ∈ ZL, respectively. In this paper, the same notation is used for
scalar operations and share operations to simplify the description.

Each party has pre-shared keys in the same way as [13]. That is, each pair of
Pi and Pj (where i �= j and i, j ∈ {0, 1, 2, 3}) has ki,j ∈ {0, 1}κ. Each group of
Pa, Pb and Pc (where a �= b �= c and a, b, c ∈ {0, 1, 2, 3}) has ka,b,c ∈ {0, 1}κ. All
parties have k ∈ {0, 1}κ. We assume that each party is connected by a point-to-
point private and authenticated channel in the same way as [13].

We also use the following building blocks of Trident [13] in our protocol as
subprotocols.

– v ← CC({Pa, Pb}, v, Pc): It runs the cross-checking message transfer pro-
tocol (also known as the joint message passing protocol [16]). It takes the
senders {Pa, Pb}, v ∈ ZL that the senders have and the receiver Pc, where
(a, b, c ∈ {0, . . . , 3} and a �= b �= c). In CC, both senders send v to the receiver.
Then, the receiver checks whether the values sent by the two senders match
or not. If the values match, the receiver gets the correct value v and broad-
casts the message continue. If not, the receiver broadcasts the message abort
and aborts the protocol. It takes 1 round and log2 L bits as (amortized) com-
munication cost. This cross-checking message transfer protocol is commonly
used by recent fair 4PC protocols [13,16,21].
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– x ← OpenOne(Pi, [x]L): It runs the opening protocol for one party. It takes
the receiver Pi and the share [x]L and outputs x ∈ ZL to Pi. It requires 1
round and log2(L) bits as its (amortized) communication cost.

– [
∑M−1

j=0 xj · yj ]L ← DotProd(([x0]L, . . . , [xM−1]L), ([y0]L, . . . , [yM−1]L)):
It runs the dot product protocol. It takes the vectors of shares,
([x0]L, . . . , [xM−1]L) and ([y0]L, . . . , [yM−1]L) and then outputs [

∑M−1
j=0 xj ·

yj ]L. It requires 1 round and 3 log2(L) bits as its (amortized) communication
cost in the offline phase and 1 round and 3 log2(L) bits as its (amortized)
communication cost in the online phase. Note that we use Mult instead of
DotProd when M = 1.

– [x]L ← BitConv(L, [x]2): It runs the bit conversion protocol (also known as
ΠBit2A, bit to arithmetic sharing protocol in [13]4). It takes [x]2 (where x ∈ Z2)
and outputs [x]L. It requires 2 rounds and 3 log2(L)+1 bits as its (amortized)
communication cost in the offline phase and 1 round and 3 log2(L) bits as its
(amortized) communication cost in the online phase.

Fig. 1. Toy example of decision tree structure

Structure of Decision Tree. We use the same structure as [37]. We denote
an input array as an m-dimension feature vector by {attri}m−1

i=0 s.t. 0 ≤ attri ≤
2k−1 − 1. Let attri be the i-th feature. We assume that a decision tree is a com-
plete binary tree. We define the decision tree as T = (h, δ, {idxj}2

h−2
j=0 , {vj}2

h−2
j=0 ,

{condj}2
h−2

j=0 , {leafValj′ }2
h−1

j′=0
) where h is the height of the tree. Let {idxj}2

h−2
j=0 be

a set of the index values idxj ∈ Zm s.t. 0 ≤ m ≤ 2k−1−1. The j(= 0, . . . , 2h −2)-
th index value idxj is used to choose the idxj-th feature for comparison at the

4 In [13], BitConv converts the shares on Z2 into the shares on Z2k . It can be generalized
to convert the shares on Z2 into the shares on ZL (including Zp) by modifying u, v, r′b,
and x′ on Z2k to ones on ZL, since Trident [13] can work on an arbitrary ring.
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j-th internal node. We denote a set of the decision threshold values (assigned
to the j-th internal node) by {vj}2

h−2
j=0 s.t. 0 ≤ vj ≤ 2k−1 − 1. We also denote

the set of the conditional bits to choose comparison operations (less-than (LT,
<) or equality-testing (EQ, ==)) by {condj}2

h−2
j=0 . In each internal node, we

use LT operation as a comparison operation and check whether attridxj
< vj if

condj = 1. If not, we use the EQ operation and check whether attridxj
== vj .

We assign a comparison result bit to branches. That is, we assign the com-
parison result bit 1 (i.e., true) and 0 (i.e., false) to the right and left branch,
respectively. The next step is to judge the right (or left) child node if the com-
parison result bit is 1 (or 0).

Each j′(∈ {0, 1, . . . , 2h − 1})-th leaf node has the class label value
leafValj′ ∈ Z2k . We denote a set of class label values assigned to leaf nodes

by {leafValj′ }2
h−1

j′=0
. We also denote a set of paths to the leaf nodes by

PathBranchj′ = {bj′ ,�}h−1
�=0 (where bj′ ,� ∈ {0, 1}). Let bj′ ,� be the bit assigned

to the branch at the height � in the path to the j′-th leaf node. Let also
δ : {0, . . . , 2h − 1} × {0, . . . , h − 1} → {0, . . . , 2h − 2} be the map function
that takes j′ (i.e., the index number of the leaf node) and the height � and out-
puts the position of the corresponding internal node. Figure 1 shows an example
of the same tree used in [37].

3 Our Protocols

Key Idea. To construct the maliciously secure PDTE protocol based only on
SS-MPC with fairness and constant rounds, we use the fair 4PC based on secret
sharing scheme, Trident [13] and follow the algorithms of [37]. However, the
PDTE protocol of [37] is based on semi-honest 3PC including the semi-honest
shuffle protocol with constant rounds [14] and semi-honest private compare (PC)
protocol with constant rounds [39]5. The authors of Trident did not propose an
oblivious shuffle protocol with constant rounds and PC protocol in [13]. Hence, it
is non-trivial to realize the algorithms of the PDTE protocol [37] while achieving
malicious security, fairness, and constant rounds by using Trident only straight-
forwardly.

To overcome this problem, we propose a maliciously secure shuffle protocol
with fairness and constant rounds based on Trident. We also constructed a PC
protocol that achieves malicious security with fairness and constant rounds by
using our shuffle as a subprotocol. By using our shuffle, PC, and Trident as
building blocks, we can realize the algorithms of [37] while achieving malicious
security, fairness and constant rounds.

5 In the client-server model [5], PC protocol [39] can achieve only privacy (not correct-
ness) against a malicious adversary. However, we would like to construct the PDTE
protocol achieving privacy and correctness against a malicious adversary even out-
side the client-server model. Hence, we cannot use the PC protocol [39] without
modifications as a building block.
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3.1 Proposed Oblivious Shuffling Protocol

Protocol 1. Oblivious Mini-shuffle Protocol (Type 1) ΠminiShuffle1

Input: Random permutation π ∈ SM , senders (knowing π) {P1, P2, P3},
receiver (not knowing π) P0, the array of shares [�x]L = ([x0]L, [x1]L
, . . . , [xM−2]L, [xM−1]L)

Output: Shuffled array of shares [�x′]L = ([x′
0]L, [x′

1]L, . . . , [x′
M−2]L, [x′

M−1]L
) where x′

π(�) = x� (� = 0, . . . , M − 1).
1: Set mx�

= x� + λx�
mod L and λx�

= λx�,1 + λx�,2 + λx�,3 mod L (for
� = 0, . . . , M − 1).

2: Let [x�]L,0 = (λx�,0, λx�,1, λx�,2) be the P0’s shares of x� (for � = 0, . . . , M −
1).

3: Let [x�]L,j = (mx�
, λx�,j+1, λx�,j+2) be the Pj ’s shares of x� where j ∈

{1, 2, 3}, λx�,3+1 = λx�,1 and λx�,3+2 = λx�,2 (for � = 0, . . . , M − 1).
4: for � = 0, . . . , M − 1 do in parallel
5: The senders P1, P2 and P3 computes r�,j = FL(k1,2,3, uid�,j) and sets r� =

r�,1 + r�,2 + r�,3 mod L where uid�,j is a unique identifier and j ∈ {1, 2, 3}.
6: Pj sets [x′

π(�)]L,j = (mx�
+ r� mod L, λx�,j+1 + r�,j+1 mod L, λx�,j−1 +

r�,j−1 mod L) where λx�,3+1 = λx�,1 and r�,3+1 = r�,1.
7: for j = 1, 2, 3 do in parallel
8: Pj+1 and Pj−1 (where P3+1 = P1) computes mπ(�),j = λx�,j + r�,j mod

L.
9: By CC({Pj+1, Pj−1},mπ(�),j , P0), P0 gets mπ(�),j as the correct value

λx′
π(�),j or aborts the protocol. // 1 round & log2 L bits in offline

10: end for
11: end for
12: P0 sets [x′

π(�)]L,0 = (λx′
π(�),1 , λx′

π(�),2 , λx′
π(�),3).

13: Return [�x′]L = ([x′
0]L, [x′

1]L, . . . , [x′
M−2]L, [x′

M−1]L).

Protocol 2. Oblivious Table Shuffle Protocol ΠTableShuffle

Input: The number of rows R, the number of columns C, the array of
shares [�x(0)

0 ] = ([x(0)
0,0]L0 , . . . , [x

(0)
0,C−1]LC−1), . . ., [�x(0)

R−1] = ([x(0)
R−1,0]L0 , . . . ,

[x(0)
R−1,C−1]LC−1) where modulus sizes L� ∈ {2, 2k, q} (� = 0, . . . , C − 1).

Output: Shuffled array of shares [�x(4)
0 ] = ([x(4)

0,0]L0 , . . . , [x
(4)
0,C−1]LC−1), . . .,

[�x(4)
R−1] = ([x(4)

R−1,0]L0 , . . . , [x
(4)
R−1,C−1]LC−1) where π ∈ SR is a random per-

mutation that no party knows and x
(4)

π(�′ ),�
= x

(0)

�′ ,�
for �′ = 0, . . . , R − 1; � =

0, . . . , C − 1.
1: for i = 0, 1, 2, 3 do
2: Pi, Pi+1, and Pi+2 generate the random permutation πi−1 ∈ SR unknown

to Pi−1 by using the pseudo-random function FR, the unique identifier uidi,
and pre-shared key ki,i+1,i+2 where P3+1 = P0.

3: end for
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4: Set [�y(0)
� ] = ([y(0)

�,0 ]L�
, . . . , [y(0)

�,R−1]L�
) = ([x(0)

0,� ]L�
, . . . , [x(0)

R−1,�]L�
) for � =

0, . . . , C − 1.
5: for � = 0, . . . , C − 1 do in parallel
6: Parties obtains [�y(1)

0 ] = ([y(1)
�,0 ]L�

, [y(1)
�,1 ]L�

, . . . , [y(1)
�,R−2]L�

, [y(1)
�,R−1]L�

) by

ΠminiShuffle1(π0, {P1, P2, P3}, P0, [�y
(0)
� ]) where y

(1)

π0(�
′ )

= y
(0)

�′ for �′ = 0, . . . , R−
1. // 1 round & 3R log2 L� bits in offline

7: end for
8: for i′ = 1, 2, 3 do
9: for � = 0, . . . , C − 1 do in parallel

10: Parties obtains [�y(i′+1)
� ] = ([y(i′+1)

�,0 ]L�
, [y(i′+1)

�,1 ]L�
, . . . , [y(i′+1)

�,R−2]L�
, [y(i′+1)

�,R−1

]L�
) by ΠminiShuffle2(πi′ , {P0, Pi′ −1, Pi′+1}, Pi′ , [�y(i′)

� ]) where y
(i′+1)

�,πi′ (�′ )
= y

(i′)
�,�′

for
�′ = 0, . . . , R − 1. // 1 round & 2R log2 L� bits in offline, 1 round

& R log2 L� bits in online

11: end for
12: end for
13: Return [�x(4)

0 ] = ([x(4)
0,0]L0 , . . . , [x

(4)
0,C−1]LC−1) = ([y(4)

0,0]L0 , . . . , [y
(4)
C−1,0]LC−1),

[�x(4)
1 ] = ([x(4)

1,0]L0 , . . . , [x
(4)
1,C−1]LC−1) = ([y(4)

0,1]L0 , . . . , [y
(4)
C−1,1]LC−1), . . ., [�x(4)

R−1]

= ([x(4)
R−1,0]L0 , . . . , [x

(4)
R−1,C−1]LC−1) = ([y(4)

0,R−1]L0 , . . . , [y
(4)
C−1,R−1]LC−1)

where the random permutation π = π3 ◦ π2 ◦ π1 ◦ π0 which no party knows
and x

(4)

π(�′ ),�
= x

(0)

�′ ,�
for �′ = 0, . . . , R − 1; � = 0, . . . , C − 1.

Overview. We propose the oblivious shuffle protocol for secret shares of table
data (i.e., two-dimensional arrays) with fairness and constant rounds (Proto-
col 2, ΠTableShuffle). To construct ΠTableShuffle, we also propose the oblivious mini-
shuffle protocol with fairness and constant rounds (ΠminiShuffle1 and ΠminiShuffle2).
ΠminiShuffle1 and ΠminiShuffle2 take the random permutation that only three parties
know and the shares of the one-dimensional array. They output the shares of
the shuffled array with fairness by resharing the three parties’ (locally shuffled)
shares via CC. Since ΠminiShuffle1 and ΠminiShuffle2 consist of the local operations
and execution of CC, they can achieve fairness and constant rounds. ΠTableShuffle

can be constructed by executing the oblivious mini-shuffles in series while chang-
ing the random permutation and the three parties who know the permutation.
Hence, ΠTableShuffle achieves fairness and constant rounds.

Intuition of Protocol 1. In ΠminiShuffle1, P1, P2, and P3 know the random per-
mutation (and P0 does not know it). In ΠminiShuffle2, P0, Pj−1, and Pj+1 know
the random permutation (and Pj does not know it), where j ∈ {1, 2, 3} and
P3+1 = P1.

In ΠminiShuffle1, at Step 5, the three senders P1, P2, and P3, compute the
randomnesses r�,j (such that r� = r�,1 + r�,2 + r�,3 mod L) by using k1,2,3 that
P0 does not know to rerandomize the shares of input array at next step (for
� = 0, . . . , M − 1; j = 1, 2, 3). At Step 6, the sender Pj (j = 1, 2, 3) shuffles
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mx�
, λx�,j+1 and λx�,j−1 locally by applying π and rerandomizes the (locally)

shuffled values by using r�, r�,1, r�,2, and r�,3 and setting [x′
π(�)]L,j = (mx�

+
r� mod L, λx�,j+1+r�,j+1 mod L, λx�,j−1+r�,j−1 mod L). At Steps 7 to 10, the
senders send the (locally) shuffled and rerandomized values mπ(�),j to the receiver
P0 by CC. Note that mπ(�),j leaks no information about the permutation π and
the values before the shuffle because of rerandomizing it by r�, r�,1, r�,2, r�,3.
Then, the receiver P0 constructs the shuffled shares [x′

π(�)]L,0 without knowing π
and the shares before the shuffle. ΠminiShuffle2 and ΠminiShuffle1 are almost identical
except that the senders and receiver are different.

Note that P0’s shares are independent of the actual input. Hence, ΠminiShuffle1

(and ΠminiShuffle2) allow the resharing values related to P0’s shares by CC to be
processed in the offline phase as well as in Trident.

Intuition of Protocol 2. ΠTableShuffle takes the matrix of shares with R rows
and C columns and outputs the matrix with the shuffled rows. In ΠTableShuffle,
the three parties generate the random permutation that the rest of the parties
does not know by FR, a unique identifier, and pre-shared keys from Steps 1 to 3.
At Step 4, the parties set the column vector using input shares. From Steps 5 to
12, the parties run ΠminiShuffle1 and ΠminiShuffle2 for each column vector in series
while changing the random permutation and the senders who know the random
permutation. Then, the parties set the shuffled rows using the shuffled columns
at Step 13.

3.2 Proposed MSB Extraction, LT, and EQ Protocols

Protocol 3. Fair and Private Compare Protocol for k′-bit values ΠFPC

Input: Bit length k′(≤ k), binary shares {[x|�]p}k′−1
�=0 (where x|� ∈ {0, 1}), a

common input r ∈ {0, 1}k′

Output: [(x > r)]2k

1: (Offline phase)
2: for � = 0, . . . , k′ − 1 do in parallel
3: P0, Pi−1 and Pi+1 computes s�,i = Fp∗(uid�, k0,i−1,i+1) and s′

�,i = Fp∗(
uid′

�, k0,i−1,i+1) for i = 1, 2, 3 where uid� and uid′
� are unique identifiers and

P3+1 = P1.
4: P1, P2 and P3 computes s�,0 = Fp∗(uid�, k1,2,3) and s′

�,0 = Fp∗(uid′
�, k1,2,3)

for i = 1, 2, 3 where uid� and uid′
� are unique identifiers.

5: Set [s�,0]p,0 = (0, 0, 0) and [s�,0]p,i = (s�,0, 0, 0) for i = 1, 2, 3.
6: Set [s�,1]p,0 = (−s�,1, 0, 0), [s�,1]p,1 = (0, 0, 0), [s�,1]p,2 = (0, 0,−s�,1), and

[s�,1]p,3 = (0,−s�,1, 0).
7: Set [s�,2]p,0 = (0,−s�,1, 0), [s�,2]p,1 = (0,−s�,2, 0), [s�,2]p,2 = (0, 0, 0), and

[s�,2]p,3 = (0, 0,−s�,2).
8: Set [s�,3]p,0 = (0, 0,−s�,3), [s�,3]p,1 = (0, 0,−s�,3), [s�,3]p,2 = (0,−s�,3, 0),

and [s�,3]p,3 = (0, 0, 0).
9: Set [s′

�,i]p in the same way as [s�,i]p by using s′
�,i for i = 0, . . . , 3.
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10: Each party computes [s�,0 · s�,1]p, [s�,2 · s�,3]p, [s′
�,0 · s′

�,1]p and [s′
�,2 ·

s′
�,3]p by Mult([s�,0]p, [s�,1]p), Mult([s�,2]p, [s�,3]p), Mult([s′

�,0]p, [s′
�,1]p) and

Mult([s′
�,2]p, [s′

�,3]p), respectively. // 2 rounds & 24 log2 p bits

11: Each party computes [s�]p = [(s�,0 · s�,1) · (s�,2 · s�,3)]p and [s′
�]p =

[(s′
�,0 · s′

�,1) · (s′
�,2 · s′

�,3)]p by Mult([s�,0 · s�,1]p, [s�,2 · s�,3]p) and Mult([s′
�,0 ·

s′
�,1]p, [s′

�,2 · s′
�,3]p), respectively. // 2 rounds & 12 log2 p bits

12: end for
13: P0, Pi−1, and Pi+1 computes λb,i = F2(uidb, k0,i−1,i+1) for i = 1, 2, 3 where

P3+1 = P1 and uidb is a unique identifier.
14: P1, P2, and P3 computes mb = F2(uidb, k1,2,3) and set mb = b ⊕ λb and

λb = λb,1 ⊕ λb,2 ⊕ λb,3.
15: P0 sets [b]2,0 = (λb,1, λb,2, λb,3). Pi−1 sets [b]2,i−1 = (mb, λb,i, λb,i+1) for

i = 1, 2, 3 where mb = b ⊕ λb,1 ⊕ λb,2 ⊕ λb,3.
16: Parties get the shares of random bit [b]2k and [b]p by BitConv(2k, [b]2) and

BitConv(p, [b]2), respectively. // 3 rounds & 6k + 6 log2 p + 2 bits

17: (Online phase)
18: Let t = r + 1 mod 2k.
19: for � = k′ − 1, . . . , 0 do in parallel
20: (Case of b = 0)
21: [w|�]p = [x|�]p + r|� − 2r|j [x|�]p, [c|�]p = r|� − [x|�]p + 1 +

∑k−1
m=�+1[w|m]p

22: (Case of b = 1)
23: [w′|�]p = [x|�]p + t|� −2t|j [x|�]p, [c′|�]p = −t|� +[x|�]p +1+

∑k−1
m=�+1[w

′|m]p
24: end for
25: [s� · c|�]p ← Mult([s�]p, [c|�]p) and [s′

� · c′|�]p ← Mult([s′
�]p, [c′|�]p) for � = 0,

. . . , k′ − 1 in parallel. // 1 round & 6k′ log2 p bits in offline, 1 round

& 6k′ log2 p bits in online

26: Parties get the shuffled array [�d]p = ([d0]p, . . . , [dk′ −1]p) and [�d′]p = ([d′
0]p, . . . ,

[d′
k′−1]p) by ΠTableShuffle(k′, 1, [s0 · c|0]p, . . . , [sk′−1 · c|k′−1]p) and ΠTableShuffle

(k′, 1, [s′
0 ·c′|0]p, . . . , [s′

k′−1 ·c′|k′−1]p) in parallel, respectively. // 4 rounds

& 18k′ log2 p bits in offline, 3 rounds & 6k′ log2 p bits in online

27: for � = k′ − 1, . . . , 0 do in parallel
28: [d′′

�]p = (1 − [b]p) · [d�]p + [b]p · [d′
�]p = [d�]p + [b]p · (−[d�]p + [d′

�]p) =
[d�]p +Mult([b]p, [−d� + d′

�]p). // 1 round & 3 log2 p bits in offline,

1 round & 3 log2 p bits in online

29: for i = 1, 2, 3 do in parallel
30: Pi reconstructs d′′

� by OpenOne(Pi, [d′′
�]p). // 1 round & log2 p bits

31: end for
32: end for
33: P1, P2, and P3 set b′ = 1 iff ∃� ∈ {0, . . . , k′ − 1} s.t. d′′

� = 0 else b′ = 0.
34: All parties computes λb′ ,i = F2k(uidb′ , k) for i = 1, 2, 3.
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35: P0 sets [b′]2k,0 = (λb′ ,1, λb′ ,2, λb′ ,3). Pi−1 sets [b′]2k,i−1 = (mb′ , λb′ ,i, λb′ ,i+1)
for i = 1, 2, 3 where mb′ = b′ +

∑3
i=1 λb′ ,i mod 2k.

36: Return [(x > r)]2k = [b′ ⊕ b]2k = ([b′]2k − [b]2k)2 ← Mult([b′ − b]2k , [b′ − b]2k).
// 1 round & 3k bits in offline, 1 round & 3k bits in online

Protocol 4. Most Significant Bit Extraction Protocol ΠmsbExt

Input: [x]2k s.t. x ∈ Z2k , x =
∑k−1

j=0 2j · x|j
Output: [msb(x)]2(= [x|k−1]2)
1: (Offline phase)
2: for � = 0, . . . , k − 1 do in parallel
3: P0, Pi−1, and Pi+1 computes λr|�,i = F2(uidr|� , k0,i−1,i+1) for i = 1, 2, 3

where P1−1 = P3, P3+1 = P0 and uidr|� is a unique identifier.
4: P1, P2, and P3 computes mr|� = F2(uidr|� , k1,2,3) and set mr|� = r|� ⊕ λr|�

and λr|� = λr|�,1 ⊕ λr|�,2 ⊕ λr|�,3.
5: P0 sets [r|�]2k,0 = (λr|�,1, λr|�,2, λr|�,3). Pi−1 sets [r|�]2,i−1 = (mr|� , λr|�,i,

λr|�,i+1) for i = 1, 2, 3 where mr|� = r|�⊕λr|�,1⊕λr|�,2⊕λr|�,3 and P1−1 = P3.
6: end for
7: for j = 0, . . . , k − 1 do in parallel
8: Parties get [r|j ]2k and [r|j ]p by BitConv(2k, [r|j ]2) and BitConv(p, [r|j ]2) in

parallel, respectively. // 3 rounds & 6k + 6 log2 p + 2 bits

9: end for
10: [r|k−2,...,0]2k =

∑k−2
j=0 2j · [r|j ]2k , [2k−1 · msb(r)]2k = 2k−1 · [r|k−1]2k .

11: (Online phase)
12: [x + (r|k−2,...,0)]2k = [x]2k + [r|k−2,...,0]2k

13: [2 · ((x + r)|k−2,...,0)]2k = 2 · [x + (r|k−2,...,0)]2k

14: Pi reconstructs 2 · ((x + r)|k−2,...,0) by OpenOne(Pi, [2 · ((x + r)|k−2,...,0)]2k)
for i = 1, . . . , 3 in parallel. // 1 round & 3k bits

15: P0 sets [(x + r)|k−2,...,0]2k,0 = (0, 0, 0).
16: Pi sets [(x + r)|k−2,...,0]2k,1 = ((x + r)|k−2,...,0, 0, 0) for i = 1, 2, 3.
17: If (x + r)|k−2,...,0 = 2k−1 − 1, P1, P2, and P3 set the bit needFPC = 0. If

not, they set needFPC = 1. Then, P1 and P2 send needFPC to P0 by CC.
// 1 round & 1 bit

18: If needFPC = 0, [x|k−2,...,0]2k = [(x + r)|k−2,...,0]2k − [r|k−2,...,0]2k .
19: If needFPC = 1, [r|k−2,...,0 > (x+r)|k−2,...,0]2k ← ΠFPC(k−1, {[r|�]p}k−2

�=0 , (x+
r)|k−2,...,0) // 13 rounds & (63k − 57) log2 p + 9k + 2 bits in offline,

7 rounds & 18(k − 1) log2 p + 3k bits in online

20: If needFPC = 1, [x|k−2,...,0]2k = [(x + r)|k−2,...,0]2k − [r|k−2,...,0]2k + 2k−1 ·
[r|k−2,...,0 > (x + r)|k−2,...,0]2k .

21: [2k−1 · msb(x)]2k = [2k−1 · x|k−1] = [x]2k − [x|k−2,...,0]2k

22: [2k−1 · (msb(x) ⊕ msb(r))]2k = [2k−1 · msb(x)]2k + [2k−1 · msb(r)]2k = 2k−1 ·
[x|k−1]2k + 2k−1 · [r|k−1]2k

23: for i = 1, 2, 3 do in parallel
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24: Pi gets 2k−1·(msb(x)⊕msb(r)) by OpenOne(Pi, [2k−1·(msb(x)⊕msb(r))]2k)
// 1 round & 3k bits

25: end for
26: P0 sets [msb(x) ⊕ msb(r)]2,0 = (0, 0, 0).
27: Pi sets [msb(x) ⊕ msb(r)]2,i = (msb(x) ⊕ msb(r), 0, 0) for i = 1, 2, 3.
28: Return [msb(x)]2 = [msb(x) ⊕ msb(r)]2 ⊕ [r|k−1]2

Protocol 5. Feature Selection Protocol ΠFSelection

Input: [idx]2k , {[attrj ]2k}m−1
j=0 (s.t. 0 ≤ idx < m ≤ 2k−1 − 1).

Output: [attridx]2k

1: for j = 0, . . . , m − 1 do in parallel
2: P0 sets [0]2k,0 = (0, 0, 0).
3: Pi (i = 1, 2, 3) sets [j]2k,i = (j, 0, 0).

4: [idx == j]2 ← ΠEQ([idx]2k , [j]2k) // 17 rounds & 12k2 + 20k + (138k−
114) log2 p + 3 bits in offline, 10 rounds & 36(k − 1) log2 p + 18k + 3

bits in online

5: [idx == j]2k = BitConv(2k, [idx == j]2) // 2 rounds & 3k bits in

offline, 1 round & 3k + 1 bits in online
6: end for
7: Return [attridx]2k = DotProd(([attr0]2k , . . . , [attrm−1]2k), ([idx == 0]2k , . . . ,

[idx == m − 1]2k)) // 1 round & 3k bits in offline, 1 round & 3k

bits in online

Overview. We propose the PC protocol for k′-bit values achieving malicious
security with fairness and constant rounds (Protocol 3, ΠFPC). ΠFPC takes the bit

length k′, binary shares {[x|�]p}k
′−1

�=0 , and common input r and outputs [x > r]2k .
To construct ΠFPC, we employ the PC protocol of SecureNN [39], achieves semi-
honest security and constant rounds, and replace the building blocks based on
the semi-honest secure 3PC in the PC protocol [39] with the building blocks of
Trident and ΠTableShuffle.

Then, we construct the maliciously secure MSB extraction protocol with
fairness and constant rounds (Protocol 4, ΠmsbExt) by employing the algorithm of
the MSB extraction protocol based on the semi-honest secure 3PC with constant
rounds in [37] and replacing the building blocks based on the semi-honest secure
3PC with the building blocks based on Trident and ΠFPC. We also construct the
maliciously secure LT (ΠLT) and EQ (ΠEQ) protocols with fairness and constant
rounds by using ΠmsbExt as a subprotocol.

Intuition of Protocol 3. In the offline phase of ΠFPC, from Steps 2 to 12,
parties compute the shares of the non-zero random values s�, s

′
� ∈ Fp∗ that no

party knows. From Steps 13 to 15, parties generate the shares of a random bit
b over Z2. Then, the parties convert them into the shares over Z2k and Zp by
BitConv at Step 16.
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The strategy in the online phase of ΠFPC is almost the same as SecureNN [39].
That is, the parties compute the masked comparison result bit [b⊕(x > r)]2k and
remove the mask b. The difference between SecureNN and our protocol is that
b is shared by all parties and no party knows b. Therefore, the parties compute
both the cases of b = 0 and b = 1 to compute [b ⊕ (x > r)]2. In other words,
the parties compute both (x > r) and (x ≤ r) ≡ (x < t) (where t = r + 1)
obliviously. Then, the parties do the oblivious selection by [b]2 and remove it.

We focus on the explanation of the case of b = 0, i.e., the case of [(x > r)]2k .
Note that it holds that (x > r) = 1 if x|�′ �= r|�′ and x|�′ is at the leftmost
�′-th bit of x. The parties compute [w|�]p and [c|�]p (at Step 21). Then, there
exists the �-th bit such that c|� = 0 if (x > r) = 1. After that, at Step 25,
the parties compute the masked shares of c|�, [s� · c|�]p by using the shares of
non-zero random value s� (computed in the offline phase). The parties obtain
the shuffled array [�d]p by ΠTableShuffle(k′, 1, [s0 ·c|0]p, . . . , [sk′ −1 ·c|k′ −1]p) at Step
26. The case of b = 1 is the same as that case of b = 0 and is described at Steps
23, 25, and 26.

Then, the parties choose either [�d]p or [�d′]p as [d′′
�]p obliviously depending on

the value of b at Step 28. After that, P1, P2, and P3 reconstruct d′′
� by OpenOne

from Steps 29 to 31. Note that P1, P2, and P3 cannot learn any new information
about whether there exists 0 in d′′

0, . . . , d
′′

k′−1 because d′′
� is masked by the non-

zero random value s� or s′
� (that no party knows) and shuffled by ΠTableShuffle.

That is, the reconstructed value d′′
� does not leak the positional information.

After reconstruction, if there exists 0 in d′′
0, . . . , d

′′
k′−1, P1, P2, and P3 set b′ = 1.

If not, they set b′ = 0 at Step 33. After that, all parties set [b′]2k by using only
local operations (at Steps 34 and 35) and compute [x > r]2k = [b′ ⊕ b]2k by Mult
at Step 36.

Intuition of Protocol 4. ΠmsbExt takes [x]2k and outputs [msb(x)]2 = [x|k−1]2.
In the offline phase of ΠmsbExt, the parties generate the shares of random values
to mask the values of the calculation process. At Steps 2 to 9, the parties generate
the shares of random value r|� ∈ {0, 1} over Z2 and convert it into the shares over
Z2k and Zp. After that, they compute the shares [r|k−2,...,0]2k and [2k−1·msb(r)]2k

at Step 10.
In the online phase of ΠmsbExt, the first goal is to compute the shares

[x|k−2,...,0]2k . To compute them, the parties compute [2 · ((x + r)|k−2,...,0)]2k (at
Steps 12 and 13). Then, P1, P2, and P3 get (x+r)|k−2,...,0 by OpenOne at Step 14.
The parties set [(x+r)|k−2,...,0]2k at Steps 15 and 16. If (x+r)|k−2,...,0 = 2k−1−1,
the parties set the flag bit needFPC = 0, otherwise, they set needFPC = 1 at
Step 17. The bit needFPC means whether or not to run ΠFPC to cancel the effect
of the wrap-around. The wrap-around means that the modulo operation may
have (x + r)|k−2,...,0 mod 2k less than r|k−2,...,0 mod 2k. If needFPC = 0, i.e.,
(x+ r)|k−2,...,0 = 2k−1 − 1, the wrap-around does not occur. The parties remove
the shared mask [r|k−2,...,0]2k from [(x+r)|k−2,...,0]2k at Step 18. If needFPC = 1,
i.e., (x+r)|k−2,...,0 �= 2k−1 −1, to verify whether the wrap-around occurs or not,
the parties execute ΠFPC(k−1, {[r|�]p}k−2

�=0 , (x+r)|k−2,...,0) at Step 19. Then, the
parties remove the shared mask [r|k−2,...,0]2k from [(x + r)|k−2,...,0]2k canceling
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the effect of the wrap-around at Step 20. After that, the parties get [x|k−2,...,0]2k .
Next, they obtain [msb(x) ⊕msb(r)]2 by masking and opening from Steps 21 to
27. Then, they remove the mask msb(r) and get [msb(x)]2 at Step 28.

How to Construct LT and EQ Protocols, i.e., ΠLT and ΠEQ. We can
construct ΠLT and ΠEQ by replacing the MSB extraction protocol with ours in
LT and EQ protocols of [37]. We assume 0 ≤ a, b ≤ 2k−1 −1. In ΠLT, the parties
compute the shares of the MSB of [a − b]2k = [a]2k − [b]2k by ΠmsbExt to run the
LT operation. If a is smaller than b, msb(a−b) equals 1 and can be the output as
the result of LT. If not, msb(a − b) equals 0 and can be the output. In ΠEQ, the
parties invoke ΠLT([a]2k , [b]2k) and ΠLT([b]2k , [a]2k) in parallel. Note that a = b
holds if (a < b) ⊕ 1 = 1 and (b < a) ⊕ 1 = 1. Therefore, the parties compute the
shares of the EQ result by Mult([(a < b) ⊕ 1]2, [(b < a) ⊕ 1]2).

3.3 Proposed Protocol of PDTE

Intuition of Protocol 5 (Feature Selection Phase). Protocol 5, ΠFSelection,
takes the shares of index [idx]2k (s.t. idx ∈ Zm) and the array of shares
{[attrj ]2k}m−1

j=0 and outputs [attridx]2k . In ΠFSelection, the parties check whether
idx == j obliviously by ΠEQ from Steps 1 to 4 and convert the output shares of
ΠEQ over Z2 into the shares over Z2k by BitConv at Step 5 for j = 0, . . . , m − 1.
Then, they choose [attridx]2k obliviously by DotProd at Step 7.

How to Construct Comparison Protocol (Comparison Phase). Compar-
ison protocol, ΠComp, takes the shares of the attribute compared with the thresh-
old values at each intermediate node {[attridxj

]2k}2
h−2

j=0 , the shares of the threshold

values {[vj ]2k}2
h−2

j=0 , and the shares of the conditional value that controls whether
the LT or EQ is used as the comparison operation at each intermediate node
{[condj ]2}2

h−2
j=0 . It outputs the shares of comparison results {[compj ]2}2

h−2
j=0 . In

the same way as [37], the parties compute the results of LT and EQ in parallel
by ΠLT and ΠEQ at Steps 2 and 3. Then, they choose either [vj < attridxj

]2 or
[vj == attridxj ]2 as [compj ]2 obliviously by DotProd, depending on [condj ]2 for
j = 0, . . . , 2h − 2 in parallel.

Protocol 6. Path Evaluation Protocol ΠPathEval

Input: {[compj ]2}2
h−2

j=0 , {[leafValj′ ]2k}2
h−1

j′=0
, δ

Output: [leafValj′ ]2k where j′ s.t.
∧h−1

�=0 (j′|� == compδ(j′,�)) = 1.
1: for j

′
= 0, . . . , 2h − 1 do

2: Initialize Pathj′ = ([compδ(j′ ,0)]2, [compδ(j′ ,1)]2, . . . , [compδ(j′ ,h−1)]2).
3: for � = 0, . . . , h − 1 do
4: [cj′ ,�]2 ← j

′ |�⊕[compδ(j′ ,�)]2⊕1 by picking up [compδ(j′ ,�)]2 from Pathj′ .
5: end for
6: Set Rj′ = ([leafValj′ ]2k , [cj′ ,0]2, . . . , [cj′ ,h−1]2)
7: end for
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8: R′
0, . . . ,R′

2h−1 ←
ΠTableShuffle(2h, h + 1,R0, . . . ,R2h−1) where R′

j′ = ([leafVal′j′ ]2k , [c′
j′ ,0]2,

. . . , [c′
j′ ,h−1]2), leafVal′π(j′ ) = leafValj′ (j′ = 0, . . . , 2h − 1), c′

π(j′ ),� =
cj′ ,� (j′ = 0, . . . , 2h − 1; � = 0, . . . , h − 1) and a random permutation

π ∈ S2h that no party knows. // 4 rounds & 9 · 2h · (h + 1) · (k + h)

bits in offline, 3 rounds & 3 · 2h · (h + 1) · (k + h) bits in online

9: Initialize countj′ = 0 for j
′
= 0, . . . , 2h − 1.

10: for j
′
= 0, . . . , 2h − 1; � = 0, . . . , h − 1 do in parallel

11: Pick up [c′
j′ ,�]2 from R′

j′ . Then, Pi gets c′
j′ ,� by OpenOne(Pi, [c′

j′ ,�]2) for
i = 0, . . . , 3. // 1 round & 4 bits

12: countj′ = countj′ + 1 if c′
j′ ,� = 1.

13: end for
14: Return [leafVal′j′ ]2k where countj′ = h.

Intuition of Protocol 6 (Path Evaluation Phase). Protocol 6, ΠPathEval,
takes the shares of the comparison result of intermediate nodes {[compj ]2}2

h−2
j=0 ,

the shares of labels assigned to leaf nodes {[leafValj′ ]2k}2
h−1

j′=0
, and mapping func-

tion δ. It outputs the shares of the label assigned to the leaf node of the cor-
rect path [leafValj′ ]2k , where j′ s.t.

∧h−1
�=0 (j′|� == compδ(j′,�)) =

∧h−1
�=0 (j′|� ⊕

compδ(j′,�) ⊕ 1) = 1. In the same way as [37], from Steps 1 to 4 of ΠPathEval, the
parties check whether the comparison result compδ(j′ ,�) and the bit assigned to
the branch of the path to the j′-th leaf node, j′|�, match or not and outputs
the shares of the matching result [cj′ ,�]2. Then, the parties set the row vector of
shares Rj′ that includes the shares of j′-th leaf label [leafValj′ ]2k and the shares
of the matching result bit [cj′ ,0]2, . . . , [cj′ ,h−1]2 at Step 6. Next, the parties get
the shuffled row vectors R′

0, . . . ,R′
2h−1 by ΠTableShuffle(2h, h+1,R0, . . . ,R2h−1)

at Step 8. After that, by OpenOne, the parties reconstruct the (shuffled) match-
ing result c′

j′ ,� and increase the value of countj′ if c′
j′ ,� = 1 from Steps 9 to 13.

Finally, the parties output [leafVal′j′ ]2k , where countj′ = h.
Note that c′

j′ ,� does not leak the positional information j′. An adversary can

obtain no information about {compδ(j′ ,�)}2
h−2

�=0 or leafValj′ from c′
j′ ,� thanks to

the complete binary tree and ΠTableShuffle. For example, we assume that h = 2.
If the correct output leaf node is the leaf node 2(= 10(2)), it holds that c0,0 = 1,
c0,1 = 0, c1,0 = 0, c1,1 = 0, c2,0 = 1, c2,1 = 1, c3,0 = 0, and c3,1 = 1. That
is, an adversary gets all the 2-bit sequences (00(2), 01(2), 10(2), and 11(2)) from
the shuffled matching result c′

j′ ,�. As another example, if the correct output
leaf node is the leaf node 3(= 11(2)), it holds that c0,0 = 0, c0,1 = 0, c1,0 = 1,
c1,1 = 0, c2,0 = 0, c2,1 = 1, c3,0 = 1, and c3,1 = 1. An adversary also obtains
all the 2-bit sequences (00(2), 01(2), 10(2), and 11(2)) from c′

j′ ,�. Therefore, an

adversary can obtain no information about j′, {compδ(j′ ,�)}2
h−2

�=0 or leafValj′ by
reconstructing the shuffled matching result c′

j′ ,�.
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How to Construct the PDTE Protocol. ΠPDTE is our construction of PDTE
that achieves malicious security with fairness and constant rounds. It takes the
shares of input attributes {[attri]2k}m−1

i=0 and tree T and outputs the shares of the
leaf on the correct path [leafValj′ ]2k . It utilizes ΠFSelection, ΠComp, and ΠPathEval

in each phase in the same way as [37], respectively.

4 Security Proof Sketch

We can prove that ΠTableShuffle is secure by assuming the pseudo-random func-
tion. Since our other schemes are composed of ΠTableShuffle, the building blocks of
fair 4PC, and operations without communications, our schemes achieve univer-
sal composability [10] as long as the building blocks are secure. Our protocols
achieve fairness by assuming there is up to one malicious corruption because the
communications in our protocols are CC or another building block of fair 4PC.
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Abstract. We describe a new protocol to achieve two party ε-fair
exchange: at any point in the unfolding of the protocol the difference
in the probabilities of the parties having acquired the desired term is
bounded by a value ε that can be made as small as necessary. Our
construction uses oblivious transfer and sidesteps previous impossibil-
ity results by using a timed-release encryption, that releases its contents
only after some lower bounded time. We show that our protocol can be
easily generalized to an ε-fair two-party protocol for all functionalities.
To our knowledge, this is the first protocol to truly achieve ε-fairness
for all functionalities. All previous constructions achieving some form of
fairness for all functionalities (without relying on a trusted third party)
had a strong limitation: the fairness guarantee only holds if the honest
parties are at least as powerful as the corrupted parties and invest a sim-
ilar amount of resources in the protocol, an assumption which is often
not realistic. Our construction does not have this limitation: our proto-
col provides a clear upper bound on the running time of all parties, and
partial fairness holds even if the corrupted parties have much more time
or computational power than the honest parties. Interestingly, this shows
that a minimal use of timed-release encryption suffices to circumvent an
impossibility result of Katz and Gordon regarding ε-fair computation for
all functionalities, without having to make the (unrealistic) assumption
that the honest parties are as computationally powerful as the corrupted
parties – this assumption was previously believed to be unavoidable in
order to overcome this impossibility result. We present detailed security
proofs of the new construction, which are non-trivial and form the core
technical contribution of this work.

Keywords: Fair exchange · Partial fairness · Timed-release encryption

1 Introduction

Secure computation allows parties to perform a joint computation on their pri-
vate data, without compromising their security. An important security property
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of secure computation protocols is known as fairness: intuitively, it states that
either all participants to the protocol should receive the output, or none should.
In a wide variety of real-world situations, ensuring that no participant can get an
unfair advantage by learning the output early is highly desirable. Unfortunately,
a well-known result of Cleve [12] established that fairness is impossible to achieve
in its full generality – in fact, it is already impossible to achieve for very simple
functionality such as coin tossing, or exchange of values. As a consequence of
this impossibility result, a large body of work has been devoted to developing
mechanisms to achieve some relaxed notion of fairness. We overview the main
existing approaches below, and outline their advantages and inconveniences.

1.1 Relaxed Notions of Fairness

Some lines of research overcome Cleve’s impossibility result by relying to some
extent on a trusted third party [2,11,15], non-standard communication mod-
els [28], or by punishing unfair behaviour through smart contracts [25–27,29].
Another approach works by gradually increasing the parties’ confidence in the
output [5,19,30]; however, this approach is inherently limited to protocols with a
single-bit output, and where the output is the same for all parties; furthermore,
they allow the adversary to significantly bias the output of the honest parties
by aborting early.

Fairness from Gradual Weakening of Encryption. Most closely related to our
work is the following important line of research in fairness, which seeks to achieve
a relaxed notion of fairness where, if the adversary can recover the output in time
T , then the honest parties can recover it as well within time s · T , where s is
some slackness parameter [9,10,14,16,17,32]. Therefore, this approach guaran-
tees fairness, as long as all honest parties are at least as computationally powerful
as the corrupted parties. At an intuitive level, this approach proceeds by letting
the parties jointly compute an encryption of the output, and gradually “weaken-
ing” its security in rounds, until its content can be recovered by brute-force. This
approach, however, has several downsides: when an adversary aborts early, the
protocol does not specify how a party should decide whether to invest the nec-
essary computational effort to recover the output. More generally, the protocol
does not provide any a priori (polynomial) upper-bound on the computational
effort that honest parties might have to invest in the protocol: if any such precise
bound is given, the adversary is guaranteed to break the fairness property by
investing more resources than specified by this bound. In any real-world situa-
tion, this means that the protocol will only satisfy fairness under the unrealistic
assumptions that the corrupted parties will never be able to spend more compu-
tational resources than the honest parties, and that the honest parties will never
leak how much computational resources they are able to (or willing to) invest in
the protocol.

An alternative to all of the above is the notion of partial fairness. Since it
will be the main focus of our work, we elaborate on it in the next section.
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1.2 Partial Fairness

The notion of partial fairness was introduced by Katz and Gordon in [21], and
was recently re-discovered by Roscoe and Ryan in a different context [34], where
it was called stochastic fairness. Partial fairness relaxes the standard fairness
notion to hold except with some tunable non-negligible probability 1/p for an
arbitrary polynomial p. In an informal sense, partial fairness corresponds to a
best-possible notion of fairness, in settings where one does not want to rely on
trusted parties, or to assume that the computational power of honest parties will
be as high as those of malicious parties. An important feature of the notion of
partial fairness is that it fits nicely in the standard simulation paradigm of secure
computation, allowing us to provide formal security proofs. Indeed, the simula-
tion paradigm established the security of a protocol by exhibiting a simulator
which is given access to an ideal functionality, and whose behavior cannot be
distinguished from that of a honest user. Now, proving that a protocol satisfies
1/p-partial fairness (for some polynomial p) is done by exhibiting a simulator
which is given access to a perfectly fair functionality, and whose behavior cannot
be distinguished from that of a honest user except with 1/p probability.

In [21], Katz and Gordon exhibit a generic partially-fair secure computation
protocol, provided that either one of the inputs or one of the outputs comes
from a polynomial-size domain. While this already considerably broadens the
type of functionalities that can be implemented compared to the setting of full
fairness, this remains a rather strong limitation. It prevents, for example, to
evaluate functionalities as simple and useful as fair exchange of data, unless one
of the data comes from a very small domain. Unfortunately, Katz and Gordon
showed that this limitation is inherent [21, Section 4], by proving that it is already
impossible to securely execute (with partial fairness) a form of authenticated fair
exchange (where two parties wish to exchange values if and only if they have
been correctly authenticated via some one-time MAC scheme) when the values
come from a large domain. Katz and Gordon further mention that their setting
requires a polynomial upper-bound on the running time of the parties, which is
why alternative fairness notions (based on gradually weakening a commitment
to the output until it can be opened by brute-force) escape their impossibility
result.

1.3 Context and Motivation

The starting point of our work, and its initial motivation, stems from consid-
erations regarding the security of some existing password-authenticated key-
exchange (PAKE, [7]) protocols against a form of online attacks which are not
captured by the standard security model for PAKE. A PAKE is an interactive
protocol between a server and a user, both holding a (low-entropy) password,
who wish to securely generate a shared secret-key provided that their passwords
are equal. The protocol should resist offline dictionary attacks: an adversary
should not be able, given only the transcript of a PAKE execution, to test
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any guesses at passwords against this transcript. In the past decade, numer-
ous PAKE protocols have been proposed, satisfying this natural security notion,
under a variety of cryptographic assumptions [6–8,18,23]. However, the standard
security model for PAKE does not preclude the following simple online attack:
an adversary could potentially attempt to guess the password, learn from the
protocol whether his guess was successful or not, and then abort the protocol
before the server gets to know that the user tried to execute the PAKE with
an incorrect password. Since network failures are relatively common, the server
cannot distinguish in this scenario a malicious attempt at guessing the password
from a network failure for an honest user. Because of this, the adversary could
potentially repeat this attack several times before the repeated failures become
suspicious. This form of online attack was first identified and studied by Ryan
and Roscoe in [34]. This is not a purely theoretical concern: studies indicate
that human-generated passwords have less that 7 bits of min-entropy on aver-
age [22]. Even if the servers enforce the use of strong passwords, with (say) 20
bits of entropy, and assuming a medium-scale deployment of a PAKE system
with 210 online services protected by the system, and an adversary allowed to
make 210 online guesses with the above attack (possibly spanning over a reason-
able period of time) would break into one of the services with good probability.
To mitigate this attack, [34] suggest reliance on a fair exchange protocol, and
show that such a protocol can be used to ensure that the adversary cannot learn
whether his guess was correct without the server learning it as well. Since fair
exchange protocols are impossible in general, [34] suggests reliance on a protocol
with partial fairness (or stochastic fairness, using their terminology). This way,
any adversary attempting to mount an online guessing attack has a high (yet
not overwhelming) probability of getting caught doing so.

1.4 Our Contribution

In this work, we develop a new method of constructing protocols with par-
tial fairness. Inspired by the above scenario, we introduce a new partially-fair
exchange protocol (i.e., a (p + O(1))-round two-party protocol which allows for
exchange of values, and satisfies 1/p-fairness in the framework of [21]), and seek
to obtain a protocol as concretely efficient as possible. Afterward, we observe
that our protocol extends naturally to an authenticated partially fair exchange
protocol, and show that this naturally gives rise to a secure computation pro-
tocol with partial fairness for all functionalities. Because of the impossibility
result of Katz and Gordon, this can provably not be achieved directly within the
standard model of computation, and all previous works aiming at fairness for all
functionalities could only achieve a very relaxed notion of partial fairness (either
using trusted parties, or assuming that the honest parties are computationally
more powerful than corrupted parties). We stress that this is the case even for
protocols that used tools such as gradual weakening of encryptions, or time-lock
puzzles - even though the use of these primitives does, in principle, escape the
impossibility result of Katz and Gordon, since they do not fit directly into the
standard model of computation.
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Escaping the Impossibility Result. To escape the impossibility result of Katz and
Gordon, we rely on a timed-release encryption scheme, a primitive introduced
in [33] which allows the encryption of a message such that it can only be recov-
ered after some time period has elapsed. A timed-release encryption scheme is
simply a public-key version of the most well-known notion of time-lock puz-
zles; this is similar to the primitive employed in [9,10,14,16,17,32], and can
be constructed under the assumption that some tasks inherently require a long
sequential computation1 – the most classical construction relying on the hard-
ness of parallelizing squaring modulo an RSA modulus [33]. However, unlike all
the aforementioned works, our protocol truly achieves partial fairness, even if
the corrupted parties are allowed a much longer running time than the honest
parties; in fact, our protocol even guarantees a strict polynomial upper-bound
on the running time of all parties, hence does not suffer from the important
downside of these works. We note that this is a surprising result, as the absence
of a strict polynomial upper bound on the running time of the honest parties
was pointed out in [21] as the reason why fair exchange protocols could escape
their impossibility result; our result shows that this is not the case, and that a
minimal use of a primitive in the spirit of time-lock puzzles already suffices to
overcome this barrier.

In addition to timed-release encryption, we assume only standard generic
cryptographic primitives, such as commitment schemes and oblivious transfers.
To optimize for concrete efficiency, we do not employ zero-knowledge proofs and
do not target security against malicious adversaries; rather, we prove that our
protocol is directly secure against covert adversaries [1]: an adversary can deviate
from the specifications of the protocol, but will be caught (with probability
one) if he does so. Note that in the motivating scenario of preventing online
guessing attacks on PAKEs, security against covert adversaries captures the
desired security notion, since our aim is to distinguish guessing attacks from
honest network failures. The security of our protocol can easily be enhanced to
the malicious setting using zero-knowledge proofs.

To summarize, our main contributions are

– On the practical side, a new partially fair key exchange protocol from timed-
release encryption and standard cryptographic primitives, which is formally
proven secure against covert adversaries in the framework of [21]. Our proto-
col is concretely efficient: when instantiating the oblivious transfer with the
DDH-based OT of [31], the protocol communicates only 4p log p+O(1) group
elements in p+O(1) rounds to reach 1/p-fairness. This protocol can be used
to mitigate the risk of online guessing attacks on password-authenticated key
exchange protocols.

– On the theoretical side, a generic secure two-party computation protocol for
all polynomial-size circuits (with input and output domain of arbitrary size)
which achieves 1/p-fairness in p + O(1) rounds using Õ(λp) + O(c) bits of

1 This notion can also be achieve via other means, e.g. using some partially trusted
third party.
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communication (where λ is a security parameter, and c is the communica-
tion of a protocol computing the circuit and satisfying security with aborts),
which is (to our knowledge) the very first protocol to achieve partial fair-
ness for all functionalities (or even for the fair exchange functionalities). Our
protocol makes a minimal use of a timed-release encryption scheme (which
seems unavoidable by the impossibility result of [21]), where each party sends
a single timed-release encryption right before the output phase, and must
complete the phase before the time bound elapses. In particular, our protocol
is the first of its kind to guarantee a polynomial upper-bound on the running
time of all parties, for arbitrary functionalities.

In particular, this means that the fairness guarantee that we obtain also
extends to the (very realistic) scenarios where the adversaries might be more
powerful than the honest parties; to our knowledge, every previous paper achiev-
ing some form of fairness for all functionalities (without the help of a trusted
third party, or a smart contracts) could not guarantee this highly desirable prop-
erty. In addition, our protocol is not purely of theoretical interest: it is really
practical, and its building blocks can be instantiated efficiently from a variety of
standard cryptographic assumptions.

1.5 Our Method

Our starting point is an idea sketched in [34], which achieves partial fairness by
creating a randomly permuted size-p list of masked values, one of them being the
target value to be exchanged, and the remaining ones being dummy values. Each
list of masked values is permuted by both parties, so that the actual permutation
remains unknown to each party. Before the exchange phase, the parties encrypt a
string indicating their choices of permutations (for both lists), as well as the mask
used to hide the values, using a timed-release encryption scheme which ensures
that the encrypted values remain hidden for a time T . Afterward, the parties
simply exchange the permuted values one-by-one, using p rounds of interaction,
so that the last value of the list is exchanged before time T elapse. Intuitively,
partial fairness stems from the fact that if the adversary aborts at any point
in the computation, he does not know yet whether his opponent already sent
him the right masked value (he will only discover this after time T has elapsed).
Therefore, the best advantage he can obtain over his opponent is by aborting
right after he received any given message, which gives him a probability roughly
1/p of discovering later on that he had already received the masked output, while
his opponent had not.

The protocol developed in [34], however, relies on an ad-hoc construction
using discrete-log-hard groups; more importantly, it entirely lacks any security
analysis. We therefore first show how to implement a partially-fair exchange,
inspired by the approach of [34], in a timed-release way, relying on a (simu-
latable) oblivious transfer protocol, a timed-release encryption scheme, and a
commitment scheme. Afterward, we provide a detailed security analysis of our
protocol in the framework of [21], and show that it 1/p-realizes a perfect fair



336 G. Couteau et al.

exchange functionality in the presence of covert adversaries. While the security
of the protocol is relatively intuitive, the proof turns out to be non-trivial, and
is the main technical contribution of this work. To establish the existence of an
efficient simulator, we must rely on cryptographic primitives with strong sim-
ulation guarantees; in particular, we need a simulatable oblivious transfer (as
defined in [31]), together with an equivocable trapdoor commitment : in addition
to the standard hiding and binding properties, we require that with an appro-
priate trapdoor, any commitment can be opened to an arbitrary value; yet, at
the same time, the commitment must be weakly extractable, meaning that with
another appropriate trapdoor, an extraction algorithm can recover a message
m such that no PPT adversary (without the equivocation trapdoor) can open
this commitment to a value m′ �= m. The proof requires carefully tracking the
advantage of a polynomial time adversary in distinguishing the real protocol from
the simulated one, where we must show that the (non-negligible) distinguishing
advantage can be broken in two parts, one corresponding to a malicious behavior
of a non-aborting adversary (which we show can be detected with overwhelming
probability, hence is acceptable in the setting of security against covert adver-
saries), and another quantity which corresponds to the fairness error induced by
an aborting adversary, which we must show to be bounded by 1/p. To prove the
latter, we analyze the advantage adversary conditioned on aborting at any given
round, and crucially rely on the fact that if we know that the adversary is going
to abort at round i (since we condition on this event), then the adversary can
be thought of as having running time bounded above by the time bound of the
timed-release encryption scheme, hence we can use this adversary to derive a con-
tradiction with respect to the semantic security of the timed-release encryption
scheme.

1.6 Informal Overview of the Protocol

We described here a simplified version of the protocol, to ease the presenta-
tion - the actual protocol handles additional technicalities required to achieve
provable security. We assume familiarity with standard cryptographic primitives
such as oblivious transfer – necessary details about standard primitives can be
found in the preliminaries. At a high level, our protocol proceeds as follows: it is
parametrized by a polynomial p = p(λ), which will correspond to the number of
rounds of the protocol. Intuitively, the parties will exchange values VA and VB ,
hidden among dummy values and appropriately masked, such that the parties
will only learn after the protocol the round number at which they actually got
their output value - guaranteeing that any attempt to abort before the proto-
col is completed will not allow them to break fairness, except with probability
roughly 1/p. More precisely:

– First, the two parties (Alice and Bob) generate random masks (kA, kB), and
pick random indices (iA, iB) between 1 and p, as well as random permutations
(πA, πB , kA ⊕ VA) of [1, p].
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– A will then commit to her index (let rA be the opening information), and
encrypt (rA, iA, πA, kA ⊕ VA) with a timed-release encryption scheme, that
can only be bruteforced after some time T has elapsed (unless the secret
key is known). Alice sends the commitment and the encryption to Bob; Bob
executes a similar procedure in the other direction.

– Both parties exchange the first flow of a 1-out-of-p oblivious transfer protocol,
each playing the role of the receiver in the parallel instances, using their
random choice of index as their selection value.

– Alice and Bob each compute their p messages (mi
A)i≤p and (mi

B)i≤p, playing
the role of the sender in the two parallel OT instances, each using their
random masks (kA for Alice, kB for Bob) as input for each of the p messages
(that is, all p input messages of the player P are equal to kP for P ∈ {A,B}).

– In each of the next rounds, for i = 1 to p, Alice sends m
πA(i)
A and Bob

sends m
πB(i)
B . Note that the same message is ‘encrypted’ in all OT messages:

however, the receiver security guarantees that the sender P ∈ {A,B} does
not know which of the OT messages the receiver can decrypt to kP , while the
permutation chosen by the sender ensures that the receiver himself cannot yet
know which message he can decrypt (it is important here that the key kP is
random, so that the receiver cannot notice a successful decryption attempt).

– Upon completion of all p rounds, Alice and Bob open the commitment and
the encryption, revealing their secret index as well as (kA ⊕ VA, kB ⊕ VB),
from which each party can recover the output.

In the above protocol, all p rounds of interaction must be completed before
the time T within which the timed-release encryption can be bruteforced has
ellapsed. If any party aborts early, by the security of the commitment scheme and
that of the timed-release encryption guarantees that this adversary cannot know
whether he had or not already received the OT message that he can decrypt,
nor whether or not his opponent did (unless, of course, the party aborts before
his opponent received any message at all). Since aborting right before sending a
message can only give, informally, ‘one round of advance’ to a cheating party, this
party has only probability 1/p of having already received his outpout while his
opponent has not - which both parties will find out within time T , by bruteforcing
the timed-release encryption.

Unlike all previous protocols using similar primitives, it is not important here
that T is higher than the time the corrupted party could possibly invest; rather,
it suffices that T is higher than the time it takes to complete the p rounds of the
protocol, and failing to complete the protocol within time T simply amounts to
aborting before the end of the protocol – hence guaranteeing a strict upper bound
on the running time of all parties. Of course, an adversary can cheat by putting
wrong values inside the commitment and/or the timed-release encryption, hence
the protocol is not secure against malicious adversaries; however, as we will
formally show in the rest of this paper, the protocol outlined above does satisfy
1-deterrent covert security (meaning that if the adversary attempts to cheat,
other than by aborting early, he will be detected with probability negligibly
close to 1) and 1/p-fairness. We stress that, in the interesting setting of the
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application to PAKE, there is no incentive for the opponent to input wrong
values in the protocol.

Follow-Up Works. Following our work, the topic of secure computation with
partial fairness, which had been left relatively unexplored for almost a decade,
has started again to attract some attention. Our work shows that secure compu-
tation with partial fairness and standalone security is possible in the two-party
setting; this was extended to the composable security in the two-party setting
in [4], and in the multi-party setting in [3].

Organization. We provide necessary preliminaries in Sect. 2, and introduce our
new protocol in Sect. 3, together with all necessary building blocks. Due to space
constraints, the detailed formal security analysis of our protocol is deferred to
the full version of this paper [13]. We discuss some extensions and applications
in Appendices A and B.

2 Preliminaries

A positive function f is negligible if for any polynomial p there exists a bound
B > 0 such that, for any λ ≥ B, f(λ) ≤ 1/|p(λ)|. An event depending on λ
occurs with overwhelming probability when its probability is at least 1− negl(λ)
for a negligible function negl. Given a finite set S, the notation x

$← S means a
uniformly random assignment of an element of S to the variable x. A distribution
ensemble X is an infinite sequence of random variables X = {X(a, λ)}a∈Dλ,λ∈N,
where Dλ is a set that can depend on λ. Following [20], we define for any poly-
nomial p the notion of computational 1/p-indistinguishability :

Definition 1 (Computational 1/p-Indistinguishability [20]). Two distri-
bution ensembles X = {X(a, λ)}a∈Dλ,λ∈N and Y = {Y (a, λ)}a∈Dλ,λ∈N are

computationally 1/p-indistinguishable, written X
1/p≈ Y , if for any non-uniform

PPT adversary Adv, there exists a function μ(·) = negl(·) such that for any
λ ∈ N, a ∈ Dλ,

|Pr[Adv(X(a, λ)) = 1] − Pr[Adv(Y (a, λ)) = 1]| ≤ 1
p(λ)

+ μ(λ).

Two distribution ensembles are computationally indistinguishable if they are
computationally 1/p-indistinguishable for every polynomial p.

Two Party Computation. A two-party protocol between parties A and B
is said to compute a functionality f : (x, y) 	→ (fA(x, y), fB(x, y)) if it runs
in polynomial time and satisfies the following natural correctness requirement:
at the end of the protocol, if A begins with input x and B begins with input
y, then A outputs fA(x, y) and B outputs fB(x, y) (for simplicity, we consider
only deterministic functionalities; the definition easily extends to randomized
functionalities).
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The security of a two-party computation protocol is usually defined in the
real/ideal paradigm, by showing that every attack a real adversary can mount
on the real protocol can be translated to an attack performed by an ideal adver-
sary on an ideal functionality computing the desired function, which is perfectly
secure by definition. Given an ideal functionality F , we define the random vari-
able idealF,Adv(x, y, λ) as the output of an ideal adversary Adv together with
the output of parties with respective inputs (x, y) following the execution of F on
(x, y), with security parameter λ. Given a real protocol Π, we define the random
variable realΠ,Adv(x, y, λ) as the output of a real adversary Adv together with
the output of parties with respective inputs (x, y) following the execution of Π
on (x, y), with security parameter λ. Then a protocol Π is said to 1/p-securely
compute a functionality F if Π emulates the ideal functionality F to within a
difference of 1/p. More precisely, let p be an arbitrary polynomial.

Definition 2 (1/p-Secure Computation [20]). Let F be an ideal functional-
ity, and Π be a two-party protocol which computes F . Then Π is said to 1/p-
securely compute F if for every non-uniform PPT Adv against Π, there exists
a non-uniform PPT ideal adversary Sim (called the simulator) such that

{idealF,Sim(x, y, λ)}x,y,λ
1/p≈ λ {realΠ,Adv(x, y, λ)}x,y,λ.

Two Party Computation Against Covert Adversaries. The above defini-
tion of two-party computation captures security against malicious adversaries,
who can mount arbitrary attacks on a protocol. A weaker security model, which
remains very relevant in practice, is the covert security model : in this model, the
parties might still arbitrarily deviate from the specification of the protocol, but
they do not want to be caught cheating, hence they will not adopt a malicious
behavior which would be detected with too high probability. This security model
has been formalized in [1], who gave several variants. In this work, we will focus
on the failed simulation formulation, as this formulation can be integrated in a
very natural way into the notion of 1/p-secure computation. Intuitively, the failed
simulation formulation states that a malicious adversary can cause the simula-
tion to fail by cheating, but if he can cause the simulation to fail with probability
x, then he will be caught cheating with probability ε · x, where ε is called the
deterrence factor of the protocol. Extending this definition to 1/p-secure compu-
tation, we will say that a protocol 1/p-securely compute a functionality against
covert adversaries with deterrence factor ε if every time an adversary causes the
simulation to be distinguishable from a real run of the protocol with probability
1/p + x, then he is caught cheating with probability x · ε. More formally, let us
first define the notion of detection accuracy for protocols with static corruption
from [1]:

Definition 3 (Detection Accuracy [1]). A party Pb in a two-party proto-
col Π (with b ∈ {0, 1}) is said to detect cheating the party P1−b if it outputs
corrupted1−b in Π. A two-party protocol Π is detection accurate if the probability
that a party outputs corruptedb when party Pb is not corrupted is negligible.
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We can now formally define covert 1/p-security:

Definition 4 (Covert 1/p(-Security). Let F be an ideal functionality, and Π
be a two-party protocol between parties P0 and P1 which computes F . Then Π
is said to 1/p-securely compute F in the presence of covert adversaries with ε-
deterrent if it is detection accurate and for every non-uniform PPT Adv against
Π which corrupts Pb, there exists a non-uniform PPT ideal adversary Sim (called
the simulator) such that for every inputs (x, y) and every non-uniform PPT
distinguisher D,

Pr[P1−b outputs corruptedb] ≥ ε(λ) · (|Pr[D(idealF,Sim(x, y, λ)) = 1]
− Pr[D(realΠ,Adv(x, y, λ)) = 1]| − 1/p(λ)) − negl(λ).

3 A Partially-Fair Exchange Protocol

3.1 Definition

Informally, a partially-fair exchange protocol allows two parties to exchange their
inputs, with the guarantee that either the two parties will learn their output,
or neither will, except with a 1/poly probability which can be made arbitrarily
small. In other words, the protocol realizes the fair exchange functionality, except
with probability 1/poly. More precisely:

Definition 5 (Partially-Fair Exchange). A partially-fair exchange protocol
is a family {Πp}p∈poly of two-party protocols such that, for any polynomial p,
the protocol Πp 1/p-securely compute the ideal functionality Ffe represented on
Fig. 1.

3.2 Building Blocks

Equivocable Trapdoor Commitment. An equivocable trapdoor commitment
scheme is a computationally hiding, computationally binding commitment
scheme which satisfies two properties: it is equivocable, meaning that with some
appropriate trapdoor, any commitment can be opened to an arbitrary value; and
it is weakly extractable, meaning that given an appropriate trapdoor, there is an
extraction algorithm that recovers a message m from a commitment such that
no PPT adversary can open this commitment to a value m′ �= m. We provide a
formal definition below.

Definition 6. (Equivocable Trapdoor Commitment) An equivocable trapdoor
commitment C with message space M, commitment space C, opening space
D, and random source R, is a 5-tuple of PPT algorithms (C.Setup,
C.Commit, C.Verify, C.Extract, C.Equivocate), defined below, which satisfies cor-
rectness, equivocability, and weak extractability.

– C.Setup(1λ), on input the security parameter, generates the public parameters
pp of the scheme and a trapdoor τ ,
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Fig. 1. Ideal Functionality Ffe for fair exchange between two parties A and B.

– C.Commit(pp,m; r), given the message m ∈ M and some random coins r ∈
R, outputs a pair commitment-opening (c, d),

– C.Verify(pp, c,m, d), given a commitment c ∈ C, a message m ∈ M, and an
opening d ∈ D, outputs a bit b ∈ {0, 1},

– C.Extract(τ, c), given a trapdoor τ and a commitment c, outputs a message
m ∈ M,

– C.Equivocate(τ, c,m), given a trapdoor τ , a commitment c, and a message m,
output an opening d ∈ D,

Correctness. For any (pp, τ) ← C.Setup(1λ), any (m, r) ∈ M × R, if (c, d) =
C.Commit(pp,m; r), then C.Verify(pp, c,m, d) = 1.

Equivocable. A commitment scheme C is equivocable if for any and m ∈ M,
the following distributions are indistinguishable:

{(pp, τ) $← C.Setup(1λ), (c, d) $← C.Commit(pp,m) : (pp, c, d)},

{(pp, τ) $← C.Setup(1λ), c $← C, d ← C.Equivocate(τ, c,m) : (pp, c, d)}.

Weakly Extractable. A commitment scheme C is weakly extractable if, for
any PPT adversary Adv, it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(pp, τ) $←
C.Setup(1λ),
(c,m, d) ←
Adv(pp),
m′ ←
C.Extract(τ, c)

: (m �= m′) ∧ (C.Verify(pp, c,m, d) = 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

≈ 0.
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Instantiating Equivocable Trapdoor Commitments. There are several possible
approaches to constructing equivocable trapdoor commitments. The most nat-
ural one, however, is simply to start from a standard extractable commitment
(e.g. ElGamal encryption), and to replace the usual opening (which consists in
revealing the message m and the random coin r) by a zero-knowledge proof that
the ciphertext encrypts m. Equivocability follows immediatly from the simu-
latability of the zero-knowledge proof, while weak-extractability follows directly
from the extractability of the commitment scheme, together with the soundness
of the proof system. Instantiating the extractable scheme with ElGamal, the
zero-knowledge proof can either be any four-move interactive zero-knowledge
proof for the DDH relation (very efficient and standard protocols exist for this
relation), or a non-interactive proof.2

Public-Key Encryption. We first recall the standard definition of a semantically-
secure public-key encryption scheme:

Definition 7 (Encryption Scheme). An encryption scheme E is a triple of
efficient algorithms (KeyGen,Enc,Dec) such that

– KeyGen(1λ) outputs a public key pk and a secret key sk, pk specifies the mes-
sage space M, the ciphertext space C, and the random source R;

– Enc(pk,m; r), given the message m, outputs a ciphertext c, under the encryp-
tion key pk with the randomness r;

– Dec(sk, c), outputs a plaintext m, encrypted in the ciphertext c using the
decryption key sk.

Encryption schemes are assumed to satisfy the following properties:

Correctness. An encryption scheme Π is correct if for any pair of keys (pk, sk)
generated by KeyGen and any message m ∈ M, it holds that Dec(Enc(m)) = m.

Semantic Security ( IND-CPA ). The classical security notion for encryption is the
indistinguishability of ciphertexts: no adversary can distinguish the encryptions
of the plaintexts m0 and m1 of its choice, given just access to public key.

Timed-Release Encryption. To define timed-release encryption, we first intro-
duce the notion of a T -bounded algorithm: we say that an algorithm is T -bounded
if it runs in sequential time strictly upper-bounded by T . A (T, T ′)-timed release
encryption scheme, with T ′ ≥ T , is a public-key encryption scheme where seman-
tic security is relaxed to hold only against T -bounded PPT adversaries, with an
additional T ′-bounded PPT algorithm ForceDec which, on input (pk, c), outputs
m = Dec(sk, c). Timed-release encryption was introduced in [33]; it can be con-
structed under the assumption that squaring modulo an RSA modulus cannot
be parallelized efficiently [33].
2 Such proofs can be built in the random oracle, or alternatively be based on pairing-

based cryptography if we use ElGamal over a pairing-friendly elliptic curve. We note
that pairing-based non-interactive proofs for linear languages such as DDH relations
can be as short as a single group element, using the scheme of Kiltz and Wee [24].
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Oblivious Transfer. An oblivious transfer protocol allows a receiver to obliviously
select one of n strings held by a sender, with the guarantee that the sender will
not learn which string was selected, while the receiver will not learn anything
about the strings he did not selected. We will rely in this work on a simulatable
two-round 1-out-of-n oblivious transfer protocol (in the common reference string
model); we provide a formal definition below.

Definition 8 (Simulatable Oblivious Transfer). A two-round simulatable
1-out-of-n oblivious transfer protocol in the common reference string model is a
quadruple of PPT algorithms (Setup,OT1,OT2,Decode) such that
– Setup(1λ, b), on input the security parameter an a bit b (called the mode),

outputs a pair (pp, τ) where pp a set of public parameters, and τ is a trapdoor
(used only in the simulation);

– OT1(pp, i), on input a selection value i ∈ [n], outputs a pair (c1, o) where o
is called the opening information;

– OT2(pp, c1, i′,m), on input a value c1, a value i′ ∈ [n], and a message m ∈ M
(M is the message space), outputs a value c2;

– Decode(pp, c2, o), on input a value c2 and an opening information o, outputs
a message m′ ∈ M ∪ {⊥}.

The scheme is assumed to satisfy the following properties:

Correctness. For any i ∈ [n] and any message m ∈ M,

Pr

⎡
⎣
(pp, τ) $← Setup(1λ, 0),
(c1, o)

$← OT1(pp, i),
c2

$← OT2(pp, c1, i,m)
: Decode(pp, c2, o) = m

⎤
⎦ = 1.

Indistinguishability of Modes. The distributions D0 and D1, where Db =
{(pp, τ) $← Setup(1λ, b) : pp}, are computationally indistinguishable.

Sender Simulatability. There exists a simulator SenderSim which satisfies the
following: for any (pp, τ) ← Setup(1λ, 0) and every (possibly malformed) c1,
SenderSim(τ, c1) outputs a value i such that for every pair of messages (m0,m1),
and every i′ �= i, {OT2(pp, c1, i′,m0)} and {OT2(pp, c1, i′,m1)} are statistically
indistinguishable.

Receiver Simulatability. There exists a simulator ReceiverSim which satisfies
the following: for every i ∈ [n], the distributions

{(pp, τ) $← Setup(1λ, 1), (c1, o1, · · · , on)
$← ReceiverSim(τ) : (c1, oi)}

and {(pp, τ) $← Setup(1λ, 1), (c1, oi)
$← OT1(pp, i) : (c1, oi)} are statistically

indistinguishable.

Instantiating Simulatable Oblivious Transfer. The most natural approach to
instantiate the above primitive is to rely on the construction of [31], which can
be based on either DDH, quadratic residuosity, or LWE. The second message of
a 1-out-of-p simulatable OT under the DDH assumption requires 2 log p group
elements under the scheme of [31], leading to the claimed communication in the
introduction of this paper.
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3.3 Protocol

We now proceed with the description of a partially-fair exchange protocol in
the CRS model. The protocol is parametrized with a polynomial p such that it
1/p-securely computes the fair exchange functionality Ffe, with security against
covert adversaries (and a negligible deterrence factor). The protocol relies on
timed-release encryption; it assumes that both parties have access to a synchro-
nized clock.3 Furthermore, for correctness, we assume that there is a known
upper-bound Δ on the network delay for message transmission. We represent
the protocol on Fig. 2. We formally prove the following Theorem 1 in the full
version of this paper [13].4

Theorem 1. The protocol Πsfe 1/p-securely compute Ffe in the presence of
covert adversaries with 1-deterrent.

3.4 Informal Overview

To prove Theorem 1, we exhibit a simulator that “almost-correctly” simulates
Πsfe given access to Fsfe. The simulator, that does not know A’s input xA, will
play as follows: the initialization phase is executed honestly, except that the value
(xA||dA) ⊕ KA in the ciphertext EA is replaced by a random value x′

A of the
appropriate size (Sim will derive later on the appropriate mask KA to transmit to
B so that x′

A is unmasked to (xA||dA)). From the initial commitment comB and
ciphertext EB of B, Sim extracts his input xB and sends it to the functionality
Ffe. It also extracts the round number i∗ at which B should obtain the key KA,
if he did not abort before. Then, during the fair exchange phase, Sim computes
its OT2 messages on dummy inputs, except for round i∗ (the simulatability of
the OT guarantees that all OT2 messages are perfectly lossy, except for the
one corresponding to the round i∗ identified by Sim, hence this simulation is
indistinguishable from a real run of the protocol). At round i∗, if B has not yet
aborted, Sim will send proceed to the functionality Ffe, and get xA. It will then
equivocate the commitment comA to derive an appropriate opening dA which
“explains” comA as a commitment to xA, and send the key KA ← x′

A ⊕ (dA||xA)
to B. If B aborts before round i∗, Sim simply sends abort to Ffe.

The above simulation fails in two situations:

– When B cheats by not transmitting the opening of comB to A, or by not
including the random coins of his OT1 message c1,B in EB .

3 In fact, we only need that there is a known upper bound on how much the parties’
clocks can differ.

4 We note that, although the honest execution of the protocol is described with syn-
chronous message exchanges, no assumption is made in the analysis about a syn-
chronous communication setting: security holds in the standard, asynchronous com-
munication setting.
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Fig. 2. Partially-Fair Exchange Protocol Πsfe between two parties A and B.
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– When B aborts at a round j such that he already got enough information
to obtain his output (after executing the ForceDec procedure), but A did not
yet receive the information on her output. Indeed, in Sim’s simulation, perfect
fairness is always guaranteed by Ffe.

The first issue corresponds to B following an active cheating strategy; how-
ever, this strategy is always successfully detected by A, who outputs corruptedB

when she does not receive the appropriate opening and coins. This captures the
fact that the protocol is secure against covert adversaries with 1-deterrent: a
malicious adversary can deviate from the protocol (and break partial fairness),
but will always be caught when doing so.

The second issue corresponds exactly to the 1/p gap in partial fairness. Most
of the analysis will be devoted to proving that this situation happens with prob-
ability at most 1/p (conditioned on the first situation not happening, i.e., A not
outputting corruptedB). The analysis proceeds by considering the probability of
this event conditioned on B aborting at round j, for every possible round j.
Then, the crucial observation is that when he aborts early, B can be thought
of as a T -bounded adversary. This will allow us to invoke the semantic secu-
rity of the timed-release encryption scheme to show that its content is hidden
from B. From this, we conclude that the rounds at which A and B must receive
their outputs (respectively πB(iA) and πA(iB)) are uniformly random (πA, iA
are honestly picked at random by Sim, and they remain hidden from B, who
chooses πB , iB). Therefore, in the event of the round πB(iA) being after some
given round j, while πA(iB) ≤ j, can be shown to be (almost) independent of
B’s behavior (including his choice to abort or not). This allows us to bound the
probability of this event by j

p · p+1−j
p +negl(λ) for every j. Each term being upper

bounded by 1/p + negl(λ), the security argument follows. The detailed formal
security analysis of our protocol is given in the full version of this paper [13].
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A Extensions

We sketch how the protocol Πsfe can be naturally extended to more complex func-
tionalities. Observe that, after the initialization phase, both parties hold (equiv-
ocable and weakly-extractable) commitments to the values of their opponent.
At this stage, the parties can rely on zero-knowledge proof to prove arbitrary
statements of their choice regarding their committed value to their opponent,
or execute any two-party computation protocol (satisfying only security with
abort) to guarantee any specific property of the committed value without dis-
closing them – as long as this phase is completed before a time T elapses. In
particular, the parties can for example rely on a generic two-party computation
protocol satisfying security with abort to check that the committed value of
their opponent verifies correctly with respect to their secret-key of a one-time
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MAC scheme; the 1/p-fairness of the resulting scheme follows immediately from
the 1/p-security of Πsfe and the security with abort of the generic two-party
computation protocol. This shows that our minimal use of a delayed encryption
scheme already suffices to get around the impossibility result of [21], which was
established exactly for this primitive.

More generally, the two parties can compute arbitrary functionalities with
1/p-fairness as follows: first: they execute a generic two-party computation pro-
tocol which computes a modified functionality, whose output is a random xor
sharing of the desired output. This protocol only needs to be secure with abort,
since no early abortion during its execution can allow the adversary to learn the
output, each share revealing nothing about the output. Then, the two parties
execute the protocol Πsfe on those outputs shares, and rely on a generic zero-
knowledge proof system (before the start of step 2) to demonstrate that the
value committed in the initialization phase is the correct output of the modified
functionality on their private input. After completion of the protocol Πsfe, both
parties reconstruct the output by XORing the exchanged values. It immediately
follows from the security-with-abort of the generic two-party protocol, the secu-
rity of the zero-knowledge proof system, and the 1/p-security of Πsfe, that the
resulting protocol does 1/p-securely compute the desired functionality.

B Other Applications of Partially-Fair Exchange

The partially-fair exchange mechanisms proposed here can find application in
other contexts, for example contract signing. Note that there are some interesting
issues of incentives here: in the application to PAKEs the attacker wants to
provide the correct confirmation value if possible. There is no incentive for him
to provide an “invalid” V value.

This is in contrast to, say, contract signing, where each party may well be
incentivised to submit invalid signatures. The standard way to handle this is to
introduce optimistic protocols: that will invoke a judge or TTP in the event of
problems. In this context it is not clear that our partially-fair exchange construc-
tion provides any advantage over such optimistic protocols.

A protocol may satisfy fair-exchange and still admit the possibility that at
some point in the execution one party has the power to determine whether or not
the protocol will terminate successfully, and furthermore be able to prove this to
a third party. This may be an issue if this party can use this a leverage to bargain
more favourably with the third party. Abuse-freeness seeks to counter this by
requiring that neither party can demonstrate to a third party that they can
control whether or not the protocol will complete. Our SFE construction denies
the parties knowledge of the point at which they acquire the desired terms and
so could provide the basis for abuse-freeness.
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Abstract. Vector commitment and its variants have attracted a lot of
attention recently as they have been exposed to a wide range of appli-
cations in blockchain. Two special extensions of vector commitments,
namely subvector commitments and mercurial commitments, have been
proposed with attractive features that are desirable in many applica-
tions. Nevertheless, to the best of our knowledge, a single construction
satisfying all those attractive features is still missing. In this work, we
analyze those important properties and propose a new primitive called
mercurial subvector commitments, which are efficiently updatable, mer-
curial hiding, position binding, and aggregatable. We formalize the sys-
tem model and security model for such a primitive and present a con-
crete construction with security proofs to show that it satisfies all of the
properties. Moreover, we also illustrate some applications of mercurial
subvector commitments, including zero-knowledge sets and blockchain
with account-based models.

Keywords: Vector commitments · Blockchain · Aggregation ·
Zero-knowledge sets

1 Introduction

Vector commitments (VC) allow a user to commit to a set of ordered messages,
which can be opened at a specific position. Normally, a vector commitment is
updatable, position binding and concise. Specifically, a VC is updatable, which
means it enabling a committer to efficiently update the committed message at
some positions after the committing phase. Position binding is a basic require-
ment generalized from the binding property of normal commitments [24], mean-
ing one cannot find two different and valid messages in a position in a vector
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commitment in polynomial time. The concise property requires the size of the
commitment and the opening proof are independent of the number of the com-
mitted message. Thanks to the above desirable properties, vector commitments
contribute to many applications such as accumulators, cloud storage and so forth
[4,11,12]. Subsequently, a series of follow-up works have been proposed, such as
polynomial commitments [19] and functional commitments [21]. One of the most
noticeable work is mercurial commitments (MC), which is a special kind of VC.
An MC has two ways to commit, namely hard commitment and soft commit-
ment. Hard commitments are the same as normal VC while soft commitments do
not have the binding property to the committed messages. A committer needs to
choose a preferred way of commitment at the beginning of a commitment phase.
There are two options in the opening phase as well, namely the hard opening
and soft opening. Hard opening is only for hard commitments and can generate
a proof to open the committed message at a specific position. Meanwhile, soft
opening is for both hard commitments and soft commitments. Soft opening for
hard commitment at a position cannot be different from the committed value,
whereas soft opening for soft commitment enables the committer to open to
a message in a position at his/her choice. Besides, a mercurial commitment is
mercurial hiding, meaning that hard commitments are indistinguishable from
soft ones. The special property of MC is promising to enable membership and
non-membership proofs in a set without revealing any information of the set
including its cardinality, i.e. zero-knowledge set (ZKS).

Subvector commitments (SVC) are another important extension of VC, which
were initially presented for supporting stateless cryptocurrencies in blockchain
[13]. SVC allows a user to open a vector commitment at a set of positions at the
same time. Compared to VC, SVC has a stronger requirement that the opening
proof to a subset of position is independent of not only the size of the committed
messages, but also the size of the chosen subset. With the wide applications in
blockchain, many research works on SVC have been proposed [15,15,17].

Related work. The concept of VC was proposed by Catalano and Fiore [10].
In that seminal work, they also presented two concrete constructions based on
CDH and RSA assumptions, respectively. A similar notion to VC is polynomial
commitment (PC), proposed in [19], which enables a user to commit to a polyno-
mial so that a verifier can later be convinced to a claimed evaluation at a point.
The size of a polynomial commitment is independent of the degree of the poly-
nomial, so is the opening proof at a point. Besides, it supports batch verification
due to the basic polynomial quotient theory, in which the size of the opening
proof for multiple evaluations is the same as that for a single point. Libert et
al. [21] generalized the concept to a functional commitment (FC) that can open
to a function of the committed messages. Specifically, the commitment can be
opened to (f, y) such that y = f(m), where m is the committed messages. They
provided a construction on linear function f based on a composite order groups,
where y =

∑n
i=1 ximi. Chepurnoy et al. [13] presented a new algebraic vector

commitment scheme based on multilinear polynomial and applied the new con-
struction to EDRAX, a stateless verification for account-based cryptocurrencies
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[2], where the miners do not necessarily store the current state, but validate the
transactions by accessing the latest block to check the balance in the relevant
accounts.

Mercurial commitments (MC), proposed by Chase et al. [11], are a special
kind of vector commitment supporting hard and soft commitments as outlined
above. Catalano et al. [9] presented a more efficient construction on trapdoor
mercurial commitments (TMC) based on one-way function with weaker assump-
tion. In their construction, the size of the soft opening is much shorter, while the
size of the hard opening is still linear with the number of messages. Libert and
Yung [22] proposed the concept of mercurial vector commitment (MVC) and
devised a construction based on broadcast encryption [5] with compact proofs
for both hard opening and soft opening.

The primitive of subvector commitment (SVC) was proposed by Lai and
Malavolta [20]. They presented two concrete constructions [20] under variants
of the root assumption and the CDH assumption based on [10]. The construc-
tion supports batch proof generation, meaning that it can generate proofs for
multiple positions at one-time. However, the proofs can not be aggregated after
generation. Boneh et al. [4] proposed an accumulator with batch verification,
which can be used to design a VC with aggregatable proofs for both member-
ship and non-membership. The primitive of aggregatable subvector commitment
(aSVC) was proposed [15] to enable aggregation of multiple opening proofs into
a single SVC proof and hence reduce the verification overhead. Campanelli et
al. [8] proposed an incrementally aSVC (iaSVC), which can aggregate the open-
ing for an unbounded number of times to further improve the efficiency. It also
ensures fast generation of the opening by leveraging preprocessing. Gorbunov et
al. [17] proposed Pointproofs (PP), which can aggregate proofs generated by mul-
tiple commitments by any entity non-interactively. Agrawal et al. [1] proposed a
new VC named key-value commitment (KVC), whose committed messages are
key-value maps. The setting can generally link to the blockchain-based cryp-
tocurrency, where the key is the account address and the value is the account
balance.

We summarize all the existing works on VC and its variants mentioned above
based on the properties they provide. The result is shown in Table 1. We can see
from the table that none of the works mentioned above provides all the promising
features. In this paper, we fill this gap by presenting a vector commitment enjoy-
ing the nice features including efficient update, aggregation, mercurial properties
and privacy.

Contributions. In this paper, we propose a new primitive named mercurial
subvector commitments, which enjoy the desirable features for both mercurial
commitments and subvector commitments. To be more specific, the contributions
of this paper are three-fold as follows.

– We put forward a new primitive of mercurial subvector commitments
(MSVC), which support two ways to commit and open the messages and
also enjoy efficient update and aggregation in the opening proofs.
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Table 1. Summary of the existing vector commitments

Schemes Updatable Aggregatable Mercurial Hiding

VC [10] � × × ×
PC [19] × × × �
FC [21] × × × �
EDRAX [13] � × × ×
MC [11] × × � �
TMC [9] × × � �
MVC [22] × × � �
SVC [4] � � × �
aSVC [15] � � × ×
iaSVC [8] � � × ×
PP [17] � � × �
KVC [1] � � × ×
Our scheme � � � �

– We formalize the system model and security models of MSVC and propose a
concrete construction. We prove the security of the proposal.

– We present theoretical analysis of the proposal to show its practicality. We
also show the possible applications of MSVC in blockchain-based cryptocur-
rencies with account-based model.

Organization. The rest of the paper is organized as follows. We provide some
preliminaries used through the paper in Sect. 2. The system model and security
model are illustrated in Sect. 3. We present a concrete construction in Sect. 4.
Potential applications are shown in Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we introduce preliminaries that used throughout this paper,
including bilinear maps, weak bilinear Diffie-Hellman exponent assumption and
algebraic group model.

2.1 Bilinear Groups

Let G1, G2, GT be multiplication groups of large prime order p. g1 and g2 are the
generators of groups G1 and G2, respectively. ψ is a computable isomorphism
from group G2 to G1

1, which means ψ(g2) = g1. A non-degenerate bilinear
pairing e : G1 × G2 → GT is denoted, which satisfies e(ga

1 , gb
2) = e(g1, g2)ab, for

random a, b ∈ Zp.

1 This setting is only used in the security proof rather than the proposed scheme.
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2.2 Diffie-Hellman Exponent Assumption

The Diffie-Hellman exponent (l-DHE) problem [7] defined in G = (G1, G2, GT ,
p, e) is as follows. On input

((
gα
1 , gα2

1 , · · · , gαl

1

)
,
(
gαl+2

1 , · · · , gα2l

1

)
,
(
gα
2 , gα2

2 , · · · , gαl

2

) )

for a random α ∈ Zp, output gαl+1

1 . The l-Diffie-Hellman exponent assumption
in G says that no efficient algorithm can solve the aforementioned problem in G

with non-negligible probability.
Following [7,22], the problem is not easier than bilinear Diffie-Hellman expo-

nent (BDHE) problem defined in [3,5], in which with the same input and an
additional h ∈ G, it outputs e(g, h)l+1.

2.3 Algebraic Group Model

The algebraic group model (AGM) [16] is a model lying in between the standard
model and generic group model (GGM). It is proposed to overcome the limitation
of GGM that GGM does not cover group-specific algorithms to use the repre-
sentation of a group. GGM model proves security in reduction, which is same as
the standard model. In the AGM model, algebraic adversaries are considered,
that is allowed to compute the elements in the target group and can use the
representation in binary. To be more specific, suppose L = (L0, · · · ,Lm) ∈ G
be a list of group elements in group G. An algebraic adversary can output a
vector −→z = (z1, · · · , zm) ∈ Zp such that Z =

∏
i L

zi
i .

3 System Model and Security Model

A mercurial subvector commitment comprises the following algorithms.

Setup(λ,N) → (param). This is a probabilistic algorithm run by a trusted party.
On input a security parameter λ and the length of the messages N , it generates
the public parameter param.

HCommit(m, param) → (C, aux). This is a probabilistic algorithm run by the
committer. On input a group of messages m and the public parameter param,
it generates a hard commitment C and some auxiliary information aux.

HProve(i,m[−i], aux) → (πi). This is a deterministic algorithm run by the com-
mitter. On input the position i, message m[−i]2 and the auxiliary information
aux, it outputs a proof πi to prove that mi is committed in the hard commit-
ment.

HVerify(C, i,mi, πi) → (0/1). This is a deterministic algorithm run by the veri-
fiers. On input the commitment C, the position i and message mi and proof πi,
it outputs 0 or 1 to indicate whether πi is a valid proof.
2 This is the message group without the i-th message.
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HUpdate(C,S,m[S],m′[S], aux) → (C ′, aux′). This is a deterministic algorithm
run by the committer. On input the commitment C, the set of positions S, the
original messages m[S], the updated messages m[S′] and the auxiliary informa-
tion aux, it outputs the new hard commitment C ′ and corresponding auxiliary
information aux′.

SCommit(param) → (C, aux). This is a probabilistic algorithm run by the com-
mitter. On input the public parameter param, it generates a soft commitment
C, which is not bound to any specific messages, and auxiliary information aux.

SProve(i,mi,F, aux) → (πi). On input the position i and message mi, it outputs
a proof πi to mi at position i in the commitment. F ∈ {H,S} states the auxiliary
information aux corresponds to a hard commitment or a soft commitment. If
F = H and mi is not the originally committed value, the algorithm aborts and
outputs ⊥.

SVerify(C, i,mi, πi) → (0/1). This is a deterministic algorithm run by verifiers.
On input the commitment C, the position i, the message mi and proof πi, it
outputs 0 or 1 to indicate whether πi is a valid proof.

Aggregate(F, C, S,m[S], {πi : i ∈ S}) → (Π̂). This is a probabilistic algorithm
run by the committer. On input a flag F to indicate whether this is an aggregation
for soft commitment or hard commitment, the commitment C, the position set
S, the messages m[S] and the proofs {πi, i ∈ S}, it outputs a proof Π̂ as an
aggregated proof.

AggreVerify(F, C, S,m[S], Π̂) → (0/1). This is a deterministic algorithm run by
verifier. On input the flag F to indicate this is the verification for soft aggregation
or hard aggregation, the commitment C, the position set S, the messages m[S]
and the proof Π̂, it outputs 0 or 1 to indicate whether Π̂ is a valid aggregated
proof.

Correctness. The correctness of an MSVC applies in several cases. Specifically,
for all λ,N , an ordered group of messages m and a set S ∈ [N ], (param) ←
Setup(λ,N), the following conditions must hold with an overwhelming probabil-
ity.

– For a hard commitment (C, aux) ← HCommit(m, param), a hard opening
(πi[H])← HProve (i,m[−i], aux) and a soft opening for hard commitment
(πi[S])← SProve(mi, i,H, aux), we have

HVerify(C, i,mi, πi[H]) = 1, SVerify(C, i,mi, πi[S]) = 1.

– For a soft commitment (C, aux) ← HCommit(param), a soft opening for soft
commitment (πi)← SProve(mi, i,S, aux), we have

SVerify(C, i,mi, πi) = 1.

– For an aggregate proof (Π̂)← Aggregate(F, C, S,m[S], {πi : i ∈ S}), we have

AggreVerify(F, C, S,m[S], Π̂) = 1,
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where C = HCommit(m, param), if F = H and C = SCommit(param), if
F = S.

– For an updated messages m′, such that m[N \ S] = m′[N \ S], we have

HUpdate(C,S,m[S],m′[S]) = HCommit(m′, param),

where C = HCommit(m, param).

An MSVC needs to satisfy Mercurial binding and Mercurial hiding, which are
defined as follows.

Mercurial Binding [22]: Compared to normal commitments, the mercurial
binding applies for both hard commitments and soft commitments to the mes-
sages for some positions. For hard commitments, no adversary can generate an
MSVC C such that it can be opened into two different messages in a specific
position. For soft commitments, no adversary can generate an MSVC C such
that it can be opened to a single value but partially decommitted (teased) to
another value.

Specifically, given the system parameters param, it is computationally infea-
sible to output a commitment C and the pairs (m0[S0], π0) and (m1[S1], π1) that
satisfy the following equations, where S0 and S1 denote the subsets of [1, N ].

AggrVerify(H, C, S0,m0[S0], Π0) = 1,AggrVerify(H, C, S1,m1[S1], Π1) = 1,

AggrVerify(H, C, S0,m0[S0], Π0) = 1,AggrVerify(S, C, S1,m1[S1], Π1) = 1,

m0[S0 ∩ S1] �= m1[S0 ∩ S1]

If the size of the set is one, it implies the following equation holds with negligible
probability.

HVerify(C, i,mi, πi) = 1,HVerify(C, i,m′
i, π

′
i) = 1,mi �= m′

i

HVerify(C, i,mi, πi) = 1,SVerify(C, i,m′
i, π

′
i) = 1,mi �= m′

i

Mercurial Hiding [9]: We now define the mercurial hiding, which has the
following requirements. (1) No probabilistic polynomial time (PPT) adversary
can learn whether C is a soft commitment or hard commitment. (2) For hard
commitments, no PPT adversary can learn the committed values m; (3) For a
soft commitment, it cannot be teased to any value before partially de-committed.

We define the simulation-based statistical security to depict the mercurial
hiding property above, in which there exists a simulator executing the algorithms
Setup*(λ,N), Commit*(param, tk), HProve*(i,m, aux) and SProve*(i,mi, aux)
defined as follows.

– Setup*(λ,N) → (param, tk). On input a security parameter λ and the size of
a group N , it outputs the system parameter param and a trapdoor key tk.

– Commit*(param, tk) → (C, aux). This is a randomized algorithm that takes
as input the system parameter param and a trapdoor tk. It outputs a fake
commitment C and auxiliary information aux. However, C doesn’t bind to
any group of messages.
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– HProve*(i,m, aux) → (πi). This is the equivocal hard opening (hard equivoca-
tion) algorithm. Given (C, aux) generated by Commit*(param, tk), it outputs
a fake proof of hard decommitment πi on position i for C.

– SProve*(i,mi, aux) → (πi). This is the equivocal soft opening (soft equivoca-
tion) algorithm. Given (C, aux) generated by Commit*(param, tk), it outputs
a fake proof of soft decommitment πi on position i for C.

The basic idea of the simulation-based game is that the commitments and
the proofs generated by the real protocol and the simulator are statistically
indistinguishable, even given the commitments, in which the committed messages
are chosen by the adversary. From the algorithms listed above, we can tell that
there is no message in a fake commitment and the proofs only involve the message
to be committed, thus the fake commitment and the fake proofs do not leak any
information of the other committed values. The formal process of the security
game is defined as follows.

Equivocation Game. The simulator C executes Setup*(λ,N) to get the security
parameters param and a trapdoor tk. In the game, A interacts with C to distin-
guish whether it is the real-world setting or the ideal one. To be more specific,
the setting of the game is determined by C by flipping a coin b ∈ {0, 1}. If b = 0,
the game is with the real commitment and opening proof. Otherwise, it is with
a fake commitment. A is allowed to make queries to C. At the end of the game,
A needs to guess the bit b. The detailed setting is shown as follows.

– HHEquivocation. A chooses a message tuple (m1, · · · ,mN ). C flips a coin
b. If b = 0, C computes (C, aux) ← HCommit(m, param) and if b = 1,
(C, aux) ← Commit*(param, tk). Then A is provided C by the challenger
C. A is allowed to make queries on his choices of S ∈ [N ]. If b = 0, C
returns πi ← HProve(i,m[−i], aux). Otherwise if b = 1, C replies with πi ←
HProve*(i,m, aux).

– HSEquivocation. A chooses a message tuple (m1, · · · ,mN ). C flips a coin
b. If b = 0, C computes (C, aux) ← HCommit(m, param) and if b = 1,
(C, aux) ← Commit*(param, tk). Then A is provided C by the challenger
C. A is allowed to make queries on his choices of S ∈ [N ]. If b = 0, C
returns πi ← SProve(i,mi,H, aux). Otherwise if b = 1, C replies with πi ←
SProve*(i,mi, aux).

– SSEquivocation. C flips a coin b. If b = 0, C computes (C, aux) ← SCom-
mit(param) and if b = 1, (C, aux) ← Commit*(param, tk). Then A is pro-
vided C by the challenger C. A is allowed to make queries on his choices of
S ∈ [N ]. If b = 0, C returns πi ← SProve(i,mi,S, aux). Otherwise if b = 1, C
replies with πi ← SProve*(i,mi, aux).

4 Proposed MSVC

In this section, we put forward the detailed construction of an MSVC. Then
we show the correctness of the proposal. In the construction, we borrow the
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idea from both mercurial commitments [22] and subvector commitments [17]
to achieve all the desirable properties, which advances the performance of tra-
ditional applications in each field. For mercurial property, we follow the tech-
niques in [22] to lose the binding in the verification. The involvement of C is
the key point achieving soft commitment and opening. Privacy is fulfilled via
the commitment forms similar to Pedersen commitments. For the aggregation,
we include the idea in [17] to add a new scalar for each individual proof. The
detailed construction is shown as follows.

Setup(λ,N) → (param). On input a security parameter λ, it generates G =
(p,G1, G2, GT , e), where G1, G2, GT are cyclic multiplicative groups of prime
order p. g1 and g2 are the generators in the corresponding groups. H is a cryp-
tographic hash function mapping from {0, 1}∗ to Zp. e : G1 × G2 → GT denotes
a bilinear mapping. Select a random α ← Z

∗
p and compute a = (α1, · · · , αN ),

where αi = αi. Compute ga1 = {gα
1 , · · · , gαN

1 }, ga2 = {gα1

2 , · · · , gαN

2 } and g
a[−1]·αN

1

= {gαN+2

1 , · · · , gα2N

1 }. The public parameters are generated as param = (G,H,

ga1 , ga2 , g
a[−1]·αN

1 ). α is discarded after initializing the system.

HCommit(m, param) → ((C, V ), aux). On input a set of messages m, it generates
the commitment pair as follows.

V = gγ
1 ·

N∏

j=1

g
mjαj

1 , C = gθ
1 ,

where γ and θ are randomness and mj is the message of the j-th position in m.
The commitment is (C, V ) and the auxiliary information is (m1, · · · ,mN , γ, θ).

HProve(i,m[−i], aux) → (πi). On input the messages and the auxiliary informa-
tion, generate the proof on position i as follows.

Wi =

⎛

⎝gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

⎞

⎠

αN+1−i/θ

Finally, the proof is generated as πi = (Wi, θ).

HVerify((C, V ), i,mi, πi) → (0/1). On input the commitment, the messages,
check whether the following equation holds to validate an opening proof.

e
(
V, gαN+1−i

2

)
= e(C,Wi) · e(g1, g2)αN+1mi (1)

If it holds, it outputs 1 to indicate it is a valid proof. Otherwise it outputs 0.

HUpdate(C, V , S,m[S],m′[S], aux) → ((C ′, V ′), aux′). On input the commit-
ment, parse the messages m[S] and m′[S], and compute the following equation
to update the messages in position set S in the commitment.

V ′ = V ·
∏

i∈S

g
(m′

i−mi)α
i

1 , C ′ = C
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The updated commitment is (C ′, V ′) and the updated auxiliary information is
(m′, γ, θ), where m[S] is replaced by m′[S] in position set S.

SCommit(param) → (C, aux). On input the security parameter param, it chooses
random θ and γ, and generates the commitment pair as follows.

V = (gα
1 )γ

, C = (gα
1 )θ

Output (C, V ) as the soft commitment pair and the auxiliary information is
aux = (θ, γ).

SProve(i,mi,F, aux) → (πi). If F = H, parse the auxiliary information as aux =
(m1, · · · ,mN ). The algorithm outputs ⊥ if mi is not the same message as that
in aux. Otherwise, the algorithm computes

Wi =

⎛

⎝gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

⎞

⎠

αN+1−i/θ

.

If F = S, parse the auxiliary information and generate the proof as follows.

Wi =
(
gαN−iγ
2 g

αN (−mi)
2

)1/θ

Finally, the proof is generated as πi = Wi. The auxiliary information is based
on the flag bit.

SVerify((C, V ), i,mi, πi) → (0/1). On input the message, the commitment and
the proof, check if the Eq. (1) in HVerify ((C, V ), i,mi, πi) holds. If it satisfies,
it outputs 1. Otherwise, output 0.

Aggregate(F, (C, V ), S,m[S], {πi : i ∈ S}) → (Π̂). On input the flag bit as H or
S, aggregate the proofs in position set S, compute

Ŵ =
∏

i∈S

W ti
i

where ti = H(i, (C, V ), S,m[S]), Wi is either a proof for hard opening or soft
opening based on F. The aggregated proof is π̂ = (θ, Ŵ ).

AggrVerify(F, (C, V ), S,m[S], Π̂) → (0/1). To validate an aggregated proof with
flag H or S, check the following equation.

e

(

V, g

∑

i∈S

αN+1−iti

2

)

= e
(
C, Ŵ

)
· e (g1, g2)

αN+1 ∑

i∈S

miti

Output 1 to indicate this is a valid proof. Otherwise, output 0.
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4.1 Correctness

We show the correctness of the proposal from the following aspects.

Correctness of Hard Opening. In hard commitments, given V = gγ
1 ·

N∏

j=1

g
mjαj

1 , C = gθ
1 , and Wi =

(
gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ

, we have

e
(
V, gαN+1−i

2

)

e(C,Wi)
=

e

(

gγ
1 ·

N∏

j=1

g
mjαj

1 , gαN+1−i

2

)

e

(

gθ
1 ,

(
gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ
)

=

e

(

gγ
1 ,

N∏

j=1,j �=i

g
mjαj

2

)

· e
(
gγ
1 , gαN+1−i

2

)

e
(
g1, g

γαN+1−i

2

)
· e

(

g1,
N∏

j=1,j �=i

g
mjαj

2

)

= e(g1, g2)αN+1mi

Thus the correctness of hard opening holds.

Correctness of Soft Opening. In soft opening, given V = gγ
1 , C = (gα

1 )θ and

Wi =
(
gαN+1−iγ−αN+1mi

2

)1/θ

, we have

e(C,Wi) · e(g1, g2)αN+1mi = e

(

(gα
1 )θ,

(
gαN−iγ−αNmi

2

)1/θ
)

· e(g1, g2)αN+1mi

= e
(
g1, g

αN+1−iγ−αN+1mi

2

)
· e(g1, g2)αN+1mi

= e
(
g1, g

αN+1−iγ
2

)
· e(g1, g2)−αN+1mi · e(g1, g2)αN+1mi

= e
(
V, gαN+1−i

2

)

Thus the correctness of soft opening holds.

Correctness of Aggregation. The aggregation works for both hard opening
and soft opening witnesses. From the previous analysis, we have

e(C,Wi) · e(g1, g2)αN+1mi = e
(
V, gαN+1−i

2

)

for both hard opening and soft opening. For each position i in a set S, the
above equation holds. Multiplying these equations for i ∈ S, we will get

e

(

V, g

∑

i∈S

αN+1−iti

2

)

= e(C, Ŵ ) · e(g1, g2)
αN+1 ∑

i∈S

miti
.

Thus the correctness of soft opening holds.
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Correctness of Update. For update of a commitment for some position set

S, given V = gγ
1 ·

N∏

i=1

gmiαi
1 and from the definition of a commitment, we have

V ·
∏

i∈S

g
(m′

i−mi)α
i

1 = gγ
1 ·

N∏

i=1

gmiαi
1 ·

∏

i∈S

g
(m′

i−mi)α
i

1

= gγ
1 ·

N∏

i=1,i/∈S

gmiαi
1 ·

∏

i∈S

g
(m′

i−mi+mi)α
i

1

= gγ
1 ·

N∏

i=1,i/∈S

gmiαi
1 ·

∏

i∈S

g
m′

iα
i

1 = V ′

Thus the correctness of update holds.

4.2 Mercurial Binding

Our construction satisfies mercurial binding in the AFM and ROM model if
l-wBDHE assumption holds.

Theorem 1. If there is an adversary A who breaks the mercurial binding of the
proposed scheme, then we can construct another algorithm B to solve l-wBDHE
problem with overwhelming probability.

Proof. The proof is conducted with a game between a challenger C and an alge-
braic adversary A.

Setup. C sets up the system by generating G = (p,G1, G2, GT , e). On input
the instance ga1 = {gα1

1 , · · · , gαN

1 }, ga2 = {gα1

2 , · · · , gαN

2 } and g
a[−1]·αN

1 =
{gαN+2

1 , · · · , gα2N

1 } as the system parameters param, C forwards the system
parameters param to A. Since A is algebraic, it can output z and γ such that

V = gγ
1 gz

�a
1 , C = gθ

1 .

Hash query. A is allowed to make qH hash queries on its choices. C maintains
a hash table with entry H(i, C, V, S,m[S]), and chooses ti uniformly at random
as the response. Repeated queries will get the same response. We note that for
z[S] �= m[S], we have

Pr [z[S] �≡p m[S] and z[S]t ≡p m[S]t] = 1/p.

We call this an H-lucky query. If this happens, the proofs aborts. The probability
for A to make an H-lucky query is at most qH/p.

Output. A outputs
(C, V ), {Sb,mb[Sb], Ŵ b}b=0,1,
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where V = gγ
1 gz

�a
1 and C = gθ

1 .
Now we show how to work out g

αN+1
1 Since m0[S0 ∩S1] �= m1[S0 ∩S1], then

we have either m0[S0] �= z[S0] or m1[S1] �= z[S1]. Define (S∗,m∗, Ŵ ∗) such
that

m∗[S∗] �= z[S∗] and AggrVerify(F, (C, V ), S∗,m∗[S∗], Ŵ ∗) = 1.

Thus we have

e(V, g

∑

i∈S∗
αN+1−iti

2 ) = e(C, Ŵ ∗) · e(g1, g2)αN+1m∗[S∗]�t .

As we may recall,

e

(

V, g

∑

i∈S∗
αN+1−iti

2

)

= e(C, Ŵ ) · e(g1, g2)αN+1z [S∗]�t .

With these two equations, we have

e(C, Ŵ ∗) · e(g1, g2)αN+1m∗[S∗]�t = e(C, Ŵ ) · e(g1, g2)αN+1z [S∗]�t .

We can obtain
g

αN+1·(z [S∗]−m∗[S∗])�t
2 = (Ŵ ∗/Ŵ )θ.

Recall that z[S∗] �= m∗[S∗] and that there is no H-lucky queries, thus, z[S∗] −
m∗[S∗])�t �≡p 0. We can easily get its inverse modulo p and get

gαN+1

2 =
[(

Ŵ ∗/Ŵ
)θ

](z [S∗]−m∗[S∗])�t

.

With g1 = ψ(g2) and the above equation, we can easily work out gαN+1

1 .

4.3 Mercurial Hiding

It is shown in [9] that mercurial hiding is implied in the equivocation games. Thus
in this subsection, we prove the security of our proposal under HH Equivocation,
HS Equivocation and SS Equivocation.

Theorem 2. Our construction satisfies HH Equivocation, HS Equivocation and
SS Equivocation.

Proof. C setups the system and obtains the system parameter param =
(G,H, ga1 , ga2 , g

a[−1]·αN

1 ) as in the real setup algorithm. α is set as the trapdoor
tk.

C flips a coin b ∈ {0, 1}. If b = 1, C calls Commit*(param, tk) to generate a
fake commitment as (C, V ) = (gθ

1 , g
γ
1 ). To answer a query for the decommitment
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proof on position i, C runs HProve*(i,m, aux) and gets the corresponding hard
equivocation on position i to mi as

πi =
(

θ,Wi =
(
gαN+1−iγ
2 g−αN+1mi

2

)1/θ
)

.

If b = 0, for a group of messages m, C calls HCommit(m, param) to get the
commitment as

(C, V ) =

⎛

⎝gθ
1 , g

γ̃
1 ·

N∏

j=1

g
mjαj

1

⎞

⎠

for some randomly chosen γ̃. Then to answer the query by A, C generates the
corresponding hard opening as

π̃i =

⎛

⎝θ, W̃i =
(
gγ̃
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ

⎞

⎠ .

It is easy to find that the fake commitment and hard equivocations have the same
distribution as the hard commitments and the hard openings for any random
param, i,m.

The HSEquivocation follows the same arguments as above.
For SSEquivocation, if b = 1, C calls Commit*(param, tk) to generate a

fake commitment as (C, V ) =
(
gθ, gγ

)
. If b = 0, the soft commitment is set

as (C, V ) =
(
gθ′

, gγ′
)

for some random θ′ and γ′. It is easy to tell the soft
commitment and the fake commitment has the same distribution since θ′ = θ/α
and γ′ = γ/α. The equivocal soft opening

Wi =
(
gαN+1−iγ
2 g

αN+1(−mi)
2

)1/θ

also has the same distribution since it can be written as

Wi =
(
gαN−iγ′
2 g

αN (−mi)
2

)1/θ′

.

With the theorem shown above and the claim in [9] (Sect. 2.3), our construc-
tion satisfies mercurial hiding.

4.4 Performance Analysis

In this subsection, we present the theoretical analysis of the algorithms. The
detailed result is shown in Table 2. n is the number of the maximum messages in
the commitments and l is the size of the subset S. We only count the expensive
group operations and ignore the cheap ones such as hash and the operation
in Zp. mult is the multiplication and exp is short for the exponentiation. The
footnote of the operations represents those in the corresponding groups. The
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Table 2. Theoretical analysis of the proposal

Algorithm HCommit HProve HVerify

Time (n+2)exp1+n mult1 (n+1)exp2+(n-1)mult2 2 pair+1multT+1expT

size 2 |G1| 1 |G2| –

Algorithm SCommit SProve (F) SVerify

Time 2 exp1 3 exp2+1 mult2 2 pair+1multT+1expT

size 2 |G1| 1 |G2| –

Algorithm HUpdate Aggregate AggrVerify

Time lexp1+ lmult1 (l − 1) mult1 2 pair+1multT+

1expT+1exp2

Size 2 |G1| 1 |G2| –

cost of generating a hard commitment is linear with the size of the messages.
However, this is a one-time phase. After generating the commitment, one can
update the messages with HUpdate, which is only linear with the number of the
updated positions. In all the verification algorithm, e(g1, g2)αN+1

is known in the
param, thus this part does not require any pairing operations. For the storage
size, we can observe that the commitments are only two elements and the proofs
for whichever kind of opening are only one element in the corresponding groups.

5 Applications of Mercurial Subvector Commitments

In this section, we show applications of the proposed mercurial subvector com-
mitments.

5.1 Zero-Knowledge Elementary Database with Batch Verification

Zero-knowledge sets, proposed by Micali et al. [25], enable an entity to commit
to a set S confidentially and later prove whether a random element x is in the set
or not without leaking any information of the set. Zero-knowledge elementary
database (ZK-EDB) is a follow-up work where data are stored in the form of
key-value pairs. If the queried key x is in the database, the value v corresponding
to x is responded, where v = D(x). Otherwise, ⊥ is responded. It is shown that
the commitments with mercurial properties can be leveraged to build ZKS and
ZK-EDB [11,22]. In this section, following the framework in [11,22], we show
the proposed MSVC can be used to construct ZK-EDB, so as ZKS.

Normally, there are two phases in the process, the committing phase and
proving phase. In the committing phase, an N -ray commitment tree is built in
the following way. The leaf nodes of the tree are the values in the queried set with
the keys as the indices and the root of this tree is the commitment for the set. in
order to reduce the size and enhance the efficiency, we can do as follows. Firstly,
the subtree is pruned if the keys in all the leaf nodes are not in the database.
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After that, only the subtrees with at least one leaf node in the database is kept.
To build the tree, for a leaf node, if the embedded D(x) �= ⊥, it contains a
hard commitment of the hash of D(x) as the message. Otherwise, if x is not in
the database, it contains a soft commitment of empty message. The remaining
nodes of the tree have commitments to the hash of all the children nodes. The
commitment in the root node is the final commitment to the set. In the proving
phase, to prove x is in the database with D(x) = v, the prover generates a proof
of the hard opening, from the specific position where D(x) is embedded, to the
root. At each level in the tree, the proof for the commitment is with respect to
the position in the commitment. While for a key x that is not in the database,
the prover firstly patches up the missing subtree (which is pruned before) and
generates a tease opening for the soft commitments.

The advantage to using the proposed MSVC in ZK-EDB is that it guarantees
privacy and leaks no information of the database even the size of the set, at the
same time, it enhances the efficiency due to the aggregation of the opening,
which supports batch verification for the opening proofs of the commitments in
the structure.

5.2 Mercurial Subvector Commitments in Blockchain

Blockchain [27] is a public ledger that records transactions in the system. In
blockchain-based cryptocurrencies, there are two models in general, namely
UTXO (unspent transaction output) model by Bitcoin [27] and account-based
model by ethereum [14,29]. In UTXO model, a list of all the unspent accounts
are maintained. A transaction includes input accounts and output accounts, and
a confirmed transaction results in the input accounts removed from the UTXO
list and output accounts added to the UTXO list with some specific amount.
Regarding privacy, e.g. hiding the amount in the account, Miers et al. [26] and
Sasson et al. [28] presented frameworks and solutions to well-address the issue in
UTXO model. In comparison, the account-based model is similar to the financial
system in the real world. When a user spends some money in the system, the
corresponding amount of coins is deducted from the balance and when receiv-
ing money, the amount is added to the balance of the account. However, in the
account-based model, it remains an open problem to build either stateful verifi-
cation or stateless verification [13]. Several existing works considered this prob-
lem. Guan et al. [18] proposed a privacy-preserving account-based blockchain
based on heavy zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs) [6]. Ma et al. [23] enhanced the privacy of the transactions in
account-based model based on non-interactive zero-knowledge proof and homo-
morphic encryption. In [17], Gorbunov et al. briefly mentioned their construction
is promising to be extended to enjoy hiding property, but there are no formal
construction or security proofs. In this section, we introduce a model to apply
Mercurial subvector commitments in Blockchain. We provide two frameworks,
for public blockchains and consortium blockchains, respectively, which are shown
as follows. Compared to the existing protocols [13,17], we protect the privacy of
the accounts in the commitments and the proofs.
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In public blockchain, we consider the account-based model cryptocurrencies,
such as Ethereum [29]. Without losing generality, let’s assume that each user
in this network has multiple accounts, and the user can generate a vector com-
mitment (C, aux) by calling HCommit(m, param) and publish the commitment
on blockchain. In the commitments, the messages m are the balance of the
accounts and the account addresses can be the indices in the commitments. To
publish transaction T , the user computes a proof πi = HProve(i,m[−i], aux),
proving the spending account is one of the committed messages in the com-
mitment. If more accounts are involved in a transaction, the user can aggre-
gate the individual proofs {πi}(i ∈ S) into a single one by calling Aggre-
gate(H, (C, V ), S,m[S], {πi : i ∈ S}) for efficient verification, where S is the
involved accounts. The (aggregated) proof is included as part of the transaction,
which can be validated with HVerify(C, i,mi, πi) or AggreVerify(F, C, S,m[S], Π̂).
Upon the transaction being proved and logged on the blockchain, the user
updates the balance in the corresponding positions in the commitment C with
HUpdate(C, V , S,m[S],m′[S], aux). For consortium blockchain, we assume there
are many organizations forming a consortium blockchain. For example, the
blockchain is for a financial union, which is composed of many banks. Each
bank has its own users and possesses their accounts. The bank sets the largest
number of users and generates a commitment with the current users’ accounts.
For the vacant positions, the messages are set to be zero on the exponent. When
a new user is registered, the corresponding position is updated with the infor-
mation of the new user. There is a block generator that manages the system and
produces new blocks by validating the transaction and logging valid blocks on
the chain. In this case, when a transaction is conducted, the bank coordinator
generates a transaction and computes a proof on behalf of the user. The block
generator can validate the transaction and produce the block.

The advantage to using the proposed MSVC in blockchain with the account-
based model is that it not only reduces the space size to store a large number of
accounts, but also it guarantees the privacy of the accounts. The commitments
leak no information of the accounts and the proofs only involve the related
accounts and get zero knowledge of the rest of the accounts for external observers.

6 Conclusion

Vector commitments are effective tools to reduce the storage space and to
enhance the efficiency, and hence, they have a great many potential applica-
tions. In this paper, we proposed a new primitive of MSVC with a concrete
construction based on [22] with all the desired properties a vector commitment
is supposed to enjoy. We formalize the system model and security model and
prove the security under the proposed model. We provided possible applica-
tions with MSVC in ZKS and stateless blockchain. The future work includes
generating vector commitments with hiding properties and aggregation across
commitments.
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Abstract. A complete sharding blockchain consists of many vital com-
ponents, the two most important of which are the intra-shard consensus
algorithm and the cross-shard transaction processing method. The lat-
ter usually requires a two-phase commit protocol, which usually relies on
the shard leaders to transfer critical messages among different shards. In
the process, a leader might behave maliciously. In response to possible
problems in cross-shard transaction processing, this paper makes the fol-
lowing contributions. First, this paper proposes a cross-shard transaction
censorship attack that may be launched by a shard leader. The leader
might behave honestly inside the shard while does not transfer key mes-
sages between the shards. Second, a cross-shard view-change protocol
is proposed to defend against the attack. When a shard leader behaves
maliciously between shards, a related shard’s members can run an intra-
shard consensus algorithm to generate a proof of the leader’s malicious
behavior and forward the proof to the corresponding shard’s members.
The shard members could launch an intra-shard view-change operation
to replace the malicious leader with a new one. Third, it is proved that
the proposed protocol satisfies consistency and liveness. The secure cross-
shard view-change protocol can be applied to most sharding blockchains
to ensure the safe and efficient execution of cross-shard transactions.

Keywords: Sharding blockchain · Cross-shard view-change ·
Transaction censorship · Liveness

1 Introduction

Blockchain technology combines cryptography, distributed systems, computer
science, and other technologies to establish a credible public ledger in an
untrusted environment [3,24]. The transparency, immutability, decentralization,
and privacy protection characteristics make blockchain have great application
potential in various fields, such as the Internet of Things [25,31], finance [10,27],
supply chain [5,30], etc. However, for blockchains to be more widely used, the
transaction throughput must be improved, and confirmation delay should be
decreased.
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Sharding blockchains combine sharding technology in the database field [7]
and blockchain to realize communication, computation, and storage shard-
ing [33]. In this way, sharding blockchains can achieve scalability of transaction
processing capabilities [4]. When the number of nodes in the network increases,
the transaction processing capabilities can be improved by increasing the number
of shards [28]. A complete sharding blockchain consists of multiple components,
such as shard member selection, randomness generation, intra-shard consensus
algorithm, cross-shard communication, shard reconfiguration, etc. [18]. Among
them, the intra-shard consensus algorithm and cross-shard communication are
the two most essential components.

Generally speaking, within each shard, a specific intra-shard consensus algo-
rithm [11] is in need to process different types of proposals. The intra-shard
consensus algorithm is represented by the Byzantine Fault Tolerance (BFT)-
style algorithms, which achieve strong consistency [15] in confirming transac-
tions1. Among different shards, a certain cross-shard communication method
is required to process cross-shard transactions [21], which refer to transactions
whose inputs are controlled by more than one shard. Cross-shard transactions
account for a large proportion in sharding blockchains.

Currently, most cross-shard transaction processing methods are based on the
two-phase commit (2PC) protocol [26]. The 2PC protocol includes a prepare
phase and a commit phase [8]. In the beginning, a client uploads a transac-
tion to all relevant shards. The shard where the transaction’s input (output)
is located is usually called the input (output) shard. In the prepare phase, all
input shards should run an intra-shard consensus algorithm to generate a proof
of whether the transaction input is available. We call the proof the availability
certificate (AC). Note that the input shard should lock the available input at
this time to prevent other transactions from spending the input (known as the
double-spending attacks [14]). The input shard then sends the generated AC to
each relevant shard, including input and output shards. In the commit phase,
after receiving all relevant AC of the transaction, a shard can determine whether
the transaction is valid. If all inputs for the transaction are available, then the
transaction is valid. If one or more transaction inputs are not available, then the
transaction is regarded as invalid. For valid transactions, the output shard runs
the intra-shard consensus algorithm to write it on the current shard’s blockchain.
The input shards also need to run a consensus algorithm to confirm the transac-
tion’s validity and spend the corresponding input. For invalid transactions, the
output shard rejects the transaction. Input shards need to unlock the previously
locked input for use in subsequent transactions.

In the 2PC protocol, the transfer of AC between shards is significant. In
general, a trusted coordinator is responsible for cross-shard communications [35].
In reality, the coordinator’s task cannot be undertaken by all shard members
since that would violate the principle of communication sharding and reduce the

1 Strong consistency means transactions are confirmed instantly, and the probability
of a fork in the blockchain is negligible.
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system’s scalability [2]. Therefore, the leader of each shard usually plays the role
of a coordinator. In this case, the shard leader may behave maliciously.

Cross-Shard Transaction Censorship Attack. When a certain input shard
leader regularly behaves inside the shard but behaves maliciously among shards,
the leader will not be reported and replaced. Specifically, after an input shard
leader receives a transaction, it runs the BFT algorithm to generate the input’s
AC, while it does not send the AC to the corresponding shards. We call this
behavior cross-shard transaction censorship. In this case, the malicious shard
leader regularly behaves in the shard, so the shard members are unaware of the
leader’s malicious behavior among shards and will not initiate a view-change
operation to replace the leader. Consequently, the malicious leader will be able to
eliminate adverse transactions and destroy the entire system’s liveness property.

Cross-Shard View-change Protocol. To defend against the cross-shard
transaction censorship attack, this paper designs a secure cross-shard view-
change protocol. The intuitive idea of the protocol is that when a shard leader
behaves maliciously among shards, i.e., not providing AC to other related shards,
members of a related shard can jointly generate a proof of the shard leader’s mali-
cious behavior and send the proof to the shard members corresponding to the
malicious leader. The shard members can further verify the proof’s validity and
initiate a view-change of the BFT algorithm to replace the malicious leader with
a new one. In the process of designing the protocol, we consider the worst possi-
ble case. Even if an adversary’s computational power is assumed to be limited,
the adversary might also have the possibility to control multiple or even all shard
leaders in the network simultaneously. In this case, we further add a proactive
view-change mechanism, allowing members in the shard to monitor and report
the current shard leader’s behavior continuously.

Consistency and Liveness. We prove that our cross-shard view-change pro-
tocol satisfies the consistency and liveness properties. More importantly, the
protocol can be applied to most sharding blockchain systems, as long as these
systems adopt a BFT-style algorithm and 2PC to process cross-shard transac-
tions.

2 System Model and Assumption

In this section, we introduce the notations, system models, and assumptions that
are used in this paper.

2.1 Notations

The notations that are useful in this paper are shown in Table 1. Note that we
assume there are m shards in the system, denoted as S1, · · · ,Sm, respectively.
Shard Sc and Sc′ where c �= c′ are used to represent two different shards. Note
that in our paper, the meaning of “shard” and “committee” is identical.
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Table 1. Notations

Symbol Definition

n The number of nodes that take part in the protocol

m The number of shards in the protocol

u The number of members in a single shard

f The number of malicious nodes in a shard

Δ The network delay parameter

ρ The computational power proportion held by an adversary

c The shard sequence number

Sc The c-th shard

Q The target honest member proportion in a shard

2.2 System Model

Message Transmission Model. We assume the message transmission model2

to be synchronous [9]. The messages sent by honest nodes are sure to arrive at
each other after Δ time, i.e., the time length of a round. An adversary is respon-
sible for message delivery, and he can delay or reorder honest nodes’ messages
while following the Δ time limit.

Adversary Model. An adversary controls a limited computational power pro-
portion ρ. The limitation is to ensure that in each shard, the honest member
fraction is greater than or equals a pre-defined safety threshold Q, which is deter-
mined by the intra-shard consensus algorithm adopted. The value of ρ should be
less than 1 − Q to guarantee the above condition since in the member selection
process, the adversary could increase his proportion taking advantage of its net-
work delay and other advantages. Besides, an adversary cannot forge any honest
node’s signature.

2.3 Assumptions

Honest Shards. We assume that the m shards in the protocol are honest in
every epoch. An honest shard means that the honest member proportion satisfies
a target safety threshold determined by the intra-shard consensus algorithm. For
example, if PBFT [6] is adopted as the intra-shard consensus algorithm, then the
honest member proportion should be greater than or equal to 2/3 (the condition
could also be denoted as u ≥ 3f + 1). Besides, sharding blockchains usually
proceed in epochs to defend against corruption attacks, and we assume the shard
reconfiguration process does not influence the honest shard assumption.

This assumption is reasonable since sharding blockchains could be decoupled
into multiple components, such as member selection, randomness generation,
intra-shard consensus, cross-shard communication, and shard reconfiguration.
2 Also referred to as network model in related work.
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Each component could be treated as an independent module and studied sep-
arately. This paper mainly concerns with the cross-shard communication com-
ponent, while the honest shard assumption is achieved in the member selection
process, which is specially studied in some papers [17,22]. Besides, this assump-
tion is also adopted in some related work, e.g., Chainspace [1].

The Intra-shard Consensus Algorithm Satisfies Strong Consistency
and Liveness. It is assumed that inside each shard, the algorithm adopted
satisfies strong consistency and liveness. Note that our protocol focuses on the
sharding blockchains with strong consistency properties. Namely, each shard
adopts a BFT-style algorithm as the intra-shard consensus. The BFT algorithm
must satisfy consistency and liveness to achieve system security. Consistency
means that honest members have an identical view of each shard’s blockchain.
Liveness denotes that a transaction submitted by a client is sure to be processed
after a certain time.

3 System Overview

This section introduces the intra-shard consensus algorithm that could be
adopted in sharding blockchains. Then we propose a cross-shard transaction cen-
sorship attack that could be launched by a malicious input shard leader. Besides,
the basic 2PC protocol is introduced, and a protocol overview is provided.

3.1 Intra-shard Consensus Algorithm

Since the cross-shard view-change protocol is designed on top of the intra-shard
consensus algorithm, we describe the process of the algorithm that might be
adopted by a shard first. The intra-shard consensus algorithm is a BFT-style
one, represented by the PBFT [6] algorithm, shown in Fig. 1.

Fig. 1. The process of the PBFT protocol.

As shown in the figure, the PBFT algorithm includes two essential compo-
nents. The first one is the normal operations, including the propose, prepare,
commit phases (we omit the reply phase in the figure). If the leader is honest
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and online, the protocol relies on the normal operations to process transactions
submitted by the clients. The leader first proposes the proposal to other repli-
cas. After receiving the proposal, a replica verifies if the proposal is valid and
constructs a vote message, then it broadcasts the message. We call this vote
round prepare-vote. After collecting 2f + 1 valid prepare-votes, a replica con-
structs a commit-vote message and broadcasts it. If a replica collects 2f +1 valid
commit-votes, it regards the proposal as committed and updates its local state.

If the leader is malicious or offline, replicas could utilize the view-change
mechanism to change the leader with a new one. The mechanism includes a
view-change phase and a new-view phase. The new leader is usually decided
in a round-robin manner. If a replica detects that the current leader behaves
maliciously or does not respond, it could construct a view-change message and
broadcasts it. The view-change message usually contains the local prepared state
and committed state of the replica, which helps the new leader to judge the
whole committed state. As a new leader, after collecting 2f + 1 (including its
own) valid view-change messages, it could construct a new-view message, which
is used to determine the whole committed state and prove that the new leader
has the right to substitute the old one. After receiving a valid new-view message,
a replica enters into view v + 1 from view v.

Note that some adaptions could be made to the BFT algorithm to improve
processing efficiency in sharding blockchains. As shown in Fig. 2, multi-signature
or threshold signature technology could be employed to cut down the intra-shard
and cross-shard communication complexity.

Fig. 2. The process of the BFT protocol using multi-signature.

The leader of a committee or shard could serve as a message collector and
multi-signature generator. Specifically, in the prepare-vote and commit-vote
phase, a replica sends its votes to the leader instead of broadcasting it to all repli-
cas. The leader is responsible for collecting votes. After receiving enough number
(2f + 1 in PBFT) of votes, the leader reconstructs a single signature using the
multi-signature or threshold signature technology. In this case, the intra-shard
communication complexity is reduced from O(n2) to O(n). The message com-
plexity for a commit certificate is decreased from O(n) to O(1). The commit
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certificate is useful to commit a cross-shard transaction. Note that we assume
the BFT algorithm to adopt a stable leader to improve transaction process-
ing efficiency. The view-change process is similar to that in PBFT. In addition
to PBFT, there are other algorithms that can be used, such as HotStuff [32],
SBFT [13], etc.

3.2 The Basic Two-Phase Commit Protocol

In a sharding blockchain, the cross-shard transaction processing method is sig-
nificant since cross-shard transactions account for the majority. A 2PC protocol
is in need to coordinate each participating shard and ensure the atomicity of
transaction inputs. The process of the basic 2PC protocol is shown in Fig. 3.

Fig. 3. The process of the basic 2PC protocol.

The 2PC protocol consists of two phases, i.e., the 2PC-prepare phase and the
2PC-commit phase. In the 2PC-prepare phase, a client first submits a transaction
tx to all related shards. We take the transaction shown in Fig. 4 for instance.
The transaction takes I1 and I2 as inputs, which are controlled by input shard
S1 and S2, respectively. The output O1 of tx belongs to the output shard S3. So
the client submits tx to members in S1, S2, and S3. After receiving tx, the input
shard leaders in S1 and S2 initiate a BFT algorithm regarding tx inside the shard.
For S1, the purpose of the BFT algorithm is to determine whether I1 is available
and provide an availability certificate (AC) to prove it. For a transaction, each
related input shard should generate an AC. The concrete information in an AC
should include a bit indicating whether the input controlled by the current shard
is available and the signatures to prove that AC is committed by the shard
members. When multi-signature or threshold signature technology is adopted,
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there could be only one single signature in an AC. Meanwhile, if the input of tx
is available in an input shard, the shard members should set the input state as
locked in the local unspent transaction output (UTXO) pool to prevent another
transaction from spending the same input. In Fig. 3, members in S1 should set
I1 as locked. After AC is generated, a shard leader should send the AC to all
corresponding shards related to tx, i.e., S2 and S3 in Fig. 3. The operations for
shard S2 are similar.

Fig. 4. An example of a cross-shard transaction in sharding blockchains

In the 2PC-commit phase, input and output shards perform different opera-
tions according to the received AC. As an input shard, the leader receives all AC
related to the transaction tx and could verify if tx’s inputs are all available. If
it is, tx could be regarded as valid, and the corresponding locked input should
be spent. If at least one input of tx is not available, then tx is invalid, and
the previously locked input should be unlocked. As shown in Fig. 3, the validity
verification of tx and the input state’s update should be determined by shard
members running the BFT algorithm together. As an output shard, after receiv-
ing all related AC, if all inputs are available, the transaction could be committed
by the BFT algorithm and written into the shard blockchain. Otherwise, tx is
treated as invalid and rejected.

3.3 Cross-Shard Transaction Censorship

Cross-Shard Transaction Censorship. Note that there needs to be a coordi-
nator to transfer key information among related shards in the cross-shard com-
munication process. A sharding blockchain cannot require all shard members to
transfer AC to other shards since this violates the principle of communication
sharding, increasing the communication complexity. So shard leaders are usu-
ally regarded as coordinators who transfer AC. However, when a shard leader
behaves honestly inside a shard while does not transfer corresponding AC to other
related shards, a valid cross-shard transaction will not be committed. We call
this malicious behavior as cross-shard transaction censorship. In current shard-
ing blockchains, there is no mechanism for related shards to report this malicious
behavior and replace the leader, destroying the system’s liveness. Therefore, we
design a cross-shard view-change protocol to substitute the leader who behaves
maliciously in the process of cross-shard communication.
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3.4 Protocol Overview

The intuitive idea of the cross-shard view-change protocol is to allow a shard
Sc to generate a malicious behavior proof of the leader in shard Sc′ and send it
to the members of Sc′ . The members of Sc′ utilize the BFT algorithm’s view-
change mechanism inside the shard to replace the malicious leader. The protocol
overview is shown in Fig. 5.

Fig. 5. The process of the cross-shard view-change protocol.

The cross-shard view-change protocol is built on top of the 2PC protocol and
the BFT algorithm, including the csvc-propose, ask-for-response, BFT-commit,
csvc-CC-transfer, and view-change phases. In the 2PC-prepare phase, the client
first submits a transaction tx to all related shards. Then all input shards should
run the BFT algorithm to generate the availability certificates ACs for tx and
send it to all related input and output shards. The time for the output shard
leader to receive the AC is Tbft + Δ, where Tbft denotes the liveness parameter
of the underlying BFT algorithm. In this process, if one input shard leader does
not transfer the AC to other shards after Tbft +Δ, the output shard leader could
construct a csvc-propose message and broadcast it among the current shard. The
shard members then send a request to the shard leader in S1. If a member does
not receive a response after a certain time, it votes in the BFT algorithm. After
two rounds of prepare-vote and commit-vote, the leader in S3 could generate a
cross-shard view-change commit certificate (csvc-CC) using the collected votes.
Then the leader sends it to the members in S1. The members in S1 verify if
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csvc-CC is valid and launch an intra-shard view-change operation inside the
shard to replace the malicious leader.

Note that during the protocol’s operations, there might be such a situation.
Although the member proportion controlled by the adversary cannot exceed
a specific limit in a shard, the adversary may control all shards’ leaders by
chance. In this case, if all leaders behave maliciously, the cross-shard transaction
censorship will not be discovered and handled by honest members. Consequently,
we need honest members in each shard to monitor and report the leader’s possible
malicious behavior. Specifically, we add a proactive view-change mechanism to
the protocol operation in each shard.

In the beginning, we require a client to upload transactions to at least f + 1
members in each shard to ensure that at least one honest member receives the
transaction. This requirement is to prevent the transaction censorship attack
and guarantee the liveness of the protocol.

For output shards, after the transaction is uploaded for a period of time, a
shard member should receive a proposal (valid transaction) or a rejection certifi-
cate (invalid transaction), or a csvs-propose message from the leader regarding
the transaction. The waiting time here should be Tbft + 2Δ, where one Δ is the
time required to transfer AC between shards, and the other Δ is the time for
the leader to broadcast the proposal. If, after Tbft + 2Δ time, the above pro-
posal from the leader is still not received, then honest members will initiate a
view-change operation.

As an input shard, there are two cases. In the 2PC-prepare phase, if a mem-
ber does not receive the leader’s proposal on the transaction after receiving the
transaction Δ time, then it initiates a view-change operation. In the 2PC-commit
phase, if after Tbft+2Δ time, a member does not receive a proposal to change the
transaction input state (unlock or spend the input), then a view-change oper-
ation is also triggered. In this way, the adversary’s intra-shard and cross-shard
transaction censorship will be discovered and reported, ensuring the protocol’s
liveness property.

4 Concrete Protocol

In this section, we describe our secure cross-shard view-change protocol in detail.
The specific operations of each phase are given.

As shown in Protocol 1, Fig. 5, and Fig. 6, the cross-shard view-change pro-
tocol includes the following phases.

– 2PC-prepare: This phase belongs to the first phase of the normal 2PC, i.e.,
the 2PC-prepare phase. There could be a trigger condition for a cross-shard
view-change operation in this phase. In the beginning, a client first uploads
a transaction tx to all relevant shards’ at least f + 1 members, namely input
shard S1, input shard S2, and output shard S3 in Fig. 5. As an input shard,
members should run the BFT algorithm to generate a transaction availability
certificate AC and send it to each relevant input and output shard. AC con-
tains the information indicating if tx’s input is available and corresponding



382 Y. Liu et al.

Protocol 1: Cross-Shard View-Change
1 � as a shard leader Lc in shard Sc:
2 if after tx is uploaded for Tbft + Δ time, AC for tx is still not received from an

input shard leader Lc′ of Sc′ , then:
3 construct a cross-shard view-change message mcsvc := (“Sc-Sc′ -csvc”, Lc′ , tx);
4 sign mcsvc and broadcast 〈mcsvc〉 as a proposal in Sc. // (csvc-propose)
5 on receiving 2f + 1 valid votes 〈mvote〉:
6 construct a cross-shard view-change commit certificate csvc-CC using 2f + 1

valid votes;
7 send csvc-CC to f + 1 members in shard Sc′ . // (csvc-CC-transfer)
8 � as a shard member in Sc:
9 on receiving a valid cross-shard view-change message 〈mcsvc〉:

10 send a request to Lc′ in Sc′ for AC; // (ask-for-response)
11 if 2Δ later, AC is still not received from Lc′ , then:
12 construct a vote message mvote, sign it, and send 〈mvote〉 to the leader Lc

in the prepare-vote and commit-vote round, respectively; // (BFT-commit)
13 else, i.e., receive a valid AC from Lc′ : broadcast AC among shard Sc and

continue the 2PC protocol.
14 on receiving a tx:
15 if shard Sc is an input shard of tx, then:
16 if after tx is uploaded for Δ time, the prepare proposal for tx from Lc is

still not received, then launch a view-change operation; // (proactive
view-change)

17 if after tx is uploaded for Tbft + 2Δ time, the commit proposal or mcsvc is
still not received from Lc, then launch a view-change operation; // (proactive
view-change)

18 if shard Sc is an output shard of tx, then:
19 if after tx is uploaded for Tbft + 2Δ time, the commit proposal or rejection

proof is still not received from Lc, then launch a view-change operation; //
(proactive view-change)

20 � as a shard member in Sc′ :
21 on receiving a csvc-CC from Lc:
22 if csvc-CC is valid, then launch a view-change operation. // (view-change)
23 � as a new leader in Sc′ :
24 on receiving 2f + 1 valid view-change messages mvc:
25 construct a new-view message mnv and broadcast it in the current shard.

signatures as a proof. After Tbft + Δ time, each relevant shard should receive
all AC for tx. At this time, as an honest leader of the output shard, if the AC of
a certain input shard (shard S1 in Fig. 5) is still not received, the cross-shard
view-change operation is triggered.

– csvc-propose: As an honest output shard leader Lc of shard Sc (S3 in
Fig. 5), if the AC from an input shard Sc′ (S1 in Fig. 5) is not received after
Tbft + Δ time, Lc constructs a cross-shard view-change message mcsvc :=
(“Sc-Sc′ -csvc”, Lc′ , tx) and signs the message. The notation 〈mcsvc〉 is used
to denote the signed message. The first element of the message, “Sc-Sc′ -csvc”,
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indicates that shard Sc initiates a cross-shard view-change operation to shard
Sc′ . The second element, Lc′ , describes the leader who is malicious. More-
over, the third element, tx, shows that this view-change operation is about
the transaction tx. 〈mcsvc〉 is broadcast among the current shard Sc.
As an honest member of the output shard, if after Tbft + 2Δ time, it does
not receive a proposal containing tx or a cross-shard view-change message
from the current shard leader Lc, then to prevent the leader Lc from being
malicious, the member initiates the intra-shard view-change operation of BFT
inside the current shard Sc.

– asf-for-response: As a member of shard Sc, after receiving a valid mcsvc

message, it sends a request for AC to the leader Lc′ in shard Sc′ . After 2Δ
time, if AC is still not received for Lc′ , then Lc′ could be regarded as a
malicious leader, and the member should vote to support the cross-shard
view-change operation. Otherwise, if the leader lc′ sends the corresponding
valid AC regarding tx, then the member broadcasts the AC in the current
shard Sc and continues the regular 2PC protocol to process tx.

– BFT-commit: This phase is extracted from the BFT algorithm, namely
the prepare and commit phase. If a member in Sc does not receive a valid
response from Lc′ within 2Δ time, the member votes as in the BFT algorithm.
To commit the proposal, two rounds of votes are in need, namely prepare-vote
and commit-vote.
After two rounds of votes, the shard leader Lc is able to collect 2f + 1
valid votes 〈mvote〉 and construct a cross-shard view-change commit certifi-
cate csvc-CC using the collected votes. Note that if PBFT is used as the
intra-shard consensus algorithm, then csvc-CC contains 2f + 1 signatures. If
multi-signature or threshold signature technology is adopted, then csvc-CC is
a single signature.

– csvc-CC-transfer: After csvc-CC is generated by the shard leader Lc in
shard Sc, Lc sends csvc-CC to f + 1 members in shard Sc′ . As a member in
shard Sc′ , it should first verify if the cross-shard view-change certificate is
valid by verifying the attached signature. Since the verification process takes
the public keys as inputs, each member should maintain a public key list
(or a group public key if multi-signature is adopted) of other shards. If the
verification passes, which means that the current leader Lc′ is a malicious
one who does not provide AC to other shards, then the members in shard Sc′

launch a view-change operation to substitute the old leader Lc′ with a new
one.

– view-change: This phase inherits from the original view-change phase of
the BFT algorithm. If PBFT is adopted as the intra-shard consensus, then
members execute the view-change-ack phase first. Note that the csvc-CC sent
by Lc serves as a certificate to prove that the current leader Lc′ behaves
maliciously, so members just send their local states to the new leader in the
current shard, which is decided by a round-robin manner. The new leader
collects 2f + 1 (including its own) valid view-change-ack messages and con-
structs a new-view message. Then the new leader broadcasts the new-view
message, and the shard Sc′ enters into a new view.
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– proactive view-change: This phase is added in Protocol 1 and shown in
Fig. 6. The basic view-change mechanism of the BFT algorithm could be used
in the protocol to prevent a malicious leader from transaction censorship in
both the 2PC-prepare phase and the 2PC-commit phase. In the 2PC-prepare
phase, if an input shard member does not receive a proposal regarding the
transaction tx from the current leader after tx is submitted by the client for
Δ time, then the member launches a view-change operation. Similarly, in the
2PC-commit phase, if after tx is uploaded by the client for Tbft + 2Δ time in
an input shard, the proposal to spend or unlock tx’s input is still not received
from the current leader, then an honest member should initiate a view-change
operation. In an output shard, after tx is uploaded for Tbft + 2Δ time, if a
member does not receive a proposal or rejection proof regarding tx, then the
member launches a view-change operation.

Fig. 6. Intra-shard view-change operation in the 2PC protocol.

5 Security Analysis

In this section, we give the security analysis of the secure cross-shard view-change
protocol. We give the analysis from the aspects of consistency and liveness.

Consistency. Consistency is used to describe the state or conditions that the
logs output by honest nodes should meet. The Bitcoin backbone protocol [12]
proposes an analysis of the consistency and liveness properties that a public
ledger should satisfy. In a sharding blockchain, the meaning of consistency should
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have more meaning and extension [19] since the system contains multiple parallel
blockchains instead of a single chain. We give the description of consistency in
Theorem 1 as follows.

Theorem 1 (Consistency). For all m shards in a sharding blockchain, the
following conditions hold:

– Common-prefix in a shard. For any two honest members in any shard Sc

where c ∈ {1, · · · ,m}, if they output LOGc and LOG′
c, respectively, then

LOGc � LOG′
c or LOG′

c � LOGc must holds3.
– No conflict among shards. Assume that there are any two honest members

in any two different shards Sc and Sc′ , and they output LOGc and LOGc′ ,
respectively. For any two transactions tx ∈ LOGc and tx′ ∈ LOGc′ where
tx �= tx′, it must hold that tx ∩ tx′ = ∅, i.e., tx and tx′ does not spend the
same input.

Proof (Proof of Theorem 1). The consistency property follows from the BFT
algorithm’s consistency and the 2PC mechanism. In a single shard, each block
is committed by the BFT algorithm run by all shard members. It is assumed
that each shard is honest, i.e., the honest member proportion is greater than or
equals 2/3 (or 1/2). As a result, the correct execution of the BFT algorithm is
ensured, so the consistency and liveness properties are satisfied. For any honest
member, each block is committed after two rounds of voting by members. By
the consistency property of the BFT algorithm, each honest member gets an
identical view of the current shard’s blockchain.

For two different shards, we argue that there is no conflict in their corre-
sponding shards. For an input I of a transaction tx, if it is available, then the
input shard generates an availability certificate AC through the BFT algorithm.
Afterward, the input shard leader sends the AC to all corresponding shards. Note
that the AC contains 2f + 1 signatures or one single multi-signature, while an
adversary cannot forge such a signature. So an adversary cannot forge an AC,
and all related shards get the same AC and have an identical view of the input
state. The corresponding available input should be locked in the input shard
member’s UTXO pool. At this time, if there is another transaction tx′ �= tx that
takes I as input is submitted, the input shard will generate an AC indicating
that I is unavailable. So tx′ will not be committed. For tx, if all its inputs are
available, then it is regarded as valid in all related input and output shards
since the AC is unforgeable. The cross-shard view-change protocol will not affect
the consistency property as it is built on top of the 2PC protocol. Therefore,
common-prefix in a shard and no conflict among shards hold in the protocol.

Liveness. The liveness property is about the transaction processing in the pro-
tocol. It should be ensured that the transactions submitted by the clients will
be processed after a certain time, where valid transactions will be accepted by
related shards, while invalid ones will be rejected. In a sharding blockchain,
3 The notation “�” means “is a prefix of”.
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a transaction will be written into the output shard’s blockchain, and the corre-
sponding inputs will be spent in related input shards. We argue that the addition
of the cross-shard view-change protocol ensures and enhances the liveness prop-
erty of a sharding blockchain. The liveness property is described in Theorem 2
in the following.

Theorem 2 (Liveness). For any valid transaction tx submitted by the clients,
after a certain time, tx must appear in its output shard’s blockchain, and the
inputs of tx must be spent in the corresponding input shards. The transaction
confirmation parameter Tliveness satisfies the following condition:

Tliveness = 2Tbft + Δ = O(Δ) (1)

Proof (Proof of Theorem 2). For a valid transaction tx, we first assume that all
related shards’ leaders are honest. The input shard leaders propose the inputs of
tx in the BFT algorithm to generate ACs for the inputs. Then shard leaders send
the AC to related shards. In an output shard, after receiving all related AC of tx,
the leader proposes tx in BFT as a valid transaction, and tx will be committed
and written into the block. In an input shard, the leader will propose tx as a
valid transaction with the received AC as proofs. The input shard members will
commit tx through BFT and then remove the corresponding input of tx from
their local UTXO pool. Note that tx will not be written into the input shard’s
blockchain to reduce the storage burden.

The liveness parameter Tliveness is related to the BFT algorithm parameter.
For a transaction, it takes Tbft time for an input shard to generate the AC and
Δ time to transfer AC to related shards. In the 2PC-commit phase, it also costs
Tbft time for the output shard to commit the transaction. So Tliveness could be
calculated as 2Tbft + Δ in the optimistic case where related leaders are honest.
Tbft is also related to Δ, so Tliveness equals O(Δ).

When an input shard leader is malicious, he could censor the transaction in
two ways. First, he might not propose tx inside the input shard after receiving
tx from the client in the 2PC-prepare and 2PC-commit phases. In this case,
the proactive view-change mechanism will take effect. The honest input shard
members will launch a view-change operation if they do not receive a 2PC-
prepare proposal regarding tx after Δ time or a 2PC-commit proposal after
Tbft+2Δ time. Second, the input shard leader might attempt to execute a cross-
shard transaction censorship attack. He proposes tx inside the shard normally
while not sending AC to related shards. In this case, if the output shard leader
is honest, then he will launch a cross-shard view-change operation after Tbft +
Δ time. After the csvc-propose, asf-for-response, and BFT-commit phases as
described in Protocol 1, the output shard leader is able to construct a cross-
shard view-change commit certificate csvc-CC and sends it to the input shard
members. The input shard members could verify the validity of csvc-CC and
launch a view-change operation inside the shard. If the output shard leader is
malicious, then the protocol relies on the proactive view-change mechanism of
the output shard to change the leader. The output shard members will launch
an intra-shard view-change operation if, after tx is submitted for Tbft +2Δ time,
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the proposal regarding tx or a cross-shard view change message is not received
from the leader. In this way, a leader is sure to be substituted by a new one if
it behaves maliciously. By the view-change mechanism of the underlying BFT
algorithm, an honest member will finally act as a leader and process transactions
normally. Therefore, the liveness property holds for the protocol.

6 Related Work

ELASTICO [23] first combines blockchain with sharding technology, while it
cannot process cross-shard transactions. Omniledger [16] utilizes the 2PC mech-
anism to process cross-shard transactions. However, the availability certificate is
generated by a leader instead of a shard running BFT, so it is possible for a leader
to behave maliciously. A leader might refuse to provide a proof-of-acceptance or
provide a wrong one. Chainspace [29] adopts the 2PC method, while it does
not consider the case where cross-shard transaction censorship happens. Rapid-
Chain [34] designs a unique way to process cross-shard transactions. It splits
such a transaction into multiple single-input single-output transactions to com-
mit them sequentially. As a result, the number of transactions in the network
is multiplied, increasing the computation and storage burden of nodes. Monox-
ide [29] adopts the account model and relay transactions to process cross-zone
transactions. In [19,20], a cross-shard transaction batch processing method is
proposed to handle multiple transactions in a time. Still, the cross-shard trans-
action censorship attack is not considered in their work.

7 Discussion

The cross-shard view-change protocol assumes a synchronous network for shard
members to monitor and report shard leaders’ possible malicious behaviors. In
the partially synchronous network model, designing a secure solution to solve
the cross-shard transaction censorship problem is an open problem to be studied
in the future. Besides, the proposed solution can be regarded as a composable
module, which can be combined with many existing BFT algorithms. The specific
combined algorithm and details deserve to be considered and further designed.

8 Conclusion

This paper proposes a secure cross-shard view-change protocol to defend against
a malicious leader from launching a cross-shard transaction censorship attack.
The protocol includes several key phases and is proved to satisfy the consistency
and liveness properties. The proposed secure cross-shard view-change protocol
could be applied to most sharding blockchains that use the BFT-style algorithm
as intra-shard consensus.
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Abstract. Blockchain is a distributed ledger in which a database is dis-
tributed across numerous users. Blockchain technologies have recently
come to the forefront of the research and industrial communities as they
bring potential benefits for many industries. A ring signature is a spe-
cial type of digital signature which has been widely adopted to pro-
tect anonymity and privacy in many cryptocurrencies and blockchain
applications. Especially, a unique ring signature offers a special feature
enabling the ability to determine whether a signer produces two different
ring signatures of the same message with respect to the same ring. The
signature size of the previous constructions of unique ring signature is
large and grows linearly/sublinearly with the number of ring members.
In this paper, we propose a more efficient unique ring signature with
logarithmic size. We prove that our scheme is secure under the Deci-
sional Diffie-Hellman and Discrete Logarithm Assumptions, and provide
an implementation with a comparison with previous constructions.

Keywords: Unique ring signature · Anonymity · Blockchain ·
One-out-of-many proof · Fiat-Shamir transform

1 Introduction

A blockchain is a distributed database that maintains a continuously growing
list of records. Blockchain was invented by Satoshi Nakamoto [16] in 2008 as a
core component of the cryptocurrency Bitcoin. Serving as a public transaction
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ledger, it allows to remove the need of trusted authorities in transferring bitcoins
between mutually untrusted users, hence solves the double-spending problem for
the first time. Since then, blockchain technology has been widely used in many
other cryptocurrencies [5,21,24].

Two of the most important and attractive features of blockchain are to ensure
anonymity and to protect the privacy of users. Ring signatures are powerful
cryptographic protocols that can provide anonymity and protect privacy. Ring
signature, introduced by Rivest, Shamir and Tauman in 2001 [20], is a type of
digital signature that allows members of a group to sign messages on behalf of
the group without revealing their identities. In other words, the verifier only
knows that the signer is one of the users in the group, yet he cannot tell who
actually signed the message, and hence, the signer’s anonymity is provided. The
group, called the ring, can be formed dynamically by the signer and there is no
need of collaboration from other members or trusted authorities.

Linkable ring signature, introduced by Liu et al. [13,14], is a variant of ring
signature, in which the identity of signers remains anonymous, but with the addi-
tional property that any pair of signatures produced by the same user, whether
signed on the same or different messages and with respect to the same or different
rings, can be efficiently verified by public third parties that the two signatures
were produced by the same signer, without learning who that signer is. Link-
able ring signatures are suitable in many different practical applications, such as
privacy-preserving digital currency (Monero) [19], e-voting [23], and cloud data
storage security [11], etc. A closely related type of digital signature is the group
signature of Chaum and van Heyst [4] in which a group manager is responsible
for setting up a group of users, for which each member signs messages on behalf
of the whole group without revealing their individual identity. The group man-
ager holds a master key with the ability to reveal the signer of any signature
generated by a group member in the past.

Traceable ring signature was first introduced by Fujisaki and Suzuki [8] as
a variant of linkable ring signature. In traceable ring signatures, messages are
also signed with respect to an issue. If a user signs two different messages with
respect to the same ring and the same issue, then his identity will be revealed.
Examples of traceable ring signature schemes include [7,8].

Unique ring signature, introduced by Franklin and Zhang [6], is another vari-
ant of linkable ring signature which allows verifiers to easily decide whether the
same message has been signed by the same ring member. More precisely, for each
triple of signer, message and ring, valid unique ring signatures on this triple must
share a large common part. With this special feature, unique ring signatures have
been used to design schemes for mixing contracts in the scripting languages of
cryptocurrencies such as Rootstock of Bitcoin [10], and Solidity of Ethereum [3],
and are superior to linkable ring signatures in some blockchain applications [15].
The idea to create unique ring signature [6] is to combine the features of link-
able and traceable ring signatures. In fact, one scheme of [6] was obtained from
a traceable ring signature of Fujisaki [7]. In Table 1, we make a comparison table
for Unique Ring Signature and Linkable/Traceable Ring Signature.
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Table 1. Comparison table for Unique Ring Signature, Linkable Ring Signature and
Traceable Ring Signature.

Types of Ring Signatures Linkable Traceable Unique

Sign w.r.t. an issue? No Yes No

Can reveal signer’s

identity?

No Yes, if user signed 2

different messages w.r.t.

the same ring and the

same issue

No

Check whether or not two

signatures come from the

same signer w.r.t the

same . . . ?

none message, ring, issue message, ring

Must contain a tag? No No Yes, the unique identifier in [6]

Need an algorithm to

check the corresponding

property?

Yes, Link in [14] Yes, Trace in [8] No, directly comparing the tags

With the drastically increasing interest in blockchain systems in recent years,
it is desirable to improve the performance of ring signature schemes. Improving
the performance of ring signatures by reducing their size and their signing and
verifying time has been a very active research direction. The current size records
are due to signatures of logarithmic size in terms of the number of users [2,9,12,
18,25] which are constructed based on several variants of the one-out-of-many
proof technique of Groth and Kohlweiss [9]. In particular, one might ask for
new constructions of unique ring signatures with smaller signature sizes. The
previously known schemes of Franklin and Zhang in [6] and the ones studied by
Mercer in [15] all have signature sizes growing linearly or sublinearly with the
number of members in rings. Our goal in this paper is to construct a new unique
ring signature scheme with smaller signature size than those in [6] and [15].

Our Contributions. We construct a unique ring signature scheme whose signa-
ture has logarithmic size. That is the signature size of our scheme is O(λ log N)
where λ is the security parameter and N is the number of members in the ring,
versus O(λN) in the scheme of Franklin and Zhang [6]. To the best of our knowl-
edge, our scheme has the smallest size among all known unique ring signatures.
With the help of the multi-exponentiation technique [1], our scheme also has
competitive asymptotic running time compared to the one of [6]. More precisely,
as pointed out in [9], the most costly steps in our scheme are steps (6) and (7) in
the Verification algorithm of the scheme in Fig. 1, whose running time is domi-
nated by not much higher than O(N/ log N) number of single exponentiations.
The Verification algorithm of [6] on the other hand clearly requires 2N number
of single exponentiations in group G. We also prove the security of our scheme
under the Decisional Diffie-Hellman and Discrete Logarithm Assumptions in the
Random Oracle Model.

Our idea is to build our scheme upon the one-out-of-many proof of Groth and
Kohlweiss in [9] and to use the pseudo-random function studied by Naor, Pinkas
and Reingold in [17] to generate tag. The challenge is how to suitably add the tag
into the sigma protocol of [9] in order to maintain its security properties. This is
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exactly the problem that we will solve in this paper, and hence our contribution;
see Sect. 3 for the details.

We also implement our scheme and compare it with the one by Franklin and
Zhang [6] in Sect. 4. Mercer [15] has implemented the scheme of Franklin and
Zhang on elliptic curves with suitable modifications, and observed an improve-
ment in performance. We expect that it is also possible to implement our unique
ring signature on elliptic curves which will lead to better performance of our
scheme.

2 Preliminaries

2.1 Unique Ring Signature

In this section, we recall the definition and security requirements of a unique
ring signature scheme as introduced by Franklin and Zhang in [6].

A ring signature is a tuple of four algorithms RS = (Setup, KeyGen, Sign,
Verify):

– Setup(1λ) is a probabilistic polynomial time (PPT) algorithm that takes as
input the security parameter λ and outputs public parameters pp.

– KeyGen(pp) is a PPT algorithm that takes as input public parameters pp and
generates a private signing key sk and a public verification key pk for each
user.

– Sign(pp,M,R, sk) is a PPT algorithm that outputs a signature σ on the
message M with respect to the ring R = (pk1, pk2, . . . , pkN ) and the private
key sk of a member of R.

– Verify(pp,M,R, σ) is a deterministic polynomial time algorithm that on input
public parameters pp, a message M , a ring R and a ring signature σ, returns
1 if the signature σ is valid, and 0 otherwise.

Security requirements of a unique ring signature RS consist of 4 properties [6]:
correctness, unforgeability, restricted anonymity and uniqueness, as explained
below.

Definition 1 (Correctness). For any pp ← Setup(1λ), any integer N , i =
1, 2, . . . , N : (pki, ski) ← KeyGen(pp), and R = {pk1, pk2, . . . , pkN}, for any
message M and any member (pkj , skj) of R, it holds that

Verify(pp,M,R,Sign(pp,M,R, skj)) = 1.

Furthermore, a unique ring signature scheme is also required to satisfy the
non-colliding property:

Definition 2 (Non-colliding property). For all i �= j, the probability

Pr[σi = (τi, πi) ← Sign(M,R, ski), σj = (τj , πj) ← Sign(M,R, skj) : τi = τj ]

is negligible in λ.
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Fixing a set of users {(pki, ski)}N
i=1 and a ring S = {pki}N

i=1 for reference,
we need the following notions to describe security requirements [6]:

– Osk(i) is the user secret key oracle, which an adversary can call to get the
secret key ski of some member i in S.

– OSign(i, R,M) is the ring signature oracle, which an adversary can call to
get the signature of any honest member (pki, ski), pki ∈ S on any message M
with respect to any ring R such that pki ∈ R. Note that other members of R
are not necessary members of S.

– Sig denotes a set of triples (M,R, σ) of message, ring and signature queried
via OSign.

– SigR,M is the set of users with which the adversary queried to OSign(·, R,M).

–
−→
SigR, M denotes a vector (SigR,M )R∈R,M∈M of sets of users for a set R of
rings and a set M of messages.

– Corrupt denotes the set of users whose secret keys are given to the adversary.

Definition 3 (Anonymity). Anonymity property of a unique ring signature
means that it is infeasible for any adversary to determine the real signer of a
given valid ring signature. Formally, a unique ring signature scheme is anony-
mous if for any polynomial-time adversary A, the advantage Advanonymity

RS,N (A)
of A in the following anonymity experiment Expanonymity

RS,N (A) is negligible.

Expanonymity
RS,N (A) :

– Setup. Given the security parameter λ, the challenger C runs the algo-
rithm Setup(1λ) to get public parameters pp. For each user i = 1, 2, . . . , N,
the challenger runs the algorithm KeyGen(pp) to get the public key and
secret key (pki, ski) ← KeyGen(pp) for i. Let S = {pki}N

i=1. Then C sends
pp and the ring S to the adversary A. The challenger also sets Corrupt = ∅
and

−→
SigR, M = ∅.

– Query 1. A makes polynomially many number of queries to the oracles
Osk and OSign, and C responses it in the way mentioned above, and at
the same time updates the sets Corrupt and

−→
SigR, M.

– Challenge. A chooses indices i0, i1, a message M and a ring R such that
i0, i1 /∈ Corrupt and i0, i1 /∈ SigR,M , and sends the tuple (i0, i1,M,R) to
the challenger. Then C randomly chooses a bit b ← {0, 1} and runs the
signing algorithm to obtain σ ← Sign(M,R, skib). The challenger returns
the signature σ to the adversary.

– Query 2. Same as Query 1, except that A is not allowed to query to
Osk(i0), Osk(i1) and signing queries OSign(i0,M,R), OSign(i1,M,R).

– Guess. The adversary A outputs a guess b′ for b. The challenger returns
1 if b′ = b, and 0 otherwise.
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The advantage of A is

Advanonymity
RS,N (A) = 2

∣
∣
∣Pr[Expanonymity

RS,N (A) = 1] − 1/2
∣
∣
∣ .

Definition 4 (Unforgeability). Unforgeability property of a unique ring
signature ensures that it is infeasible for a person who does not possess
secret key of any member in a ring to produce a valid signature on that
ring. Formally, a unique ring signature scheme is unforgeable under adap-
tive chosen-massage attacks if for any polynomial-time adversary A, the
advantage Advunforgeability

RS,N (A) of A in the following unforgeability experiment
Expunforgeability

RS,N (A) is negligible.

Expunforgeability
RS,N (A) :

– Setup. Same as in Expanonymity
RS,N (A).

– Query. Same as Query 1 of Expanonymity
RS,N (A).

– Forge. The adversary A outputs a ring signature σ on a message M and
a ring R, where R does not contain corrupted users: R ⊂ S\Corrupt, and
the adversary A never made queries of the form (·, R,M) to the oracle
OSign. The challenger returns 1 if Verify(M,R, σ) = 1; and returns 0
otherwise.

The advantage of A is

Advunforgeability
RS,N (A) = Pr[Expunforgeability

RS,N (A) = 1].

Definition 5 (Uniqueness). Uniqueness property of a unique ring signature
scheme means that if a signer produces two different valid signatures on the same
message and with respect to the same ring, then the two signatures must share
a large common component. Formally, a unique ring signature scheme is unique
if it satisfies the non-colliding property and for any polynomial-time adversary
A, the advantage Advuniqueness

RS,N (A) of A in the following uniqueness experiment
Expuniqueness

RS,N (A) is negligible.

Advuniqueness
RS,N (A) :

– Setup. Same as in Expanonymity
RS,N (A).

– Query. Same as Query 1 of Expanonymity
RS,N (A).

– Forge. The adversary A outputs
∣
∣Corrupt ∪ SigS,M

∣
∣ + 1 number of dif-

ferent valid signatures σ1, . . . , σ|Corrupt∪ SigS,M |+1 on the same message
M with respect to the ring S. The challenger parses the signatures as
σj = (τj , πj), and checks whether the tags τk, k = 1, 2, . . . , |Corrupt ∪
SigS,M | + 1, are pairwise distinct. If this is the case, then the challenger
returns 1; otherwise returns 0.

The advantage of A is

Advuniqueness
RS,N (A) = Pr[Expuniqueness

RS,N (A) = 1].
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Definition 6 (Unique ring signature). A ring signature RS = (Setup,
KeyGen, Sign,Verify) is a secure unique ring signature scheme if it satisfies all
four properties of correctness, unforgeability, anonymity, uniqueness and non-
colliding property.

2.2 Mathematical Assumptions

The security of our unique ring signature scheme in Fig. 1 is based on the Deci-
sional Diffie-Hellman and Discrete Logarithm Assumptions.

Definition 7 (Decisional Diffie–Hellman(DDH) problem). An instance
of the problem consisting of a cyclic group G of prime order q with a generator
g. The adversary A is given three elements a, b, c, where a = gx, b = gy, for
unknowns x, y and c = gz for random z ← Zq with probability 1/2, and c = gxy

with probability 1/2. Then A has to guess whether z = xy.
The DDH assumption on a cyclic group G states that the advantage

AdvDDH
G

(A) is negligible in the security parameter for any probabilistic poly-
nomial time adversary A.

Recall that the advantage of A against the DDH problem is

AdvDDH
G

(A) = 2 |Pr[A guesses correctly] − 1/2| .
Definition 8 (Discrete Logarithm(DL) Problem). An instance of the
problem consisting of a cyclic group G of prime order q with a generator g.
The adversary A is given two elements g, h, where h = gx for random x ← Zq.
Then A has to guess the value of x.

The DL assumption on a cyclic group G states that the advantage AdvDL
G

(A)
is negligible in the security parameter for any probabilistic polynomial time adver-
sary A.

The advantage of A against the DL problem is

AdvDL
G

(A) = Pr[A guesses correctly].

It is a standard fact that in any cyclic group G, the DDH problem is no harder
than the DL problem.

3 A Unique Ring Signature Scheme Based on the
Decisional Diffie-Hellman and Discrete Logarithm
Assumptions

In order to construct our unique ring signature scheme in Fig. 1, we need two
main ingredients:

– The one-out-of-many-proof of Groth-Kohlweiss in [9] whose special soundness
and special honest verifier zero-knowledge properties are based on the DL
assumption.
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– For generating tag in our unique ring signature, we use the pseudo-random
function studied by Naor, Pinkas and Reingold in [17] who proved its security
in the Random Oracle Model under the DDH assumption.

More precisely, our starting point is the one-out-of-many-proof technique of
Groth and Kohlweiss in [9] which provides Σ-protocols having logarithmic-sized
transcripts as zero-knowledge proof of certain relations, and subsequently gives
secure ring signatures of logarithmic size in the Random Oracle Model in [9] after
applying the Fiat-Shamir transform. We suitably modify a concrete instantiation
with the Pedersen commitment of the Σ-protocol in [9] in order to inject the
tag of the form τ = H(M‖R)ski , which is obtained from the pseudo-random
function studied by Naor, Pinkas and Reingold in [17], into the transcript in such
a way that the resulting new Σ-protocol still maintains the soundness and zero-
knowledge properties. Our ring signature scheme is then obtained via the Fiat-
Shamir transform. Indeed, it is possible to verify that the underlying Σ-protocol
of our scheme in Fig. 1 satisfies all the properties of perfect completeness, n-
special soundness and special honest verifier zero-knowledge as the one in [9],
which are the underlying reasons for our signature being secure. In addition, the
pseudo-randomness proven in [17] of the tag in our ring signature will lead to the
non-colliding property and the uniqueness of the scheme. However, we will give
direct reductions of the security of our scheme to the DDH and DL assumptions.

Theorem 1. The ring signature scheme in Fig. 1 is a secure unique ring signa-
ture in the Random Oracle Model under the DDH and DL assumptions.

Proof. We will proceed by proving the correctness, anonymity, unforgeability,
uniqueness and non-colliding property of our scheme.

Correctness: Correctness can be checked by direct computations. Note that
the equation in Step 7 of the algorithm Sign in Fig. 1 in the verifying algorithm
means

N−1∏

i=0

τpi(X)
n−1∏

k=0

c−Xk

ek
=

N−1∏

i=0

τ

n−1∑

k=0
pi,kXk+δilX

n n−1∏

k=0

τ
−(

N−1∑

i=0
pi,k)X

k

H1(M‖R)−ρkXk

= τXn
n−1∏

k=0

H1(M‖R)−ρkXk

= H1(M‖R)sklX
n

H1(M‖R)
−

n−1∑

k=0
ρkXk

= H1(M‖R)zd .

Anonymity: Consider an anonymity adversary A. The experiment associated
to A is the following:

1. At the beginning, the DDH solver (plays the role of the challenger) is given
a DDH instance (h, hx, hy, hxy) where x, y ← Zq are choosen randomly. For
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Fig. 1. Logarithmic-sized unique ring signature scheme
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i = 1, 2, . . . , s : chooses xi ← Zq and computes pki = hx+xi . The ring S =
{pki}s

i=1 is given to the adversary A.
2. In order to answer hash queries to H1, the challenger keeps a list V1 of previous

answers of the form (M,R,H, u). When A queries (M,R), the challenger
checks if (M,R,H, u) is in V1. If yes, then returns H; else chooses d, u ← Zq

and returns H = hdy+u, and adds (M,R,H, u) to the list V1.
3. In order to answer hash queries to HFS , the challenger keeps a list VFS of

previous answers of the form (M,R, τ,A,X). When A queries (M,R, τ,A),
the challenger checks if (M,R, τ,A,X) is in VFS . If yes, then returns X; else
chooses X ← Zq and returns X and adds (M,R, τ,A,X) to the list VFS .

4. In order to answer a signing query (j,M,R) from the adversary A, the
challenger makes a hash query to H1 to obtain H = hdy+u and computes
τ = h(x+xj)(dy+u) = Hx+xj . It then computes the rest of the signature on
(M,R) using the secret key skj = x + xj and return in the form (τ,A, U).

5. For a pair (M ′, R′) that A wants the challenger to sign, A chooses two differ-
ent indices i0, i1 such that pki0 , pki1 ∈ S∩R′ and that (i0,M ′, R′), (i1,M ′, R′)
do not belong to the queries of A to the signing oracle. Upon receiving
(i0, i1,M ′, R′) from A, the challenger picks a random bit b ← {0, 1} and
returns the signature Sign(M ′, R′, skib).

6. The adversary A outputs a bit b′ as its guess to the value of b. Finally, A
wins if b′ = b.

Suppose that A has advantage ε against the anonymity of the scheme. We
consider a modified experiment which differs from the experiment associated to
A at Step 4 only. In the new Step 4’, the challenger randomly sellects between the
signature (τ,A, U) and a simulated signature (τ ′, A′, U ′) constructed as follows.

– Choose z ← Zq randomly, and computes τ ′ = hzdhxuhxjdyhxju. Note that
for a fixed triple (x, y, z), τ ′ is uniformly distributed since d, u are randomly
choosen.

– The elements of U ′ = ({fj}, {zaj
}, {zbj}, zd) are choosen randomly indepen-

dently from Zq.
– For elements of A′ = ({clj}, {caj

}, {cbj}, {cdk
}, {cek

}), the challenger chooses
nonzero c�1 , ..., c�n , cd1 , ..., cdn−1 , ce1 , ..., cen−1 ← Zq randomly. The remain-
ing part {caj

}, {cbj}, cd0 , ce0 are then computed from the verifying equations

caj
= c−x

�j
gfjhzaj and cbj = c

−(x−fj)
�j

hzbj and cd0 =
N−1∏

i=0

c

n∏

j=1
fj,ij

i

n−1∏

k=1

c−xk

dk
·h−zd

and ce0 =
N−1∏

i=0

τpi(X)
n−1∏

k=0

c−Xk

ek
· H1(M‖R)−zd .

– Furthermore, the choice of τ ′, A′, U ′ must be compatible with the hash queries
to H1,HFS in the sense that if (M,R,H, u) is on the list V1, then it is required
that H1(M‖R)x+xj = τ ′; and if (M,R, τ,A,X) is on the list VFS , then it is
required that HFS(M,R, τ,A) = X. If either of these conditions does not
hold, then the challenger aborts and restarts.
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First, the probability that the challenger aborts is at most (qH1 + qHFS
)/q

where qH1 , qHFS
are numbers of hash queries to H1,HFS , respectively.

In Step 4’, the elements ca1 , cb1 , ..., can
, cbn , cd0 , ce0 are determined from

f1, ..., zd and c�1 , ..., cen−1 by the verification equations. It follows that elements
of the modified signature (τ ′, A′, U ′) are uniformly random, and the probability
that the adversary guesses correctly in this case is 1/2.

Next, we observe that the winning probability of A in the original experiment
is at most the sum of its winning probability in the modified experiment and the
probability of distinguishing the real signatures (τ,A, U) from the modified ones
(τ ′, A′, U ′). Let p be the probability of distinguishing between the real signatures
and the modified ones. Then the anonymity of the adversary A is no larger than
p : ε + 1/2 ≤ p + 1/2.

Recall that in the real signatures

c�j = g�jhrj ,

cdk
= hp0,kx0+p1,kx1+···+pN−1,kxN−1+ρk ,

cek
= H1(M‖R)(p0,k+p1,k+···+pN−1,k)xl+ρk .

When A distinguishes these elements from the uniformly random ones, it
needs to solve n+(n−1) instances of the DL problem for G in order to distinguish
c�j , cdk

from a random elements in G; and solve n − 1 instances of the DDH
problem for G in order to break the pseudo-randomness of cek

’s [17]. Therefore,
we obtain ε/(3n−2) ≤ p/(3n−2) ≤ AdvDL

G
(A)/(2n−1)+AdvDDH

G
(A)/(n−1).

Thus, under the DDH and DL assumptions on G, the ring signature in Fig. 1
satisfies the anonymity property.

Unforgeability: Consider an unforgeability adversary A. Recall the experiment
associated to A:

1. At the beginning, the DDH solver (plays the role of the challenger) is
given a tuple (g, gx, gy, gxy) where x, y ← Zq are choosen randomly. For
i = 1, 2, . . . , s : chooses xi ← Zq and computes pki = gx+xi . The ring
S = {pki}s

i=1 is given to the adversary A.
2. In order to answer hash queries to H1, the challenger keeps a list V1 of pre-

vious answers of the form (M,R,H, u). When A makes a query (M,R), the
challenger checks if (M,R,H, u) is in V1. If yes, then returns H, else chooses
d, u ← Zq and returns H = gdy+u, and adds (M,R,H, u) to the list V1.

3. In order to answer hash queries to HFS , the challenger keeps a list VFS of
previous answers of the form (M,R, τ,A,X). When A queries (M,R, τ,A),
the challenger checks if (M,R, τ,A,X) is in VFS . If yes, then returns X; else
chooses X ← Zq and returns X and adds (M,R, τ,A,X) to the list VFS .

4. In order to answer a signing query (j,M,R) from the adversary A, the
challenger makes a hash query to H1 to obtain H = hdy+u and computes
τ = h(x+xj)(dy+u) = Hx+xj . It then computes the rest of the signature on
(M,R) using the secret key skj = x + xj and return in the form (τ,A, U).

5. To the corruption query Corrupt(j), the challenger returns x+xj when pkj ∈
S.
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6. The adversary A outputs (M,R, σ) for some M,R such that (·,M,R) is not
a signing query of A to the signing oracle and that R does not contain any
corrupted member. Finally, A wins if Verify(M,R, σ) = 1.

Suppose that A has advantage ε against the unforgeability of the scheme,
and that it makes qS , qH1 , qFS queries to the signing oracle and the random
oracles, respectively. Since we will use the usual trick of rewinding the random
oracle HFS , we assume that A does make some queries to the random oracle
HFS during the experiment.

Let us consider the following experiment between the challenger and the
adversary.

– The challenger first picks a random user j ← {1, ..., s}. It then randomly
chooses xj ← Zq and computes an alternative public key pkj = gxhx+xj for
j. The adversary A is given this alternative public key in the place of user j
in the reference ring S.

– When A as the corruption oracle for the secret key of user j, then the chal-
lenger aborts and restarts from the beginning. When A makes the signing
query (j,M,R), the challenger chooses z ← Zq and X ← {0, 1}λ at random
and produces the simulated signature (τ ′, A′, U ′) exactly as in the proof of
anonymity. The challenger then programs the random oracle HFS by setting
HFS(M,R, τ ′, A′) = X unless when (M,R, τ ′, A′) is on the list VFS in which
case it aborts and restarts from the beginning.

– The adversary A forges a new ring signature on a ring which does not contain
any corrupted users.

Suppose that A produces a forgery σ = (τ,A, U) on (M,R) with the chal-
lenge X0 = HFS(M,R, τ,A). By rewinding A to where it made the HFS query
(M,R, τ,A) and gives random answers to obtain n further forgeries with dif-
ferent challenges X1, ...,Xn using the same query. That is the adversary has
created n + 1 different accepting responses U0, ..., Un to n + 1 different chal-
lenges X0, ...,Xn on the same initial message (τ,A).

Let � be the user whose signature on (M,R) is the forgery. The challenger now
computes c�1 , ..., c�n by c�j = gx+�jhx+xj with �j ∈ {0, 1} and caj

= gx+ajhx+sj ,
f0

j = �jX
0 + aj , ..., f

n
j = �jX

n + aj for all j = 1, ..., n. It also obtains that

fj,1 = �jX + aj and fj,0 = (1 − �j)X − aj for some X and that
n∏

j=1

fj,ij is a

degree n − 1 polynomial in X when i �= �, and of the form Xn + ... when i = �.
The verification equations now reads as

cXn

� ·
n−1∏

k=0

c′−Xk

dk
= hzd , τXn ·

n−1∏

k=0

c′−Xk

ek
= H1(m‖R)zd .

Note that the matrix ((Xi)j)i,j=0,...,n is a nonsingular Vandermonde matrix
because X0, ...,Xn are pairwise distinc. Therefore, there exist integers α0, ..., αn

such that
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n∑

i=0

αi(1,Xi, (Xi)2, ..., (Xi)n) = (0, ..., 0, 1)

which then gives

c� =
n∏

i=0

(c(X
i)n

� ·
n−1∏

k=0

c′−(Xi)k

dk
)αi = h

n∑

i=0
αiz

i
d

, τ = H1(M‖R).

Now, with probability 1/s we have pk� = c� = h

n∑

i=0
αiz

i
d

= pkj = gxhx+xj

which solves the discrete logarithm of h in base g. Thus, we can use A to solve
the DL problem with advantage ε/s. Thus, under the DL assumption, our ring
signature scheme is unforgeable.

In order to obtain n additional forgeries by rewinding the random oracle
HFS , the challenger needs to rewind n times on average. With 2n/ε rewindings,
the probability that A does not produce n additional responses is at most ε/2.
Hence, the probability of obtaining n+1 successful forged signatures on the same
hash oracle query (M,R, τ,A) is at least ε/2. Note that the probability of the
(n + 1) challenges being repeated is as most ((1 + 2n/ε)(qS + qH1 + qHFS

))2/2λ

which is negligible. The average running time of the experiment is now at most
1 + 2n/ε the running time of the adversary A.

Uniqueness: Consider a uniqueness adversary A. The experiment associated to
A is as follows.

1. At the beginning, the DDH solver (plays the role of the challenger) is given
a DDH tuple (g, gx, gy, gxy) where x, y ← Zq are choosen randomly. For
i = 1, 2, . . . , s : chooses xi ← Zq and computes pki = gx+xi . The ring S =
{pki}s

i=1 is given to the adversary A.
2. In order to answer hash queries to H1, the challenger keeps a list V1 of pre-

vious answers of the form (M,R,H, u). When A makes a query (M,R), the
challenger checks if (M,R,H, u) is in V1. If yes, then returns H, else chooses
d, u ← Zq and returns H = gdy+u, and adds (M,R,H, u) to the list V1.

3. In order to answer hash queries to HFS , the challenger keeps a list VFS of
previous answers of the form (M,R, τ,A,X). When A queries (M,R, τ,A),
the challenger checks if (M,R, τ,A,X) is in VFS . If yes, then returns X; else
chooses X ← Zq and returns X and adds (M,R, τ,A,X) to the list VFS .

4. In order to answer a signing query (j,M,R) from the adversary A, the
challenger makes a hash query to H1 to obtain H = hdy+u and computes
τ = h(x+xj)(dy+u) = Hx+xj . It then computes the rest of the signature on
(M,R) using the secret key skj = x + xj and return in the form (τ,A, U).

5. To the corruption query Corrupt(j), the challenger returns x+xj when pkj ∈
S.

6. The adversary A outputs (M,σ1, . . . , σt), t = |Corrupt ∪ SigT,M | +1 for some
message M .

7. If for some i, either of the conditions H1(M‖Ri)x+xi = τi, pki = hx+xi does
not hold, then the challenger aborts and restarts from the beginning.
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8. Finally, A wins if all the signatures σ1, . . . , σt are valid and that the τ parts
of them are pairwise distinct.

Suppose that A has advantage ε against the uniqueness of the scheme, and
that it makes qS , qH1 , qFS queries to the signing oracle and the random oracles,
respectively.

For each signature σi = (τi, Ai, Ui), i = 1, ..., t, the challenger now uses
the simulated signature as in the proof of anonymity. For each honest user in
S\Corrupt, its public key is uniformly random.

We now focus on the identifier part of the forged signatures. Note that we
model H1 as a random oracle and the adversary A has the queried unique iden-
tifiers from the signing queries for the message M . The probability that the
adversary A guesses correctly the unique identifier part of each forged signature
is at most s/q.

Now, we obverse that the different between the advantage of A in the original
and the simulated experiments comes from the ability to distinguish the real
parts τ,A, U from the modified ones. Therefore, one has ε ≤ AdvDL

G
(A)/(2n −

1) + AdvDDH
G

(A)/(n − 1) + t(s/q + AdvDL
G

(A)/(2n − 1) + AdvDDH
G

(A)/(n −
1)) + s/q, which gives AdvDL

G
(A)/(2n − 1) + AdvDDH

G
(A)/(n − 1) ≥ ε/(t + 1)

for negligible s/q. Thus, under the DDH and DL assumptions, and choosing s/q
to be negligible, our ring signature satisfies the uniqueness property.

The abort probability of the experiment is tqH1/q which is negligible.

Non-Colliding Property: Recall that a unique ring signature scheme is non-
colliding if two different signers almost never produce the same unique identifier
of the same message. The non-colliding property follows because H1 is modelled
as a random oracle and the tag generation is based on the pseudo-random func-
tion studied by Naor, Pinkas and Reingold [17] whose pseudo-randomness was
proven under the DDH assumption. �

4 Performance

Since our signature has the form σ = (τ,A, U), where A = ({clj}, {caj
},

{cbj}, {cdk
}, {cek

}) and U = ({fj}, {zaj
}, {zbj}, zd)) for j = 1, 2, . . . , n and

k = j − 1, its size is estimated as (1 + 5n + 3n + 1)q = (8n + 2)q =
O((8 log N +2)λ) = O(λ log N). Recall that Franklin-Zhang’s unique ring signa-
ture, which is scheme in Fig. 2 of [6], has size (1+2N)q = O((1+2N)λ) = O(λN).

In order to test the performance of our scheme, we have implemented both
the unique ring signature scheme of Franklin and Zhang [6] and ours on Sage-
Math v9.2 [22] on an Intel i5-7200U system with a 2.50 GHz processor. Our
source code is publicly accessible at https://github.com/tuongbma/unique-ring-
signature. The observed data is presented in the graphs in Fig. 2, Fig. 3, Fig. 4
and Fig. 5.

https://github.com/tuongbma/unique-ring-signature
https://github.com/tuongbma/unique-ring-signature
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Fig. 2. Signature sizes Fig. 3. Key Genenration running time

Fig. 4. Signing running time Fig. 5. Verification running time

5 Conclusion

In this paper, we present a construction of unique ring signature scheme of
logarithmic size. Our signature has the smallest size among known unique ring
signatures. We prove that our scheme enjoys the anonymity, unforgeability and
uniqueness properties in the Random Oracle Model under the Decisional Diffie-
Hellman and Disrete Logarithm assumptions. It is an interesting question to
further improve the construction of unique ring signatures in terms of both
signature size and performance, as well as achieving quantum-safe security, which
we will leave as future work.
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Abstract. The immutability of blockchain means that data in
blockchain cannot be modified once confirmed. It guarantees the relia-
bility and integrity of blockchain. However, absolute immutability is not
conducive to timely correction of blockchain. Currently, there are some
researches on redactable blockchain. They replaced hash functions with
chameleon hash functions or proposed policy-based chameleon hashes,
which may lead to the centralization of redaction right or single point of
failure.

We propose a multi-authority policy-based chameleon hash by com-
bining chameleon-hashes with ephemeral trapdoors and multi-authority
attribute-based encryption, and prove its security. Users who satisfy the
access policies can perform modification operations while the rest have
no permission. In addition, we give a proof-of-concept implementation
of a redactable blockchain, building on Hyperledger Fabric source code.
It only requires minimal changes to the current transaction structure
and hash computation, etc. Our results show that the latency is still in
millisecond with 20000 concurrent redactable transactions.

Keywords: Blockchain · Redaction · Multi-authority attribute-based
encryption · Hyperledger Fabric

1 Introduction

Bitcoin [18] was proposed by Nakamoto in 2008 and it is the first decentralized
digital currency system. Users pay for transactions by broadcasting them in peer-
to-peer network. These transactions are stored in an immutable data structure
called blockchain. Blockchain relies on consensus to ensure the data consistency
of each node. It uses cryptographic digital signature, hash function and merkle
tree to ensure the immutability. Furthermore, smart contracts in blockchain can
be automatically triggered and executed to realize business logic.
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1.1 Motivation

As we know, blockchain uses the time-stamp, asymmetric cryptography, dis-
tributed consensus and flexible programming techniques, and is decentralized,
traceable, autonomous and immutable. Among them, immutability means that
the historical data on a blockchain cannot be changed once confirmed, which
ensures the reliability and integrity of historical data on a blockchain. In addi-
tion, the immutability enables the users to transfer values in a decentralized
peer-to-peer network without any trusted third-party. However, the immutability
has hindered the promotion of blockchain. Next, we will describe some examples
where a redactable blockchain is desirable.

Firstly, the immutability brings legal risks, any improper content (child
pornography, gossip, etc.) embedded in the blockchain will never be removed.
For example, someone has divided the diplomatic secrets disclosed by WikiLeaks
into more than 130 transactions and stored them in Bitcoin blockchain [17]; the
dot-matrix portrait of the eighth Federal Reserve Chairman Ben Bernanke is
stored in the Bitcoin blockchain [17], which is extremely ironic. These messages
bring many issues to the regulatory authorities.

Secondly, smart contract technology has great application potential in
finance, taxation, property rights, stocks, etc. In many commercial applications,
software updates are inevitable, which can help to fix vulnerabilities or enhance
user experience. However, due to the immutability of blockchain, the upgrade of
smart contracts is quite difficult in most current blockchain systems. A smart
contract is a sequence of instructions stored on blockchain. Once deployed, it
cannot be modified. If the contract code logic is unclear and the contract code
fails to execute, there is a risk of hacking. For example, a crowdfunding project
TheDAO [11] suffered heavy losses in June 2016 by a hacker using the recursive
Ethereum send exploit [4]. The problem was “solved” through a hard fork, but
this solution is not scalable and wastes many precious resources.

Finally, as information leakage becomes more and more serious, people pay
more attention to their information security and privacy protection. In 2012, the
general data protection regulation (GDPR) [12] of the European Union imposes
the “right to be forgotten” and the EU Supreme Court identified it as a basic
right two years later. The most basic requirement of the “right to be forgotten”
is that any personal information can be completely removed from the Internet.
This means that the immutable blockchain will be fundamentally conflicted with
regulations similar to the “right to be forgotten”.

To sum up, regardless of whether the blockchain is used to store transaction
data or execute smart contracts, we need a way to modify its content under
special circumstances. To resolve the above problems in the blockchain, Ateniese
et al. [2] proposed a redactable blockchain for permissioned blockchains based on
chameleon hash functions [14]. Anyone who possesses the trapdoor can efficiently
modify the blockchain. This solution is elegant and works nicely, but it is a block-
level redaction. Then, Derler et al. [9] proposed a transaction-level redactable
blockchain and a policy-based chameleon hash (PCH) which used attribute-based
encryption. This approach is fine-grained but limited, that is, the computational
overhead of a single authority is too heavy.
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1.2 Our Contributions

To summarize, we make the following contributions in this paper.

A Multi-authority Policy-based Chameleon Hash. Derler et al. [9] is based
on a single authority setting. The key distribution for all users is handled by a
trusted third party whose task is heavy. In order to reduce the workload of a
single authority, we propose a new scheme named multi-authority policy-based
chameleon hash (MAPCH), using chameleon hash functions and multi-authority
attribute-based encryption (Sect. 3.1). Moreover, in Sect. 3.2, we formally prove
that our proposed MAPCH still satisfies the security properties of indistinguisha-
bility, outsider collision resistance and insider collision resistance (which were
defined in [9]).

An Implementation Based on Consortium Blockchain. This is the first
redactable consortium blockchain. In [9], they chose permissionless blockchain
but did not describe the process in detail. However, in the permissionless
blockchain, each node can join or leave the system at any time, and can access all
transactions, which is contrary to the access control requirements. We hold the
view that policy-based encryption is more suitable for permissioned systems, so
we focus on how to integrate MAPCH into consortium blockchain. We provide
a full description of our modification in Hyperledger Fabric source code from
data structure, hash computation, hash validation and collision computation
(Sect. 4.2).

An Evaluation of Our Redactable Blockchain. We give a comparison of
Fabric and our redactable Fabric. The independent variables are the number of
concurrent transactions and block size, the dependent variables are throughput
and latency. The results show that the throughput and latency of redactable
Fabric are around 120 tps and 8 ms, respectively. In addition, the influences
of different chaincode operations on the results are analyzed. We also test the
transaction redaction performance (Sect. 4.3).

1.3 Related Works

The notion of redactable blockchain was first proposed by Ateniese et al. [2],
using chameleon hashes [14] to change the historical blocks in a blockchain. In
their scenario, the chameleon hash function replaces the original internal SHA256
hash function between blocks, and only users with trapdoors can use chameleon
hash to modify historical data. This process is simple and efficient, and does
not require changes to subsequent unrelated blocks. It is an important innova-
tion for implementing redactable blockchains. This solution has been practically
adopted by Accenture1. However, there are two main problems. Firstly, it is too
coarse-grained. A block contains many transactions. It is too versatile to modify
and delete at the block level. It is very likely that the useful transaction will be

1 https://www.accenture.com/us-en/service-blockchain-financial-services.

https://www.accenture.com/us-en/service-blockchain-financial-services
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deleted by accident. Secondly, the blockchain reliability depends on the credibil-
ity of a trapdoor owner. Although they proposed that the chameleon trapdoor
can be secretly shared and miners can run a multi-party computation protocol
to compute a collision for the chameleon hash function, once the number of par-
ticipants increases (greater than 200), their protocol clearly falls short and the
efficiency is extremely low.

As mentioned before, we already briefly discussed the work by Derler et
al. [9] which inspired our work. They proposed a transaction-level redactable
blockchain architecture. They combined ciphertext policy attribute based
encryption (CP-ABE) and chameleon hash function with ephemeral trapdoors,
and proposed a policy-based chameleon hash function (PCH). In their scheme,
PCH is performed to preprocess transactions with redactable requirements, and
then miners use Merkle Tree double SHA-256 hashes to include the redactable
transaction in a block. This scheme only allows users who satisfy the access pol-
icy (with attribute key) to perform modification operations, and the rest of users
have no permission. However, there are three main problems. Firstly, the design
of single attribute authority has a risk of single point of failure. Secondly, they
mainly focus on the discussion and optimization of PCH and do not describe in
detail about integration with blockchain. Moreover, when a transaction is mod-
ified, it is completely unnoticeable to the users without corresponding attribute
keys.

Besides, Puddu et al. [19] proposed a redactable blockchain architecture,
called μchain. This architecture does not change the block content, but a trans-
action has multiple states in the blockchain, while all miners only admit the latest
state. Deuber et al. [10] proposed the first redactable blockchain in permission-
less setting and modified the block structure into two hash links. Once redacted,
one of the links breaks and the other holds. They also used a consensus-based
voting and policies with redaction constraints. If a modification gathers enough
votes, then the operation can be performed on the blockchain. Thyagarajan et
al. [21] presented “Reparo” with repairability of existing contents (REC) which
acts as a layer and can be easily integrated into any existing blockchain. Florian
et al. [13] described a general functionally-preserving local erasure (FPLE) app-
roach for UTXO-based cryptocurrencies to safely erasing transaction data from
local storage, while they do not focus on global consensus and privacy protection.

Table 1. Comparison of different redactable blockchain schemes.

Schemes Techniques Implementation Test or not

Ateniese et al. [2] Chameleon hash Bitcoin core yes

Derler et al. [9] Chameleon hash + CP-ABE – no

Deuber et al. [10] Vote/Consensus Bitcoin core yes

Ours Chameleon hash + MAABE Hyperledger Fabric yes



412 Z. Zhang et al.

1.4 Paper Organization

The remainder of this paper is structured as follows. We firstly provide a brief
introduction to some cryptographic preliminaries in Sect. 2. Next, in Sect. 3, we
present our core scheme, the multi-authority policy-based chameleon hash and
its security proof. In Sect. 4, we offer a proof-of-concept implementation of our
MAPCH integrated into Hyperledger Fabric and the evaluation of our redactable
Fabric. Finally, in Sect. 5, we conclude our paper.

2 Preliminaries

2.1 Notations

For a string x, we denote its length by |x|. We use κ ∈ N to denote a security
parameter. If A is an algorithm, y ← A(x) denotes the action of running algo-
rithm A on input x and assigning the output to y. If not stated, all algorithms
are required to run in probabilistic polynomial time (PPT), i.e., their running
time can be bounded by a polynomial in their input length. Moreover, all algo-
rithms return a special symbol ⊥ on error. We say a function f : N → [0, 1] is
negligible if ∀c ∈ N, ∃κ0 ∈ N, ∀κ, κ > κ0: f(κ) < κ−c. Finally, s1, s2, ..., sn

R←− S
with n ∈ N denotes that s1, s2, ..., sn are sampled uniformly at random from S.
Other notations are shown in Table 2.

Table 2. Notations.

Symbol Meaning Symbol Meaning

M Message space Γ Access structure

R Randomness ( �A, ρ) Access policy

U Attribute universe hk Chameleon hash key

S Attribute authority set tk Chameleon long-term trapdoor key

NJ Non-corrupt authority set etd Chameleon ephemeral trapdoor key

CJ Corrupt authority set (PKj , SKj) Public/secret key for authority j

2.2 Chameleon Hash Functions

The concept of chameleon hash function was introduced by Krawczyk and
Rabin [14], based on chameleon commitment scheme [6]. A chameleon hash is
a special hash function that contains a trapdoor key. Without the trapdoor,
it is hard to find collisions, but once the trapdoor is known, it allows to effi-
ciently calculate collisions for the hash function. Note that the scheme [14] has
a “key exposure” problem [3]. Anyone seeing a chameleon hash collision would
find other collisions or even know the trapdoor. Specifically, the hash key is
hk = y = gx, where g is the generator of a cyclic group and x is the trap-
door, the hash algorithm is h = gmyr (mod p). When computing a collision
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h = gmyr = gm′
yr′

(mod p), it outputs r′, then the secret trapdoor x can
be recovered, giving x = m−m′

r′−r . There are already some schemes [3,5,7,15]
about key-exposure free chameleon hashes. Next we recall a chameleon hash
with ephemeral trapdoors (CHET) definition in [7] as follows.

Definition 1 (Chameleon Hash with Ephemeral Trapdoors [7]).
A chameleon hash with ephemeral trapdoors specifies five algorithms CHET =

(CParGen,CKeyGen,CHash,CHashCheck,Adapt) as follows.

– CParGen(1κ): The public parameter generation algorithm takes as input a
security parameter κ in unary form, and outputs the public parameters pp.

– CKeyGen(pp): The key generation algorithm takes as input public parameters
pp, and outputs a long-term public/trapdoor key pair (hk, tk).

– CHash(hk,m): The hash algorithm takes as input a public key hk and a mes-
sage m, and outputs a hash value h, randomness r and an ephemeral trapdoor
etd.

– CHashCheck(hk,m, h, r): The hash check algorithm takes as input a public key
hk, a message m, a hash h and randomness r, and outputs a bit b ∈ {0, 1}.

– Adapt(tk,m,m′, h, r, etd): The hash adaption algorithm takes as input a long-
term trapdoor tk, message m and m′, a hash h, randomness r and the
ephemeral trapdoor etd, and outputs new randomness r′.

Camenisch et al. [7] proposed that CHET is indistinguishable, publicly col-
lision resistant and privately collision resistant. Due to limited space, we omit
the detailed security definition.

2.3 Multi-Authority CP-ABE

In a multi-authority CP-ABE scheme, each authority is responsible for a different
set of attributes. There are several multi-authority attribute-based encryption
schemes, such as [8,16,20]. Below we introduce the scheme in [20]. They use
the concept of global identifiers (GID) [8] for different users to prevent collusion
attacks.

Definition 2 (Multi-Authority Attribute-based Encryption [20]).
A multi-authority CP-ABE system is comprised of the following five algo-

rithms MAABE = (GlobalSetup,AuthSetup,KeyGen,Enc,Dec).

– GlobalSetup(1κ): The global setup algorithm GlobalSetup takes as input a secu-
rity parameter κ in unary form, and outputs a public global parameters GP.

– AuthSetup(GP): Each authority j runs the authority setup algorithm
AuthSetup with GP as input, and outputs its own public/secret key pair
(PKj , SKj).

– KeyGen(GID,GP, i, SKj): The key generation algorithm KeyGen takes as
input an identity GID, a global parameters GP, an attribute i belonging to
some authority, and a secret key SKj for this authority, and outputs a key
Ki,GID for this attribute, identity pair.
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– Enc(M, ( �A, ρ),GP, {PKj}): The encryption algorithm Enc takes as input a
message M , an access matrix ( �A, ρ), a global parameters GP and the set of
public keys for relevant authorities, and outputs a ciphertext C.

– Dec(C,GP, {Ki,GID}): The decryption algorithm Dec takes as input a cipher-
text C, a global parameters GP and a collection of keys corresponding to
attribute and identity pairs all with the same fixed identity GID, and outputs
a message M when the collection of attributes i satisfies the access matrix
corresponding to the ciphertext. Otherwise, outputs ⊥.

Correctness. Correctness of a multi-authority CP-ABE scheme informally means
that for all κ ∈ N, for all �A ∈ Z

�×n
p , for all ρ(i) ∈ �A, for all GP obtained

from the GlobalSetup(1κ) algorithm, for all set of keys {Ki,GID} obtained from
KeyGen(GID,GP, i, SKj) and for all C obtained from the encryption algorithm
on the message M , we have that Dec(C,GP, {Ki,GID}) = M .

IND-CCA2 Security. IND-CCA2 security of a multi-authority CP-ABE scheme
assumes that the adversary can adaptively query the decryption oracle. Here we
only introduce the static corruption model, that is, the adversary can choose the
public keys of the corrupt authorities, instead of having public keys generated by
the challenger. The game between a challenger C and an adversary A is formally
described as follows.

1. A specifies a set of corrupt authorities CJ . For non-corrupted authorities NJ ,
C generates the public and private keys of the encryption system, and A
obtains the public key.

2. A repeatedly asks C by submitting pairs (i, GID) to obtain the attribute key
Ki,GID associated with the non-corrupt authorities.

3. A repeatedly asks C by submitting message M to obtain the corresponding
ciphertext C.

4. A specifies two messages M0, M1 of equal length, and provides an access
matrix ( �A, ρ). C chooses β ∈ {0, 1}, and encrypts the message Mβ under ( �A,
ρ), wherein the attribute keys generated in step 2 do not satisfy the access
matrix. Then C outputs the ciphertext C∗ to A.

5. A repeats step 3, but ensures that the ciphertext C �= C∗ does not satisfy
the target access matrix.

6. A outputs β′ ∈ {0, 1}, and wins if β′ = β.

Definition 3 (IND-CCA2 Security). The advantage of an adversary A in
the above game is defined to be

Advind-cca2maabe,A(κ) :=
∣
∣
∣Pr[β′ = β] − 1/2

∣
∣
∣

We say that a multi-authority CP-ABE scheme is IND-CCA2 secure, if the
function Advind-cca2maabe,A(κ) is a negligible function in κ for all PPT adversaries A.
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3 Our Scheme

We firstly give security definitions of MAPCH in Sect. 3.1. Then, we present a
generic construction and security proof in Sect. 3.2.

3.1 Definitions

Here, we define multi-authority policy-based chameleon hash and its properties.

Definition 4 (Multi-Authority Policy-based Chameleon Hash).
A multi-authority policy-based chameleon hash MAPCH is comprised of the

following five algorithms Π = (MSetup,MKeyGen,MHash,MHVer,MHCol) spec-
ified as follows.

– MSetup(1κ): The setup algorithm MSetup takes as input a security parameter
κ in unary form, and outputs a public/private key pair (mhk,mtk).

– MKeyGen(mtk, i,GID): The key generation algorithm MKeyGen is run by each
authority. It takes as input a private key mtk, an attribute i ∈ U and user
global identifier GID, and outputs an attribute key mski.

– MHash({mhk},m, ( �A, ρ)): The hash algorithm MHash takes as input a set of
public keys {mhk}, a message m ∈ M and access structure ( �A, ρ), sample
randomness r ∈ R, and outputs a tuple ξ = (h, r, c) where h is a hash, c is a
ciphertext.

– MHVer({mhk},m, ξ): The verification algorithm MHVer takes as input a set
of public keys {mhk}, a message m and a hash-randomness-ciphertext tuple
ξ, outputs bit b.

– MHCol({mski},m,m′, ξ): The collision finding algorithm MHCol takes as
input a set of attribute keys {mski}, messages m and m′ and tuple ξ, and
outputs a new tuple ξ′.

The correctness of a MAPCH informally means that, for all κ ∈ N, for all
�A ∈ Z

�×n
p , for all ρ(i) ∈ �A, for all (mhk, mtk) generated by the setup algorithm,

for all msk generated by the key generation algorithm, for all ξ generated by the
hash algorithm, for all ξ′ generated by the collision finding algorithm, we have
that MHVer({mhk},m, ξ) = MHVer({mhk},m′, ξ′) = 1.

Next we define the security properties in detail. Derler et al. [9] proposed the
indistinguishability, outsider collision resistance and insider collision resistance of
PCH. Our MAPCH also satisfies these properties and we will give the definitions
below.

Indistinguishibility. Indistinguishability requires that an adversary can not
distinguish whether a randomness is an output of MHash or MHCol. The security
game ExpindΠ,A(κ) is described as follows:

– Setup: C generates public key/secret key pairs (mhk,mtk) and outputs mhk
to A.
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– Challenge: A specifies two messages m,m′, and provides an access
matrix ( �A, ρ). C runs MHash({mhk},m, ( �A, ρ)) to generate (h0, r0, c0) and
MHash({mhk},m′, ( �A, ρ)) to generate (h1, r1, c1). Then C gets mski by run-
ning MKeyGen({mtk}, i,GID), finds the collision (h0,m,m′, r0, r′

0) and let
r0 ← r′

0. Finally, C chooses b ∈ {0, 1} and returns (hb, rb, cb).
– Guess: A outputs b′ ∈ {0, 1} and wins if b′ = b.

Definition 5 (Indistinguishability).
A MAPCH scheme Π = (MSetup,MKeyGen,MHash,MHVer,MHCol) is

indistinguishable if for every PPT adversary A, it holds that

AdvindΠ,A(κ) :=
∣
∣
∣Pr[ExpindΠ,A(κ) = 1] − 1

2

∣
∣
∣

is negligible in κ.

Outsider Collision Resistance. It means that even an adversary who has
access to the MHCol oracle cannot find a collision which has not been computed
by MHCol oracle yet. The security game ExpocrΠ,A(κ) is described as follows:

– Setup: C generates public key/secret key pairs (mhk,mtk), initializes I →
∅,M → ∅, and outputs mhk to A.

– Query: A may issue key queries and collision queries.
• Key query. Upon a key query of (i, GID), where i is an attribute, the

challenger C runs MKeyGen to generate an attribute private key msk and
gives it to A, where i is stored in I.

• Collision query. Upon a collision query of (m,m′, ξ) and msk with the
constraint that it has been queried before (i ∈ I), C then outputs ξ′ =
(h, r′, c) to A and add (m,m′) to M.

– Forgery: A outputs a tuple (h∗,m∗,m′∗, r∗, r′∗). If MHVer(mhk,m∗, ξ∗) =
MHVer(mhk,m′∗, ξ′∗) = 1 , m∗ �= m′∗, and (m∗,m′∗) /∈ M, A wins the game
and the challegner C returns 1. Otherwise, returns 0.

Definition 6 (Outsider collision resistance).
A MAPCH scheme Π = (MSetup,MKeyGen,MHash,MHVer,MHCol) is out-

sider collision resistant if for every PPT adversary A, it holds that

AdvocrΠ,A(κ) := Pr[ExpocrΠ,A(κ) = 1]

is negligible in κ.

Insider Collision Resistance. Insider collision resistance requires that only
the one who matches the access policy (with the corresponding attribute key) can
find the collision. We assume that after global parameters being published, each
non-corrupt authority honestly sets up itself and securely issues attribute keys to
legal users. But an adversary can control a set of corrupt authorities. The goal of
the adversary is finding a collision of a target hash, wherein ephemeral trapdoor



Redactable Transactions in Consortium Blockchain 417

is encrypted by an access matrix that the adversary previously committed to in
the initial period. The ability of the adversary are: (1) choose a set of corrupt
authorities that he can control; (2) know the collisions for arbitrary attributes
of non-corrupt authorities. The security game ExpicrΠ,A(κ) is described as follows:

– Initialization: A needs to output a set of corrupt authorities CJ , a set of
non-corrupt authorities NJ .

– Setup: C generates public key/secret key pairs (mhk,mtk) of all non-corrupt
authorities NJ , initializes I → ∅,H → ∅, and outputs mhk to A.

– Query: A may issue key queries, hash queries and collision queries.
• Key query. Upon a key query of (i, GID), where i is an attribute asso-

ciating with a non-corrupt authority, the challenger C runs MKeyGen to
generate an attribute key mski and gives it to A, where i is stored in I.

• Hash query. Upon a hash query of m and ( �A, ρ) chosen by A wherein
the attribute keys generated in key query do not satisfy the policy, the
challenger C runs MHash to generate ξ = (h, r, c). Furthermore, C stores
(h,m, ( �A, ρ)) in H and gives ξ = (h, r, c) to A.

• Collision query. Upon a collision query of (m,m′, ξ) and mski with the
constraint that it has been queried before (i ∈ I), C then outputs ξ′ =
(h, r′, c) to A and add (h,m′, ( �A, ρ)) to H if (h,m, ( �A, ρ)) ∈ H.

– Forgery: A outputs a tuple (h∗,m∗,m′∗, r∗, r′∗). If MHVer(mhk,m∗, ξ∗) =
MHVer(mhk,m′∗, ξ′∗) = 1 , m∗ �= m′∗, (h∗, ·, ( �A, ρ)) ∈ H and (h∗,m∗, ·) /∈ H,
A wins the game and the challegner C returns 1. Otherwise, returns 0.

The above queries must satisfy the following conditions: (1)The key query on
attribute i ∈ I should be done before the collision query and hash query, because
the access policies provided in those two queries are related to I. (2)The collision
query can be done before or after the hash query, because we assume that the
MAABE scheme is CCA2 secure.

Definition 7 (Insider collision resistance).
A MAPCH scheme is insider collision resistance if for any PPT adversary

A, it holds that the advantage of winning the security game

AdvicrΠ,A(κ) := Pr[ExpicrΠ,A(κ) = 1]

is negligible in κ.

3.2 Generic Construction and Security Analysis

Our scheme borrows ideas from the policy-based chameleon hash in [9]. Namely,
in order to prevent transaction senders from using the long-term trapdoor to
maliciously modify the transactions or key leakage, they proposed to perform
the access control not only on long-term trapdoor, but also on the ephemeral
trapdoor when computing the hash. This ensures that even if the long-term
trapdoor is leaked, the collision still cannot be found. We continue this technique
and use an IND-CCA2 secure multi-authority CP-ABE scheme.
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Let CHET = (CParGen,CKeyGen,CHash,CHashCheck, Adapt) be a chamel-
eon hash function with ephemeral trapdoor. Let MAABE = (GlobalSetup,
AuthSetup,KeyGen,Enc,Dec) be a multi-authority ABE scheme. A multi-
authority policy-based chameleon hash MAPCH is comprised of the following
five algorithms Π = (MSetup,MKeyGen,MHash,MHVer,MHCol) specified as fol-
lows.

– MSetup(1κ): Run pp ←− CParGen(1κ), (hk, tk) ←− CKeyGen(pp), and GP ←−
GlobalSetup(1κ). Each attribute authority j runs (PKj , SKj) ←− AuthSetup
(GP), and outputs a pair (mhk,mtk) where mhk = (hk, PKj ,GP) and mtk =
(tk, SKj).

– MKeyGen(mtk, i,GID): Each attribute authority j runs Ki,GID ←− KeyGen
(GID,GP, i, SKj), and outputs mski = (tk,Ki,GID).

– MHash({mhk},m, ( �A, ρ)): Sample a random value r and etd, run (h, r, etd) ←−
CHash(hk,m, r), c ←− Enc(etd, ( �A, ρ),GP, {PKj}), and output ξ = (h, r, c).

– MHVer({mhk},m, ξ): If CHashCheck(hk,m, r, h) = 1, return 1. Otherwise
return ⊥.

– MHCol({msk},m,m′, ξ): If MHVer({mhk},m, ξ) =⊥, return ⊥. Otherwise,
run etd ←− Dec(c,GP, {Ki,GID}), r′ ←− Adapt(mtk, h,m,m′, r, etd), and out-
put ξ′ = (h, r′, c).

Note that the properties of indistinguishability and outsider collision resistance
are easy to prove. Due to limited space, only the proof of the insider collision
resistance is given here.

Theorem 1. Assume that CHET is privately collision resistant, and MAABE
is IND-CCA2 secure. Then the above MAPCH scheme Π is insider collision
resistance.

Proof (of Theorem 1). Now, we give a security proof of the insider collision
resistance property, using a sequence of games. For i ∈ [0, 3], we define Pr[Si]
= 1 to be the event that the adversary wins in the corresponding Game i. In
addition, the number of hash query is denoted by q.

We give a concise description of the game as follows.

Game 0: This is the original game defined in Sect. 3.1 which is run between an
adversary A and a challenger C. Hence, we have

AdvicrΠ,A(κ) = Pr[S0] (1)

Game 1: This is the same as Game 0 except one small change. The challenger
guesses the index i∗ corresponding to the hash query in Query and the hash h∗

output by C will be attacked by A. Then, C stores etd∗ and ξ∗ = (h∗, r∗, c∗). If
C guesses wrong, abort.

The winning probability for A in Game 1 is equal to the probability that C
guesses correctly. Hence, we have

Pr[S1] = Pr[S0]/q (2)
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Game 2: This is just like Game 1 except that when C receives a collision query
for a check value (h, r, c∗), instead of recovering the ephemeral trapdoor by
decrypting the ciphertext c∗, C directly finds a collision using etd∗.

The winning probability for the adversary in Game 2 is equal to Game 1,
with the precondition that the MAABE scheme is correct. Hence, we have

Pr[S2] = Pr[S1] (3)

Game 3: This is just like Game 2 except the way C responds to encryp-
tion in hash queries. In particular, instead of running c∗ ←− Enc(etd∗, ( �A, ρ),
GP, {PKj}), we simply let c∗ ←− Enc(0, ( �A, ρ),GP, {PKj}) where 0 and etd∗

have the same length.

Claim 1. Game 2 and Game 3 are indistinguishable under the IND-CCA2 secu-
rity of MAABE scheme such that

|Pr[S3] − Pr[S2]| ≤ Advind-cca2maabe,A1
(κ). (4)

Proof (of Claim 1). We construct an adversary A1 to attack IND-CCA2 secu-
rity of MAABE scheme. A1 internally runs the adversary A and simulates the
environment for A. The proof of this claim is essentially the same as that in
Game 2, the encryption algorithm encrypts etd∗, while in Game 3, it encrypts
0|etd∗|, and the adversary A1 will not notice the difference.

Firstly, A1 specifies a set of corrupt authorities CJ and sends CJ to the
MAABE challenger C. He then obtains GP and {PKj} in non-corrupt authorities
NJ from C. A1 runs CParGen to generate pp and CKeyGen to generate (hk, tk),
and initializes I ← ∅,H ← ∅. A1 then sends mhk = (hk, {PKj},GP) to A.

Upon input a key query of (i, GID) from A where i is an attribute associating
with a non-corrupt authority, A1 sends (i, GID) to C. C runs KeyGen to generate
Ki,GID and returns to A1. A1 then sends msk = (tk,Ki,GID) to A. When A
issues collision queries of (m,m′, ξ), A1 sends c to C. C runs Dec and sends etd.
A1 then runs Adapt to find collision ξ′ = (h, r′, c) and outputs ξ′ = (h, r′, c) to
A.

Upon input a hash query of m and ( �A, ρ) from A wherein the attribute keys
generated in key query do not satisfy the policy, A1 runs CHash to generate
(h, r, etd). A1 then sends etd and ( �A, ρ) to C. C runs Enc to compute c and
outputs c to A1. A1 then returns ξ = (h, r, c) to A. A1 guesses the index i∗ hash
query (the hash h∗) which will be attacked by A. In the i∗ hash query of m and
( �A, ρ) from A, A1 runs CHash to generate (h∗, r∗, etd∗) and stores etd∗. A1 then
sends m0 = etd∗, m1 = 0|etd∗| and ( �A, ρ) to C. C flips a coin b ∈ {0, 1}, runs Enc
to encrypt mb and output c∗ to A1. A1 then stores and returns ξ∗ = (h∗, r∗, c∗)
to A. If A1 guesses wrong, abort.

Then A can repeat the collision queries. When A1 receives a collision query
of (m,m′, (h, r, c∗)), A1 checks if MHVer(mhk,m, ξ∗) = 1. If it is, A1 finds a
collision using etd∗ without decrypting the ciphertext c∗. Then outputs (h, r′, c∗)
to A.

From the above, if the bit b chosen by C is 0, then we simulate Game 2,
otherwise we simulate Game 3. This completes the proof of Claim 1. 
�
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Claim 2. For all PPT adversaries A in Game 3, the success probability under
the private collision resistance of CHET is negligible in κ such that

Pr[S3] ≤ Advprcrchet,A2
(κ) (5)

Proof (of Claim 2). We build an adversary A2 to attack private collision resis-
tance of CHET . A2 internally runs the adversary A and simulates the environ-
ment for A.

Firstly, A2 obtains hk and tk from the private collision resistance challenger
C. A specifies a set of corrupt authorities CJ , then A2 runs GlobalSetup and
AuthSetup to generate GP and (PKj , SKj) of non-corrupt authorities NJ . A2

then sends mhk = (hk, {PKj},GP) to A.
Upon input a key query of (i, GID) from A, A2 runs MKeyGen to generate

msk = (tk,Ki,GID) and returns msk to A. When A issues collision queries of
((ξ,m),m′), A2 checks whether MHVer(mhk,m, ξ) = 1. If it is, A2 runs Dec to
obtain etd and sends (h, r,m,m′, etd) to C. C computes collision and returns r′

to A2. Then A2 outputs ξ′ = (h, r′, c) to A.
Upon input a hash query of m and ( �A, ρ), A2 sends m to C to obtain

(h, r, etd). A2 then runs Enc to generate c and returns (h, r, c) to A. A2 guesses
the i∗th query (the hash h∗) which will be attacked by A. Upon input the i∗th
hash query of m and ( �A, ρ) from A, A2 sends m to C to obtain (h∗, r∗, etd∗),
stores etd∗, and runs Enc to generate c∗ such that c∗ is the ciphertext of 0|etd∗|

rather than etd∗. A2 then returns (h∗, r∗, c∗) to A. If A2 guesses wrong, abort.
A might make multiple collision queries. When A2 receives a collision query of

(m,m′, (h, r, c∗)), A2 directly sends (h, r,m,m′, etd∗) to C instead of decrypting
c∗. C computes collision and returns r′ to A2. Then A2 outputs ξ′ = (h, r′, c∗)
to A.

If A eventually outputs a collision (h∗,m∗,m′∗, r∗, r′∗), A2 can output
(h∗,m∗, m′∗, r∗, r′∗) to C. This completes the proof of Claim 2. 
�

In summary, combining Eqs. (1)(2)(3)(4)(5), we have

AdvicrΠ,A(κ) = Pr[S0] = q × Pr[S1] = q × Pr[S2]

≤ q ×
(

Pr[S3] + Advind-cca2maabe,A1
(κ)

)

≤ q ×
(

Advprcrchet,A2
(κ) + Advind-cca2maabe,A1

(κ)
)

(6)

which concludes the proof. 
�

4 Integration in Blockchain

In this section, we present the design and implementation of how to integrate our
MAPCH scheme with the consortium blockchain infrastructure. In Sect. 4.1, we
provide a high level overview of our solution. In Sect. 4.2, we list the modification
in Fabric source code and other implementation details.



Redactable Transactions in Consortium Blockchain 421

Fig. 1. Our redactable blockchain based on Hyperledger Fabric

4.1 Overview

Obviously, it is difficult to integrate MAPCH into permissionless systems. These
systems have a highly dynamic set of nodes maintaining the storage/state of their
blockchains, which cannot readily be mapped into MAPCH attribute authorities.
We apply the above MAPCH scheme within permissioned blockchains and design
a redactable consortium blockchain based on Hyperledger Fabric, which is shown
in the Fig. 1. For simplicity, only one organization is assumed.

The system includes five entities, namely peer (including endorser and com-
mitter), orderer, client (including sender and redactor), attribute authority (AA)
and certificate authority (CA). Each AA is responsible for the distribution of cor-
responding attribute keys. CA mainly implements authentication and provides
certificates to participants. Compared with the original Hyperledger Fabric, we
added AA and divided client into sender and redactor. Consequently, a sender
possesses a hash key hk, a long-term trapdoor key tk for chameleon hash func-
tion and a global encryption key mpk. In addition, a redactor holds the attribute
key Ki,GID satisfying the predetermined access policy. In the application, the
sender can be an enterprise, and the redactor can be a supervisory authority.

When a node (i.e., peer, orderer, client, etc.) wants to join the blockchain net-
work, CA is responsible for verifying the identity of each user in the consortium
blockchain. Only nodes authenticated by CA can participate in the transaction
process on the blockchain (①). This process is the same as the authentication
process in Fabric. Then, all attribute authorities AA1, AA2, · · · , AAn manage
the attributes in an attribute domain independently and perform the initializa-
tion process without cooperation. They generate their own global public keys
PKj and master private keys SKj . Each AA distributes attribute keys to the
corresponding nodes (②). In actual scenarios, we assume that the process of
attribute authorities initialization and attribute keys distribution are executed
off-chain.
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After key distribution phase, a client (i.e., sender) sends a transaction pro-
posal to one or more endorsers (③), then waits for their endorsements and pro-
posal responses (④). If the sender wants to issue a redactable transaction, it
should initialize locally to generate a hash key hk and a long-term trapdoor
tk for the chameleon hash function. Then, he preprocesses the transaction using
MAPCH, including computing the chameleon hash value for the transaction con-
tent m and performing attribute-based encryption on the ephemeral trapdoor
etd. These policies determine who can modify the transaction. Once finished, the
sender submits transaction to the ordering service (orderers) (⑤). Finally, order-
ers pack the transaction into blocks and broadcast the block to other peers (⑥).
Note that peers are mainly responsible for the transaction proposal simulation,
endorsement and ledger management, while orderers are responsible for consen-
sus on the transactions. After peers verify the validity of the received blocks, the
write sets for each valid transaction are committed to current state database.

When an authorized client (i.e., redactor) wants to modify a transaction m
to m′, he calculates the collision of the chameleon hash function according to
the ephemeral trapdoor etd, the long-term trapdoor tk and randomness r. The
content of transaction has been revised which generates a new randomness r′.
Then, he sends the modified transaction to orderers (⑦). Orderers repackage
corresponding transactions into blocks and update the blockfile (⑧). Note that
the redaction can be done multiple times. After orderers modify the blockfile, all
peers request the redactable blocks from orderers again and update the world
state(⑨). Finally, peers notify the client (both sender and redactor) that the
transaction has been redacted successfully or not (⑩).

4.2 Integration Details

We developed a proof of concept implementation of redactable blockchain using
the Hyperledger Fabric [1], version 2.1.12. We implemented the MAPCH (based
on the MAABE scheme RW15 [20] and the RSA-based CHET [7]) using the
go-pbc library3.

Our code was developed in Golang. We created three main functions for the
MAPCH, namely ChamHashHash, ChamHashCheck, and ChamHashAdapt. The first
function takes a message as input and computes its hash. The second function
checks whether the hash computes correctly and returns a boolean value. The
last function takes an initial message and its chameleon hash and a new message,
it outputs a new randomness value. Below we explain our modifications in more
detail. The first step for the integration of the MAPCH on Fabric was to extend
the transaction data structure. We analyzed the data structure of transactions
and blocks in Fabric, and the result is shown in Fig. 5 (Appendix A).

2 https://github.com/hyperledger/fabric.
3 https://github.com/Nik-U/pbc.

https://github.com/hyperledger/fabric
https://github.com/Nik-U/pbc
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Fig. 2. ChamHash computation in ProposalResponsePayload and Payload

Hash Computation. In the Fabric original endorsement process, once the
endorsers complete their simulations, they set the read/write sets and other exe-
cution results into ProposalResponsePayload(PRP), then sign the whole PRP
field. Consequently, we overloaded the function ProcessProposalSuccessfully
OrError in file endorser.go to modify the endorsement process, that is,
Endorsement is performed on ChamHash. Additionally, we overloaded the func-
tion CreateSignedTx in file txutils.go. When the client assembles endorse-
ments into a transaction, it should fill the ChamHash in Payload and sign the
ChamHash as transaction signature. A simplified version of the code is shown in
Fig. 2.

We then modified the computation of block data hash. As shown in Fig. 5,
DataHash is the hash of BlockData field, so the change in Payload will change
DataHash. Therefore, when a block is being created, orderers should compute
the sha256 of ChamHash, ChannelHeader, SignatureHeader and Signature as
DataHash.

Hash Validation. After the client “broadcasts” a transaction to orderers,
orderers should firstly check if the chameleon hash computation is correct, then
check if the Signature is valid. We modified the function checkSignature
FromCreator in file msgvalidation.go.

Collision Computation. For the special operations that someone
wants to redact a historical transaction, we implemented the functions
UpdateTransaction and AlterBlockstorage. The first function updates the
Input field of a transaction and recomputes the ChamHash (both in PRP and
Payload). The second function takes as input the initial blockfile and a new
blockfile, then returns if the update is successful or not. The core code of the
function UpdateTransaction is shown in the Fig. 3.
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Fig. 3. The core code of the function UpdateTransaction that computes ChamHash

collision

4.3 Evaluation

In order to study the performance of the modified Fabric source code, we
deployed a test network based on redactable Fabric described in Sect. 4.2. We
used a test tool named tape4 to study the throughput and latency as the primary
performance metrics for Fabric and redactable Fabric. Throughput is the rate
at which transactions are committed to ledger. Latency is the time taken from
the client sending the transaction proposal to the transaction committed to the
blockchain.

We also focus on the evaluation of chaincode query and chaincode invoke.
Chaincode query operation does not result in any interaction with orderers,
which is only targeted at reading from the world state database. Chaincode
invoke means submitting the transaction to orderers, which is targeted at writ-
ing to the world state database. Additionally, we tested the performance when
redacting transactions. All the experiments were run on the hardware and soft-
ware specified in Table 3. Moreover, Table 4 shows different parameters we used
in chaincode Fabcar.

Table 3. Default configurations for all experiments unless specified otherwise.

Type Parameters Values

Hardware Operation System Ubuntu 18.04

CPU AMD Ryzen 9 3900X @ 3.79GHz

RAM 16 GB

Disk 100 GB

Software Fabric v2.1.1

Node 2 peers and 1 orderer running on a single VM

Client 400 clients running on a single VM

Chaincode Fabcar

Block Size 10 transactions per block

Number of Transactions 10000

4 https://github.com/guoger/tape.

https://github.com/guoger/tape
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Table 4. Different testing parameters of chaincode Fabcar.

Chaincode operations Parameters Values

Chaincode query Function queryCar

Input CAR9

Chaincode invoke Function createCar

Input CAR10,Ford,S,Red,Max∗
∗ From left to right, the meanings are car number, car brand,
car model, car color and car owner

Figure 4 shows a comparison of average throughput and latency for var-
ious number of transactions and block sizes over different chaincode opera-
tions (query/invoke) in the redactable Fabric versus the Fabric source code. In
Fig. 4(a), with the increasing number of concurrent transactions, the throughput
of Fabric (around 1100 tps) and redactable Fabric (around 120 tps) has changed
a little. Obviously, the throughput of query operation is higher than invoke oper-
ation. In addition, the overhead of the redactable Fabric, due to the computation
of MAPCH, is almost constant compared to Fabric. Note that the reason for the
low throughput of redactable Fabric is the low send rate of clients. The clients
need to firstly calculate the MAPCH for the received proposal response, and
then send the transaction, which results in a low send rate. In the same way, the
latency of redactable Fabric is around 8 ms, while the Fabric is 0.9 ms, which is
showed in Fig. 4(b).

In Fig. 4(c), we can see that with the increasing number of transactions
per block, the throughput of Fabric also increases significantly. When block
size reaches 200, the throughput goes down instead. This is because the maxi-
mum number of transactions in an actual block is 169 (invoke) or 170 (query),
which will affect the latency when the orderers are cutting blocks. Similarly, in
redactable Fabric, the chameleon hash value is stored in a transaction, which
increasing the size of the transaction. Therefore, the maximum number of trans-
actions in redactable Fabric is 58 (both query and invoke). Obviously, block size
has little impact on redactable Fabric (around 120 tps).
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(a) Throughput for different number of
transactions

(b) Latency for different number of transac-
tions

(c) Throughput for different block sizes (d) Latency for different block sizes

Fig. 4. A comparison of average throughput and latency for various number of transac-
tions and block sizes over different chaincode operations between Fabric and redactable
Fabric

We also tested the average time required to redact transactions, namely from
the time when a redactor sends the request to the time when the orderers com-
plete the redaction process. The result shows that the average time to modify a
transaction is 0.0472 s. It should be pointed out that all transactions sent by 400
clients in our test are redactable. However, in the actual scenario, only a small
number of transactions in the blockchain can be redacted, which may have little
impact on the throughput and latency.

5 Conclusion

In this paper, we focus on the idea of making transactions redactable in con-
sortium blockchain. We present a MAPCH using CHET and multi-authority
CP-ABE scheme. We describe in detail about the transaction flow in redactable
Fabric. As we have argued, our approach uses multi-authority attribute-based
encryption to distribute attribute keys for users in consortium blockchain, only
those who satisfy with the access control policy can modify the transaction
content. In addition, we give a proof-of-concept implementation in Hyperledger
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Fabric. The experiments show that the system can still achieve about 120 tps and
the latency is still in millisecond with 20000 concurrent redactable transactions.

Acknowledgment. This work is supported in part by the National Key R&D Pro-
gram of China (2017YFB1400702), the National Natural Science Foundation of China
(61972017), the National Cryptography Development Fund (MMJJ20180215) and the
Beijing Natural Science Foundation (M21033).

A Data Structure Modifications in HLF

In this section, we analyze the underlying data structure of Hyperledger Fabric
and our modifications to its transaction structure.

Fig. 5. The Block and Transaction Structure in Hyperledger Fabric

Our analysis is shown in Fig. 5. Note that the data structures of some objects
are not listed in detail due to limited space, i.e., ChannelHeader consists of Type,
TxID, Timestamp, etc., and SignatureHeader composes of Nonce and Creator.
Our modification have been marked in green (PRP and Payload) and the newly
added data structure is orange (ChamHash). ChamHash contains a [ ]byte type
Hashvalue, a [ ]byte type Randomvalue and a [ ]byte type Etdcipher as defined
in MAPCH in Sect. 3.2.

As for PRP, ProposalHash is the hash of the concentation of (i) the serialized
ChannelHeader object, (ii) the serialized SignatureHeader object, and (iii) the
part of ChaincodeProposalPayload (without the transient data). Additionaly,
Endorsement is the signature of PRP. If we update the transaction content Input
(i.e., the parameters called by the chaincode), ProposalHash and Endorsement
will be changed, too. So we added ChamHash to maintain the correctness of
endorsement process.
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The reason for modifying Payload structure is similar to the above.
Signature is the signature of Payload in an Envelop. The update of Input
will lead to the change of Payload. Therefore, we added ChamHash in order to
keep the signature unchanged.
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Abstract. Monero is a cryptocurrency that provides anonymity by
default for its senders and receivers. The recorded Monero transactions
are infeasible to trace without additional information. Monero utilises
Proof-of-Work (PoW) as its consensus method. Miners contribute their
computing power in exchange for a reward. To stabilise their income,
the miners join mining pools. Mining pools coordinate the miners’ min-
ing power in order to generate more reward and distribute the reward
based on each miner’s contribution to getting the reward. Some min-
ing pools publish the list of won blocks and payout transactions to the
miners to provide transparency of their business. In this work, we inves-
tigate anonymity leak in Monero system through analyses on mining
pools’ data. We collect published data from ten mining pools’ websites
and conduct traceability analyses on the data. We discover that 59.2%
inputs of all Monero transaction inputs in our data set are traceable.
We also identify that the age of the spent coins is between 2.5 h and 3.3
days. While we propose methods to improve the accountability of the
published information, it is also questionable that the mining pools keep
publishing such information which reduces the anonymity of their trans-
actions. Our investigation shows that there is no relationship between
publishing mining-related information and the success of a mining pool.

Keywords: Monero · Mining pool · Traceability · Miners

1 Introduction

At the time of writing, Monero is in the top 15 of the most valuable cryptocur-
rencies list. Its total market value is US$851million, where each coin is worth
US$47.401. Monero is also the most successful CryptoNote-based cryptocurren-
cies, among other products such as ByteCoin, Boolberry, and Aeon2. Nicolas
van Saberhagen3 published CryptoNote protocol in 2013.
1 Based on Coinmarketcap data on 25 November 2019.
2 https://cryptonote.org/coins.
3 Nicolas van Saberhagen is a pseudonym.
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Monero utilises Proof-of-Work (PoW) as its consensus method. The memory-
bound consensus algorithm called CryptoNight aims to decentralise mining activ-
ities, where small miners can mine Monero by using commercial CPUs and
GPUs. Like Bitcoin and other cryptocurrencies, mining pools coordinate multiple
miners’ mining powers to increase their cumulative chances of winning blocks.

The current Monero mining pool lacks transparency, caused by anonymity
features in Monero transactions. A blockchain observer cannot determine how
many blocks each mining pool wins at any period. Therefore, the miners cannot
evaluate the incentives’ fairness from the computation shares they submit to the
mining pools. Mining pools utilise their websites to publish information related
to their mining productions, such as the blocks won and payouts to miners, to
improve transparency. Although the published information might be helpful for
miners to decide which mining pools they want to join, the same information
is vulnerable to anonymity leak. In this work, we focus on exploiting the public
information to evaluate Monero transaction’s anonymity.

Contributions. Specifically, our contributions are as follows.

1. We identify the anonymity leak problem within the mining pools’ published
information. We consider two possible cases of traceable inputs in a mining
pool M , namely Case A and Case B, as shown in Fig. 1.

– In Case A, mining pool M spends mining reward co1 of won block B1000

as an input to transaction t1. Since we know that mining pool M creates
block B1000 and transaction t1, there is a high probability that the input
i11 spends co1, and therefore input i11 is traceable.

– In Case B, mining pool M creates t3 as a payout to a miner and receives
change coins in either o31 or o32. Later, mining pool M creates a new
payout t4 to another miner. The transaction t4 contains o32 in its input
i41. In this case, there is a high chance that the mining pool M spends
its change coins o32 in t4, and the input i41 is considered as traceable.

2. We explore anonymity leak from mining pools’ published information. We
collected information from ten mining pools and conducted traceability anal-
yses to the data set. We discovered 218,957 traceable inputs. This result is
the second largest anonymity leak after Monero implements the RingCT fea-
ture. Additionally, our second-order traceability can identify 5,501 traceable
inputs.

3. We propose possible countermeasures to the identified problem. Our solu-
tions include data removal and transaction obfuscation as potential coun-
termeasures to prevent future anonymity leak from mining pools’ published
information.

4. To improve the mining pools’ accountability on the produced blocks, mining
pools can publish their tracking keys such that observers can calculate the
actual block production rate on all mining pools. We also propose Slushpool’s
Hash Rate Proof (HRP) adoption to improve mining information’s verifiabil-
ity.

5. We analyse the top ten Monero mining pools and extract their features. We
identify that the majority of the mining pools publish their mining-related
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Fig. 1. Possible cases of traceable inputs.

information on their websites. Two major mining pools, Minexmr and Sup-
portxmr, specialise in Monero mining, while F2pool as the third-largest Mon-
ero mining pool is a multi-coin mining pool. There is no specific feature that
distinguishes the top three mining pools from the rest of the mining pools,
which indicates that removing the mining-related information from the min-
ing pools’ websites might not alter their popularity.

2 Background

2.1 Monero Anonymity

Monero implements privacy-preserving cryptographic techniques to achieve the
sender’s untraceability and receiver’s unlinkability. The sender’s untraceability
means that the actual sender in a transaction is infeasible to guess over a set
of senders. The receiver’s unlinkability indicates an observer’s infeasibility to
determine whether multiple transactions pay to the same receiver.

Linkable Ring Signature (LRS) [10] and one-time public key
(OTPK) were implemented to support the sender’s untraceability and receiver’s
unlinkability subsequently [16]. Monero’s LRS obfuscates the real spent coins
among other coins that pose as decoys or mixins. A sender selects the mixins
from outputs of recorded transactions in the blockchain, which have the same
amount as the spent coins.

Confidential Transaction [11] was integrated to Monero’s ring signature to
create RingCT [13]. RingCT hides the number of coins transacted while at the
same time makes sure that the sender does not create new coins. RingCT was
later improved with Bulletproofs [3] to reduce the signature size of Monero trans-
action. The Confidential Transaction enables the users to select mixins from any
compatible transactions with any coin amount. Therefore the pool of potential
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mixins is much greater than before the implementation of Confidential Transac-
tion in Monero.

A Monero transaction T consists of a set of inputs I and a set of outputs
O. The transaction T spends the inputs R and produces the outputs O such that
T := I → O. An input in a Monero transaction consists of a ring R. The ring R’s
members are outputs from existing transactions stored in the Monero blockchain.
There is only one real member to spend (the real spent key), where the other ring
members are decoys (mixins), such that the real spent coin is indistinguishable
among the ring members.

2.2 Monero Consensus, Mining Activities, and Mining Pools

Monero implements Proof-of-Work (PoW) as its consensus method [16]. PoW
utilises computing power to determine which party can extend the blockchain.
Any parties that dedicate computing power for PoW purposes are called miners.
On each cycle, miners compete to solve a computing problem, where the miner
that proposes the best solution will add a new block to the blockchain.

There are two ways for a miner to mine cryptocurrencies: mining individually
(also called solo mining) or joining a mining pool (also called pool mining). A
mining pool is a mining service that allows miners to share the mining work-
load. The miners that join a mining pool expect to stabilise their income from
the mining activities [4]. Mining pools pay the miners according to the miners’
contributions based on the agreed schemes. The mining pool operator also takes
a fraction of the mining profits to reward the mining pool service.

3 Known Attacks to Monero Anonymity

3.1 Zero-Mixin Transactions and Cascade Effect (Chain Reaction)

One of the most critical problems in Monero was zero-mixin transactions. A
zero-mixin transaction is a Monero transaction that contains one or more inputs
without any decoys or mixins, and therefore the real spent coin is not obfuscated
[14]. In the early days of Monero, a coin can only mix with other coins with the
same denomination. However, there are also coins with a unique denomination
that cannot mix with other coins; hence the coin owners created zero-mixin
transactions. There was also no strict protocol to forbid zero-mixin transactions,
such that the users prefer not to include any mixins to reduce the transaction
fee. Researchers discovered that the zero-mixin transactions and cascade effect
could be utilised to trace 62% [12] or up to 84% [9] of all inputs.

3.2 Hard Fork Problems

There were two Monero hard forks in 2018. By the end of that year, there
were three branches of Monero blockchain. Chain split generally means that
the users potentially receive extra gains. However, in Monero, the transactions’



Transparency or Anonymity Leak: Monero Mining Pools Data Publication 437

anonymity becomes a concern because the chain split incurs key reuse problems.
If the users spend the same coins on different blockchains with the chain split,
these transactions are traceable by observers. The LRS that initially prevents
double-spending in Monero became a problem when two or more blockchains
emerge [6,20].

Furthermore, the semi-annual Monero hard fork also poses a Denial of Service
(DoS) problem for non-updating nodes [19]. During the scheduled hard fork, all
nodes need to upgrade their applications to the newer version. If the nodes do not
upgrade, an attacker can deploy a Denial of Service (DoS) targeting non-upgrade
nodes by flooding the nodes’ temporary RAM-based storage called txpool with
dust transactions that are invalid under the new applications.

3.3 Closed-Set Transaction Attack

Despite its cryptographic features guarantee transaction anonymity, researchers
developed possible attacks to Monero anonymity, such as Monero Ring Attack
(MRA) [17] and its extended version called MRAE [18]. Both techniques are
similar to closed-set attack [22]. An attacker formulates her transactions such
that any passive observers can determine that the attacker has spent all outputs
in the transaction. Therefore, when honest users select the attacker’s outputs as
their ring members, their transactions’ anonymity is reduced. Researchers also
formulated the Monero mixin selection problem as Sun-Tzu survival game [21].

Recent research also discovers a side-channel attack on Monero. A node
can observe whether a wallet that connects to it is a receiver of one or more
unconfirmed transactions [15]. The observing node can distinguish the event
because Monero wallet regularly sends a get object request to the node to
receive updates on the blockchain transactions. If a transaction pays to the wal-
let, Monero wallet prompts its user to enter the wallet’s password after the wallet
is inactive for some time.

4 Analyses on Mining Pool-Related Information

We investigate the impact of mining-related data publications by mining pools
on transaction traceability. We assume that mining pools spend both their block
reward and change coins to pay their miners contributing to the mining pools.

The steps of our analyses are as follows. First, we survey mining pools and
discover ten mining pools publishing information related to Monero mining activ-
ities. We then collect the data from the ten mining pools as our primary data set.
Then, we analyse the data set to identify the traceability of the transactions. We
define possible scenarios for these transactions and then adopted known trace-
ability analyses to our data set. We further explore our data set to discover known
Monero addresses’ activities, the use of unencrypted Payment ID (UPID), spent
outputs age, and how the traceable inputs impact other transactions’ anonymity.
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4.1 Public Information from Mining Pools

Table 1 shows our survey on ten mining pools regarding information they publish
on their websites without creating accounts on the mining pools’ systems. The
Block Won column shows that all mining pools publish blocks they produced.
Global Payout Data indicates whether a mining pool publishes a list of all pay-
outs they made to the miners. Our survey data shows that only two mining pools,
Xmr.nanopool and Minexmr, do not publish payouts data. Individual Payout
Data shows whether a mining pool provides a list of payouts for each address
without logging in. The survey data indicates that although Xmr.nanopool and
Minexmr do not publish all payouts data, they still provide individual payout
data. It means that the payout data is available as long as the requester knows
the miners’ Monero addresses.

Bulk Payout indicates whether a mining pool sends payments to miners in
bulk (many recipients in one transaction), whereas Individual Payout indi-
cates whether a mining pool sends payment to miners on different transactions.
Our survey shows that only Xmr.nanopool only allows bulk payouts, whereas
2miners only supports individual payouts.

Table 1. The mining pool survey result. Data marked with asterisk (*) means there
is no backdate data search. N/A means we could not find any data samples.

No Pool name Block

won

Global

payout data

Individual

payout data

Bulk

payout

Individual

payout

Miners’

addresses

1 supportxmr.com Yes Yes Yes Yes Yes No

2 xmr.nanopool.org Yes No Yes Yes No Block finder

3 minexmr.com Yes No Yes N/A N/A N/A

4 dwarfpool.com Yes* Yes* No Yes Yes No

5 monerohash.com Yes* Yes* No Yes Yes No

6 crypto-pool.fr Yes Yes No Yes Yes No

7 xmrpool.net Yes Yes Yes Yes Yes No

8 xmrpool.eu Yes Yes No Yes Yes No

9 2miners.com Yes Yes* No No Yes No

10 coinfoundry.com Yes Yes Yes Yes Yes Block finder

4.2 Data Collection

We collected information from ten active mining pools. These mining pools pro-
vide various information, such as the list of blocks they won, payouts, even min-
ers’ addresses that created the blocks they won. We identified 272,414 blocks
B and 157,931 payouts (transactions) T created by the ten mining pools4. The
transactions also contain 373,559 inputs I with 2,603,108 mixins M . The blocks
B contain coinbase transactions that produce new outputs of CO. The number
of CO is identical to the number of new blocks B. Transactions I contain a total
of 1,181,501 outputs O.
4 As of 14 November 2019.
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Figure 2 shows the distribution of the number of transactions we recorded.
Supportxmr has the most significant percentage, with 82.4% of all payouts, fol-
lowed by Crypto-pool which contributed 13.7% of all payouts. Xmrpool.eu and
Xmrpool.net are accounted for 2.1% and 1% of all payouts, respectively. Not
every mining pool provides the same information and in the same fashion. As a
result, we could not find any payouts made by Minexmr, as shown in the Table 1.

Fig. 2. The distribution of the captured mining pools payouts.

Table 2 shows the detail of the payouts. From the data we collected, there
are 851,341.8 XMR, or about US$54.49million5, paid by the mining pools to the
miners. The information also shows that although Crypto-pool has a much lower
number of payouts, its total payouts is 50% bigger than Supportxmr. There are
mining pools that provide the number of payees for each payout. However, there
are also mining pools that do not publish the number of payees information.
We adjusted the empty information by using estimation based on the number of
outputs on the payouts. In average, Crypto-pool pays 2.54 XMR to each payee.
Monerohash pays an average of 1.13 XMR to each payee, followed by XmrpoolNet
and Supportxmr.

Table 2. The details of payouts data from ten mining pools.

Mining pools Total XMR Num.Payouts Avg. XMR/

Payouts

Total

payees

Avg. XMR/

Payee

Crypto-pool.fr 497,377.91 21,565 23.06 195,483 2.54

Supportxmr.com 333,155.12 130,097 2.56 724,373 0.46

Xmrpool.eu 13,439.87 3,292 4.08 41,442 0.32

Xmrpool.net 6,292.01 1,638 3.84 7,690 0.82

Monerohash.com 928.84 106 8.76 822 1.13

2miners.com 118.06 259 0.46 584 0.20

Coinfoundry.com 30.00 170 0.18 1,692 0.02

Xmr.nanopool.org – 500 – 3,949 –

Dwarfpool.com – 304 – 517 –

5 US$64 per XMR, according to Coingecko.com exchange rate as of 14 November 2019.
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4.3 Traceability Analysis

We base our traceability analysis on mining pool business processes. Mining
pools can use their mining reward to pay their miners. It is also possible that
the payouts to the miners spend change coins from previous payouts. Based on
these two possibilities, we constructed our data set by using the following rules
R1.

R1.1 The transaction ti1 must be from the set of transactions T
R1.1 Each mixin mi

1 ∈ M in the transaction inputs is either:
(a) a coinbase transaction output where the same mining pool wins the

block, or
(b) an output of a transaction created by the same mining pool.

We apply the rules R1 to our data set T , M , and I that we curated from the
ten mining pools to produce T ′, I ′, and M ′.

By using the rules, we identified 147,827 transactions T ′ (where T ′ ⊂ T )
with 275,499 inputs I ′ (where I ′ ⊂ I) that contain qualified 393,525 mixins M ′

(where M ′ ⊂ M).
Next, we conducted traceability analysis by using the following rules R2.

R2.1 Each input ii2 ∈ I ′ contains exactly one mixin mi
2 ∈ M ′, where the mixin

mi
2 is from the same mining pool as ii2.

R2.2 For an input ii2 ∈ I ′ that contains x number of mixins from the same
mining pool, rule R2.1 must identify all x − 1 mixins.

By applying rules R2 to I ′, we identified 218,957 traceable inputs I ′′, where
I ′′ ⊂ I ′. The traceable inputs are 59.2% of all inputs in I and 78.7% of all inputs
in I ′. The result is roughly 3 to 4 times more successful than key reuse traceabil-
ity analysis after Monero hard forks. [6,19]. However, our proposed analysis’s
number of traceable inputs is less than the known zero mixin and cascade effect,
ring usage, and Monero unencrypted Payment ID analyses. The comparison is
shown in Table 3 (Fig. 3).

Table 3. The result of traceable inputs from known traceability analysis techniques.

Traceability techniques Traceable inputs

Zero mixin and cascade effect [12] 3,937,331

Ring usage [18] 1,142,383

Monero unencrypted Payment ID [18] 332,987

Mining pool payouts (our proposal) 218,957

Key reuse [6] 73,321

Key reuse [20] 53,162

Closed set [22] 3,017
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Fig. 3. Traceable inputs on each mining pool.

4.4 Multi-candidate Untraceable Inputs

We also discovered that our rules in Sect. 4.3 were unable to trace 56,842 inputs
from our data set I ′′. There are 586 inputs contain one ring member that fit
in our rules R1 and R2. However, other inputs have spent the associated ring
members of these inputs. It is possible because of our incomplete data set. Mining
pools’ transactions that are not payouts, such as cashing out their profits, are
not published. The detail is shown in Table 4.

Almost all of the untraceable inputs have two or more qualified ring members
that fit our R1 and R2. These inputs are untraceable because the rules cannot
decide which ring members are spent by the inputs. About 93% of the untrace-
able inputs are from Supportxmr, while 7% of them are from Crypto-pool. This
finding shows that the mining pools tend to add their outputs as ring members
when creating transactions. However, according to the default Monero wallet’s
mixin selection distribution algorithm, 50% of all mixins must come from blocks
generated in the last 1.8 days. It means large mining pools have a higher proba-
bility of inserting their outputs as mixins in new transactions. They frequently
send payouts to miners compared to small mining pools that send payouts less
frequently.

4.5 Second-Order Traceability Analysis

We define second-order traceability analysis by searching for unlisted transac-
tions X �⊂ T . We also define a transaction tx := {i1x, i2x} → {o1x, o2x} where
tx ∈ X, ix is an input to tx and ox is an output of tx. The transaction tx
includes at least one output o ∈ O in one of its mixins MX , and at least one of
its outputs omx are in M . The case diagram for second-order traceability analysis
is shown in Fig. 4.
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Table 4. Multi-candidate untraceable inputs in our data set.

Num. of qualified ring members Data count Percentage

1 586 1.03

2 39,418 69.35

3 13,576 23.88

4 2,860 5.03

5 369 0.65

6 31 0.05

7 2 0.004

The search back-tracks all known transactions T to find transactions X. The
searching process exhausts all possible paths starting from the outputs to inputs
and all mixins. All possible traceable inputs from X are defined in IX.

We then identified 18,171 possible traceable inputs (IX) from 11,615 trans-
actions X. However, inputs in IX has two or more possible spent outputs. We
define I ′

X as a set of inputs I ′
X ∈ IX that has exactly one possible spent output

that satisfies o ∈ O and o ∈ MX . We discovered 5,501 traceable inputs that
satisfy the requirements.

Fig. 4. Second-order traceability analysis. In the diagram, t6 ∈ X and i61 is traceable.

4.6 Additional Analyses on Mining Pools’ Public Information

Although Monero addresses are not usually made public, Xmr.Nanopool and
Coinfoundry publish Monero addresses of miners who won the blocks for the
two mining pools. We discovered 339 Monero addresses from our data set6. We
also utilised the Monero address list published by Palo Alto Networks (PAN)7.

6 https://github.com/sonicskye/monero-miningpool-data/blob/master/miner-
addresses.

7 https://github.com/pan-unit42/iocs/blob/master/cryptocurrency miners/xmr
wallets.txt.

https://github.com/sonicskye/monero-miningpool-data/blob/master/miner-addresses
https://github.com/sonicskye/monero-miningpool-data/blob/master/miner-addresses
https://github.com/pan-unit42/iocs/blob/master/cryptocurrency_miners/xmr_wallets.txt
https://github.com/pan-unit42/iocs/blob/master/cryptocurrency_miners/xmr_wallets.txt
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PAN investigated cryptocurrency mining activities ran by malware applications
and discovered 2,341 Monero addresses [5].

We discovered 914 traceable inputs that spent outputs from previous trans-
actions, where the spending transactions and the previous transactions have the
same unencrypted Payment ID (UPID). The result shows that the method pro-
posed by Wijaya et al. [18] is still applicable at the time of writing. However,
due to the limited amount of data we collected, we could not produce the same
results. The UPID feature might not be available in the future. Monero devel-
opers have stated that they will phase out the UPID and replace it with the
encrypted Payment ID (EPID) and subaddress8.

Based on the traceable inputs we discovered in Sect. 4.3, we analysed the
age of all identified spent outputs. Monero’s current block production time is
roughly one block every two minutes9. The finding in Fig. 5 shows that the age
of around 81% of the spent outputs is less than 300 blocks or roughly 2.5 h. The
age of the other 18% of the known spent outputs spans from 300 blocks to 9,400
blocks, or between 2.5 h to 3.3 days.

We also discovered 99,389 spent coinbase outputs. The age of the spent out-
puts from coinbase transactions also show an identical figure to Fig. 5. The figure
shows that the mining pools do not distinguish whether the spent outputs are
from the previous transactions or the coinbase transactions. Although the coin-
base outputs cannot be spent at least two hours (or 60 blocks), this restriction
does not make much difference to the figure.

Fig. 5. The output age of known traceable inputs.

8 https://web.getmonero.org/2019/06/04/Long-Payment-ID-Deprecation.html.
9 According to https://bitinfocharts.com/comparison/monero-confirmationtime.html,

the current block production time was shifted from one block every minute to one
block every two minutes end of March 2016.

https://web.getmonero.org/2019/06/04/Long-Payment-ID-Deprecation.html
https://bitinfocharts.com/comparison/monero-confirmationtime.html
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From the traceable inputs we discovered in Sect. 4.3, we identified 1,578,094
inputs from 1,057,833 different transactions that utilised the traceable inputs as
mixins. About 98% of the inputs only use less than three of the traceable inputs,
where on average, the transactions suffer 12% reduced anonymity or only 78%
effective anonymity.

5 Possible Countermeasures

We propose possible countermeasures to the identified problem of a privacy leak
from the published information by Monero mining pools. Our proposals include
data clean-up, transaction obfuscation, and provable data publication.

One of the most obvious ways to avoid the identified problem of traceable
inputs of mining pools’ payouts is not to make the payout data available to the
public. Instead, related parties such as miners can receive limited information
from the mining pools. To access payout data, a miner needs to satisfy a simple
authentication mechanism, for example, by using his or her Monero address.

5.1 Transaction Obfuscation

Churning. Mining pools can reduce the traceability risk by churning their coins
before spending them to pay their miners. Churning [8] is done by spending the
coins and send them to the user’s address(es). The purpose of churning is to
increase the total number of mixins or possible spent inputs and improve the
sender’s untraceability [8]. Churning also increases the distance between the
original outputs and the current outputs in the wallet [7].

Churning can mitigate against second-order traceability analysis (Sect. 4.5).
Churning increases the difficulty of finding a mining pool’s unlisted transactions.
With churning, the number of searches s is estimated by s = (i ∗ r)c, where i is
the average number of inputs per transactions, r is the average ring size, and c
is the number of churning rounds.

Own Outputs as Mixins. The analysis we conducted in Sect. 4.4 provides an
insight into a new obfuscation method. If the mining pools keep publishing won
blocks and payout transactions, their mixin selection algorithm can be improved.
We suggest adding at least one of their outputs as mixins in the newly created
transactions. Supportxmr uses this scheme. However, it is also important not to
create a closed set when creating mixins of own outputs [22]. In order to use the
method effectively, a mining pool needs to create more frequent transactions.
Setting a lower minimum payout and enabling individual payout can increase
the mining pool’s number of transactions.

5.2 Accountable Data Publication

Mining Pools’ Monero Tracking Keys. Monero provides an accountability
feature called tracking key [16]. Monero uses two sets of private and public keys,
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{(a,A), (b,B)} in its system. A Monero address consists of the two public keys
PK = {A,B}, while a Monero private spend key consists of the two private
keys PR = {a, b}. Monero’s tracking key consists of one of the public keys and
one of the private keys TR = {a,B}. Unlike the private spend key PR that can
spend coins, a Monero tracking key cannot. Its sole purpose is to detect incoming
Monero transactions.

The tracking key of each mining pool can then be published. The tracking
keys of all mining pools can identify which blocks are won by each mining pool
by using the following logic. Suppose the tracking key of a mining pool receives
a payment from a coinbase transaction of a block that indicates the real mining
reward in addition to the collection of transaction fees. In that case, it indicates
that the mining pool won the block. Publishing Monero tracking key can weakly
mitigate a malicious mining pool that falsifies block production data (mining
power or won blocks). However, tracking key publication is voluntary. While
most mining pool operators are approachable, it is infeasible to enforce the same
policy to solo miners. Unwilling miners or mining pools can also avoid tracking
by creating new addresses or subaddresses for every mining cycle.

Slushpool’s Hash Rate Proof. Slushpool, a Bitcoin and Zcash mining pool,
created Hash Rate Proof (HRP)10, an algorithm to check the correctness of the
mining pool’s total hash rate. The mining pool also publishes shares data of
its miners per hour as the input for its algorithm. Each share data contains
three parts, namely block header, coinbase transaction, and Merkle branch. The
following method verifies the share data. First, the verifier computes the Merkle
root hash by using the coinbase transaction and Merkle branch hashes. The
Merkle root hash needs to be included in the block header’s byte number 36 to 68.
Each share also contains a unique string, ’/slush/’, in its coinbase transaction
which verifies that the share was submitted to Slushpool.

A Monero mining pool can adopt HRP to improve their mining activities
transparency. The benefit is three-fold:

1. to help identify the mining pool that wins a block; the verifier can further use
the mining pool’s tracking key TR (Sect. 5.2) to check whether the mining
pool receives the block’s mining reward;

2. to prove that a miner wins the block without publishing the miner’s address;
3. to prove that a miner’s shares contribute to mining the block.

A Monero miner can refer to HRP data to determine whether the payouts she
receives from the mining pool reflect her contribution to the mining pool accord-
ing to the mining pool’s reward scheme. The mining pool only needs to publish
the total amount of payouts without further details on the payouts, such as
transaction IDs, amounts, and recipients’ addresses. Although HRP can miti-
gate incorrect block production data, its problems are also identical to publishing
tracking key.

10 https://slushpool.com/help/hashrate-proof.

https://slushpool.com/help/hashrate-proof
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6 Mining Pool Feature Analysis

In this section, we discuss possible reasons for publishing mining pool data. We
also analyse the top ten Monero mining pools’ characteristics to identify the
miners’ preferences in mining pool selection.

6.1 Mining Pool Data Publication and the Lack of Verification

The root cause for traceable payout transactions is that the mining pools publish
the list of blocks they won and the miners’ list of payout transactions. The data
published by mining pools is probably for promoting their services. The mining
pools would also want to be preferable to miners by providing evidence to the
miners that they are productive, robust, and behave honestly [2].

Suppose the related mining data is not published by mining pools, with all
Monero anonymity features in place. It is infeasible for the miners to deter-
mine how many blocks the mining pools won and how many payouts are made
by the mining pools to each miner. The Monero mining-related data collection
approach is different compared to Bitcoin. In Bitcoin, the mining pools that
created the blocks can be determined based on the coinbase transactions’ desti-
nation addresses which belong to the mining pools or the miners. However, since
Monero uses the one-time public key (OTPK) technique, the coin receivers are
unlinkable.

In Monero, publishing mining information is arguably useful. There is no
means to verify the published list of won blocks and a list of payouts. Mining
pool information portals such as Miningpoolstats.stream11 rely on mining pools’
published information on the mining pools’ websites. A malicious mining pool
can create their fake list of won blocks that consists of blocks that they did
not win. An artificial list of payouts can also be created maliciously by creating
Monero transactions that pay to their addresses. Monero anonymity hinders the
verification of the payouts and the number of coins on each payout.

A malicious mining pool can also reduce their accumulated mining power
by modifying their published mining information. The malicious effort can be
identifiable by comparing the Monero mining difficulty level and the accumulated
mining power from all known mining pools. However, this method is ineffective to
identify the malicious mining pool and infeasible to determine how much mining
power reduction, since there is a possibility of solo miners that contribute their
mining power to Monero.

6.2 Characteristics of Top Ten Monero Mining Pools and Miners’
Preference

Accumulated Mining Power and Mining Pool Data Publication.
Table 5 shows several features of the top ten Monero mining pools according
to Miningpoolstats.stream. Minexmr and Supportxmr, the top two on the list,

11 https://miningpoolstats.stream/monero.

https://miningpoolstats.stream/monero
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Table 5. Monero mining pools rank list based on the pools’ hashrate compared to
Monero network total hashrate. Data was taken from Miningpoolstats.stream on 18
December 2019.

No. Mining pool Reward system Pool fee
(%)

Min. pay
(XMR)

Num. of
miners

X-factor Pool
hashrate (%)

1 Minexmr.com PPLNS 1 0.5 9,315 Simple mining calculator 37.1

2 Supportxmr.com PPLNS 0.6 0.1 4,697 PPLNS window visualisation 28.6

3 F2pool.com PPS 3 0.1 N/A Android/iOS app; multicoin 11

4 Xmr.nanopool.org PPLNS 1 0.1 1,931 Multicoin 8

5 Xmrpool.eu PPLNS 0.9 0.1 365 N/A 4.5

6 2miners.com SOLO 1.5 0.1 26 Multicoin 1.8

7 monerohash.com PROP 1.6 0.5 163 Simple mining calculator 1.7

8 Moneroocean.stream PPLNS 0 0.003 891 Auto switch to different coins 1.6

9 Hashvault.pro PPLNS/SOLO 0.9 0.11 675 Multicoin 1.6

10 Miningpoolhub.com PPLNS 0.9 0.05 3,059 Auto switch to different coins 1.1

are known to publish their won blocks on their respective website. Both mining
pools control more than 65% of the total hash rate in the network. However,
F2pool on the top three of the list does not publish mining-related data such
as won blocks and payout transactions on its website except its accumulated
mining power.

Mining Pool Reward Systems and Fee. Table 5 shows the reward systems
adopted by the top ten Monero mining pools. The majority of the mining pools
use PPLNS as their reward system, except F2pool that uses PPS. Although
F2pool charges more pool fee than other mining pools, it accumulated enough
mining power to sit in the top three of the list. The result attests that PPS
is somewhat appealing to the miners because the miners do not suffer mining
reward variation risk, assuming that the system’s total mining power does not
change.

Minimum Payout. A miner automatically receives a payout in a pool min-
ing activity whenever his or her balance reaches a minimum payout. A small
minimum payout means that the miner will receive more frequent payouts than
a higher minimum payout. Table 5 shows that half of the mining pools offer a
minimum payout of 0.1XMR to miners. Minexmr as the most significant mining
pool offers a minimum payout of 0.5XMR, five times higher than the other five
mining pools. On the other hand, Moneroocean.stream that offers the smallest
minimum payout of 0.003XMR can only attract 891 miners and with a total
hash rate of 1.6% of Monero network hash rate, which means that minimum
payout is not essential to the miners.

We define X-Factor as any observable features on a mining pool’s website
that may increase a miner’s preference to join the mining pool. Based on our
observations12, Supportxmr provides visual information about how many blocks

12 The observation was conducted on 19 December 2019.
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the mining pool produces in a PPLNS window and how much efforts required
to win each block. F2pool.com provides Android and iOS applications to miners
who prefer to monitor their mining performances. Interestingly, Minexmr that
controls the biggest portion of Monero mining power (37.1% at the time of
writing) does not have any noticeable X-Factor on its website other than a
simple mining calculator. Minexmr uses an open-source mining pool application
provided by Matthew Little13.

7 Conclusion and Future Work

In this paper, we collected and analysed information published by ten Monero
mining pools. The published information, including the list of won blocks and
payout transactions to miners, can be utilised to trace the payout transactions’
real outputs. Our traceability analysis shows that 59.2% of inputs are traceable.
We also discovered that the output age of known traceable inputs is between
2.5 h to 3.3 days, regardless of whether the spent coins are from previous transac-
tions or mining rewards (coinbase transactions). Our findings highlight that the
seemingly harmless information published by mining pools becomes a source of
anonymity leak in Monero environment. For the identified problems, we propose
simple mitigation strategies to improve Monero transactions’ anonymity that do
not require fundamental changes to the Monero protocol. However, unlike known
Monero anonymity problems [9,14,18], our presented attack is independent to
Monero protocol. A successful mitigation strategy requires cooperation among
existing (and future) mining pools to refactor their data transparency strategy.
The goal can be achieved, for example, by setting a new community standard of
mining pool accountability.

We discover little to no correlation between publishing mining-related infor-
mation and miners’ preference for mining pools. Most mining pools publish
blocks they won and payouts to the miners, and therefore they are mostly avail-
able on the mining pools’ websites. F2pool that does not publish the same data
is currently the third-largest Monero mining pool, which indicates that Mon-
ero miners do not consider data transparency when selecting a mining pool to
join. Therefore, Monero mining pools should remove the list of won blocks and
payouts from their websites.

We investigated different characteristics of the top ten Monero mining pools.
Our investigation includes financial factors such as reward system, mining pool
fee, and minimum payout and external factors such as distinguishing features
from competitors. Each mining pool has its appeal to the miners. Miners who
specialise in mining Monero would prefer Minexmr as one of the oldest and
most established Monero mining pools in the market. Supportxmr that provides
a lower pool fee becomes the second-best Monero mining pool. The mining power
distribution between the major mining pools in Monero is understandable since
the community would avoid any majority mining pools and prefer a balanced
mining power distribution [1].
13 https://github.com/zone117x/node-cryptonote-pool.

https://github.com/zone117x/node-cryptonote-pool
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For future work, we focus on finding a better solution to improve the trans-
parency of their mining activities without leaking their transactions’ privacy.
The solution may require modifications to the Monero mining protocol.
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Abstract. A smart contract is a program that resides its binary code
and states in blockchain to provide contract-like functionality. The binary
code is unchangeable once it is deployed into the chain. This can ensure
the underlying blockchain to be an append-only decentralized and secure
database, but it may also bring potential threats. For example, Selfde-
struct is a typical command used to disable a smart contract and clean
all relevant information. It is believed that if an address of a deactivated
contract is inaccessible, it is impossible for an attacker to explore. How-
ever, in this work, we identify that instead of erasing or overwriting the
previously recorded data, the smart contract’s running environment may
store its latest data and states in the latest block even after using Self-
destruct. Motivated by this observation, we show how these remained
traces can reveal private information, i.e., how a privatized function can
be externally accessed, and discuss how to attack the contract without
knowing its application binary interface (ABI). In the end, we also discuss
some potential solutions to protect information leakage in such scenario.

Keywords: Blockchain security · Decentralized system · Selfdestruct ·
Consensus algorithm · Smart contract

1 Introduction

Digital currency is a new form of currency that represents assets digitally, in
which all these assets can be used as a regular currency. As a subset of digital
currency, cryptocurrency inherits the characteristics of digital currency and can
provide the following attributes [19].

– The state of the currency is maintained through distributed consensus
– By being maintained in a distributed manner, the system can keep an

overview of all coins and their ownership
– The ownership of the coins can be validated cryptographically
– The rules of creating a new coin are clearly defined, the system assigns the

origin and the ownership for new coins
– The system only allows the transaction of coins under the change of ownership

issued by their owner
c© Springer Nature Switzerland AG 2021
J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 451–469, 2021.
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– If there are two instructions entered simultaneously, informing the change of
ownership on the same coin, then the system performs only one of them

B-Money is the first digital currency that forms the concept of mining and
transferring coins [21]. However, it does not clearly consider the inflation prob-
lem, in which Bitcoin forcefully limits the problem by reducing the total coins.
Being the first digital currency that meets the requirements, Bitcoin is heavily
relevant to B-Money, while using broadcast and evidence to prove a transaction’s
legitimacy. Motivated by the success of Bitcoin, blockchain technology receives
much more attention, which can be considered as a cryptographically secured,
append-only, and decentralized database.

Although the new occurred transaction still requires to be broadcasted
through the whole network, a consensus algorithm is used to ensure that all chain
maintainers (or miners) can reach an agreement. The consensus algorithm in
blockchain ensures the consensus state of all transactions and provides unbreak-
able proof by cryptography for them. As all participants are required to keep
the whole or partial blockchain on their premises, everyone can audit and check
each transaction. This makes it difficult for an attacker to alter any existing
transaction.

The term “smart contract” can be traced to the early 90s, where Nick Szabo
referred it as “a set of promises, specified in digital form, including protocols
within which the parties perform on these promises” [29]. The smart contract
archives the term with the aid of blockchain to keep its statement. The state
movements are considered as transactions, which by the nature of blockchain, are
audited and validated by every participant [12,30]. The append-only blockchain
provides the desirable properties of smart contracts:

– The contract’s code cannot be altered once uploaded.
– The contract state cannot be reversed. Hence when a function is executed,

there is no way back.

According to a blockchain study provided by Oliva et al. [31], there was a
rapid increase of smart contracts created on Ethereum. In 2020 Q1, Ethereum
blockchain could count on up to around 2 million deployed smart contracts [40].
From a programmer’s perspective, a smart contract is just as the same as a
regular program. However, a regular program saves and holds its state in internal
and external memory. A smart contract keeps and stores them on blockchain,
in which every participant runs the contract and shares the states. The creation
of smart contracts allows developers to deal with the cash flow intelligently
and automatically. It also brings some added values, i.e., backends with high-
availability can be easily achieved, and the data can be simply uploaded onto
the chain.

Motivation. In practice, to comply with the underlying blockchain, occurred
transactions and execution codes are immutable. While cyber attackers may
consider these unremovable codes as a way to breach the security of the smart
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Fig. 1. A program that figures out the relation between contracts and transactions

contract and privacy of personal data [33]. Further, in order to provide muta-
ble and auditable program state storage for the smart contract, each change of
the state is regarded as a single transaction on blockchain. However, this imple-
mentation is a double-sided blade. It complies with blockchain and provides
transparent and trusted result for the network. It also makes every participant
able to investigate what state has been saved into the program, causing potential
breaches in contract security and threats to personal privacy [14].

In Ethereum, a user should hold two critical information in order to interact
with a smart contract.

– Contract’s address: When a contract is successfully deployed, an address
is given by Ethereum for anyone who would like to access the contract.

– Application Binary Interface (ABI): This is a piece of information that
specifies how programs should interact with the smart contract.

It is supposed that without knowing the ABI information of relevant contract,
the end-users should have difficulty interacting with the contract. However, as
every change of the smart contract’s program state requires a transaction, these
information pieces may provide a hole for attackers to realize the access to the
contract without knowing the ABI [41], i.e., it is easy to locate known public
functions in a contract by checking some lists such as 4byte directory1.

Contribution. In this work, we notice that the binary code is unchangeable once
it is deployed into the chain. This may be used by cyber attackers to compromise
the blockchain. For instance, Selfdestruct is a typical command used to disable
a smart contract, and clean all information in a smart contract. It is believed
that if an address of a deactivated contract is inaccessible, then it is impossible
for an attacker to explore. While instead of erasing or overwriting the previously
recorded data, the running environment may store the latest data and states
of smart contract in the latest block, leaving traces of the chain’s changes. As
shown in Fig. 1, we can know the relationship between the smart contract and
the transactions. In this work, we discuss how these traces (even after using

1 https://www.4byte.directory/.

https://www.4byte.directory/
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Selfdestruct) can reveal sensitive information or private data, i.e., we represent
what an attacker can interfere with a contract without an ABI.

Paper Organization. The remaining parts can be organized as below. Section 2
introduces the background on decentralized ledger technology, consensus algo-
rithm and smart contract. Section 3 explains the potential threats, details our
attack and analyzes the impact. Section 4 introduces the possible solutions and
Sect. 5 concludes our work with future directions.

2 Background and Related Work

2.1 Decentralized Ledger Technology

A decentralized system relies heavily on a correctly distributed state. Hence the
datastore’s integrity and consistency of the whole network is crucial to the system
operation. Cryptocurrency platforms are the prime example of a decentralized
system that heavily relies on data integrity. To ensure each node sharing the same
copy of the database is vital, but it is not an easy task without a centralized
party. The issue is focused by decentralized ledger technology, which can provide
the following characteristics [1]:

– To utilize a P2P network or protocol
– Each node holds a current copy of the database, where the node can maintain

and update
– When there are different versions of database, a pre-agreed mechanism can

be used to determine the correct one
– If all nodes reach the consensus, they can update their own copy with the

new copy
– Each database copy and every record can be validated and secured by cryp-

tographic techniques

If a method contains the above characteristics, it is classified as a decentral-
ized ledger technology, such as blockchain technology. The name of Blockchain
vividly describes how the mechanism works. In such system, transaction collect-
ing occurred periodically. When a transaction occurs, the party will broadcast
the transaction to notify the network. Recognition of a transaction is based on
the number of nodes that can recognize the transaction. These recognized records
are collected and ready to seal into a block through a consensus algorithm.

The consensus algorithm plays a crucial role in the system, which decides
who can form the block, and in some cases, generates the sealing hash for the
latest block. The decided node for next block-forming, known as sealer, then
broadcasts the block into the network. The nodes can append the block into
their local copies. The new block’s header contains a sealing hash and a pointer
linked to the previous block, which forms a rigid chain-like data structure.
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2.2 Consensus Algorithm

There are many ways for a group of people to reach an agreement. The situation
is the same for a group of nodes to reach a consensus state. Different consensus
algorithms have distinct advantages and disadvantages. For example, some are
incredibly secure through the computational aspect. However, these algorithms
can be notorious for performance impact when there is an increase of network
nodes or the chain’s length. The effectiveness and efficiency of an algorithm can
determine the nature of a blockchain platform. The consensus algorithm ensures
the blockchain platform to achieve the followings:

– Can validate each transaction.
– Can prevent chain fork, which often occurs when two or more blocks have the

same block height.
– Some can elect a sealer to seal the block.

Proof of Work (PoW). Designed originally with the purpose of defending against
denial-of-service threat, PoW requires every service obtainer to solve a compu-
tational challenge and prove the determination of obtaining the service. This
concept was firstly presented in 1993 [2], but the term of PoW was coined in
1999 [3]. As it is important to keep every database copy unified, PoW enables the
chain to elect a miner and seal the next block via computational competition.
This ensures the chain’s unity that there is only one sealer for each new block.
Motivated by the success of Bitcoin, PoW has been used in many blockchain
platforms [6].

Intuitively, there is no attraction for the miner to serve the network and cre-
ate new blocks without rewards. Hence, most PoW-based blockchain platforms
provide rewards if a miner creates a block. Though the computational proof
makes it challenging for attackers to compromise PoW, people start question-
ing the efficiency, fairness, and computational waste the PoW brings and the
notorious 51% attack. Under the 51% attack, an attacker, who has 51% or more
computational power of the whole network, can enjoy a predominant advantage
of winning the sealer competition [4]. Such issue was found in some blockchain
platforms [5].

Another problem of the PoW is the rule of following the longest chain. Under
the design of PoW, the occurrence of multiple nodes providing answers to the
next block challenge is undeniable. According to Nakamoto [6], the block can be
followed by different nodes. However, if the length of one of the forked chains
surpasses others, all nodes should follow it. By contrast, Courtois [34] showed
that the occurrence of version ambiguity PoW-based ledger did occur. It high-
lighted that the capacity of current crypto currencies to resist double spending
attacks is poor and most current crypto currencies are highly vulnerable.

Proof of Stake (PoS). Different from PoW, PoS elects a sealer in a different
approach - choosing a preferable stake. To join the election, the miner has to
take some of its funds as a stake to join. The system then chooses the preferable
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stake, and the owner of the chosen stake wins the election as the sealer for the
next block [7]. Hence it is important to decide the preferable stake. For example,
some PoW-based systems choose the stake that has the longest coin-age. The
term of coin-age describes the duration a coin is kept in an account. Although a
PoS-based blockchain may not suffer from a 51% computational attack, it suffers
from a 51% wealth attack. That is, a party who owns 51% of a network’s total
wealth has an absolute advantage of winning the election [8].

For example, Lee and Kim [32] proposed a profitable 51% attack model for
PoS blockchain. Rather than the risking the attacker’s assets into the sealer
election, they performed the attack by shortly selling a tremendous number of
coins after 51% of the whole network’s assets have been purchased. Then, as
the attackers hold the ultimate advantages of forming the next block, they may
perform various attacks, e..g, double-spending. As the depreciation is occurred,
attackers can buy the coins back for short covering.

Practical Byzantine Fault Tolerance (PBFT). How to reach a consensus state
is always a challenging task for a decentralized system. The famous dilemma
“Byzantine General Problem”, described by Lamport in 1982, stated the dif-
ficulties for a multiple-node asymmetric system to reach consensus. The story
describes an imaginary scenario where several generals cooperate in taking down
a city. However, due to geographical limitations, these generals are only able
to communicate through their messengers. Although each general can decide
whether their troop to attack or retract, they have to take the same action,
whereas partial actions may cause severe consequences [9].

PBFT is proposed as a solution to the Byzantine General Problem. In con-
trast to most consensus algorithms that focus on electing a sealer for the new
block at a time, PBFT ensures that all nodes pack the same new block to their
local copy. In a PBFT network, they perform multiple cross-checks when a node
receives a command. If most nodes confirm that they receive the same message,
the command is considered as genuine [10]. In comparison with PoW and PoS,
PBFT does not require to solve computing challenges nor a round of selection;
however, it requires tremendous network resources. This enables PBFT to have
a steady performance in a small network, but its transaction speed may slow
down when the number of nodes increases [12].

2.3 Smart Contract

A contract can be defined as “an agreement between any two or more parties,
especially with one legally enforceable” [20]. In such an agreement, criteria and
the relevant actions are expected, and the result should be irreversible once exe-
cuted. A smart contract shares the similar characteristics with a normal contract.
However, auditability and enforceability are based on the underlying blockchain.

From a programmer’s perspective of view, smart contract is a program that
resides its binary code and states on the chain [13]. The practice suggests that
the binary code of a deployed contract is immutable, while making its states
immutable is unrealistic. This is because every change of its state is considered
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as a transaction. The last transaction is considered as the latest state for the
smart contract [11,15].

Most existing smart contract platforms adopt a virtual environment to exe-
cute a smart contract, which requires code compiling into intermediate binary
code for the virtual environment. The virtual environment then executes the
code accordingly. For example, Ethereum, the most well-known smart contract
platform, requires an Ethereum Virtual Machine (EVM) to run smart contracts.
The smart contract should compile into EVM bytecode before being executed
on EVM. Solidity, developed by Ethereum Team, is the first programming lan-
guage designed specifically for smart contracts. However, being a new language
may also bring some potential vulnerabilities [14]. Recently, the Ethereum Team
developed a new security-oriented programming language for smart contracts,
namely Vyper [16].

Though both Solidity and Vyper are inspired by mature programming lan-
guages, which have a code style closely related to their imitations, they still
require programmers to get familiar with the syntax. As this process is time-
consuming, some platforms alternatively use an intermediate binary code sup-
ported by major programming languages as the virtual machine code. For exam-
ple, EOSIO is one of them that uses Web Assembly (WASM) as their intermedi-
ate binary code for the virtual machine [17]. Some platforms such as Hyperledger
may simply support more programming languages instead of using an existing
intermediate binary code [18].

2.4 Self-destruction

To explain on how scraps that left by the contract transaction can cause threat
even after the contract has been destruct, we need to further investigate why
contracts require a self-destruct function. A destructor, in an object-oriented
programming, is a method that can be invoked before the memory of the object
is released [35]. It also applies on Ethereum smart contract, and provides a way
to release smart contract from blockchain’s latest state to save space [33,36].

However, the description of how self-destruct function can save space and
reduce size may cause misunderstanding and cognitive conflict of blockchain’s
immutability characteristics. Before looking into the technical specification of
Ethereum, we have to further describe the “state”, “transactions” and what the
underlying chain is securing [36].

– State is mutable, but there are conditions: In short, state is the sum
of database relationships. The information is stored as a merkle-patricia tree,
which maintains a mapping of bytearrays to bytearrays. Hence the state is a
calculation result based on the underlying chain.

– The relationship between transactions and smart contracts: There
are two types of transactions in a smart contract: contract creation and mes-
sage call. The contract creation call occurs when a contract is deployed. The
message call occurs when changes of program state have been made in a smart
contract, i.e., a variable has been updated.
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– What blockchain is securing: The underlying chain aims to secure the
occurred transactions. These records are cryptographically sealed, and their
integrity can also be cryptographically proven.

What has been saved is the size of the state. After the self-destruct of a smart
contract has been made, it is removed out from the next latest state. Although
the implementation of the self-destruct is just a simple way of saving expensive
storing resources according to the white paper, developers are holding different
points-of-view toward why a self-destruct function should be implemented in
their smart contracts.

Chen et al. [33] provided a complementary survey for Solidity developers to
understand what their attitude toward implementing self-destruct function in
smart contract. The top 2 arguments for positive supporters are summarized:

– For security concerns: If one or more security vulnerabilities have been
found in the smart contract, we can immediately stop the contract before
releasing a fixed version.

– For ease of upgrade: The self-destruct function allows them to quickly
remove the old version and upgrade to the latest.

However, there are some holding negative arguments, rather not to include
a self-destruct function:

– For security concerns: If the access permissions are not handled correctly
toward executing the self-destruct function, the security may be breached.

– For trust concerns: The use of smart contract technology is based on its
immutability character, self-destruct might break its immutability, raising a
concern for its end-users.

3 Our Proposed Threat

3.1 Potential Threat

The development of smart contract can add more values to the cryptocurrency
platform and provide the programmability to handle transactions intelligently.
Though we can program a smart contract similar to a normal program, the
underlying characteristics differentiate them.

Public and private access can be securely implemented in a normal program
with a multi-tasking operating system. This is because a program cannot access
other program’s variables without the authorization. The volatile memory can
also clean traces when the operating system recycles the dispatched memory or
cuts the power off. However, a smart contract will save its binary code and states
on the chain, resulting in a critical difference - once deployed, the information
is always there. When changing a variable in the contract, the virtual machine
needs to send a transaction into the blockchain client, leaving traces of the chain’s
changes.
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Fig. 2. Potential privacy threat reveals by traces. a) Step1: identifying the relationship
between the transaction and the contract, b) Step2: determining the function name,
and c) Step3: pulling the contract’s binary code.

Table 1. Platform

VM resources Software

Item Config Item Version

CPU Intel Xeon E-2176M @ 2.7GHz x2 Hypervisor vmWare ESXi 7.0

Memory 6 GB ECC DDR4-2666 Guest OS Ubuntu 20.04 LTS

Storage 32 GB NVMe SSD Blockchain Platform Ethereum 1.9.24

Network vmWare virtual network 1G Contract platform Solidity 0.4.18/0.7.5

Figure 2 depicts the blockchain’s characteristic of saving everything and the
programmers’ tendency of coding, which can become the breaking point to search
all interest and useful data out from a blockchain platform. Accordingly, we can
design an attack that is able to reveal sensitive information or possible clues by
analyzing the smart contract.

3.2 Our Attack and Impact

To explore the performance of our attack, Table 1 summarizes the environmental
configuration with Ethereum and Solidity.

Blockchain’s auditability and transparency is a double-sided blade, as it pro-
vides mutual supervision on datastore integrity. This is done by using both
strong cryptography and multiple update-to-date copies of the ledger sitting in
each participant’s premises. If we trust the platform’s immutability, meanwhile
we may lose the data privacy. As we discussed earlier, due to the state is the
calculation result of the relationships of effective data, the latest state may not
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contain a killed contract or ancient transactions. However, updating the state
requires transactions, where these records are permanently stored on the chain.

Depends on the developer, a self-destruct function may be implemented, and
it is the destructor of the smart contract [33]. By calling the destructor, the smart
contract will be invalidated. Programs with regular access can no longer run the
contract through the address because an invalidated smart contract cannot be
located in the latest state of a blockchain.

However, although the contract cannot be used according to the latest state
and its connection is removed from the latest state, it does not mean the data is
wiped. Transactions that are either ancient or supporting the latest state, could
be permanently stored in the blockchain. Hence, every data that feed into the
smart contract is there, including the code of the contract. These issues create
problems. As we have discussed earlier that a party who would like to run the
contract requires both address and ABI. These transaction scraps provide an
opportunity for attackers to either decompile the contract and find exploits, or
access private function without being noticed by the contract owner.

Fig. 3. A typical raw output of an Ethereum smart contract transaction

As shown in Fig. 3, a typical transaction of Ethereum smart contract should
contain the following attributes [22,23]:

– blockHash: Each block on the chain has its hash value. This attribute repre-
sents the hash value of the block that the transaction is sealed.

– blockNumber: The serial number of the block in which the transaction sealed.
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– from: Address of the transaction sender, which can be an account or a con-
tract.

– gas: The amount of gas (transaction fee) that can be used by the sender to
finish the transaction.

– gasPrice: The gas price proposed by the transaction sender. Gas price is
represented in the smallest value unit in the Ethereum, namely Wei.

– hash: The transaction’s hash value.
– input: The data that is sent along with the transaction.
– nonce: The number of transactions made by the sender prior to this particular

transaction.
– v, r, s: The transaction’s signature.
– to: The destination (receiver) of the transaction.
– transactionIndex: The index position of the transaction in the block.
– value: Value transferred in Wei.

Attack Steps. With the above attributes, we can use the following techniques
to form the attack set.

– Identifying the transactions belonging: Identifying the relationship
between the transaction and the contract is crucial as a typical large
blockchain may contain hundreds or thousands of transactions. There are
two types of smart contract transactions.
• The ordinary contract transaction

For an ordinary transaction, we focus on two attributes that are impor-
tant for us to identify: “input” and “to” attribute. The former attribute
includes the hash signature of the executing function and the input value,
while the latter attribute contains the address to the smart contract. In
this work, the “input” attribute is the one that raises our interest the
most.

Fig. 4. A raw output of a typical smart contract’s creation transaction in Ethereum
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Fig. 5. Signature generation using Keccak256.

• The contract creation transaction
A contract’s creation transaction is not only the first transaction a smart
contract would have, but also where the binary code of the smart con-
tract is located. Figure 4 shows the particular characteristic of the creation
transaction, there is a lack of destination address in the “to” column.
It is challenging for a user to find out the smart contract’s creator by
observing its creation transaction, but it does not mean that there is no
way to reveal [39]. This is because the contract address is the compu-
tational result of the sender’s address and a nonce, through a round of
recursive length prefix encoding and a round of Keccak-256 [24,25].

– Hashcatting the function name: When any party runs a function in the
smart contract, it needs to create a transaction with an input that follows
the format as shown in Table 2.

Table 2. The format of the smart contract transaction [26]

Attribute

Prefix Signature Arguments Decode (ASCII)

0x 4ed3885e 00000000000000000000000000000000 (STX)

00000000000000000000000000000002

00000000000000000000000000000000 (ENQ)

00000000000000000000000000000005

54657374320000000000000000000000 Test2

00000000000000000000000000000000

• Signature
This is a hash signature aiming to point out which function can be exe-
cuted in the contract. The hash value S is calculated based on Eq. 1 as
below.

S = Keccak256 (function name) [0 : 8] (1)

The function name may eliminate the name of the input variables, while
only data type is maintained. As shown in Fig. 5, a function in Solidity
specified as set (string memory message) will be shorten as set (string).
The first 4 bytes of the Keccak256 output is the signature of the function.
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Fig. 6. The source code of the smart contract

• Arguments
Each argument can be represented with a 32-Byte long string. The more
arguments are requested by the function, the longer the argument string
will be. Without proper encryption, every participant can access the infor-
mation, even the private function.

To determine the function name is crucial, as it helps an attacker realize
the contract’s overview and understand the meaning of the transaction data.
However, someone may argue that the function’s signature is impossible to
inference the original function name and the arguments, due to the latest
hash algorithm - Keccak. The statement may be true, but we can achieve it
in a different way.
Writing a program code with maintenance relies on clear documentation
of each function and memorable naming. The same situation applies to
smart contract. Using the optimized brute-force attack with a dictionary,
the 0x4ed3885e Keccak hash can be restored to “set(string)” within 30 s on
an ordinary computer.

– Decompile the smart contract
As we can locate and determine which creation contract belongs to which
smart contract, we can pull the contract’s binary code. The binary code may
appear gibberish, but provides some possible ideas for exploiting the contract.
As shown in Fig. 6 and Fig. 7, the decompiler can pick up the set function
in the smart contract, which returns a pseudocode indicating the original
deposit function. If we look closely to the program, we can have some ideas
of messing with the arg0 string to trigger potential overflow.
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Fig. 7. The output of the decompiler

In our experiment, we found that the compiler version may affect the decom-
piler’s performance. We then upgraded the compiler to the latest version,
but the decompiler turns out useless. We believe that it may be caused by
the new operation code or new optimization method in the latest compiler.
While upgrading to the latest compiler does temporarily prevent the decom-
pile attack for a moment, as shown in Fig. 8.

Impact Analysis. Combining the above technique and the transaction traces
on the Ethereum Blockchain, our attack can make the following impacts:

– Potential Data Leakage
In our demonstration, we reveal that every change of a smart contract’s state
appears as a transaction in blockchain. Such information cannot be retracted
as long as it is sent out. The smart contract’s running environment may store
its latest data and states in the latest block, leaving traces of the chain’s
changes. A single record of data may not be able to tell much of the full
story, but we can learn private data based on a huge pile of records.

– Looking for possible exploits
It is true that from a program’s perspective, it is impossible to interact with a
smart contract without specifying an ABI, even the program has the address
to the contract. However, by combining brute force with a dictionary on the
function name, the decompiling ability, and the ability to locate the contract
binary, an attacker can obtain an overview of the smart contract. Even if
they do not have an ABI reference to the smart contract, it is still possible
for attackers to create an ABI that matches the original part and interact
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with the contract. If none of them is available, attackers can create a raw
transaction that matches the pattern to interfere with the contract.

Fig. 8. The binary code compiled by the new compiler cannot be uncompiled

4 Possible Prevention

Before introducing the possible prevention, we first briefly summarized the attack
from the previous sections.

– Function Name Brute-Forcing: Message Call transactions are represented
in an 8-digit length of output result from Keccak hash of the function name.
It creates an opportunity for attackers to understand what this message call
is doing. Different from the passwords that need enough entropy to provide
well-built security, the function names tend to be easy to read and remember.
For this issue, we discuss how function name can be a password game in a
smart contract’s scenario (see Sect. 4.1).

– Data Leakage: Inside a message call, data that can feed into the function is
also recorded. Without taking proper manner to the input data, it can be
easily retrieved by any parties. For this issue, we discuss the encryption and
the consideration of on/off-chain (see Sect. 4.3 and Sect. 4.4).

– Security Breach: The “Public” function, in most programming languages
such as Java and C++, allows the function being accessed by other class,
a comparatively limited access scope. However, a “Public” function in
Ethereum acts differently. Every participant of the blockchain network can
run the function, even without its ABI being published publicly by its devel-
oper. Access control should be carefully programmed for public functions,
different from a normal program. Thus, as the contract’s creation code con-
tains the binary code of the smart contract, how to prevent decompiling for
further investigation is needed. For this issue, we discuss access control imple-
mentation and what existing tools can be applied (see Sect. 4.2 and Sect. 4.3).
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4.1 The Password Game

As we previously mentioned, the tendency to create a readable code and mem-
orable function is to make it maintainable, and it is not a big issue in a normal
environment. Once the code is compiled into executable, not only the function
name is mostly irreversible but also the program traces are erasable. It is true
that executable can be reversed through a decompiler, but the decompiled result
is usually in pseudocode, which needs efforts from attackers to realize. Further-
more, plenty of decompilation prevention services have been commercialized,
making such protection obtainable [37,38].

However, different from a normal program, every change of the variable cre-
ates traces in immutable storage. Also, the smart contract is ubiquitously avail-
able, and each function contains a hash value linked to the function name. Hav-
ing better accessibility than a normal program makes it easier for an attacker
to reach the program. Brute-forcing the function name also allows a user, who
does not have a copy of ABI, to interfere with the contract. To prevent the brute
force attack with a dictionary is similar to the creation of a secure password.

We provide a concept implementation to prevent the password game attack,
meanwhile providing some levels of code maintenance capability. A black box
with irreversible function is implemented, such that all calls are redirected toward
a function name with good entropy. For example, hashing the function name with
a shared salt. The demonstrated contract, as shown in Fig. 6, is generated as a
new smart contract for deployed, as shown in Fig. 9.

Fig. 9. The source code of the smart contract
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4.2 Mind the Exploits

Although the current decompilers for Solidity are still limited, which cannot
handle the new binary compiled by the new compilers, there are still many
smart contracts written with the old Solidity. Recompiling and migrating these
contracts to a recent version of Solidity may fix the issue, but this is a short-term
solution. For a long-term solution, we need to check the boundary condition to
prevent overflows and employ the code security checking tools [27,28] to prevent
potential exploits.

4.3 Access Control and Encryption

Hiding an ABI set and the contract address does make it difficult for an attacker
to locate and intrude the contract, whereas it cannot present all attacks. Proper
access control is essential, such as implementing require() into the function and
check the accessing party. In our given example, although the set (string) func-
tion can be exposed, the function can be accessed by the owner through imple-
menting the require() code into the function. By adding a layer of access control,
although the attacker may still identify the function and data that had been pro-
cessed, they cannot perform any action toward the function through replicating
raw transactions or hashing function name.

Another possible way is to encrypt the data in the variable, especially if the
contract is bounded with just two parties. However, for multiple parties, there
is a need to find a smart way to secure the data. For a dedicated network with
multiple parties, creating a private chain should be a solution.

4.4 On-Chain or Off-Chain

Different from usual mutable storage, the consideration of putting the partic-
ular data on-chain or off-chain is important. Although the contract owner can
deactivate the contract to prevent standard access from the program, the chain
does not remove any data before deactivation. Scanning through the chain can
reveal these data scraps to attackers, which may cause privacy threats.

5 Conclusion and Future Work

A smart contract is an important program for a blockchain system, while the data
and the binary code are unchangeable once they are deployed into the chain. For
instance, we can try to clean all information in a smart contract, but the smart
contract’s running environment may store its latest data and states in the latest
block, leaving traces of the chain’s changes. In this work, we discuss whether
and how these traces under a private chain can reveal private information, and
then present some potential solutions. In our future work, we plan to focus on
the following directions:

– Onto the Public Chain
Testing the practice onto a public chain and investigating how many contracts
can be revealed under our attack.
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– Decompiler for the new Solidity
The current decompiler we used is not effective for latest Solidity, which may
affect the attack performance.

– Brute force with more effective way
Using dictionary to aid the brute-forcing process is useful, but there is a need
to examine the overall time consumption.
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Abstract. Information Silo is a common problem in most industries,
while Federated Learning (FL) as an emerging privacy-preservation tech-
nique aims to facilitate data sharing to solve the problem. It avoids data
leakage by sharing the model gradient instead of the raw data. However,
there are some challenges of FL, such as Single Point of Failure (SPoF),
gradient privacy, and trust issues. This paper proposes a Homomorphic-
integrated and blockchain-based FL model to address the above issues.
It provides gradient privacy protection by employing Homomorphic, and
uses a smart contract-based reputation scheme and an on/off-chain stor-
age strategy to respectively solve FL trust and blockchain storage issues.
In the end, it evaluates the proposed model by providing a qualitative
privacy analysis and conducting preliminary experiments on model per-
formance.

Keywords: Blockchain · Smart contract · Homomorphic encryption ·
Federated learning · Privacy protection · Data sharing

1 Introduction

Although we are surrounded by massive amounts of data in the current era,
‘Information Silo’ (such as the lack of high-quality data [2]) is still a common
problem faced by industry and academia. For example, medical data such as
disease symptoms, genetic sequences, and medical reports are very sensitive and
private. However, those medical data always keep in isolated medical institu-
tions, and are difficult to collect. Insufficient data sources and labels lead to
unsatisfactory performance of medical research models, which has become the
bottleneck of current smart healthcare. Especially with the enactment of more
stringent data privacy protection laws (e.g. GDPR [9] and CDR [3]), it is more
challenging to obtain sufficient quality-data by simply gathering raw data. As the
behavior of sharing data is strictly regulated, how to realize data sharing under
the premise of meeting privacy protection requirements has become a critical
challenge.
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Federated Learning (FL) proposed in 2017 by Mcmahan et al. [18] is a promis-
ing privacy-preservation technique that can facilitate data sharing while comply-
ing with regulations. It achieves privacy protection by sharing model gradients
instead of the raw data, which prevents data from being directly exposed to data
requesters. Technically, it refers to a method of employing distributed parties to
jointly build a global machine learning model. Each party uses its own data to
train a global model and updates the model by sharing gradients.

Although Federated Learning avoids the risk of the sensitive data leakage
caused by directly sharing raw data, the gradient shared by users may still leak
user information. Some scholars [11,19,25] have implemented experiments that
simulate attackers inferring the original user information from the gradient. In
addition, FL experiences a problem: Single Point of Failure (SPoF) [12], which
refers to the security vulnerability of centralized servers. Furthermore, the lack
of trust between unknown FL nodes is also an issue. Some malicious nodes may
hide in the network to poison or attack the FL model. In other words, FL lacks
a well-designed incentive and punishment mechanism to enhance trust.

Blockchain, as an emerging technology of ongoing interest, is expected to
assist FL in addressing the above challenges. The characteristics of blockchain
are particularly suitable for FL, including decentralization, tamper-proof, and
Turing-completeness. First, decentralized blockchain can address SPoF by
replacing the centralized server with distributed nodes. Second, shared gradi-
ents stored on blockchain can avoid data tampering. Every on-chain transaction
is verifiable and traceable. Third, Turing-complete blockchain can deploy smart
contracts to invoke predefined functions. The latter can be used to design an
incentive mechanism to enhance trust between FL nodes.

Motivated by such advantages of blockchain, in this paper, we propose a
blockchain-enabled and Homomorphic-integrated federated learning model to
protect privacy for data sharing. Still taking the above case of smart healthcare
as an instance, by applying our model, all joined medical institutions can become
nodes of our proposed blockchain. They can use local medical datasets to train
research models and upload their encrypted gradients to blockchain. In this way,
data aggregation is achieved while protecting data privacy, and the performance
of the medical research model will be significantly improved.

The contributions of this paper are summarized as follows.

1. A novel Homomorphic-integrated and blockchain-based FL model is proposed
for data sharing, in which privacy can be effectively protected.

2. An smart-contract based reputation scheme and an on/off-chain storage strat-
egy are introduced respectively, to solve the trust issue and large-gradients
storage problem.

3. Experiments are conducted to evaluate the practicability and effectiveness of
the proposed model in terms of model accuracy, time cost, and smart contract
testing.

The rest of this paper is organized as follows. Related work is discussed in
Sect. 2. In Sect. 3, we introduce our system model and model working process.
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In Sect. 4, we discuss our blockchain model in more detail. The model evaluation
is conducted in Sect. 5, and in Sect. 6, we present the summary and future work
of this paper.

2 Related Work

There has been a number of work in leveraging blockchain to solve different
challenges of federated learning, such as gradients protection and trust. In this
section, we summarize and discuss those current work.

In terms of protecting gradient privacy, Awan et al. [4] adopted the Proxy Re-
encryption technology. Different from other work, this article does not remove the
role of centralized server. It uses blockchain to permanently record all transac-
tions, and uses the Proxy Re-encryption method to assist the server in obtaining
the result of the sum of all gradients. It realizes privacy protection by guaran-
teeing the reliability and security of the server. In addition, Lu et al. [15] used
Differential Privacy method to solve privacy issues in the process of model gra-
dients transmitting. The role of blockchain nodes in their data retrieval scheme
is to quickly find relevant data owners based on data requests. However, the
accuracy is one of drawbacks of their FL model. In [28], the authors proposed a
new regularization technique that adds noise to data features. Compared with
the traditional batch regularization technique, their method greatly improves
accuracy of feature extraction under the premise of without leaking privacy.

To enhance trust, in [28], the authors designed an repuation-based incentive
mechanism to reward users who participate in the global model training while
preventing poison attacks. Moreover, Weng et al. [26] proposed DeepChain, in
which a coin-based incentive mechanism is designed to reward coins to users
who perform well in global model contributions, and punish users with malicious
behavior by deducting their deposits. Additionally, in [17], the authors proposed
a smart contract-based Class Sampled Validation Error Scheme to verify and
reward users who upload correct and valuable model gradients. Lyu et al. [16]
proposed a Points-based fairness incentive mechanism, where each participant
will get corresponding points according to the number of uploaded gradients. On
the other hand, if participants download the global gradient, they need to pay
certain points (Table 1).

Overall, to the best of our knowledge, it is the first time that an article inte-
grating Homomorphic encryption to protect gradient privacy in a blockchain-
based FL scheme. Additionally, compared to other work, our model builds trust
by applying the consortium blockchain instead of the public blockchain. Con-
sortium blockchain requires verifying user identity before permitting them to
participate in blockchain. We also further enhance trust by proposing a well-
designed smart contract reputation-based incentive mechanism.
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Table 1. Current approaches to BC-FL research problems

BC-FL research problems Reference Method Highlights

Gradient privacy

(user information can be

inferred from the gradient)

Awan et al. [4] Proxy encryption Use Proxy to enhance gradient

privacy by ensuring the

reliability of the server

Lu et al. [15] Differential privacy Protect privacy by adding

noise to the gradient, but need

to consider the model accuracy

problem

Zhao et al. [28] Regularization

technique

Adding noise to data feature

and improve the accuracy of

feature extraction

Ours* Homomorphic

encryption

Encrypt gradient before

transmitting and record all

encrypted gradients on

blockchain

Trust issues

(- FL users do not trust each other;

- Lack of incentive to contribution;

- Malicious users may attack or

poison global models)

Zhao et al. [28] Reputation-based

incentive

Reward users who participate

in the global model by

calculating reputation

Weng et al. [26] Coin-based incentive Reward coins to users who

perform well in the global

model, and punish users by

deducting their deposits

Martinez et al. [17]Class Sampled

Validation Error

Scheme

Use the scheme to verify and

reward users who upload

correct and valuable model

gradients

Lyu et al. [16] Points-based

incentive

Reward users who join FL

with points, and users pay the

points to download gradients

Ours* Consortium

Blockchain &

Reputation-based

incentive

Verify user identity before

permitting, and use smart

contracts to reward and

punish users in reputation

Fig. 1. Architecture of proposed blockchain-enabled FL model
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3 System Model

In this section, we present our proposed model and describe the model working
process from a high-level perspective.

3.1 Proposed System Architecture

The system architecture is shown in Fig. 1. There are four entities: data owner,
consortium blockchain, multi-smart contracts, and learning model.

• Data Owner: The data owner has a dual identity in our architecture. It is not
only a model trainer participating in federated learning, but also a distributed
node participating in blockchain consensus. Compared to the design in [13]
and [26], where parties (data owners) are responsible for training models,
and workers (blockchain nodes) are in charge of transactions in blockchain,
the advantages of our design lie in the follows: (a) Reduce communication
cost; (b) Improve FL efficiency; (c) Avoid the risk of data leaking during
transmitting.

• Consortium Blockchain: We adopt the consortium blockchain as a decen-
tralized architecture to replace the role of the centralized server in FL.
Blockchain in our model takes responsibility for broadcasting and aggregating
model weights, and storing the hash of weights. We believe that consortium
blockchain is more suitable to be applied in our model due to the following
reasons: (a) Members participating in the model are required to have permis-
sion (i.e. identify check) in advance; (b) The data on blockchain will not be
disclosed to the public; (c) Fast transaction speed; (d) No transaction fees.

• Multi-smart Contracts: There are multiple types of smart contracts
designed in our model, including Task Contract (TC), Reputation Contract
(RC), Hunter Contract (HC), and IPFS Contract (IPFS-C). Each of them is
accountable for different roles (e.g. RC is used to calculate reputation), which
will be discussed in detail in Sect. 4.

• Learning Model: Learning model, also known as training model, refers to
a machine learning model trained using datasets. There are two types of
learning model in FL, including local model and global model. Local model is
trained by each participant with their own dataset. Global model is trained
via the collaboration of all participants. A fully trained global model is the
desired final outcome after executing the entire procedure of FL.

3.2 Model Working Process

Compared with the ordinary FL model working process, our proposed model
uses blockchain to broadcast, aggregate, and record gradients. In addition, before
sharing gradients to other participant, one of our outstanding features is to use
homomorphic encryption to encrypt gradients, which can solve the problem that
attackers might infer information from gradients. The model working process for
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Fig. 2. Working mechanism of proposed model

the first iteration of FL can be summarized as the following steps (also shown
in Fig. 2).

For step 1 to 2 and step 8, all parties act the role of model trainer who build,
train, and update models using the initialized parameters, local datasets, and
global gradients, respectively.

(0) Initialization: When all parties agree on a new FL task, the leader node
in blockchain, who is responsible for sealing blocks of transaction and block
consensus, will call the Task contract with inputs of agreed initialization
parameters (e.g. learning rate η and weights winit). Then all parties will
receive the initialized parameters (e.g. public key pair n, g) from the Task
contract.

(1) Local Model Establishing and Training: All parties build their local
models Mlocal with weights winit. After that, they can train their models
using their local dataset. The training procedure has two main steps. First,
calculating the sum of squares of modelling error J(w) which refers to the
difference between the value predicted by the model and the actual value in
the training dataset. Second, obtaining the model gradient updates wup by
using derivative function to minimizing J(w).

(2) Encrypt Gradients: All parties encrypt their gradients wup using the
public key pair (n, g) of homomorphic encryption. For any gradient, they
randomly choose a number r that satisfies 0 < r < n, and compute the
ciphertext C(wup).

(8) Update Local Model: All parties update their local models using the
global gradient Δwup downloaded from the latest block.
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Fig. 3. Gradient sharing process in blockchain

For step 3 to 7, we name them the gradient sharing process in blockchain,
where all parties play the role of distributed nodes to implement consensus.
Particularly, we illustrate the sharing process in Fig. 3, which contains the steps
of upload, aggregate, broadcast, commit, and generate.

(3) Upload Encrypted Gradients: All parties upload encrypted gradients
C(wup) to blockchain by sending transactions.

(4) Aggregate and Decrypt: The leader node in blockchain perform the
aggregation function to average all encrypted gradients C(Δwup) from trans-
actions existed in the transaction pool. After that, it calls the Task contract
to decrypt (Δwup).

(5) Broadcast Global Gradients: The leader node broadcasts global gradi-
ents Δwup to other replica nodes who are responsible for block consensus.

(6) Commit Transactions: Replica nodes send commit package to other nodes
to prove that they have successfully validated transactions.

(7) Generate the New Block: After receiving enough commit packages, the
leader node can generate a new block involving the transaction of Δwup.

The above describes a working process for the first iteration of our blockchain-
enabled FL model. However, it is far from sufficient for an acceptable result.
For machine learning, we may need to perform thousands or even more such
iterations generally. Algorithm 1 below presents a complete FL process. The
loop end condition is when the gradient Δwup F (i) is equals to 0.
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Algorithm 1. A Complete FL Working Process of Proposed Model
Input:

Initialized weights, Δwinit; Learning rate, η;
The number of FL participants, p; Local training iteration rounds, k;

Output:
Global trained model Mglobal trained

repeat
for Each FL participantsn (n ∈ p) do

Train model Mlocal using local dataset X
Compute gradient → Δwup n

Upload Δwup n after k iterations
Download the federated gradient Δwup F (i)

Update local weights using Δwup F (i) and η
end for

until Δwup F (i) == 0

4 Model Improvement

In this section, we make some specific supplementary explanation on our pro-
posed blockchain model from the perspectives of smart contracts, consensus pro-
tocol, storage mechanism, homomorphic encryption, and practical application.

4.1 Multi-smart Contracts

Smart contracts are essentially executable computer programs running on
blockchain, in which contractual clauses embedded will be automatically exe-
cuted when certain conditions are met [29]. In our design, there are four types
of smart contracts, including Task Contract, Reputation Contract, Hunter Con-
tract, and IPFS Contract (shown in Fig. 4).

• Task Contract (TC): TC is a main smart contract in our design, which is
responsible for initiating a new FL task, generating key pairs of homomorphic
encryption, decrypting encrypted aggregated weights, etc.

• Reputation Contract (RC): The purpose of RC design is to enhance trust
by rewarding and punishing nodes. RC will add reputation scores to those
participants who behavior well (e.g. upload weights in time). By contrast,
it will deduct scores of those participants who have bad performance (e.g.
uploading weights dishonestly).

• Hunter Contract (HC): In order to prevent malicious nodes, HC is
designed to play the role of hunter, whose responsibility is to detect node
behavior in blockchain. It is automatically invoked by the leader node when
TC is created. Specifically, it will randomly select a node to verify whether
the weight uploaded by the node is true. If the model accuracy is consider-
ably reduced when the selected weight is aggregated to the global model, we
assume that the node behaves dishonestly. If so, HC will report RC to deduct
their reputation scores.
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Fig. 4. Multi-smart contracts and sample code script of TC

• IPFS Contract (IPFS-C): InterPlanetary File System (IPFS) is a dis-
tributed file storing and accessing system [24]. Due to the limitation of block
storage, we design an on/off-chain storage strategy to reduce the pressure of
storage and communication. IPFS-C is a contract called by nodes to interact
with IPFS. Nodes can call this contract to upload their encrypted weights to
IPFS, and query with the IPFS hash to obtain the weight.

4.2 Modified PBFT Consensus Protocol

We adopt a modified Practical Byzantine Fault Tolerance (PBFT [7]) consensus
protocol in our blockchain model. It can achieve high throughout and low latency
compared to PoW used in [4]. In PBFT, consensus is reached when more than
two-thirds of all nodes agree on the block [22]. Specifically, in each round of
consensus, there is a leader node and multiple replica nodes. The former and the
latter are respectively responsible for packaging transactions into a block and
reaching a consensus on the block. We slightly modified PBFT in the Package
stage and Pre-prepare stage, and our consensus process is introduced as follows
(Fig. 5):

• Package Stage: At this stage, the leader node first loads new transac-
tions from transaction pool. Before packing transactions into a new block,
the leader node is required to aggregate all encrypted gradients contained in
transactions by using Homomorphic algorithm. Then it calculates the trans-
action root of the encryption federated weight C(Δw) and other transactions.
In the end, it encodes the new block into the packet.

• Pre-prepare Stage: The job of replica nodes in Pre-prepare stage is to
execute blocks, generate signature packages, and broadcast the packages to
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Fig. 5. Modified PBFT consensus protocol

all consensus nodes. Apart from those jobs, in our modified PBFT protocol,
they also need to validate the aggregated weights C(Δw) calculated by the
leader node in Package stage.

• Prepare Stage: At this stage, all node (including the leader node and replica
nodes) are responsible for collecting signature packages sent by other nodes.
They validate the legality of signature packages and cache validated signature
packages. As long as the number of cached packages in a node reaches 2∗f +1,
it will generate the commit package.

• Commit Stage: This procedure of this stage is similar to that of Prepare
Stage. When nodes receive commit packages sent by other nodes, they validate
the legality of commit packages and cache validated commit packages. As long
as the number of cached commit packages in a node reaches 2 ∗ f + 1, which
means two thirds of the nodes have reached consensus, the node will submit
the cached block to the database in blockchain.

4.3 Off-Chain and On-Chain Storage Strategy

We adopt an off-chain and on-chain storage strategy in the model design. There
are two reasons why we do so: (a) Transmission of large-size weights in blockchain
will increase the communication delay and overhead. (b) Since the block size is
limited and the total size of the blockchain will become huge, it is not suitable
to directly store large-size weights on blockchain. Off-chain and on-chain storage
strategy is considered a feasible approach to help solve these problems. There-
fore, we design to store the original large-size weight off-chain (IPFS), and store
relatively small-size hash of the original weight on blockchain.
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Fig. 6. Off-chain and on-chain storage strategy

IPFS is a distributed file storing and accessing system, which is widely used as
an off-chain database in blockchain systems (e.g. [5,28]) to store the original data.
In our blockchain model, IPFS Contract is served as a intermediary between
nodes and IPFS. After completing each round of local training, node can call
the upload weight function in IPFS-C to upload the local model weights to IPFS.
The IPFS hash will be subsequently sent as a transaction to the transaction pool
in blockchain. Finally, when the transaction is written into a new block, nodes
will receive a transaction receipt recording the Transaction hash, IPFS hash,
IPFS contract address, and block number (as shown in Fig. 6). IPFS hash can
also be used to retrieve the original data stored on IPFS.

4.4 Homomorphic Encryption

Homomorphic encryption is an important component of our model. We use it
to prevent gradients from being directly exposed to other nodes in blockchain
during weight transmission or operation. It is a classical privacy-preserving tech-
nique first proposed in 1978 [21], which allows operations to be performed on
ciphertexts without decrypting it. There are common types of homomorphic
encryption, including partially homomorphic (PHE), somewhat homomorphic
(SHE), and fully homomorphic encryption (FHE) [10].

We adopt Paillier Additive PHE [20] in our work for three reasons: (a) In
our FL model, when the leader node aggregates all encryption weights, only the
addition operation (

∑
) is needed. (b) It allows unlimited addition operations

[1]. (c) It has lower computational cost and higher efficiency compared to PHE,
which can almost meet the needs of the industry.
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We can use the following two equations to simply illustrate the process of
adding two encryption weights and the decryption process in our model.

Epk(w1) · Epk(w2) = Epk(w1 + w2) (1)

Dsk(E(w1) · E(w2) · ... · E(wn)) = w1 + w2 + ... + wn (2)

where · is a multiplication operation in the encryption domain, E and D
denote for encrypt and decrypt, pk and sk are the public key and secret key of
PHE, and w1 and w2 are gradients of two different nodes. Especially through
Eq. 2, we can clearly observe the secret of why PHE can enhance the privacy in
our model, that is, PHE can perform calculations on encrypted weights while
ensuring the decrypted result is same to the original summed weights.

Fig. 7. Paillier precomplied contract interacts with PHE

In addition, regarding the process of how our blockchain-enabled FL model
applies Paillier Additive PHE, we create a Paillier Precomplied Contract (PPC)
pre-deployed on blockchain to interact with Paillier Library (see in Fig. 7). By
calling PPC, TC can realize key generation, homomorphic addition operation,
and decryption without depending on a trust third party. Furthermore, all veri-
fied encrypted-weights will be immutably recorded on blockchain, ensuring that
responsibilities and contributions can be tracked and assigned.
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5 Model Evaluation

In this section, we provide a qualitative privacy analysis and conduct some early
experiments to evaluate the performance of our proposed model.

5.1 Privacy Analysis

Under the dual dilemma of information silo and stringent data privacy protection
regulations, we propose a approach that can achieve data aggregation while com-
plying with privacy protection regulations. Our model provides a comprehensive
privacy protection to those who participant in data sharing.

• It avoids the risk of directly exposing the raw data to other participants
during data sharing. Instead of sharing the original data, participants only
need to train a model by leveraging their local dataset, and upload their model
gradients to blockchain to realize the data sharing process. In this way, the
original data is always stored locally, which greatly reduces the possibility of
privacy leakage during data transmission and use.

• It prevents malicious nodes from inferring the original information from
shared gradients. Regarding the risk of gradient leakage, our model applies
Homomorphic encryption to further protect data privacy. Before uploading
model gradients to blockchain, another necessary procedure is to encrypt gra-
dients by using public key of Homomorphic. In this way, other participants
are not able to infer the actual information behind the encrypted gradient.

• One of the advantages of adopting blockchain is to substitute the centralized
server used in the traditional FL model. The centralized server-based architec-
ture not only faces the risk of SPoF but also needs to prevent the centralized
server from colluding with malicious nodes. In opposite, our blockchain-based
FL model can reach consensus and trust by leveraging the characteristics of
blockchain, and can also prevent collusion between nodes to a certain extent.

• However, we have to point out that our current model has flaws in PHE
key management, which may bring privacy risk. Since TC is called by the
leader node to generate keys, the private key stored on TC will be visible to
the leader node (not visible to other nodes as we can set TC status to be
accessible only to contract callers). If the leader node is malicious, it may
leak privacy. In our model, we assume the selected leader node is verified and
trusted by all other nodes. There are two approaches to solve this issue. One
is to take some special strategy (such as incentive mechanism) to ensure that
leaders tend to perform operations loyally; Another way is to store keys off-
blockchain. We only keep the homomorphic operation interface on blockchain,
and provide the encryption and decryption interface to the application layer
in the form of a Paillier library. Considering the security reason (e.g. TC
might be attacked), as future work, we are working on the second approach
to improving our model design.
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Fig. 8. Model accuracy versus communi-
cation rounds (comparing two methods)

Fig. 9. Time cost versus communication
rounds (average 100 rounds)

5.2 Performance Evaluation

We conduct some initial experiments to evaluate the performance of the proposed
model in terms of model accuracy, time cost, and smart contract testing. We
build our model on the consortium Ethereum [8] blockchain network environment
and develop smart contracts using Solidity [23]. In addition, We select two public
datesets of different sizes (Diabetes [14] and Breast Cancer [27]) as our testing
data to evaluate the impact of data size on model efficiency. We split the two
datasets into four equal sub-datasets separately, and use four blockchain nodes
to act four participants to train the model and communicating gradient. We set
the initialized weights (winit) to a one-dimensional zero matrix ([0, 0, ...0]) and
learning rate (η) to 1.5.

(1) Model Accuracy. Accuracy is an important indicator to evaluate the effec-
tiveness of a FL model. We test our model accuracy on the above two datasets
separately. As a comparison, we also use the local stochastic gradient descent
(SGD) method [6] to run the same datasets (Local SGD refers to a algorithm
that trains a machine learning model without involving any data collaboration).
As shown in Fig. 8, We can observe that on both data sets, our model accuracy
is much higher (around 0.95) than the accuracy of Local SGD (around 0.80),
which perfectly meets our expectation (gradient sharing is effective). If we com-
pare the red line (running on a small dataset) and the black line (running on a
large dataset), the latter takes more communication rounds to approach model
convergence, which is also reasonable.

(2) Model Time Cost. For time cost, we compute the running time versus
the communication round, and average the time cost every 100 communication
rounds. In addition, we test the model on two datasets to verify whether the
size of dataset will affect time cost. In Fig. 9, we find that the time cost remains
steadily with the increase of communication rounds on both datasets. Based on
that finding, we can conjecture that the time cost is not related to the stage
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Fig. 10. Gas costs of PHE-related smart
contract functions

Fig. 11. Total execution time of PHE-
related smart contract functions versus
communication rounds

of the training, regardless of whether the model training is in the beginning or
end stage. Another finding is that the data size will affect the time cost. By
comparing the average time cost of running the two datasets, we can draw a
conclusion that our model spends more time on running large datasets.

(3) Gas Cost of Smart Contracts. As a key component, PHE is closely
related to the performance of our model. Therefore, it is necessary to evaluate
the practicality of PHE. First, we conduct the evaluation on the gas consump-
tion of PHE-related smart contract functions, including encryption, additive, and
decryption. As shown in Fig. 10, the gas consumption of functions are different
from each other. Additive function costs the most, following by the decrypt func-
tion, and encrypt function costs the least. But they are all within the acceptable
range which is less than 1,000,000 Wei. By comparing the result of running on
different datasets, we find another fact that data size has the impact on gas
consumption. The larger size the dataset has, the more gas it consumed.

(4) Execution Time of Smart Contracts. Moreover, we test the execution
time for each PHE-related smart contract functions, and present the total time
cost versus communication rounds in Fig. 11. With the increase of communica-
tion rounds, the execution time of each function has an accelerated upward trend,
and this trend is reflected earlier in the additive function. In term of the amount
of total time cost, the additive function also occupies the most, followed by the
decrpytion function. Combined with the findings in gas consumption evaluation,
we conjecture that the additive function may perform more operations than the
others, which gives us an idea that we can improve the model performance by
focusing on the well-design of the additive function in the future.

6 Conclusion and Future Work

Federated learning as an emerging privacy-preservation technique currently
experiences some challenges such as gradient privacy leakage, SPoF, and trust
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issue. On the other hand, the characteristics of blockchain highlight huge poten-
tial to solve those problems. In this paper, we propose a Homomorphic-integrated
and blockchain-based FL model. Our model can realize gradient privacy protec-
tion by employing Homomorphic. In addition, an smart contract-based reputa-
tion scheme and an on/off-chain storage strategy can respectively solve FL trust
and blockchain storage issues. In the end, we evaluate our model by provid-
ing a qualitative privacy analysis and conducting initial experiments on model
performance.

As our preliminary work, this paper mainly focuses on the system design.
Our design is undoubtedly a meaningful attempt to leverage Homomorphic and
blockchain in the FL model. However, we have to point out that we only provide
limited experiments to evaluate our model in this paper. There are still a number
of parts of our model have not been discussed in depth, such as reputation scheme
and IPFS storage. In our future work, we will plan to evaluate and discuss those
parts in more detail. In addition, We will design a more appropriate approach for
the PHE key management, and evaluate it from the perspectives of key security
and key access efficiency.
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Abstract. Deep learning is data-hungry, and generally its performance
highly depends on the amount of training data. Multiple parties can
obtain better models by sharing their data and train models collabo-
ratively. To privacy concerns, sensitive raw data of each entity can not
be shared directly. In this paper, we propose a data sharing mecha-
nism called ALRS (for Adversarial Latent Representation Sharing) that
shares data representations rather than raw data, and applies adversarial
example noise to protect shared representations against model inversion
attacks, and achieve a balance between privacy and utility. Compared
with prior collaborative learning works, ALRS requires no centralized
control. We evaluate ALRS in different contexts, and the results demon-
strate that our mechanism is effective against reconstruction and feature
extraction attacks, while maintaining the utility of models at the same
time.

Keywords: Privacy · Collaborative learning · Adversarial examples

1 Introduction

Deep learning algorithms bring impressive progress in many areas, such as com-
puter vision, natural language processing and recommendation systems. The
increasing amount of available computation and data bring success to deep learn-
ing [12]. A common case is that, data is widely distributed in various companies
and institutions. Therefore, it is a common practice for multiple parties to share
data and train deep learning models collaboratively [19]. Besides, many users
choose to use Machine Learning as a Service (MLaaS) such as Amazon Machine
Learning services, Azure Machine Learning, Google Cloud AI, and IBM Watson,
etc., to train deep learning models on the server. In MLaaS and other collabora-
tive training scenarios, users need to provide their local data to cloud computing
c© Springer Nature Switzerland AG 2021
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services or share the individual data with others, which brings privacy concerns.
It is inappropriate to share raw data since private and sensitive information
may be obtained by adversaries. For example, if several companies require the
employees to upload their photos onto a cloud server for building a face recog-
nition system, then the server or adversaries can acquire visual information of
these employees’ faces, and misuse the photos easily. What’s more, due to some
factors such as information security policies, it is not easy to integrate data
between different organizations, which results in the problem of “data islands”.
Indeed, it is necessary to build a privacy-preserving data sharing mechanism to
protect the privacy of data owners.

Generally speaking, privacy-preserving collaborative learning can be grouped
under two approaches. The first way is to share encrypted data via secure multi-
party computation (MPC) [27]. With the data encrypted by cryptographic tools
such as garbled circuits [27], secret sharing [20], and homomorphic encryption
[4], all parties can correctly train deep learning models without obtaining addi-
tional information about the shared data [1,16,18]. However, current crypto-
graphic approaches can just perform several types of operations, and only pro-
pose friendly alternatives to some of non-linear functions [16]. Besides, some sta-
tistical characteristics of original input data are retained after encryption, and
can be revealed through feature extraction methods such as neural networks.

The other way is sharing parameters of the model rather than raw data
in distributed training. Google proposed federated learning (FL) [7,26], where
each entity trains a local model, and a central server maintains a global model
by aggregating parameters from each party. Training data are kept by local
devices, which ensures privacy. Some recent works combine federated learning
with other information security mechanisms (e.g., differential privacy) to further
improve privacy [5]. Federated learning has been widely used in the industry.
However, the communication cost between each local device and the central
server is high. On the one hand, after each iteration of training process, each
user needs to keep their local deep learning model synchronized. On the other
hand, once the machine learning task changes, the entire training process needs
to be executed again. Moreover, federated learning requires centralized control,
so it is vulnerable to malicious participants or dishonest central controller [2].

To achieve collaborative deep learning with high privacy and low commu-
nication overhead, we propose a lightweight data sharing mechanism ALRS
(for Adversarial Latent Representation Sharing) for multi-party learning. The
mechanism consists of two parts: a basic data sharing framework where users
share latent representations of their data instead of raw data, and an adversarial
example noise based defense mechanism for further privacy protection. Different
from MPC and FL, ALRS is inspired by deep neural networks, which embed
inputs into real vectors containing high-level features of the data [12], which we
call data representations or latent features.

However, the mere basic data sharing mechanism is not safe enough.
Although sensitive information in the original data is hidden by latent repre-
sentations, it can still be inferred by decryption algorithms. Model inversion
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attack is the mean threat to the privacy of data representations [8,15], which
aims to train inverse models to recover inputs or extract private features. To
defend against this attack, some recent works generate latent representations
by adversarial training (e.g., via generative adversarial networks) [9,25]. Unfor-
tunately, these methods can not deliver good results easily, since it’s hard to
achieve a balance between a pair of adversarial models in the training process
[22].

In order to defend shared representations against model inversion attacks, we
apply adversarial noise [6] to the data sharing mechanism. Our intuition is that
adding special-designed small noise on shared representations can confuse the
adversaries so that they cannot reconstruct the original data or particular private
attributes from the obfuscated latent representations. We generate adversarial
noise for potential inverse models through simulations of attackers, and add the
noise to data representations before sharing them, in order to make it hard to
recover the original inputs. In the meantime, these perturbations are too small
to influence data utility. We propose defense strategies against reconstruction
attacks and feature extraction attacks respectively.

The main contributions of our work are summarized as follows:

– We propose ALRS, a privacy-preserving data sharing mechanism. To the best
of our knowledge, we are the first to apply adversarial examples to ensure
privacy in collaborative learning.

– We design a new data sharing framework which is completely different from
MPC and FL. ALRS requires no centralized control.

– We evaluate the utility and privacy of our mechanism by simulating attacks
of different objectives and intensities. The results verify the effectiveness of
ALRS in protecting data and private attributes from potential attacks.

The remainder of the paper is organized as follows. We first review related
work in Sect. 2. Then we introduce our basic data sharing mechanism in Sect. 3,
and present a stronger privacy-preserving method to complete ALRS in Sect. 4.
Experimental results are shown in Sect. 5. The conclusion of the work is presented
in Sect. 6.

2 Related Work

2.1 Privacy Representation Learning

To avoid privacy leakage in collaborative learning, some prior works focus
on learning privacy representations [3,25]. Latent representations retain the
abstract features of data, which can be used for further analysis like classification
or regression, and will not release privacy information directly. A common way
to transform data into representations is to train feature extraction networks.
However, data representations are still vulnerable to model inversion attacks [8].
Adversaries can build reconstruction networks to recover original data or reveal
some attributes of data from shared representations, even though they have no
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knowledge of the structure or parameters of the feature extraction models [8,15].
For example, they can recover face samples, or infer gender, age and other per-
sonal information from shared representations of face images, which were only
supposed to be used for training face recognition models.

In order to defend against inversion attacks, recent works focus on adversarial
training [25] or generative adversarial networks (GANs) [9]. Attackers’ behaviors
are simulated by another neural network while learning privacy representations
of data, and the two networks compete against each other to improve the robust-
ness of representations. However, since it’s hard to achieve a balance between the
attacker models and defender models during training [22], these methods may
cost much time in the pretreating phase. Ferdowsi et al. [3] generate privacy rep-
resentations by producing sparse codemaps. The above defense methods could
be applied to collaborative learning, but the authors didn’t give a further dis-
cussion on this scenario. In addition, all these methods are task-oriented. When
the task of shared data changes, they need to generate new task-oriented data
representation again.

2.2 Adversarial Examples

Adversarial examples are perturbed inputs designed to fool machine learning
models [6]. Formally, we denote by f : X → {1, . . . , n} a classifier. For an input
x ∈ X and a label l = f(x), we call a vector r an adversarial noise if it satisfies:

‖r‖2 ≤ ε, f(x + r) �= l,

where ε is a small hyper-parameter to adjust the scale of noise.
Adversarial examples have strong transferability. Some works [13] have shown

that adversarial examples generated for a model can often confuse another model.
This property is used to execute transferability based attacks [21]. Even if an
attacker has no knowledge about the details of a target model, but only has query
access through some APIs, it can still craft adversarial examples successfully by
attacking a substitute model. Therefore, adversarial examples have become a
significant threat to machine learning models [6,23].

Except for treating adversarial examples as threats, some works utilize the
properties of adversarial examples to protect user’s privacy [24]. In this work,
we also use adversarial noise to defend against machine learning based inferring
attacks. To the best of our knowledge, we are the first to apply adversarial
examples to data sharing mechanisms for collaborative learning.

3 Encoding-Based Data Sharing Mechanism

In this section, we first introduce a privacy-preserving data sharing scenario.
Then we present the basic structure of our data sharing mechanism, and discuss
the possible model inversion attack against this mechanism.
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3.1 Privacy-Preserving Data Sharing Scenario

Consider there are K parties who demand to share horizontally partitioned local
data for collaborative training. The dataset of the i-th party is represented as
{(Xi, Yi)} = {(x1

i , y
1
i ), (x2

i , y
2
i ), . . . , (xNi

i , yNi
i )}, where (xj

i , y
j
i ) is a pair of train-

ing sample and corresponding label, and Ni is the number of samples. To privacy
concerns, each party doesn’t want to show their inputs Xi directly while shar-
ing data with others. Furthermore, there might be some sensitive features or
attributes in training samples. Which attributes are private depends on the par-
ticular user, since different data owners have different privacy requirements. We
denote by Mi the number of private attributes that the i-th party has, and
denote the set of labels of k-th private attributes by Aik = {a1

ik, a2
ik, . . . , aNi

ik },
where k ∈ {1, 2, . . . ,Mi}. The key idea of ALRS is that the parties can’t share
raw data directly but share data representations instead. The representations
can be denoted as Zi = {z1i , z2i , . . . , zNi

i }.
Formally, given a sample set X and a label set Y , our goal is to design a

proper mechanism F : X −→ Z, which should satisfy two conditions:

Utility. After obtaining the shared data, users can use dataset {(Z1, Y1),
(Z2, Y2), . . . , (ZK , YK)} to train deep learning models, such as classifiers to pre-
dict the label y from z. The accuracy should be greater than or equal to that of
MPC or federated learning based deep learning models.

Privacy. Privacy characterizes the difficulty of finding a model G : Z −→ X to
recover the visualization information and private attributes of an original input
x from its representation z. Therefore, the evaluation of privacy leakage consists
of two parts: reconstruction loss LR and feature loss LF .

Reconstruction loss is used to describe the pixel-level difference between orig-
inal input x and recovered data x̂ = G(F (x)), which are commonly measured
by the Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR). The
Structural Similarity Index Measure (SSIM) is also a widely used quality met-
ric reflecting similarity between images, and is highly consistent with human
perceptual capability. Since researches have shown a correlation among these
metrics [10], we use MSE to define LR, as:

LR =
1
N

N∑

i=1

‖xi − G(F (xi))‖22. (1)

Similarly, feature loss indicates how possible an attacker can predict private
features successfully. Note that we don’t adopt the error between true value of
private attributes and prediction results of attackers, in case adversaries break
the defense by flipping their results. Instead, we calculate the distance between
the prediction result and a fixed vector that is irrelevant to the private features.
The feature loss corresponding to the k-th privacy attribute is defined as:

LFk
= − 1

N

N∑

i=1

‖rk − fk(F (xi))‖22, (2)
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where rk is a fixed vector, which is the same as the k-th privacy attribute of
x only in the size. fk is a corresponding feature extraction network trained by
attackers. Low LFk

makes the prediction result fk(F (xi)) meaningless. Finally,
the encoding system maximizes the overall generalization loss:

L = λ0LR +
M∑

k=1

λkLFk
, (3)

where
∑M

i=0 λi = 1. λi depends on each user’s privacy requirements.

3.2 Basic Encoding-Based Data Sharing Mechanism

In a privacy-preserving data sharing scenario, the key point is to find a proper
encode algorithm to transform raw data into corresponding representations. We
choose autoencoder [17], an unsupervised neural network that can be divided
into the encoder part and the decoder part. The encoder transforms inputs into
latent representations, which are normally vectors with a smaller size, while
the decoder reconstructs representations back to the inputs. The optimization
target of the autoencoder is to minimize the difference between original inputs
and reconstructed ones. Therefore, latent representations are wished to remain
high-level features of input data.

Fig. 1. An overview of our basic encoding-based privacy-preserving data sharing mech-
anism.

Our basic encoding-based data sharing is shown in Fig. 1. In our data sharing
mechanism, user’s raw data X can be regarded as plaintext, and latent repre-
sentations Z can be regarded as cyphertext. The encoder network for learning
latent features is encryption algorithm, and parameters of the network are pub-
lic key. There should be an initiator who trains an autoencoder model on its
own data and then publishes the encoder part. Subsequently, all parties use
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the shared encoder to encode their raw data into corresponding representations
and share them. We design our mechanism as multiple parties share the same
encoder because using different encoders always causes different distributions of
representations, which results in poor utility. Consequently, an initiator should
be chosen first to train the autoencoder model and publish an encoder. The
standard for selecting the initiator is not strict: the initiator can be the party
who has the most amount of data or just a random one. We separate the data
sharing and collaborative learning process into three phases: encoder publishing
phase, data sharing phase, and collaborative learning phase. We will describe
the behaviors of the initiator and other participants in the different phases.

Initiator. We call one of the parties who publish the common encoder initiator.
Without loss of generality, we suppose the 0-th party is chosen as the initiator
and has dataset {(X0, Y0)}. In the encoder publishing phase, the initiator should
first train an autoencoder on {(X0, Y0)} to get the encoder Enc and the decoder
Dec. The encoding and decoding processes can be represented as: zi

0 = Enc(xi
0),

x̂i
0 = Dec(zi

0). The learning goal of the autoencoder is to minimize the error
between X0 and X̂0, so the autoencoder can be optimized by:

θEnc, θDec = arg min
θEnc,θDec

1
N0

N0∑

i=1

‖xi
0 − x̂i

0‖22, (4)

where θEnc and θDec are the parameters of Enc and Dec respectively.
After training the autoencoder, the initiator encodes its local raw data X0

into latent representations Z0. Then it publishes Enc and the pairs {(Z0, Y0)}.
In the next two phases, the initiator acts just like the other participants.

Participants. We denote the other participants as P1, P2, · · · , PK with dataset
{(X1, Y1)}, {(X2, Y2)}, . . . , {(XK , YK)}. In the data sharing phase, Pi encodes
its raw data by zj

i = Enc(xj
i ) and then shares the pair {(Zi, Yi)} to the other

parties. In the collaborative learning phase, each participant can use the pairs
{(Zi, Yi)} shared by others to train deep learning models.

Compared with most of distributed training frameworks, our data sharing
mechanism requires no centralized control. This makes the throughput of a sin-
gle node no longer the communication bottleneck, and eliminates the risk of
privacy leakage caused by dishonest central servers. Moreover, due to the inde-
pendence between data encoding method and machine learning objects, shared
representations can be used for various tasks. However, this basic mechanism is
not safe enough. A frequent attacking method is detailed in the next section.

3.3 Decoding-Based Attack

In the basic encoding-based data sharing mechanism we discuss, all participants
share data representations and the common encoder (Enc) that encodes raw data
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Fig. 2. Decoding-based attack. Fig. 3. Adding adversarial noise on
latent representations.

to latent representations. Although users don’t obtain private information from
the raw data of other participants directly, there does exist a supportive decoder
(Dec) in the possession of the initiator. The decoder can be used to decode the
latent representations to the original raw data with little error. In other words,
the initiator has access to other participants’ raw data, which leaves a dangerous
“back door” in the data sharing mechanism. What’s worse, attackers or other
participants also have methods to obtain private information of raw data. The
threat model is described as follows.

Threat Model. The threat model defines adversaries who act like curious
participants and want to recover the original input X from data representa-
tion set Z to get private information. Like other participants, adversaries can
obtain the data representations shared by participants and have query access to
the published encoder Enc, but have no knowledge about the architecture and
parameters of Enc. We first discuss reconstruction attack, where adversaries
want to recover the training samples. Even the information of target model Enc
is unknown, adversaries can still execute black-box attacks by training substitute
decoders similar to Dec using Enc and their own data, as Fig. 2 shows. We call
this attack decoding-based attack. For instance, if Pi is an attacker having data
{(Xi, Yi)}, it can generate latent representations by querying zj

i = Enc(xj
i ) for

Ni times. Then it can build a substitute decoder SDec whose structure is sym-
metric with the structure of Enc, and train it by pairs {(Zi,Xi)}. Let θSDec be
the parameters of SDec, then SDec can be optimized by minimizing the recon-
struction loss LR:

θSDec = arg min
θSDec

1
Ni

Ni∑

j=1

‖SDec(Enc(xj
i )) − xj

i‖22. (5)

This kind of attack can be regarded as chosen-plaintext attack (CPA) from the
cryptographic point of view.

After obtaining Zi by querying, Pi who acts as an adversary can also use
pairs {(Zi, Ai,k)} to train classifiers to extract privacy attributes from shared
representations, which is called feature extraction attack. Denote by Pv the par-
ticipant under attack, and fk the classifier network that aims to extract the k-th
privacy feature of Pv, where k ∈ {1, 2, . . . ,Mv}. Let θfk

be the parameters of fk,
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then the classifier fk can be trained by minimizing the MSE loss:

θfk
= arg min

θfk

1
Ni

Ni∑

j=1

‖fk(zj
i ) − aj

ik‖22. (6)

Note that although fk is trained on the local dataset of Pi, it works on represen-
tations of other users because we suppose that data are partitioned horizontally,
so training samples of each party have the same attribute types.

It is easy to make a recovered sample or extracted attribute similar to x or
ak, which causes privacy leakage. In the next section, we propose a method to
defend against this attack.

4 Stronger Privacy-Preserving: Add Adversarial Noise

In this section, we present our data sharing mechanism ALRS on the basis of
encoding-based data sharing mechanism. We first improve the basic mechanism
by simply adding adversarial noise on data representations, so that our mecha-
nism can defend against the decoding-based attack. Then we propose a stronger
inversion attack method called adv-trained decoder attack, and design a masking
mechanism to defend against this kind of attack.

4.1 Adding Simple Adversarial Noise

The strategy to defense against the decoding-based attack comes from a sim-
ple idea: adding an intentionally designed small noise on latent representations
before sharing them. On the one hand, the noise is a vector whose norm is so
small that it would not reduce the utility of the shared data representations. On
the other hand, we hope adding noise on data representations can make data
reconstructed by Dec or SDec different enough from the original inputs. Inspired
by adversarial examples, we let users add adversarial noise on latent represen-
tations in the set Z, and share the set of adversarial example Zadv instead, as
shown in Fig. 3. According to some researches [21], adversarial examples have
transferability. Empirically, if Zadv successfully fools the decoder from which it
is generated, then it is likely to cause any other decoder to recover X̄ that is
very different from the original input. Therefore, adversarial noise can protect
the privacy of data representations in the sharing process, even if the scale of
noise is small.

The method to find adversarial noise against reconstruction attacks consists
of two steps. For a participant party, it should first train a substitute decoder
SDec locally by simulating decoding-based attacks; then it generates adversar-
ial noise for Z to maximize LR and make SDec invalid. Adversarial noise can
be generated by iterative fast gradient sign method (I-FGSM) [6], which sets
the direction of adversarial noise to the gradient of objective function LR with
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respect to z. Then the noise vector δD corresponding to z is calculated as:

δD = δ
(n+1)
D , δ

(1)
D = 0,

δ
(t+1)
D = δ

(t)
D + α · sign(

∂‖SDec(z + δ
(t)
D ) − x‖22

∂z
), t = 1, . . . , n,

(7)

where α is a hyper-parameter which means the distance for each iteration step,
n is the number of iteration times and x is corresponding raw data.

After generating the adversarial noise δD, a participant can get the adver-
sarial example of the latent representation z by adding the noise on it:

zadv = z + δD. (8)

In consideration of the utility of data representations, the difference between z
and zadv should not be so great, otherwise zadv would lose most of the features of
x. Therefore, given an encoded vector z, we must ensure that |zadv−z| = |δD| ≤ ε,
where ε is a hyper-parameter to be chosen. Next, we prove that our method in
Eq. (7) can generate satisfied adversarial noise.

Proposition 1. Given ε ∈ R
∗, n ∈ N

∗, suppose α = ε
n . If δD is defined by Eq.

(7), then |δD| ≤ ε.

Proof. For any iteration step t ∈ {1, . . . , n}, we have:

|δ(t+1)
D | = |δ(t)D + α · sign(

∂‖SDec(z + δ
(t)
D ) − x‖22

∂z
)|

≤ |δ(t)D | + α|sign(
∂‖SDec(z + δ

(t)
D ) − x‖22

∂z
)|

= |δ(t)D | + α.

It is easy to prove that |δ(t+1)
D | ≤ |δ(1)D |+t ·α = t ·α with mathematical induction.

So we have |δD| = |δ(n+1)
D | ≤ n · α = ε

The above certification shows that if we set α to ε
n in Eq. (7), then the scale

of adversarial noise will be limited to ε. Here ε is called defense intensity, which
determines the utility and privacy of representations.

The strategy to prevent feature leakage is similar to the above method. To
preserve the k-th private feature, a participant first train a classifier fk locally,
and then craft adversarial noise on Z to maximize the feature loss LFk

:

δk = ε · sign(−∂‖fk(z) − rk‖22
∂z

), (9)

where δk is the adversarial noise for preserving the k-th private attribute of the
participant. Our purpose is to make prediction results close to a certain vector
rk given by data owners, which leads prediction to meaningless results. For a
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participant Pi having Mi kinds of private attributes, the overall adversarial noise
of a representation z can be calculated as:

δz = λDδD +
Mi∑

k=1

λkδk, (10)

where λD +
∑Mi

k=1 λk = 1, so that |δz| ≤ ε. The experimental results in Sect. 5.3
show that letting λD = 1

2 , λk = 1
2M may be a good choice to ensure the defense

against data leakage and feature leakage at the same time.

4.2 Adv-Training Decoder Attack

Due to the transferability of adversarial examples, Zadv can mislead most of
decoders trained from pairs {(Z,X)}, and classifier trained on {(Z,Ak)}. How-
ever, if attackers apply adversarial training on SDec, it is still possible for them
to recover data similar to X. In other words, they can build another substitute
decoder D : Zadv −→ X to reconstruct data representations added adversarial
noise. We call this kind of attack adv-training decoder attack, since the strategy
is similar to adversarial training [6] which uses adversarial examples to train
models in order to improve robustness.

We illustrate how adv-training decoder attack occurs. Suppose an attacker
Pi wants to execute the reconstruction attack. In the data sharing phase, the
attacker first trains SDec on its local data {(Xi, Yi)} by optimizing Eq. (5). Then
it transforms Xi into representations Zi and adding adversarial noise on them
by solving Eq. (7) and Eq. (8). After generating Zadv, the attacker can train an
adv-training decoder (ATDec) using the pair {(Zadv,Xi)}:

θATDec = arg min
θATDec

1
Ni

Ni∑

j=1

‖ATDec(zj
adv) − xj

i‖22, (11)

where θATDec is the parameter of adv-training decoder ATDec. The attacker can
use the ATDec to decode the Zadv shared by other participants. Furthermore,
adversaries can extract private features of data in the same way. Adv-training
decoder attack thus increases the risk of privacy leakage.

4.3 Adding Masked Adversarial Noise

To defend against adv-training decoder attack, we propose a simple but effective
way to make the adversarial noise generated by different participants quite dif-
ferent. The main idea of our method is to add masked adversarial noise, which
means we only add adversarial noise on some stochastic dimensions of z but not
all dimensions. For a latent representation z, the process of generating masked
adversarial noise is expressed as:

δ
(t+1)
D = δ

(t)
D + m · ε

n
sign(

∂‖SDec(z + δ
(t)
D ) − x‖22

∂z
),

t = 1, . . . , n, δ
(1)
D = 0, δD = δ

(n+1)
D ,

(12)
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δk = m · ε · sign(−∂‖fk(z) − rk‖22
∂z

), (13)

where δz = λDδD +
∑Mi

k=1 λkδk is the adversarial noise of z, ε is the given upper
bound of |δz|, and m is the mask vector, which has the same size as z and δz.
The mask vector m is initialized by each participant, and each dimension of m
is randomized to either 0 or 1. The value of vector m is private to the partici-
pant, which can be regarded as s private key in cryptography. Consequently, the
participant can hold different mask vectors to generate their unique adversarial
noise respectively, and an attacker may, in high probability, trains substitute
models on data representations that are perturbed in a different way from repre-
sentations of target participants. We further evaluate the effectiveness of masks
in various contexts in Appendix A. The results indicate that if the dimension
of latent representations is sufficiently large, it is difficult for adversaries to
enumerate mask vectors through brute force, and the mask mechanism can be
considered safe enough. The whole process of generating data representations in
ALRS mechanism is shown in Algorithm 1.

Algorithm 1: Privacy Protection in ALRS Mechanism
Input: training samples X = {x1, x2, . . . , xN}, private attributes

A = {a1
k, a2

k, . . . , aM
k } (k ∈ {1, 2, . . . , M})

Output: adversarial latent representations Zadv = {z1
adv, z2

adv, . . . , zN
adv}

1 initialize Enc, ε, n, m, λD, λk (k ∈ {1, 2, . . . , M});

2 Z = {z1, z2, . . . , zN}, where zi = Enc(xi);

3 update SDec via: θSDec = arg minθSDec

1
N

∑N
j=1 ‖SDec(zj) − xj‖2

2;

4 for k = 1 to M do

5 update fk via: θfk = arg minθfk

1
N

∑N
j=1 ‖fk(zj) − aj

k‖2
2;

6 end
7 for i = 1 to N do
8 δi

D = 0;
9 for j = 1 to n do

10 δi
D = δi

D + m · ε
n

· sign(
∂‖SDec(zi+δiD)−xi‖2

2
∂zi );

11 end
12 for k = 1 to M do

13 δi
k = m · ε · sign(− ∂‖fk(zi)−rk‖2

2
∂zi );

14 end

15 δi
z = λDδi

D +
∑M

k=1 λkδi
k;

16 zi
adv = zi + δi

z;

17 end

18 return Zadv = {z1
adv, z2

adv, . . . , zN
adv};
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5 Experiments

In this section, we evaluate ALRS by simulating a multi-party collaborative
learning scenario. We present the performance of ALRS in privacy preserving,
as well as compare it with other joint learning frameworks, and then study the
effectiveness of our mechanism in protecting private attributes.

5.1 Experiment Settings

Datasets. The experiments are conducted on two datasets: MNIST [11] and
CelebA [14]. MNIST consists of 70000 handwritten digits, the size of each image
is 28 × 28. CelebA is a face dataset with more than 200K images, each with 40
binary attributes. Each image is resized to 96 × 96 × 3.

Scenario. We simulate a scenario where the number of participants K = 5
in MNIST, and K = 3 in CelebA. Each participant is randomly assigned 10000
examples as the local dataset. When doing experiments on MNIST, the common
encoder Enc and each one’s substitute decoder SDec are implemented by three-
layer ReLU-based fully connected neural networks. When using CelebA, Enc
and SDec are implemented by four-layer convolutional neural networks. Our
programs are implemented with tensorflow.

In the data sharing phase, the adversarial noise is generated using FGSM
and I-FGSM method, which is formulated in Eq. (12), (13), while the iteration
time n is set to 10. We suppose that attackers execute adv-training decoder
attack with two types of objectives: to recover the original samples (see Sect. 5.2),
and to extract private attributes (see Sect. 5.3). In the collaborative learning
phase, the tasks are set as training classifiers on shared data representations
Zadv. The labels are 10-dimensional one-hot codes in MNIST, and 2-dimensional
vectors corresponding to each attributes in CelebA. The tasks are similar to the
applications of collaborative training in the real world. For example, companies
can share latent representations of photos to train face recognition models.

5.2 Protecting Privacy Against Reconstruction Attacks

Defense Intensity. First, we set a series of experiments to evaluate the utility
and privacy of ALRS with different defense intensity ε. We train classifiers on
shared representations, then report the accuracy of prediction to evaluate data
utility, and choose MSE of reconstructed images to represent the effectiveness
of the mechanism on privacy preservation. Adversaries are supposed to execute
adv-training decoder attacks defined by Eq. (11).

Experiments are conducted on both the MNIST and CelebA datasets. On
CelebA, the task is to predict the attribute “Male”. We set up another method
that generates random noise with uniform distribution as a baseline. As shown
in Fig. 4, with the increase of ε, the reconstruction loss becomes higher, which
indicates that adversarial noise with a larger scale makes it more difficult to filch
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(a) MNIST, Accuray (b) MNIST, MSE (c) CelebA, Accuray (d) CelebA, MSE

Fig. 4. Classification accuracy and reconstruction loss (MSE) versus different ε.

private information from shared representations. When measuring the utility
of shard data, we find that in MNIST dataset, classification has the highest
accuracy 97.2% as ε equals to 0. The accuracy decreases slightly when ε becomes
larger. It drops to 89.3% when ε changes to 100. In CelebA, the accuracy drops
from 93.7% to 84.3%. The variety of MSE and accuracy with ε illustrates the
trade-off between utility and privacy of shared data.

Visualization of Reconstructed Images. Next, we explore the effective-
ness of adversarial noise defense by displaying the images under reconstruction
attacks. Figure 5 compares digit images recovered from noised representations
with the undefended version, and illustrates that ε = 50 can well ensure privacy.
This preliminarily proves the privacy of the adversarial noise mechanism.

Fig. 5. Digit images and corresponding reconstructed images. (a) Original input
images. (b) Reconstructed images corresponding to data representations without noise.
(c) Reconstructed images corresponding to representations with adversarial noise
(ε = 50).

We further study the influence of different ε in CelebA. Figure 6 shows the
reconstructed images corresponding to data representations adding several kinds
of noise. If adversarial noise is not used, the reconstructed image restores almost
all private information of faces. When ε is set to 50, the recovered faces lose most
of the features used to determine identity. When ε = 100, the reconstructed
images become almost unrecognizable. For further discussion, we present the
result when ε = 50, but the adversarial noise is not masked. As shown in the third
line of Fig. 6, the faces do get blurry, but some features with private information
are still retained.
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Fig. 6. Face images and corresponding reconstructed images. The first line of images is
raw data. The second line corresponds to data representations without adversarial noise
defense. The third line corresponds to representations with adversarial noise (ε = 50)
without masking. The fourth line corresponds to representations using masked noise
(ε = 50). The fifth line corresponds to representations using masked noise (ε = 100).

The experiments present satisfactory performance of adversarial noise on
latent representations. If defense intensity is set to a sufficiently small value, the
shared data can maintain high utility and privacy. In a real application, data
utility is expected to be as higher as possible while privacy is well preserved. We
choose ε = 50 as a suitable defense intensity in both datasets in the following
experiments, because of its high privacy and acceptable classification accuracy,
which is 92.8% in MNIST, and 88.3% in CelebA.

Comparison with Existing Mechanisms. We first evaluate data utility when
ε = 50 by comparing ALRS with MPC and federated learning based training
framework on MNIST. As mentioned above, we regard ε = 50 as a compromise
between utility and privacy, and choose ε = 100 to be an extreme case. The
neural network trained by SecureML [16], an MPC system, reaches an accuracy
of 93.4%. For federated learning [5], when the number of clients is at most 1000,
the accuracy is less than 92%. The classification accuracy of the ALRS based
deep learning model is close to the results of these works, even though we just
design ALRS for a general scenario, but not for specific tasks, which indicates
that ALRS maintains high utility.

We next evaluate the privacy of ALRS by simulating reconstruction attacks.
Since PSNR and SSIM are widely adopted by the latest researches in this field,
we also calculate these two metrics as privacy leakage, and compare ALRS with
two state-of-the-art data sharing mechanisms: generative adversarial training
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Table 1. Results of different mechanisms that sharing data representations.

Baseline (ε = 50) ALRS (ε = 50) ALRS (ε = 100) [25] [3]

PSNR 15.527 9.932 5.748 15.445 12.31

SSIM 0.728 0.531 0.101 0.300 0.25

based sharing mechanism [25] and SCA based sharing mechanism [3]. Similar to
ALRS, both of them learn representations of data. The experiment is conducted
on CelebA. Table 1 reports the privacy leakage of the mechanisms. As we can
see, ALRS performs better than the other two frameworks in PSNR, even when
ε = 50. When ε increases to 100, SSIM of ALRS also reaches the best result of
the three mechanisms.

(a) λD = 1, λ1 = λ2 = 0 (b) λD = 0.5, λ1 = λ2 = 0.25 (c) λD = λ1 = λ2 = 0.33

(d) λD = 0, λ1 = λ2 = 0.5 (e) λD = 0, λ1 = 1, λ2 = 0 (f) λD = λ1 = 0.5, λ2 = 0

Fig. 7. The proportion that the predictions of private attributes are equal to a given
fixed vector.

5.3 Preserving Privacy of Attributes

We now evaluate ALRS on a stronger assumption that users have some pri-
vate attributes to protect. We assess the effectiveness of defense against feature
extraction attacks by how close the extracted features are to a fixed vector given
by users. The experiments are conducted on CelebA. For all participants, we set
predicting attribute “High Cheekbones” as the collaborative learning task, while
selecting “Male” and “Smiling” as private attributes. Then we let each user train
feature extraction network fk corresponding to the k-th private attribute, which
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is similar to the adv-training decoder attack. We choose some typical values of λ
to generate adversarial noise, and set the fixed vector r = (1, 0) since the outputs
of classifiers are two-dimensional vectors. Then we record the proportion that
the predicted private attribute fk(zadv) is equal to r to estimate the ability of
ALRS to mislead feature extraction models.

We analyze the effect of different compositions of adversarial noise by chang-
ing λ as illustrated in Fig. 7(a–d) show that with the increase of λk, the proba-
bility that predictions of the k-th attribute are equal to r becomes higher. Note
that sometimes the equating rate gets lower when ε increases to 100, this may be
caused by influence of the other components of adversarial noise. (e–f) demon-
strate that the weight of a noise δk has a great effect on the privacy of the k-th
attribute. Our further experiment shows that the accuracy of attack classifiers
can be close to 50% when ε = 50. In summary, ALRS is shown to be effective
against feature extraction attacks with acceptable privacy budget ε.

Table 2. PSNR of different composition of noise and ε.

Composition of noise ε = 0 ε = 25 ε = 50 ε = 75 ε = 100

λD = 1, λ1 = λ2 = 0 22.617 15.274 8.812 7.456 6.720

λD = 0.5, λ1 = λ2 = 0.25 22.492 18.363 12.033 10.261 9.522

λD = λ1 = λ2 = 0.33 22.497 19.408 14.473 11.976 10.671

λD = 0, λ1 = λ2 = 0.5 22.482 20.827 19.109 15.004 13.179

We next evaluate the reconstruction error under the same scenario. As we
can see in Table 2, larger ε and λD lead to greater defense against reconstruction
attacks. If we consider PSNR = 12.033 an acceptable privacy leakage since it is
smaller than the results of similar representation sharing works [25] and [3] we
compared in Sect. 5.2, then λD = 1

2 , λk = 1
2M is a good choice to defend against

reconstruction and feature extraction attacks at the same time.

6 Conclusion

In this work, we propose ALRS, a privacy-preserving data sharing mechanism
for collaborative learning. Users transform local data into latent representa-
tions and share them. Adversarial noise is used to protect shared representations
from model inversion attacks. We evaluate our mechanism and demonstrate that
adding masked adversarial noise on latent representations has a great effect in
defending against reconstruction and feature extraction attacks, while main-
taining almost the same utility as MPC and FL based training. Compared with
some prior data sharing mechanisms, ALRS outperforms them in privacy preser-
vation. Besides, ALRS mechanism requires no centralized control. Our work can
be applied to collaborative learning scenarios, and provides a new idea on the
research of data sharing and joint learning frameworks.
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A Discussions on Mask Mechanism

We focus on the security of mask mechanism by studying whether it can defend
against brute-force searching attacks, which means that an attacker can ran-
domly enumerate several mask vectors, train inverse models on representations
with these mask vectors respectively and take the vector that performs best in
reconstructing others’ data as a good approximation of the victim’s mask. We
explore experimentally the relationship between the reconstruction loss LR and
the overlapping rate of masks held by attackers and defenders, which equals
to the Hamming distance of the mask vectors divided by their dimension. The
experiment is conducted on MNIST, with settings stated in Sect. 5. As Table 3
illustrates, a higher overlapping rate leads to a higher risk of privacy leakage. So
we’ll next study the overlapping of masks.

Table 3. Reconstruction loss with various overlapping rate of masks held by attackers
and defenders.

Overlapping rate

0% 25% 50% 75% 100%

ε = 50 0.119 0.101 0.082 0.048 0.021

ε = 100 0.179 0.156 0.128 0.09 0.025

For any n-dimensional mask vectors m1 and m2, we denote the Hamming
distance between them as H(m1,m2), and define the overlapping rate between
m1 and m2 as o(m1,m2) = n−H(m1,m2)

n . Then we have

P [n − H(m1,m2) = i] =
1
2n

(
n

i

)
, (14)

which means that X = n − H(m1,m2) ∼ B(n, 0.5).
Suppose t is a real number such that 1

2 < t ≤ 1, then from the De Moivre-
Laplace theorem, the probability that m1 and m2 have t · n bits different is:

lim
n→∞P [o(m1,m2) ≥ t]

= lim
n→∞P [tn ≤ n − H(m1,m2) ≤ n]

= lim
n→∞P

[
(2t − 1)

√
n ≤ X − 1

2n
1
2

√
n

≤ √
n

]

= lim
n→∞

1
2π

∫ √
n

(2t−1)
√

n

e− x2
2 dx

= lim
n→∞ Φ(

√
n) − Φ((2t − 1)

√
n)

= 0.

(15)
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Therefore, if the dimension n is large enough, the probability that the over-
lapping rate of two random n-dimensional vectors is larger than t approaches
to 0 for ∀ 1

2 < t ≤ 1. Moreover, we consider ε = 50 as an acceptable privacy
budget for preserving information of data. That is to say, an attack is consid-
ered successful if the overlapping rate of masks held by the attacker and user
should be greater than a real number t, where 1

2 < t ≤ 1. When the dimension
of latent representations is large enough, the privacy of users’ data can be guar-
anteed. For example, the dimension of latent representations is 256. If we accept
75% as overlapping rate, then we have P [o(m1,m2) ≥ 0.75] ≤ 2.449 × 10−16,
which means that the privacy of data can be considered well preserved by mask
mechanism.
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Abstract. We propose a novel primitive called NIVA that allows the
distributed aggregation of multiple users’ secret inputs by multiple
untrusted servers. The returned aggregation result can be publicly veri-
fied in a non-interactive way, i.e. the users are not required to participate
in the aggregation except for providing their secret inputs. NIVA allows
the secure computation of the sum of a large amount of users’ data and
can be employed, for example, in the federated learning setting in order
to aggregate the model updates for a deep neural network. We imple-
ment NIVA and evaluate its communication and execution performance
and compare it with the current state-of-the-art, i.e. Segal et al. pro-
tocol (CCS 2017) and Xu et al. VerifyNet protocol (IEEE TIFS 2020),
resulting in better user’s communicated data and execution time.

Keywords: Secure aggregation · Privacy · Verifiability ·
Decentralization

1 Introduction

Smartphones, wearables and other Internet-of-Things (IoT) devices are all inter-
connected generating a lot of data, that often need to be aggregated to compute
statistics in order to improve services. These improvements are often achieved
by relying on machine learning (ML) algorithms, that simplify the prediction
and/or inference of patterns from massive users’ data. Given the high volume
of data required, the ML paradigm creates serious privacy and security con-
cerns [15,20] that require a careful security analysis in order to guarantee the
minimization of private information leakage while, concurrently, allowing the
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aggregation of the collected users’ data. The growing storage and computational
power of mobile devices as well as the increased privacy concerns associated with
sharing private information, has led to a new distributed learning paradigm, fed-
erated learning (FL) [21]. FL allows multiple users to collaboratively train learn-
ing models under the orchestration of a central server, while providing strong
privacy guarantees by keeping the users’ data stored on the source, i.e. the
user’s devices. More precisely, the central server collects and aggregates the local
parameters from multiple users’ and uses the aggregated value in order to train a
global training model. The server plays the role of a central trusted aggregator
that facilitates the communication between multiple users and guarantees the
correct execution of the model update which, often, in current FL frameworks,
is obtained by summing the individual users’ parameters.

The shared model must be kept confidential since it might be employed to
infer secret user information or disrupt the correct model update, e.g. a malicious
server might bias the final result according to its preferences [13,15,20,20,27,35].
Furthermore, when the aggregation process is orchestrated by a single central
server, this may lead to single points-of-failure. Our aim is to maximise the dis-
tributed nature of the learning process by: (i) decentralizing the aggregation
process between multiple servers; (ii) providing the ability to verify the correct-
ness of the computed aggregation; and (iii) guaranteeing the confidentiality of
the users’ inputs. Figure 1 depicts the described scenario.

Fig. 1. Several users delegate the secure aggregation of their inputs to independent
servers. A threshold amount of server’s outputs is necessary to publicly reconstruct
and verify the resulting aggregated value.
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1.1 Our Contributions

We define NIVA: a Non-Interactive, decentralized and publicly Verifiable secure
Aggregation primitive inspired by the verifiable homomorphic secret sharing
primitive introduced by Tsaloli et al. [33] but differs in both the construc-
tion and hypothesis. NIVA achieves decentralization by allowing the users to
split their secret inputs and distribute the shares to multiple servers; while
only a subset (threshold) of these servers need to collaborate in order to cor-
rectly reconstruct the output. Furthermore, NIVA allows the public verification
of the computed aggregated value and contrary to existing work [25,34], NIVA is
non-interactive, i.e. the users participate in the aggregation by releasing the
appropriate messages and their participation is not required for the rest of the
aggregation process. This allows NIVA to simplify the handling of users’ dropping
out from the aggregation process, which is a complex problem to handle in the
case of interactive protocols. We further discuss possible optimizations to the
verification algorithm as well as extensions useful for realistic applications, e.g.
verification of users’ shares, multiple executions and how to introduce a differen-
tially private [10] mechanism. We implement NIVA, evaluate the communication
costs, execution time, and perform a detailed experimental analysis. Further-
more, we compare our primitive with the current state-of-the-art, i.e. the secure
aggregation protocols PPML and VerifyNet proposed by Segal et al. [25] and Xu
et al. [34] correspondingly. NIVA optimizes the users’ output and execution time
making it multiple orders of magnitude more suitable than PPML and VerifyNet
for the FL setting that requires a big amount of users, i.e. more than 105 users.

1.2 Related Work

This work addresses a general problem that lies in the intersection of “decentral-
ized aggregation” and “verifiable delegation of computations”.

Secret Sharing. A threshold secret sharing (SS) scheme allows a user to split
a secret x into multiple shares (x1, x2, . . . , xm) that are distributed to differ-
ent servers. Whenever at least a threshold number t of servers collaborates by
exchanging their shares, they are able to reconstruct the original secret. If any
malicious adversary controls less than this threshold, it is impossible to recon-
struct x. The first instantiation was provided by Shamir [26]. In the following
decades, several publications [1,4,14,17] expanded Shamir’s concept by provid-
ing schemes with additional properties such as verification and homomorphism.

An additive homomorphic secret sharing (additive HSS) allows the server to
aggregate several shares coming from different users into a single one which, when
correctly reconstructed, will allow the reconstruction of the sum of the original
secrets. Besides Shamir’s, the first instance of such a scheme was proposed by
Benealoh [2] and many other variations can be found in the literature [3,11,18].

Generally, the verifiability property describes the possibility to verify that
some specific value is “correctly evaluated”. Whenever considering this property
in the context of SS, it must be specified if (a) the server wants to verify the
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user’s received shares; or (b) anyone wants to check if the servers’ reconstructed
secret is indeed the correct one. Chor et al. [8] provided the first SS scheme
that is able to identify the existence of a “cheating” user, while Stadler [28]
extended it in order to detect both cheating users and servers. Tsaloli et al. [32]
proposed a verifiable homomorphic secret sharing (VHSS) scheme in which the
verifiability property holds by assuming the user’s honesty in generating the
shares but allows the verification of the server’s aggregation correctness. In this
paper, we consider the properties of verifiability and homomorphic secret sharing
as considered by Tsaloli et al. [31,32]. Our primitive NIVA is inspired by Tsaloli
et al.’s primitive [33], however, it is based on a completely different construction.

Federated Learning and Cryptography. The setting posed by federated learning
(FL) is similar to the aggregation problems we consider. Concretely, every time
the FL model must be updated, the users send their parameters to the server that
must provide the final aggregated model back. The work in Bonawitz et al. [25]
proposes a secure aggregation protocol, called PPML, that achieves security and
privacy with a major focus on maintaining high efficiency. This solution provides
a procedure to correctly handle users’ drop-outs, i.e. users that are unable to
correctly terminate the protocol. In the same spirit, Xu et al. [34] introduced
VerifyNet, an (conceptually) extended version of PPML that introduces a public
verification procedure to check the correctness of the aggregation process. How-
ever, these solutions are based on a single central server, and they are therefore
susceptible to single points-of-failure, i.e. if the central server crashes, the whole
protocol aborts. To avoid this, it is required to distribute/decentralise the role of
the central server, e.g. by either introducing threshold cryptographic primitives
between multiple aggregators [29] or by completely decentralising the aggrega-
tion using a blockchain [5]. Recently, privacy-preserving aggregation problems
have gained substantial attention in the past few years [5,13,23,25,27,29,30,34].
The solutions presented achieve different properties related to security, pri-
vacy, and verifiability by considering specific cryptographic assumptions, security
models, and/or application requirements. Our primitive allows to publicly verify
the correctness of the final output, handles the users’ drop-outs as well as pos-
sible servers’ failure by distributing the aggregation computation among several
independent servers.

1.3 Paper Organisation

Section 2 contains the necessary preliminaries used throughout the paper.
Section 3 introduces our primitive NIVA, its security and verifiability properties,
further discusses additional properties and compares to the related work. Section.
4 describes NIVA’s implementation details and showcases relevant performance
statistics, e.g. execution timing and bandwidth usage in relation to scaling the
amount of users and servers. Furthermore, we compare our implementation with
Segal et al. [25] and Xu et al. [34] for similar evaluation parameters. All the
security proofs are provided in the full version of this paper (https://eprint.iacr.
org/2021/654).

https://eprint.iacr.org/2021/654
https://eprint.iacr.org/2021/654
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2 Preliminaries

In this section, we show the definitions used throughout the paper.
Denote with Pr [E] the probability that the event E occurs. Let the natural

number be denoted by N, the integer number ring with Z, the real number field
with R and the positive ones with R+. Let [a, b] denote intervals between a and
b. Let |X| ∈ N indicate the cardinality of the set X and rk (A) the rank of the
matrix A. Let

∑y∈Y
x∈X be the sum

∑
x∈X,y∈Y , respectively

∏y∈Y
x∈X is

∏
x∈X,y∈Y .

Theorem 1 (Rouché-Capelli [6]). An n-variable linear equation system Ax =
b has a solution ⇔ rk (A) = rk (A|b) where A|b is the augmented matrix, i.e. A
with appended the column b.

Key Agreement. Let G be a cyclic group of order p prime with generator g,
e.g. groups based on elliptic curves [16]. Let us report the Diffie-Hellman key
agreement [9] and the related assumptions.

Assumption 1 (Diffie-Hellman Assumptions). Consider a cyclic group G

of prime order p with generator g and a, b ∈ [0, p−1]. Given elements (A,B) =(
ga, gb

)
, the computational Diffie-Hellman problem (CDH) requires to

compute the element gab ∈ G. The decisional Diffie-Hellman problem
(DDH) requires to correctly distinguish between (g, A,B, gab) and (g, A,B, gc)
for some random c ∈ [0, p−1]. We assume the advantage of solving the CDH and
the DDH problems to be negligible, i.e. εCDH < negl and εDDH < negl.

Definition 1 (Diffie-Hellman Key Exchange). The Diffie-Hellman key
agreement scheme is defined with the following algorithms:

– KSetup(λ) → pp: the setup algorithm takes as input the security parameter
and outputs the public parameters pp which contains a prime p, the descrip-
tion of a cyclic group G of order p and a generator g for the group G.

– KGen(pp) → (sk, pk): the key generation algorithm samples the secret
key sk∈[0, p−1] and computes the public key pk = gsk. It outputs
(sk, pk) =

(
sk, gsk

)
.

– KAgree(ski, pkj) → sij: the key agreement algorithm takes as input a secret
ski and public key pkj=gskj and outputs the shared secret sij = pkskij = gskj ·ski .

The scheme is said to be correct if for any pp ← KSetup(λ), (ski, pki) ←
KGen(pp) and (skj , pkj) ← KGen(pp), it holds that KAgree(ski, pkj) = sij = sji =
KAgree(skj , pki). The scheme is said to be secure if for any pp ← KSetup(λ),
and keys (ski, pki) ← KGen(pp,Ui), (skj , pkj) ← KGen(pp,Uj), it holds that any
PPT adversary A has negligible probability to compute sij from (pki, pkj) which
reduces to the CDH Assumption 1.

For our primitive, we use the shared secret sij as a pseudorandom integer
despite being an element of the group G. This is possible by considering a generic
hash function H mapping the group G to the integers Z, which translates sij into
a pseudorandom integer. To avoid heavy notation, we denote this output as sij .
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Additionally, consider the discrete logarithm problem for a subset I, i.e. the
dLog problem where the solution is contained in a subset I ⊆ [0, p−1].

Assumption 2 (Discrete Logarithm in Subset I Problem). Consider G

a cyclic group of prime order p with generator g and a subset I ⊆ [0, p−1]. Given
y ∈ G, the discrete logarithm problem for the subset I (dLogI) requires
to find the value x ∈ I such that gx = y.

In order to assume the dLogI problem to be computationally hard, the cardi-
nality of I needs to be “big enough”, i.e. if |I| > 2160 then the kangaroo Pollard’s
rho algorithm [24] has complexity ∼280 which we consider to be infeasible.

Secret Sharing. We report the additive homomorphic SS scheme’s definition.

Definition 2 (Additive Homomorphic SS Scheme). Let n,m, t ∈ N such
that 0 < t < m. For each i ∈ [1, n], let xi ∈ F be the secret input of the user
Ui for some input space F. Consider the set of servers S = {Sj}j∈[1,m]. Define
(t,m)-threshold additive homomorphic secret sharing scheme as:

– SS.Share
(
xi, t,S

)
→ {xij}j∈[1,m]: given the secret input xi, the threshold value

t and the list of servers S, the share generation algorithm outputs a list of m
shares xij for j ∈ [1,m], one for each server Sj.

– SS.Eval
(
{xij}i∈[1,n]

)
→ yj: given as input a set of shares xij for the same

server Sj, the evaluation algorithm outputs an aggregated share yj.
– SS.Recon

(
t, {yj}j∈T

)
→ y: given as input the threshold value t and a list

of shares yj for a subset of servers Sj ∈ T ⊆ S such that |T | > t, the
reconstruction algorithm outputs the reconstructed secret y.

A (t,m) additive homomorphic secret sharing scheme is said to be cor-
rect if for all i ∈ [1, n], any choice of secrets xi ∈ F, for all the shares
SS.Share

(
xi, t,S

)
→ {xij}j∈[1,m], aggregated shares SS.Eval

(
{xij}i∈[1,n]

)
→ yj,

for all the servers’ reconstruction subset T such that |T | > t, it holds that the
reconstructed value SS.Recon

(
t, {yj}j∈T

)
→ y is equal to y =

∑n
i=1 xi.

A (t,m) additive homomorphic secret sharing scheme is secure if for all
i ∈ [1, n], any secrets xi ∈ F, for all the shares SS.Share

(
xi, t,S

)
→ {xij}j∈[1,m],

aggregated shares SS.Eval
(
{xij}i∈[1,n]

)
→yj, an adversary A that controls a

servers’ subset T ⊆ S, such that |T | ≤ t, is unable to obtain the reconstructed
value y.

3 NIVA

In this section, we describe the decentralised aggregation problem’s setting as
well as the security and privacy requirements and how they must guarantee
public verifiability of the aggregated computations. We instantiate NIVA and
define the security and verifiability properties while the corresponding proofs
are provided in the extended version https://eprint.iacr.org/2021/654.

Consider n users Ui, each owns a secret input xi, and m servers Sj . The goal
is to distribute the computation of the sum of the users’ secret inputs’

∑n
i=1 xi

https://eprint.iacr.org/2021/654
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between the m servers of which only a designed threshold amount t + 1 ≤ m of
servers is required to obtain the aggregated value. Formally:

Definition 3. Let the algorithms (Setup,SGen,Agg,Ver) defined as:

– Setup(λ) → (skI , pkI): given the security parameter λ, the setup algorithm
provides a keypair (skI , pkI) associated to the user/server I.

– SGen
(
xi, skUi

, t, {pkSj
}m

j=1

)
→

(
pkUi

, {x̂ij}m
j=1, Ri, {τij}m

j=1

)
: given a secret

input xi ∈ I and the user’s Ui secret key skUi , the designed threshold amount
0 < t < m−1 and the list of servers’ public keys {pkSj

}m
j=1 from which we

obtain the list of servers’ identities {Sj}m
j=1, the share generation algorithm

outputs the shares x̂ij, additional information Ri and the verification coeffi-
cients τij to be either shared with the server Sj or publicly released.

– Agg
(
{(pkUi

, x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj

, ρj): given a set of public keys,
shares and additional information (x̂ij , Ri, pki) for a list of users Ui in the
subset N ⊆ [1, n], the aggregation algorithm outputs the partial evaluation yj,
a partial verification proof πj and additional information (RSj

, ρj).

– Ver
(
t, {τij}j∈M

i∈N ,
{
(yj , πj , RSj , ρj)

}
j∈M

)
→

{
y,⊥}: given the threshold t, a

set of servers M with t+1≤ |M | ≤m, given partial evaluations, proofs and
additional information (yj , πj , RSj , ρj) and a set of verification coefficients
{τij}j∈M

i∈N for a subset of users N , the verification algorithm outputs the aggre-
gated value y =

∑
i∈N xi if the servers correctly computed the aggregation of

their shares. Otherwise, it outputs ⊥.

The primitive must be correct, i.e. the verification always outputs y =∑
i∈N xi whenever using correctly aggregated outputs computed from correctly

generated shares of the secrets {xi}i∈N . Additionally, the users’ input must
be secure. The security experiment describes a realistic scenario in which the
adversary A must recover the secret inputs xi, which are randomly sampled by
the challenger C. The amount of servers that A is able to compromise is at most t
since this servers’ subset is not enough for using the secret share’s reconstruction
algorithm SS.Recon. Our experiment includes the single-user input privacy, i.e.
whenever A requests a challenge for n = 1, the property holds for the input xi.

Definition 4 (Security). Consider the primitive of Definition 3 to be defined
between n users and m servers and threshold t. Let A be a PPT adversary that
maliciously controls t servers, w.l.o.g. {Sj}t

j=1. Consider the security experiment
Expsec (A):

1. For every j ∈ [1, t], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj

, pkSj
), while for the remaining j ∈ [t+1,m]

servers, it returns only the non-corrupted server’s public key pkSj
.

2. A outputs to C the number of users n to be challenged on.
3. C executes Setup(λ) and generates the key pairs (skUi

, pkUi
) and randomly

samples an input xi ∈ I for each user Ui.
4. C computes the shares SGen

(
xi, skUi

, t, {pkSj
}m

j=1

)
and outputs to A the com-

promised servers’ shares
(
pkUi

, {x̂ij}t
j=1, Ri

)
plus all the verification values

{τij}m
j=1 for each i ∈ [1, n].
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5. A outputs the aggregated secret y∗.
6. If y∗ =

∑n
i=1 xi, the experiment outputs 1, otherwise 0.

The primitive is said to be secure if Pr [Expsec (A) = 1] < negl.

Finally, we require to publicly verify the computations of the servers, i.e.
the servers must provide a proof of the correct computation. In other words,
the verifiability property requires the impossibility for an adversary A to force
the correct verification of a wrong aggregated value. This property holds when-
ever there exists at least one honestly computed partial evaluation, regardless
of the number of servers that A compromises. On the other hand, whenever A
controls more than t servers, the security property does not hold, thus obtain-
ing a potentially verifiable primitive but definitely not secure. For this reason,
we design the verifiability experiment in which, before obtaining the correct
partial evaluations, A is allowed to select the subset of inputs N∗ to be aggre-
gated and, after receiving the non-compromised partial evaluations, A outputs
tampered partial evaluations for the compromised servers and selects a set M∗

of evaluations to be used in the verification challenge. The adversarial set M∗

must contain at least one honestly generated partial evaluation and it is used to
describe the realistic attack scenario in which the adversary denies the verifier
to obtain all the partial evaluations but at least an honest one is present.

Definition 5 (Verifiability). Consider the primitive of Definition 3 to be
defined between n users, m servers and threshold t. Let A be a PPT adver-
sary that maliciously controls k < m servers, w.l.o.g. {Sj}k

j=1. Consider the
experiment Expver (A):

1. For every j ∈ [1, k], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj

, pkSj
), while for the remaining j ∈ [k+1,m]

servers it returns only the non-corrupted server’s public key pkSj
.

2. A outputs to C the number of users n to be challenged on.
3. C executes Setup(λ) and generates the key pairs (skUi

, pkUi
) and randomly

samples an input xi ∈ I for each user Ui.
4. C computes the shares SGen

(
xi, skUi

, t, {pkSj
}m

j=1

)
and outputs to A the com-

promised servers’ shares
(
pkUi

, {x̂ij}k
j=1, Ri

)
plus all the verification values

{τij}m
j=1 for each i ∈ [1, n].

5. A provides to C the list of inputs N∗ to be challenged.
6. For each non compromised server Sj where j ∈ [k + 1,m], C returns to A the

Sj’s partial evaluations (yj , πj , RSj
, ρj) ← Agg

(
{(pkUi

, x̂ij , Ri)}i∈N∗ , skSj

)
.

7. A outputs tampered evaluations {yj
∗, πj

∗, RSj

∗, ρj
∗}k

j=1.
8. A provides to C the list of verifying servers M∗ in which there exists a non-

compromised server Sl ∈ M∗ with l ∈ [k + 1,m].
9. The experiment computes the verification algorithm

Ver
(
t, {τij}j∈M∗

i∈N∗ ,
{
(yj , πj , RSj

, ρj)
}

j∈M∗

)
→ y∗

and outputs 1 if y∗ 
= y =
∑

i∈N∗ xi, otherwise 0.

The primitive is said to be verifiable if Pr [Expver (A) = 1] < negl.
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3.1 NIVA Instantiation

In this section, we provide our instantiation of Definition 3, called NIVA. In a
nutshell, NIVA incorporates into the Shamir’s SS scheme of Sect. 2, the usage
of a key-agreement scheme between the users and the servers. This allows the
creation of a “proving value” used during the verification phase which must be
correctly computed by the servers or, otherwise, the verification process fails.

Definition 6 (NIVA). Let (KSetup,KGen,KAgree) be a key agreement (Defini-
tion 1) with public parameters pp ← KSetup(λ), defined over a cyclic group G

with prime order p. Let n ∈ N be the number of users Ui and m ∈ N be the num-
ber of servers Sj. Let I be a secret input’s space closed under summation such
that the dLogI problem of Assumption 2 is hard. Let N ⊆ [1, n] be a users’ subset
and M ⊆ [1,m] a servers’ subset. We refer to Sj ∈ M with j ∈ M . Let t ∈ N be
the evaluation threshold such that 0 < t < m. Define NIVA with algorithms:

– Setup(λ) → (skI , pkI): given the security parameter λ, the setup algorithm
executes KGen(pp) and outputs the result (skI , pkI) =

(
skI , g

skI
)
. The Setup

algorithm is evaluated by each user Ui and server Sj. All the public keys of
the servers {pkSj

}m
j=1 are publicly released.

– SGen
(
xi, skUi , t, {pkSj

}m
j=1

)
→

(
pkUi

, {x̂ij}m
j=1, Ri, {τij}m

j=1

)
: given a secret

input xi ∈ I and the user’s Ui secret key skUi
, the designed threshold amount

0 < t < m−1, the list of servers’ public keys {pkSj
}m

j=1 from which we obtain
the list of servers’ identities {Sj}m

j=1, the share generation algorithm instan-
tiates a (t,m)-threshold additive homomorphic secret sharing scheme by exe-
cuting SS.Share

(
xi, t, {Sj}m

j=1

)
which returns the shares x̂ij for all j ∈ [1,m].

Then, Ui uses its secret key skUi to compute the shared secrets w.r.t. each
server Sj, i.e. KAgree(skUi

, pkSj
) → sij. The algorithm samples a random

value ri ∈ [0, p−1], computes Ri = gri , and the verification coefficients

τij = pkxi

Sj
· R

sij
i = gskSj xi+ri·sij (1)

The algorithm outputs
(
pkUi

, {x̂ij}m
j=1, Ri, {τij}m

j=1

)
. Each user publicly

releases the values {τij}m
j=1.

– Agg
(
{(pkUi

, x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj

, ρj): given a set of public keys,
shares and random values (x̂ij , Ri, pki) for a list of users Ui in the subset
N ⊆ [1, n], the aggregation algorithm performs all the key-agreements between
Ui and Sj as KAgree(skSj

, pkUi
) → sij, the partial evaluation and proofs as:

yj ← SS.Eval
(
{x̂ij}i∈N

)
πj =

∑

i∈N

sij

RSj
=

∏

i∈N

Ri ρj =
∏

i∈N

R
−

∑k �=i
k∈N skj

i

(2)

The algorithm outputs (yj , πj , RSj
, ρj).
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– Ver
(
t, {τij}j∈M

i∈N ,
{
(yj , πj , RSj , ρj)

}
j∈M

)
→

{
y,⊥}: given the threshold t, a

set of servers M with t+1≤ |M | ≤m, given partial evaluations and proofs
(yj , πj , RSj

, ρj) and a set of verification coefficients {τij}j∈M
i∈N for a subset of

users N , the verification algorithm verifies that for any Sj ,Sj
′ ∈ M , it holds

RSj = RSj
′ = R. If not, Ver outputs ⊥. Otherwise, the algorithm verifies

that for all the subsets Ti ⊆ M of t+1 partial evaluations, the reconstruction
algorithm SS.Recon

(
t, {yj}j∈Ti

)
returns always the same output y. If not, Ver

outputs ⊥. Otherwise, the algorithm computes

i∈N∏

j∈Ml

τij
?=

⎛

⎝
∏

j∈Ml

pkSj

⎞

⎠

y

·
∏

j∈Ml

Rπj · ρj (3)

for all the |M | subsets Ml ⊂ M such that |Ml| = |M | − 1. If any check
fails, then the verification algorithm outputs ⊥. Otherwise, the verification
algorithm outputs y.

Corollary 1. NIVA allows the definition of the algorithm:

– OptVer
(
t, {τij}j∈M

i∈N ,
{
(yj , πj , RSj

, ρj)
}

j∈M

)
→

{
y,⊥}: given the threshold t,

a set of servers M with t+1 ≤ |M | ≤ m, given partial evaluations and proofs
(yj , πj , RSj

, ρj) and a set of verification coefficients {τij}j∈M
i∈N for a subset of

users N , the verification algorithm verifies that for any Sj ,Sj
′ ∈ M , it holds

RSj
= RSj

′ = R. If not, Ver outputs ⊥. Otherwise, the algorithm verifies that
for all the subsets Ti ⊆ M of t + 1 partial evaluations, the reconstruction
algorithm SS.Recon

(
t, {yj}j∈Ti

)
returns always the same output y. If not, the

algorithm outputs ⊥. Otherwise, the algorithm computes, for each Sl ∈ M :
∏

i∈N

τij
?=

(
pkSl

)y · Rπl · ρl

If any check fails, then the algorithm outputs ⊥. Otherwise, it outputs y.

Remark 1. The main difference w.r.t. Ver is that OptVer takes the |M | different
subsets Ml to be defined as servers’ singletons, i.e. Ml = {Sl} and |Ml| = 1. This
reduces the amount of computation needed to verify Eq. (3). The possibility
of using OptVer might depend on application constraints, e.g. the server Agg’s
outputs might not be directly published but further aggregated by a third party
before reaching the final public verification.

NIVAis correct for both the verification algorithms Ver and OptVer and the
proofs boil down to trivial algebraic computations. These and the security and
verifiability proofs are reported in the full version (https://eprint.iacr.org/2021/
654).

Theorem 2 (NIVA Security). If we assume the negligible probability εdLogI of
solving the dLogI problem for the input subset I and the additive homomorphic
secret sharing scheme’s security, then NIVA is secure (Definition 4).

https://eprint.iacr.org/2021/654
https://eprint.iacr.org/2021/654
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Theorem 3 (NIVA Verifiability). Consider n users and m servers, with
threshold t such that the order p of the cyclic group G used for the key-agreement
does not divide m−1. Let A be a PPT adversary that maliciously controls k < m
servers, w.l.o.g. {Sj}k

j=1. It holds that NIVA is verifiable (Definition 5).

Observe that in the definition of the verification algorithm Ver, the servers’
subset M always allows the existence of |M | = μ different subsets Ml ⊂ M with
|Ml| = μ−1 obtained as Ml = M\{Sl} for each Sl ∈ M . We require M to have
at least t + 1 elements in order to execute the SS reconstruction SS.Recon.

Corollary 2. NIVA achieves verifiability even in the case of using OptVer as the
verification algorithm.

3.2 Additional Properties and Extensions

In this subsection, we discuss how additional properties presented by concurrent
primitives/protocols [25,32–34] apply to NIVA.

Multiple Executions. In the FL setting, it is required to execute the aggre-
gation multiple times. NIVA is described for a single execution but the same
generated key pairs allow the execution of multiple aggregation/verification calls.

Decentralization. Several published protocols [25,34] do not consider this
decentralized scenario making their server a single-point-of-failure, i.e. if the
centralized server halts, the protocol cannot be terminated. NIVA decentralizes
the aggregation between several servers and only a predefined amount is nec-
essary for the correct reconstruction and verification of the output. This allows
to overcome realistic problems such as “complete the aggregation in case of fail-
ing servers” or introduce “responsibilities distribution”, i.e. the servers might be
owned by different independent entities and not by a single organisation.

Non-interactivity and User Drop-Out. The aggregation problem discussed
in this section can be solved either with an interactive protocol or a non-
interactive primitive. The first allows the use of a “challenge-response” interac-
tion that facilitates the computation of more complex verification protocols but
introduces the users’ drop-out problem, i.e. the user might drop-out during the
communication thus are not able to finish the aggregation protocol, forcing the
servers to abort the protocol. To overcome this issue, the protocol must be able to
identify the drop-outs and recover the user’s information to complete the aggre-
gation or, if not possible, it should have a procedure for removing the user’s initial
participation. In a non-interactive solution, such as NIVA, a user cannot drop out
since there is no interaction. A dropping user in the non-interactive communi-
cation is equivalent to a user that never participated. Thus any non-interactive
solution is trivially able to overcome the users’ drop-out problem. On the other
hand, interactivity allows to easily introduce input’s range proof [7,19,22], i.e.
a proof, generally in zero-knowledge, that allows the server to verify that the
values obtained are indeed related to the user’s secret input without revealing
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it. It might be possible to transform these zero-knowledge protocols into non-
interactive proofs at the cost of introducing additional assumptions, e.g. the
random oracle model for the Fiat-Shamir’s transformation [12]. NIVA design’s
principle is simplicity with a limited required assumptions; thus, allowing a more
general deployment for different applications/security models.

Authentication and Publishing. In this work, we do not consider malicious
adversaries that are able to diverge from the correct communication. Similarly to
the non-interactivity discussion, it might be possible to prevent active attacks by
achieving communication authentication by, for example, forcing the registration
of the servers’ public keys on a public key infrastructure and using authenticated
communications, e.g. communicating over a TLS channel. Additionally, NIVA
requires the existence of an untamperable public “space” (e.g. a bulletin board)
in which the partial proofs τij to be used in the verification phase, will be stored.
These requirements must be carefully considered whenever NIVA is used in a
framework where active adversaries are a possibility.

Differential Privacy. Specific applications related to privacy-preserving aggre-
gation require a higher-level of privacy, especially when multiple aggregation
outputs are published and from which it might be possible to infer informa-
tion on a specific user/group. This is the case study for differential privacy [10]
and the framework that implements it. Without entering into tedious details, it
is possible to utilize NIVA for differentially private and distributed aggregation,
since it is possible to introduce the correctly sampled noise by using the additive-
homomorphic property. The specific protocol for fairly and publicly generating
the noise is tangent to NIVA’s definition and to other abstract frameworks.

4 Implementation and Comparisons

In this section, we provide relevant statistics and performance measurements
retrieved after implementing our primitive NIVA. We conclude by comparing
NIVA with the results obtained by Segal et al.’s protocol [25] and Xu et al.’s
VerifyNet [34]. NIVA is implemented as a prototype in Python 3.8.3 and we exe-
cute the tests on MacOS 10.13.6 over a MacBookPro (mid 2017) with processor
Intel i5-7267U CPU @ 3.1GHz, with 16GB LPDDR3 2133MHz RAM, 256 kB
L2 cache and 4MB L3 cache. The source code of our implementation is pub-
licly released1. For our experiments, the key agreement used is Diffie-Hellman
over the elliptic curve secp256k1 and the additive homomorphic SS is Shamir’s
SS. The execution time is expressed in milliseconds (ms) and the bandwidth in
kilobytes (kB).

The NIVAprimitive is executed with respect to n users, m servers with the
threshold parameter t and μ denoting the size of the verification set M . The
total communication cost, i.e. users and servers’ output data, is expected to be
linearly dependent w.r.t. the numbers m and n, since each server has a constant
size output, while the users are in total communicating nm shares xij and
verification values τij . Figure 2 reports the expected behaviour.
1 https://bitbucket.org/CharlieTrip/nivacode/src/main/.

https://bitbucket.org/CharlieTrip/nivacode/src/main/
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Fig. 2. NIVA’s total communication bandwidth for a different number n of users and
m of servers and fixed t = 1 and µ = 2.

Fig. 3. User and server’s bandwidth and computation time performance.

Consider the metrics for a single user U and a server S, depicted in Figs. 3a
and 3b. As expected, U’s output data depends linearly on the amount of servers
m. The same applies for S’s bandwidth and execution time, since they are linear
w.r.t. the n users. Despite expecting S’s input data to be always constant when
considering different amount of servers and fixed n, our experiments present a
decreasing S’s data when increasing the amount of server. This is due to the
approximation introduced by the Python data-measuring package used.
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As represented in Fig. 4b, the verification algorithm Ver has input data size
proportional to the number μ of servers used in the verification. By considering
the maximum verification set possible, Ver’s execution time increases quadrati-
cally in the number of users and servers. In Fig. 4a, we observe that the optimal
choice for μ is always μ = t + 1. This is true because, for every μ ∈ [t + 1,m], a
successful verification requires (1) μ checks of the form of Eq. (3); and (2)

(
μ

t+1

)

calls to SS.Recon. The first is proportional w.r.t. the parameters n and μ, but it
does not depend on t, while the latter has a maximal number of calls whenever
μ is near the integer 2(t + 1). This consideration suggests that it is optimal to
minimise the verification set size μ to be μ = t + 1. Additionally, the optimized
verification algorithm OptVer of Corollary 1 is always faster than Ver, due to the
reduced amount of multiplications required during the verification of Eq. (3).

Fig. 4. Communication cost and execution time for Ver and OptVer.

4.1 Comparison to Related Work

We compare the performance of our solution with Segal et al.’s PPML [25] and
Xu et al.’s VerifyNet [34] protocols. Segal et al.’s results are obtained from a
Java implementation running on an Intel Xeon E5-1650 v3 CPU @ 3.50 GHz,
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Fig. 5. Extrapolated user’s data usage and execution time for PPML and NIVA with
fixed vector size K = 105.

with 32 GB of RAM while, Xu et al.’s are obtained from an Intel Xeon E5-
2620 CPU @ 2.10 GHz, 16 GB RAM on the Ubuntu 18.04 operating system.
Both of them have not publicly released their implementations, thus, making it
hard to fairly compare the computation times. Additionally, since the considered
related works are designed as interactive protocols, we can only compare total
bandwidth/execution time and we will mainly focus on the user’s and verification
algorithm performance metrics since, in the FL scenario, the server enjoys high
computational power.

In both the PPML and VerifyNet experiments, the users provide secret vec-
tors of length K as input to the aggregation protocol and, additionally, the
entries of the vector might be of small size, e.g. our implementation represents
an integer with B = 36 bytes, while the vector entries considered in the PPML
protocol are b = 3 bytes long. To fairly compare, we repeatedly execute NIVA
K b

B times in order to achieve the same amount of aggregated value bytes. In
other words, we simulate the packing of a vector of small integers into a sin-
gle bigger integer, as described in the VerifyNet’s implementation [34]. PPML
assumes that the vector entries are of length b = 3 bytes, while VerifyNet was
tested on entries of the same size B as NIVA. Since NIVA is the only decentral-
ized primitive compared, we test it at the minimal distributed setting possible,
i.e. m = 2 servers both needed for the reconstruction, or threshold t = 1.

VerifyNet uses as standard vector size K = 1000. Figure 6a depicts that NIVA
is more space efficient than VerifyNet whenever introducing a larger amount of
users. Furthermore, NIVA requires a lower amount of users’ data than VerifyNet.
We should note though that whenever increasing the vector size K, it must be
observed that NIVA has a slightly steeper angle, which means that there exists a
vector size k̂ from which VerifyNet becomes more efficient than NIVA. Differently,
Fig. 6c collects the required user execution (computation) time in which NIVA
results to be always more efficienct than VerifyNet.

PPML is defined with a standard vector of size K = 105, 100 times bigger
than VerifyNet, and does not achieve the verification of the aggregated output.
Additionally, each vector entry is described with b = 3 bytes, 12 times smaller
than NIVA’s input. As shown in Fig. 6b and Fig. 6d, our primitive seems to never
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Fig. 6. Data and time comparisons between PPML, VerifyNet and NIVA.
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be able to compete with the PPML protocol because of the elevated value K.
PPML’s protocol minimizes the communication cost, thus the execution time,
for bigger vector sizes K, while it is linearly dependent on the number of users. In
contrast, NIVA has a fixed user’s communication cost that only depends on the
vector size K and the amount of servers m. For this reason, we consider K = 105

and extrapolate the PPML’s linear dependency between data and users n. We
observe that NIVA overtakes PPML regarding both the user’s execution time
and the communicated data whenever the user size is ∼104.

This allows us to conclude that NIVA is better suited than both PPML and
VerifyNet for scenarios where the number of users n that participate in a FL
model aggregation/update is substantial, i.e. over 105. For example, we have
simulated a scenario where n = 105 users participate with a limited vector of
K = 1000 entries of b = 3 bytes each and found out that NIVA has a constant
user communication cost of ∼43.33 kB and execution time of ∼282.5ms. In com-
parison and with the same hypothesis used for Fig. 5, PPML would require each
user to communicate ∼31.55MB for a total of ∼4.33 min putting it over 3 order
of magnitude worse than NIVA. Of course, NIVA’s servers have a higher com-
putational demand. In our experiments, each server took ∼106.56 h to handle
∼4.00GB of data and the verification algorithm required ∼573.33MB of data
from users and servers and was executed in ∼25.33 s. The reason for this high
cost is the necessity to re-execute the primitive K · b

B times. This can be over-
come by, for example, increasing B, thus, considering a key agreement based on
very-big cyclic groups G such as an elliptic curve over a finite field of 512 bits
which should allow to almost double B from 36 to 64. It remains open if it is
possible to extend NIVA to work more efficiently with vectors as secret inputs.
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post-doc at Chalmers University of Technology. This work was partially supported by
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Abstract. Automatic speech recognition (ASR) systems are now ubiq-
uitous in many commonly used applications, as various commercial prod-
ucts rely on ASR techniques, which are increasingly based on machine
learning, to transcribe voice commands into text for further processing.
However, audio adversarial examples (AEs) have emerged as a serious
security threat, as they have been shown to be able to fool ASR models
into producing incorrect results. Although there are proposed methods to
defend against audio AEs, the intrinsic properties of audio AEs compared
with benign audio have not been well studied. In this paper, we show
that the machine learning decision boundary patterns around audio AEs
and benign audio are fundamentally different. In addition, using dimen-
sionality reduction techniques, we show that these different patterns can
be distinguished visually in 2D space. Based on dimensionality reduc-
tion results, this paper also demonstrates that it is feasible to detect
previously unknown audio AEs using anomaly detection methods.

Keywords: Adversarial machine learning · Adversarial example ·
Anomaly detection · Visualization

1 Introduction

Automatic speech recognition (ASR) applications are playing an increasingly
important role in the daily lives of many people. Through ASR applications,
like Amazon’s Alexa and Apple’s Siri, users can easily transcribe speech into
text or use voice commands to interact with software applications. Modern ASR
techniques rely on the powerful capabilities of deep learning and are able to
achieve better speech recognition performance when compared with traditional
methods [3,14,30].

However, as with other machine learning techniques, deep learning suffers
from various security threats [7]. Among these security threats, adversarial exam-
ples (AEs) have attracted great interest among researchers to date. AEs were
first defined in the image recognition domain [32], where an AE is generated by
applying small perturbations to a benign (normal) image. The generated AE is
c© Springer Nature Switzerland AG 2021
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visually indistinguishable from the original image by humans, but is able to fool
deep learning models into classifying it under a different label. Research inter-
est in AEs has rapidly propagated to other domains, such as natural language
processing (NLP) [11,17,43], speech recognition [2,9,29], speaker verification
[35,36], and so on.

Alongside research on the generation of AEs, others have attempted to
explain the existence of AEs. Tsipras et al. [34] argued that AEs exist because
classification is affected by the non-robust features of a data set. They provided
a simple provable demonstration in which non-robust features referred to fea-
tures that were weakly correlated to the corresponding label. In other work,
Ilyas et al. [16] showed that non-robust features intrinsically exist in data sets.
Furthermore, researchers have shown that perturbations in AEs can dominate
classification, and this finding can be seen as being complementary to the exis-
tence of non-robust features [41].

Other research efforts have focused on defending against AEs. Examples of
such techniques include the use of intrinsic properties to differentiate between
benign samples and AEs [24,37], as well as the training of a classifier using
both benign samples and AEs to detect previously unknown attacks [10,20].
Among the various defense methods, adversarial training has been shown to be
an efficient method for defending against AEs [12]. Nevertheless, Zhang et al.
[42] showed that if data points are far from the manifold of the training set, AEs
with small perturbations can still be successfully generated even when a model
is produced using adversarial training.

While much research on AEs is primarily in the image recognition domain,
this paper focuses on audio AEs. Although there are proposed methods for
detecting audio AEs based on their properties [38,40], the fundamental differ-
ences between audio AEs and benign audio are not well studied or understood.
To date, there is no research on visually analyzing audio AEs in the ASR domain.
This paper addresses this by presenting a method of visually analyzing intrinsic
properties that can be used to distinguish audio AEs from benign audio. In addi-
tion, this research demonstrates that by being able to distinguish these features,
it is possible to detect previously unknown audio AEs.

Our Contributions. This paper demonstrates that decision boundaries around
audio AEs are fundamentally different from the decision boundaries of benign
audio. Our proposed method uses heat maps of changes in loss function values
and normalized edit distances (Levenshtein distance) to visualize decision bound-
aries of ASR models. In particular, we show that both targeted and untargeted
audio AEs have different decision boundary patterns when compared with benign
audio. In addition, by projecting these decision boundaries into 2D space, this
paper illustrates that targeted and untargeted AEs can clearly be separated from
benign audio. This can be achieved by extracting features from decision bound-
aries and projecting them into 2D space. Based on these findings, we demonstrate
that it is feasible to use simple anomaly detection models to distinguish audio
AEs from benign audio.
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2 Related Work

AEs can be categorized as being targeted or untargeted. Targeted AEs fool a
model into producing a predetermined result, while untargeted AEs simply cause
a model to produce an incorrect result. In addition, AEs can be generated under
a white-box or black-box threat model. A white-box threat model, assumes that
an adversaries knows everything about the target model, including its training
data set, hyper-parameters, model weights, etc. Whereas under the conditions of
a black-box threat model, adversaries are only able to obtain input and output
pairs consisting of the AE and its corresponding result. Thus, black-box AEs are
a subset of white-box AEs [5].

Early work on white-box audio AE generation was conducted by Yuan et al.
[39], where they hide malicious voice commands in songs to attack the Kaldi
speech recognition toolkit [26]. They also showed that the generated AEs could
be transferred to attack the iFLYREC speech recognition software. Transferabil-
ity is the property where an AE generated using one model is able to fool other
models. Carlini and Wagner [9] proposed a white-box method of generating audio
AEs against DeepSpeech by optimizing the Connectionist Temporal Classication
(CTC) loss. CTC loss was proposed in [13] for training sequence-to-sequence neu-
ral networks with unknown alignment between input and output sequences. A
limitation of their approach was that the max-norm of perturbations were used
to reduce noise in the resulting audio AEs. Recent studies [27,29] have shown
that there are better ways to suppress noise by incorporating psychoacoustics in
the generation process.

In contrast to white-box audio AEs, black-box audio AEs are more difficult to
generate since the internal workings of the ASR model are inaccessible. Alzantot
et al. [2] were the first to use genetic algorithms to generate black-box audio AEs.
The target model in their study was a lightweight keyword spotting model, rather
than an ASR model. In later work, Taori et al. [33] proposed black-box audio
AEs against DeepSpeech, which is a state-of-the-art ASR model. In addition to
the use of genetic algorithms, they also used a gradient estimation technique
to fine tune perturbations when the edit distance between the transcribed and
target phrase was small. The target phrases in their research were limited to two
words.

The detection of audio AEs has also attracted much interest among
researchers. In early work, a detection method was proposed in [8], in which
a logistic regression classifier was trained to detect audio AEs. The limitation
of this method is it could only detect the hidden voice commands that were
proposed in that paper. In other work, Zeng et al. [40] proposed the use of mul-
tiple ASR models to transcribe an input audio signal. If the resulting transcripts
of these models diverged significantly, the audio would be classified as an AE.
Their detection method is based on the assumption that audio AEs cannot be
transferred between multiple ASR models. Another defense method, proposed
by Yang et al. [38], detects audio AEs based on temporal dependency. They
observed that unlike benign audio, audio AEs cannot preserve temporal depen-
dencies. Recently, Samizade et al.[28] proposed a defense method where they
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trained a convolutional network on the spectrograms of benign audio and AEs,
and demonstrated that it could detect audio AEs with high accuracy. Although
these methods have successfully detected audio AEs, the intrinsic properties
that differentiate audio AEs from benign audio have not been well studied or
understood.

Visualization techniques have been used to facilitate the understanding of
deep learning techniques [15], and several such efforts have focused on helping
the research community to intuitively understand properties of AEs. In initial
work in this area, Norton et al. [22] built a web-based interface to interactively
show the generation process of image AEs. Liu et al. [19] conducted seminal
work that visually explained the transferability of image AEs. In their work, they
visualized the decision boundaries of several image recognition models and found
that AEs could be transferable due to their overlapping decision boundaries.
In other work, Stutz et al. [31] showed that perturbations of image AEs are
interpretable if AEs are constrained on the manifold of a data set. In addition,
different patterns in the gradient of the loss function of input images in non-
robust and robust models have been visually compared [34]. A recent study by
Zhang et al. [41] visualized logit vectors of a model in relation to an image AE,
along with its corresponding clean image and perturbations. Experiment results
in their study showed that logit vectors of an image AE and their corresponding
perturbations are correlated.

Despite visualization research on image AEs, to date, there has been limited
research on the visual analysis of audio AEs in the ASR domain. This paper
fills this gap by proposing a method of visually analyzing the intrinsic properties
that can be used to distinguish audio AEs from benign audio.

3 Audio Adversarial Examples

This research proposes a method of visually analyzing both targeted and untar-
geted audio AEs. A background to the generation processes for both types of
AEs is presented in this section.

3.1 Targeted Audio Adversarial Examples

This paper analyzes an improved version of the state-of-the-art targeted audio
AE generation process proposed by Carlini and Wagner [9]. In their research,
distortion caused by perturbations was measured by comparing level of pertur-
bations δ, in decibels (dB), with the original waveform x. The calculation is
given as dBx(δ) = dB(δ) − dB(x), where dB(x) = maxi 20 · log10(xi), which is
used in the formulation shown in Eq. 1 [9].

minimize ||δ||22 + c · �net(f(x + δ), y)
such that dBx(δ) ≤ τ

(1)

where τ limits the max-norm of δ, ||δ||22 is the squared Euclidean norm of δ,
f() represents the ASR model, y is the target phrase, �net() represents the loss
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function of the ASR model, and c is used as a trade-off between the amount of
adversarial perturbation and making δ small.

One major drawback of this attack is that the perturbations are limited
by max-norm and this is arguably not suitable for minimizing noise in audio
AEs. This is because max-norm constrained perturbations are applied in a non-
selective manner, resulting in noise being apparent in relatively quiet audio sec-
tions. In contrast, Qin et al. [27] showed that it is more appropriate to incorpo-
rate psychoacoustics to suppress noise in audio AEs. Using their approach, they
divide the generation process into 2 stages. In the first stage, a targeted audio
AE is generated in the same way as [9]. Then, the second stage tries to limit
perturbations to be under the masking threshold that was proposed in [18]. The
formulation to solve this is shown in Eq. 2 [27], where lθ() is the loss function
to calculate the hinge loss of the masking threshold and α controls the trade-off
between the amount of adversarial perturbation and it being imperceptible.

minimize �net(f(x + δ), y) + α · lθ(x, δ) (2)

It should be noted that limiting the max-norm of perturbations in stage 1 is
somewhat unnecessary since the original purpose of limiting the max-norm is to
suppress noise, and in their approach noise suppression is also done in stage 2.

As such, based on the method in [27], we improved the targeted AEs gen-
eration process presented in [9] by constraining perturbations via the masking
threshold instead of the max-norm. Specifically, we solve the formula in Eq. 3,
where X represents the set of valid audio data, ||δ||22 is the squared Euclidean
norm of δ, �net is the loss function of the ASR model, lθ is the hinge loss of
the masking threshold from [27], and β and α are factors used to balance the
different losses. There are still two stages. During stage 1, a targeted audio AEs
is generated with alpha set to 0, so that the hinge loss of the masking threshold
will have no contribution. During stage 2, alpha is set to a small value, e.g., 0.05,
to suppress noise.

As asserted in [9], limiting the max-norm of perturbations would often result
in the optimization not converging, but rather oscillating around a solution.
In contrast, we do not limit the max-norm of perturbations in Eq. 3, thereby
potentially reducing AE generation time.

minimize ||δ||22 + β · �net(f(x + δ), y) + α · lθ(x, δ)
such that x + δ ∈ X

(3)

3.2 Untargeted Audio Adversarial Examples

To the best of our knowledge, to date there is no research on untargeted audio
AEs. One reason is that untargeted audio AEs are less interesting compared to
targeted AEs, since they only lead to wrong or even meaningless transcripts.
Nevertheless, for completeness we also analyze untargeted audio AEs in this
research.
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We devised two approaches of generating untargeted audio AEs. The first
approach was based on the Fast Gradient Sign Method (FGSM) [12]. This
method simply takes one step along the gradient direction of the loss function
with respect to (w.r.t.) the input audio. The perturbations δ are calculated as
in Eq. 4 [12], where x is the input audio, y is the target phrase, �net() is the loss
function and ε is the step size.

δ = ε · sign(∇x�net(f(x), y)) (4)

An audio AE x′ is then calculated as: x′ ← x−δ. While this will not generate
targeted audio AEs, like the method in [9], this method can generate untargeted
audio AEs if we set y to be the reversed ground truth. The reversed ground truth
is typically different from the original. An untargeted AE is successfully gener-
ated if the edit distance between the transcript and the ground truth exceeds
a certain threshold. Edit distance is defined as the minimum number of letter-
level modifications, including insertions, deletions and substitutions, required to
change a text string into another.

The second approach for generating untargeted audio AEs was inspired by
the black-box targeted audio AE proposed by Taori et al. [33], where they used
a genetic algorithm to search for perturbations that led an ASR to outputting a
target phrase. When the transcript of the best solution is within a predefined edit
distance of the target phrase, the generation process uses a gradient estimation
strategy to continue the search process. In this work, we use the gradient esti-
mation strategy in [33] to generate untargeted audio AEs. We also incorporate
the noise suppression technique from [27] in the generation process. As shown in
Algorithm 1, we first reverse the ground truth and use the reversed transcript
as the target for optimizing the input audio, as was done in the first approach
of generating untargeted audio AEs via FGSM. The generation is deemed to be
successful when the edit distance between the transcript and the ground truth
exceeds a certain threshold.

4 Proposed Method

4.1 Visualizing Decision Boundaries

In general, benign audio are much more robust than audio AEs. Robustness
refers to whether an audio can be transcribed in the presence of noise. Benign
audio are generally more robust as they can usually be correctly transcribed even
when extra noise is added to the audio signal. This implies that the decision
boundary patterns around benign audio are potentially different from that of
audio AEs. Hence, we propose a method of visualizing the decision boundaries
of ASR models to show this difference.

Unlike the image recognition domain where there are usually fixed sets of
labels, the decision boundaries of ASR models are more difficult to visualize as an
audio signal can potentially be transcribed into a large number of output strings.
Moreover, if one were to simply treat different transcripts as different labels, the
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Algorithm 1. Untargeted Audio AE Generation
Input: original audio signal, x; ground truth transcript, y; target ASR model m;
maximum iteration: max iter; edit distance threshold: distance min
Output: black-box untargeted audio AE, x′

x′ ← x
y reverse ← reverse the characters in y
While iter < max iter do

y reverse loss ← calculate loss of y reverse
grad estimate ← estimate the gradient of the loss function w.r.t x′ using

y reverse loss
x′ ← x′ - grad estimate * learning rate
// use the lowering noise technique from [27]
masking loss ← masking loss w.r.t. noise in x′

optimize masking loss w.r.t. noise in x′

If EditDistance(y, transcript of x′) ≥ distance min
return x′

End If
End While
If iter == max iter

return fail
End If

visualization results will be confusing. This is because a difference between labels
cannot appropriately represent the difference in transcribed text. For example,
if “paper” and “papers” were treated as two different labels, such as 1 and 2 in
numeric form, information on the similarity between these two transcripts is lost.
Therefore, it makes more sense to visualize the decision boundaries of an ASR
model via changes in the resulting transcripts when an input audio is modified.
To achieve this, changes in loss function values can be used to represent the
decision boundary patterns of an ASR model.

In this paper, we propose a method of visualizing the decision boundaries
of ASR models using heat maps showing changes in loss function values and
changes in normalized edit distances. The reason for using heat maps is that they
can clearly represent visual changes in values. The proposed method is formally
defined here. Let x be the input audio, y be the transcript of x, which may be
different from the ground truth if the audio signal is incorrectly transcribed,
f() be the ASR model, and �net() be the corresponding loss function. We can
calculate the gradient of the loss function w.r.t. x as −→g = ∇�net(f(x), y), and
normalize it to be of unit length using g =

−→g
||−→g ||2 . Then, we initialize a random

unit vector q that is not parallel to g. We get −→p = q − (q · g) × g and p =
−→p

||−→p ||2 .
Thus, p is of unit length and perpendicular to g.

The heat maps of loss function values and normalized edit distances are
defined as the square matrices Mloss and Medit, respectively. The size of both
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matrices is n × n. Let s be a predefined number controlling the extent to which
x is modified. The definition of Mloss and Medit is shown in Eq. 5.

[Mloss]i,j = �net(f(x + si · p + sj · g), y)

[Medit]i,j =
dedit(f(x + si · p + sj · g), y)

hlength(y)
(5)

where sk = −n·s
2 + n·s·(k−1)

(n−1) , dedit() is the function to calculate the edit distance
and hlength() returns the transcript length, which is used to normalize the edit
distance. In Eq. 5, the audio data is evenly modified along g and p via a step
size s. Normalizing the edit distance is necessary because edit distance by itself
cannot compare change in transcripts y of different lengths fairly. For example,
a small edit distance means a larger change in a short transcript compared to a
long transcript.

4.2 Feature Extraction

To gain more insight from the heat maps, two dimensionality reduction tech-
niques, namely, principal component analysis (PCA) [1] and t-distributed
stochastic neighbor embedding (t-SNE) [21], were used to project the results into
2D space to identify potential patterns. We used a simple method for extracting
features. The use of a more advanced method, such as training a convolutional
neural network on the heat maps, may potentially produce better feature extrac-
tion results. Nevertheless, our simple method serves as a lower bound for feature
extraction. An in-depth study of potential feature extraction methods for the
proposed method is an interesting direction for future work.

Given an input audio, we calculate a vector vloss based on the change in
loss function values if we modify the audio along the gradient direction g and a
perpendicular direction p. g and p were previously defined in Sect. 4.1. Similarly,
we calculate a vector vedit based on the change in normalized edit distances. As
defined in Eq. 6, the feature vector vft representing the heat maps of an input
audio is simply a concatenation of vloss and vedit. In other words, vft measures
both the change in loss function values and normalized edit distances when an
input audio is modified. Intuitively, using vft will result in better performance
in distinguishing audio AEs from benign audio, compared to using only vloss or
vedit. For simplicity, we refer to vft as the features of input audio.
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vloss =

⎡
⎢⎢⎣

�net(f(x + g), y) − �net(f(x), y)
�net(f(x − g), y) − �net(f(x), y)
�net(f(x + p), y) − �net(f(x), y)
�net(f(x − p), y) − �net(f(x), y)

⎤
⎥⎥⎦

vedit =

⎡
⎢⎢⎣

dedit(f(x + g), y)/hlength(y)
dedit(f(x − g), y)/hlength(y)
dedit(f(x + p), y)/hlength(y)
dedit(f(x − p), y)/hlength(y)

⎤
⎥⎥⎦

vft =
[
vloss

vedit

]

(6)

5 Experiments and Discussion

5.1 Target Models and Data Sets

Similar to research efforts conducted by others in the ASR domain [9,28,29,33],
DeepSpeech [14] was used as one of the target models for our experiments.
Specifically, we used DeepSpeech 0.8.2, which is the latest release at the time of
writing. Previous studies [9,33] relied on DeepSpeech 0.1, which is now outdated.
In addition to DeepSpeech, we also used DeepSpeech2 [3] which is an improved
version of DeepSpeech that employs an end-to-end architecture. The version
used in our experiments was DeepSpeech2 V21.

LibriSpeech [23] was used as the data set, because DeepSpeech and Deep-
Speech2 both provide pre-trained models on LibriSpeech. Audio from the test-
clean and dev-clean data sets were used in experiments. For targeted AEs, we
randomly selected one of the following target phrases: “power off”, “turn on
airplane mode”, “visit danger dot com”, “call malicious number”, and “turn off
lights” to mimic malicious voice commands. For untargeted AEs, the generation
was determined to be successful if the edit distance between the transcript and
the ground truth was larger than 40% of the ground truth.

Previous work by Carlini and Wagner [9] generated audio AEs using the first
100 test instances of the Mozilla Common Voice data set [4], where most of
the audio signals were short with a duration of between 1 to 8 s. In addition,
it was empirically observed in [9] that generating targeted AEs would be easier
the longer the source phrase, while the generation would be more difficult the
longer the target phrase. Since our target phrases were relatively short, we used
audio signals that were less than 5 s to balance the difficulty of generating tar-
geted audio AEs. As such, for consistency audio signals less than 5 s were used
throughout experiments that were conducted in this study.

The experiments were performed on a computer with an Intel i7-8750H CPU
and an Nvidia GeForce GTX 1060 graphic card. We generated 150 targeted
AEs, 150 untargeted AEs using FGSM and 150 untargeted AEs based on our
1 DeepSpeech2 V2 was implemented and released by Sean Naren https://github.com/

SeanNaren/deepspeech.pytorch.

https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/SeanNaren/deepspeech.pytorch
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Table 1. Total time taken for generating the audio AEs and their success rates.

Type DeepSpeech DeepSpeech2

Targeted AEs 17.4 h (100.00%) 6.0 h (100.00%)

Untargeted AEs 11.0 h (98.68%) 12.3 h (100.00%)

FGSM AEs 0.13 h (28.79%) 0.07 h (38.66%)

proposed method using randomly selected audio from the test-clean data set
of DeepSpeech and DeepSpeech2, respectively. From here onward, we refer to
untargeted AEs using our proposed method as untargeted AEs and untargeted
AEs using FGSM as FGSM AEs. To get a balanced data set, we also extract
150 correctly transcribed and 150 incorrectly transcribed audio signals from the
test-clean data set of each model. In addition, we generated 150 noisy audio
signals by applying Gaussian noise with a standard deviation of 0.01.

To generate targeted audio AEs, we ran 350 epochs for DeepSpeech and 300
epochs for DeepSpeech2 to suppress noise during the second stage, since we
observed that it is easier for DeepSpeech2 to suppress the noise without destroy-
ing adversarial perturbations. Noise suppression in all targeted AEs against
DeepSpeech2 were successful, while some AEs against DeepSpeech failed to lower
noise within the 350 epochs. Hence, we had to individually fine-tune these noisy
AEs by running extra epochs until the masking loss (lθ() in Eq. 3) was below
a specific threshold. The smaller the masking loss, the smaller the distortion
perturbations caused. We set the threshold to the masking loss calculated using
the -20dB distortion set published by [9].

A comparison of the time taken for generating audio AEs are shown in
Table 1. While FGSM is the fastest approach, is has the lowest success rate. On
average, it took 2.4 and 7.0 minutes to generate targeted audio AEs for Deep-
Speech and DeepSpeech2, respectively. In addition, it took 4.4 and 4.9 minutes
to generate an untargeted audio AEs using our proposed method. It should be
noted that while we generated AEs one at a time, this can be accelerated by gen-
erating multiples AEs in parallel. Carlini and Wagner [9] reported that it took
about one hour to generate a single targeted audio AE on commodity hardware,
while Zeng et al. [40] reported a time of 18 min on an 18-core CPU with dual
graphic cards. Although we spent less time per targeted audio AE, we cannot
conclude that our generation process is statistically faster because the source
audio signals and target phrases were different. However, intuitively our method
should speed up the generation of AEs because we do not limit the max-norm
of perturbations.

5.2 Visualizing Decision Boundaries

As was discussed in Sect. 4, the proposed method represents decision boundaries
of ASR models using heat maps of loss function values and normalized edit
distances. We calculated Mloss and Medit for correctly transcribed benign audio,
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(a) Targeted AE (DS) (b) Untargeted AE (DS) (c) Benign Audio (DS)

(d) Targeted AE (DS2) (e) Untargeted AE (DS2) (f) Benign Audio (DS2)

Fig. 1. Heat maps of loss function values and normalized edit distances for different
audio AEs and benign audio for DeepSpeech (DS) and DeepSpeech2 (DS2), respec-
tively. Changes in loss function values and normalized edit distances of targeted and
untargeted audio AEs are clearly different from benign audio.

targeted audio AEs and untargeted audio AEs. After some experimentation, it
was observed that good results could be produced with a matrix size of 128×128
and a step size s of 0.07. Figure 1 show example results of heat maps produced
using the proposed method.

The horizontal axis of the heat maps shown in Fig. 1 represents the direction
of the gradient of the loss function w.r.t. the input audio, while the vertical axis
represents a random direction that is perpendicular to the gradient. The heat
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maps were generated by modifying an input audio along these two directions
and recording the changes. As such, the center of the heat maps represents
unmodified audio. In the experiments, we set y in Eq. 5 to the transcript of the
unmodified audio, because we wanted to calculate the changes in loss values
and transcripts when modifying audio. For example, y is either set to the target
phrase of a targeted audio AE or the incorrect transcript of an untargeted audio
AE.

From the resulting patterns, an obvious observation is that for a given audio
the changes in loss function values and normalized edit distances are correlated.
This matches our intuition that loss function values returned by an ASR model
should increase as the difference between the transcript and y increases, and
vice versa. Furthermore, we can see that when a targeted audio AE is modified
slightly, the resulting loss function value and normalized edit distance change sig-
nificantly. This is true for both DeepSpeech and DeepSpeech2, and is consistent
with our observation that adversarial perturbations in the generated targeted
audio AEs are not robust. This is because the significant changes in loss func-
tion values and normalized edit distances when we modify AEs is an indication
of the non-robust property of adversarial perturbations.

In contrast, changes in loss function values and normalized edit distances
for correctly transcribed benign audio are significantly smaller than for targeted
audio AEs when audio signals are slightly modified. This implies that correctly
transcribed benign audio are much more robust against perturbations than tar-
geted audio AEs. This is consistent with our observation that some correctly
transcribed benign audio could still be correctly transcribed even when a large
amount of noise was present. Another observation is that slightly modifying
untargeted audio AEs also results in large changes in loss function values and
normalized edit distances. However, while this change appears to be less severe
than targeted audio AEs, the resulting patterns are different when compared
with the results of correctly transcribed benign audio.

5.3 Dimensionality Reduction

Having seen the different patterns in loss function values and normalized edit
distances in relation to targeted audio AEs, untargeted audio AEs and benign
audio shown in Sect. 5.2, it is logical to consider whether we can differentiate
audio AEs from benign audio based on the different patterns. Thus, we extracted
features using the method described in Sect. 4 from these audio signals and
projected them into 2D space using the PCA and t-SNE methods. If audio
AEs features can clearly be separated from features of benign audio into 2D
space, this provides evidence that they can also be separated in the original high
dimensional space.

In the experiments, we also included FGSM AEs in addition to targeted and
untargeted audio AEs. Benign audio was grouped as correctly and incorrectly
transcribed audio signals. This was done to investigate whether there was a
difference between them. In addition, noisy audio signals were also included.
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2hceepSpeeDhceepSpeeD

Fig. 2. Results obtained by projecting the features of various types of audio using the
PCA and t-SNE techniques.

Before projecting features into 2D space, the features were normalized using
their mean values and standard deviation. The results are shown in Fig. 2.

The PCA projection results were almost the same for DeepSpeech and Deep-
Speech2. Correctly and incorrectly transcribed audio clustered around the origin,
while the other audio types were spread away from the origin. The correctly and
incorrectly transcribed audio almost overlapped, indicating that there is little
difference between their features. As previously discussed, the changes in loss
function values and normalized edit distances for correctly transcribed benign
audio are small, which explains why correctly and incorrectly transcribed audio
cluster around the origin. In contrast, targeted audio AEs are far away from the
origin. This is because small modifications will result in significant changes for
targeted audio AEs, as was discussed in the previous section. Untargeted audio
AEs, FSGM audio AEs and noisy audio all spread slightly away from the origin
along the same direction. This implies that the features in these three audio
types are similar.
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Compared with PCA results, t-SNE projection was better at visualizing rela-
tionships between the data samples. In Fig. 2, t-SNE projection again shows
similar results for DeepSpeech and DeepSpeech2. Excluding noisy audio, three
clusters can be identified as follows: targeted audio AEs are clearly grouped in
the first cluster; the second cluster mainly contains correctly and incorrectly
transcribed benign audio; the third cluster consists of untargeted audio AEs and
FGSM AEs, where both are untargeted attacks. The results of t-SNE projection
is promising since the various audio types are clustered according to their cat-
egories. An interesting observation is that incorrectly transcribed audio do not
overlap with untargeted audio AEs and FGSM AEs, although all of them lead
to incorrect transcriptions. One potential explanation might be that incorrectly
transcribed audio from the test-clean data set do not cause severe errors like
untargeted audio AEs and FGSM AEs. In addition, noisy audio are contained
in both the second cluster (benign audio) and third cluster (untargeted attack).
This may be because some noisy audio are like benign audio, in that they can
be transcribed correctly or with little error, while some noisy audio behaves like
untargeted attacks, which lead to significant error in transcriptions. Upon closer
inspection, the untargeted AEs and FGSM AEs are separate from each other in
the case of DeepSpeech2, but the same is not true for DeepSpeech.

5.4 Anomaly Detection

The visualization results in low dimensional space provided evidence of the fea-
sibility of detecting audio AEs based on their features. Instead of training a
classifier on benign audio and audio AEs, we experimented on using anomaly
detection to detect audio AEs. This is because in practice, audio AEs generated
by adversaries may not have been previously seen by defenders, and anomaly
detection is appropriate for defending against previously unknown attacks.

We used audio from the dev-clean data set to train an anomaly detection
model and used this model to detect audio AEs generated using the test-clean
data set. Specifically, audio features from dev-clean were extracted using the
method described in Sect. 4. These features were then used to train an Ellipti-
cEnvelope model implemented by scikit-learn [25]. This model detects outliers
in a Gaussian distributed data set. We use the default parameters so that our
experiment results can serve as the lower bounds of anomaly detection. We
report true positive (TP), false positive (FP), true negative (TN), false negative
(FN), and detection rate (DR) for each category of benign audio and audio AEs
together with overall precision (Pre), recall (Rec) and accuracy (Acc). Specifi-
cally, precision = TP

TP+FP , recall = TP
TP+FN , accuracy = TP+TN

TP+FP+TN+FN . For
audio AEs, DR = TP

TP+FP . For benign audio, DR = TN
TN+FN .

The experiment results are presented in Table 2 for DeepSpeech and Deep-
Speech2. Overall, the detection results are similar for both ASR models. As
expected, targeted AEs are easily detected with detection rates of 100%. This
aligns with the observation that targeted AEs can clearly be separated from
other audio types in lower dimensional space. It is reasonable that the detection
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Table 2. Anomaly detection results of previously unknown audio AEs.

Type DeepSpeech DeepSpeech2

TP FP TN FN DR TP FP TN FN DR

Targeted AEs 150 – – 0 100.00% 150 – – 0 100.00%

Untargeted AEs 120 – – 30 80.00% 129 – – 21 86.00%

FGSM AEs 86 – – 64 57.33% 33 – – 117 22.00%

Noisy Audio – 9 141 – 94.00% – 8 142 – 94.67%

Correctly trans. – 4 146 – 97.33% – 2 148 – 98.67%

Incorrectly trans. – 6 144 – 96.00% – 12 138 – 92.00%

Pre Rec Acc Pre Rec Acc

94.93% 79.11% 87.44% 93.41% 69.33% 82.22%

rates of untargeted AEs were lower than targeted AEs since some untargeted
AEs were mixed with benign audio in the PCA projection as previously shown
in Fig. 2. The detection rates of FGSM AEs were surprisingly much lower than
untargeted audio AEs, although these two AEs were clustered together in the
t-SNE projection. This indicates that the simple anomaly detection model that
was used is too basic for detecting FGSM AEs. In addition to benign audio,
noisy audio could also be correctly identified with high detection rates. This was
not as expected, since some of noisy audio were mixed with untargeted AEs and
FGSM AEs in low dimensional space. This suggests that noisy audio are actually
clustered with benign audio in the original high dimensional space, even though
the 2D projection did not show this.

A recent study by Samizade et al. [28] generated white-box and black-box tar-
geted audio AEs against DeepSpeech. They trained a neural network on white-
box targeted audio AEs to detect black-box targeted audio AEs and vice versa.
Our detection accuracy for the two ASR models of 87.44% and 82.22%, are over-
all higher than their reported results of 82.07% and 48.76%, respectively. While
this may not be a fair comparison as they used a different approach, we mainly
want to emphasize that the detection of previously unknown audio AEs is a
challenging task. It is anticipated that if we extract more sophisticated features
and utilize a more advanced anomaly detection method, it is highly likely that
the detection results can be improved.

5.5 Potential Limitation

The key assumption of this research is that decision boundary patterns around
audio AEs are significantly different from benign audio. We used heat maps
of loss function values and normalized edit distances to test the validity of
this assumption. For completeness, we also investigated whether the heat maps
could differentiate audio AEs from benign audio under a white-box threat model.
Although we demonstrated that heat maps of audio AEs and benign audio are
significantly different, these audio AEs were generated without prior knowledge
of the heat map generation process. It is conceivable that if an adversary knows
how the heat maps are generated, they can potentially generate targeted audio
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AEs with little changes in loss function values and normalized edit distances
when the AEs are modified. We refer to this type of AEs robust audio AEs, as
they are potentially indistinguishable from benign audio using our method of
visualization using heat maps. Moreover, features extracted from such robust
audio AEs may not be distinct from benign audio features.

Athalye et al. [6] proposed the use of “Expectation over Transformation”
to improve the robustness of AEs. The approach attempts to optimize the loss
function over various transformations, such as Gaussian noise. Qin et al. [27] used
this method to incorporate reverberations in the generation process in order for
audio AEs to remain adversarial over-the-air. Using our heat map visualization
method, it is possible that there may be less changes in loss function values
and normalized edit distances for such robust AEs, at least along the directions
considered to be transformations, such as the use of reverberations [27]. This is
because the Expectation over Transformation directly incorporates this property
in the optimization formula. From another point of view, the Expectation over
Transformation can be thought of as imposing limits on the resulting decision
boundary patterns around successfully generated AEs. This is left as a direction
for future work.

6 Conclusions and Future Work

Audio AEs pose a severe security threat to ASR models. Although researchers
have proposed methods for defending against audio AEs, the intrinsic properties
of audio AEs are not well studied or understood. In this paper, we proposed
method for visualizing different decision boundary patterns around audio AEs
and benign audio. Furthermore, this paper demonstrated results on extracting
features based on the decision boundaries and using dimensionality reduction
techniques to show that features of audio AEs and benign audio can clearly be
separated in 2D space. Finally, we presented the feasibility to detecting previ-
ously unknown audio AEs using anomaly detection, which achieved significantly
high detection rates for targeted audio AEs. In future work, we will investigate
methods for improving audio AE detection results by incorporating advanced
feature extraction techniques and anomaly detection models. Another direction
of interest is whether this research can be extended to other domains like image
recognition.
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Abstract. Deep Neural Networks have achieved unprecedented success
in the field of face recognition such that any individual can crawl the data
of others from the Internet without their explicit permission for the pur-
pose of training high-precision face recognition models, creating a serious
violation of privacy. Recently, a well-known system named Fawkes [37]
(published in USENIX Security 2020) claimed this privacy threat can
be neutralized by uploading cloaked user images instead of their original
images. In this paper, we present Oriole, a system that combines the
advantages of data poisoning attacks and evasion attacks, to thwart the
protection offered by Fawkes, by training the attacker face recognition
model with multi-cloaked images generated by Oriole. Consequently,
the face recognition accuracy of the attack model is maintained and the
weaknesses of Fawkes are revealed. Experimental results show that our
proposed Oriole system is able to effectively interfere with the perfor-
mance of the Fawkes system to achieve promising attacking results. Our
ablation study highlights multiple principal factors that affect the perfor-
mance of the Oriole system, including the DSSIM perturbation budget,
the ratio of leaked clean user images, and the numbers of multi-cloaks
for each uncloaked image. We also identify and discuss at length the vul-
nerabilities of Fawkes. We hope that the new methodology presented in
this paper will inform the security community of a need to design more
robust privacy-preserving deep learning models.

Keywords: Data poisoning · Deep learning privacy · Facial
recognition · Multi-cloaks

1 Introduction

Facial Recognition is one of the most important biometrics of mankind and is
frequently used in daily human communication [1]. Facial recognition, as an
emerging technology composed of detection, capturing and matching, has been
successfully adapted to various fields: photography [33], video surveillance [3],
and mobile payments [41]. With the tremendous success gained by deep learning
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techniques, current deep neural facial recognition models map an individual’s
biometric information into a feature space and stores them as faceprints. Conse-
quently, features of a live captured image are extracted for comparison with the
stored faceprints. Currently, many prominent vendors offer high-quality facial
recognition tools or services, including NEC [31], Aware [2], Google [15], and
Face++ [11] (a Chinese tech giant Megvii). According to an industry research
report “Market Analysis Repo” [34], the global facial recognition market was
valued around $3.4 billion in 2019 and is anticipated to expand with a com-
pound annual growth rate (CAGR) of 14.5% from 2020 to 2027. Along with the
universality of facial recognition technology, the concerns of privacy leakage and
security breaches continue to grow. According to Kashmir Hill [18], a start-up,
Clearview AI, scrapes in excess of three billion images from the Internet, off
platforms such as Facebook, Instagram and LinkedIn without users’ consent, in
order to build tools for revealing individual’s identity from their images. It is
clear that the misuse of the face recognition technology will create great threats
against user’s privacy.

Despite the widespread use of facial recognition technology, it is still in its
infancy and unresolved issues of security and privacy will worsen in the wake of
big data. One act to safeguard user photos from facial recognition model training
without consent is proposed by SAND Lab at the University of Chicago. SAND
Lab proposed a protection system Fawkes [37] (an article published in USENIX
Security 2020). The Fawkes system “cloaks” a user’s original photos to fool the
deep learning face recognition models by adding imperceptible perturbations.
Fawkes reports remarkable results against state-of-the-art facial recognition ser-
vices from Microsoft (Azure Face), Amazon (Rekognition), and Face++ [37].

In this paper, we present Oriole, a system designed to render the Fawkes
system ineffective. In Fawkes, the target class is selected from the public dataset.
In contrast, Oriole implements a white-box attack to artificially choose multiple
targets and acquire the corresponding multiple cloaked images of leaked user
photos. With the help of the proposed multi-cloaks, the protection of Fawkes
becomes fragile. To do so, the attacker utilizes the multi-cloaks to train the
face recognition model. During the test phase, after the original user images are
collected, the attacker inputs the Fawkes cloaked image into the model for face
recognition. As a result, in the feature space, the features of cloaked photos will
inevitably fall into the range of marked multi-cloaks. Therefore, the user images
can still be recognized even if they are cloaked by Fawkes. We also highlight
the intrinsic weakness of Fawkes: The imperceptibility of images before and
after cloaking is limited when encountering high-resolution images, as cloaked
images may include spots, acne, and even disfigurement. This will result in the
reluctance of users to upload their disfigured photos.

In summary, our main contributions in this paper are as follows:

– The Proposal of Oriole. We design, implement, and evaluate Oriole, a
neural-based system that makes attack models indifferent to the protection
of Fawkes. Specifically, in the training phase, we produce the most relevant
multi-cloaks according to the leaked user photos and mix them into the train-
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Fig. 1. The differences between data poisoning attacks and decision-time attacks. Data
poisoning attacks modify the training data before the model training process. In con-
trast, Decision-time attacks are performed after model training to induce the model
make erroneous predictions.

ing data to obtain a face recognition model. During the testing phase, when
encountering uncloaked images, we first cloak them with Fawkes and then
feed them into the attack model. By doing so, the user images can still be
recognized even if they are protected by Fawkes.

– Empirical Results. We provide experimental results to show the effective-
ness of Oriole in the interference of Fawkes. We also identify multiple prin-
ciple factors that affect the performance of the Oriole system, including
the DSSIM perturbation budget, the ratio of leaked clean user images, and
the number of multi-cloaks for each uncloaked image. Furthermore, we iden-
tify and discuss at length the intrinsic vulnerability of Fawkes to deal with
high-resolution images.

2 Related Work

In this section, we briefly introduce defense strategies against data poisoning
attacks and decision-time attacks. Figure 1 highlights the differences between
data poisoning attacks and decision-time attacks. We then introduce the white-
box attacks. The Fawkes system is detailed at the end of this section.

2.1 Defending Against Data Poisoning Attacks

In the scenario of data poisoning attacks, the model’s decision boundary will
be shifted due to the injection of adversarial data points into training set. The
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intuition behind it is that the adversary deliberately manipulates the training
data since the added poisoned data has vastly different distribution with the
original training data [24–26,45,46,48]. Prior research primarily involves two
common defense strategies. First, anomaly detection models [43] function effi-
ciently if the injected data has obvious differences compared to the original
training data. Unfortunately, anomaly detection models become ineffective if
the adversarial examples are inconspicuous. Similar ideas have been utilized in
digital watermarking or data hiding [51]. Second, it is common to analyze the
impact of newly added training samples according to the accuracy of models. For
example, Reject On Negative Impact (RONI) was proposed against spam filter
poisoning attacks, while Target-aware RONI (tRONI) builds on the observation
of RONI failing to mitigate targeted attacks [38]. Other notable methods include
TRIM [22], STRIP [13], and more simply, human analysis on training data likely
to be attacked [29].

2.2 Defending Against Decision-Time Attacks

In decision-time attacks, assuming that the model has already been learned, the
attacker leads the model to produce erroneous predictions by making reactive
changes to the input. Decision-time attacks can be divided into several categories.
Within these attacks, the most common one is the evasion attack.

We shall present the most conventional evasion attack, which can be further
broken down into five categories: Gradient-based attacks [6,8,28], Confidence
score attacks [9,21], Hard label attacks [4], Surrogate model attacks [53] and
Brute-force attacks [10,12,17]). Undoubtedly, adversarial training is presently
one of the most effective defenses. Adversarial samples, correctly labeled, are
added to the training set to enhance model robustness. Input modification [27],
extra classes [19] and detection [16,30] are common defense techniques against
evasion attacks. Alternative defenses against decision-time attacks involve iter-
ative retraining [23,40], and decision randomization [36].

2.3 White-Box Attacks

The adversary has full access to the target DNN model’s parameters and archi-
tecture in white-box attacks. For any specified input, the attacker can calculate
the intermediate computations of each step as well as the corresponding output.
Therefore, the attacker can leverage the outputs and the intermediate result of
the hidden layers of the target model to implement a successful attack. Good-
fellow et al. [14] introduce a fast gradient sign method (FGSM) to attack neural
network models with perturbed adversarial examples according to the gradients
of the loss with respect to the input image. The adversarial attack proposed by
Carlini and Wagner is by far one of the most efficient white-box attacks [7].

2.4 Fawkes

Fawkes [37], provides privacy protections against unauthorized training of mod-
els by modifying user images collected without consent by the attacker. Fawkes
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achieves this by providing as simple means for users to add imperceptible per-
turbations onto the original photos before uploading them to social media or
public web. When processed by Fawkes, the features representing the cloaked
and uncloaked images are hugely different in the feature space but are per-
ceptually similar. The Fawkes system cloaks images by choosing (in advance)
a specific target class that has a vast difference to the original image. Then
it cloaks the clean images to obtain the cloaked images with great alterations
to images’ feature representations, but indistinguishable for naked eyes. When
trained with these cloaked images, the attacker’s model would produce incor-
rect outputs when encountering clean images. However, Fawkes may be at risk
of white-box attacks. If the adversary can obtain full knowledge of the target
model’s parameters and architecture, for any specified input, the attacker can
calculate any intermediate computation and the corresponding output. Thus,
the attackers can leverage the results of each step to implement a successful
attack.

3 Design Overview

For a clean image x of a user Alice, Oriole produces multi-cloaks by adding
pixel-level perturbation to x when choosing multiple targets dissimilar to Alice in
the feature space. That is, we first need to determine the target classes and their
numbers for each user; then, we shall generate multi-cloaks with these selected
classes. The process is detailed in Sect. 4.1.

Figure 2 illustrates the overview of the proposed Oriole system, together
with both its connection and the differences with Fawkes. In the proposed Ori-
ole, the implementation is divided into two stages: training and testing. In the
training phase, the attacker inserts the multi-cloaks generated by the Oriole
system into their training set. After model training, upon encountering clean
user images, we use Fawkes to generate cloaked images; the cloaked images are
then fed into the trained face recognition model to complete the recognition pro-
cess. Oriole has significant differences with Fawkes. On one hand, we adopt a
data poisoning attack scheme against the face recognition model by modifying
images with generated multi-cloaks. On the other hand, an evasion attack (to
evade the protection) is applied during testing by converting clean images to
their cloaked version before feeding them into the unauthorized face recogni-
tion model. Although the trained face recognition model cannot identify users in
clean images, it can correctly recognize the cloaked images generated by Fawkes
and then map them back to their “true” labels.

4 The Oriole System Against Fawkes

We now elaborate the design details of Oriole. We refer to the illustration of
the Oriole process in Fig. 3. Recall that the application of Oriole is divided
into a training phase and a testing phase. The training phase can be further
broken down into two steps. In the first step, the attacker A launches a data



Oriole: Thwarting Privacy Against Trustworthy Deep Learning Models 555

Fig. 2. The proposed Oriole system is able to successfully recognize faces, even with
the protection of Fawkes. Oriole achieves this by combining the concepts of data
poisoning attacks and evasion attacks.

poisoning attack to mix the multi-cloaks into the training data (recall that the
training data is collected without consent and has been protected by Fawkes).
Then, the unauthorized facial recognition model M is trained on the mixed
training data of the second step. At test time, as evasion attacks, the attacker A
first converts the clean testing images to the cloaked version by applying Fawkes
and the cloaked version is presented to the trained model M for identification.
From Fig. 3, images making up the attacker database DA can be downloaded
from the Internet as training data, while the user database DU provides the
user U with leaked and testing data. After obtaining the input images from the
database, we adopt MTCNN [52] for accurate face detection and localization
as the preprocessing module [47,52]. It outputs standardized images that only
contain human faces with a fixed size. At the training phase, the attacker A mixes
the processed images of A

′
and multi-cloaks SO of the user U into training set

to train the face recognition model M . At the testing phase, the attacker A first
converts the preprocessed clean images U

′
B into the cloaked images SF , followed

by the same procedure as described in Fawkes; then, the attacker A pipes SF

into the trained model M to fetch the results.

4.1 Model Training

We assume that a user U has converted his/her clean images UB into their
cloaked form for privacy protection. However, the attacker A has collected some
leaked clean images of the user U in advance, denoted as UA. As shown in Fig. 3,
this leaked user dataset U consists of data needed UA and UB . In the proposed
Oriole system, UA is utilized for obtaining multi-cloaks SO, which contains a
target set TM with m categories out of N categories.1 Here, we denote G(X,m)
as the new set composed of the target classes corresponding to the first m largest
element values in set X, where X contains the minimum distance between the
feature vector of users and the centroids of N categories (see Eq. 2). The L2

1 http://mirror.cs.uchicago.edu/fawkes/files/target data/.

http://mirror.cs.uchicago.edu/fawkes/files/target_data/
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Fig. 3. The overall process of the proposed Oriole. The process includes both the
training and testing stages. Images U taken from the leaked user database DU are
divided into two parts (U

′
A and U

′
B) after preprocessing. In the training phase, the

attacker A mixes the generated multi-cloaks SO into training data. After training, the
face recognition model M is obtained. During the testing phase, the attacker A first
converts the clean images U

′
B into cloaked images SF and then pipes them into the

trained model M to obtain a correct prediction.

distances are measured between the image feature in the projected space Φ(·) to
the centroids of N categories, and then the top m targets are selected.

X =
N⋃

k=1

{d | d = min
x∈UB

(Dist(Φ(x), Ck))}, (1)

TM = G (X,m) = {T1, T2, · · · , Tm} =
m⋃

i=1

Ti, (2)

where Ck represents the centroid of a certain target and Φ is the feature projec-
tor [37]. Besides, the distance calculation function adopts L2 distance. Next, the
calculation of a cloak δ (x, xTi

) is defined as:

δ(x,XTi
) = min

δ
Dist(Φ (xTi

) , Φ(x ⊕ δ (x, xTi
))), (3)

where δ subjects to |δ(x, xTi
)| < ρ, and |δ(x, xTi

)| is calculated by DSSIM (Struc-
ture Dis-Similarity Index) [42,44] and ρ is the perturbation budget. Then we can
obtain the multi-cloaks SO as follows:

SO =
m⋃

i=1

{s | s = x ⊕ δ(x, xTi
)}, (4)

where multi-value m is a tunable hyper-parameter. m decides the number of
multi-cloaks produced for each clean image.
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Instead of training the model M with clean data, the attacker A mixes the
multi-cloaks SO calculated from Eq. 4 with the preprocessed images U

′
A to form

the training set. The deep convolutional face recognition model M is trained [35].

4.2 Model Testing

The last stage of Oriole is model testing. Unlike Fawkes, we do not directly
apply clean images to the attack model. Instead, Oriole first makes subtle
changes to the clean images before faces identification inference. Specifically,
we implement the subtle changes through cloaking images from processed user
images U

′
B. Conceptually, the feature vectors of cloaked images SF will fall into

the marked feature space of multi-cloaks SO. Then, the trained model M is able
to correctly identify users through cloaked images SF .

Figure 4 illustrates the intuition behind the Oriole system. For the purposes
of demonstration, we assume the number of multi-value m equals to four. To
put differently, we shall assume that Fawkes will select one of four targets for
cloaking, from which the proposed Oriole system will attempt to obtain multi-
cloaks associated with all four targets with a small number of the user U ’s leaked
photos. In this scenario, we successfully link the four feature spaces of our four
target classes (T1, T2, T3 and T4) with the user U . Thus, when it comes to a
new and clean image of U , we first cloak it with Fawkes. The cloaked version
user images will inevitably fall into one of the marked feature spaces of the
multi-cloaks (T1 has been chosen for illustration in Fig. 4(b). See the hollow
green and red triangles for the clean and cloaked image features, respectively).
As the cloaked image features lie in T1, and the multi-cloak trained model now
associates T1 (and T2, T3, T4) as U , the attacker can correctly identify a user’s
identity even with the protection of Fawkes.

We finally discuss the performance of Oriole when target classes are
included and not included in the training data, respectively. We further observe
that, no matter whether the number of target classes m is included in the training
set or not, the Oriole system still functions effectively to thwart protections
offered by Fawkes. In Fig. 4, assuming that the feature vectors of the cloaked
testing image are located in the high dimensional feature space of T1. We first
consider when target users of T1 are not included in the attack model training
process. We are able to map the user U to the feature space of T1 through the
leaked images of the user U that were used to generate multi-cloaks. Further-
more, Oriole still works when images of the target class T1 are included in the
training set. Even if the cloaked images of U are detected as T1, but the setting
of Fawkes ensures that the cloaks of T1 occupy another area within the feature
space that will not overlap with T1. Thus, this special case will not interfere the
effectiveness of Oriole.
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Fig. 4. The intuition behind why Oriole can help the attacker A successfully identify
the user U even with the protection of Fawkes. We denote the process on a simplified
2D feature space with seven user classes B, C, D, T1, T2, T3, T4 and U . Figures (a) and
(b) represent the decision boundaries of the model trained on U ’s clean photos and
multi-cloaks respectively (with four targets). The white triangles represent the multi-
cloaked images of U and the red triangles are the cloaked images of U . Oriole works
as long as cloaked testing images fall into the same feature space of the multi-cloaked
leaked images of U . (Color figure online)

5 Experiments

5.1 Datasets and Models

We implemented our Oriole system on three popular image datasets against
the Fawkes system. In our implementation, considering the size of the three
datasets, we took the smallest PubFig83 [32] as the user dataset, while the larger
VGGFace2 [5] and CASIA-WebFace [50] were prepared for the attacker to train
two face recognition models. In addition, we artificially created a high-definition
face dataset to benchmark the data constraints surrounding the imperceptibility
of the Fawkes system.2

PubFig83 [32]. PubFig83 is a well-known dataset for face recognition research.
It contains 13,838 cropped facial images belonging to 83 celebrities, each of which
has at least 100 pictures. In our experiment, we treat PubFig83 as a database
for user sample selection, due to its relative small number of tags and consistent
picture resolution.

CASIA-WebFace [50]. CASIA-WebFace dataset is the largest known public
dataset for face recognition, consisting a total of 903,304 images in 38,423 cate-
gories.

2 Our source code is publicly available at https://git.io/JsWq7.

https://git.io/JsWq7
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VGGFace2 [5]. VGGFace2 is a large-scale dataset containing 3.31 million
images from 9131 subjects, with an average of 362.6 images for each subject.
All images on VGGFace2 were collected from the Google Image Search and
distributed as evenly as possible on gender, occupation, race, etc.

Models: MV and MCW . We chose VGGFace2 and CASIA to train face recog-
nition models separately for real-world attacker simulation. In the preprocessing
stage, MTCNN [52] is adopted for face alignment and Inception-ResNet-V1 [39]
selected as our model architecture, and we then completed the model training
process on a Tesla P100 GPU, with Tensorflow r1.7. An Adam optimizer with
a learning rate of −1 is used to train models over 500 epochs. Here, we denote
the models trained on the VGGFace2 and CASIA-WebFace datasets as MV and
MCW , the LFW accuracy of these models achieved 99.05% and 99.65%, respec-
tively.

5.2 Experimental Evaluation

Similar to the Fawkes system, the proposed Oriole system is designed for a user-
attacker scenario, whereby the attacker trains a powerful model through a huge
number of images collected on the Internet. The key difference is that Oriole
assumes the attacker A is able to obtain a small percentage of leaked clean
images of user U . Through the evaluation of the Oriole system, we discover
the relevant variables affecting the attack capability of the Oriole system. In
this case, we define a formula for facial recognition accuracy evaluation in Eq. 5,
where R represents the ratio of the user’s multi-cloaks in the training data. The
ranges of R and ρ are both set to [0, 1], and the parameter m (number of multi-
cloaks) is subject to the inequality: 0 < m � N , where N = 18, 947 is the total
number of target classes in the public dataset.

Accuracy = k
R · m

ρ
(5)

Throughout our experimental evaluation, the ratio between the training data
and testing data is fixed at 1:1 (see Sect. 5.2 for the motivation behind this ratio).

Comparison Between Fawkes and Oriole. We start by reproducing the
Fawkes system against unauthorized face recognition models. Next, we employed
the proposed Oriole scheme to invalidate the Fawkes system. We shall empha-
size that the leaked data obtained associated with the user will not be directly
used for training the attack model. Instead, we insert multi-cloaks actively pro-
duced by Oriole into the training process, which presents a significant difference
in the way adversary training schemes deal with leaked data.

In particular, we randomly select a user U with 100 images from PubFig83
and divided their images equally into two non-intersecting parts: UA and UB,
each of which contains 50 images, respectively. We shall evaluate both Fawkes
and Oriole in two settings for comparison. In the first setting, we mix the multi-
cloaks of the processed U

′
A into the training data to train the face recognition
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Fig. 5. Evaluation of the impact on Oriole against Fawkes through two models MV

and MCW . The two figures depict the performance of the face recognition model M
with Fawkes and equipped with Oriole. There are clear observations from the two
figures: the larger the DSSIM perturbation budget ρ, the higher the resulting face
recognition accuracy obtained from model M . Additionally, it demonstrates that our
proposed Oriole system can successfully bypass protections offered by Fawkes.

Fig. 6. An example of a clean image of the user U and 20 multi-cloaks produced by
Oriole. The uncloaked image has been framed by a red outline. (Color figure online)

model M and test the accuracy of this model M with the processed U
′
B in the

testing phase (see Fig. 3). In the second setting, we replace the clean images
of UA with the corresponding cloaked images (by applying Fawkes) to obtain a
secondary measure of accuracy. Figure 5 shows the variation in facial recognition
accuracy with certain DSSIM perturbation budget, and displays the performance
of Oriole against Fawkes protection. We implement this process on two different
models: MV and MCW . The former training data consists of the leaked images
UA and all images in VGGFace2, while the latter contains the leaked images UA

and all images in CASIA-WebFace. All experiments were repeated three times
and the results presented are averages.
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Table 1. The four models used in our verification and their classification accuracy
on PubFig83. The “Basic” column represents the conventional face recognition. The
“Fawkes” column represents that only Fawkes is used to fool the face recognition model
for privacy protection. The Oriole column represents the performance of Oriole.

Dataset Model architecture Test Accuracy

Basic Fawkes Oriole

CASIA-WebFace Inception-ResNet-V1 0.973 0.111 0.763

CASIA-WebFace DenseNet-121 0.982 0.214 0.753

VGGFace2 Inception-ResNet-V1 0.976 0.120 0.875

VGGFace2 DenseNet-121 0.964 0.117 0.714

It can been seen from Fig. 5 that there is a clear trend that the facial recog-
nition ratio of the two models rises significantly as the DSSIM perturbation
budget ρ increases from 0.1 to 1. Specifically, Oriole improves the accuracy
of the face recognition model MV from 12.0% to 87.5%, while the accuracy
of the model MCW increases from 0.111 to 0.763 when parameter ρ is set to
0.008. We notice that the accuracy of the two models MV and MCW has been
improved nearly 7 fold, when compared to the scenario where Fawkes is used to
protect privacy. From these results, we empirically find that Oriole can neu-
tralize the protections offered by Fawkes, invalidating its protection of images
in unauthorized deep learning models. Figure 6 shows an uncloaked image and
its related multi-cloaks (ρ = 0.008,m = 20). The feature representation of the
clean image framed by a red outline is dissimilar from that of the remaining
20 images. Figure 7 shows the two-dimensional Principal Component Analysis
(PCA) of the face recognition system validating our theoretical analysis (for
ρ = 0.008,m = 4). The feature representation of the clean images are mapped
to the feature space of the four target classes images through multi-cloaks. We
then mark the corresponding feature spaces as part of identity U and identify
the test images of U by cloaking them.

We show the general effectiveness of the proposed Oriole system in Table 1.
We build four models with two different architectures, named Inception-ResNet-
V1 [39] and DenseNet-121 [20], on the two aforementioned datasets. The model,
equipped with Oriole, significantly outperforms the model without it across
different setups. The experimental results demonstrate that the Oriole sys-
tem can retain the test accuracy at a higher level of more than 70% accuracy
across all listed settings, even with the protection of Fawkes. For instance, on the
CASIA-WebFace dataset with DenseNet-121 as the backbone architecture, Ori-
ole increases the attack success rate from 12.0% to 87.5%, significantly boosting
the attack effectiveness.

Main Factors Contributing to the Performance of Oriole. There are
three main factors influencing the performance of Oriole: 1) the DSSIM per-
turbation budget ρ, 2) the ratio of leaked clean images R, and 3) the number of
multi-cloaks for each uncloaked image m. Different DSSIM perturbation budgets
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Fig. 7. 2-Dimensional PCA visualization in our proposed Oriole system. Triangles are
user’s leaked images (solid) and testing data (hollow), dots are multi-cloaks of leaked
images, dots represent multi-cloaks (magenta) and images from target classes (black),
red crosses are cloaked images of testing data, blue square are images from another
class. (Color figure online)

ρ have already been discussed in the previous paragraph. We now explore the
impact of R and m values on model’s performance. Up until this point we have
performed experiments with default values of R, m and ρ as 1, 20 and 0.008
respectively to enable a fair comparison. From Fig. 8 we can observe the main
factors affecting the Oriole system’s performance. We observe that the facial
recognition success ratio increases monotonically as the number of multi-cloaks
m increases, and this rise occurs until m reaches 20, whereby the success ratio
plateaus. We can conclude that the facial recognition success ratio grows with
the ratio of leaked clean images R. The ratio increases at least three times when
R increases from 0.1 to 1.

Model Validation. In order to ensure the validity of Oriole, as a comparative
experiment, we respectively evaluate the model MV and MCW on PubFig83. We
divide PubFig83 into 10 training-testing set pairs with different proportions and
build classifiers with the help of two pre-trained models. We obtained 20 exper-
imental results depending on which model MV or MCW was used with ratios
selected between 0.1 to 1 shown in Table 2. The experimental results show that
the accuracy of model MV and MCW based on FaceNet increases monotonically
as the ratio of the training set to the testing set increases. We can see that both
models exceed a 96% recognition accuracy on PubFig83 when the selected the
ratio between training and testing sets are 0.5. Consequently, models MV and
MCW are capable of verifying the performance of Oriole.
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Fig. 8. The facial recognition accuracy changes with different ratios of leaked clean
images R and numbers of multi-cloaks for each uncloaked image m.

Table 2. The test accuracy of models MV (trained on VGGFace2) and MCW (trained
on CASIA-WebFace) across different rates of PubFig83. The rate in the first column
represents the ratio of the size of training and test sets. The test accuracy is the overall
correct classification score for clean images.

Rate Test accuracy of MV Test accuracy of MCW

0.1 0.952 0.923

0.2 0.963 0.947

0.3 0.966 0.953

0.4 0.968 0.957

0.5 0.969 0.961

0.6 0.970 0.965

0.7 0.972 0.969

0.8 0.976 0.973

0.9 0.992 0.973

6 Discussion

6.1 Restricted Imperceptibility of Fawkes

Shan et al. [37] claim that the cloaked images with small perturbations added are
indistinguishable to the naked human eye. However, we show that the impercep-
tibility of Fawkes is limited due to its inherent imperfection, which is vulnerable
to white-box attacks. For practical applications, users tend to upload clear and
high-resolution pictures for the purpose of better sharing their life experiences.
Through our empirical study, we find that Fawkes is able to make imperceptible
changes for low-resolution images, such as the PubFig83 dataset. However, when
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(a) uncloaked (b) cloaked

Fig. 9. Comparison between the cloaked and the uncloaked versions of high-resolution
images. Note that there are wrinkles, shadows and irregular purple spots on faces of
the cloaked images. (Color figure online)

it comes to high-resolution images, the perturbation between cloaked photos and
their originals is plainly apparent.

To demonstrate the limitations in Fawkes for high-resolution images, we man-
ually collect 54 high-quality pictures covering different genders, ages and regions,
whose resolution is more than 300 times (width × height is larger than 3,000,000
pixels at least) of PubFig83 images. We further conduct an experiment to set
the value of perturbation budget ρ to 0.007 and run the optimization process for
1,000 iterations with a learning rate of 0.5, in the same experimental setting as
described in Fawkes [37].

A sample of the resulting images from this experiment is displayed in Fig. 9,
these figures show images of the same users before (a) and after being cloaked by
Fawkes (b). From these figures, we can easily observe significant differences with
and without cloaking. Notably, there are many wrinkles, shadows and irregular
purple spots on the boy’s face in the cloaked image. This protection may result
in the reluctance of users to post the cloaked images online.

6.2 Countermeasures

Sybil accounts are fake or bogus identities created by a malicious user to inflate
the resources and influence in a target community [49]. A Sybil account, exist-
ing in the same online community, is a separate account to the original one of
the user U , but the account, bolstering cloaking effectiveness, can be crafted to
boost privacy protection in Fawkes when clean and uncloaked images are leaked
for training [37]. Fawkes modifies the Sybil images to protect the user’s origi-
nal images from being recognized. These Sybil images induce the model to be
misclassified because they occupy the same area within the feature space of U ’s
uncloaked images. However, the feature space of cloaked images is vastly differ-
ent from the originals. Sybil accounts are ineffective since the clean images are
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first cloaked before testing. Furthermore, these cloaked photos occupy a different
area within feature space from the Sybil images as well as the clean images. To
put it differently, no defense can be obviously offered irrespective of how many
Sybil accounts the user can own, as cloaked images and uncloaked images occupy
different feature spaces. We are also able to increase the number of multi-cloaks
m in step with Fawkes to ensure the robustness of Oriole due to the white-box
nature of the attack.

7 Conclusion

In this work, we present Oriole, a novel system to combine the advantages of
data poisoning attacks and evasion attacks to invalidate the privacy protection of
Fawkes. To achieve our goals, we first train the face recognition model with multi-
cloaked images and test the trained model with cloaked images. Our empirical
results demonstrate the effectiveness of the proposed Oriole system. We have
also identified multiple principle factors affecting the performance of the Oriole
system. Moreover, we lay out the limitation of Fawkes and discuss it at length.
We hope that the attack methodology developed in this paper will inform the
security and privacy community of a pressing need to design better privacy-
preserving deep neural models.
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Abstract. The concept of puncturable encryption was introduced by
Green and Miers at IEEE S&P 2015. Puncturable encryption allows
recipients to update their decryption keys to revoke decryption capability
for selected messages without communicating with senders. From the first
instantiation, puncturable encryption shows its essence for many interest-
ing applications, such as asynchronous messaging systems, group messag-
ing systems, public-key watermarking schemes, secure cloud emails, and
many more. To eliminate the necessity of having a costly certificate verifi-
cation process, Wei et al. introduced puncturable identity-based encryp-
tion at ESORICS 2019. Unfortunately, till today, there is no puncturable
identity-based encryption which can withstand quantum attacks. In this
paper, we aim to fill this gap in the literature by presenting the first
constructions of puncturable identity-based encryption, for both selec-
tive and adaptive identity, which are secure in the standard model based
on the hardness of the learning with errors problem. Design ideas of pro-
posed constructions might prove useful to construct other lattice-based
expressive puncturable encryption as well.

Keywords: Puncturable encryption · Delegatable attribute-based
encryption · Learning with errors

1 Introduction

Puncturable encryption (PE), introduced by Green and Miers [13] in 2015, allows
fine-grained revocation of decryption capability for specific messages. PE can be
thought of as a tag-based encryption [16], where both encryption and decryp-
tion algorithms are controlled by tags. PE consists of an additional algorithm,
namely Puncture, which on input the current secret key sk and a tag t, out-
puts a new secret key sk′ that will decrypt all ciphertexts not encrypted under
the tag t. Secret keys in this scheme can be repeatedly and sequentially punc-
tured at many different points, replicating the experience of normal message
deletion. The puncturing property is very useful when the current decryption
key is compromised. In such a situation, a recipient only needs to update his
key using the Puncture algorithm. On the other hand, forward secure encryption
c© Springer Nature Switzerland AG 2021
J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 571–589, 2021.
https://doi.org/10.1007/978-3-030-90567-5_29
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[14] helps to reduce a security risk caused by key exposure attacks. In partic-
ular, forward secure encryption guarantees the confidentiality of old messages,
when the current secret key has been compromised. In contrast, PE provides
fine-grained revocation of decryption capability for specific messages. Due to the
fine-grained revocation of decryption capability, PE triggered a line of intensive
research [9,10,15,20] from its first instantiation. Moreover, PE proves its essence
for various important applications, like asynchronous messaging transport sys-
tems [13], forward-secure zero round-trip time key-exchange protocols [10,15],
public-key watermarking schemes [9] and forward-secure proxy re-encryptions
[11]. However, to eliminate the necessity of having a certificate repository for the
aforementioned applications, it is required to have Puncturable identity-based
encryption (PIBE). In 2019, Wei et al. [23] proposed a construction of forward
secure PIBE based on q-BDHE. However, all the aforementioned constructions
are vulnerable against quantum adversaries. Recently, Susilo et al. [21] proposed
a generic construction of PE from delegatable fully key homomorphic encryption
and instantiated from lattice-based hardness assumption. Unfortunately, there
has been no PIBE which can withstand quantum attacks.

Our Contributions and Open Issues: This work represents the first endeavor
to develop quantum-safe PIBE. The basic idea is to incorporate the principles
of identity-based encryption scheme and PE to achieve PIBE. A naive thought
for the construction of PIBE is to simply combine the two systems, i.e., an
identity-based and a puncturable encryption. However, there does not exist a
straightforward approach to integrate the identity-based key and the punctured
keys, because they are generated separately, but must be integrated in a coher-
ent way based on the same master trapdoor. To resolve such daunting tasks, we
first sketch lattice-based PE directly from delegatable attribute-based encryption
(DABE) by Boneh et al. [5], which is conceptually simpler than the construction
of lattice-based puncturable encryption by Susilo et al. [21]. Subsequently, we
integrate the PE with the identity-based framework by Agrawal et al. [1]. We
construct PIBE for both selective and adaptive identity, based on the hardness
of the learning with errors (LWE) problem. Proposed constructions have the
following characteristics:

– All the constructions support a predetermined number of tags per ciphertext.
However, we note that following the work of Brakerski and Vaikuntanathan
[7], our constructions might be extended to obtain a variant that supports an
unbounded number of tags per ciphertext.

– All the constructions are secure in the standard model.
– All the constructions offer CPA security in the selective tag model1.
– All the constructions are quantum-safe and have negligible correctness errors.

This work left open interesting issues to construct variants of proposed con-
structions in the adaptive tag model with an unbounded number of tags per
ciphertext.
1 In the selective tag model, adversary sends the target tag set before seeing the public

parameters.
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2 Overview of Our Technique

In this section, we sketch out the constructions of PE from DABE and provide
an overview of PIBE.

2.1 Sketch of Puncturable Encryption

We sketch a design of lattice-based PE following the framework of PE by Green
and Miers [13]. To enable the lattice-based PE, we depart from the delegatable
Attribute-based Encryption (DABE) by Boneh et al. [5]. Secret key delegation of
DABE is the key feature to construct the underlying PE of the proposed PIBE. PE
consists of four algorithms: KeyGen,Encrypt,Puncture, Decrypt. For KeyGen, first
we fix d, the maximum number of tags per ciphertext and generate (A0,TA0)
using TrapGen algorithm [2,3,17], where A0 is a random n × m matrix over
Zq, and TA0 ∈ Z

m×m
q is a basis of Λ⊥

q (A0). We call TA0 the associated trap-
door for A0. Also, choose (d + 1) random n × m matrices over Zq, denoted by
B1, · · · ,Bd and U. We set {A0,B1, · · · ,Bd,U} as the public key and TA0 as
the initial secret key. We enable the Puncture algorithm by inducing the key
delegation technique of DABE, which works as follows. Suppose there is a secret
key skf for a function f , which can decrypt ciphertext which is encrypted for
the attribute vector x satisfies f(x) = 0. Delegation algorithm of DABE produce
a new delegated secret key skf∧g from skf and a function g, which can decrypt
the ciphertext if and only if the attribute vector x satisfies f(x) = g(x) = 0.
In the construction of PE, we replicate the same technique for Puncture algo-
rithm by considering following functions: ft̂(t1, · · · , td) �= 0 if t̂ ∈ {t1, · · · , td};
otherwise 0. Here, {t1, · · · , td} are the tags with ciphertext. If the secret key
is punctured by t̂ and ft̂(t1, · · · , td) = 0, only then the corresponding secret
key can decrypt the ciphertext with tags {t1, · · · , td}. Using key delegation of
DABE, we can delegate a new punctured secret key skft̂∧ft̂′ from skft̂

and a
new puncture t̂′, which can decrypt the ciphertext with tags {t1, · · · , td} if and
only if ft̂(t1, · · · , td) = ft̂′(t1, · · · , td) = 0. This idea can be generalized to arbi-
trary number of delegations. For simplified notation, we use sk{t̂,t̂′} instead of
skft̂∧ft̂′ . Encrypt and Decrypt work according to the Encrypt and Decrypt algo-
rithms of DABE [5]. Apart from the above key delegation technique, it is also
required to use a set of evaluation algorithm [5], namely Evalpk,Evalct,Evalsim,
for the underlying key-homomorphic features of DABE - hence to construct PE.
Precisely, Evalpk helps to compute public key under some functions, such as ft̂;
Evalct translates the ciphertext encrypted under the set of tags {t1, · · · , td} to a
ciphertext under ft̂, and Evalsim is only useful in the simulation for the security
reduction.

2.2 Overview of PIBE

To construct the PIBE, we incorporate aforementioned PE into the identity-
based framework of Agrawal et al. [1]. PIBE scheme consists of five algo-
rithms SetUp,KeyGen,Encrypt,Puncture and Decrypt. For selectively secure PIBE
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(Selective-PIBE), during SetUp phase, we fix d, the maximum number of tags per
ciphertext and generate (A0,TA0) using TrapGen algorithm [2,3,17], where A0

is a random n×m matrix over Zq, and TA0 ∈ Z
m×m
q is a basis of Λ⊥

q (A0). Also,
choose (d + 2) random n × m matrices over Zq, denoted by A1,B1, · · · ,Bd and
U. We set {A0,A1,B1, · · · ,Bd, } as the public parameter and TA0 as the mas-
ter secret key. We associate each identity id with the matrix Aid = A1 +HidG,
where Hid refers to the full-rank difference map (FRD) [1]. To get the secret key
for an identity id, we compute a randomized trapdoor T(A0|Aid) for (A0|Aid),
using the trapdoor TA0 of A0. We consider skid,∅ = T(A0|Aid) as the initial
secret key under the identity id. To puncture the secret key of id with tag t̂, first
we construct Bft̂

using the evaluation algorithm Evalpk [5]. Then we compute
a randomized trapdoor T(A0|Aid|Bf

t̂
) for (A0|Aid|Bft̂

) using the initial secret
key T(A0|Aid), this secret key can decrypt any ciphertext with tags {t1, · · · , td}
except t̂. We denote T(A0|Aid|Bf

t̂
) as Tid,P1 , where P1 = {t̂}. To generate cipher-

text with tags {t1, · · · , td} for an identity id, we first compute

H =
[
A0 Aid t1G + B1 · · · tdG + Bd

]
,

which integrate the role of the identity-based key and the punctured key. Finally,
ciphertext includes a vector of the following form: c = H�s + e, where s is a
random vector in Z

n
q and e is the noise. We prove the security of Selective-PIBE

under the hardness of decisional LWE. Here, adversary announces the target iden-
tity id∗ and the target tag set {t∗1, · · · , t∗d} before seeing the public parameters.
During security reduction, A1,B1, · · · ,Bd from the public parameter change as
follows: A1 = A0S∗

1 −Hid∗G and Bi = A0R∗
i − t∗iG for i ∈ {1, · · · , d}, where

S∗
1 and R∗

1, · · · ,R∗
d ←− {+1,−1}m×m are random matrices.

For the construction of adaptively secure PIBE, we set Aid = G+
∑�

i=1 biAi,
where A1, · · · ,A� ∈ Z

n×m
q are the random matrices that are included in the pub-

lic parameters and id is a �-bit sequence (b1, · · · , b�) ∈ {1,−1}�. The remain-
ing part is almost same as in the selective-PIBE scheme. During security game,
adversary announces only the target tag set {t∗1, · · · , t∗d} before seeing the pub-
lic parameters. Adversary announces Challenge identity id∗ at challenge phase.
This incurred an abort event during security reduction. To make abort proba-
bility negligible, we use abort-resistant hash functions [1,4,22] FWat, where
FWat := {Fh : (Z�

q)
∗ → Zq}h∈Z�

q
and Fh(id) = 1 +

∑�
i=1 hibi for prime q,

and id = (b1, b2, · · · , b�) ∈ (Z�
q)

∗, h = (h1, · · · , h�) ∈ Z
�
q. In [1], it is only

required to check that Fh(id) = 0 or not to decide abort. But, for adaptively
secure PIBE, it is also required to check that Pid ∩ {t∗1, · · · , t∗d} = ∅ or not
along with the value of Fh(id). More precisely, abort event occurs only when
Pid ∩ {t∗1, · · · , t∗d} = ∅ and Fh(id) = 0, where secret key of id has been punc-
tured with the tags in Pid. We deal such event from the perspective of uncertainty
of the adversary. Finally, we show the reduction from the decisional LWE.
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3 Preliminaries

We denote the real numbers and the integers by R,Z, respectively. We denote
column-vectors by lower-case bold letters (e.g. b), so row-vectors are represented
via transposition (e.g. bt). Matrices are denoted by upper-case bold letters and
treat a matrix X interchangeably with its ordered set {x1,x2, . . .} of column
vectors. We use I for the identity matrix and 0 for the zero matrix, where the
dimension will be clear from context. We use [∗|∗] to denote the concatena-
tion of vectors or matrices. A negligible function, denoted generically by negl.
We say that a probability is overwhelming if it is 1 − negl. The statistical dis-
tance between two distributions X and Y over a countable domain Ω defined as
1
2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|. We say that a distribution over Ω is ε-far if

its statistical distance from the uniform distribution is at most ε.

3.1 Lattices

A lattice Λ is a discrete additive subgroup of Rm. Specially, a lattice Λ in R
m

with basis B =
[
b1 · · · bn

]
∈ R

m×n, where each bi is written in column form,
is defined as Λ := {

∑n
i=1 bixi|xi ∈ Z ∀i = 1, . . . , n} ⊆ R

m. We call n the rank of
Λ and if n = m we say that Λ is a full rank lattice. The dual lattice Λ∗ is the set
of all vectors y ∈ R

m satisfying 〈x,y〉 ∈ Z for all vectors x ∈ Λ. If B is a basis
of an arbitrary lattice Λ, then B∗ = B(BtB)−1 is a basis for Λ∗. For a full-rank
lattice, B∗ = B−t. We refer to B̃ as a Gram-Schmidt orthogonalization of B.

In this paper, we mainly consider full rank lattices containing qZm, called
q-ary lattices, defined as the following, for a given matrix A ∈ Z

n×m
q and u ∈ Z

n
q

Λq(A) =
{
z ∈ Z

m : ∃ s ∈ Z
n
q s.t. z = A�s mod q

}
;

Λ⊥
q (A) = {z ∈ Z

m : Az = 0 mod q} .

We define Λu
q (A) = {z ∈ Z

m : Az = umod q} = Λ⊥
q (A)+x for x ∈ Λu

q (A).

Matrix Norms: For a vector u, we let ‖u‖ denotes its �2 norm. For a matrix
R ∈ Z

k×m, let R̃ is the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We denote three matrix norms as follows:

‖R‖ denotes the �2 length of the longest column of R.
‖R‖GS =

∥
∥
∥R̃

∥
∥
∥, where R̃ is the GS orthogonalization of R.

‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Gaussian on Lattices: Let Λ ⊆ Z
m be a lattice. For a vector c ∈ R

m and
a positive parameter σ ∈ R, define: ρc,σ(x) = exp

(
π ‖x−c‖2

σ2

)
and ρc,σ(Λ) =

∑
x∈Λ ρc,σ(x). The discrete Gaussian distribution over Λ with center c and

parameter σ is Dc,σ(Λ)(y) = ρc,σ(y)
ρc,σ(Λ) ,∀y ∈ Λ.
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Lemma 1 (Lemma 2.5. [5]). Let n,m, k, q, σ > 0 and A ∈ Z
n×m
q ,U ∈ Z

n×k
q .

For R ∈ Z
m×k sampled from Dσ(Λu

q (A)) and S sampled uniformly from
{+1,−1}m×m, the followings hold with overwhelming probability in m:

∥
∥R�∥

∥
2

≤ σ
√

mk, ‖R‖2 ≤ σ
√

mk and ‖S‖2 ≤ 20
√

m.

Learning With Errors (LWE) [19]: The Learning with Errors (LWE) problem
was introduced by Regev [19]. Here we define the decisional version of LWE. The
security of our schemes are based on this hardness assumption.

Definition 1 (Decisional LWE (dLWE)). Consider a prime integer q, positive
integers n,m, and a noise distribution χ over Zq. The dLWEn,m,q,χ problem is
to distinguish the following two distributions:

(A,A�s + e) and (A,u)

Where A $←− Z
n×m
q , s $←− Z

n
q , u $←− Z

m
q and e $←− χm are sampled.

Let the noise distribution χ be B- bounded if its support is in [−B,B]. For
any constant d > 0 and sufficiently large q, Regev [19] through a quantum reduc-
tion showed that taking χ as a q/nd-bounded discretized Gaussian distribution,
the dLWEn,m,q,χ problem is as hard as approximating the worst-case GapSV P
to nO(d) factors, which is believed to be hard. In subsequent works, (partial)
dequantization of the Regev’s reduction were achieved [6,18]. More generally, let
χmax < q be the bound on the noise distribution. The difficulty of the problem
is measured by the ratio q/χmax. This ratio is always bigger than 1 and the
smaller it is the harder the problem. The problem appears to remain hard even
when q/χmax < 2nε for some fixed ε that is 0 < ε < 1/2.

We refer the reader to [5,7,18,19] for more information.

Trapdoor Generators and Related Algorithms: Here, we briefly describe
the properties of algorithms for generating short basis of lattices and algorithms
for finding a low-norm matrix X ∈ Z

m×k such that AX = U.

Lemma 2. Let n,m, q > 0 be integers with q prime. There are polynomial time
algorithms as follows:

1. (A,TA) ←− TrapGen(1n, 1m, q) [2,3,17]: A randomized algorithm that, when
m = Θ(n log q), outputs a full-rank matrix A ∈ Z

n×m
q , and a basis TA ∈

Z
m×m for Λ⊥

q (A) such that A is negl-close to uniform and ‖TA‖GS =
O(

√
n log q) with all but negligible probability in n.

2. T(A|B) ←− ExtendRight(A,TA,B) [8]: A deterministic algorithm that given
full-rank matrices A,B ∈ Z

n×m
q , and a basis TA of Λ⊥

q (A) outputs a basis
T(A|B) of Λ⊥

q (A|B) such that ‖TA‖GS = ‖T(A|B)‖GS.
3. TM ←− ExtendLeft(A,G,TG,R), where M =

[
A G + AR

]
[1]: A deter-

ministic algorithm that given full-rank matrices A,G ∈ Z
n×m
q , and a basis

TG of Λ⊥
q (G) outputs a basis TM of Λ⊥

q (M) such that ‖TM‖GS ≤ ‖TG‖GS ·
(1 + ‖R‖2).
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Lemma 3. Let A ∈ Z
n×m
q , TA ∈ Z

m×m be a basis for Λ⊥
q (A) and U ∈ Z

n×k
q .

There are polynomial time algorithms that output X ∈ Z
m×k satisfying AX = U

with the properties below:

1. X ←− SampleD(A,TA,U, σ) [12]: A randomized algorithm that, when σ =
‖TA‖GS · ω(

√
log m), outputs a random sample X from a distribution that is

statistically close to Dσ(ΛU
q (A)).

2. T
′
A ←− RandBasis(A,TA, σ) [8]: A randomized algorithm that, when σ =

‖TA‖GS · ω(
√

log m), outputs a basis T
′
A of Λ⊥

q (A) sampled from a distribu-
tion that is statistically close to (Dσ(Λ⊥

q (A)))m. Here ‖T′
A‖GS < σ

√
m with

all but negligible probability.

Next, we define three types of evaluation algorithms from [5]. Let n and
q = q(n), and m = Θ(n log q) be positive integers. Let G ∈ Z

n×m
q be the fixed

matrix. For x ∈ Zq,B ∈ Z
n×m
q , s ∈ Z

n
q , and δ > 0 define the set

Es,δ(x,B) = {(xG + B)�s + e ∈ Z
m
q ,where‖e‖ < δ}.

Lemma 4 (Evaluation Algorithms (Sect. 4. [5])). The three efficient deter-
ministic evaluation algorithms Evalpk,Evalct,Evalsim satisfy the following prop-
erties with respect to the family of functions F = {f : (Zq)d −→ Zq} and a
function αF : Z −→ Z:

1. Bf ←− Evalpk(f ∈ F , {Bi}d
i=1), where Bf and each Bi ∈ Z

n×m
q .

2. cf ←− Evalct(f ∈ F , {xi,Bi, ci}d
i=1), where cf ∈ Z

m
q , and each xi ∈ Zq,Bi ∈

Z
n×m
q , and ci ∈ Es,δ(xi,Bi) for some s ∈ Z

n
q and δ > 0. The output cf

must satisfy cf ∈ Es,Δ(f(x),Bf ), where Bf ←− Evalpk(f ∈ F , {Bi}d
i=1),

x = (x1, · · · , xd), and Δ < δ · αF (n).
3. Rf ←− Evalsim(f ∈ F , {x∗

i ,Ri}d
i=1,A), where Rf and each Ri ∈ Z

m×m
q ,

and each x∗
i ∈ Zq. For x∗ = (x∗

1, · · · , x∗
d), the output Rf satisfies the relation

ARf − f(x∗)G = Bf , where Bf ←− Evalpk(f ∈ F , {ARi − x∗
iG}d

i=1). For

all f ∈ F , and for R1, · · · ,Rd
$←− {+1,−1}m×m, ‖R‖ f 2 < αF (n) with all

but negligible probability.

By Lemma 4.6, 4.7 and 5.3 from Boneh et al. [5], we have, for a set of
functions F(can compute by depth D circuits) and p < q, the bound on all the
intermediate values, the bound function will be αF (n) = O((pdm)D

√
m).

Next, we state a variant of the Left-over Hash Lemma from [1].

Lemma 5 (Left-over Hash Lemma (Lemma 13. [1])). Suppose that m >
(n + 1) log2 q + ω(log n) and that q > 2 is prime. Let R be an m × k matrix
chosen uniformly in {1,−1}m×k mod q, where k = k(n) is polynomial in n. Let
A and B be matrices chosen uniformly in Z

n×m and Z
n×k respectively. Then,

for all vectors e ∈ Z
m
q , the distribution (A,AR,R�e) is statistically close to the

distribution (A,B,R�e).
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3.2 Puncturable Identity-Based Encryption

Definition 2 (Puncturable Identity-Based Encryption (PIBE)).
A PIBE scheme is a tuple of five algorithms (SetUp,KeyGen,Encrypt,

Puncture,Decrypt):

– (PP,msk) ←− SetUp(1λ, d): On input the security parameter 1λ, and the
maximum number of tags d (≤ q) per ciphertext, outputs the public parameter
PP and the master secret key msk.

– skid,∅ ←− KeyGen(PP,msk, id): On input the public parameter PP, master
secret key msk, and an identity id, outputs the initial secret key skid,∅ for id.

– ct ←− Encrypt(PP, id, μ, {t1, t2, · · · , td}): On input an identity id, the public
parameter PP , a message μ ∈ M and a list of tags t1, t2, · · · , td ∈ T , outputs
a ciphertext ct with the corresponding tags {t1, t2, · · · , td} under the specified
identity id.

– skid,Pi
←− Puncture(PP, skid,Pi−1 , t̂i): On input the public parameter PP, a

punctured secret key skid,Pi−1 and a tag t̂i ∈ T , outputs a new punctured secret
key skid,Pi

, which can decrypt any ciphertexts for id, except the ciphertext
encrypted under any list of tags containing t̂i. Here, Pi = Pi−1 ∪ {t̂i}2.

– μ/⊥ ←− Decrypt(PP, skid,Pi
, ct, {t1, t2, · · · , td}): On input the public param-

eter PP, ciphertext ct with tags {t1, t2, · · · , td}, and a punctured secret key
skid,Pi

, the algorithm outputs a plaintext μ or the error symbol ⊥.

Definition 3 (PIBE Correctness).
A PIBE scheme (SetUp,KeyGen,Encrypt,Puncture,Decrypt) decrypts correctly

for the plaintext space M, the tag space T if :

– Decrypt(PP, skid,∅,Encrypt(PP, id, {t1, t2, · · · , td}, μ)) = μ
– Decrypt(PP, skid,Pi

,Encrypt(PP, id, {t1, t2, · · · , td}, μ)) = μ,
if {t1, t2, · · · , td} ∩ Pi = ∅

– Decrypt(PP, skid,Pi
,Encrypt(PP, id, {t1, t2, · · · , td}, μ)) = ⊥,

if {t1, t2, · · · , td} ∩ Pi �= ∅,
where skid,∅ ←− KeyGen(PP,msk, id), and skid,Pi

←− Puncture(PP, skid,Pi−1 ,

t̂i), Pi={t̂1, t̂2, · · · , t̂i}.
Security Game of PIBE for Selective Identity against Chosen Plain-
text Attack (IND-PUN-sID-CPA):
Let A be the PPT adversary and Π = (SetUp,KeyGen,Encrypt,Puncture,
Decrypt) be a PIBE scheme with a plaintext space M and a tag space T . Security
game is defined according to the following game ExpIND-PUN-sID-CPA

A (1λ) :

1. Initial: A sends the target identity id∗, and the target tag set {t∗1, t
∗
2, · · · , t∗d}.

2. Set Up: The challenger runs SetUp(1λ, d) to get (PP,msk) and give PP
to A. Also, challenger maintains a tuple (id, skid,Pi

, Pid, Cid), which is the
state of the secret key of identity id. That is, the secret key skid,Pi

has been
punctured with tags in Pid

3. Initially, Pid, Cid are two empty sets for each id.
2 For convenience of the notation, we assume that P0 = ∅ and the initial secret key
skid,P0 = skid,∅.

3 Since, skid,Pi is the secret key which is punctured with tags in Pi. Pid is nothing
but Pi that is Pid = Pi.
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3. Query Phase 1: The adversary A may make following queries polynomially
many times:
(a) QPuncture(id, t̂): Given an identity id and a tag t̂, do as follows:

– If there exists a tuple (id, skid,Pi
, Pid, Cid), it directly performs the

algorithm skid,Pi+1 ←− Puncture(PP, skid,Pi
, t̂). The challenger adds

t̂ to the set Pid. Also, replaces the old tuple (id, skid,Pi
, Pid, Cid) with

the new one (id, skid,Pi+1 , Pid, Cid).
– Otherwise, runs the algorithms skid,∅ ←− KeyGen(PP,msk, id) and

skid,P1 ←− Puncture(PP, skid,∅, t̂), where P1 = {t̂} and creates a new
tuple (id, skid,P1 , Pid, Cid) for id.

(b) QCorrupt(id): The first time the adversary makes a corruption query for
the identity id, the challenger will consider following two cases:

– Case 1 (id �= id∗): The challenger do as follows:
• If there exists a tuple (id, skid,Pi

, Pid, Cid), returns skid,Pi
to the

adversary A and sets Cid ←− Pid.
• Otherwise, runs the algorithms skid,∅ ←− KeyGen(PP,msk, id)

and returns skid,∅ to the adversary A. Sets Cid ←− Pid(= ∅) and
creates a new tuple (id, skid,∅, Pid, Cid) for id.

• For all subsequent queries after the first query for id, the chal-
lenger returns ⊥.

– Case 2 (id = id∗): The challenger do as follows:
• If there exists a tuple (id∗, skid∗,Pi

, Pid∗ , Cid∗), returns ⊥ if Pid∗ ∩
{t∗1, t

∗
2, · · · , t∗d} = ∅. Otherwise, it returns the most recent punc-

tured secret key skid∗,Pi
to the adversary and sets Cid∗ ←− Pid∗ .

• If there does not exist any such tuple, then challenger also returns
⊥ to the adversary.

• For all subsequent queries after the first query for id∗, the chal-
lenger returns ⊥.

4. Challenge: A submits two messages μ0, μ1 ∈ M under id∗ to
the challenger. The challenger outputs a challenge ciphertext ctβ ←−
Encrypt(PP, id∗, {t∗1, t

∗
2, · · · , t∗d}, μβ) for either β = 0 or β = 1, by choosing a

random bit β ∈ {0, 1}.
5. Query Phase 2: This phase is identical to Query Phase 1.
6. Guess: On input β′ from A, this oracle outputs 1 if β = β′ and 0 otherwise.

The advantage of an adversary in the above experiment ExpIND-PUN-sID-CPA
A (1λ)

is defined as |Pr[β′ = β] − 1
2 |.

Definition 4. A PIBE scheme is IND-PUN-sID-CPA secure if all PPT adver-
saries A have at most a negligible advantage in experiment
ExpIND-PUN-sID-CPA

A (1λ).

For the Adaptive-Identity, instead of announcing the challenge identity
at the starting of the game, adversary will announce it at the time of challenge
phase and there are following constraints:
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1. If the adversary has previously issued a corruption query with respect to the
challenge identity id∗ and Cid∗ ∩ {t∗1, t∗2, · · · , t∗d} = ∅, the challenger outputs
reject at Challenge Phase.

2. During Query Phase 2, if the adversary issues corruption query to the chal-
lenger with respect to id∗ and Pid∗ ∩ {t∗1, t∗2, · · · , t∗d} = ∅, challenger outputs
⊥.

The resulting security notion is defined using the modified game as in Definition
4, and is denoted by IND-PUN-ID-CPA.

4 Selectively Secure Puncturable Identity-Based
Encryption (Selective-PIBE)

4.1 Construction of Selective-PIBE

In this section, we present our construction of Selective-PIBE. We set the param-
eters as the following.

– G ∈ Z
n×m
q is a gadget matrix [17] for integer n, large enough prime power

q = poly(n), and m = Θ(n log q).
– Let χ be a χmax-bounded distribution for which dLWEn,2m,q,χ is hard.
– For the trapdoor algorithms to work correctly and the security to work, set

the Gaussian parameters σ0 = ω(αF ·
√

log m) and ση = σ0 · (
√

m log m)η,
where αF >

√
n log m and η is a positive integer.

– Let d(< q) is the maximum number of tags per ciphertext.
– consider the message space is M = {0, 1}m and the tag space is T = Zq.
– Encoding of Identity: In the following construction, we use full-rank differ-

ence map (FRD) as in [1]. FRD: Zn
q → Z

n×n
q ; id �→ Hid. We assume identities

are non-zero elements in Z
n
q . The set of identities can be expanded to {0, 1}∗

by hashing identities into Z
n
q using a collision resistant hash. FRD satisfies

the following properties:
1. ∀ distinct id1, id2 ∈ Z

n
q , the matrix Hid1 − Hid2 ∈ Z

n×n
q is full rank;

2. ∀ id ∈ Z
n
q \{0}, the matrix Hid ∈ Z

n×n
q is full rank;

3. FRD is computable in polynomial time (in n log q).
– We define the family of functions F = {ft | ft : Zd

q → Zq,∀t ∈ Zq}, where
ft(t) �= 0 mod q if t ∈ {t1, · · · , td}, t = (t1, · · · , td), otherwise ft(t) = 0
mod q.

The proposed Selective-PIBE consists of the following algorithms:

SetUp(1λ, d): On input a security parameter λ, the maximum number of tags
d with each ciphertext, do as follows:

1. Generate (A0,TA0) ←− TrapGen(1n, 1m, q), where A0 ← Z
n×m
q , and TA0 ∈

Z
m×m
q , a basis of Λ⊥

q (A0).
2. Choose d + 2 uniformly random matrices A1,B1, · · · ,Bd,U ∈ Z

n×m
q .

3. Output the public parameter PP = {A0,A1,B1, · · · ,Bd,U,G} and the mas-
ter secret key msk = {TA0}.
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KeyGen(PP,msk, id): On input the public parameter PP , master secret key
msk and the identity id ∈ Z

n
q , do as follows:

1. Construct Aid = A1 + HidG ∈ Z
n×m
q .

2. Compute TER
(A0|Aid)

←− ExtendRight(A0,Aid,TA0).

3. Compute T(A0|Aid) ←− RandBasis
([

A0 Aid

]
,TER

(A0|Aid)
, σ0

)
, where σ0 =

ω(αF ·
√

log m).
4. Output the initial secret key skid,∅ = T(A0|Aid) ∈ Z

2m×2m
q for the identity

id.

Encrypt(PP, id,µ ∈ {0, 1}m, {t1, t2, · · · , td}): On input the public parameter
PP , the identity id ∈ Z

n
q , message µ ∈ {0, 1}m, and the tags {t1, t2, · · · , td},

where each ti ∈ Zq, do as follows:

1. Construct Aid = A1 + HidG.
2. Choose a uniformly random s ← Z

n
q .

3. Choose d + 1 uniformly random matrices S1 and R1, · · · ,Rd ←−
{+1,−1}m×m.

4. Choose error vectors e0, eout ∈ χm.
5. Set H =

[
A0 Aid t1G + B1 · · · tdG + Bd

]
∈ Z

n×(d+2)m
q .

6. Set e =
[
Im S1 R1 · · · Rd

]� · e0
= (e�

in, e�
id, e

�
1 , · · · , e�

d )� ∈ Z
(d+2)m
q .

7. Compute c = H�s+ e ∈ Z
(d+2)m
q and cout = U�s+ eout + �q/2� ·µ ∈ Z

m
q .

Here, c =
[
cin cid c1 · · · cd

]
∈ Z

(d+2)m
q , where cin = A�

0 s + ein, cid =
A�

ids + eid, and ci = (tiG + Bi)�s + ei for all i ∈ {1, · · · , d}.
8. Output the ciphertext ct = (cin, cid, c1, · · · , cd, cout) ∈ Z

(d+3)m
q with the tag

set {t1, t2, · · · , td} under the identity id.

Puncture(PP, skid,Pη−1 , t̂η): On input the public parameters PP , a punctured
secret key skid,Pη−1 , and a tag t̂η ∈ Zq, do as follows:

1. Evaluate Bft̂η
←− Evalpk({Bi}d

i=1, ft̂η
).

2. Compute TER
id,Pη

←− ExtendRight
([

A0 Aid Bf
t̂1

· · · Bf
t̂η−1

]
,Bft̂η

,Tid,Pη−1

)
.

3. Compute Tid,Pη
←− RandBasis

([
A0 Aid Bf

t̂1
· · · Bf

t̂η−1
Bf

t̂η

]
,TER

id,Pη
, ση

)
,

where ση = σ0 · (
√

m log m)η. Here, Pη = Pη−1 ∪ {t̂η}.
4. Output the new punctured secret key skid,Pη

= Tid,Pη
∈ Z

(η+2)m×(η+2)m
q

for the identity id.

Decrypt(PP, skid,Pη
, ct, {t1, t2, · · · , td}): On input the public parameter PP ,

the punctured secret key skid,Pη
= Tid,Pη

of the identity id, and a ciphertext ct
with the tag set {t1, t2, · · · , td}, do as follows:

1. For t = (t1, t2, · · · , td), if there exist some j ∈ {1, · · · , η} such that ft̂j
(t) �= 0,

outputs ⊥.
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2. Otherwise, sample R ←− SampleD
([

A0 Aid Bft̂1
· · · Bft̂η

]
,Tid,Pη

,U, ση

)
.

3. Evaluate cft̂j
←− Evalct({ti,Bi, ci}d

i=1, ft̂j
) for all j ∈ {1, · · · , η}.

4. Compute (μ1, · · · , μm) = cout − R�c, where c =
[
cin cid cft̂1

· · · cft̂η

]
.

5. For each i, if |μi| < q/4, take μi = 0, otherwise take μi = 1.
6. Output µ = (μ1, · · · , μm).

4.2 Correctness and Security

In this section, we analyze the correctness and security of the proposed scheme.

Theorem 1 (Correctness). The Selective-PIBE scheme is correct if the fol-
lowing condition holds: 3α2

F · χmax · (η + 2)2 · m
η
2+1 < q/4.

Proof. To show that the decryption algorithm outputs a correct plaintext, it is
required for Evalct that for ft̂j

= 0, the resulting ciphertext cft̂j
∈ Es,Δ(0,Bft̂j

)
for all j ∈ {1, · · · , η}.

We have, µ = cout − R�c = cout − R�
[
cin cid cft̂1

· · · cft̂η

]
;

[
cin cid cft̂1

· · · cft̂η

]
=

[
A0 Aid Bft̂1

· · · Bft̂η

]�
s +

[
ein eid eft̂1

· · · eft̂η

]
;

[
A0 Aid Bft̂1

· · · Bft̂η

]
· R = U; and ‖R‖2 , ‖R‖ �

2 < (η + 2)mση with over-
whelming probability by lemma 1.

So, we have, µ = �q/2� · µ +
(
eout − R� ·

[
ein eid eft̂1

· · · eft̂η

])
.

To get a correct decryption, the norm of the error term should be less than
q/4 i.e.

∥
∥
∥eout − R� ·

[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ < q/4.

Since, eid = S�
1 e0 and ‖S‖ 12 <

√
m by lemma 1. We have∥

∥
∥
[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ < χmax + χmax

√
m + ηΔ < (ηαF +

√
m + 1)χmax.

Finally, using ση = σ0 · (
√

m log m)η, σ0 = ω(αF ·
√

log m), we have,∥
∥
∥eout − R� ·

[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ ≤ χmax + (η + 2)mση · (ηαF +

√
m +

1)χmax ≤ 3α2
F · χmax · (η + 2)2 · m

η
2+1 with overwhelming probability.

By choosing the parameters such that, 3α2
F · χmax · (η + 2)2 · m

η
2+1 < q/4,

the decryption will be correct. �

Theorem 2 (Security). The above scheme is IND-PUN-sID-CPA secure
assuming the hardness of dLWEn,2m,q,χ.

Proof. Let id∗ be the target user and the target tags be {t∗1, t
∗
2, · · · , t∗d}. Let

us assume t∗ = (t∗1, t
∗
2, · · · , t∗d) ∈ T d. For each identity id, the challenger will

maintain one tuple (id, skid,∅, Pid, Cid). Initially, Pid, Cid are two empty sets.
The proof proceeds in a sequence of games. The first game is identical to the
original IND-PUN-sID-CPA game from the definition 4. The last two games are
indistinguishable due to the hardness of the dLWE problem.

Game 0: This is the original IND-PUN-sID-CPA game from definition between
an adversary A against scheme and an IND-PUN-sID-CPA challenger. Here,
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in SetUp phase, the challenger chooses (d + 2) uniformly random matrices
A1,B1, · · · ,Bd,U from Z

n×m
q , and generates (A0,TA0) from TrapGen(1n, 1m, q)

algorithm. It sends the public parameters PP = {A0,A1,B1, · · · ,Bd,U,G} to
the adversary A and keeps the master secret key msk = {TA0}. In order to
produce the challenge ciphertext ct∗, it chooses (d+1) uniformly random matri-
ces S∗

1 and R∗
i ←− {+1,−1}m×m for i ∈ {1, · · · , d} as in Step 2 of Encrypt

algorithm.

Game 1: Here, the challenger generates A1,B1, · · · ,Bd in the public parame-
ters in a different way than Game 0. The challenger chooses (d + 1) uniformly
random matrices S∗

1 and R∗
i ←− {+1,−1}m×m for i ∈ {1, · · · , d} in the SetUp

phase. It generates A0 as in Game 0 and set A1,B1, · · · ,Bd as follows:

A1 = A0S∗
1 − Hid∗G and Bi = A0R∗

i − t∗iG for i ∈ {1, · · · , d}.

The remainder of the game is same as Game 0. Due to lemma 5 (left-over
hash lemma), A0S∗

1 and A0R∗
1, · · · ,A0R∗

d are statistically indistinguishable with
uniform distribution. So, A1 and B1, · · · ,Bd, as defined above, are close to
uniform. Hence, Game 0 and Game 1 are statistically indistinguishable.

Game 2: Here, the challenger chooses a random A0 from Z
n×m
q instead of having

from TrapGen algorithm. The construction of A1,B1, · · · ,Bd remain same as
Game 1. In Query Phase 1, adversary issues following queries adaptively and the
challenger does as follows:
QPuncture(id, t̂): Given an identity id and a tag t̂, challenger consider following
two cases:

1. Query for id(�= id∗):
– If there exists a tuple (id, skid,Pi

, Pid, Cid), it directly performs the algo-
rithm skid,Pi+1 ←− Puncture(PP, skid,Pi

, t̂). The challenger adds t̂ to
Pid, and replaces the old tuple (id, skid,Pi

, Pid, Cid) with the new one
(id, skid,Pi+1 , Pid, Cid).

– otherwise, Construct Aid = A1 +HidG = A0S∗
1 +(Hid −Hid∗)G. Since,

TG is a trapdoor for G, so it’s also a trapdoor for (Hid−Hid∗)G, as (Hid−
Hid∗) �= 0 by definition of FRD. Then obtain a trapdoor TEL

(A0|Aid)
←−

ExtendLeft(A0, (Hid − Hid∗)G,TG,S∗
1). Finally, compute a randomized

trapdoor T(A0|Aid) ←− RandBasis((A0|Aid),TEL
(A0|Aid)

, σ0). Set this as
the initial secret key skid,∅ = T(A0|Aid) for identity id. Then, perform the
algorithm skid,P1 ←− Puncture(PP, skid,∅, t̂), where P1 = {t̂}. Add t̂ to
Pid, and construct a new tuple (id, skid,P1 , Pid, Cid), where Pid = {t̂} and
Cid = ∅. For further queries, use Puncture algorithm accordingly.

2. Query for id∗:
– If there exists a tuple (id∗,−, Pid∗ , Cid∗), challenger just adds t̂ to Pid∗

and replace the old tuple with the new one.
– Otherwise, add t̂ to Pid∗ , and construct a new tuple (id∗,−, Pid∗ , Cid∗),

where Pid∗ = {t̂} and Cid∗ = ∅.
– Here, challenger does nothing to compute the punctured secret key.
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QCorrupt(id) The first time the adversary makes a corruption query for the
identity id, challenger consider following two cases:

1. Query for id(�= id∗):
– If there exists a tuple(id, skid,Pi

, Pid, Cid), it directly returns skid,Pi
to

the adversary A and set Cid ← Pid.
– otherwise, computes the initial secret key (as we stated above) and returns

skid,∅ to the adversary A. Set Cid ← Pid = ∅.
– All subsequent queries return ⊥.

Note that, for id(�= id∗), it does not require that Pid ∩ {t∗1, t∗2, · · · , t∗d} = ∅ or
not, in any case challenger can respond the puncture key query, as (Hid −
Hid∗) �= 0. So, challenger can compute the initial secret key, mentioned as
above. Then following the Puncture algorithm, challenger can compute the
punctured secret key under id(�= id∗).

2. Query for id∗:
– If there exists a tuple (id∗,−, Pid∗ , Cid∗), then check that Pid∗ ∩

{t∗1, t
∗
2, · · · , t∗d} = ∅ or not. If Pid∗ ∩{t∗1, t∗2, · · · , t∗d} = ∅, challenger outputs

⊥. Otherwise, Pid∗ ∩ {t∗1, t∗2, · · · , t∗d} �= ∅ implies that there exist atleast
one t̂i ∈ Pid∗ , for which ft̂i

(t∗) �= 0. Let us assume Pid∗ = {t̂1, · · · , t̂k}.
Without loss of generality, assume that ft̂k

(t∗) �= 0. Now, compute
R∗

ft̂i

←− Evalsim(ft̂i
, {t∗j ,R

∗
j}d

j=1,A0) for all i ∈ {1, · · · , k}, and let

Bft̂i
= A0R∗

ft̂i

− ft̂i
(t∗)G, where,

∥
∥
∥R∗

ft̂i

∥
∥
∥
2

≤ αF . Compute TEL
id∗,Pi

←−

ExtendLeft
([

A0 Aid Bft̂1
· · · Bft̂k−1

]
,Bft̂k

,TG,R∗
ft̂k

)
. Here,

∥
∥
∥TEL

id∗,Pi

∥
∥
∥
GS

≤ ‖TG‖GS ·
∥
∥
∥R∗

ft̂k

∥
∥
∥
2

≤
√

5αF . Compute a randomized trap-

door Tid∗,Pi
←− RandBasis

([
A0 Aid Bft̂1

· · · Bft̂k−1

]
,TEL

id∗,Pi
, σk

)
.

Here, Pi = Pid∗ . Outputs the punctured secret key skid∗,Pi
= Tid∗,Pi

.
– If there does not exist any tuple, in that case assuming Pid∗ = ∅, chal-

lenger, also, outputs ⊥.
– All subsequent queries return ⊥.

Game 2 is otherwise same as Game 1. Since the public parameters and responses
to the queries are statistically close to those in Game 1, the adversary A’s advan-
tage in Game 2 is at most negligibly different from its advantage in Game 1.

Game 3: Game 3 is identical to Game 2 except that the challenge ciphertext
ct∗ = (cin, cid, c1, · · · , cd, cout) chosen randomly from Z

(d+3)m
q . Therefore, the

adversary A’s advantage in Game 3 is zero.
We show that Game 2 and Game 3 are computationally indistinguishable for

a PPT adversary, by giving a reduction from the dLWE problem.

Reduction from dLWE: Suppose A has non-negligible advantage in distinguish-
ing Game 2 and Game 3. Using A, we construct a dLWE solver B.

– dLWE instance: B begins by obtaining an dLWE challenge consisting of two
random matrices A0,U ∈ Z

n×m
q and two cin, coutZ

m
q . Here, cin, cout are
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either random in Z
m
q or cin = A0

�s + e0 and cout = U�s + eout for some
random vector s ∈ Z

n
q and e0, eout ∈ χm. The goal of B is to distinguish these

two cases with non-negligible advantage by using A.
– Initial: A begins by announcing the target identity id∗ and the target tag

t∗ = (t∗1, t
∗
2, · · · , t∗d) that it intends to attack.

– SetUp: B constructs the public parameter as in Game 2: choose (d + 1)
random matrices S∗

1 and R∗
i ←− {+1,−1}m×m for i ∈ {1, · · · , d} and set

A1,B1, · · · ,Bd as A1 = A0S∗
1 − Hid∗G and Bi = A0R∗

i − t∗iG for i ∈
{1, · · · , d}. It gives PP = {A0,A1,B1, · · · ,Bd,U,G} to A.

– Query Phase 1: B answers A’s all key queries as in Game 2.
– Challenge: A sends two messages µ0,µ1 ∈ {0, 1}m to B. B chooses a random

bit β ∈ {0, 1} and compute c∗ =
[
Im S∗

1 R∗
1 · · · R∗

d

]� · c∗
in ∈ Z

(d+2)m
q and

c∗
out = cout + �q/2� ·µβ ∈ Z

m
q . B sends ct∗ = (c∗, c∗

out) ∈ Z
(d+3)m
q to A as the

challenge ciphertext.
• Suppose cin, cout are generated by LWE i.e. cin = A0

�s + e0 and cout =
U�s + eout. Then from the Encrypt algorithm, we have,

H =
[
A0 Aid∗ t∗1G + B1 · · · t∗dG + Bd

]

=
[
A0 A1 + Hid∗G t∗1G + B1 · · · t∗dG + Bd

]

=
[
A0 A0S∗

1 A0R∗
1 · · · A0R∗

d

]
∈ Z

n×(d+2)m
q ,

(Substituting the value of A1 and Bi).

Then, c∗ =
[
Im S∗

1 R∗
1 · · · R∗

d

]� · (A0
�s + e0) = H�s + e, where e =

[
Im S∗

1 R∗
1 · · · R∗

d

]� · e0. It is easy to see that c∗ is computed as in
Game 2. Also, c∗

out = U�s + eout + �q/2� · µβ . Then ct∗ = (c∗, c∗
out) is a

valid ciphertext of µβ with the tag set {t∗1, t
∗
2, · · · , t∗d}.

• When cin, cout are random in Z
m
q , we have c∗ is random in Z

(d+2)m
q by

standard left-over hash lemma. Also, cout is uniform. So, ct∗ is uniform
in Z

(d+3)m
q , as in Game 3.

– Query Phase 2: As in Game 2.
– Guess: A guesses if it is interacting with a Game 2 or Game 3 challenger. B

outputs A’s guess as the answer to the dLWE challenge it is trying to solve.

Hence, B’s advantage in solving dLWE is the same as A’s advantage in distin-
guishing Game 2 and Game 3, as required. This completes the description of
algorithm B. This completes the proof. �

5 Adaptively Secure Puncturable Identity-Based
Encryption Scheme (Adaptive-PIBE)

5.1 Construction of Adaptive-PIBE

In this section, we present our construction of Adaptive-PIBE. We set the param-
eters as in Sect. 3.2. The proposed Adaptive-PIBE consists of the following algo-
rithms:



586 P. Dutta et al.

SetUp(1λ, d): On input a security parameter λ, the maximum number of tags
d with each ciphertext, do as follows:

1. Generate (A0,TA0) ←− TrapGen(1n, 1m, q), where A0 ← Z
n×m
q , and TA0 ∈

Z
m×m
q , a basis of Λ⊥

q (A0).
2. Choose � + d + 1 uniformly random matrices A1, · · · ,A�,B1, · · · ,Bd,U ∈

Z
n×m
q .

3. Output the public parameter PP = {A0,A1, · · · ,A�,B1, · · · ,Bd,U,G} and
the master secret key msk = {TA0}.

KeyGen(PP,msk, id): On input the public parameter PP , master secret key
msk and the identity id = (b1, · · · , b�) ∈ {1,−1}�, do as follows:

1. Construct Aid = G +
∑�

i=1 biAi ∈ Z
n×m
q .

2. Compute TER
(A0|Aid)

←− ExtendRight(A0,TA0 ,Aid).

3. Compute T(A0|Aid) ←− RandBasis
([

A0 Aid

]
,TER

(A0|Aid)
, σ0

)
, where σ0 =

ω(αF ·
√

log m).
4. Output the initial secret key skid,∅ = T(A0|Aid) ∈ Z

2m×2m
q for id.

Encrypt(PP, id,µ ∈ {0, 1}m, {t1, t2, · · · , td}): On input the public parameter
PP , the identity id = (b1, · · · , b�) ∈ {1,−1}�, message µ ∈ {0, 1}m, and the tags
{t1, t2, · · · , td}, where each ti ∈ Zq, do as follows:

1. Construct Aid = G +
∑�

i=1 biAi.
2. Choose a uniformly random s ← Z

n
q .

3. Choose � + d + 1 uniformly random matrices Si ←− {+1,−1}m×m for i ∈
{1, · · · , �}, and Rj ←− {+1,−1}m×m for j ∈ {1, · · · , d}.

4. Choose error vectors e0, eout ∈ χm.
5. Set H =

[
A0 Aid t1G + B1 · · · tdG + Bd

]
∈ Z

n×(d+2)m
q .

6. Set e =
[
Im Sid R1 · · · Rd

]� · e0, where Sid =
∑�

i=1 biSi.
= (e�

in, e�
id, e

�
1 , · · · , e�

d )� ∈ Z
(d+2)m
q .

7. Compute c = H�s+ e ∈ Z
(d+2)m
q and cout = U�s+ eout + �q/2� ·µ ∈ Z

m
q .

Here, c =
[
cin cid c1 · · · cd

]
∈ Z

(d+2)m
q , where cin = A�

0 s + ein, cid =
A�

ids + eid, and ci = (tiG + Bi)�s + ei for all i ∈ {1, · · · , d}.
8. Output the ciphertext ct = (cin, cid, c1, · · · , cd, cout) ∈ Z

(d+3)m
q with the tag

set {t1, t2, · · · , td} under the identity id.

Puncture(PP, skid,Pη−1 , t̂η): On input the public parameters PP , a punctured
secret key skid,Pη−1 , and a tag t̂η ∈ Zq, do as follows:

1. Evaluate Bft̂η
←− Evalpk({Bi}d

i=1, ft̂η
).

2. Compute TER
id,Pη

←− ExtendRight
([

A0 Aid Bf
t̂1

· · · Bf
t̂η−1

]
,Bft̂η

,Tid,Pη−1

)
.
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3. Compute Tid,Pη
←− RandBasis

([
A0 Aid Bft̂1

· · · Bft̂η−1
Bft̂η

]
,TER

id,Pη
, ση

)
,

where ση = σ0 · (
√

m log m)η. Here, Pη = Pη−1 ∪ {t̂η}.
4. Output the new punctured secret key skid,Pη

= Tid,Pη
∈ Z

(η+2)m×(η+2)m
q

for the identity id.

Decrypt(PP, skid,Pη
, ct, {t1, t2, · · · , td}): On input the public parameters PP ,

the punctured secret key skid,Pη
= Tid,Pη

of the identity id, and a ciphertext ct
with the tag set {t1, t2, · · · , td}, do as follows:

1. For t = (t1, t2, · · · , td), if there exist some j ∈ {1, · · · , η} such that ft̂j
(t) �= 0,

outputs ⊥.
2. Otherwise, sample R ←− SampleD

([
A0 Aid Bft̂1

· · · Bft̂η

]
,Tid,Pη

,U, ση

)
.

3. Evaluate cft̂j
←− Evalct({ti,Bi, ci}d

i=1, ft̂j
) for all j ∈ {1, · · · , η}.

4. Compute (μ1, · · · , μm) = cout − R�c, where c =
[
cin cid cft̂1

· · · cft̂η

]
.

5. For each i, if |μi| < q/4, take μi = 0, otherwise take μi = 1.
6. Output µ = (μ1, · · · , μm). ��

5.2 Correctness and Security

In this section, we analyze the correctness and security of the proposed Adaptive-
PIBE.

Theorem 3 (Correctness). The Adaptive-PIBE scheme is correct if 3�α2
F ·

χmax · (η + 2)2 · m
η
2+1 < q/4.

Proof. To show that the decryption algorithm outputs a correct plaintext, it is
required for Evalct that for ft̂j

= 0, the resulting ciphertext cft̂j
∈ Es,Δ(0,Bft̂j

)
for all j ∈ {1, · · · , η}.

We have, µ = cout − R�c = cout − R�
[
cin cid cft̂1

· · · cft̂η

]
;

[
cin cid cft̂1

· · · cft̂η

]
=

[
A0 Aid Bft̂1

· · · Bft̂η

]�
s +

[
ein eid eft̂1

· · · eft̂η

]
;

[
A0 Aid Bft̂1

· · · Bft̂η

]
· R = U; and ‖R‖2 ,

∥
∥R�∥

∥
2

< (η + 2)mση with over-
whelming probability by Lemma 1.

So, we have, µ =
(
U�s + eout + �q/2� · µ

)
−

(
U�s + R�

[
ein eid eft̂1

· · · eft̂η

])
= �q/2� · µ +

(
eout − R� ·

[
ein eid eft̂1

· · · eft̂η

])
.

To get a correct decryption, the norm of the error term should be less than
q/4 i.e.

∥
∥
∥eout − R� ·

[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ < q/4.

Since, eid = S�
ide0 and ‖S‖ id2 < �

√
m by lemma 1. We have∥

∥
∥
[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ < χmax + χmax · �√m + ηΔ < (ηαF + �

√
m + 1)χmax.

Finally, using ση = σ0 · (
√

m log m)η, σ0 = ω(αF ·
√

log m), we have,∥
∥
∥eout − R� ·

[
ein eid eft̂1

· · · eft̂η

]∥∥
∥ ≤ χmax + (η + 2)mση · (ηαF + �

√
m +

1)χmax ≤ 3�α2
F · χmax · (η + 2)2 · m

η
2+1 with overwhelming probability.
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By choosing the parameters such that, 3�α2
F · χmax · (η + 2)2 · m

η
2+1 < q/4,

the decryption will be correct. �

Theorem 4 (Security). The Adaptive-PIBE scheme is IND-PUN-ID-CPA
secure assuming the hardness of dLWEn,2m,q,χ.

Proof. Due to page limitation, we defer the proof to the full version. �
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Abstract. Fully homomorphic encryption (FHE) allows us to perform
computations directly over encrypted data and can be widely used in
some highly regulated industries. Gentry’s bootstrapping procedure is
used to refresh noisy ciphertexts and is the only way to achieve the goal
of FHE up to now. In this paper, we optimize the LWE-based GSW-
type bootstrapping procedure. Our optimization decreases the lattice
approximation factor for the underlying worst-case lattice assumption
from Õ(N2.5) to Õ(N2), and is time-efficient by a O(λ) factor. Our
scheme can also achieve the best factor in prior works on bootstrap-
ping of standard lattice-based FHE by taking a larger lattice dimension,
which makes our scheme as secure as the standard lattice-based PKE.
Furthermore, in this work we present a technique to perform more opera-
tions per bootstrapping in the LWE-based FHE scheme. Although there
have been studies to evaluate large FHE gates using schemes over ideal
lattices, (i.e. using FHEW or TFHE), we are the first to study how to
perform complex functions homomorphically over standard lattices.

Keywords: Fully homomorphic encryption · GSW-FHE ·
LWE-based · Large FHE gates

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate arbitrary compu-
tations over encrypted data by only using public information. In 2009, Gentry
[20] proposed the first construction for a FHE scheme. A lot of effort has been
made (e.g. [1,5,7–10,13,18,21], etc.) to push FHE toward practicality following
Gentrys blueprint. Among those FHE schemes, there are LWE-based schemes,
e.g. the scheme in [1,5,8,10,21,22]. One advantage of such schemes is the high-
security strength. LWE can be reduced to some worst-case lattice problems on
general lattices (algebraically unstructured lattices), and the research focus of
c© Springer Nature Switzerland AG 2021
J. Baek and S. Ruj (Eds.): ACISP 2021, LNCS 13083, pp. 590–609, 2021.
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this kind of schemes is not only on the efficiency improvement but also on the
security strength of the scheme, that is, the improvement of the approxima-
tion parameters of the underlying worst-case lattice assumption. For example,
in the existing LWE-based schemes, some schemes can achieve the same security
strength as the standard PKE schemes (i.e. the approximate factor can be small
polynomial), e.g. the scheme in [1,10,22]. Meanwhile, RLWE can be reduced to
some worst-case lattice problems on ideal lattices (algebraically structured lat-
tices), and RLWE-based FHE such as [7,12,13,18,19] has been widely studied
because of its advantages in terms of efficiency.

Compared with the Boolean gates, some complex operations (referred to as
large FHE gates) such as the Look Up Table (LUT) function or max/min func-
tions are harder to perform in FHE. In order to efficiently evaluate those large
FHE gates, some special algebraic structures are needed. In the RLWE setting,
the technologies to evaluate large FHE gates is gradually mature [2,4,11,14,15],
but there are no similar technical researches on the LWE-based bootstrapping
scheme. Without a doubt, the LWE-based FHE scheme is difficult to implement
in the real-world (with enormous storage consumption and slow efficiency), and
it is often used as a frontier theoretical research. But the research on LWE-based
FHE scheme is essential, as the researches on LWE-based schemes often stimulate
follow-up research. For example, some LWE-based FHE scheme, like Brakerski
et al.’s schemes [7,8] and Gentry et al.’s scheme [21] are very important works
in the field of FHE. Furthermore, the algebraically unstructured lattice seems
to be essentially different from the structured lattice in quantum computing.
Some recent works [3,16,17] have given a quantum polynomial-time algorithm
for very large but subexponential 2Õ(

√
n) approximations to the worst-case Short-

est Vector Problem on ideal lattices, (in contrast to just slightly subexponential
2O(nloglogn/logn) factors obtainable for algebraically unstructured lattice [23]).
So the motivation of our work is to optimize the LWE-based FHE scheme and
to study how to evaluate large FHE gates in the LWE setting.

Up to now, one of the fastest and simplest LWE-based FHE arose from the
GSW scheme by Gentry, Sahai and Water [21] (referred to as GSW-FHE). Gen-
try, Sahai and Water’s construction avoids the expensive “relinearization” step
in homomorphic multiplication [7,8], which makes the GSW scheme supports
a different class of functions. Brakerski and Vaikuntanathan [10] showed that
the GSW scheme supports branching programs and it is sufficient to bootstrap
the GSW to FHE by using Barringtons theorem. The approximation factor of
Brakerski and Vaikuntanathans FHE decreases from super-polynomial to poly-
nomial (i.e. Õ(N1.5+ε) for ε > 0, but at a great cost in runtime and space),
hence obtained an FHE scheme as secure as the standard lattice-based PKE.
Alperin-Sheriff and Peikert [1] introduced a new method of constructing FHE
that can avoid the costly use of Barrington’s transformation in Brakerski and
Vaikuntanathan’s construction. They found that one can view the decryption as
an arithmetic circuit and the inner product in the decryption can be computed
using a group of cyclic permutations. By this property, Alperin-Sheriff and Peik-
ert constructed a bootstrapping procedure that can refresh ciphertexts faster
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than Brakerski and Vaikuntanathan’s scheme, with a slightly stronger underly-
ing security assumption (the approximate factor is Õ(N3), but a great improve-
ment of the runtime). Hiromasa, Abe and Okamoto [22] presented a technique to
encrypt matrices in GSW encryption and showed how to homomorphically oper-
ate matrices addition and multiplication. They used this technique to optimize
Alperin-Sheriff and Peikert’s bootstrapping scheme. Their optimization scheme
is time and space-efficient and the lattice approximation factor is decreased to
Õ(N2.5). Then the latter works about the GSW-FHE are mainly RLWE-based
schemes, including Ducas and Micciancio’s scheme FHEW [18] and Chillotti et
al.’s scheme TFHE [13,14]. In this paper, we aim to optimize the LWE-based
GSW-type bootstrapping scheme. In terms of safety and efficiency, the opti-
mal LWE-based GSW-FHE scheme is Hiromasa, Abe and Okamoto’s scheme.
Their scheme supports homomorphic matrix multiplication, and this property
can be used to evaluate the linear operation in the homomorphic decryption.
But homomorphic matrix multiplication is not optimal for bootstrapping.

1.1 Our Works

We have two contributions in this work:

– We propose a new homomorphic matrix-vector multiplication operation.
Although the GSW encryption packing technology for matrix [22] and LWE
encryption packing technology for vector [6,28] have been proposed before,
no one has done further researches about the relation of these two encryption
structures. Here we find that these two kinds of encryption can be combined
to construct a homomorphic matrix-vector multiplication operation. We use
this operation to construct the linear operation in the bootstrapping tech-
nique and proposed a new LWE-based GSW-type bootstrapping scheme that
performs better than Hiromasa, Abe and Okamoto’s work in safety and effi-
ciency.

– We are the first to study how to perform more operates per bootstrapping for
the LWE-based bootstrapping scheme. Bootstrapping technology originally
was used for homomorphic decryption [20], but later it was found that boot-
strapping can be used to perform some Boolean gates in the RLWE-based
schems [14,18]. Furthermore, in [2,4,11,14,15], there are works to use the
special structure of the ring to evaluate some complex operations, such as
LUT functions and max/min operations. But there are no similar researches
on LWE-based bootstrapping schemes before, and it is unknown whether
similar functions (i.e. Boolean gates and large FHE gates) can be realized
in the LWE setting. In this work, we give an exact answer. By using the
matrix-vector multiplication and a “cyclic rotation” property of the vector,
our scheme can evaluate Boolean gates and some large FHE gates.

Finally, we propose an LWE-based GSW-type bootstrapping scheme that can
evaluate large FHE gates, at the same time our scheme is secure assuming the
hardness of approximating the standard lattice problem to within the factor
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Õ(Nλ) on any N dimensional lattices. When choosing N = Θ(λ) for 2λ hardness,
this yields an approximation factor of Õ(N2) for the underlying worst-case lattice
assumption. Compared to Hiromasa et al.’s work [22], our scheme decreases the
lattice approximation factor from Õ(N2.5) to Õ(N2), and is time-efficient by a
O(λ). By choosing the dimension to be N = λ1/ε for ε > 0, we obtain a factor as
small as Õ(N1.5+ε/2) (i.e. the same factor as in Brakerski and Vaikuntanathan’s
scheme, but with a much smaller runtime and space). Since the standard lattice-
based public-key encryption can be based on the hardness of approximating
the problem to Õ(N1.5) [29], our bootstrapping scheme can be as secure as the
standard lattice-based PKE.

1.2 Our Techniques

The goal of bootstrapping is to decrypt an LWE ciphertext (a, b) ∈ Z
n+1
q homo-

morphically. There are two processes for decryption. One is the linear operation,
i.e. b−〈a, s〉 ∈ Zq, where s is the secret key (usually sampled from Gauss distri-
bution), the other is the non-linear operation, i.e. the rounding operation �·�2,
which output 1 if the input is close to q/2 and 0 otherwise. For the linear opera-
tion, we need to compute additions in Zq homomorphically. The additive group
Zq is isomorphic to a group of cyclic permutation. For any x in Zq, it corre-
sponds to a cyclic permutation which can be represented by an indicator vector
with 1 in the x + 1-th position. The permutation matrix can be obtained from
the cyclic rotation of the indicator vector, and the addition in Zq leads to the
multiplication of the corresponding permutation matrices. Note that there is an
efficient way to multiply two permutation matrices by multiplying one permu-
tation matrix with the first column of the other matrix, and our first technique
is an efficient method to homomorphically compute the matrix-vector product.
We show that the GSW-type matrix packing ciphertext [22] and the LWE-type
vector packing ciphertext [6,28] can fit together to construct a homomorphic
matrix-vector multiplication.

Homomorphic Matrix-vector Multiplication. We first recall the matrix packing
techniques by Hiromasa, Abe and Okamoto [22] and vector packing techniques
by Peikert et al. [6,28].

– GSW-type Matrix Packing [22]. Given a secret key matrix S ∈ Z
r×N
Q and

a fixed “gadget” matrix G ∈ Z
(N+r)×(N+r)·l
Q where l = �log2 Q�, a matrix

packing GSW encryption for message matrix M ∈ {0, 1}r×r is:

MatGSWS(M) =
(

A
SA + E

)
+

(
0

−MS||M
)

· G ∈ Z
(N+r)×(N+r)·l
Q

where A ∈ Z
N×(N+r)·l
Q is uniformly sampled and E ∈ Z

r×(N+r)·l is a noise

matrix. Let SK = [−S||Ir] ∈ Z
r×(N+r)
Q , where Ir is the r × r identity matrix.

For any C = MatGSWS(M), there is SK · C = E + M · SK · G.
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– LWE-type vector packing [6,28]. Given a secret key matrix S ∈ Z
r×N
Q , for a

message vector m ∈ Z
r
Q, a vector packing LWE encryption:

V ecLWES(m) =
(

a

Sa + e + m

)
∈ Z

N+r
Q

where a ∈ Z
N
Q is uniformly sampled and e ∈ Z

r is a small noise vector. Let

SK = [−S||Ir] ∈ Z
r×(N+r)
Q . For any c = V ecLWES(m), there is SK · c =

e + m.

In this paper we show an operation that combine above two packing tech-
niques. For a given vector c ∈ Z

N+r
q , let G−1(c) be the “decomposition” function

that output an “entries small” vector x ∈ Z
(N+r)l
Q such that Gx ≡ c(mod Q).

For a C = MatGSWS(M0 ∈ {0, 1}r×r) with small noise matrix E, and a
c = V ecLWES(m1 ∈ Z

r
Q) with small noise vector e, by above definitions about

MatGSW encryption and VecLWE encryption, a ciphertext cmult = C ·G−1(c)
satisfies

SK · cmult = SK · C · G−1(c)

= (E + M0 · SK · G) · G−1(c)

= E · G−1(c) + M0 · SK · c
= (E · G−1(c) + M0 · e) + M0 · m1

where (E · G−1(c) + M0 · e) is small, and this means that the cmult is a
VecLWE encryption of message vector M0 · m1 ∈ Z

r
Q. Therefore we have a

homomorphic matrix-vector multiplication operation:

MatGSW (M0) × V ecLWE(m1) → V ecLWE(M0 · m1). (1)

We will use operation (1) to construct our bootstrapping procedure, which
speeds up the homomorphic matrix multiplication by a factor (N + r) · l com-
pared with using the operation (a homomorphic matrix-matrix multiplication
operation) in scheme [22].

Computing non-linear function. Our second technique is a new way to homo-
morphically compute the non-linear function. In previous work [1,22], one can
compute the rounding function by summing the entries of the indicator vector
corresponding to those values in Zq. In this work we compute the non-linear
function in a completely different way.

Our work is inspired by the calculation of nonlinear operation in FHEW and
TFHE scheme. In their schemes, the underly ring is Rq = Zq[X]/〈XN + 1〉,
where N is a power of 2. First, notice that the roots of unity 〈X〉 =
{1,X, . . . ,XN−1,−1, . . . , −XN−1} form a cyclic group, and when setting
q = 2N , the message space Zq 
 〈X〉. So to evaluate a non-linear function
F : Zq → Zt, one can initialize a polynomial acc = Δ · (F (b)+F (b− 1)X + . . .+
F (b − N + 1) · XN−1), where Δ is an encoding constant. To compute the linear
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operation, for a sample example, to compute F (b+2), one can homomorphically
compute

acc · X2 =Δ · (F (b) · X2 + F (b − 1) · X3 + . . . + F (b − N + 1) · XN+1)

=Δ · (−F (b − N + 2) − F (b − N + 1) · X + F (b) · X2

+ . . . + F (b − N + 3) · XN−1)

(X2 is encrypted, so this step is executed homomorphically). Then if F satisfy
F (x+N) = −F (x), i.e. a negacyclic property, one can derive the first coefficient
to obtain result F (b + 2) in their schemes.

We found there are similar property in the LWE setting. In our scheme, note
that in operation (1), if M0 is a cyclic permutation matrix, M0 ·m1 is a “cyclic
rotation” of m1, so we can set m1 as a special vector and use the rotation
property to compute the non-linear function. More detailed, we initialize m1 to
be

m1 := Δ · (F ([b]q), F ([b − 1]q), . . . , F ([b − q + 1]q))

where F is a known function and Δ is an encoding constant. Assume that M0 is
the permutation corresponds to φ(−ai · si) ∈ Sq where −ai · si ∈ Zq and φ is the
isomorphism of an element in Zq into the cyclic permutation (see Sect. 2.3 for
a better understanding of φ), then after operation (1), the result is a VecLWE
ciphertext that encrypts

M0 · m1 = Δ · (F ([b − ai · si]q), . . . , F ([b − q + 1 − ai · si]q)).

Then for every i ∈ {1, . . . , n}, by iteratively computing operation (1) for every
permutation matrix corresponding to −ai · si, we can obtain an LWE ciphertext
that decrypts to the message F ([b − 〈a, s〉]q), which is a decryption for (a, b)
when we set F as the rounding function (this LWE ciphertext can be extracted
from the first LWE element of the final VecLWE ciphertext).

Note that the function that can be evaluated in our scheme didn’t need to
be “negacyclic” (i.e. F (x + N) = −F (x)), so we can set F := func ◦ f where
f : Zq → Zt is the rounding function (f is �·�2 when t = 2) and func : Zt → Zh

is an arbitrarily given function to evaluate large FHE gates. Except for some
Boolean gates, our scheme can also be able to evaluate LUT function, max/min
function and comparison1.

1.3 Related Works

Some studies focus on evaluating large FHE gates in the existed works. In 2015,
Biasse and Song [2] studied how to evaluate arbitrary gates for only one call to

1 The correctness can be verified at https://github.com/LiuChaoCrypto/MatGSW
scheme. This implementation can perform decryption and some Boolean gates homo-
morphically. Because of the huge storage and time consumption of the LWE-based
FHE, we use a very small parameter to verify the correctness, and it is only for the
correctness verification, but not for the performance testing.

https://github.com/LiuChaoCrypto/MatGSWscheme
https://github.com/LiuChaoCrypto/MatGSWscheme
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the bootstrapping procedure. Their technique is to set a special test function for
a given arbitrary function in the original FHEW scheme [18], and this allows
the evaluation of more general gates involving several inputs and outputs (e.g.
the full adder gate). A Look Up Table (LUT) is an array that replaces runtime
computation with a simpler array indexing operation. Chillotti et al. [14] applied
a special packing technique to construct the CMux tree for the LUT function,
and they also constructed a weighted automata to evaluate arithmetic opera-
tions such as max function and multiplication. Bonnoron et al. [4] improved
the FHEW scheme [18] and introduced to perform the linear-step in a CRT
fashion to evaluate large FHE gates. Thanks to the special structure of ring
Z[x]/〈XN − 1〉, the function func be bootstrapped in Bonnoron et al.’s scheme
can also be arbitrary. Carpov et al. [11] optimized the TFHE scheme [13] and
showed how to homomorphically perform operations on multi-value inputs. Car-
pov et al.’s strategy is to set a special test polynomial in the TFHE scheme for a
given operation like LUT, so this strategy is also different from the method in our
scheme. In [15], Chillotti et al. presented a new technique called programmable
bootstrapping, which enables the homomorphic evaluation of any function of
a ciphertext. Compared with Carpov et al.’s work, Chillotti et al. encoded a
LUT function in a test polynomial in a different way. The above existed works
rely heavily on the ring structure in the RLWE-based scheme, but for the LWE
setting, there are no works before.

1.4 Organization

In Sect. 2, we describe some preliminaries about subgaussian distribution and the
symmetric groups. In Sect. 3, we present the matrix/vector packing techniques
and then describe how to homomorphically operate matrix-vector multiplication.
We present our optimized FHE scheme in Sect. 4, and then give the analysis of
our scheme. For the specific techniques to evaluate large FHE gates and some
other details, please see the full version of this paper [24].

2 Preliminaries

Let [N ] = {1, . . . , N}, where N is a nonnegative integer. We denote ZQ =
Z/QZ as the quotient ring of integers modulo Q, and (ZQ,+) its additive group.
Sometimes we write x mod Q as [x]Q.

In this paper, we assume that vectors are in lower-case letters and matri-
ces are in bold capital letters, unless otherwise noted. Usually, We assume that
the vector v = (v1, v2, . . . , vN ) is in column form, and denote its transpose as
vT = [v1, v2, . . . , vN ]. For vectors (matrices) m1,m2, . . . ,mN , we denote the
horizon concatenation of those vectors as M = [m1,m2, . . . ,mN ], and the ver-
tical concatenation as MT = (mT

1 ,mT
2 , . . . ,mT

N ). We denote the l2 norm of
vector v by ||v||2 and the l∞ by ||v||∞. We denote IN as the N × N identity

matrix. Suppose χ is a probability distribution, x
$←− χ means the sampling of x

according to χ, and x
$←− U(ZQ) means that sample x from ZQ uniformly.
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2.1 Learning with Errors

The learning with errors (LWE) assumption was introduced by Regev [29], and
we state its definition (decision version) in the following:

Definition 1 (DLWE). For a security parameter λ, let N = N(λ) be an integer
dimension, Q = Q(λ) ≥ 2 be an integer modulus, and χ = χ(λ) be an error
distribution over Z. Given two distribution: In the first distribution, one draws
s

$←− U(ZN
Q ), samples a

$←− U(ZN
Q ) and ei

$←− χ, then a tuple (ai, bi) is sampled,
where bi = 〈ai, s〉+ei. In the second distribution, one samples (ai, bi) uniformly
from Z

N+1
Q . The DLWEN,Q,χ problem is to distinguish those two distribution,

and the DLWEN,Q,χ assumption is that DLWEN,Q,χ problem is infeasible.

Given a lattice dimension parameter N and a number b, the GapSVPγ

problem is that to distinguish whether a N -dimensional lattice has a vector
shorter than b or no vector shorter than γ(N) · b. The SIVPγ problem is to find
the set of short linearly independent vectors in a lattice.

The DLWEN,Q,χ problem has reductions to standard lattice assumptions as
follows. The reductions take χ as a discrete Gaussian distribution DZ,αQ, which
is centered around 0 and has parameter αQ for some α < 1.

Theorem 1. ([25–27,29]). Let Q = Q(N) ≥ 2 be a power of prime Q = pr or a
product of distinct prime numbers Q = Πiqi(qi = poly(N)), and let α ≥ √

N/Q.
If there exists an efficient algorithm that solves (average-case) DLWEN,Q,DZ,αQ

,
then:

– there exists an efficient quantum algorithm that can solve GapSVPÕ(N/α)

and SIVPÕ(N/α) in the worst-case for any N -dimensional lattices.
– if Q ≥ Õ(2N/2), there exists an efficient classical algorithm that can solve

GapSVPÕ(N/α) in the worst-case for any N -dimensional lattices.

2.2 Subgaussian Random Variables

A real random variable X is subgaussian with parameter s if for all x ∈ R, its
(scaled) moment-generating function satisfies E[exp(2πxX)] ≤ exp(πs2x2). Any
B-bounded centered random variable X is subgaussian with parameter B ·√2π.

There are two useful properties for subgaussian random variables:

– Homogeneity: if X is subgaussian with parameter s, then t ·X is subgaussian
with parameter t · s.

– Pythagorean additivity: if X1 is subgaussian with parameter s1, and X2 is
subgaussian with parameter s2, then X1 + X2 is subgaussian with parameter√

s21 + s22.

For a real random vector v, we say it is subgaussian with parameter s if for all
real unit vectors u, their marginal 〈u,v〉 is subgaussian with parameter s. If one
vector is the concatenation of subgaussian variables or vectors, each of which has
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a parameter s and is independent of the prior one, then it is also subgaussian
with parameter s. The two properties homogeneity and Pythagorean additivity
also hold from the linearity of vectors. There is also a useful lemma for the
Euclidean norm of the subgaussian random vector.

Lemma 1 ([30]). Let v ∈ R
N be a random vector with independent coordinates

which are subgaussian with parameter s. Then we have Pr[||v||2 > C · s
√

N ] ≤
2−Ω(N) where C is some universal constant.

Alperin-Sheriff and Peikert [1] introduced to apply the randomized “decom-
position” function G−1 instead of the decomposition procedure and we make
a sample description here. For a module Q, let g = (1, 2, . . . , 2l−1) where l =
�log2Q�, and G = gT ⊗ IN is the block matrix with N copies of (1, 2, . . . , 2l−1)T

as diagonal blocks, and zeros elsewhere. Define a randomized “decomposition”
function g−1 : ZQ → Z

l
2 for c ∈ ZQ such that g−1(c) is subgaussian with param-

eter O(1) and 〈g−1(c), g〉 = c. Note that for c =
∑

i∈[l] ci2i−1, g−1(c) can be
(c1, . . . , cl). Similarly, for vectors and matrices, we can by applying g indepen-
dently to each entry and define the randomized function G−1 : Z

N×m
Q → Z

N ·l×m
2

such that G · G−1(A) = A where A ∈ Z
N×m
Q .

Lemma 2 ([1]). There is a randomized efficiently computable function G−1 :
Z

N
Q → Z

N ·�log Q�
2 such that for any v ∈ Z

N
Q , x ← G−1(v) is subgaussian with

parameter O(1) and Gx = v.

2.3 Symmetric Groups and Zq -Embeddings

Alperin-Sheriff and Peikert [1] observed that the additive group Zq can embed
(i.e., has an injective homomorphism) into the symmetric group Sq, and they use
this property to introduce their efficient bootstrapping algorithm. We describe
this property here. Denote Sq as the symmetric group of order q, i.e., the group
of permutations (bijections) π : {1, . . . , q} → {1, . . . , q} with function compo-
sition as the group operation. By the injective homomorphism that sends the
generator 1 ∈ Zq to the “cyclic shift” permutation π in Sq, where π(i) = i + 1
for 0 < i < q and π(q) = 1, the additive cyclic group (Zq,+) can embed into the
symmetric group Sq. Besides, for the multiplicative group of q-by-q permutation
matrix, there is a map that associates the element π in Sq with the permutation
matrix Pπ = [uπ(1), . . . ,uπ(q)], where ui is the i-th standard basis vector, and
this means that Sq is isomorphic to the multiplicative group of q-by-q permuta-
tion matrices. In the final, the addition in Zq leads to the multiplication of the
corresponding permutation matrices.

3 Homomorphic Matrix-Vector Multiplication

In this section, we give some definitions for LWE encryption and the vec-
tor/matrix packing encryption. Then we introduce the homomorphic matrix-
vector multiplication which will be used in our bootstrapping scheme.
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3.1 Definitions

We give definitions for LWE, VecLWE and MatGSW encryptions.

– LWE type encryption [29]. Define LWEs(m) = (a, [〈a, s〉 + e + m]Q) ∈
Z

N+1
Q as an LWE encryption of a message encoding m = Δ · m̃ ∈ ZQ under

key s ∈ Z
N
Q , where explicit random vector a

$←− U(ZN
Q ), error e

$←− χ, Δ =
�Q/t� and m̃ ∈ Zt. When we want to emphasize the error term we write
LWEs(m; e).

– VecLWE type encryption [6,28]. Define V ecLWES(m) = (a, b) ∈ Z
N+r
Q

as a VecLWE encryption of a message m = (m1, . . . , mr) = Δ·(m̃1, · · · , m̃r) ∈
Z

r
Q under key S ∈ Z

r×N
Q , where a

$←− U(ZN
Q ), b = [Sa + e + m]Q =

(b1, b2, . . . , br) ∈ Z
r
Q, the small noise vector term e

$←− χr, Δ = �Q
t � and

(m̃1, . . . , m̃r) ∈ Z
r
t . When we want to emphasize the error term we write

V ecLWES(m;e).
– MatGSW type encryption [22]. Define

MatGSWS(M) =
[(

A
SA + E

)
+

(
0

−MS||M
)

· G
]

Q

∈ Z
(N+r)×(N+r)·l
Q

as a MatGSW encryption of message matrix M ∈ {0, 1}r×r under key S ∈
Z

r×N
Q , where l = �log2Q�, A $←− U(ZN×(N+r)·l

Q ), small noise matrix E $←−
χr×(N+r)·l and G = gT ⊗ IN+r ∈ Z

(N+r)×(N+r)·l
Q . Since this is an encryption

of secret key information, the security of this scheme is based on the circular
security [20,22] of the LWE encryption. When we want to emphasize the
error term we write MatGSWS(M;E).

3.2 Operations

We first show the general homomorphic matrix-vector multiplication by a lemma.
Then we give a special homomorphic matrix-vector multiplication when the
matrix is a cyclic permutation matrix (described in Sect. 2.3).

Our general homomorphic matrix-vector multiplication is stated by the fol-
lowing lemma.

Lemma 3. For any C = MatGSWS(M0 ∈ {0, 1}r×r;E) ∈ Z
(N+r)×(N+r)·l
Q and

any (a, b) = V ecLWES(m1 ∈ Z
r
Q;ve) ∈ Z

N+r
Q , if ei is the i-th row of E, the

computation result of operation

(�) : MatGSW × V ecLWE → V ecLWE

(C, (a, b)) �→ C � (a, b) = [C · G−1(a, b)]Q
(2)

is a VecLWE encryption of message [M0 · m1]Q ∈ Z
r
Q with small noise vector

e = (e1, . . . , er), where ei is subgaussian with parameter O(
√

||ei||22 + ||ve||22).
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To proof the correctness of Lemma 3, we first introduce a new type encryp-
tion. Define

̂MatLWES(M) =
[(

A
SA + E

)
+

(
0
M

)
· G

]
Q

∈ Z
(N+r)×v·l
Q

as a ̂MatLWE encryption of M ∈ Z
r×v
Q under key S ∈ Z

r×N
Q , where l = �log2Q�,

A $←− U(ZN×v·l
Q ), small noise matrix E $←− χr×v·l and G = gT ⊗ Iv ∈ Z

v×vl
Q .

For MatGSW and ̂MatLWE, we have MatGSWS(M)= ̂MatLWES

([−MS,M]). In order to simplify the proof of Lemma 3, we introduce the fol-
lowing lemma for the ̂MatLWE encryption.

Lemma 4. For any C = ̂MatLWES(M ∈ Z
r×v
Q ;E) ∈ Z

(N+r)×v·l
Q and d ∈ Z

v
Q,

if ei is the i-th row of E, the computation result of operation

̂MatLWES(M) � d = [C · G−1(d)]Q, (3)

is a VecLWE encryption of message [M · d]Q ∈ Z
r
Q with small noise vector

e = (e1, . . . , er), where ei is subgaussian with parameter O(||ei||2).
Proof. Let x = G−1(d) ∈ Z

v·l
2 , and assume C = [(A,B) + (0,M) · G]Q where

B = SA + E, then one can compute

̂MatLWES(M) � d =[((A,B) + (0,M) · G) · x]Q
=[(A,SA + E) · x + (0,M · d)]Q
=[(Ax,S · Ax + Ex + M · d)]Q.

Since x is the subgaussian with parameter O(1), Ex is a small vector. So the
final result is a VecLWE encryption [(a,S·a+e+m)]Q ∈ Z

N+r
Q where a = A·x,

e = E · x and m = M · d.
Assume e = (e1, . . . , er), then there is ei = 〈ei,x〉 where ei is the i-th row

of E. By the Pythagorean additivity, the error ei = 〈ei,x〉 is subgaussian with
parameter O(||ei||2) ��

Specially, in operation (2), when M0 is a permutation matrix for a cyclic
permutation π ∈ Sr, i.e. M0 = [uπ(1),uπ(2), . . . ,uπ(r)] ∈ {0, 1}r×r, where ui is
the i-th standard basis vector, we have lemma:

Lemma 5. For any C = MatGSWS(M0;E) ∈ Z
(N+r)×(N+r)·l
Q where the mes-

sage matrix is a permutation matrix M0 ∈ {0, 1}r×r for a cyclic permuta-
tion π ∈ Sr, and any (a, b) = V ecLWES(m1 ∈ Z

r
q;ve) ∈ Z

N+r
Q where

ve = (ve1, . . . , ver), if ei is the i-th row of E, the computation result of operation

C � (a, b) = [C · G−1(a, b)]Q

is a VecLWE encryption of message [M0 · m1]Q ∈ Z
r
Q with small

noise vector e = (e1, . . . , er), where ei is subgaussian with parameter
O(

√
||ei||22 + ve2π(r−2+i)).
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Proof. The proof of Lemma 5 is similar with Lemma 3. The only different in
this case is that M0 · ve is a cyclic permutation of ve, i.e. a “cyclic rotation”
vector of ve. We can rewrite

M0 = [uπ(1),uπ(2), . . . ,uπ(r)] = (uT
π(r−1),u

T
π(r), . . . ,u

T
π(r−2)) ∈ {0, 1}r×r

where ui is the i-th standard basis vector. Then the i-th element of M0 · ve
is vei = 〈uπ(r−2+i),ve〉 = veπ(r−2+i). So the i-th element of the total error is

subgaussian with parameter O(
√

||ei||22 + ve2π(r−2+i)). ��

In scheme [22], Hiromasa et al. presented a homomorphic matrix-matrix mul-
tiplication and used that operation to construct the bootstrapping scheme, and
in the following section we show how to use homomorphic matrix-vector multi-
plication to construct the bootstrapping procedure.

4 Our Bootstrapping Procedure

We describe our bootstrapping procedure in this section. In the first part, we
present some background about bootstrapping. We give the details of our boot-
strapping scheme in the second part. In the final, we analyze our scheme.

4.1 Bootstrapping

The goal of bootstrapping is to decrypt a ciphertext homomorphically. An LWE
ciphertext (a, b) ∈ Z

n+1
q under key s ∈ Z

n
q is decrypted. by computing

m̃ = LWE−1
s (a, b) = f([b − 〈a, s〉]q) = [� t

q
· [b − 〈a, s〉]q�]t.

A new ciphertext with smaller noise can be obtained by homomorphically
decrypting a ciphertext with large noise. Since there needs the information of
secret key s to decrypt the ciphertext, a bootstrapping key Enc(s) needs to be
generated using an encryption Enc(). In the final, the noise of the output cipher-
text depends on the noise of Enc(s), but not on the noise of the ciphertext (a, b).
In our scheme, such a scheme Enc() is the MatGSW encryption.

There are two processes for homomorphic decryption. One is linear operation,
i.e. b − 〈a, s〉 = b − ∑

i aisi, the other is non-linear operation, i.e. the rounding
operation f : Zq → Zt. For the linear operation, as mentioned before in Sect. 2.3,
the addition in Zq leads to the multiplication of the corresponding permutation
matrices. Since we can multiply two permutation matrices by multiplying one
permutation matrix with the first column of the other matrix, the linear opera-
tion can be computed by iteratively operating the homomorphic matrix-vector
multiplication described by Lemma 5. For the non-linear operation, it is auto-
matically executed by the “cyclic rotation” property of the message vector as
described in Sect. 1.2. Actually, we can further evaluate a known arbitrary func-
tion (mapping) func : Zt → Zh on m̃ ∈ Zt, so in generally, we can define
F = func ◦ f as the final non-linear step.
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So the bootstrapping procedure includes two steps:

– BootKeyGen(SK, s): takes as input a secret key SK for MatGSW encryp-
tion, and a secret key vector s ∈ Z

n
q of the ciphertext to be bootstrapped. It

outputs a bootstrapping key BootKey that appropriately encrypts s under
SK.

– Bootstrap(BootKey, c): takes as input the bootstrapping key BootKey
and a ciphertext vector c = (a, b) ∈ Z

n+1
q , which is decrypted to m̃ ∈ Zt

under key s. It outputs an LWE ciphertext which decrypts to F (m̃) ∈ Zh

under key sk1 (with a smaller noise), where sk1 is the first row of SK.

For the ciphertext (a, b = 〈a, s〉 + e + Δ · m̃), where a = (a1, . . . , an) and
s = (s1, . . . , sn), let ai =

∑
k∈[w] ai,k2k−1, w = �log2q� and ai,k ∈ {0, 1} is an

integer. To decrypt the ciphertext, the linear term b − 〈a, s〉 can be write as
b − ∑

i∈[n] aisi = b − ∑
i∈[n](

∑
k∈[w] ai,k2k−1si). So in the bootstrapping key

generation algorithm, the secret key information [2k−1si]q will be embedded
into a matrix Mφ([2k−1si]q) ∈ {0, 1}q×q and then encrypted into a MatGSW
ciphertexts. By the relationship between (Zq,+) and matrix in Sect. 2.3, addi-
tion operations −∑

i∈[n](
∑

k∈[w] ai,k2k−1si) can be computed using the homo-
morphic matrix-vector multiplication, i.e. the operation given in Lemma 5. So
we only need to initialize a VecLWE ciphertext, and then iteratively operate the
homomorphic matrix-vector multiplication on the VecLWE ciphertext result.

4.2 Procedures

In our scheme, Q is a module and l = �log2Q�. N is the dimension of the
explicit random vector of the MatGSW encryption and the message dimension
is q × q, i.e., a ciphertext MatGSW ∈ Z

(N+q)×(N+q)·l
Q . Let w = �log2q� and

φ : Zq → Sq be the isomorphism of an element in Zq into the cyclic permutation
that corresponds to this element. We follows a procedure structure of RLWE-
based scheme FHEW [18] and TFHE [13], i.e., a bootstrapping scheme includes
two algorithms: BootKeyGen and Bootstrap; and in Bootstrap there are
three steps: in Initialize, b is set into a message vector m; in Increment, the
linear operation b − 〈a, s〉 is executed; in the final step, an LWE ciphertext is
derived.

– BootKeyGen(SK, s): given the secret key s ∈ Z
n
q for ciphertext to be boot-

srapped and a secret key SK ∈ Z
q×N
Q for MatGSW encryption, outputs a

bootstrapping key.
For every i ∈ [n], k ∈ [w], let Mφ([2k−1si]q) ∈ {0, 1}q×q be the matrix corre-
sponding to φ([2k−1si]q), and compute

BKi,k = MatGSWSK(Mφ([2k−1si]q)) ∈ Z
(N+q)×(N+q)·l
Q .

Let BootKey = {BKi,k}i∈[n],k∈[w] and return BootKey.
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– Bootstrap(BootKey, c): given a ciphertext c = (a, b) ∈ Z
n+1
q and a boot-

strapping key BootKey, outputs the refreshed LWE ciphertext c′ ∈ Z
N+1
Q .

• Initialize: For every i ∈ [q], set

mi = Δ′ · F ([b − i + 1]q) = Δ′ · func(f([b − i + 1]q)) ∈ ZQ

where f : Zq → Zt is the rounding function, func : Zt → Zh is a known
arbitrary function and Δ′ = �Q

h �. Set acc := (0,m) ∈ Z
N+q
Q where

m = (m1, . . . , mq).
• Increment: For every i ∈ [n] and k ∈ [w], let a′

i = −ai mod q and
set zi,k = � a′

i

2k−1 � mod 2. Then for every i ∈ [n], k ∈ [w], if zi,k > 0,
iteratively compute

acc ← BKi,k � acc.

• Extract: If the final ciphertext is acc = (a′, b′ = (b′
1, . . . , b

′
q)), return

(a′, b′
1).

For the final ciphertext, one can use Module-Switch to reduce the module
from Q back to q and use Key-Switch to turn the output into an LWE encryption
under s [7,8]. Then one can perform additional operations on this ciphertext.

4.3 Correctness

For the correctness of our procedure, we have the following lemma.

Lemma 6 (Correctness). Let SK be the secret key for our scheme and sk1

be the first row of SK. Let c and s be a ciphertext and secret key described
in our scheme. Assume c decrypts to m̃ ∈ Zt under key s. For BootKey ←
BootKeyGen(SK, s), the refreshed ciphertext c′ ← Bootstrap(BootKey, c)
decrypts to func(m̃) ∈ Zh under secret key sk1, where func : Zt → Zh is a
known arbitrary function.

Proof. Note that (0,m) ∈ Z
N+q
Q can be seen as a VecLWE encryption of message

m under key SK, i.e., (0,m = SK · 0 + m) = V ecLWESK(m;0). In addition,
BKi,k is a MatGSW encryption of Mφ([2k−1si]q). By Lemma 5, acc ← BKi,k �
V ecLWESK(m) is a VecLWE encryption of message Mφ([2k−1si]q) ·m. Then in
our scheme, by iteratively computing acc ← BKi,k � acc for every i ∈ [n] and
k ∈ [w], the final VecLWE ciphertext acc encrypts message vector

Mφ([zn,w2w−1sn]q) · (· · · (Mφ([z1,120s1]q) · m)). (4)

Besides, if Mφ(p) ∈ {0, 1}q×q is the permutation matrix corresponding to
φ(p), for vector m = Δ′ · (F ([b]q), F ([b − 1]q), . . . , F ([b − q + 1]q)) which is the
message vector in the Initialize step, we have that

Mφ(p) · m = Δ′ · (F [b + p]q), . . . , F ([b − q + 1 + p]q)). (5)
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So applies Eq. (5) for the vector (4), the final ciphertext acc is a VecLWE
encryption of message vector

m =Mφ([zn,w2w−1sn]q) · (· · · (Mφ([z1,120s1]q) · m))

=Δ′ · (F ([b +
∑

i∈[n],k∈[w]

zi,k2k−1si]q), . . . , F ([b − q + 1 +
∑

i∈[n],k∈[w]

zi,k2k−1si]q))

=Δ′ · (F ([b − 〈a, s〉]q), . . . , F ([b − q + 1 − 〈a, s〉]q)).
Assume the final ciphertext is acc = (a′, b′ = (b′

1, . . . , b
′
q)), then the returned

ciphertext (a′, b′
1) is an LWE encryption of message encoding

Δ′ · F ([b − 〈a, s〉]q) = Δ′ · func(f([b − 〈a, s〉]q)) = Δ′ · func(m̃),

e.g., (a′, b′
1 = 〈a′, sk1〉+e+Δ′ ·func(m̃)), where sk1 is the first row of secret SK

and e is the error. Hence the refreshed ciphertext c′ decrypts to func(m̃) ∈ Zh

under secret key sk1. ��
We further quantify the error in the ciphertext output by Bootstrap. We

assume the error distribution χ over Z of MatGSW in our scheme is subgaussian
with parameter s.

Lemma 7. For any c ∈ Z
n+1
q , the error of the refreshed ciphertext c′ ←

Bootst- rap(BootKey, c) is subgaussian with parameter O(s
√

(N + q) · nwl),
except with probability 2−Ω((N+q)·nwl) over the random choices of BootKey and
Bootstrap.

Proof. In our scheme, acc is initialized to be a VecLWE ciphertext (0,m) with

noise vector 0. Then if the noise matrix of BKi,k is Ei,k
$←− χq×(N+q)·l and

ei,k,j ∈ Z
(N+q)·l is the j-th row of Ei,k, by Lemma 5, the ciphertext after oper-

ation BKi,k � acc = BKi,k � (0,m) has a noise vector e′ = (e′
1, . . . , e

′
q) ∈ Z

q,
where e′

j is subgaussian with parameter O(||ei,k,j ||2) (note that the noise vector
of (0,m) is 0).

Then by iteratively computing acc ← BKi,k � acc for every i ∈ [n] and
k ∈ [w], for the noise vector (e1, . . . , eq) of the final VecLWE ciphertext, its entry

ej is subgaussian with parameter
√∑

i∈[n],k∈[w] ||ei,k,ci,k,j
||22 by Pythagorean

additivity and Lemma 5, where j ∈ [q] and ei,k,ci,k,j
is the ci,k,j-th row of Ei,k

(here the value of ci,k,j depends on the the permutation φ([2k−1si]q) and j by
Lemma 5). More concisely, let

erj = (e1,1,c1,1,j
, . . . ,ei,k,ci,k,j

, . . . ,en,w,cn,k,j
) ∈ Z

(N+q)·nwl

to be the concatenation of the individual noise vectors ei,k,ci,k,j
, then the final

result acc has a noise vector (e1, . . . , eq) whose entry ej is subgaussian with
parameter O(||erj ||2).

By Lemma 1, the l2 norm of erj is within O(s
√

(N + q) · nwl) except with
probability 2−Ω((N+q)·nwl), which means that the final ciphertext error is sub-
gaussian with parameter O(||er1||2) = O(s

√
(N + q) · nwl), except with proba-

bility 2−Ω((N+q)·nwl). ��
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By above lemma, we can see that the error growth factor is
O(

√
(N + q) · nwl). By setting the modulus such that Δ′/2 is larger than the

final noise, we can evaluate a function func◦LWE−1
s () on the ciphertext c, where

func is a known arbitrary function (mapping) and LWE−1
s () is the decryption

function.

4.4 Determining the Function func

Note that by Lemma 6, using an LWE ciphertext c which decrypts to a message
m̃ ∈ Zt, we can evaluate a known function func : Zt → Zh on m̃. So for a certain
gate, like Boolean gates, LUT function, max/min function or comparison, we just
need to make clear func : Zt → Zh. Note that similar functions has studied in
related works [4,11,15,18], so the related technology is the promotion of their
works. For more details about this part, see [24].

4.5 Security

Given a security parameter λ, we analyze the security of our scheme. Firstly, it
is easy to see that our bootstrapping procedure can be secure under the security
of the DLWE assumption and circular security. Recall that for the MatGSW
encryption ciphertext, MatGSWSK(M ∈ {0, 1}q×q) ∈ Z

(N+q)×(N+q)·l
Q where

l = �log2Q�, and the error distribution χ over Z is subgaussian with parameter
s. For the LWE ciphertext c ∈ Z

n+1
q to be bootstrapped, by [8], we can set

q = Õ(λ) and d = n · w = Õ(λ), where w = �log2q�. For the output message
space parameter h, we set h = O(1) (this parameter can be set larger at the
expense of security strength).

Theorem 2. Our bootstrapping scheme can be instantiated to be correct
and secure assuming the quantum worst-case hardness of approximating
GapSVPÕ(Nλ) and SIVPÕ(Nλ), or the classical worst-case hardness of approx-
imating GapSV- PÕ(N1.5λ) on any N dimensional lattice.

Proof. To rely on the quantum worst-case hardness of LWE, we need to set s =
Θ(

√
N) by [29]. If we choose N < q, by Lemma 7, for the correct of the scheme

we need to take a large Q = Ω̃(λ
√

N log Q), and some Q = Õ(λ
√

N) suffices.
Therefore the LWE inverse error rate is 1/α = Q/s = Õ(λ), and by Theorem 1
the security of our scheme is reduced to GapSVPÕ(Nλ) and SIVPÕ(Nλ). For the
classical security, recall that Q = Ω̃(λ

√
NlogQ), and we need to set Q = 2N/2,

then the inverse error rate is 1/α = Q/s = Õ(λ
√

N). So by Theorem 1 the
security of our scheme is reduced to the classical hardness of GapSVPÕ(N1.5λ).

��
For poly(N)-factor approximations to GapSVP and SIVP on N -

dimensional lattices, it take 2Ω(N) times for all known algorithms. We need
to choose N = Θ(λ) for 2λ hardness, and this yields a approximation factor of
Õ(N2) in the quantum case and Õ(N2.5) in the classical case. Those approxi-
mation factor are smaller than the result given by Hiromasa, Abe and Okamoto
[22], which are Õ(N2.5) in the quantum case and Õ(N3) in the classical case.
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At the expense of efficiency, we can further set N > q to optimize the approx-
imation factor. In the case N > q, by Lemma 7, for the correctness of the
scheme we need to select Q = Ω̃(N

√
λlogQ); some Q = Õ(N

√
λ) suffices. Sim-

ilar with above analysis, for any const ε > 0, by choosing the dimension to be
N = λ1/ε, we obtain a factor as small as Õ(N1.5+ε/2) in the quantum case, and
Õ(N2+ε/2) in the classical case. Note that this result achieves the best factor in
prior works on bootstrapping of standard lattice-based FHE, i.e. Brakerski and
Vaikuntanathan’s work [10]. Since the standard lattice-based public-key encryp-
tion can be based on the hardness of approximating the problem to Õ(N1.5)
using the quantum reduction [29] and Õ(N2) using the classical reduction [27],
our bootstrapping scheme can be as secure as the standard lattice-based PKE.

4.6 Time and Space Complexity

For the time and space complexity, let d = nw, then the time complexity of our
scheme is O(dl ·(N +q)2) and the space complexity for the bootstrapping keys is
about dl2 · (N + q)2. We can make a comparison with the bootstrapping scheme
of Hiromasa, Abe and Okamoto [22]. The time complexity of their scheme is
about O(tl2 · (d + q)(N + r)3) and the space complexity for the bootstrapping
keys is about (3td + qt + 1)l2 · (N + r)2, where parameters N, q, l, d is same with
our scheme, and t = O(log λ/ log log λ), r = O(log λ) are parameters for the Chi-
nese Reminder Theorem. When setting q = Õ(λ), d = Õ(λ) (by [9]), N = Θ(λ),
Q = Õ(λ

√
N) for our scheme and Q = Õ(λN) for Hiromasa, Abe and Okamoto’s

scheme, our scheme is time-efficient by about a O(λ log Q/ log λ log log λ) = O(λ)
factor and a slightly space growth with a factor O(log λ log log λ). For a stronger
assumption parameter N = Õ(λ), our scheme is time-efficient by about a Õ(λ)
factor and space-reduced by a O(t) = O(log λ/ log log λ) factor. A detailed com-
parison for N = Θ(λ) is given in Table 1.

Table 1. Comparison among LWE-based GSW-type bootstrapping schemes, including
Alperin-Sheriff and Peikert’s work [1], Hiromasa, Abe and Okamoto’s work [22] and
this work. For the parameters N, q, l, t, d, Q, see Sect. 4.6. λ is the security parameter.
Here N is set to be Θ(λ). In the “Approximation Factor” column, it is the lattice
approximation factor in the quantum security, and in the “Large Gates?” column, it
means that whether the scheme is allowed to evaluate large FHE gates within one
bootstrapping.

Scheme Time Complexity Storage Approximation Large

Factor Gates?

[1] O(trN3l2 · (dr + q)) =
O(λ4 log6 λ log log λ)

dtrl2 · (N + 1)2 =
O(λ3 log5 λ log log λ)

Õ(N3) ×

[22] O(tl2 · (d + q)(N + r)3) =
O(λ4 log4 λ log log λ)

l2 ·(3td+qt+1)(N +r)2 =
O(λ3 log4 λ log log λ)

Õ(N2.5) ×

This work O(dl · (N + q)2) =
O(λ3 log4 λ log log λ)

dl2 · (N + q)2 =
O(λ3 log5 λ log log2 λ)

Õ(N2) �
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Note that since our scheme requires that the values in the vector (in the
homomorphic matrix-vector multiplication) are some special encoding values,
and we need the vector to have the “cyclic rotation” property when the permu-
tation matrix is multiplied, so we can’t apply the Chinese Remainder Theorem
(CRT) (like in [1,22]) to improve the efficiency and to reduce the ciphertext
expansion ratio. An open problem is how to use the CRT to further optimizing
the scheme while making the scheme can evaluate large FHE gates.
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Abstract. Group encryption (GE) is a fundamental anonymity primi-
tive analogue of group signature, which guarantees the decryption abil-
ity of recipients to specific ciphertexts while hiding these users within
a crowd. Since its first birth by Kiayias et al., numerous constructions
have been proposed, among which there is only one lattice-based scheme
is post-quantum secure. However, the security of all these schemes will
be damaged once an unexpected key-exposure attack occurs (which is
extremely unavoidable in the real world). To solve this problem, we first
consider a forward-secure group encryption primitive and provide a con-
crete instantiation over lattices, which efficiently mitigates the threats
from both key exposure and quantum computation. The key idea is to
introduce an appropriate periodical key-updating mechanism into the
group encryptions to restrain any key-exposure adversary from breaking
ciphertexts generated in prior time periods. Concretely, we modify the
Agrawal-Boneh-Boyen HIBEs into the binary tree encryptions (BTE).
Then, combining with other cryptographic techniques, we construct a
lattice-based GE scheme that features short ciphertexts and achieves the
forward-secure message secrecy and anonymity. Finally, we prove that
our construction is forward secure in the standard model under the Short
Integer Solution (SIS) and Learning With Errors (LWE) assumptions.

Keywords: Lattice cryptography · Group encryption · Forward
security · Binary tree encryption · Key updating

1 Introduction

Group encryption (GE) [24] is a fundamental anonymity primitive analogue of
group signatures [17]. It conceals valid decryptors within a set of certified users
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managed by the group manager (GM), and meanwhile keeps the accountability
to any misbehavior under the domination of the opening authority (OA). Since
the initial work started by Kiayias, Tsiounis and Yung (KTY) [24], the GE has
attracted noticeable attentions and found a wide range of applications in the
various real-world scenarios, such as blocking encrypted emails that are embed-
ded with malwares, building oblivious retriever storage systems and designing
the hierarchical group signatures [39].

In general, secret key exposure is one of the most fatal dangers to the con-
struction of secure cryptosystems [14,31,38] as it will thoroughly destroy the
expected security. To mitigate such potential damages, a number of techniques
incorporating secret sharing [37], threshold cryptography [18] and proactive cryp-
tography [22,34], are investigated. As a more promising method, the forward-
secure mechanism provides an efficient and practical strategy suitable for both
interactive [19,21] and non-interactive [6] settings. Its design idea is simply inter-
preted: First, divide the lifetime of the cryptosystem into a number of consecutive
discrete time periods; Then, beginning with the initial secret keys, recursively
evolve the subsequent secret keys with the current key and time period via a
one-way key updating function. By this method, a user refreshes regularly his
secret keys with time going on and meanwhile stops anyone from learning any-
thing about prior secret keys only using the exposed information. Using this idea,
numerous cryptographic schemes with forward security have been proposed, such
as digital signatures [1,8,11,28] and public-key encryptions [10,14].

Somewhat unlike the case in ordinary digital signatures, the secret key expo-
sure is more damaging in group signatures [31,38]. It is seen that anyone holding
the exposed key can impersonate the whole group to produce valid signatures,
which makes it hard to distinguish whether a signature from the group is gen-
erated honestly or not. In addition, by deliberately exposing his own secret key
to public websites, a certified group user may claim that some illegal signature
created by himself is others’ doing to escape responsibility. Actually, a similar
destructiveness can be seen in group encryptions where one can use the exposed
secret key belonging to some group user to decrypt all ciphertexts intended for
the user, breaking down the expected message secrecy. Likewise, if the OA’s
secret key is compromised, the anonymity the GE expects will lose, exposing
the identity of all recipients including these innocent group members. In spite
of the potential dangers of secret keys being compromised, no previous group
encryption schemes have addressed this issue. In this paper, we first consider the
forward security in group encryptions and provide a concrete realization over lat-
tice assumptions. Moreover, unlike the forward-secure group signatures [31,38]
which only consider the exposure of the user signing key issue, our scheme simul-
taneously considers the key-exposure attacks from group users and the OA. We
believe that the idea to achieve the forward-secure anonymity for the GE will be
an inspiration to the context of forward-secure group signatures.

OUR CONTRIBUTIONS. Motivated by the above potential damages caused by
secret key exposure, in this paper we first consider the forward security property
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in group encryption and provide a concrete lattice-based realization which is
secure against the attacks of secret keys being exposed and quantum computa-
tions. Our contributions are summarized as below.

• By introducing appropriate procedures and oracles into the KTY model, we
provide the formalized model and security definitions for the forward-secure
group encryptions.

• With the above model, we provide a concrete realization over lattice assump-
tions in the standard model, which still ensures the message secrecy and
anonymity even in the environment of secret keys being compromised.

RELATED WORK. The privacy-preserving cryptography has been an extremely
active research area in the last decades. As one of the fundamental anonymity
techniques, group encryption has attracted noticeable attentions in recent years.
The relevant concepts and definitions were first introduced by Kiayias, Tsiou-
nis and Yung [24], who also put forth a modular design routine by combining
crucial cryptographic primitives including zero-knowledge proofs, appropriate
digital signatures and anonymous CCA2-secure public-key encryptions. Later,
to optimize the number of rounds, Cathalo et al. [16] improved the initially inter-
active scheme into the non-interactive version in the standard model. Similarly,
more practical schemes over weaker assumptions were proposed by Aimani et al.
[3] by utilizing succinct approaches to protect the identity of group members. For
sake of balancing better privacy vs. safety, Libert et al. [29] supposed a variant
with public traceability to specific ciphertexts, which is akin to traceable sig-
natures offering public tracing mechanism [25]. Further, to strengthen secrecy,
Izabachène et al. [23] constructed traceable group encryptions free of subliminal
channels, which stresses confidentiality, anonymity and traceability. However,
all these instantiations are proposed over number-theoretic assumptions and are
vulnerable under quantum attacks. This situation is unchanged until Libert et
al. [27] proposed the first lattice-based scheme in their recent work.

Note that all the above group encryption schemes have never considered the
issue of secret keys exposed, which is quite unsatisfactory in practice. In fact, the
message secrecy (resp. the anonymity) of the schemes is no longer guaranteed if a
key exposure occurs at the encryption layer for a message (resp. for an identity).
To address this problem, in this paper we consider the forward security for group
encryptions, and present a concrete realization in the standard model over lat-
tices. By using an efficient strategy with two separate key-evolution operations,
our scheme enables the group users and the opening authority to update their
own secret keys at specific time periods, respectively, and meanwhile ensures that
no PPT adversary can adopt the exposed key to compute the previous keys.

ORGANIZATION. In the forthcoming sections, we first recall some necessary lattice
techniques and schemes in Sect. 2. The formalized model and security definitions
for the forward-secure group encryptions are provided in Sect. 3. In Sect. 4, we
describe and analyze our group encryption scheme. Finally, Sect. 5 concludes our
work.
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2 Preliminaries

NOTATIONS. For a positive integer n, we denote the set {1, ..., n} by [n], the
set {0, 1, ..., n} by [0, n]. All vectors are written as bold lower-case letters in
the column form, and matrices as bold upper-case letters. For b ∈ R

n and
B ∈ R

n×m with columns (bi)i, their Euclidean l2 norms are respectively written
as ‖b‖ and ‖B‖ = maxi≤m‖bi‖. Meanwhile, we use ˜B to denote its Gram-
Schmidt orthogonalization if B is full-column rank. If a given set S is finite, we
use U(S) to denote the uniform distribution over it and use x ←↩ D to represent
the sampling action according to the distribution D.

2.1 Lattices

As in [15,20], we use the notation L to denote lattices given by Λ⊥
q (A) := {e ∈

Z
m| A · e = 0n mod q} or Λu

q (A) := {e ∈ Z
m| A · e = u mod q}. And use the

notation DL,σ,c to denote the discrete Gaussian distributions of the support L

and center c ∈ R
m with parameter σ > 0 which is defined by DL,σ,c(x) = ρσ,c(x)

ρσ,c(L)

for each x ∈ L, where ρσ,c(x) = exp(−π‖x− c‖2/σ2) is the associated Gaussian
function over Rm. When c = 0, we also write the distributions as DL,σ for short.

To construct our scheme over lattices, some lattice techniques incorporated
trapdoor generation, gaussian sampling and lattice basis delegation in fixed
dimension are needed, all of which will serve for our construction or security
proof.

Lemma 1 ([5,20]). There exists a PPT algorithm TrapGen that on input a tuple
of integers (n,m, q) with q ≥ 2 and m ≥ Ω(n log q), outputs a matrix A ∈ Z

n×m
q

and an associated basis TA with ‖˜TA‖ ≤ O(
√

n log q) such that A is within a
negligible statistical distance to U(Zn×m

q ).

As shown below, the vectors sampled according to DΛu
q (A),σ are short with

an overwhelming probability, and the Gaussian sampling and randomizing bases
can be efficiently conducted, respectively, given a short enough lattice basis.

Lemma 2 ([15,20,33]). Given integers m > n, q ≥ 2, and vectors u ∈ Z
n
q and

c ∈ R
m, let TA be a short norm basis of Λ⊥

q (A) for the matrix A ∈ Z
n×m
q and

σ ≥ ‖˜TA‖ ω(
√

log m), then:

• Prb←↩DΛu
q (A),σ

[‖b‖ ≤ √
mσ] ≥ 1 − 2−Ω(m).

• There is a PPT algorithm SampleGausssian(·) (resp., algorithm SamplePre(·))
that takes as inputs A,TA, σ, c (resp., A,TA,u, σ ) and samples a x ∈
Λ⊥

q (A) (resp., Λu
q (A) ) from a distribution within a negligible statistical

distance to DΛ,σ,c (resp., DΛu
q (A),σ ).

• There is a PPT algorithm RandBasis(·) that, on input a basis S of the lattice
Λ⊥

q (A) and a gaussian parameter σ ≥ ‖˜S‖ · ω(
√

log n), outputs a fresh basis
S′ with ‖˜S′‖ ≤ σ

√
m and the output distribution statistically close to that of

RandBasis(T, σ) for another basis T under the same parameter constraints.
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The following lemma provides a lattice basis delegation mechanism (consisting
of the first two algorithms) and simulation algorithm that will be used in the
real encryption scheme and security proof, respectively, with setting the initial
parameter σR = ˜LTG · ω(

√
log m) =

√
n log q · ω(

√
log m) and denoting the

distribution Dm×m by (DZm,σR
)m of invertible matrices over Zq.

Lemma 3 ([2]). Given integers m > n, q > 2 and gaussian parameter σ > 0,
and Zq-invertible distribution Dm×m. Let A ∈ Z

n×m
q and associated trapdoor

TA ∈ Z
m×m
q . Then:

• Given a canonical basis of Λ⊥
q (A), there exists a PPT algorithm SampleR

(which invokes algorithm SampleGausssian(·) polynomial times) that outputs
matrices R from a distribution that is statistically close to Dm×m.

• Given parameter σ� ≥ ‖˜TA‖ · (σR
√

m ω(log1/2 m))� · ω(log m) and matrices
R1, ...,R� ∈ Dm×m, set R|� = R� · R�−1 · · ·R1. There exists a PPT lattice
basis delegation algorithm BasisDel(·) that takes as inputs A,TA, σ�,R|�, and
outputs a basis T′ of Λ⊥

q (AR−1
|� ) distributed statistically close to the output

of RandBasis(T, σ�) for any basis T of the same lattice.
• There exists a PPT simulation algorithm SampleRwithBasis(·) that takes any
matrix B ∈ Z

n×m
q as input, and outputs a matrix R ∈ Z

m×m sampled from
a distribution statistically close to Dm×m such that the generated basis T′ of
Λ⊥

q (BR−1) has short norm ‖˜T′‖ ≤ σR/ω(
√

log m).

2.2 Computational Problems

The security of our scheme arguably relies on the hardness claims of the following
computational lattice problems SIS and LWE.

Definition 1 ([4,20,32]). Given positive integers n,m, q and real β > 0, the
SISn,m,q,β problem demands, for any A ←↩ U(Zn×m

q ), to search a vector x ∈
Z

m \ {0} of norm bounded by β such that A · x = 0.

For appropriate choice of parameters, the standard worst-case lattice problem
SIVPγ can be reduced to the average-case problem SISn,m,q,β . Such an example
follows by setting m,β = poly(n); q ≥ √

nβ and γ = ˜O(
√

nβ) (see [4,20]).

Definition 2 ([12,35,36]). Given positive integers n,m, q and a secret s ∈ Z
n
q ,

and a discrete probability distribution χ on Z, let As,χ be a probability distribu-
tion of (a, aT· s+e) ∈ Z

n
q × Zq where a ←↩ U(Zn

q ) and e ←↩ χ. The LWEn,q,χ

problem (the decision version) asks to distinguish m samples from As,χ and m
samples from U(Zn

q × Zq), respectively.

For prime power q, given a discrete distribution χ bounded by B ≥ √
nω(log n)

(e.g., one can round q · X to the closest integers to obtain such a distribu-
tion where X is a variable for a normal distribution T over [0, 1) with stan-
dard deviation α/

√
2π and center 0), there exists an efficient reduction from the

SIVP
˜O(nq/B) problem to the LWEn,q,χ problem (see [35,36]).
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2.3 Signatures Supporting Efficient Protocols

In [26], Libert et al. presented a secure signature scheme (extended from the Böhl
et al.’s signature [9]) that supports efficient protocols, of which a variant here will
serve as a building block in this work. We now recall the scheme: given integers
n,m, q,N and Gaussian parameter σ = Ω(

√
n log q log n), set the verification key

and signing key as pk := (A,A1,A2,D,D1,D2,u) and sk := TA, respectively,
where (A,TA) is generated by invoking algorithm TrapGen(q, n), and matrices
D ←↩ U(Zn×m/2

q ),Ai,Di ←↩ U(Zn×m
q ) with i = 1, 2 and vector u ←↩ U(Zn

q ).
To sign a message m ∈ {0, 1}m, the signer first builds the matrix Aj =

[A|A1 + j · A2] ∈ Z
n×2m
q with taking j ←↩ [N ], then samples a short vector

v ∈ Z
2m
q in DΛ

uM
q (Aj),σ

and results the signature sig = (j,v, r) ∈ [N ]×Z
2m
q ×Z

m
q ,

where uM = u + D · vdecn,q−1(cM ) ∈ Z
n
q and a chameleon hash cM = D1 · r +

D2 · m ∈ Z
n
q with a random vector r ←↩ DZm,σ. The verification is completed

by checking whether ‖v‖ < σ
√

2m and ‖r‖ < σ
√

m and Aj · v = u + D ·
vdecn,q−1(D1 · r + D2 · m) mod q. The authors also proved that the signature
above is unforgeable under chosen-message attacks if the SIS assumption holds.

2.4 Agrawal-Boneh-Boyen HIBE with Fixed Dimension

The Agrawal-Boneh-Boyen (ABB) HIBE was presented in [2] in the stan-
dard model, featuring the fixed dimension and pseudorandom ciphertexts.
We recall the scheme as follows: given the integers n, q,m, the maxi-
mum hierarchy d and noise distribution χ, set the public parameter pp =
(A,U,R1,0,R1,1, ...,Rd,0,Rd,1), and master key msk = TA, where (A,TA) is
generated by running algorithm TrapGen(q, n), and matrices Ri,j ∈ Z

m×m with
i ∈ [d] and j ∈ {0, 1} are generated by invoking algorithm SampleR(1m) and
matrix U ←↩ Zn×m

q .
To derive a secret key, for the targeted identity id = (id1, ..., id�, ..., idk) ∈

{0, 1}k, one builds the matrix Fid|� = A · R−1
id|� ∈ Z

n×m
q with a known

short basis skid|� for Λ⊥
q (Fid|�), where Rid|� = R�,id�

· · ·R1,id1 ∈ Z
m×m
q , then

builds the targeted matrix Fid = Fid|� · R−1
id|[k,�+1] ∈ Z

n×m
q with Rid|� =

R�,id�
· · ·R1,id1 ∈ Z

m×m
q in the similar manner, and generates a short basis skid

for Λ⊥
q (Fid). To encrypt a message m ∈ {0, 1}m to identity id = (id1, ..., id�)

of depth , the encryptor computes the matrix Fid = A · R−1
id ∈ Z

n×m
q with

Rid = R�,id�
· · ·R1,id1 ∈ Z

m×m
q , and computes the ciphertext c = (c(1) =

F�
id · s + y, c(2) = U� · s + x + m · � q

2	) ∈ Z
m
q ×Z

m
q , the decryption is performed

by computing m′ =
⌊(

c(2) − E�
id · c(1)

)

/
⌊

q
2

⌋⌉

∈ {0, 1}m, where Eid ∈ Z
m×m is

a small-norm matrix generated from SamplePre(Fid, skid,U, τ�) while satisfying
that Fid · Eid = 0 with parameter τ� = σ�

√
mw(

√
log m) (≥ ‖˜skid‖w(

√
log m)).

The ciphertext above is pseudorandom assuming the hardness of LWEn,q,α

problem.
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2.5 Zero-Knowledge Argument of Knowledge

A zero-knowledge argument system of knowledge (ZKAoK) is a two-party inter-
active protocol, in which a prover P triggers a proof to convince the verifier
V that he knows a witness of the specific statement while not revealing any
additional information. More formally, given an NP relation defined by a set of
statements-witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗, the associated ZKAoK
is defined via the interactive game 〈P,V〉 with completeness δc and soundness
error δs that holds the following conditions:

• Completeness. For any given (y, w) ∈ R, Pr[〈P(y, w),V(y)〉 �= 1] ≤ δc.
• Soundness. Given any (y, w) /∈ R,∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ δs.

Note that the argument system used in this work is constructed under the
framework presented in [40] which has computational ZK property and improved
efficiency. We now recall the abstracted system as below.

Abstraction of the Argument System. The desired ZKAoK system in this
work is covered within the following abstraction:

R = {(M,y), (x) : M · x = y ∧ x ∈ cond}, (1)

where M,y are the public matrix and vector, respectively, and the vector x is the
secret witness, additionally, cond represents the set of relations that the entries of
x should satisfy (i.e., setting M = {(h, i, j)} as the set of indexes of x satisfying
the constraint set cond. For any (h, i, j) ∈ M, it holds that x[h] = x[i] · x[j]),
which covers all possible constraints such as short vectors, quadratic relations.

3 Forward-Secure Group Encryption

In this section, we provide the formalized model of the forward-secure group
encryption scheme (FSGE) constructed in Sect. 4, by introducing an additional
time factor t in some algorithms of the KTY model [24] and adding two key
updating algorithms. Roughly speaking, the model mainly features that: one
divides the lifetime into T discrete periods, then for each given time period
t ∈ [T −1], he uses efficient key-evolution mechanisms (update the secret keys for
users and the OA, respectively) to evolve the key skt+1 empowered the decryp-
tion ability for time period t + 1 with the current key skt and the subsequent
period t + 1. We note that the key-evolving operation occurs at the end of time
period t, and the involved secret key skt is a stack of node keys in BTE [14]
which contributes to the construction of forward-secure public-key encryptions.
The formalized model is stated as follows.

• SETUP(λ, T,N): Given the security parameter λ, total number of time peri-
ods T and the expected maximum number of group users N , this set of algo-
rithms generates system parameter pp and key pairs for GM/OA, outputting
gpk = (pp, pkGM, pkOA) in the following.
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– SETUPinit(1λ, T,N): Taking the given parameters λ, T,N as inputs, this
initializer returns public parameters pp as a result.

– SETUPGM(pp): Given parameters pp, the procedure generates a key pair
(pkGM, skGM) for the GM.

– SETUPOA(pp): Given parameters pp, the procedure outputs a key pair
(pkOA, skOA) for the OA, creating the initial secret key skOA,0 = {skOA}.

Note that an interaction occurs between the GM and the OA, outputting
group public key gpk as a result at its end, while the GM manages and stores
the group information containing the group parameter pp.

• UKGEN(pp): Taking as input parameters pp, user runs this algorithm to pro-
duce a key pair (pkU, skU), creating the initial secret key skU,0 = {skU}.

• 〈JOIN(gpk, pkU, skU), ISSUE(skGM, pkU)〉: The interaction is launched between
the GM and a prospective user U to output a certificate certU indicating that
the user is a validly certified group member at a successful execution.

• UK-UPDATE(pkU, skU,t, t + 1): On input the public key pkU and the secret
key skU,t activated at the current time period t, as well as the subsequent
time period t + 1, this algorithm evolves the secret skU,t+1 from skU,t.

• OAK-UPDATE(pkOA, skOA,t, t + 1): On input the public key pkOA and the
secret key skOA,t for the current time period t, as well as the subsequent
period t + 1, this algorithm evolves the secret skOA,t+1 from skOA,t.

• 〈Gr,R, sampleR〉(pp): Given public parameters pp, procedure Gr returns a
key pair (pkR, skR), which helps the sampler sampleR to output a statement-
witness pair (x,w) ∈ R used in the message encryption below.

• ENC(gpk, pkU, t, certU, w, L): Given specific inputs, this algorithm is executed
by sender to compute a group encryption Ψ on message w under some public
key pkU which can be decrypted with the secret key skU,t.

• DEC(skU,t, Ψ, L): The target receiver decrypts the ciphertext Ψ by using the
secret key skU,t activated at time period t.

• OPEN(skOA,t, Ψ, L): The OA opens the ciphertext Ψ with the secret key skOA,t

to return the public key (or the identity) of a group member under which the
ciphertext Ψ is generated, or to output ⊥ if it fails to trace the receiver.

• 〈P(gpk,R, pkU, certU, t, Ψ, coinsΨ ),V(gpk, t, Ψ, πΨ )〉: This is an interactive pro-
cedure run between the sender and a verifier which, given inputs, convinces
the verifier that the ciphertext Ψ is well-formed and is actually generated for
one of certified group members.
For security requirements of the FSGE, their definitions including correctness,

message secrecy, anonymity and soundness are stronger than those of [24] and
are stated via the corresponding experiments below, respectively. The involved
oracles are like those of [24] except additionally relative to the time period t.

Correctness asks that a ciphertext generated by an genuine sender during
the time period t is always decrypted successfully by procedure DEC with secret
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skU,t, and that procedure OPEN can always identify its receiver with secret
skOA,t, as well as produces a proof accepted by verifier.

Definition 3. The correctness is satisfied if the following experiment returns 1
with negligible probability.

Experiment Expcorr
FSGE,A(λ, T,N)

pp ← SETUPinit(1λ, T,N); (pkR, skR) ← GR(1λ); (x,w) ← sampleR(pkR,
skR);
(pkGM, skGM) ← SETUPGM(pp); (pkOA, skOA, skOA,0) ← SETUPOA(pp);
〈pk, sk, sk0, certpk|uid, pk, certpk〉 ← 〈Juser, JGM(skGM)〉(pkGM);
Ψ ← ENC(pkGM, pkOA, pk, certpk, t, w,L);
πΨ ← P(pkGM, pkOA, pk, cert, t, w, L, Ψ, coinsΨ );
if ((w �= DEC(skt, Ψ, L))∨(pk �= OPEN(skOA,t, t, Ψ, L))

∨(V(Ψ,L, πΨ , t, pkGM, pkOA)=0)) then return 0 else return 1.

Message Secrecy demands that it is difficult for any PPT adversary to dis-
tinguish a random ciphertext sampled from the ciphertext space from a cipher-
text produced under a specific relation at time period t in the following exper-
iment, where the whole system except the member chosen as recipient is under
the control of adversary.

Definition 4. The message secrecy is achieved if, for any PPTadversary, the
following experiment returns 1 with probability negligibly close to 1/2.

Experiment Expsec
FSGE,A(λ, T,N)

pp ← SETUPinit(1λ, T,N); (aux, pkGM, pkOA) ← A(pp);
〈pk, sk, sk0, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM, aux);
(aux, x, w, L, pkR) ← ADEC(skt,·)(aux); if (x,w) /∈ R then return 0;
b ← {0, 1}; (Ψ, coinsΨ ) ← CHb

ror(λ, pk, t, w, L);
b′ ← APROVEb

P,P′ (pkGM,pkOA,pk,certpk,pkR,t,x,w,Ψ,L,coinsΨ ),DEC¬〈Ψ,L〉(skt,·)(aux, Ψ);
if b = b′ then return 1 else return 0.

Anonymity requires that non PPT adversary can distinguish ciphertexts
generated under either of two valid public keys of its choice at same time period
t, even if the whole system except the OA and two well-behaved users is adver-
sarially controlled with access the involved oracles.

Definition 5. The FSGE scheme satisfies anonymity if, for any PPT adversary,
the experiment below returns 1 with a probability not more than 1/2+ negl(λ).

Experiment ExptanonFSGE,A(λ, T,N)

pp ← SETUPinit(1λ, T,N); (pkOA, skOA, skOA,0) ← SETUPOA(pp);
(aux, pkGM) ← A(pp, pkOA); aux ← AUSER(pkGM),OPEN(skOA,t,.)(aux);
if keys �= (pk0, sk0, certpk0 , pk1, sk1, certpk1) (aux) then return 0;

(aux, x, w, L, pkR) ← AOPEN(skOA,t,.),DEC(sk0,t,.),DEC(sk1,t,.)(aux);
if (x,w) /∈ R return 0;
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b ←↩ {0, 1}; (Ψ, coinsΨ ) ← CHb
anon(pkGM, pkOA, pk0, pk1, t, w, L);

b′ ← AP(pkGM,pkOA,pkb,certpkb ,t,x,w,Ψ,coinsΨ ),OPEN¬〈Ψ,L〉(skOA,t,.),

OPEN¬〈Ψ,L〉(sk0,t,.),OPEN¬〈Ψ,L〉(sk1,t,.)(aux, Ψ);
if b = b′ then return 1 else return 0.

Soundness requires that it is infeasible for any PPT adversary to produce a
convincing ciphertext at time period t that opens to unregistered group member
or invalid public key, even if it can choose OA’s key, and is given access to the REG
oracle. In the following, database,PK and C are respectively used to represent
the sets of registered public keys, valid keys and valid ciphertexts.

Definition 6. The FSGE scheme is sound if, for any PPT adversary, the exper-
iment below returns 1 with negligible probability.

Experiment Expsound
FSGE,A(λ, T,N)

pp ← SETUPinit(1λ, T,N); (pkGM, skGM) ← SETUPGM(pp);
(pkOA, skOA, skOA,0) ← SETUPOA(pp);

(pkR, x, Ψ, πΨ , aux) ← AREG(skGM,·)(pp, pkGM, pkOA, skOA,t, t);
if V(Ψ,L, πΨ , pkGM, pkOA, t) = 0 return 0;
pk ← OPEN(skOA,t, t, Ψ, L);
if ((pk /∈ database) ∨ (pk /∈ PK) ∨ (Ψ /∈ Cx,L,pkR,pkGM,pkOA,pk,t)

)

then
return 1 else return 0.

Note that here we take a distinct method (i.e., interactive ZK proof proto-
col) from the Micciancio-Peikert trapdoor mechanism of [27] to ensure that pk
belongs to the language of valid public keys. Though it seems somewhat incon-
venient, the cost is quite reasonable due to the efficiency of ZK argument of [40],
and the trapdoor strategy we use is preferably suitable for the design of FSGE.

Remark 1. We remark that there exists a trade off between the OA’s opening
function and the associated forward security in the above model, i.e., if the
OA wants to persist a permanent opening function to any generated ciphertext
(without constraining by the time period factor), then the desired forward secu-
rity is lost, and vice versa. A possible solution is to take a lower key updating
frequency for the OA than that for users. For example, we can set the users to
update their secret keys once every day, but assign the OA to do so every three
months, which preserves the long-term (e.g., lasting three months) opening func-
tion for all ciphertexts generated during the present time period but will lose
the opening capability for ciphertexts generated in previous time periods. In this
method, we achieve the forward security for the OA while preserving its opening
function for ciphertexts. However, for simplicity, in this paper, we use the same
key updating frequency for both OA and users, and this arrangement has no any
negative effect on the scheme design and its security.

4 Forward-Secure Group Encryptions from Lattices

In this section, by modifying the ABB encryption [2] into a BTE [14] (the lattice-
based version) and smoothly combining with appropriate building blocks recalled
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in Sect. 2, we achieve the first forward-secure group encryption to date, over
lattices, which works with two separate key-evolving mechanisms for group users
and the OA, and is secure against the attacks of key exposure and quantum
computing. At the core of our construction is a key-private IND CCA-2 BTE
equipped with a key-updating mechanism, which naturally implies a forward-
secure lattice-based public key encryption with key privacy, and further adapts
to the construction of our GE, achieving both the message secrecy and anonymity
in the sense of forward security. Observe that the ABB HIBE [2] is key-private
and features short ciphertexts, over which we proceed our task as follows.

By the strategy of BTE [14], for a given lifetime T = 2d−1, we divide it into T
discrete time periods [0, T −1], and build a full binary tree with 2d−1 nodes such
that each node wt corresponds to a time period t ∈ [0, T − 1] in the form of the
pre-order traversal. Run the procedure TrapGen(n, q) to output a random matrix
A ∈ Z

n×m
q and an associated short trapdoor TA ∈ Z

m×m with the initial setting
sk0 = {TA} as the secret key at time epoch t = 0. In a recursive manner, the
initial secret key sk0 can evolve into skt with t ∈ [T −1] which is represented by a
stack of node keys (concretely, the stack consists of the key of the current node wt

and those of “right siblings” of the nodes on the path from the root to the node
wt in the order of depth increase). Then, set A and TA as the master public
key and the master secret key, respectively, which proceeds the key-evolving
process combining with the basis delegation algorithm BasisDel(A,R,TA, σ).
Invoke algorithm SampleR(1m) to sample short-norm R1,0,R1,1, ...,Rd,0,Rd,1 ∈
Z

m×m from gaussian distribution Dm×m of invertible matrices over Zq. Given
a time period t ∈ [0, T − 1] of which the corresponding node wt has length
dt ≤ d (i.e., wt = w1...wdt

∈ {0, 1}dt), the secret key skt and the encryption
key Ft = A(R1,w1)

−1...(Rdt,wdt
)−1, perform the key-evolving process towards

skt+1: (i) If wt is a leaf node, i.e., dt = d, pop the top node key skwt off from skt,
the left is exactly the secret key skt+1; (ii) Otherwise, the wt is an internal node
meaning that dt < d and wt+1 = wt0. First pop the top node key skwt , then run
procedure BasisDel(Ft, ·, skwt , σdt+1) on Rdt+1,0 and Rdt+1,1 to output two short
node keys skwt0 (for which Ft+1 · skwt0 = 0 and Ft+1 = Ft · (Rdt+1,wt0)−1) and
skwt1, respectively. Further, push the latter and then the former onto the stack,
yielding the secret key skt+1 for time t + 1. Basing on the above discussion,
when one wants to encrypt a message m ∈ {0, 1}m for time t, ciphertext should
be generated under Ft and then will be decrypted with the top node key skwt

of the stack key skt. We note that the above scheme only captures IND-CPA
security, and using the Canetti-Halevi-Katz (CHK) transformation [13] as shown
in Sect. 4.1 can adapt it straightly to the case of IND-CCA2 security.

Following the above description, the scheme equipped with two separate
key-updating algorithms for group users and the OA is created: Given public
parameters pp, user Ui holding a key pair (pki, ski) = (Ai,Ti) generated via
algorithm TrapGen(n, q) joins the group by interacting with the GM who returns
a certificate cert = (i,v, r) back. To generate a group encryption of message
m ∈ {0, 1}m, satisfying AR · m = uR, of which the decryption ability only pre-
serves for time period t′ ≤ t (i.e., the decryption will fail with any secret key
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ski,t′′ for time period t′′ > t), the sender constructs Fi,t and Foa,t as in previous
descriptions with a randomly selected verification key vk of one-time signature
(for IND-CCA2 variant), then computes ciphertexts crec and coa of such message
m and user identifier bin(i) (the binary representation of i), yielding the final
ciphertext as Ψ = (t, vk, crec, coa, Σ) where Σ is a one-time signature on crec, coa
using the one-time signing key sk. Further, the sender executes an interactive
zero-knowledge proof with the verifier to convince the latter that the generated
ciphertext Ψ is intended for some anonymous valid group member and is also an
encryption for some message meeting a specific given relation.

4.1 Our Construction

As in [27], we assume that our scheme allows encrypting witness for the Inho-
mogeneous SIS relation RISIS given by ((AR,uR),m) ∈ (Zn×m

q × Z
n
q ) × {0, 1}m

with uR = AR · m mod q. The FSGE scheme is described in details as follows.

• SETUPinit (1λ): This algorithm conducts the following:

– Given a security parameter λ, let N = 2s be the maximum expected group
size and T = 2d the size of time periods.

– Let integer n = O(λ), prime q = ˜O(n2d+�+3.5) (with  being shown below),
set k = �log q�, m = 2nk, and build a discrete distribution χ bounded by
B =

√
nω(log n).

– Select a parameter σ = Ω(
√

n log q log n), and build a discrete Gaussian dis-
tribution DZ,σ with the upper bound β = σ · ω(log n).

– Select a strongly unforgeable one-time signature OT S = (Gen,Sig,Ver) whose
verification key lives in Z

√
n

p and has binary length  with prime p = O(n0.5).
– Sample 4d + 2 invertible Z

n×m
q -matrices {Ri,j}(i,j)∈[2d+1+�]×{0,1} excluding

R1,0 and R3,1 as in [2], which will be used for updating keys for users and
opening authority.

– Take public parameters parCOM for the relaxed-openning commitment scheme
like [7] that serves for the building of the zero-knowledge argument system
used in 〈P,V〉.

– Pick a random matrix F←↩ Z2n×nmk
q which hashes users’ public keys from

Z
n×m
q to Z

2n
q .

– Pick matrices Urec ←↩ U(Zn×m
q ) and Uoa ←↩ U(Zn×s

q ), which will be used to
encrypt for the receiver and opening authority, respectively.

Output
pp = {λ, n, q, k,m,B, χ, σ, β, d, s, ,OT S, parCOM,R1,1,R2,0,R2,1, ...,R2d,0,
R2d,1,R2d+1,0,R2d+2,0,R2d+2,1, ...,R2d+1+�,0,R2d+1+�,1,F,Urec,Uoa}.

• SETUPGM (pp): Like the signature scheme proposed in [26], the GM runs
the procedure TrapGen(n, q) to generate a random matrix G ∈ Z

n×m
q with a

short basis SG ∈ Z
m×m
q as the trapdoor bounded by ‖˜SG‖ ≤ O(

√
n log q),
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and samples the random matrices G0,G1,D0,D1 ←↩ U(Zn×m
q ) and D ←↩

U(Zn×nk
q ) as well as the vector u ←↩ U(Zn

q ) to create the public key pkGM :=
(G,G0,G1,D,D0,D1,u) and the secret key skGM := SG for the GM.

• SETUPOA (pp): This procedure generates a random matrix P ∈ Z
n×m
q with

its short trapdoor S0 (i.e., the short basis of Λ⊥
q (P) satisfying ‖˜S0‖ ≤

O(
√

n log q)) by using algorithm TrapGen(n, q) to form the OA’s key pair
(pkOA, skOA) = (P,S0), with the initial secret stack key skOA,0 = {S0}.

• UKGEN(pp): User Ui runs algorithm TrapGen(n, q) to generate a random
matrix Ai ∈ Z

n×m
q with an associated short trapdoor Ti to form a key pair

(pki, ski) = (Ai,Ti), with the initial stack key ski,0 = {Ti}.
• 〈JOIN(pkGM, pkOA, pki, ski); ISSUE(skGM, pki)〉: When a prospective user wants

to join the group, he first sends the public key pki = Ai to the GM and
carries out an interactive proof protocol between them to convince the GM
that he holds the associated secret key Ti, then the GM checks whether a
collision with the previous public keys occurs, and hashes it to hi = F ·
mdecn,m,q(A�

i ) ∈ Z
2n
q if no such case is found, then further computes the

certificate (idi,di, ri).

1. Use the integer sequence {N1, ..., Ns} under the operator idecN (·) to parse
the identifier i as binary vector as idi = idecN (i) = idi[1]...idi[s] ∈ {0, 1}s,
and build the corresponding matrix Gidi = [G|G0 + i · G1].

2. Take a random vector ri ∈ [−β, β]m, compute the short vector di ∈ [−β, β]2m

which satisfies that

Gididi = u + D · vdecn,q−1(D0 · ri + D1 · vdec2n,q−1(hi)) mod q, (2)

and return the final result certi = (idi,di, ri).

The user Ui verifies that the received certi is well formed and satisfies the
above equation (2), and returns ⊥ if it is not this case. The GM registers Ui in the
table reg by appending (pki, certi) on and returns certi back as the certificate.

• UK-UPDATE(pki, i, ski,t, t + 1): This algorithm runs a BTE of depth 2d as in
[13]. Let bin(t) = w1 · · · wdt

∈ {0, 1}dt≤d be the binary representation of time
period t, and use the encoded wt := 1w1 · · · 1wdt

to denote the corresponding
node in BTE, the procedure evolves the stack of secret keys ski,t+1 for the
next time period as follows.

1. Check the binary length 2dt of node wt corresponding to the current time
period t. If the secret key node wt is at the leaf, i.e., |wt| = 2d, then pop the
top secret key ski,t off the stack, which gives what we want.

2. Otherwise, run the algorithm Der(pki, ski,wt1, w
t1) of BTE (which is equiv-

alent to running the algorithm BasisDel(Fi,t,R|2dt+2, ski,wt1, σd2t+2), where
R|2dt+2 = R2dt+2,b·R2dt+1,1·R2dt,wdt

·R2dt−1,1 · · ·R2,w1 ·R1,1 with b ∈ {0, 1})
to produce the secret keys (ski,wt10, ski,wt11), and erase the top secret key ski,t,
then push ski,wt11 and then ski,wt10 into the stack to establish the new ski,t+1.
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• OAK-UPDATE(pkOA, skOA,t, t+1): This procedure is similarly proceeded, with
only a difference that the original and the updated key pairs all belong to the
OA, obtaining the new stack of keys skOA,t+1 which evolves from the stack of
keys skOA,t by removing the OA’s secret key skOA,t at time period t.

• 〈Gr, sampleR〉: Algorithm Gr outputs (pkR,skR)= (AR, ε), then sampler sam-
pleR takes the public key as input for the relation RISIS, and selects m ←↩
U({0, 1}m) and outputs a pair ((AR,uR),m) satisfying uR = AR · m.

• ENC(pkGM, pkOA, pki, t, certi,m, L): To encrypt a message m ∈ {0, 1}m sam-
pled by algorithm sampleR at time period t for the user Ui with identifier i,
the sender first checks whether its certificate certi is valid or not. If it is not
this case, return ⊥. Otherwise, the sender conducts the following.

1. Run the one-time generation algorithm Gen(1λ) to produce a key pair (sk, vk)
with vk ∈ Z

√
n

p of length  such that bin(vk) = j1, ...j� ∈ {0, 1}�.
2. Encrypt the message m under the public key pki = Ai at time period

t. To realize the CCA-2 security, we set the actual encryption node
as w̃t = wt|0|bin(vk) with the CHK transformation [13], where wt :=
1w1 · · · 1wdt

is the corresponding encoded node. Build the encryption matrix
Fi,t = Ai(R1,1)−1(R2,w1)

−1 · · · (R2dt,wdt
)−1(R2dt+1,0)−1(R2dt+2,j1)

−1 · · ·
(R2dt+1+�,j�

)−1 ∈ Z
n×m
q , then choose srec ←↩ U(Zn

q ), and sample vectors

xrec,yrec ←↩ χαt,�
m. Compute the ciphertext crec = (c(1)rec , c

(2)
rec ) ∈ (Zm

q )2 as

c(1)rec = F�
i,t · srec + yrec, c

(2)
rec = U�

rec · srec + xrec + m · �q

2
	. (3)

3. Encrypt the user identifier idi of Ui under the public key pkOA for period
t. Similarly, build the encryption matrix Foa,t = P(R1,1)−1(R2,w1)

−1

· · · (R2dt,wdt
)−1(R2dt+1,0)−1(R2dt+2,j1)

−1 · · · (R2dt+1+�,j�
)−1 ∈ Z

n×m
q , then

randomly select soa ←↩ U(Zn
q ), and sample vectors xoa,←↩ χαt,�

s,yoa ←↩

χαt,�
m. Compute the ciphertext coa = (c(1)oa , c(2)oa ) ∈ Z

m
q × Z

s
q as

c(1)oa = F�
oa,t · soa + yoa, c

(2)
oa = U�

oa · soa + xoa + idi · �q

2
	. (4)

4. Compute the one-time signature Σ = Sig(sk, (crec, coa, L)).

Output the ciphertext

Ψ =
(

t, vk, crec, coa, Σ
)

, (5)

and the state information coinsΨ =
(

srec,Rrec,xrec,yrec, soa,Roa,xoa,yoa

)

.

• DEC(ski,t, Ψ, L): Let σt,� = (n log q log n)2dt+�+2/
√

n log q. This decryptor
conducts the following:

1. Check Ver
(

vk, Σ, (crec, coa, L)
)

, return ⊥ if the value is 0. Otherwise, parse
the initial secret key ski,0 as Ti ∈ Z

m×m and the ciphertext Ψ as in (5).
2. Take the secret key ski,t for time t to decrypt the ciphertext crec.
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a. Compute the secret key ski,t ∈ Z
m×m
q towards the period t from ski,t

by invoking algorithm BasisDel, which is followed by Ei,t ∈ Z
m×m
q with

Fi,t · Ei,t = Urec via algorithm SampPre(Fi,t, ski,t,Urec, σt,�).
b. Compute

m =
⌊(

c(2)rec − E�
i,t · c(1)rec

)

/
⌊q

2

⌋⌉

. (6)

• OPEN(skOA,t, reg, Ψ, L): This algorithm reveals the identity of intended user
of ciphertext Ψ by performing the following steps:
1. Check Ver

(

vk, Σ, (crec, coa, L)
)

, and return ⊥ if the value is 0. Otherwise,
parse skOA,0 as S0 ∈ Z

m×m
q and Ψ as in (5).

2. Decrypt the ciphertext coa = (c(1)oa , c(2)oa ) using the constructive secret key
skOA,t.
a. Delegate a short basis skOA,t ∈ Z

m×m
q from skOA,t with the algorithm

BasisDel, followed by a short matrix Eoa,t ∈ Z
m×s
q with Foa,t · Eoa,t =

Uoa by running SampPre(Foa,t, skOA,t,Uoa, σt,�).
b. Compute

id =
⌊(

c(2)oa − E�
oa,t · c(1)oa

)

/
⌊q

2

⌋⌉

. (7)

3. Look up the register table reg. If exists one and only one identifier idi=id
such that its associated public key pki = Ai ∈ Z

n×m
q has the hash value

hi = F · mdecn,m,q(A�
i ) that satisfies the Eq. (2), return the public key

pki = Ai. Otherwise, return ⊥.

• 〈P,V〉: Given the common inputs containing public keys pkGM, pkOA, cipher-
text Ψ and time period t. The prover’s secret input consists of a message
m ∈ {0, 1}m satisfying a specific relation, pki = Ai, certi = (idi,di, ri)
and randomness state coinsΨ =

(

srec,xrec,yrec, soa,xoa,yoa

)

, while the ver-
ifier takes πΨ and period t as its individual inputs to proceed the proof game.

Under the generic framework [40] recalled in Sect. 2.5, combining with the
decomposition techniques for integers, vectors and matrices [26,27,30], the
prover constructs a zero-knowledge argument system ΠGE to convince the veri-
fier that the secret inputs he made satisfy the following conditions (due to the
limited space, the detailed process to build the system is given in the full version
of the paper):

– AR · m = uR mod q.
– hi = F · mdecn,m,q(A�

i ) mod q.
– certi = (idi,di, ri) has the specific form given in the joining group phase and

satisfies the Eq. (2).
– Vectors xrec,yrec,xoa,yoa have infinity B-bounded norms.
– Equations (3) and (4) hold.
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Correctness. The correctness of the proposed group encryption scheme fol-
lows from correctly decrypting the ABB HIBE ciphertexts generated for time
period t, which may cause some decryption errors. Indeed, during the decryption
procedure of DEC(skj , Ψ,L), we have:

c(2)rec − E�
i,t · c(1)rec = xrec − E�

i,t · yrec + m ·
⌊q

2

⌋

. (8)

Table 1. Comparison between scheme [27] and ours

Scheme [27] Ours

GM PK ˜O(λ2 · s) ˜O(d2λ2 + λ3)

GM SK ˜O(λ2) ˜O(d3λ2)

OA PK ˜O(λ2) ˜O(d2λ2 + λ3)

OA SK ˜O(λ2) ˜O(d4λ2 + dλ3.5)

User’s PK ˜O(λ2) ˜O(d2λ2 + λ3)

User’s SK ˜O(λ2) ˜O(d4λ2 + dλ3.5)

Ciphertext ˜O(λ) + |Σ| ˜O(d2λ + λ2) + |Σ|
Commun. ˜O(λ2) ˜O(d3λ2 + λ3.5)

Forward Secure � �

Note that ‖xrec‖∞ and ‖yrec‖∞ have upper bound B, and the discrete Gaus-
sian matrix ‖Ei,t‖∞ ≤ σt,�m · ω(

√
log m). This yields that the error term

‖xrec −E�
i,t ·yrec‖∞ is bounded by qαt,�σt,�m ·ω(log m)+σt,�m

3/2 ·ω(
√

log m) ≤
˜O(n2d+�+3) which is smaller than q/4 = ˜O(n2d+�+3.5). Therefore, the decryption
procedure returns m with overwhelming probability. This gives the correctness of
DEC(ski, Ψ,L). Similarly, the correctness of OPEN(skOA, Ψ, L) is also obtained.

Finally, by the perfect completeness of the ZKAoK system, we argue that if
a valid group member honestly performs all the the prescribed procedures, then
he can produce valid witness-vectors to carry out the protocol 〈P,V〉 and finally
convince the verifier that the generated ciphertext is valid.

4.2 Analysis of the Scheme

Security Analysis. We can prove that the anonymity and the message secrecy
of our scheme are satisfied under the SIS and LWE hardness assumptions with
the help of classical reduction methods. Due to the limits of space, we provide
the proofs in the full version of this paper.

Theorem 1. The scheme is sound assuming that the SIS assumption holds.

Proof. By our construction, the proof is straightforward and easily completed
by using the similar proof methods used in [27]. ��
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Theorem 2. The anonymity is satisfied if the LWEn,q,χ assumption holds and
the one-time signature OT S is strongly unforgeable.

Theorem 3. The message secrecy is satisfied if the LWEn,q,χ assumption holds
and the one-time signature OT S is strongly unforgeable.

Efficiency Analysis. For a security parameter λ, given the group size N = 2s

and total number of lifetime T = 2d −1, we make evaluations of bit-sizes of keys
and ciphertexts, as well as the communication cost of the scheme as follows.

– The size of public keys of GM, OA and user has same magnitude, and bit-size
˜O(d2λ2 + λ3) is available.

– The GM’s secret key features bit-size ˜O(d3λ2 + λ3.5), and that of OA and
users captures ˜O(d4λ2 +dλ3.5), and cert consists of a ˜O(dλ+λ1.5)-size tuple.

– The ciphertext Ψ consists of time period t ≤ T and vk∈ Z

√
n

p and two ABB
ciphertexts of size (3m+s)k, resulting in the total bit-size ˜O(d2λ+λ2)+ |Σ|.

– The communication cost of the protocol 〈P,V〉 largely relies on the bit-size
of witness F�

i,t · srec ∈ {0, 1}4n2k3
and is quantized as ˜O(d3λ2 + λ3.5).

In Table 1, we give a detailed comparison of our scheme with the only current
lattice-based group encryption scheme [27], in terms of efficiency and function-
ality. The forward security is achieved with a slightly reasonable cost: the sizes
of keys, ciphertexts and communication cost are larger at most d4 or λ1.5 than
those of [27]. In addition, our scheme allows the GM’s key size being independent
from group size s, and yields ciphertexts without dimension increase.

5 Conclusion

In this paper, we first formalized the forward-secure group encryption primitive.
Then, we modified the ABB HIBE into a lattice-based BTE. Further, by com-
bining some appropriate lattice materials, we constructed the first such scheme,
over lattices. Compared to the existing lattice-based group encryption scheme
[27], our scheme is forward secure with a slightly reasonable cost.
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Abstract. An anonymous identity-based encryption with tracing iden-
tities (AIBET) system enjoys that same strong privacy for receivers as a
normal anonymous identity-based encryption system. Additionally, an
AIBET system offers an identity tracing mechanism, which allows a
tracer, who has an identity-associated tracing key, to uncover the recip-
ient’s identity from the ciphertext. In this paper, we present an AIBET
system based on plain lattices by exploiting a hierarchical power of lat-
tice trapdoors in a novel way. We prove the security of the system under
the conservative learning-with-errors assumption in the standard model.
This is the first AIBET system provably secure under quantum-resistant
assumptions. Our construction’s efficiency is comparable to the state-of-
the-art lattice anonymous identity-based encryption system.

Keywords: Identity-based encryption · Anonymity · Lattice

1 Introduction

Identity-based encryption (IBE) is a type of public-key encryption in which a
user’s public key is its identity, such as an identity number or an email address.
Users’ private identity keys are issued by a trusted authority called key gen-
eration centre (KGC). Encryption can be done using the recipient’s identity
rather than using certified public keys, which simplifies public key management
of traditional public-key encryption where dedicated infrastructures need to be
maintained.

Anonymous identity-based encryption offers an additional privacy guaran-
tee to standard identity-based encryption. Anonymous IBE hides the recipient’s
identity from those who do not have the corresponding private identity key.
Although such strong privacy is attractive and benign from an individual’s point
of view, it can potentially become a dangerous means for unlawful parties to hide
communications against public safety or interest. For example, in an email fil-
tering system (a typical scenario where anonymous IBE systems are used), the
gateway may need to filter out all encrypted emails sent to a user who has misbe-
haved. Standard anonymous IBE prevents the gateway from implementing such
filtering since the gateway cannot identify the recipients from ciphertexts. There-
fore, an additional traceability function, which enables the recipients’ identities
c© Springer Nature Switzerland AG 2021
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to be revealed from the ciphertext, needs to be incorporated into anonymous
IBE systems to enable such filtering.

Blazy et al. [4] first formalised and constructed anonymous identity-based
encryption with traceable identities (AIBET).1 In addition to all components
of an anonymous IBE system, an AIBET system allows a tracer, who is given
identity-associated tracing keys, to test if a given ciphertext is destined for a par-
ticular recipient. Two security notions are formally defined for AIBET systems
in [4]. The notion of anonymity requires that given a ciphertext, the recipient’s
identity remains hidden from someone without the corresponding private iden-
tity key and tracing key. The notion of indistinguishability requires that for given
a ciphertext and a tracing key with the same identity, no one can distinguish
between a ciphertext that encapsulates the session key and a random string
from the ciphertext space. Such a formalisation highlights the importance that
data confidentiality (protected by the session key) should be preserved even if
privacy is lost (by the identity traceability). Note that the KGC and a tracer
are separated entities in [4] which reflects that a tracer, which has significantly
less power than KGC, may function as a gateway, and the system will retain
confidentiality even if tracers are corrupted.

Blazy et al. [4] provide two constructions of AIBET using pairing-friendly
cyclic groups in the standard model. The first construction, based on Boyen’s
standard-model anonymous IBE system [8], offers selective security (with a
polynomial-time reduction, or adaptive security using the complexity leveraging
technique [6]). The second construction, is based on Blazy et al.’s affine-MAC
IBE [5], and directly enjoys adaptive security. However, both constructions’ secu-
rity is ultimately based on the hardness of computing the discrete logarithms of
the groups, which would be insecure under quantum computers. To the best of
our knowledge, no AIBET systems are known with provable security based on
non-discrete-log-type and quantum-resistant assumptions.2

Our Contribution and Approach. Motivated by extending the constructions
of AIBET system from different, especially quantum-resistant computational
assumptions, we construct an AIBET system using plain lattices, which is prov-
ably secure under the conservative and (conjectured) quantum-resistant learning-
with-errors assumption, in the standard model.

An AIBET system has three levels of secret, the master private key, private
identity keys, and tracing keys. Being of the highest privilege, the master private
key can be used to generate private identity keys and tracing keys while the
reverse is computationally infeasible. Private identity keys can be used to decrypt
corresponding ciphertexts, recovering the messages (in the case of encryption) or
the session keys (in the case of a key encapsulation mechanism), and revealing
1 Instead of full-fledged encryption, Blazy et al. actually consider anonymous identity-

based key encapsulation mechanism with tracing identities.
2 We note that Lin et al. [14] propose a construction of AIBET system based on the

anonymous IBE system of Katsumata and Yamada [12]. However, the work does
not address the notion of indistinguishability which is what differentiates an AIBET
system from a standard anonymous IBE system.
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the recipients’ identities from the ciphertexts, whereas tracing keys only reveals
the recipients’ identities but cannot affect the confidentiality of the messages
or encapsulated session keys. We implement a hierarchical relation based on
Agrawal et al.’s anonymous IBE system [2] by exploiting the hierarchical power
of lattice trapdoors.

Technically, a (nearly) uniformly random matrix F ∈ Z
n×m
q where m =

O(n log q), defines a so-called q-ary lattice (see Sect. 2.1). A strong trapdoor of
F is a matrix R with an invertible square matrix H such that F = [A|AR+HG],
where G allows efficient low norm solutions to GX = 0. A trapdoor of F is a low
norm T ∈ Z

m×m such that FT = 0 where all columns are linearly independent
(i.e., T is a low norm basis for the q-ary lattice defined by F). A weak trapdoor
for F with respect to a random matrix U ∈ Z

n×�
q is a low norm matrix D ∈

Z
n×�
q such that FD = U. Established by a series of works on lattice trapdoors

[2,9,11,15], a strong trapdoor R can be used to efficiently generate a trapdoor
T, which in turn can be used to efficiently generates a weak trapdoor D. With
such mathematical relations, our construction essentially uses R, T, and D as
the master private key, a private identity key, and a tracing key. The ciphertext
of our system, like most standard model lattice encryption systems, is the dual-
Regev ciphertext [11,17]:

cᵀ
0 = sᵀF + eᵀ

0 ; cᵀ
1 = sᵀU + eᵀ

1 + μ · �q/2�

where the superscript ᵀ denotes the vector/matrix transpose, F ∈ Z
n×(m+w)
q

with m,w = O(n log q), U ∈ Z
λ
q , and e0 and e1 are low-norm vectors. Decryption

requires recovering s, which can be done by using T, and identity tracing requires
recovering μ, which can be done by using D. Anonymity is retained when none
of these trapdoors are present, since c0, c1 are samples of the LWE problem.
Confidentiality is retained even given a tracing key D since it does not help
recovering s. To allow tracing identity id, a tracing key associated with id is
created that is able to partial decrypt a given ciphertext. Extra partial decryption
verification information is provided along with the ciphertext to allow verification
of the partial decryption. If the partial decryption verifies, the tracer can be
ensure that the recipient’s identity for the ciphertext is id.

2 Preliminary

Let R be a matrix in Z
m×k. We use ‖R‖ to denote �2 norm of the longest column

of R, and ‖R‖∞ to denote the largest magnitude of the entries in R. Let s1(R)
denote the operator norm of R, i.e., s1(R) = sup‖x‖=1 ‖Rx‖. We denote by
x ← X the process of sampling x according to the distribution X. Let x ∼ X
denote sample x satisfies distribution X. We use U(X) to denote the uniform
distribution over the set X. We will be using standard asymptotic notations,
e.g., O, Ω, ω. Let λ ∈ N, the function f : N → R is said to be negligible if
f(λ) = λ−ω(1) and is written as f(λ) = negl(λ).

Let X and Y be two random variables over some finite set S. The
statistical distance between X and Y is defined as Δ(X,Y ) = 1

2

∑
s∈S
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|Pr[X = s] − Pr[Y = s]| . Let Xλ and Yλ be ensembles of random variables
indexed by the security parameter λ. We say that X and Y are negl(λ)-
statistically close (or simply statistically close) if Δ(Xλ, Yλ) = negl(λ).

For any integer q, x ∈ Zq, the algorithm Round(x) returns 0 if x is closer
to 0 than to �q/2� modulo q. Otherwise, it returns 1. The algorithm naturally
extends component-wise to vectors.

2.1 Lattices, Discrete Gaussians, and Trapdoors

Lattice. Let q be a prime, A ∈ Z
n×m
q and u ∈ Z

n
q . A q-ary lattice and its

shift are defined as Λ⊥
q (A) = {e ∈ Z

m : Ae = 0 (mod q)} and Λu
q (A) =

{e ∈ Z
m : Ae = u (mod q)}. A basis for lattice Λ⊥

q (A) is a m-by-m matrix
T with linearly independent column vectors in Λ⊥

q (A). By definition we have
AT = 0 ∈ Z

n×m
q .

Discrete Gaussians. Let m ∈ Z be a positive integer and Λ ⊂ Z
m. For any

real vector c ∈ R
m and positive parameter σ ∈ R>0, let the Gaussian function

ρσ,c(x) = exp
(−π‖x‖2/σ2

)
on R

m with center 0 and parameter σ. Define the
discrete Gaussian distribution over Λ with center 0 and parameter σ as DΛ,σ =
ρσ(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ(x). The following lemma

bounds the length of a discrete Gaussian vector.

Lemma 1 ([16]). For any lattice Λ of integer dimension m, and parameter
σ ≥ ω(

√
log m), Pr[‖x‖ > σ

√
m : x ← DΛ,σ] ≤ negl(m).

The following lemmas about the property of discrete Gaussians are useful for
arguing the security of our construction.

Lemma 2 ([12], Lemma 1). Let n, q, �,m be positive integers and r a positive
real satisfying r ≥ ω(

√
log n). Let b ∈ Z

m
q be arbitrary and z ← DZm,r. Then

there exists an efficient algorithm ReRand such that for any D ∈ Z
m×� and

positive real σ ≥ s1(D), the output of ReRand(D,bᵀ + zᵀ, r, σ) is distributed as
b′ᵀ = bᵀD+z′ᵀ ∈ Z

�
q where the distribution of z′ is statistically close to DZ�,2rσ.

Lemma 3 ([15], Lemma 2.9). Let h > 0, w > 0 be integers and s > 0. For
R ← Dh×w

Z,s , s1(R) ≤ s · O(
√

h +
√

w) with all but probability 2−Ω(h+w).

Lemma 4 ([11], Lemma 5.2). For prime q and integer b ≥ 2, let m ≥ n log q+
ω(log n). For A ← U(Zn×m

q ), r ← DZm,s with s ≥ ω(
√

log n), the distribution of
Ar ∈ Z

n
q is statistically close to U(Zn

q ) with overwhelming probability. Moreover,
the distribution of r conditioned on Ar = u ∈ Z

n
q is DΛu

q (A),s.

Learning with Errors Assumption. The security of our constructions is based
on the earning-with-errors (LWE) problem introduced by Regev [17]. Below we
follow the work [13] for the formulation of the LWE problem. We note that
this formulation is equivalent to the standard formulation, and has been used in
literature in lattice-based cryptosystems [1,13].
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Definition 1 (LWE). For integers q = q(n) ≥ 2 and an error distribution
χ = χ(n) over Zq, the advantage of an adversary A for the learning with errors
problem LWEn,m,q,χ is defined as

Adv
LWEn,m,q,χ

A (λ) = |Pr[A(A, sᵀA + eᵀ) = 1] − Pr[A(A,bᵀ + eᵀ) = 1]|

where A ← Z
n×m
q , s ← Z

n
q , e ← χm and b ← Z

n
q . We say LWEn,m,q,χ assump-

tion holds if for all p.p.t adversary A, AdvLWEn,m,q,χ

A ≤ negl(n).

Regev [17] shows that for αq ≥ √
n is as hard as approximating some traditional

worst-case lattice problems, e.g., SIVP problem. We refer to [17] for details.

Lattice Trapdoors. Let n ≥ 1, q ≥ 2 and p ≤ q. Let w = n�log q�, we use the
n-by-w gadget matrix ([15]) defined as G = In ⊗ [1, 2, 4, ..., 2k−1] ∈ Z

n×w
q . One

useful property of G is that the q-ary lattice it defines, i.e., Λ⊥
q (G) has a publicly

known basis TG ∈ Z
w×w with low norm ‖TG‖ ≤ √

5 (see [15], Proposition 4.2).
[15] shows how to use matrix G to sample a nearly uniformly random matrix

F ∈ Z
n×(m+w)
q along with “strong” trapdoor for the lattice Λ⊥

q (F): (1) Pick
A ← U(Zn×m

q ), R ← Dm×w
Z,ω(

√
log n)

, any n-by-n matrix H invertible over Z
n×n
q ;

(2) Return F = [A|AR + HG] and gadget trapdoor R. The Gaussian R is
“strong” in the sense that whereas it is not a basis of lattice Λ⊥

q (F), it does
everything that a low-norm basis does, and it can be used to efficiently generate
low-norm basis for Λ⊥

q (F). The following lemmas, collected from [2,15] states
this property which will be extensively used in our construction.

Lemma 5 ([2], Theorem 10, and [15], Theorem 5.1). Let q > 2, m > n,
k ≥ 1, and σ > 5 · s1(R) · ω(

√
log n)), U ∈ Z

n×k
q , there exists an efficient

algorithm SampleRight(R,F,H,U, σ) that outputs a matrix D ∈ Z
(m+w)×k dis-

tributed statistically close to DΛU
q (F),s.

In particular, there exist an efficient algorithm SampBasisRight(R,F,H, s)
that outputs a matrix T ∈ Z

(m+w)×(m+w), distributed statistically close to
DΛ⊥

q
(F, s), which is a basis of lattice Λ⊥

q (F), i.e., FT = 0 and the column
vectors of T are linearly independent.

We note that SampBasisRight basically runs SampleRight(R,F,H,0, σ) for 0 ∈
Z

n many times until the output vectors are all linearly independent, forming
a basis. By [3], sampling 2(m + w) such vectors using SampleRight would be
enough to get one basis on expectation.

The following lemma shows that a short basis of A can be used to solve
learning with errors (LWE) problem defined by A.

Lemma 6. Let A ← U(Zn×m
q ) where m > 2n. Let T ∈ Z

m×m be a basis of
lattice Λ⊥

q (A). Given yᵀ = sᵀA + eᵀ where s ∈ Z
n
q , e ∈ Z

m with ‖eᵀT‖∞ < q.
Then there exists an efficient algorithm Invert(A,T,y) outputs s and e with
overwhelming probability.
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Basically, the algorithm works by computing yᵀ mod q = eᵀT mod q. Since
‖eᵀT‖∞ < q, eᵀT mod q = eᵀT ∈ Z

m. As T has linearly independent columns
(by the definition of lattice basis), one can use Gaussian elimination to recover
e and then sᵀA. Finally, since a A has at least n linearly independent column
vectors, s can be recovered by Gaussian elimination.

2.2 Definition

In this section, we give definitions for AIBET systems. As in [4], we define
AIBET systems in the form of a key encapsulation mechanism instead of a full-
fledged encryption.3 An anonymous identity-based key encapsulation mechanism
replaces the encryption algorithm by a key encapsulation algorithm which uses
the target identity to produce a session key (with bit-length as the security
parameter) and a ciphertext. The decryption algorithm is replaced by a key
decapsulation algorithm which applies the private identity key to the ciphertext
to recover the session key. In practice, such a key encapsulation mechanism is
used with a symmetric-key cipher to encrypt bulky data.

An AIBET with session key space K, identity space ID, and ciphertext space
C, consist of six efficient algorithms. The key generation centre (KGC), trusted
by all users, runs Setup(1λ) which takes as input a security parameter λ and
returns the public parameters Pub and a master private key Msk. To obtain a
private identity key, a user submits its identity id to the KGC. After verifying id,
KGC runs Extract(Pub,Msk, id) which produces an identity private key Skid. The
KGC runs the tracing key generation algorithm TskGen(Pub,Msk, id) generates
an identity tracing key for a given identity id. The sender runs the encapsulation
algorithm Encap(Pub, id) to generate a session key K ∈ K (which may be used
with a symmetric-key cipher to encrypt the actual data), and generates a cipher-
text Ct that encapsulates K. Upon receiving the ciphertext Ct, the receiver runs
the key decapsulation algorithm Decap(Pub,Skid,Ct) which recovers a session
key K or return ⊥, indicating decapsulation is failed. A tracer runs the tracing
algorithm TkVer(Tdid, id,Ct) to check whether a ciphertext Ct is for the given
identity id. TkVer returns 1 if Ct is for the user with identity id, or 0, otherwise.

We consider correctness and soundness of AIBET systems. For all λ ∈ N,
all pairs of (Pub,Msk) ← Setup(1λ), all identities id ∈ ID, all Skid ←
Extract(Pub,Msk, id), and all Tdid ← TskGen(Pub,Msk, id), the correctness of
AIBET requires that

Pr [(Decap(Pub,Skid,Ct) = k) ∧ (TkVer(Tdid, id,Ct) = 1)] ≥ 1 − negl(λ)

and the soundness of AIBET requires

Pr[Decap(Pub,Skid,Ct) = ⊥ | TkVer(Tdid, id,Ct) = 0] ≥ 1 − negl(λ)

3 In this paper, we use the acronym AIBET for both anonymous identity-based encryp-
tion with traceable identities and anonymous identity-based key encapsulation mech-
anism with traceable identities.
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where the probability is taken over the randomness of all the algorithms of the
AIBET system.

Following [4], we give the definitions of anonymity and ciphertext indistin-
guishability for AIBET. Anonymity essentially states a ciphertext of an AIBET
system is computationally indistinguishable from a random string from the
ciphertext space, provided the efficient adversary does not have the tracing key
of the ciphertext identity. Ciphertext indistinguishability ensures that given a
ciphertext and a session key, it is computationally infeasible for to tell whether
the session key is valid (i.e. correctly encapsulated in the ciphertext) or a random
string, even with the tracing key associated with the identity of the ciphertext.

Definition 2. Let λ ∈ N be the security parameter. We say an AIBET sys-
tem Π = (Setup,Extract,Encap,TskGen,Decap,TkVer), with session key space
K, identity space ID, and ciphertext space C, has ciphertext anonymity (or is
anonymous) against selective-identity attack and chosen-plaintext attack if

Advanon
Π,A (λ) =

∣
∣
∣
∣Pr[Expanon

Π,A (λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ)

where the experiment Expanon
Π,A (λ) is defined in Fig. 1, in which the challenge

identity id∗ is not allowed to query oracles OExtract(·) and OTskGen(·).

Fig. 1. Anonymity experiment of AIBET.

Definition 3. Let λ be the security parameter. We say an AIBET system
Π = (Setup,Extract,Encap,TskGen,Decap,TkVer), with session key space K,
identity space ID, and ciphertext space C, has ciphertext indistinguishability
against selective-identity attack and chosen-plaintext attack if

Advind−sid−cpa
Π,A (λ) =

∣
∣
∣
∣Pr[Expind−sid−cpa

Π,A (λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ)

where the experiment Expind−sid−cpa
Π,A (λ) is defined in Fig. 2 and the challenge

identity id∗ is allowed for OTskGen(·) but not allowed for OExtract(·).
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Fig. 2. Ciphertext indistinguishability experiment of AIBET.

2.3 Construction

Parameters. Let λ be the security parameter. We assume that all parameters
are functions of λ. The construction uses a set of public known parameters
(n, q,m,w,H, s, r, α, σ) that we specify here. We assume all algorithms of the
system implicitly take this parameter set as input.

– Let n ≥ 2, prime q ≥ 2, w = n�log q�, and m ≥ n log q+ω(log n). The identity
space is ID = Z

n
q \ {0}.

– Let H : Zn
q → Z

n×n
q be a full-rank difference encoding (FRD) (see [2]). It has

a property that for x,y ∈ Z
n
q where x �= y, H(x) − H(y) is invertible over

Z
n×n
q . In particular, H(x) is invertible over Z

n×n
q for non-zero x.

– Set s = O(
√

m) · ω(log n), r = αq, α =
(
ω(log1.5 n) · O(m2.5)

)−1
, and σ ≥

ω(log1.5 n) · O(m2.5) large enough for correctness and security.

In our construction, we assume each identity id can only be given exactly one
tracing key Tdid. If the same identity is used to request a tracing key more
than once, the same tracing key will be returned. We note such a restriction
has happened in existing IBE systems, e.g., Gentry’s IBE system [10], and a
pseudorandom function (PRF) can simply make the system stateless.

Algorithm Descriptions. We recall that for integer q > 2, x ∈ Zq, the algorithm
Round(x) returns 0 if x is closer to 0 than to �q/2� modulo q. Otherwise, it
returns 1. The algorithm naturally extends component-wise to vectors. In the
construction ⊕ denotes the XOR operation. The construction of the AIBET
system Π is described as follows.

– Setup(1λ) :
1. Sample A ← U(Zn×m

q ), R ← Dm×w
Z,ω(

√
log n)

.

2. Set A1 ← AR and U,U1 ← U(Zn×λ
q ).

3. Output Pub = (A,A1,U,U1) and Msk = R.
– Extract(Pub,Msk, id) :

1. Set Fid ← [A|A1 + H(id)G].
2. Sample Tid ← SampBasisRight(A,Fid,R,H(id), s) ∈ Z

(m+w)×(m+w)
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3. Return Skid ← Tid.
– Encap(Pub, id) :

1. Sample, k′,k′′ ← U({0, 1}λ); Set k ← k′ ⊕ k′′.
2. Sample s ← U(Zn

q ), e0,← Dm
Z,r, e1 ← Dw

Z,2rσ, e2 ← Dλ
Z,2rσ, e3 ← Dλ

Z,r.
3. Set

[cᵀ
0 |cᵀ

1 ] ← sᵀ[A|A1 + H(id)G] + [eᵀ
0 |eᵀ

1 ]

and
[cᵀ

2 |cᵀ
3 ] ← sᵀ[U|U1] + [(e2 + k′�q/2�)ᵀ|(e3 + k′′�q/2�)ᵀ].

4. Return Ct ← (c0, c1, c2, c3,k′) and K = k.
– TskGen(Pub,Msk, id)

1. Set Fid ← [A|A1 + H(id)G].
2. Sample Did ← SampleRight(R,Fid,H(id),U, s) ∈ Z

(m+w)×λ.
3. Return Tdid ← Did.

– Decap(Pub,Skid,Ct)
1. Parse Ct = (c0, c1, c2, c3,k′); Output ⊥ if Ct doesn’t parse.
2. Set Fid ← [A|A1 + H(id)G]; Recover s via Invert(Tid,Fid, [c

ᵀ
0 |cᵀ

1 ]).
3. Recover k̃′ ← Round(cᵀ

2 − sᵀU); Return ⊥ if k̃′ �= k′.
4. Recover k′′ ← Round(c3 − sᵀU1) and set k ← k′ ⊕ k′′.
5. Return K = k.

– TkVer(Pub,Tdid,Ct)
1. Parse Ct = (c0, c1, c2, c3,k′); Output ⊥ if Ct doesn’t parse.
2. Set Fid = [A|A1 + H((id)G]; Recover k̃′ ← Round(cᵀ

2 − [cᵀ
0 |cᵀ

1 ]Did).
3. Return 1 if k̃′ = k′; Otherwise, return 0.

Correctness and Soundness. First of all, SampleRight and SampBasisRight are
ensured to run correctly as per Lemma 5. According to Lemma 3, we have
s1(R) = O(

√
m) · ω(

√
log n). So, s = O(

√
m) · ω(log n) ≥ 5 · s1(R) · ω(

√
log n) as

required.
Second, we have ‖[eᵀ

0 |eᵀ
1 ] · Tid‖∞ ≤ ‖[eᵀ

0 |eᵀ
1 ]‖ · ‖Tid‖ ≤ ‖[eᵀ

0 |eᵀ
1 ]‖ ≤ (2rσ ·√

m + w) · (s · √
m + w) ≤ q/4 where the third inequality is due to Lemma

1. Using Lemma 6, this means Invert under Decap runs correctly except with
negligible probability. Moreover, since e2 ∼ DZλ,2rσ and e2 ∼ DZλ,r. Applying
Lemma 1 and our parameter setup, ‖e3‖∞ ≤ ‖e2‖∞ ≤ ‖e2‖ ≤ 2rσ

√
λ < q/4.

Hence, Round(cᵀ
2 − sᵀU) = Round((k′�q/2�)ᵀ + eᵀ

2) and Round(cᵀ
3 − sᵀU1) =

Round((k′′�q/2�)ᵀ +eᵀ
3) will correctly return k′ and k′′, respectively with all but

negligible probability. Then, k = k′ ⊕ k′′ can be recovered.
For correctness of TkVer, we have Round(cᵀ

2 −[cᵀ
0 |cᵀ

1 ]Did) = Round((k′�q/2�)ᵀ

+ [eᵀ
0 |eᵀ

1 ] ·Did). Did has a distribution statistically close toDΛU
q ,s, and according

to Lemma 1, ‖Did‖ ≤ s
√

m + w. So, ‖[eᵀ
0 |eᵀ

1 ] · Did‖ ≤ 2rσ
√

w · s
√

m + w ≤ q/4
by the parameter we set up, and thus, TkVer runs correctly except negligible
probability.

The soundness of the construction follows directly from the fact that if TkVer
returns 0, Decap returns ⊥ in its third step.
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Achieving Adaptive Security. In the next section, we prove the security of the
above construction in the so-called selective security mode, as defined in Defi-
nition 2 and Definition 3. In this mode, the adversary is required to submit the
identity id∗ that it wants to be challenged upon before seeing Pub. To achieve
security in the adaptive security model in which the adversary can decide id∗

for the challenge ciphertext after seeing Pub and making identity key extraction
queries and tracing key queries, we can simply apply the complexity leveraging
argument (let the proof guess id∗) [6] . Based on the sub-exponential hardness
of LWE problem, this results in meaningful security. We note that complexity
leveraging often leads to more efficient schemes than the ones with “natural”
adaptive security proof, as discussed in [7]. However, it would be nice to con-
struct an AIBET scheme from lattices or other post-quantum computational
problems that has a direct proof in the adaptive security model.

3 Security Proof

We proceed with the proofs using game sequences. Each security game will out-
put a well defined bit value. We denote by Si the event that the ith game returns
1 (which usually indicates the adversary makes a correct guess).

3.1 Proof of Anonymity

Theorem 1. The construction Π = (Setup,Extract,Encap,TskGen,Decap,
TkVer) has ciphertext anonymity under the LWEn,q,m,r assumption. In partic-
ular, if there exist an adversary A that has advantage Advanon

Π,A (λ) against Π,
we have Advanon

Π,A (λ) ≤ Adv
LWEn,q,m+λ,r

B (λ) + negl(λ) for some negligible function
negl(λ).

Proof. The proof starts from the first security game Game 0, which is the real
security experiment defined in Fig. 2, and gradually modifies Game 0 towards
the final security game Game 3, in which the adversary has no advantage. The
modifications are either statistically indistinguishable (based on information-
theoretical arguments) or computationally indistinguishable under the LWE
assumption.

Game 0. Game 0 is identical to Expanon
Π,A (λ) in which real algorithms specified

in our construction are run. To construct the challenge ciphertexts of identity
id∗, the game constructs (K,Ct∗0) ← Encap(Pub, id∗) and samples Ct∗1 uniformly
at random from the ciphertext space C. Then, the adversary is given Ct∗b for a
random coin b ← U({0, 1}). Eventually, the adversary outputs b′ ∈ {0, 1}. The
game returns 1 if b′ = b, or 0, otherwise. By definition, we have

Pr[S0] = Pr[Expanon
Π,A (λ) = 1] (1)
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Game 1. Game 1 modifies Game 0 in construction of Pub and responding private
identity key extraction queries and tracing key queries. To construct Pub, Game
1 uses the challenge identity id∗ supplied by the adversary A and does:

1. Sample A ← U(Zn×m
q ), R ← Dw

Zm,ω(
√

log n)
, R̃ ← Dλ

Zm,ω(
√

log n)
.

2. Set A1 ← AR − H(id∗)G, U ← AR̃, U1 ← U(Zn×λ
q ).

3. Output Pub = (A,A1,U,U1) and Msk = R.

Recall that in Game 0, A1 is set as AR where R ← Dw
Zm,ω(

√
log n)

, and U ←
U(Zn×λ

q ). The identity key extraction queries and the tracing key queries are
responded to using the strong trapdoor R. We note that the adversary is not
allowed to use the challenge identity id∗ for queries.

– To respond to a private identity key query for id �= id∗, the game sets

Fid = [A|A1 + H(id)G] = [A|AR + (H(id) − H(id∗))G].

By the property of full-rank difference encoding H, H(id)−H(id∗) is invertible
over Z

n×n
q . So, the game gets Skid = Tid by

Tid ← SampBasisRight(R,Fid,H(id) − H(id∗), s).

– To respond to a tracing key query for id �= id∗, the game sets Fid = [A|AR+
(H(id) − H(id∗))G], and gets Tdid = Did by

Did ← SampleRight(R,Fid,H(id) − H(id∗),U, s).

Finally, the challenge ciphertext in Game 1 is constructed exactly as in Game 0.
We analyse the game. First of all, consider the adversary A’s view of

Pub before it launches any query. Recall the matrices R ∼ Dw
Zm,ω(

√
log n)

,

R̃ ∼ Dλ
Zm,ω(

√
log n)

, applying Lemma 4 shows that the distribution of Pub in
Game 1, i.e.,

Pub = (A,A1 ← AR − H(id∗)G,U ← AR̃,U1 ← U(Zn×λ
q ))

and the distribution of Pub in Game 0, i.e.,

Pub =
(
A,A1 ← AR,U ← U(Zn×λ

q ),U1 ← U(Zn×λ
q )

)

are both statistically close to the distribution

(A,A1 ← U(Zn×w
q ),U ← U(Zn×λ

q ),U1 ← U(Zn×λ
q ))

Next, we consider the responses to private key extraction queries and tracing
key queries. Unlike Game 0, Game 1 cannot respond to queries with id = id∗

(because the strong trapdoor for Fid∗ = [A|AR] vanishes. However, no such
query is allowed by the security model. For id �= id∗, Lemma 5 shows that in
both Game 0 and Game 1, Skid = Tid has a distribution statistically close to
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DΛ⊥
q (Fid),s, and Tdid = Did has a distribution statistically close to DΛU

q (Fid),s,
where the parameters s is public. Note that Fid, U are independent of R and
R̃, so are Tid and Did. Meanwhile, the challenge ciphertext does not change the
adversary’s view on Pub. Hence, the distributions of Pub in Game 0 and Game
1 are statistically close from the adversary’s view, given all the responses to
queries. Using this fact, we conclude that the distributions of (Fid,U) in Game
0 and Game 1 are statistically close, and thus, the distributions of all query
responses Tid and Did in Game 0 and Game 1 are statistically close. This shows
Game 0 and Game 1 are statistically indistinguishable, and

|Pr[S1] − Pr[S0]| ≤ negl(λ) (2)

for some negligible function λ.

Game 2. Game 2 is identical to Game 1 except that it modifies the construction
of the challenge ciphertext. In particular, given the challenge identity id∗, the
game does the following to generate Ct∗0 (recall, Ct∗1 is sampled uniformly at
random from the ciphertext space C):

1. Sample k′,k′′ ← U({0, 1}n); Set k ← k′ ⊕ k′′.
2. Sample s ← U(Zn

q ), e0 ← Dm
Z,r, e3 ← Dλ

Z,r.
3. Set cᵀ

0 ← sᵀA + eᵀ
0 , cᵀ

3 ← sᵀU1 + (e3 + k′′�q/2�)ᵀ and

[cᵀ
1 |cᵀ

2 ] ← [ReRand(R, cᵀ
0 , r, σ)|ReRand(cᵀ

0 , R̃, r, σ) + (k′�q/2�)ᵀ].

4. Return Ct∗0 ← (c0, c1, c2, c3,k′)

Note the ciphertext components c1, c2 are constructed using c0. We argue that
Ct∗0 is statistically close to the distribution of a real ciphertext. First, c0 and c3

are distributed exactly as they are in the real system. Using Lemma 2 with that
fact s1(R), s1(R̃) ≤ σ, and A1 = AR − H(id∗)G, we get

cᵀ
1 = ReRand(R, cᵀ

0 , r, σ) = (sᵀA)R + eᵀ
1

= sᵀ(A1 + H(id∗)G) + e1

and

cᵀ
2 = ReRand(R̃, cᵀ

0 , r, σ) + (k′�q/2�)ᵀ = (sᵀA)R̃ + eᵀ
2 + (k′�q/2�)ᵀ

= sᵀU + (e2 + k′�q/2�)ᵀ

where the distribution of e1 and e2 are statistically close to DZw,2rσ and DZλ,2rσ.
So, Game 1 and Game 2 are statistically indistinguishable, and

|Pr[S2] − Pr[S1]| ≤ negl(λ) (3)

for some negligible function negl(λ).
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Game 3. Game 3 is identical to Game 2 except that it further modifies the way
generates Ct∗0. In particular, given the challenge identity id∗, the game does:

1. Sample k′,k′′ ← U({0, 1}n); Set k ← k′ ⊕ k′′.
2. Sample b̄ ← U(Zm

q ), b̃ ← U(Zλ
q ), e0 ← DZm,r, and e3 ← DZλ,r.

3. Set cᵀ
0 = b̄ᵀ + eᵀ

0 and cᵀ
3 = b̃ᵀ + (e3 + k′′�q/2�)ᵀ.

4. Set

[cᵀ
1 |cᵀ

2 ] ← [ReRand(R, cᵀ
0 , r, σ)|ReRand(cᵀ

0 , R̃, r, σ) + (k′�q/2�)ᵀ].

5. Return Ct∗0 ← (c0, c1, c2, c3,k′).

We first show that Game 3 and Game 2 are computationally indistinguishable
under the LWE assumption. To this end, we construct an LWE adversary B.
B receives an LWEn,q,m+λ,r problem challenge (C, cᵀ = bᵀ + eᵀ), where C ∈
Z

n×(m+λ)
q is random, c ∈ Z

m+λ
q , and e ∼ Dm+λ

Z,r . It needs to decide whether b
is uniformly random (in which case c is also uniformly random), or there is a
vector s ∈ Z

n
q such that bᵀ = sᵀC. B receives the challenge identity id∗ and

proceeds to the simulation as follows:

– Set [A|U1] ← C where A ∈ Z
n×m
q and U1 ∈ Z

n×λ
q .

– Pick R ← Dm×w
Z,ω(

√
log n)

, R̃ ← Dm×λ
Z,ω(

√
log n)

; Set A1 ← AR − H(id∗)G, U ←
AR̃.

– Set Pub = (A,A1,U,U1)
– Respond to the private identity key extraction queries and tracing key queries

as Game 2 (Game 3 does not modify the ways that queries are responded).
– Split cᵀ = bᵀ + eᵀ ∈ Z

m+λ
q into c̄ᵀ = b̄ᵀ + eᵀ

0 ∈ Z
m
q and c̃ᵀ = b̃ᵀ + eᵀ

3 ∈ Z
λ
q

and create the challenge ciphertext Ct∗0 by:
1. Sample k′,k′′ ← U({0, 1}n); Set k ← k′ ⊕ k′′.
2. Set cᵀ

0 ← c̄ᵀ and cᵀ
3 ← c̃ᵀ + (k′′�q/2�)ᵀ.

3. Set

[cᵀ
1 |cᵀ

2 ] ← [ReRand(R, cᵀ
0 , r, σ)|ReRand(cᵀ

0 , R̃, r, σ) + (k′�q/2�)ᵀ].

4. Return Ct∗0 ← (c0, c1, c2, c3,k′).
– Finally, return what A returns.

We can see that Pub that B creates has the correct distribution as required
by Game 2 and Game 3. Moreover, B can respond to queries properly. When
B receives real LWE samples, i.e., bᵀ = xᵀC, we have cᵀ

0 = sᵀA + eᵀ
0 and

cᵀ
3 = sᵀU1 + eᵀ

3 , meaning that c0, c3 are distributed as in Game 2. Also, using
Lemma 2, c1 and c2 are distributed as in Game 2. Therefore, we can see that B
simulates Game 2 and, hence,

Pr[S3] = Pr[B(C, sᵀC + eᵀ) = 1].

On the other hand, if B receives random samples, Ct∗0 distributes as in Game 3
and, thus, B simulates Game 3 which gives

Pr[S2] = Pr[B(C,bᵀ + eᵀ) = 1].
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for random b ∈ Z
m
q . So, we get

|Pr[S3] − Pr[S2]| = |Pr[B(C,xᵀC + eᵀ) = 1] − Pr[B(C,bᵀ + eᵀ) = 1]|
≤ Adv

LWEn,q,m+λ,r

B (λ) (4)

We argue that the challenge ciphertext Ct∗0 constructed in Game 3 has
uniform distribution over the ciphertext space. In Game 3, Pub = (A ←
U(Zn×m

q ),A1 ← AR − H(id∗)G,U ← AR̃,U1 ← U(Zλ
q )), and the challenge

ciphertext Ct∗0 = (c0, c1, c2, c3,k′) where for random vectors b̄ ∈ Z
m
q , b̃ ∈ Z

λ
q ,

cᵀ
0 = b̄ᵀ + eᵀ

0

cᵀ
1 = ReRand(R, cᵀ

0 , r, σ) = b̄ᵀR + eᵀ
1

cᵀ
2 = ReRand(cᵀ

0 , R̃, r, σ) + (k′�q/2�)ᵀ = b̃ᵀR̃ + eᵀ
2 + (k′�q/2�)ᵀ

cᵀ
3 = b̃ᵀ + eᵀ

3 + (k′′�q/2�)ᵀ

Applying Lemma 2, e1 and e2 are statistically close to DZw,2rσ and DZλ,2rσ,
respectively. Using the same argument as in proving formula (2) using Lemma
5, from the adversary’s view, the responses Tid ∼ DΛ⊥

q (Fid), Did ∼ DΛU
q (Fid)

(where Fid = [A|A1 + H(id)G] = [A|AR + (H(id) − H(id∗))G]) only depends
on A, A1 from Pub. On the other hand, we have already used Lemma 4 to show
that A1 has a distribution that is statistically close to U(Zn×w

q ). Therefore, no
information about R and R̃ are leaked through answering private key extraction
queries and tracing key queries. Therefore, applying Lemma 4 again, we get

([
A
b̄ᵀ

]

,

[
A
b̄ᵀ

]

R,

[
A
b̄ᵀ

]

R̃
)

=
([

A
b̄ᵀ

]

,

[
A1 − H(id∗)G

b̄ᵀR

]

,

[
U

b̄ᵀR̃

])

and ([
A
b̄ᵀ

]

,

[
A1 − H(id∗)G

uᵀ
1

]

,

[
U
uᵀ

2

])

are statistically close, where u1 ← U(Zw
q ), u2 ← U(Zn

q ). Moreover, we know
that in Game 3, b̃ is random over Z

λ
q . Hence, all components of Ct∗0 are either

uniformly random (i.e., k′) or masked by uniformly random vectors (i.e., b̄,
uᵀ

1 = b̄ᵀR, uᵀ
2 = b̄ᵀR̃). So, both Ct∗0 and Ct∗1 have distributions statistically

close to uniform distribution over the ciphertext space, and the adversary A has
no significant advantage in wining the game, i.e.,

|Pr[S3] − 1/2| ≤ negl(λ) (5)

for some negligible function negl(λ). Combining inequalities (1)–(5) results in

Advanon
Π,A (λ) ≤ Adv

LWEn,q,m+λ,r

B (λ) + negl(λ)

for some negligible function negl(λ). This concludes the proof. ��
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3.2 Proof of Ciphertext Indistinguishability

Theorem 2. The construction Π = (Setup,Extract,Encap,TskGen,Decap,
TkVer) has ciphertext indistinguishability under the assumption that LWEn,q,m,r

is hard. In particular, if there exist an adversary A that has advantage
Advind−sid−cpa

Π,A (λ) against Π, we have Advind−sid−cpa
Π,A (λ) ≤ Adv

LWEn,q,m+λ,r

B (λ) +
negl(λ) for some efficient algorithm B and negligible function negl(λ).

Proof. The proof starts from the first security game Game 0, which is the real
security experiment defined in Fig. 2, and gradually modify it towards to the final
security game Game 3, in which the adversary has no advantage. The modifica-
tions are either statistically indistinguishable based on information-theoretical
arguments or computationally indistinguishable to under the LWE assumption.
The proof is similar to the proof of Theorem 1, but it differs in dealing with
answering the tracing key query on the challenge identity id∗.

Game 0. Game 0 is identical to Expind−sid−cpa
Π,A (λ) in which real algorithms

specified in our construction are run. In the game, the adversary supplies the
challenge identity id∗ before seeing Pub. To construct the challenge ciphertext
and session key under the selected identity id∗, the game runs (K∗

0,Ct
∗) ←

Encap(Pub, id∗), sample a random session key K∗
1 ← U({0, 1}n), flips a random

coin b ← U({0, 1}), and passes on (K∗
b ,Ct

∗) to the adversary A. The adversary
can make identity key extraction queries on any identity id �= id∗ as well as
tracing key queries on any identity id including id∗. Eventually, the adversary
A returns b′ ∈ {0, 1} and the game outputs 1 if b′ = b, or 0, otherwise. By
definition,

Pr[S0] = Pr[Expind−sid−cpa
Π,A (λ) = 1] (6)

Game 1. Game 1 modifies Game 0 in the ways that how Pub is generated and
how the key extraction queries and tracing key queries are answered. Using the
challenge identity id∗ supplied by the adversary, the game does the following to
generate Pub:

1. Sample A ← Z
n×m
q , R ← Dw

Zm,ω(
√

log n)
, D1 ← Dλ

Zm,s, D2 ← Dλ
Zw,s.

2. Set A1 ← AR − H(id∗)G, U ← AD1 + (AR) · D2; Sample U1 ← Z
n×λ
q .

3. Return Pub = (A,A1,U,U1), Msk = R, and D1,D

The game passes on Pub to the adversary and keeps R, D1, and D2.
The game responds to queries from the adversary as follows:

1. For a private identity key query on id �= id∗, the game sets

Fid = [A|A1 + H(id)G] = [A|AR + (H(id) − H(id∗))G]

By the property of full-rank difference encoding H, H(id)−H(id∗) is invertible
over Z

n×n
q . The game obtains Skid = Tid by

Tid ← SampBasisRight(R,Fid,H(id) − H(id∗), s).
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2. For a tracing key query on id �= id∗, the game again sets

Fid = [A|A1 + H(id)G] = [A|AR + (H(id) − H(id∗))G],

and obtains Tdid = Did by

Did ← SampleRight(R,Fid,H(id) − H(id∗),U, s).

3. To respond to the tracing key query for id∗,4 the game sets

Did∗ =
[
D1

D2

]

∈ Z
(m+w)×n

and returns Tdid∗ = Did∗ (Recall D1, D2 have been generated with Pub.).

Finally, Ct∗ and (K∗
0,K

∗
1) in Game 1 are constructed as in Game 0.

We note that the only difference between Game 1 in this proof and Game
1 in the security proof of Theorem 2 is how U is constructed. So, first we can
use the same argument from the proof of Theorem 2 to show that the distribu-
tions of (A,A1,U1) (and particularly the matrix Fid = [A|A1 + H(id)G]) and
Tid in Game 0 and Game 1 are statistically close. It remains to show that the
distributions of U, Did (including Did∗) in the two games are statistically close.

Recall that Fid∗ = [A|AR] is statistically close to U(Zn×(m+w)
q ) according to

Lemma 4. So, the columns of Fid∗ generates Z
n
q with overwhelming probability.

Therefore, applying Lemma 4 shows that for s ≥ ω
√

log n the distributions
U = FidDid is statistically close to U(Zλ

q ). Moreover, for id �= id∗, Did is generated
by SampleRight which has a distribution statistically close to Dn

ΛU
q (Fid),s

according

to Lemma 5. Using Lemma 4, Did∗ has a distribution Dλ
Zm+w,s conditioned on

FidDid = U which is precisely DΛU
q (Fid∗ ),s. Finally, we note that our AIBET

system issues only one tracing key to each identity. The same tracing key (i.e.,
Tdid∗ = Did∗) will be replied for multiple tracing key queries for id∗. So, the
adversary does not gain more information by making tracing key queries.

The challenge ciphertexts in Game 0 and Game 1 are generated in the same
way, so Game 0 and Game 1 are statistically indistinguishable, and

|Pr[S1] − Pr[S0]| ≤ negl(λ) (7)

for some negligible function negl(λ).

Game 2. Game 2 is identical to Game 1 except it modifies the construction of
the challenge ciphertext from Game 1. In particular, given the challenge identity
id∗, Game 2 uses Pub to do:

1. Sample k∗
0,k

′ ← U({0, 1}λ); Set k′′ ← k∗
0 ⊕ k′.

4 Recall the adversary is allowed to make a tracing key query for id∗ and such a tracing
key should not allow the adversary to distinguish a session key generated by the real
encapsulation algorithm or a random session key.
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2. Sample s ← Z
n
q , e0 ← DZm,r, e3 ← DZλ,r.

3. Set cᵀ
0 ← sᵀA + eᵀ

0 , cᵀ
3 ← sᵀU1 + eᵀ

3 + (k′′�q/2�), and

[cᵀ
1 |cᵀ

2 ] ← [ReRand(R, cᵀ
0 , r, σ)|ReRand(cᵀ

0 ,D1 + RD2, r, σ) + (k′�q/2�)ᵀ].

4. Return Ct∗ ← (c0, c1, c2, c3,k′) and K∗
0 = k∗

It also selects a random session key K∗
1 ← U({0, 1}n), a random coin b ←

U({0, 1}), and returns (K∗
b ,Ct

∗) to the adversary.
We argue that Ct∗ statistically distributed as the challenge ciphertext in

Game 1. First of all, we can see that c0 and c3 are distributed exactly as the
ones in Game 1. Recall that the game (like in Game 1) generates the public
matrix U in Pub by sampling D1 ∼ Dλ

Zm,s, D2 ∼ Dλ
Zw,s and computes U ←

AD1 + (AR)D2. Since the singular value s1(D1 + RD2) ≤ σ, using Lemma 2,
we have

cᵀ
1 = ReRand(R, cᵀ

0 , r, σ) = (sᵀA)R + eᵀ
1

= sᵀ(A1 + H(id∗)G) + e1

and

cᵀ
2 = ReRand(D1 + RD2, c

ᵀ
0 , r, σ) + (k′�q/2�)ᵀ

= (sᵀA)(D1 + RD2) + eᵀ
2 + (k′�q/2�)ᵀ

= sᵀU + (e2 + k′�q/2�)ᵀ

where the distribution of e1 and e2 are statistically close to DZw,2rσ and DZλ,2rσ,
as required. This shows that Game 1 and Game 2 are statistically indistinguish-
able. Hence,

|Pr[S2] − Pr[S1]| ≤ negl(λ) (8)

for some negligible function negl(λ).

Game 3. Game 3 is identical to Game 2 except it further modifies that way that
generates Ct∗ from Game 2. In particular, given the challenge identity id∗, the
game does:

1. Sample k∗,k′ ← U({0, 1}n); Set k′′ ← k ⊕ k′.
2. Sample b̄ ← U(Zm

q ), b̃ ← U(Zλ
q ), e0 ← DZm,r, e3 ← DZλ,r.

3. Set cᵀ
0 ← b̄ᵀ + eᵀ

0 and cᵀ
3 ← b̃ + eᵀ

3(k′′�q/2�)ᵀ, and

[cᵀ
1 |cᵀ

2 ] ← [ReRand(R, cᵀ
0 , r, σ)|ReRand(D1 + RD2, c

ᵀ
0 , r, σ) + (k′�q/2�)ᵀ].

4. Return Ct∗0 ← (c0, c1, c2, c3,k′).

Since the only change we make from Game 2 is to replace cᵀ
0 = sᵀA + eᵀ

0 to
cᵀ
0 = b̄ᵀA+eᵀ

0 and cᵀ
3 = sᵀU1+eᵀ

3 +(k′′�q/2�)ᵀ to cᵀ
3 = b̃ᵀ+eᵀ

3 +(k′′�q/2�)ᵀ. By
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using the same argument of proof of formula (4), we can use the LWE assumption
to show Game 2 and Game 3 are computationally indistinguishable, i.e.,

|Pr[S3] − Pr[S2]| ≤ Adv
LWEn,q,m+λ,r

B (λ) (9)

for some efficient adversary B.
We can see that, in Game 3, c3 is distributed uniformly random over Z

λ
q ,

because b̃ ← U(Zλ
q ). Therefore, from the adversary’s view, the ciphertext is

independent of k′′. That is the value of K∗
0 = k = k′ ⊕ k′′, the same as K∗

1,
is uniformly random over {0, 1}λ under A’s view. Hence, the adversary has no
advantage in winning the security game and

|Pr[S3]| = 1/2. (10)

Combining inequalities (6)–(10) using triangle inequality shows that

Advind−sid−cpa
Π,A (λ) ≤ Adv

LWEn,q,m+λ,r

Π,A (λ) + negl(λ)

for some negligible function negl(λ). This completes the proof. ��

4 Conclusion and Discussion

In this paper, we have presented the first construction of anonymous identity-
based encryption (key encapsulation mechanism) with traceable identities
(AIBET) using quantum-resistant assumptions. Specifically, the security of our
construction is given in the standard model based on the conservative learning
with errors assumption.

Our construction exploits the hierarchical power of different lattice trap-
doors to implement the hierarchical relations among the master private key,
private identity keys, and the tracing keys. Our construction incorporates iden-
tity traceability into Agrawal et al.’s anonymous IBE system [2] by adding a
small overhead to parameters. In Table 1, we compare our construction with
the anonymous IBE system in [2], in terms of LWE hardness parameter α (also
known as the the modulus-to-noise ratio), public key size, ciphertext size, as
well as anonymity and traceability. A smaller α means relying on a stronger
LWE assumption. To make the comparison fair, we use a variant of Agrawal et
al.’s IBE system [2] which is based on the Micciancio-Peikert (strong) gadget
trapdoor, as our construction. The variant encrypts λ-bit messages (thus can be
seen as an IBKEM that encapsulates λ-bit keys). In the table, λ is the secu-
rity parameter, m = 2w = 2n log q, and Õ ignores the logarithmic factor in O
notation.

We can see from Table 1 that our construction performs asymptotically sim-
ilar to Agrawal et al.’s anonymous IBE system [2] in terms of public key size
and ciphertext size. The extra overhead of our construction comes from the need
to encode the two λ-bit shares of the actual session key. We can also see that
our system has smaller parameter α meaning that our system needs to rely on
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Table 1. Comparison with ABB10 anonymous IBE

Param. α |Pk| |Ct| Anonymity Traceability

ABB10 [2] Õ(n−1.5) 3n log2 q + nλ log q 3 log2 q + λ log q YES NO

Ours Õ(n−2.5) 3n log2 q + 2nλ log q 3 log2 q + 2λ log q + λ YES YES

a slightly stronger LWE assumption. This comes from simulating the tracing
key in the indistinguishability proof. On the other hand, our system does enjoy
identity traceability with quantum resistance. Our construction achieves selec-
tive security with a polynomial time reduction and is also adaptively secure
using the complexity leveraging argument [6]. We leave constructing an AIBET
system from lattice assumptions or other quantum-resistant assumptions that is
directly adaptively secure as a future work.
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Abstract. Biometric authentication is a protocol which verifies a user’s
authority by comparing her biometric with the pre-enrolled biometric
template stored in the server. Biometric authentication is convenient
and reliable; however, it also brings privacy issues since biometric infor-
mation is irrevocable when exposed.

In this paper, we propose a new user-centric secure biometric authen-
tication protocol for Hamming distance. The biometric data is always
encrypted so that the verification server learns nothing about biometric
information beyond the Hamming distance between enrolled and queried
templates. To achieve this, we construct a single-key function-hiding
inner product functional encryption for binary strings whose security
is based on a variant of the Learning with Errors problem. Our protocol
consists of a single round, and is almost optimal in the sense that its time
and space complexity grow quasi-linearly with the size of biometric tem-
plates. On implementation with concrete parameters, for binary strings
of size ranging from 579 to 18,229 bytes (according to NIST IREX IX
report), our scheme outperforms previous work from the literature.

Keywords: Biometric authentication · Inner product functional
encryption · Learning with errors

1 Introduction

In the authentication system domain, biometric is getting more attention due to
its usability and high entropy. Its unique and irrevocable nature, however, makes
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the privacy issues on biometrics much more severe than those of passwords or
tokens [27]. Storing raw biometric template in a central database or a smart card
can be a risky choice [18,31]. For example, 5.6 million finger prints from U.S.
government were stolen by hackers in 2015 [7], and 1 billion users’ biometrics of
Aadhaar were reported to be stolen.

To protect privacy of biometrics, there have been several studies [2,11,14,
32,35,37] to build biometric authentication protocols. Biometric authentication
protocols usually consist of two phases, enrollment and authentication [29]. In
the enrollment phase, a server stores a raw biometric template sent from an end-
user along with the end-user’s ID in a database. In an authentication phase, the
server compares the stored template with a fresh template sent by an end-user,
and authenticates the user if two templates are similar enough with respect to
a certain measure. This approach is called server-centric in [37] as it heavily
relies on the server’s responsibility for the biometric privacy. To solve this issue,
Zhou and Ren [37] proposed a user-centric biometric authentication system in
which biometric templates are passed to the server only in encrypted forms.
Their solution shows a way to store and compare templates in encrypted forms
to get over the limitations of server-centric systems. However, their scheme is not
efficient enough to be applied in practice which deals with large templates upto
18 KB, since it suffers the quadratic dependency of cost on the size of templates;
e.g., it takes over 1 s to encrypt and compute Hamming distance of 2000-bit
templates on an ordinary laptop without precomputation.

1.1 Our Contribution

In this paper, we propose a new user-centric Secure Biometric Authentication
(SBA) protocol with respect to the Hamming Distance (HD). That is, a server
authenticates a user if HD between a queried biometric template and stored
template is less than a threshold. Note that taking HD as a measure for the
closeness is usual in many cases, including fingercode for fingerprint [19] and all
iris recognition algorithms analyzed in [28].

We first suggest a formal definition of the user-centric biometric authenti-
cation protocol with an enhanced security model that captures the server com-
promise attacks. Hence, our resulting SBA protocol guarantees the privacy of
biometric even if the server is compromised assuming the user’s device is semi-
honest, and it offers strong asymptotic and concrete performance. To be precise,
its cost grows quasi-linearly with the size of biometric templates, and we show by
experimentation that our scheme can manage a large-sized biometric efficiently.
To this end, we construct a new primitive called Single-key Function-hiding
Inner Product Functional Encryption for Binary strings (SFB-IPFE), which can
be generically converted to SBA using HD.

The SFB-IPFE primitive is a variant of Function-Hiding Inner Product Func-
tional Encryption (FH-IPFE) in which encryption can be held many times, while
generation of secret key for an inner product function is allowed only once. It
is a weakened notion of the general FH-IPFE, but we remark that it meets all
the security requirements of SBA that we define because the enrollment phase



Lattice-Based Secure Biometric Authentication for Hamming Distance 655

occurs only once at the first for each user, while the authentication phase is held
many times. It also provides a better performance than the existing FH-IPFEs.

We prove the security of our SFB-IPFE scheme under the hardness assump-
tion of a variant of Learning with Errors (LWE) called HintLWE. We address the
hardness of HintLWE by showing that there exists a polynomial-time reduction
from LWE (in continuous Gaussian case), which implies HintLWE is at least as
hard as standard lattice hard problems.

We implement a SBA protocol derived from our SFB-IPFE scheme, and pro-
vide experimental results using templates of size 256 and 18, 229 bytes, respec-
tively1. On Intel Core i5 CPU running at 2.9 GHz processor with 8 GB of mem-
ory, for 18, 229-byte biometrics with 128-bit security level, the authentication
phase has a single round which contains a single message from an end-user to a
server of 1.18 MB and takes 0.3 s and 125 ms on the end-user and server, respec-
tively.

1.2 Related Work

There have been many researches with regard to HD-based SBA mainly equipped
with strong primitives such as Multiparty Computation (MPC), Leveled Homo-
morphic Encryption (LHE), and Functional Encryption (FE).

Jarrous and Pinkas [20] proposed HD-based SBA with MPC techniques, and
[11,16] improved its efficiency. However, MPC-based SBA accompanies multiple
interactions and costly offline phase which is required for each authentication. To
mitigate this problem, Chun et al. [12] and Gasti et al. [14] proposed to outsource
some of user’s computation to a cloud. These solutions, however, assume that
the server does not collude with the cloud to protect biometric information. It
shows somewhat practical performance for small-sized biometric templates, but
not satisfactory for large-sized templates, e.g., online phases computing HD of
two 1600-bit encrypted templates with 80 bit security takes more than 2 s.

Since Leveled Homomorphic Encryption (LHE) [10,15,26] allows computa-
tion over encrypted data, it can be another building block for SBA. Yasuda
et al. [35,36] proposed an efficient HD-based SBA based on LHE involving two
servers each for computation and authentication. The privacy of biometric, how-
ever, highly depends on the behavior of computation server, and it suffers from
simple hill-climbing attack [3] which enables a malicious computation server to
learn biometric information.

In these circumstances, Kim et al. [24] proposed to build an HD-based SBA
by constructing FH-IPFE in the generic group model. Especially, their construc-
tion has a function-hiding property to secure the enrolled templates stored on
the server side, while several known practical IPFE (Inner Product Functional
Encryption) schemes [1,4,5] from standard assumptions does not provide such
property. Their scheme as SBA outperforms all other FH-IPFE [8,13,23,33,34]
in efficiency, reporting 2.7 s for computing HD on encrypted templates and 132

1 Iris template size analyzed in NIST IRES IX report (2018) [28] ranges from 579 to
18, 229 bytes.
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KB of bandwidth for 750 bit templates. Letting aside their strong assumption,
however, their construction is not secure against quantum adversaries2 and still
not practical for large-sized templates. Zhou and Ren [37] proposed another vari-
ant of FE, called Threshold Predicate Encryption (TPE) which allows to see,
when decrypted, if the inner product of two encrypted vectors is within a pre-
defined threshold or not, then presented SBA from it. See Sect. 5.4 for a detailed
comparison to those works.

2 Preliminaries

2.1 Notations

R and Z denotes the set of real numbers and integers, resp. R
n is the n-

dimensional vector space over R. Zq denotes Z/qZ = Z∩ (−q/2, q/2]. We denote
vectors in bold lower cases, and scalar elements in usual letters. 〈·, ·〉 denotes the
usual inner product (dot product) in R

n. �·� (and �·�) denote the largest integer
which is not larger than the input (resp., rounding-off operation). For a (finite)
set X, we denote the uniform distribution over X by U(X). For a distribution
D, x ← D denotes sampling x following the distribution D. For the simplicity,
we write x ← U(X) as x ← X. For an integer n ≥ 1, Dn denotes the product of
i.i.d. random variables Di ∼ D and [n] denotes a set of indices {1, · · · , n}

2.2 Lattices and Gaussian Distribution

A (full rank) n-dimensional lattice Λ ⊆ R
n is the set of all Z−linear combinations

of n linearly independent vectors B = {b1,b2, . . . ,bn} of Rn. The n-dimensional
Gaussian function ρσ,c with the width σ > 0 and center c ∈ R

n is defined as:

for x ∈ R
n, ρσ,c(x) := exp(−π‖x − c‖2/σ2).

The continuous (spherical) Gaussian distribution Dc,σ is the distribution of
which the probabilistic density function (PDF) is proportional to ρσ,c over R

n.
When c = 0, we omit c in the subscript, and add n on the superscript, i.e., Dn

σ .
A discrete variant of the continuous Gaussian distribution can be defined as an
analogue: The discrete Gaussian distribution over Z

n with width σ denoted by
DGn

σ is the distribution whose PDF is proportional to ρσ,0 over Z
n. For both

continuous and discrete cases, we omit the superscript n if n = 1.

2.3 The Learning with Errors Problem

In these days, there are a plenty of cryptosystems based on the LWE problem
introduced by Regev [30]. The LWE problem and its ring variant exploit mathe-
matical reductions from the worst-case lattice problems. The problem has been
offering various functionalities for the cryptosystems, exhibiting its versatility.

2 All other FH-IPFE [8,13,33,34] do not provide post quantum security.
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For a secret vector s ∈ Z
n
q and an error distribution χ over Zq, denote the

LWE distribution over Z
n
q × Zq by ALWE

n,q,χ(s) obtained by choosing a vector a
randomly from Z

n
q and e from χ, and outputting (a, b = 〈a, s〉 + e) ∈ Z

n
q × Zq.

For a distribution D over Zn
q , the decision-LWE problem is to distinguish, given

arbitrary many samples, the distribution ALWE
n,q,χ(s) for a fixed s ← D from the

uniform distribution over Zn
q ×Zq with non-negligible advantage. We denote the

decision-LWE problem by LWEn,m,q,χ(D) where D is a distribution of secret
vectors, n is a dimension of the secret vector, q is a modulus, and m is the
number of samples. In this paper, we will consider multi-secret LWE problem,
which is the LWE problem with secret matrix other than a vector. The multi-
secret LWE distribution ALWE

n,q,χ,k(S) over Z
n
q × Z

k
q is obtained by, for a secret

matrix S ∈ Z
n×k
q , choosing a vector a randomly from Z

n
q , and e from χk, and

outputting (a,b = Sta + e) ∈ Z
n
q × Z

k
q . For a distribution D′ over Z

n×k
q , the

multi-secret LWE problem is to distinguish between the uniform distribution over
Z

n
q ×Z

k
q and ALWE

n,q,χ,k(S) for a fixed S ← D′. As in the case of LWE, we denote the
decision multi-secret LWE problem by LWEk

n,m,q,χ(D′), where k is the number of
secret vectors. In this paper, we consider χ = DGσ for some σ > 0. In this case,
we substitute χ by σ in the subscript of LWE. In this paper, the term “LWE
assumption” means the hardness assumption of LWE.

3 Secure Biometric Authentication Protocol

In this section, we introduce the Secure Biometric Authentication (SBA) proto-
col (Fig. 1). We first give an overview and some motivating scenarios, and then
present a formal syntax and security model for SBA.

Fig. 1. Secure biometric authentication system.
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Participants and Overview. SBA involves three entities, a server S, an end-user
U, and a device D. The server S and the device D are involved to initialize the
protocol and enroll a fresh biometric template derived from the end-user U. After
an enrollment process, D stores its secret key K and S stores a pair (ID, et) sent
by D where ID is an identification index and et is an enrolled template for U. In
an authentication phase, an end-user U who wants to authenticate to S under
his/her ID, inputs his/her ID and biometric information to a device D. The
device D encrypts the given biometric information into a biometric template y,
and then sends an encrypted biometric template ct to S along with the ID given
from U. Then, S authenticates the end-user according to the matching result
between the stored enrolled template (corresponding to ID) and the received
one. As an example, S can be any authentication server with its own storage,
while D can be any computing device that can capture the biometric information
and transmit a message to S throughout the network, e.g., a mobile phone, a
laptop, or a gateway. The formal process of S, D, and U can be parsed into four
algorithms (Init, Enroll, Query, Auth) which will be detailed in Sect. 3.1.

Communication and Computation Models. We assume S and D communicate
over open internet relying on a Public Key Infrastructure (PKI) which is to
establish a secure channel with one-sided authentication of S by D. The device
D is assumed to operate honestly so that the encrypted biometrics is always gen-
erated from a legitimate biometric template, e.g. a vector of fixed length with
coefficients in {1,−1}, and the biometric information (or other secret informa-
tion) is not leaked from the end-user’s device D itself.

Motivating Scenarios. Our SBA models the typical use-cases of biometric
authentication system. As an example scenario, one can think of an employer
(end-user U) who logins to his/her company’s online business operating system
(S) with a registered laptop or a mobile phone (device D) using his/her biometric
information.

The other interesting scenario—which fits well with the assumption that the
device D operates correctly—is a physical access system where D is a physical
gate with a sensor for biometric inputs and S is a remote control center with
data storage. In this case, D can be placed in a safe place so that no adversary
can disturb nor modify its operation, and only a legitimate user (U) can enter
the gate with his/her biometric information.

3.1 Syntax

Biometric authentication protocol contains four algorithms Π = (Init, Enroll,
Query, Auth) defined in the following. In our syntax, for a positive integer k,
biometric templates are represented as fixed-length binary strings in {1,−1}k of
length k and the closeness between two biometric templates is measured by the
Hamming distance.

– Init(1λ, 1k): The initialization algorithm is a probabilistic polynomial time
(PPT) algorithm that takes input the security parameter λ > 0 and the



Lattice-Based Secure Biometric Authentication for Hamming Distance 659

template bit-length k, and outputs a public parameter pp and a secret key K
of D.

– Enroll(pp,K, ID,x): The enrollment algorithm is a deterministic polynomial
time (DPT) algorithm which inputs a public parameter pp, a secret key K
stored in D, an end-user’s identification index ID and a binary string x ∈
{1,−1}k, and outputs an enrolled template et.

– Query(pp,K, ID,y): The query algorithm is a PPT algorithm that takes in a
public parameter pp, a secret key K stored in D, an end-user’s identification
index ID and a binary string y ∈ {−1, 1}k, and returns an encrypted template
(or, ciphertext) ct.

– Auth(pp, ID, et, ct,T): The authentication algorithm is a DPT algorithm that
takes as inputs a public parameter pp, an end-user’s identification index ID,
an enrolled template et, an encrypted template ct, a threshold value T > 0.
It returns either 1(accept) or 0(reject).

We define the correctness of the biometric authentication Π = (Init, Enroll,
Query,Auth) according to the Hamming distance denoted as HD(·, ·) as follows.

Definition 1. A biometric authentication Π = (Init,Enroll,Query,Auth) is said
to be correct with respect to T > 0 if for all ID ∈ [	], (K, pp) ← Init(1λ, ID) and
x,y ∈ {1,−1}k,

Pr

⎡
⎣1 ← Auth(pp, ID, et, ct,T)

∣∣∣∣∣∣
et ← Enroll(pp, ID,K,x)
ct ← Query(pp, ID,K,y)

HD(x,y) < T

⎤
⎦ > 1 − 2−λ

where λ is the security parameter.

3.2 Security Model

Aiming to deal with the motivating scenarios described earlier, we adapt the
security properties named revocability, irreversibility and unlinkability for bio-
metric authentication as in ISO24745 [17], and consider one more property
dubbed resilience to server compromise. Four security criteria can be described
informally as follows:

– Unlinkability: The stored enrolled templates should not be linkable across
applications or databases.

– Revocability: The server is able to issue new protected templates to replace
the compromised one.

– Irreversibility: Biometric template is processed by irreversible transforms
before storage.

– Resilience to server compromise: For all ID ∈ [	], given an enrolled tem-
plate et and a set of ciphertexts {cti} of biometric templates corresponding to
ID, no private information besides the Haming distance between the enrolled
and fresh templates can be learned from it.
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In our context, the unlinkability can be easily achieved by renewing random-
ness and restart from the initialization algorithm to generate the secret key K for
each ID in the respective applications or databases. Whenever enrolled template
is compromised, it is required to achieve the revocability that an enrollment pro-
cess for the corresponding end-user is held with a renewed identification index.
We remark that the irreversibility is directly implied by the property that we call
the resilience to server compromise. In the following definition, we formalize the
security for biometric authentication to achieve all the criteria especially includ-
ing resilience to server compromise which aims to protect biometric templates
even if the server’s state is compromised.

Definition 2 (Secure Biometric Authentication). A biometric authenti-
cation Π = (Init,Enroll,Query,Auth) is called secure if for all ppt adversary A,
there exists a ppt simulator S = (S1,S2,S3) such that the outputs of the following
two experiments are computationally indistinguishable (Table 1),

Table 1. The Real-world Experiment and the Ideal-world Experiment

RealA(1λ) : IdealA,S(1λ) :
1. (pp,K) ← Init(1λ, 1k) 1. (pp, st) ← S1(1λ, 1k)
2. b ←AOEnroll(pp,K,·,·),OQuery(pp,K,·,·)(1λ) 2. b ←AÕEnroll(pp,·,·),ÕQuery(pp,·,·)(1λ)

3. output b 3. output b

where OEnroll(pp,K, ·, ·), OQuery(pp,K, ·, ·), ÕEnroll(pp, ·, ·), ÕQuery(pp, ·, ·) are
defined as follows:

– For each ID ∈ [	], OEnroll(pp,K, ID,x) = Enroll(pp,K, ID,x) only for the first
query, and aborts otherwise.

– For each ID ∈ [	], OQuery(pp,K, ID, ·) aborts if OEnroll(pp,K, ID, ·) has not
been queried before. Otherwise, OQuery(pp,K, ID,y) = Query(pp,K, ID,y).

– For each ID ∈ [	], ÕEnroll(pp, ID, ·), ÕQuery(pp, ID, ·) are stateful, and shares
a simulator state stID and a collection PID = {HD(x,y(i))}i where i is
a counter for ÕQuery(pp, ID, ·) initialized to 0 at the beginning, and x and
y(i) are the inputs for invocation of ÕEnroll(pp, ID, ·) and i-th invocation of
ÕQuery(pp, ID, ·), respectively (At the beginning, each PID is set to be empty).

• For each ID ∈ [	], on the adversary’s invocation of ÕEnroll(pp, ID, ·) with
input x, ÕEnroll(pp, ID, ·) aborts unless it is the first query. Otherwise,
ÕEnroll(pp, ID, ·) invokes the simulator S2 on input stID. The simulator
responds with a tuple (etID, st′ID) ← S2(stID). The oracle updates the state
stID ← st′ID and replies to the adversary with etID.

• For each ID ∈ [	], on the adversary’s i-th invocation of ÕQuery(pp, ID, ·)
with input y(i), the oracle aborts unless ÕEnroll(pp, ID, ·) is queried before.
Otherwise, it updates the collection PID ← PID

⋃{HD(x,y(i))}, sets i ←
i+1, and invokes the simulator S3 on input PID and stID. The simulator
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responds with a tuple (ctID, st′ID) ← S3(PID, stID). The oracle updates the
state stID ← st′ID and replies to the adversary with ctID.

Remark 1 (Comparison to the Security Model in PassBio [37]). In [37], they also
suggest their own security model with an active attack experiment which deals
with some kind of server compromise attack adapting the usual IND-CPA model.
We enhance the security notion for SBA adapting a simulation-based model, and
allow both oracle queries for enrollment and query algorithms equipped with the
same secret key K although that for enrollment is allowed for only once. In this
way, the security in case of the server compromise is captured more clearly, and
an attacker is assumed to be provided with encrypted queries together with the
enrolled template stored on the server side.

4 Inner Product Functional Encryption for SBA

In this section, we introduce a cryptographic primitive from which we can derive
a SBA scheme. The FH-IPFE primitive can be used to build a SBA, but this
approach may seem an overkill since it requires stronger security and provides
more functionality than we need. We relax the definition of FH-IPFE to achieve
better efficiency while preserving sufficient functionality for HD-based SBA.

To be precise, we consider a special instantiation of functional encryp-
tion, called Single-key Function-hiding Inner Product Functional Encryption for
Binary Strings (hereafter, SFB-IPFE), and provide a concrete construction of
this primitive whose security relies on the hardness of a lattice problem. Differ-
ent from the usual FH-IPFE, a SFB-IPFE scheme can generate a single secret
key corresponding to an inner product function represented by x ∈ {1,−1}k,
and takes only binary strings as input of encryption.

4.1 Definition

The proposed primitive SFB-IPFE Π consists of four (probabilistic) polynomial-
time algorithms Setup, KeyGen, Enc and Dec as described below.

– Setup(1λ, 1k): For the security parameter λ and the dimension k, it outputs
a public parameter pp and a master secret key msk. We assume that other
algorithms of Π implicitly take pp as the input even if not specified.

– KeyGen(msk,x ∈ {1,−1}k): Given the master secret key msk and a vector
x ∈ {1,−1}k, outputs a secret key sk.

– Enc(msk,y ∈ {1,−1}k): Given the master secret key msk and a vector y ∈
{1,−1}k, outputs a ciphertext ct.

– Dec(sk, ct): Given a secret key sk and a ciphertext ct, it returns a decrypted
value z ∈ Z.

In the following, we will define the correctness and security model of the
SFB-IPFE primitive Π = (Setup,KeyGen,Enc,Dec). Note that our security def-
inition is similar to the simulation-based security of [24] with a relaxation in the
sense that the oracle for KeyGen can be queried only once and beforehand.
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Definition 3 (Correctness). A SFB-IPFE scheme Π = (Setup, KeyGen, Enc,
Dec) is said to be correct if for (pp,msk) ← Setup(1λ, 1k) and any x,y ∈
{1,−1}k, the inequality

Pr

⎡
⎣〈x,y〉 = v

∣∣∣∣∣∣
sk ← KeyGen(msk,x)

ct ← Enc(msk,y)
v ← Dec(sk, ct)

⎤
⎦ > 1 − 2−λ

holds where λ is the security parameter.

Definition 4 (Security). A SFB-IPFE scheme Π = (Setup,KeyGen,Enc,Dec)
is called secure if for all polynomial-time adversary A, there exists a polynomial-
time simulator S = (S1,S2,S3) such that the outputs of the following two exper-
iments are computationally indistinguishable (Table 2),

Table 2. The Real-world Experiment and the Ideal-world Experiment

RealA(1λ, 1k) : IdealA,S(1λ, 1k) :

1. (pp,msk) ← Setup(1λ, 1k) 1. (pp, st) ← S1(1λ)
2. b ←AOKeyGen(msk,·),OEnc(msk,·) 2. b ←AÕKeyGen(·),ÕEnc(·)

3. output b 3. output b

where OKeyGen(msk, ·), OEnc(msk, ·), ÕKeyGen(·), ÕEnc(·) are defined as:

– OKeyGen(msk,x) returns KeyGen(msk,x) only for the first query, or aborts
otherwise.

– OEnc(msk, ·) aborts if OKeyGen(msk, ·) has not been queried before. Otherwise,
OEnc(msk,y) = Enc(msk,y).

– ÕKeyGen(·) and ÕEnc(·) are stateful, and share a simulator state st and a col-
lection P =

{〈x,y(i)〉}
i
, where i is a counter for ÕEnc(·) initialized as 0 at

the beginning, and x and y(i) are the inputs for invocation of ÕKeyGen(·) and
i-th invocation of ÕEnc(·), respectively (P is set to be empty at the beginning).

• On the adversary’s invocation of ÕKeyGen(·) with input x, ÕKeyGen(·) aborts
unless it is the first query. Otherwise, ÕKeyGen(·) invokes the simulator S2

on input st. The simulator responds with (sk, st′) ← S2(st). The oracle
updates st ← st′ and replies to the adversary with sk.

• On the adversary’s i-th invocation of ÕEnc(·) with input y(i), the ora-
cle aborts unless ÕKeyGen(·) is queried before. Otherwise, it updates P ←
P ⋃{〈x,y(i)〉}, sets i ← i + 1, and invokes the simulator S3 on input
P and st. The simulator responds with a tuple (ct, st′) ← S3(P, st). The
oracle updates the state st ← st′ and replies to the adversary with ct.

Our security definition aims to capture that all adversaries that have both
sk and ct ’s cannot obtain any information about x or y(i) other than the inner
products 〈x,y(i)〉: Note that simulator in the ideal world does not take any of x
or y as inputs, and it instead takes P =

{〈x,y(i)〉}
i

as inputs.



Lattice-Based Secure Biometric Authentication for Hamming Distance 663

Protocol 1. Our SBA system
Input: x,y ∈ {−1, 1}k, T ∈ Z

Output: res ∈ {authenticate, reject}
Registration: An end-user U registers with his/her identity ID and a biometric
template x to the service provider S through the device D.
1: Init(1λ, 1k): The device D sets the parameters of SFB-IPFE according to

the security parameter λ. It also generates and stores a secret key by K =
msk ← Setup(1λ, 1k).

2: Enroll(pp,K, ID,x): U sends a biometric template x ∈ {1,−1}k to D, and D
generates an encrypted template et = sk ← KeyGen(K = msk,x). D sends
(ID, et) to the service provider S and S stores it.

Authentication: An end-user U’s device D retrieves a fresh biometric template
from U, and sends a ciphertext of it to the server S for an authentication.
1: Query(pp,K, ID,y) : U computes a ciphertext ct ← Enc(K = msk,y), and

sends it along with user’s identifying index ID to S.
2: Auth(pp, ID, et, ct,T): S retrieves the stored values (ID, et) at the enrollment

phase, computes an inner-product value z ← Dec(sk = et, ct), and gets the
hamming distance d = (k − z)/2 between the biometrics x and y. S then
outputs 1(accept) if d < T, and 0(reject) otherwise.

4.2 From SFB-IPFE to SBA

If a secure SFB-IPFE scheme is given, its conversion to a SBA protocol can be
done easily as follows. the device D generates and stores a master secret key
msk, and the end-user U sends a vector (inner product function) x ∈ {1,−1}k

to D. Then, D generates a secret key sk corresponding to x and sends it to
the server S. For a query y from U, the device D encrypts it using the master
secret key msk and sends the ciphertext ct to the server S, then S can compute
〈x,y〉 by decrypting ct using the secret key sk. Therefore, the server S obtains
the HD between x and y, and compares it with the threshold T to authenticate
the end-user. Protocol 1 gives an explicit description of SBA. We also note that
the SBA protocol derived from SFB-IPFE is secure if the underlying SFB-IPFE
scheme is secure: it is trivial when there exists only one ID; for multi-ID case,
we refer to Remark 2 in the following section.

4.3 Our Construction

We provide a concrete instantiation of SFB-IPFE which satisfies the correctness
and security conditions defined in the previous subsection.

– Setup(1λ, 1k): Choose the parameters q, p and n. Set the distribution DS over
Z

n×k
q . Sample a vector u ← Z

m
q and a matrix S ← DS , and return the master

secret key msk = (u,S) and the public parameter pp = (q, p, n). We write

m = n + k and T =
[
Ik

S

]
∈ Z

m×k
q where Ik is the identity matrix of size k.
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– KeyGen(msk,x): For given x ∈ {1,−1}k, return sk = u + Tx ∈ Z
m
q .

– Enc(msk,y): For y ∈ {1,−1}k, do the following.
1. Sample a random vector a ← Z

n
q and an error vector e ← DGk

σ. Compute

b = −Sta + (q/p) · y + e ∈ Z
k
q ,

and set c = (b,a) ∈ Z
m
q . Note that Ttc = (q/p) · y + e.

2. Sample an error e∗ ← DGσ∗ and compute d = −〈u, c〉 + e∗ ∈ Zq.
3. Return ct = (d, c) ∈ Zq × Z

m
q .

– Dec(sk, ct): Parse ct as (d, c) ∈ Zq × (Zk
q × Z

n
q ). Compute and output v =

�(p/q) · (d + 〈c, sk〉)� ∈ Zp.

The following theorem shows the correctness of our scheme, and its security
proof will be given in the next section.

Theorem 1 (correctness). For x,y ∈ {1,−1}k, let 2k < p, and msk and ct

are legitimately generated, i.e., msk := (u,S) ← Z
m
q ×Z

n×k
q , T =

[
Ik

S

]
∈ Z

m×k
q ,

sk ← u+Tx, and ct = (d, c = (b,a)), where a ← Z
n
q , b = −Sta+ (q/p) ·y+ e,

and d = −〈u, c〉 + e∗. Then the resulting value v ← �(p/q) · (d + 〈sk, c〉)� equals
to 〈x,y〉 except with probability 2−λ if the following inequality holds:

Pr

[∣∣∣∣∣e∗ +
k∑

i=1

ei

∣∣∣∣∣ ≥ q

2p
: ei ← Dσ, e∗ ← Dσ∗

]
< 2−λ.

Proof. Note that
〈Tx, c〉 = 〈x, Ttc〉.

The LHS is 〈sk − u, c〉 = 〈sk, c〉 − 〈u, c〉, and the RHS is 〈x, (q/p) · y + e〉 =
(q/p) · 〈x,y〉 + 〈x, e〉. Hence,

〈sk, c〉 = 〈u, c〉 + (q/p) · 〈x,y〉 + 〈x, e〉.
Therefore, we have d+〈c, sk〉 = (q/p)·〈x,y〉+〈x, e〉+e∗, which implies v = 〈x,y〉
(mod p) if and only if |〈x, e〉 + e∗| is bounded by q/2p. Note that v = 〈x,y〉 if
and only if v = 〈x,y〉 (mod p) since 2k < p. ��

In the rest of this section, we show the security of our SFB-IPFE scheme.
We first define a variant of LWE, called the HintLWE problem. Informally, the
HintLWE distribution is similar to that of LWE, but it additionally discloses an
erroneous inner product value of the error vector. In other words, the HintLWE
assumption implies that the LWE problem is still hard to solve even when an
inner product value is given as hint. The formal definition of HintLWE is as
following:

Definition 5. Let n, q and k be positive integers, σ1, σ2 > 0 be real numbers, z
be a vector in {1,−1}k and S be a matrix in Z

n×k
q . The HintLWE distribution,

denoted by AHintLWE
n,q,σ1,σ2,k(z,S), is the distribution of (b = Sta + e,a, 〈z, e〉 + f) ∈
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Z
k
q ×Z

n
q ×Zq where a ← Z

n
q , e ← DGk

σ1
and f ← DGσ2 . The HintLWE problem

HintLWEk
n,q,σ1,σ2

(D) is to distinguish, given arbitrary many independent samples
for z ← {1,−1}k chosen by an adversary, between AHintLWE

n,q,σ1,σ2,k(z,S) for a fixed
S ← D and the distribution of (u,a, 〈z, e〉 + f) where u ← Zq.

We discuss the hardness of the HintLWE problem in Appendix A of the
full version of this paper. Roughly speaking, we build a polynomial-time reduc-
tion from LWE to HintLWE with continuous Gaussian errors, and the resulting
theorem is presented as follows.

Theorem 2. Let n, q, k be positive integers, σ1, σ
′
1, σ

′
2 be positive real numbers

satisfying σ1 = σ′
1σ

′
2/

√
σ′2

1 + σ′2
2 , and D be a distribution over Zn×k

q . Then there
exists a polynomial-time reduction from LWEk

n,q,σ1
(D) to HintLWEk

n,q,σ′
1,

√
kσ′

2
(D)

which preserves the advantage.

Proof. We defer the proof to the full version. ��
Finally, the security proof of our scheme under the hardness assumption of

HintLWE is provided in Theorem 3.

Theorem 3. Assuming that HintLWEk
n,q,σ,σ∗(DS) is hard, our SFB-IPFE con-

struction Π in Sect. 4.3 is secure.

Proof. Fix an efficient adversary who makes a single query to the oracle for Enroll
and at most Q = poly(λ) queries to the oracle for Query. Note that an adversary
has to query the oracle for Enroll first, since otherwise the queries for Query will
be aborted. We construct a simulator S as follows:

– On adversary’s query x ∈ {1,−1}k to the oracle for KeyGen, the simulator
receives as input a new collection P ′ of inner products and sets P ← P ′. The
simulator generates sk ← Z

m
q and responds with it.

– On adversary’s query y(i) ∈ {1,−1}k to the oracle for Enc, the simulator
receives as input a new collection P ′ of inner products and updates P ← P ′

(retrieving 〈x,y(i)〉). The simulator samples b(i) ← R
k
q , a(i) ← Z

n
q , and c(i) ←

(b(i),a(i)). It also samples e
(i)
j ← Dσ for 1 ≤ j ≤ k and e

(i)
∗ ← Dσ∗ , and then

sets d(i) ← −〈sk, c(i)〉+(q/p)·〈x,y(i)〉+∑k
j=1 e

(i)
j +e

(i)
∗ and ct(i) ← (d(i), c(i)).

The simulator responds with ct.

Let Expt 0 be the real world experiment. That is, for an efficient adversary
A, we generate msk := (u,S) from Setup to answer the oracle queries with the
legitimate KeyGen and Enc outputs consistently in Expt 0. We show that Expt
0, real world experiment, is indistinguishable from the simulated one which is
numbered by Expt 3, using a hybrid argument. We define Expt 1 and Expt 2 as
follows.

Expt 1. substitutes sk = u + Tx in Expt 0 with sk ← Z
m
q . Generates c(i) by

c(i) = (b(i) = −Sta(i) + (q/p) ·y(i) + e(i),a(i)) where a(i) ← Z
n
q , e(i) ← DGk

σ (as
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in the Query algorithm). Replaces d(i) with d(i) ← −〈sk, c(i)〉+(q/p) · 〈x,y(i)〉+
〈x, e(i)〉 + e

(i)
∗ , where e

(i)
∗ ← DGσ∗ .

Observe that u is uniformly random and is used for only once when generating
sk. Hence, the distributions of (sk, {ct(i)}i) in Expt 0 and Expt 1 are the same
in the adversary’s view.

Expt 2. substitute b(i) in Expt 1 with uniformly chosen one from R
k
q , and

sets d(i) ← −〈sk, c(i)〉 + (q/p) · 〈x,y(i)〉 + 〈x, e(i)〉 + e
(i)
∗ , where e ← DGk

σ and
e
(i)
∗ ← DGσ∗ .

The distributions of (sk, {ct(i)}i) in Expt 1 and Expt 2 are computationally
indistinguishable when assuming the hardness of the HintLWEk

n,q,σ,σ∗(DS) prob-
lem. The distributions of (sk, {ct(i)}i) in Expt 2 and Expt 3 are identical, since
e(i) in Expt 2 is independent from other variables. ��
Remark 2. Note that, to handle multiple IDs in SBA (e.g., Definition 2), a naive
approach is to use several SFB-IPFEs from different Init processes, i.e., use dif-
ferent master secret key mskID for each ID. Interestingly, our construction gives
that, instead of using different mskID = (uID,SID) for each ID, it suffices to
use different uID for each ID and share the same S as follows. Assuming that
the number of multiple enrollments for several IDs is bounded by 	 > 1, we can
also prove the security of the multi-enroll version of our SBA under the hardness
assumption of a variant of HintLWE. More precisely, this variant of the HintLWE
assumption implies the distribution of (b = Sta+ e,a,Zte+ f) ∈ Z

k
q × Z

n
q × Z

�
q

is computationally indistinguishable to the distribution of (u,a,Zte + f) where
u ← Zq. Compared to HintLWE, this variant gives multi-dimensional inner-
product hint on the LWE error, and it can be also shown to be at least as hard
as LWE as an analogue of HintLWE in continuous Gaussian case.

5 Performance Evaluation

In this section, we evaluate the performance of our SBA in Protocol 1 instantiated
with SFB-IPFE in Sect. 4.3, then compare it with the performance of other SBA
from the literature.

5.1 Experimental Setup and Optimizations

Our source code was written in C++ 11 standard and complied with g++ (Apple
LLVM version 9.1.0.) on Intel Core i5 CPU running MacOS (64 bit) at 2.9 GHz
processor with 8 GB of memory. The source code is simple, containing only 127
lines for the scheme and 115 lines for the test run, and can be found in our
Github repository3.

For faster execution, we set p and q as power-of-2 integers such that p < q ≤
264 then store the elements of Zq in uint64 t type by scaling them up for (64−
3 https://github.com/dwkim606/IPPBA.

https://github.com/dwkim606/IPPBA
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Table 3. Parameter sets for which HintLWEk
n,q,σ,σ∗(U({0, 1}n×k)) satisfies 128-bit post-

quantum security

Set k n q p σ σ∗
I 2048 1315 232 220 2.39 108
II 145832 1925 264 232 2.96 × 105 1.12 × 108

Table 4. Performance of our SBA instantiated from SFB-IPFE

Param. Secret key Enrolled template Ctxt. Running time (ms)
Set K (MB) et (KB) ct (KB) Init Enroll Query Auth

I 0.34 26.90 26.91 21 1 7.29 0.002
II 35.09 1182.02 1182.02 2221 160 869 0.139

log q) bits so that the additions mod q can be done without any overhead. We
also set S in the primitive in Sect. 4.3 as a binary matrix so that multiplications
modulo q is converted to additions modulo q. The rounding operation �(p/q) · x�
for x ∈ Zq, which is equivalent to �(p/q) · (x + q/2p)�, is done efficiently by a
right bit-shifting of (log q− log p) bits following an addition of the constant q/2p.

5.2 Parameter Setting

We present two example parameter sets when DS = U({0, 1}n×k), i.e., each
component of the secret matrix is a random binary. This setting substantially
reduces the size of msk of SFB-IPFE (Sect. 4.3) compared to the case with
DS = U(Zn×k

q ), i.e., we base the security our scheme to the well-known binary
LWE problem [9,25].

In Table 3, we give parameter sets I and II for the HintLWEk
n,q,σ,σ∗(DS) prob-

lem of 128-bit post-quantum security, each of which is the base problem of our
SBA for a binary biometric of length k = 2048 or 145, 832 (256 bytes or 18KB
biometric templates, respectively). We used the first parameter set to compare
with related works while the other one shows the capability of our scheme to
manage a large number of biometric templates that appear in NIST IREX IX
report [28].

Since HintLWEk
n,q,σ,σ∗(DS) is harder than LWEk

n,q,σ1
(DS) when σ1 = σ ·

σ∗/
√

kσ2 + (σ∗)2 (full version, Corollary 2), we set σ = σ∗/
√

k and select the
parameters to secure LWEk

n,q,σ1
(DS) with 128-bit security level against the best

known (quantum) attacks, with respect to Albrecht et al.’s LWE estimator [6].4

Note that the parameter p affects the correctness of the Auth algorithm (Theo-
rem 1): we set p appropriately so that the failure probability is less than 2−128.

4 https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator
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Table 5. Comparison of the Authentication phases: End-user and Server denote the
running time of respective participants. Biometric denotes the maximum bit-size of
biometric that each SBA can support with given performance. PQ denotes the post-
quantum security.

Protocol Biometric Communication End-user Server Security (λ)

(bits) Cost (KB) (ms) (ms) (bits)

THRIVE [21]a 2048 787 2051 6146 80

Gasti et al. [14]b 1600 490 1130 + (1150)p 1010 80

PassBio [37]c 2000 500 600 + (600)p 100 Not given

FH-IPFE [24]d 750 132 753 2700 112

Ours (I)e 2048 27 7.29 0.002 128, PQ

Ours (II)e 145832 1182 869 0.139 128, PQ
a Benchmarked on Intel Core 3.2GHz processor.
b Benchmarked on

- End-user: Galaxy S4 smartphone 4-Core 1.9GHz processor, 2 GB RAM.

- Server & Cloud: Intel Xeon E5-2430L v2 6-Core 2.4GHz processor, 64 GB RAM.
c Benchmarked on Intel Core i5 1.60GHz processor, 4 GB RAM.
d Benchmarked on Intel Core i7 4.00GHz processor, 16 GB RAM.
e Benchmarked on Intel Core i5 2.90GHz processor, 8 GB RAM.
p Offline precomputation.

5.3 Performance of Our SBA from SFB-IPFE

We first present the performance of our SBA instantiated with SFB-IPFE whose
security is based on the HintLWE problem with parameters in Table 3. In Table 4,
the size of secret key (K), that of templates—enrolled (et) or encrypted (ct), and
the running time of each algorithm (Init, Enroll, Query, Auth) are presented; the
running time is averaged over 100 times of measurements.

We remark that the parameter n (which corresponds to the dimension of
secret in the LWE problem) remains not significant for the performance (from
n = 1315 to n = 1925) though the length k of biometric increases much (from
k = 2048 to k = 145, 832), and it makes our SBA favorable when used for
lengthy biometric templates. In Table 4, the size of enrolled/encrypted templates
(et and ct) and the running time for Query and Auth are both quasi-linear on
k as expected from the construction given in Sect. 4.3. Concretely, the size of
ct, which is transmitted to the server during the authentication phase, is only
×70-80 of that of the biometric templates, and is not problematic in practice.
On the other hand, all three algorithms (Enroll, Query, Auth) except Init take
less than a second even when the biometric template is very large. Note that,
in our SBA, Init can be precomputed, and Enroll needs to be done only once for
the registration phase (for each user), while Query, Auth, and ct are involved in
several authentication phases (see Sect. 4.2).

5.4 Comparison

We compare the performance of our SBA to those of known SBAs where a
server stores biometric templates in encrypted form and the authentication is
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done based on the HD of biometric templates. As our work, all of the litera-
ture in Table 5 assumes that the end-user (or his/her device) runs honestly5, to
guarantee both the correctness (Definition 1) and the security (Definition 2) of
biometric authentication (Sect. 3). In Table 5, we described the maximum bit-size
of biometrics supported by each SBA (without increasing the cost), the running
time of end-user and server, the communication cost between them, and the bit
security (λ). Note that if we modify each SBA to support larger biometric bits,
all the cost will increase by a large magnitude.

Karabat et al. [21] proposed a SBA named THRIVE exploiting Goldwasser-
Micali’s threshold (XOR-) homomorphic encryption [22] which enables com-
puting HD of biometrics without revealing their exact value. Since THRIVE
encrypts biometrics bitwisely, its efficiency is not favorable to handle large size
of biometric templates.

Gasti et al. [14] proposed an outsourced SBA exploiting garbled circuit and
oblivious transfer. Though their performance is highly attractive to an end-user
(note that the result is on a smartphone), the total running time is unaffordable
when the size of biometric is large6. Moreover, they assume that the cloud does
not collude with server to guarantee the privacy of the biometric templates.

Zhou and Ren [37] proposed an SBA named PassBio, with a new primitive
called Threshold Predicate Encryption (TPE). Their TPE is based on matrix
randomization and permutation, and suffers costly asymptotic complexity on
end-user, server, communication cost such as O(k3), O(k2), O(k2) where k is the
length of a biometric.

We consider SBA from the Function-hiding Inner product Functional Encryp-
tion (FH-IPFE) of the literature. In efficiency, Kim et al. [24]’s FH-IPFE, relying
on the generic group model, shows the best among others [8,13,23,33,34]. Still,
the performance is far worse than ours, since it requires many number of paring
group elements and pairing operations more than the length k of biometric.

Finally, in the authentication phase of our SBA, it takes only a single round
that consists transmitting ct, and the running time of an end-user and a server are
those of Query and Auth, respectively (from Table 4). Then, we can see that the
asymptotic complexities for an end-user, a server, communication cost (bits) are
O(k+n), O(k+n), O((k+n)l), where k is the bit length of a binary biometric, n
the dimension of (secret vector of) LWE problem, and l is the bit-size of Zq. Note
that n depends on the security parameter λ (not on k) and is much smaller than
k as k increases (Sect. 5.3). It grants our SFB-IPFE an outstanding efficiency
and scalability for large biometric as seen by Table 5.

We remark that only our construction guarantees post-quantum 128-bit secu-
rity; THRIVE [21] exploits RSA modulus, FH-IPFE [24] uses elliptic curve, Gasti
et al. [14] can provide post-quantum security only if they use post-quantum OT7,
and PassBio [37] did not clarified their concrete security.

5 THRIVE [21] insists that their scheme is secure under (static) malicious adversary,
but they assume that the end-user (client) performs the encryption honestly.

6 They reported 24 s of running time for biometric of size 16, 384 bits which is roughly
× 1

10
of the biometric considered in our parameter II.

7 However, it is not clarified in [14] which OT is used in their experiment.
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Abstract. Guillou-Quisquater (GQ) signature is an efficient RSA-based
digital signature scheme amongst the most famous Fiat-Shamir follow-
ons owing to its good simplicity. However, there exist two bottlenecks for
GQ hindering its application in industry or academia: the RSA trapdoor
n = pq in the key generation phase and its high bandwidth caused by
the storage-consuming representation of RSA group elements (3072 bits
per one element in 128-bit security).

In this paper, we first formalize the definition and security proof of
class group based GQ signature (CL-GQ), which eliminates the trap-
door in key generation phase and improves the bandwidth efficiency from
the RSA-based GQ signature. Then, we construct a trustless GQ multi-
signature scheme by applying non-malleable equivocable commitments
and our well-designed compact non-interactive zero-knowledge proofs
(NIZK). Our scheme has a well-rounded performance compared to exist-
ing multiparty GQ, Schnorr and ECDSA schemes, in the aspects of band-
width (no range proof or multiplication-to-addition protocol required),
rather few interactions (only 4 rounds in signing), provable security
in dishonest majority model and identifiable abort property. Another
interesting finding is that, our NIZK is highly efficient (only one round
required) by using the Bezout formula, and this trick can also optimize
the ZK proof of Paillier ciphertext which greatly improves the speed of
Yi’s Blind ECDSA (AsiaCCS 2019).

Keywords: Guillou-Quisquater signature · Multi-signature ·
Zero-knowledge proof · Remove trusted setup

1 Introduction

Guillou-Quisquater signature, also called GQ signature, was proposed by Guillou
and Quisquater in 1988 [21]. Together with Schnorr signature [34], GQ signature
scheme is amongst the most efficient and famous Fiat-Shamir [15] follow-ons. GQ
has some applications in cryptographic protocols such as forward-secure signa-
ture [27], identity-based signature with bounded life-span [13], distributed certifi-
cate status protocol [40], distributed authentication algorithm for mobile ad-hoc
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network [37], GQ1 (identity-based) and GQ2 schemes in ISO/IEC 14888-2 stan-
dard [25] and etc. GQ has already been used to construct distributed signing
protocols, including multi-signature schemes [1,2,12,35] and threshold signature
schemes [10,29,36]. Nevertheless, GQ’s application scenarios and research discus-
sions are still rather limited when compared with Schnorr and ECDSA which are
the most widely used two digital signature schemes by virtue of Schnorr’s great
simplicity and ECDSA’s application in blockchains like Bitcoin and Ethereum.

Drawbacks of RSA-based GQ. One obvious flaw of all the aforementioned
GQ applications is that all these applications require a trusted setup to generate
the public/private key pair through generating two large primes p and q secretly
and setting n = pq publicly as the group order. This is prohibitive for practical
adoption of GQ in trustless environments like public blockchain or digital walletd
where no trusted third party (TTP) is involved. In 2000, Hamdy and Möller [22]
informally pointed out that class groups of imaginary of quadratic fields (IQC)
proposed by Buchmann and Williams [6] can be applied in GQ signature, thus
shedding light on how to remove the RSA trapdoor in GQ signature scheme, i.e.,
replacing the RSA group in GQ signature with a class group. Yet, such a class
group based GQ signature lacks a formal definition and a rigorous security proof
for EUF-CMA (Existential Unforgeability under Chosen Message Attack) along
with a suitable hardness assumption. Another shortcoming for GQ protocols is
that, since all the elements in RSA group of order n have to be represented by a
3072-bit string for 128-bit security, it is not bandwidth efficient, especially in a
multi-user setting. On the class group side, to achieve 128-bit security, a group
element only needs a tuple (a, b) which can be represented by a 1665-bit string,
with a 1665-bit discriminant Δ which only needs to be declared for once. Thus,
switching from RSA group to class group can save the bandwidth by 45.8% per
each group element, which makes applying GQ in a trustless distributed setting
more appealing.

Multi-signature and its Applications. Multi-signature is firstly proposed
in [26] which is a joint signing protocol that allows a group of signers to collab-
oratively generate a compact signature on a common message and requires that
the verification time and signature size is constant. Two important applications
of multi-signature are digital wallet and asset custody. Digital wallet usually
requires its user to split his secret key into multiple devices and use all (or some)
of them to transfer the currencies he holds. Asset custody is a bank service of
protecting customer’s currencies or real assets. For security consideration, any
one single entity (bank, customer, or some third party institution) can not access
the secret key directly, especially for some large amount of currencies protected,
so the secret key should be also divided into multiple shares. Here are two major
concerns: can we resist misbehaved devices/parties? And can we identify who is
misbehaving?

Intuitions. In this work, we focus on constructing a trustless multi-signature
scheme, allowing key aggregation and identifiable abort properties. The trustless
property requires a non-trusted setup and security against the existence of any
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number of malicious participants during all phases (for both key setup or sign-
ing). Although the dishonest majority model in [20] can well capture this security
requirement, abort is not a violation of its security definition. Then, a malicious
adversary can easily initiate DoS (Denial of Service) attack on the system. Thus
we require an identifiable abort property, which is defined in [24], ensuring that
the identities of the malicious participants leading to system abort are detectable
to any participants or external entities, which is significant to detect broken or
hacked devices or misbehaving banks or institutions which cause the failure the
joint signing. Additionally, we hope our scheme supports key aggregation, which
means that a signer, instead of using a full list of the public keys (or key shares),
only needs an aggregated public key for everyone to verify a signature, thus sav-
ing computations and storage for devices with limited computing resources. In
this work, we give a pretty nice solution with enough security and promising
efficiency using GQ and class group.

1.1 Related Work

Now, we review the multiparty signature protocols built on top of GQ, Schnorr
and ECDSA in the past few years.

The state-of-the-art GQ multi-signature (identity based) is proposed by Bel-
lare and Neven (CT-RSA 2006 [2]). It is highly efficient in computation and
proved secure using the forking lemma, although the bandwidth is heavier when
compared to Schnorr-based multi-signatures which will be discussed later. But
they adopted a fragile security model where all the signers are required honest,
which is unrealistic to make it work in the presence of dishonest adversaries.
We do not consider the key aggregation property since it is an identity based
scheme, where there is only one secret key required to initialize the system by a
trusted centre.

Bellare and Neven proposed an efficient Schnorr multi-signature scheme
(ACM-CCS 2006 [1]) under a plain public-key model allowing the existence of
dishonest signers. But it does not support key aggregation. In plain public-key
model, the security against rogue-key attack1 can be achieved without relying
on KOSK (Knowledge of Secret Key) assumption like [4,30] and accordingly
reduce some burdensome computation2. Maxwell et al. adopted the same plain
public-key model and proposed a variant of Bellare and Neven’s Schnorr multi-
signature, called MuSig, which adds the property of key aggregation [31] (DCC
19). Later on, MuSig2 [33] and MuSig-DN [32] are proposed both of which opti-
mize the round complexity of MuSig from 3 rounds to 2 rounds. However, MuSig
and MuSig2 have a considerable reduction loss led by a double-forking technique
[31]. MuSig-DN achieves a deterministic signing at a cost of expensive zero-

1 Rogue-key attack refers to that an adversary can forge multi-signature by arbitrarily
choosing his public key, or using a function of the public keys of honest signers.

2 KOSK well resists rogue-key attack but it requires the proof of knowledge of secret
key when mounting attacks by submitting corresponding public keys, and thus incurs
expensive computation.
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Table 1. Comparison with existing multiparty signing schemes. rds is the abbreviation
of rounds; n denotes the number of sigining parties;each round allowing broadcasting
and a point-to-point message sending is considered one round.

Scheme Range proof Key aggregate Identifiable abort* Sign rds.

ECDSA (CCS 18) [17]
√ √ × 9

ECDSA (CCS 18) [28]
√ √ × 8

ECDSA (S&P 19) [14] × √ × 6+log(n)

ECDSA (PKC 20) [9] × √ × 8
ECDSA (PKC 21) [39] × √ × 8
ECDSA (G.G. 20) [18]

√ √ √
7

ECDSA (CCS 20) [7]
√ √ × 4

ECDSA (G.K.S.S. 20)[16] × √
(
√
) 13

Schnorr (CCS 06) [1] × × × 3
Schnorr (DCC 19) [31] × √ × 3
Schnorr (CCS 20) [33] × √ × 2
Schnorr (N.R.S. 20) [32] × √ × 2
GQ (CT-RSA 06) [2] × - × 3
GQ (This paper) × √ √

4

knowledge proofs. All of above schemes on GQ and Schnorr cannot achieve
identifiable abort since there are no checks on the correctness on either Ri or si.

Lindell et al. proposed the first practical threshold ECDSA (ACM-CCS 2018
[28]) and Gennaro et al. proposed a parallel work: the first efficient thresh-
old ECDSA construction relying on game-based security proof (ACM-CCS
2018 [17]), there has been an abundance of follow-up work [7,9,14,16,18,39]
to improve these two schemes and made remarkable improvements on different
aspects, like waiving expensive range proofs, lowering the signing rounds, adding
the identifiable abort functionality. All the mentioned threshold ECDSA schemes
operate in the dishonest majority model, which is much more secure than plain
public-key model, especially for decentralized and trustless settings. Gennaro and
Goldfeder’s scheme [18] achieves the identifiable abort which attributes to a spe-
cific phase. Ga̧gol et al.’s scheme [16] achieves the identifiable abort only in the
online signing phase, thus marked with (

√
) in the identifiable abort option in

Table 1.

1.2 Contributions

We give a brief comparison between our proposed GQ multi-signature
scheme and the above-mentioned multi-signature/threshold signature schemes
in Table 1, which demonstrates that our protocol is well-rounded, with a compet-
itive signing round complexity (4 rounds of interaction), supporting key aggre-
gation and identifiable abort, secure in the dishonest majority model. Our con-
struction can achieve a highly trustless digital wallet and asset custody. We
summarize our contributions as follows.
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(1) Formal definition and security proof for class group based GQ
signature (CL-GQ). Applying class group to GQ signature can make GQ
trapdoorless as mentioned in [22] but no formal discussion is given. We first
formalize the definition of GQ signature over class group of imaginary quadratic
fields, find the suitable hardness assumption prime root assumption for CL-GQ,
and prove that the existential unforgeability under chosen message attack (EUF-
CMA) in the random oracle model (ROM) under the prime root assumption
implied by the root assumption in generic group in [11].

(2) Compact one-round NIZK proofs to resist malicious adversaries
and achieve identifiable abort. In order to detect the malicious behaviour
during the multi-party signing and the protocol can abort once misbehaving is
detected once the malicious message is recieved (a timely identifiable abort with
attributability to the exact malicious message), we design two tailored ZK proofs
including ZKPoKRoot and ZKPoKSig following the 3 moves in the traditional
Σ-protocol. They promise any messages sent during interactions are verifiable.
Our ZK proofs are highly efficient, since no repetition is required after adopting
a Beout trick, although the ZK proofs work in an unknown order class group,
unlike the binary challenge based ZK proofs in [8,9]. This Bezout trick nicely
solves the open problem of how to accelerate the ZK proof of Paillier ciphertext
used in Yi’s blind ECDSA [38], which is illustrated in detail in the full version
of this paper.

(3) Provably secure trustless CL-GQ multi-signature in dishonest
majority model. We generalize CL-GQ to a multi-user setting and combine
non-malleable equivocable commitment used in [9,17] and our ZK proofs to build
up our trustless CL-GQ multi-signature scheme. Our scheme does not rely on
any common reference string (CRS) produced by a trusted party. We reduce
the unforgeability of our new multi-signature in dishonest majority model to
the EUF-CMA of CL-GQ under ROM. Our proof enjoys smaller reduction loss
than [31,33] since we only require one time rewinding when reducing the CL-
GQ to prime root assumption and no rewinding when reducing the CL-GQ
multi-signature to CL-GQ, differing the double-forking technique which needs a
two-layer rewinding framework, and it is much more concise than the ECDSA
schemes [9,17] since our simulator does not need to distinguish any non semi-
correct executions.

(4) Implementation and efficiency analysis. We implement our protocol
in Rust3 to demonstrate the practical efficiency. One signer only needs 2.1/3.6 s
to sign a document for 112/128-bit security level in a 5-user setting. We also
analyze the concrete bandwidth needed in our scheme. In 128-bit security, our
protocol only costs 6 kB (kilobytes) and 10 kB bandwidth for the interactive key
generation and interactive signing phases respectively in a 5-signer setting. For
signing, the bandwidth of our scheme is about one-third of the bandwidth in [17]
since we do not have expensive range proofs led by Paillier encryption or tedious
MtA (Multiplication-to-Addition) protocol led by the non-linear structure of
ECDSA. Both running time and bandwidth are promising.

3 https://www.rust-lang.org/.

https://www.rust-lang.org/
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2 Preliminaries

2.1 Adversary Model and Security Definitions

Our proposed multi-signature scheme works in a dishonest majority model allow-
ing static corruption which was used in [9,17,18,28]. Following [19], we present
a game-based definition of security analogous to EUF-CMA: multi-signature
unforgeability under chosen message attacks (MU-CMA).

Dishonest Majority Model with Static Corruption. In dishonest majority
model, there can exist a majority of malicious adversaries who may arbitrarily
deviate from the protocol and abort is not deemed as violating the security,
assuming the existence of both broadcast channel and point-to-point channel
among each participant, and assuming the static corruption that requires adver-
saries to select the participants to corrupt ahead of the start of the protocol.

Definition 1 (Multi-signature Unforgeability). Consider a multi-signature
scheme MS = (MKeyGen,MSign,Verify) with N parties and a PPT malicious
adversary A who corrupts at most N − 1 players, given the view of MKeyGen
and MSign on inputs of adaptively chosen messages, denoted by M, and the
corresponding signatures on those messages. The multi-signature scheme MS
is said to be existentially unforgeable (EUF-CMA) if there is no such a PPT
adversary A that can produce, except with negligible probability, a valid signature
on a message m /∈ M.

2.2 Guillou-Quisquater Signature (GQ)

We review the original GQ signature scheme in [21].

– KeyGen. Choose randomly two large primes p and q and compute n = pq.
Select an integer v s.t. 0 < v < φ(n) and gcd(v, φ(n)) = 1, where φ(n) is the
Euler function. Select a hash function H : {0, 1}∗ → Zv−1. Randomly select
the secret key B from Zn and compute J = B−v mod n. Set PK = (n, v, J,H)
and SK = (p, q,B).

– Sign. Randomly select r from Zn, then compute T = rv mod n, h = H(M,T )
and t = rBh mod n, where M is the message to be signed. Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJhmod n. If h = H(M,T ′), output 1; otherwise, output 0.

The correctness is by T ′ = tvJh = (rBh)vJh = rv(JBv)h = rv = T mod n.
According to [3], GQ identification is secure under RSA-OMI (RSA one-more
inversion) assumption and after applying Fiat-Shamir transformation, GQ sig-
nature is secure under RSA-OMI assumption in ROM (random oracle model).

RSA Trapdoor. If knowing the p and q, a malicious PKG can easily obtain the
secret key B from public J through simply computing d = v−1 mod (p−1)(q−1)
and then B = J−d. This RSA trapdoor makes the GQ signature infeasible to be
used in trustless scenarios.
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2.3 Class Group of Imaginary Quadratic Field

Let −Δ be a random (large) λ-bit prime such that Δ ≡ 1 mod 4. The ring
OΔ = Z + Δ+

√
Δ

2 Z is an imaginary quadratic order of discriminant Δ. Its field
of fractions is Q(

√
Δ). The fractional ideals of OΔ are of the form q(aZ+ b+

√
Δ

2 Z)
with q ∈ Q, α ∈ Z

+, b ∈ Z and 4a|(b2 − Δ). An ideal is integral if q = 1, and it
can be represented by a pair (a, b). Two factional ideals a, b ∈ OΔ are equivalent
if for some non-zero α ∈ Q(

√
Δ), a = αb. The set of equivalence classes form an

Abelian group under ideal multiplication, which is known as the class group of
imaginary quadratic order CL(Δ). Sometimes we denote the group as Di, where
i = −Δ. One set of equivalence classes can be represented by a unique (a, b)
form through a reduction algorithm satisfying that gcd(a, b, c) = 1,−a < b ≤
a ≤ c,and b ≥ 0 if a = c. The class group of imaginary quadratic order Di is an
Abelian group with ideal multiplication. Meanwhile, class group is always finite
and the group order is unknown. More description can be found in [22,23].

3 GQ Signature Scheme Without Trapdoor (CL-GQ)

When we replace the RSA group by class group of imaginary quadratic field
CL(Δ), the group order and thus factoring of group order are unknown even to
the authority or user who generates the group. Hence, this n = pq trapdoor is
perfectly removed. The GQ signature based on class group is portraited below.
The main difference between GQ and CL-GQ is in the KeyGen phase, where v
has to be a prime and the group is initialized by a prime Δ. Procedures in sign
and verification are basically the same as GQ’s. Group operations in class group
and the necessity of computing modulo. We now describe the details.

– KeyGen. Given the security parameter λ, find a λ-bit prime −Δ s.t. Δ ≡ 1
mod 4 and a λ-bit prime v. Randomly sample a generator B from class group
of imaginary quadratic field CL(Δ). Compute J = B−v. Notice that all
the multiplication and exponentiation in class group should be finalized to a
reduced form. It is for the unity of representation and to lower computation
cost. Choose a hash function H : {0, 1}∗ → Zv−1. Set PK = (Δ, v, J,H) and
SK = (B).

– Sign. On input the secret key B and a message M , randomly selects r from
CL(Δ), then compute T = rv, h = H(M,T ) and t = rBh . Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJh and h′ = H(M,T ′). If h′ = h, output 1; otherwise, output 0.

Security. Damgård and Koprowski defined root assumption [11] working in
generic group model, as a generalization of RSA assumption, by describing that
given a group element x ∈ G and a number e, finding a group element y s.t.
ye = x is intractable, where G is a finite Abelian group in which the inverse and
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multiplication can be efficiently computed. Thus, we define a prime root assump-
tion as below, working in class group, which rules out composite exponent and
can be directly implied by root assumption. By Theorem 1, the EUF-CMA secu-
rity of CL-GQ can be reduced to prime root assumption in ROM. Due to the
page limit, we provide all the proofs expect for Theorem 1 in the full version of
this paper.

Definition 2 (Prime root assumption). We say that a class group of imag-
inary quadratic fields satisfies prime root assumption for any efficient A if

Pr
[
uv = g : u ← A(Δ, g, v), v ← Primes(λ), g $←− CL(Δ),Δ $←− Primes∗(λ)

]

is negligible in λ, where Primes(λ) is the set of primes less than 2λ and
Primes∗(λ) is the set of λ-bit primes which are equal to 3 modulo 4.

Theorem 1. If prime root assumption holds and H is a random oracle, the
CL-GQ signature is provably secure in the EUF-CMA model.

Proof. Suppose B is given a prime root problem instance (Δ,J∗, v), J∗ is a
group member in CL(Δ) and v is a prime. B tries to find a B∗ from CL(Δ)
s.t. B∗v = J∗ by using an EUF-CMA adversary A against the CL-GQ signature
scheme.
Setup. B prepares an empty list H, set p as the length of each element in H. B
sends (Δ, v, J∗,H) to adversary A as the public key.
Oracle Query. B answers the oracle queries as follows:
– Sign: On input a message M , B picks some random t ∈ CL(Δ), h ∈ Zp and

computes T = tvJh. B puts (h, T,M) in the list H. (If the value of h is
already set in H, B picks another h and repeats the previous step.) B returns
σ = (t, h).

– H: On input (T,M), if (h, T,M) is in the list H, B returns h. Otherwise, B
picks a random h ∈ Zp. B puts (h, T,M) in the list H and returns h.

Output. Finally A outputs an a message M∗ and a forged signature σ∗ = (t∗, h∗).
B can compute h∗ = H(T ∗,M∗) s.t. T ∗ = t∗vJ∗h∗

.
B rewinds H to the point that (T ∗,M∗) was queried, and returns a different

h′ 	= h∗. B eventually obtains another forgery (t′, h′) from A. Therefore, we have
t∗vJ∗h∗

= t′vJ∗h′
and it can be transformed into J∗h∗−h′

= (t′/t∗)v.
According to Bezout formula, there exists a unique pair of non-zero integers

(k,m) where 0 ≤ |k| ≤ v−1 and 0 ≤ |m| ≤ |h∗ −h′|−1 which is easily computed
by Euclidean algorithm s.t.:

mv − k(h∗ − h′) = gcd(v, h∗ − h′) = 1.

Raise equation J∗h∗−h′
= (t′/t∗)v to power k, we have:

J∗k(h∗−h′) = (t′/t∗)vk

J∗mv−1 = (t′/t∗)vk

J∗ = {J∗m(t∗/t′)k}v

Hence, B successfully extracts B∗ = J∗m(t∗/t′)k to solve the problem instance. 
�
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4 Our Multi-signature Scheme

In this section, we give the construction of our multi-signature scheme, which
is a trustless GQ multi-signature with identifiable abort, secure in dishonest
majority model. Both distributed key generation and distributed signing have
six phases, they will either abort or output a CRS and a valid signature in each
phase. We also utilize two zero-knowledge proofs ZKPoKRoot and ZKPoKSig
in our protocol, which will be described in details in next section. Here we note
that a plausible idea to achieve trustless setup is to use Boneh’s distributed RSA
key generation method [5] which will not compromise any secret information of
each signer to others. The reason why we did not adopt this fashion to construct
our GQ multi-signature is that this key generation is only secure assuming all
the parties are honest. This contradicts our dishonest majority setting.

Parameters and Notations. For the security level of 80/112/128-bit security, we
set λ (the bit length of the discriminant Δ of class group) 958/1208/1665 accord-
ing to the estimation in [22] and set η(λ)=160/224/256 bits. Considering the
requirement in [21] that h is smaller than v, h and v are set η(λ) and η(λ)+1 bits
respectively. NextPrime(x) (resp. PrevPrime(x)) is a function using Miller-Rabin
prime test to generate the next (resp. previous) nearest prime. NextPrime*(x)
(resp. PrevPrime*(x)) is a function using Miller-Rabin prime test to generate
the next (resp. previous) nearest prime r such that r ≡ 1 mod 4 after the input
integer x. Com(x) is a non-malleable commitment for a committed value x and
Reveal(c, d) opens the underlying committed value of the non-malleable equivocal
commitment where c is a commitment and d is a decommitment.

4.1 Distributed Key Generation

Our distributed key generation algorithm (Table 2) will either abort or output a
CRS. ZKPoKRoot is used to promise that public key Ji broadcasted by party
Pi is correctly generated. We describe the details as follows.

Phase 1. Each party Pi picks δi
$←− {0, 1}λ and vi

$←− {0, 1}η(λ)+1. Pi com-
putes the commitment [ci, di] ← Com(δi) and [ĉi, d̂i] ← Com(vi). Each Pi broad-
casts to all other parties the commitment (ci, ĉi).

Phase 2. Each Pi broadcasts the decommitment (di, d̂i) to all other parties.
Phase 3. After each Pi received all the (δj , vj) generated by every Pj(j 	= i),

a collaboratively generated (Δ, v) is computed by Δ = NextPrime∗(⊕n
i=1δi) and

v = NextPrime(⊕n
i=1vi). Then, each Pi generate its key pair (Bi, Ji) by Bi

$←−
CL(Δ) and Ji = B−v

i . Pi computes the commitment [c∗
i , d

∗
i ] ← Com(Ji) and

broadcasts to all other parties the commitment c∗
i .

Phase 4. Each Pi broadcasts the decommitment d∗
i along with a non-

interactive zero-knowledge proof πi for the relation {(Ji, v) : Bi|Ji = B−v
i }

to all other parties.
Phase 5. Upon receiving πi from Pj(j 	= i), each Pi checks the validity of

πj . If passing the check, Pi accepts πj ; otherwise, abort.
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Table 2. Interactive key generation protocol IKeyGen

IKeyGen(λ)
Pi All users {Pj}, i �= j

δi
$←− {0, 1}λ

vi
$←− {0, 1}η(λ)+1

[ci, di] ← Com(δi)

[ĉi, d̂i] ← Com(vi)
ci,ĉi−−−→
di,d̂i−−−→ δi ← Reveal(ci, di)

vi ← Reveal(ĉi, d̂i)

Δ = NextPrime∗(⊕n
i=1δi)

v = NextPrime(⊕n
i=1vi)

Bi
$←− CL(Δ)

Ji = B−v
i

[c∗
i , d∗

i ] ← Com(Ji)
c∗
i−→

d∗
i−→ Ji ← Reveal(c∗

i , d∗
i )

πi = ZKPoKRoot((Ji, v) : Bi|Ji = B−v
i )

πi←→ Abort if proof π fails
J =

∏n
i=1 Ji

Set CRS = (Δ, v, J, H),

and PKi = Ji;SKi = Bi

Phase 6. After each Pi received all the πj generated by every Pj(j 	= i) and
every πj ’s validity is proved, a common J is computed by J =

∏n
i=1 Ji. Each

party Pi sets CRS = (Δ, v, J), PKi = Ji;SKi = Bi.

4.2 Distributed Signing

Our distributed signing algorithm (Table 3) will either abort or output a valid
signature. We use ZKPoKRoot to ensure the well-formedness of commitment Ti

and use ZKPoKSig to ensure the well-formedness of response ti, thus preventing
malicious behaviors during the signing phase. We describe the details as follows.

Phase 1. Each party Pi picks ri
$←− CL(Δ) and compute Ti = rv

i . Pi com-
putes the commitment [ci, di] ← Com(Ti). Each Pi broadcasts to all other parties
the commitment ci.

Phase 2. Each Pi broadcasts the decommitment di along with a non-
interactive zero-knowledge proof πi for the relation {(Ti, v) : ri|Ti = rv

i } to
all other parties.

Phase 3. Upon receiving πj from Pj(j 	= i), Pi checks the validity of each
πj . If it is valid, Pi accepts πj ; otherwise, abort.

Phase 4. After each Pi received all the Tj and πj generated by every Pj(j 	=
i) and πj is proved valid, a common T =

∏n
i=1 Ti is computed. Then, calculate
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Table 3. Interactive signing protocol ISign

ISign(λ, SK, M)

Pi All users {Pj}, i �= j

ri
$←− CL(Δ)

Ti = rv
i

[ci, di] ← Com(Ti)
ci−→
di−→ Ti ← Reveal(ci, di)

πi = ZKPoKRoot((Ti, v) : ri|Ti = rv
i )

πi←→ Abort if proof π fails
T =

∏n
i=1 Ti

h = H(M, T )

ti = riB
h
i

[ĉi, d̂i] ← Com(ti)
ĉi−→
d̂i−→ ti ← Reveal(ĉi, d̂i)

π̂i = ZKPoKSig((Ti, Ji, ti, h, v) : (ri, Bi)|
ti = riB

h
i , Ti = ri

v, Ji = Bi
−v)

π̂i←→ Abort if proof π̂ fails

t =
∏n

i=1 ti

Output σ = (t, h)

h = H(M,T ). Each Pi computes ti = riB
h
i and the commitment [ĉi, d̂i] ←

Com(ti). Each Pi broadcasts to all other parties the commitment ĉi.
Phase 5. Each Pi broadcasts the decommitment d̂i along with a non-

interactive zero-knowledge proof π̂i for the relation {(Ti, Ji, ti, h, v) : (ri, Bi)|ti =
riB

h
i , Ti = ri

v, Ji = Bi
−v} to all other parties.

Phase 6. Upon receiving π̂j from Pj(j 	= i) , each Pi checks the validity of π̂i.
If it is valid, Pi accepts π̂i; otherwise, abort. Each party computes t =

∏n
i=1 ti.

Output the collaborative signature σ = (t, h).

4.3 Verification

When receiving a signature σ = (t, h) for the message M , the verification is
similar to the original GQ signature scheme. Accept if and only h is equal
to H(M,T ′) where T ′ = tvJh. The correctness follows by T ′ = tvJh =
(
∏n

i=1 ti)v(
∏n

i=1 Ji)h = (
∏n

i=1 riB
h
i )

v(
∏n

i=1 B−v
i )h = (

∏n
i=1 ri)v = rv = T .

Since the operation is based on an unknown order class group and the results
produced by class group multiplication and exponentiation is normalized when
output, we do not need to modulo the result by any integer. Since the validity of
the signature can be checked by any Pj , it is possible for Pi to send Pj the sig-
nature if it confirms the validity of this signature. This will not affect security at
all. Moreover, non-malleable commitments and zero-knowledge proofs promise
that each party cannot deny the message it broadcasts to the network and each
message contributing to collaboratively generated signature is well-formed, and
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thus no malicious behaviors can affect the joint signing. Note that, the verifica-
tion phase only needs the aggregated key J =

∏n
i=1 Ji, not the full list of signers’

public keys {Ji}i∈[1,n].

4.4 Rogue-Key Attack Resistant

In the IKeyGen phase, an adversary, Pj∗ for example, cannot choose its PKj∗

after seeing the public keys of other parties to initiate rogue-key attack. More
specifically, he cannot set his public key as Jj∗ = B−v

j∗ (
∏n

i=1,i �=j∗ Ji)−1 and thus
make the aggregated key equal his arbitrarily selected public key B−v

j∗ , in which
case he can forge valid multi-signature by himself easily, since he cannot prove the
knowledge of the discrete logarithm of Jj∗ by submitting valid ZKPoKRoot. This
rules out the possibility of rogue-key attack following the KOSK assumption.

4.5 Identifiable Abort or Not

If we simply achieve dishonest majority security without identifiable abort, there
is no need to generate and verify the well-formedness ZK Proof of ti in ISign,
namely, the ZKPoKSig. Instead, after obtaining ti, each party directly computes
t =

∏n
i=1 ti, and verify the validity of σ = (t, h), then output this σ if it is valid,

abort if it is invalid. This does not violate the dishonest majority model we
used. However, without using ZKPoKSig the identity of malicious party cannot
be detected in the Phase 5, and thus our scheme cannot reach the property of
identifiable abort.

5 Security Proof of Our Multi-signature Scheme

The security proof of our multi-signature scheme is a reduction to the unforge-
ability of CL-GQ. If there is a PPT adversary A which breaks our multi-party
CL-GQ, then we can construct a forger F to use A to break CL-GQ. F must
simulate the environment of A. Namely, when A corrupts {Pj} where j 	= 1, we
can construct a F to simulate honest party P1 s.t. A’s view of interaction with F
is indistinguishable from A’s view of interaction with P1. Let F have the public
key (Δ, v, J,H) of CL-GQ and owns the access to the signing oracle of its choice.
After a series of queries from F , it can output a forgery signature σ = (t, h) for
a message M chosen by itself which has never been queried. Different from the
security proof of the multiparty ECDSA in [9], F does not need to distinguish a
semi-correct or non semi-correct execution of A (δi in Phase 3, Fig. 5 in [9] sent
from adversary can be malicious) which makes our proof more concise.

Simulating P1 in IKeyGen. F obtains a public key (Δ, v, J,H) from its CL-
GQ challenger and he must set up in its simulation with A this same public
key (Δ, v, J,H). This will allow F to subsequently simulate interactively signing
messages with A, using the output of its CL-GQ signing oracle. F repeats the
following steps by rewinding A until A sends the correct decommitments for
P2, ..., Pn on both iterations.
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1. F randomly selects δ1 ∈ {0, 1}λ and v1 ∈ {0, 1}η(λ)+1, computes [c1, d1] ←
Com(δ1) and [ĉ1, d̂1] ← Com(v1) and broadcasts (c1, ĉ1). F receives
{cj , ĉj}j∈[n],j �=1.

2. F broadcasts (d1, d̂1) and receives {dj , d̂j}j∈[n],j �=1. For i ∈ [n], let δi ←
Reveal(ci, di) and vi ← Reveal(ĉi, d̂i).

3. F randomly selects δ′
1, v

′
1 ∈ {0, 1}λ, subject to the condition Δ =

NextPrime∗(δ′
1 ⊕ (⊕n

2 δi)) and v = NextPrime(v′
1 ⊕ (⊕n

2 vi)). Then F computes
equivocated decommitment (d′

1, d̂
′
1) which reveal δ′

1, v
′
1, rewinds A to step 2

and broadcasts (d′
1, d̂

′
1).

4. All parties compute the common output Δ = NextPrime∗(δ′
1 ⊕ (⊕n

2 δi)) and
v = NextPrime(v′

1 ⊕ (⊕n
2 vi)).

5. F randomly selects B1 ∈ CL(Δ) and computes J1 = B−v
1 . Then F computes

[c∗
1, d

∗
1] ← Com(J1) and broadcasts to all other parties the commitment c∗

1. F
receives {c∗

j}j �=i.
6. F broadcasts d∗

1 and performs a ZKPoKRoot for relation {(J1, v) : B1 : |J1 =
B−v

1 }. F then receives {d∗
j}j �=i. For i ∈ [n], let Ji ← Reveal(c∗

i , d
∗
i ) be the

opened commitment value of each party.
7. F rewinds A to step 6 and equivocates P1’s commitment to d∗′

1 so that the
revealed value now is J ′

1 = J(
∏n

i=2 Ji)−1 and broadcasts d∗′
1 . Then F simu-

lates ZKPoKRoot.
8. If all the proofs and commitments are correct the protocol continues with

J ′ = J ′
1

∏n
i=2 Ji = J .

Theorem 2. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot is honest verifier zero-knowledge proof of knowledge, then the IKey-
Gen simulation above is indistinguishable from a real execution in the view of
potentially corrupted parties P2, P3, . . . , Pn. Moreover, when the simulation does
not abort, all parties output Δ, v in step 4 and J in step 8.

Simulating P1 in ISign Phase

1. As in a real execution, F randomly selects r1 ∈ CL(Δ) and computes T1 = rv
1 .

Then F computes [c1, d1] ← Com(T1) and broadcasts to all other parties the
commitment c1. F receives {cj}j �=i.

2. F broadcasts d1 and performs a ZKPoKRoot for relation {(T1, v) : r1 : |T1 =
rv
1}. F then receives {dj}j �=i. For i ∈ [n], let Ti ← Reveal(ci, di) be the opened

commitment value of each party.
3. F requests a signature (t, h) for a message M from its CL-GQ signing oracle

and computes T = tvJh (note that h = H(M,T )).
4. F rewinds A to step 2 and equivocates P1’s commitment to d′

1 so that the
revealed value now is T ′

1 = T (
∏n

i=2 Ti)−1 and broadcasts d
′
1. Then F simulates

ZKPoKRoot.
5. If all the proofs and commitments are correct, all parties compute T ′ =

T ′
1

∏n
i=2 Ti = T , h′ = H(M,T ) = h. F computes t1 = r1B

h′
1 . and [ĉ1, d̂1] ←

Com(t1). F broadcasts to all other parties the commitment ĉ1. F receives
{ĉj}j �=i.



686 H. Cui and T. H. Yuen

6. F broadcasts d̂1 and performs a ZKPoKSig for relation {(T1, J1, t1, h) :
(r1, B1)|t1 = r1B

h
1 , T1 = r1

v, J1 = B1
−v}. F then receives {d̂j}j �=i. For

i ∈ [n], let ti ← Reveal(ĉi, d̂i) be the opened commitment of each party.
7. F rewinds A to step 5 and equivocates P1’s commitment to d̂′

1. The revealed
value is t′1 = t(

∏n
i=2 ti)−1 and broadcasts d̂′

1. Then F simulates ZKPoKSig.
8. If all the proofs and commitments are correct, all parties compute t′ =

t′1
∏n

i=2 ti = t and output σ = (t′, h).

Theorem 3. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge proof of knowl-
edge, then the ISign simulation above is indistinguishable from a real execution
in the view of potentially corrupted parties P2, P3, ..., Pn and on input M the
simulation outputs a valid signature σ = (t, h) or aborts.

Finally, we capture the security of our protocol by Theorem 4.

Theorem 4. Assuming standard CL-GQ is an existentially unforgeable signa-
ture scheme; the ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge
proof of knowledge; and the commitment scheme is non-malleable and equivoca-
ble, then our GQ multi-signature protocol (IKeyGen, ISign) is an existentially
unforgeable multi-signature scheme.

6 Zero-Knowledge Proofs

In this section, we give the detailed construction of ZKPoKRoot and ZKPoKSig
which are used in our multi-signature protocol. At the first glance, both ZK
proofs seem easy to construct. But one problem of ZK proofs in an unknown
order group is that it requires that the challenge is a binary string and thus
should be repeated for many rounds to achieve an acceptable soundness error,
like the one-bit challenge ZK proofs in [8,38]. We observe an interesting thing
that the Bezout formula utilized in the EUF-CMA of CL-GQ can also be adopted
when proving the special soundness of our ZK proofs, which accordingly waive
the repetition of our protocol, the additional constraint is that the length of
the challenge space should be smaller than v. This trick also answers the open
problem in Yi’s blind ECDSA scheme [38], that how to speed up their ZK proof
of Paillier ciphertext and in the full version of this paper we give a slightly
modified version of the ZK proof they used, which waives any repetition.

6.1 Zero-Knowledge Proof for the −v-th Root

We define a relation for the −v-th root of a class group element x where v is a
prime:

Rroot = {(X, v) : x|X = x−v}.

We put forward a zero-knowledge proof of knowledge (ZKPoK) protocol named
ZKPoKRoot (Table 4) which is needed in our multi-signature scheme. It should
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Table 4. Zero-knowledge Proof ZKPoKRoot for relation Rroot

ZKPoKRoot(X, v)

Pi Pj(j �= i)

r
$←− CL(Δ)

t = rv t−→
k←− k

$←− {0, 1}γ

u = x−kr
u−→ Check: uv = Xkt

Table 5. Zero-knowledge Proof ZKPoKSig for relation Rsig

ZKPoKSig(Ti, Ji, ti, h, v)

Pi Pj(j �= i)

ρ1, ρ2
$←− CL(Δ)

τ1 = ρv
1

τ2 = ρv
2

τ3 = ρ−h
1 ρ2

τ1,τ2,τ3−−−−−→
k←− k

$←− {0, 1}γ

u1 = B−k
i ρ1

u2 = rk
i ρ2

u1,u2−−−−→ Check: uv
1 = Jk

i τ1

Check: uv
2 = T k

i τ2

Check: u−h
1 u2 = tk

i τ3

run for only one round to achieve a soundness error of 2−γ where γ is the length
of the challenge space we set in the ZKPoKRoot protocol, additionally required
that 1 ≤ γ ≤ v − 1. x and X are class group elements and v is a prime.

Theorem 5. The protocol ZKPoKRoot is an honest verifier zero-knowledge
proof of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.

6.2 Zero-Knowledge Proof of a CL-GQ Signature

We need another one-round ZKPoK protocol named ZKPoKSig (Table 5) for the
following relation, where Ti, Ji, Bi are class group elements, h is a positive integer
and v is a prime. We set γ as the challenge space which can be used to adjust
the soundness error of ZKPoKSig, additionally required that 1 ≤ γ ≤ v − 1.

Rsig = {(Ti, Ji, ti, h, v) : (ri, Bi)|ti = riB
h
i , Ti = ri

v, Ji = Bi
−v}

Theorem 6. The protocol ZKPoKSig is an honest verifier zero-knowledge proof
of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.
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Remarks. To reduce the unnecessary interactions, we adopt Fiat-Shamir trans-
formation [15] to make both ZKPoKRoot and ZKPoKSig non-interactive by
replacing the challenge k in each ZKPoK with H(t) and H(τ1, τ2, τ3) respec-
tively where H is a secure hash function. Due to the security level concern, we
will set v larger than 161 bits in the joint signing protocol while γ is usually
required to be 40/60/80 bits in the industry. Hence, for either ZKPoKRoot or
ZKPoKSig, the additional requirement of 1 ≤ γ ≤ v − 1 is practical.

6.3 ZKPoK with Lower Soundness

Consider an extreme scenario that we want to achieve a strict soundness error,
2−1000 for example, Bezout trick can not be applied in the soundness with extrac-
tor proof since the additional requirement of 1 ≤ γ ≤ v − 1 does not hold (v is
smaller than 257 in our real use, as claimed in Sect. 4). The γ can only be set 1
to construct the successful extractor. Hence,  repetitions of either ZKPoKRoot
or ZKPoKSig are compulsory when we want to achieve a soundness 2−� where
 is a positive integer. The massive running time undermines its practical appli-
cation. In this case, if a low soundness error should be satisfied, with reasonable
computational cost, the LCM (lowest common multiple) trick used in [9] can be
used to reduce the repeating time and thus remarkably improve the efficiency. To
adopt this LCM trick, we need to modify the original ZKPoK protocols in two
places: i) change the challenge space of k from {0, 1} to {0, 1}C for some positive
integer C and ii) change the repeat time from  to /C. Through the revisited
ZKPoK protocols, the relations, where y= lcm(1, 2, 3, ..., 2C), are proved.

R′
root = {x : Xz = (xy)v}

R′
sig = {(Ti, Ji, ti, h, v) : (ri, Bi)|tzi = ry

i (B
y
i )

h, T z
i = (ry

i )
v, Jz

i = (Bi
y)v}

Caveat. The major concern of such an LCM trick is that the modified relation
is a loosed relation and thus it is questionable if we can initiate any potential
attacks, more specifically, forge a witness which holds in the loosed relation but
does not hold in the standard relation and this issue is not well discussed in [9].

7 Implementation and Evaluation

We implemented the original GQ signature, the CL-GQ signature, and our multi-
party GQ signature without trusted setup in Rust language. We use the Rust
library Class4 to conduct the class group operations, including sampling, reduc-
tion, exponentiation and multiplication. It should be noted that this Rust library
calls the C library Pari and thus it basically ensures the efficiency of the heavy
arithmetic computations for class groups, but can still be improved. We bench-
mark the running times of both KeyGen and Sign for three schemes. All the
programs are executed in a single thread on a MacBook Pro with Intel Core i5
1.4GHz and 16GB RAM.
4 It is a library for building cryptography based on class groups of imaginary quadratic

orders. https://github.com/ZenGo-X/class.

https://github.com/ZenGo-X/class
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Table 6. Running time of original GQ and CL-GQ in different security levels.

Level GQ’s |σ| GQ KeyGen GQ Sign CL-GQ’s |σ| CL-GQ KeyGen CL-GQ Sign

80-bit 1184 bits 30.375 ms 96.130 us 847 bits 221.77 ms 99.250 ms
112-bit 2272 bits 147.94 ms 472.44 us 1433 bits 2.0269 s 300.61 ms
128-bit 3328 bits 455.42 ms 1.1299 ms 1921 bits 6.9179 s 564.09 ms

Table 7. Benchmarks of trustless GQ multi-signature.

Security level # Party Comp. IKeyGen Comp. ISign Comm. IKeyGen Comm. ISign

2 10.908 s 3.139 s 1848 Bytes 2945 Bytes
112-bit 3 15.006 s 5.253 s 2771 Bytes 4417 Bytes
security 4 19.947 s 7.663 s 3695 Bytes 5889 Bytes

5 35.295 s 10.505 s 4619 Bytes 7361 Bytes
2 29.206 s 5.569 s 2466 Bytes 4003 Bytes

128-bit 3 36.594 s 9.298 s 3698 Bytes 6004 Bytes
security 4 40.168 s 13.372 s 4931 Bytes 8005 Bytes

5 47.825 s 17.991 s 6164 Bytes 10006 Bytes

7.1 Standard GQ v.s. CL-GQ

We compare the standard GQ and CL-GQ in three security levels: 80-bit, 112-bit,
128-bit security, where 80-bit security is insecure and over 112-bit is generally
deemed as secure. We set v as η(λ)+1 bits for both GQ and CL-GQ schemes.
We compare the signature sizes, running times of both schemes. As observed
from results in Table 6, removing the RSA trapdoor is obviously a trade-off of
computational efficiency. CL-GQ is much slower for both KeyGen and Sign due
to the complicated arithmetic operations for class group in CL-GQ. For signature
size, our CL-GQ is much shorter than GQ.

7.2 Performance of Trustless GQ Multi-signature

We evaluate the running time and bandwidth of multi-party GQ without trusted
setup in Tables 7. The running time is obtained from the median running time
among 20 test samples each of which sequentially executes the computation of
each signer (in fact the protocol can be executed in parallel but here we consider
achieving a fair comparison). In a 5-user setting without considering the network
constraint, each signer only needs around 2.1 and 3.6 s to sign a message in 112-
bit and 128-bit security levels respectively. We computed the concrete Bytes
needed for multi-party GQ in 112-bit and 128-bit asymmetric security levels,
and gave the calculation formula (Notice that in the given formula λ means the
length of Δ, instead of a security level 112 or 128). Both bandwidth and running
time confirm that our trapdoorless GQ multi-signature is very practical in use.
Our bandwidth is only about one-thirds of the bandwidth of joint signing in [17].
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Comm.cost(IKeyGen) = n × {10 × λ − 1
2

� + 6 × η(λ) + 5} (bits)

Comm.cost(ISign) = n × {18 × λ − 1
2

� + 4 × η(λ) + 9} (bits)

Impacts from the Number of Users. Consider an N-party setting, since we
assume the existence of broadcast channel, each party only computes their com-
mitments and NIZK proofs once, and thus N computations in total are needed.
On the receiver’s side, however, each party should de-commit the commitments
and verify the NIZK proofs received from all other parties, and thus N(N − 1)
computations in total are needed. The accumulations of δi, vi, Ji, Ti, ti are also
in O(N2) complexity. Hence, the computational burden increases in a non-linear
way when participants increase. Besides, as the increasing of the size of Δ and
v, the uncertainty of computing NextPrime∗ and NextPrime increases, which will
lead to a noticeable variance of running time of IKeyGen. On the other hand,
the variance of the running time of ISign is trivial.

8 Conclusion

In this paper, we first formalize the class group based GQ signature and then
propose a trapdoorless GQ multi-signature scheme with identifiable abort prop-
erty and only 4 rounds of interaction in the signing phase, secure in the dishonest
majority model. We have concise security proof (no need for the simulator to
detect a non semi-correct execution) and two compact one-round NIZKs (remov-
ing repetitions led by binary challenge). We give a detailed implementation and
efficiency analysis which demonstrate that our scheme has promising running
time and extraordinary bandwidth.
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Abstract. SPHINCS+ is a stateless hash-based digital signature scheme
and an alternate candidate in round 3 of the NIST Post-Quantum Cryp-
tography standardization competition. Although not considered as a
finalist because of its performance, SPHINCS+may be considered for
standardization by NIST after another round of evaluations. In this
paper, we propose a Verifiable Obtained Random Subsets (v-ORS) gen-
eration mechanism which with one extra hash computation binds the
message with the signing FORS instance (the underlying few-time signa-
ture algorithm). This enables SPHINCS+ to offer more security against
generic attacks because the proposed modification restricts the ORS
generation to use a hash key from the utilized signing FORS instance.
Consequently, such a modification enables the exploration of different
parameter sets for FORS to achieve better performance at the same
security level. For instance, when using v-ORS, one parameter set for
SPHINCS+-256s provides 82.9% reduction in the computation cost of
FORS which leads to around 27% reduction in the number of hash calls
of the signing procedure. Given that NIST has identified the performance
of SPHINCS+ as its main drawback, these results are a step forward in
the path to standardization.

Keywords: Digital signatures · Hash-based signature schemes ·
Post-quantum cryptography · Merkle tree · SPHINCS+

1 Introduction

Hash-based signature algorithms date back to the 1970s, with the work of Lam-
port and Winternitz (W) on one-time signature (OTS) schemes [11,19]. Such
algorithms were regarded as impractical because of their low performance, strict
requirements for rekeying, and keys and signature sizes. To overcome the short-
lived keys, Merkle signature scheme (MSS) [21] is proposed where it combines
many instances of OTS with a Merkle tree into one signature algorithm, thus
enabling multiple signatures under the same public key. Lately, with the surge
in research in quantum physics and the recent advances in developing quan-
tum computers [2], research on hash-based signature algorithms has flourished.
WOTS++ and WOTS-T are new enhanced variants of WOTS [15,18] .
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Starting from the early 2000s, a series of few-time signature schemes were
introduced (e.g., Biba [22], HORS [24], HORS++[23], PORS [3], FORS [5], and
DFORS [20]). In such schemes, a given key pair is used to sign only a few
messages to maintain a given security level. To this end, Merkle tree-based con-
structions are proposed to enhance the security and efficiency of MSS, such as
eXtended Merkle Signature Scheme (XMSS) [12], XMSS+ [16], Multi Tree XMSS
(XMSSMT ) [17], XMSS with tightened security (XMSS-T) [18], and rapidly ver-
ifiable XMSS signatures [10]. All the aforementioned algorithms use OTS as
the underlying signing scheme, consequently, they are stateful where the signer
needs to update the signing key state to avoid signing with the same key more
than once. Hence, the security of these schemes depends on the keys and on
maintaining an updated state which does not conform to the standard security
notions of digital signatures. Other schemes are stateless such as SPHINCS [6],
Gravity SPHINCS [4], and SPHINCS+ [5,7]. Such schemes build on Goldreich’s
theoretical stateless hash-based signature proposal which utilizes a binary tree
of OTS keys, where each OTS key pair signs the hash of the public keys of its
child nodes [14].

SPHINCS+ is the only hash-based signature scheme that proceeded to round
2 of the NIST post-quantum cryptography (PQC) competition. Recently, the
third round candidates were announced with SPHINCS+ being considered as
an alternative candidate [1]. Such a candidate is seen by NIST as a potential
candidate for standardization in the future which may require an additional
evaluation round. NIST regards SPHINCS+ as a “mature design” with solid
security assumptions but categorizes it among those candidates that have worse
performance than the finalists. SPHINCS+ adopts Goldreich’s hyper-tree con-
struction [14] and utilizes FORS as its underlying signing algorithm. A hyper-tree
construction ensures that the probability of the intermediate OTS signing keys
being reused is negligible, hence, one does not need to keep a state. However,
the design security claims, which are supported by the huge size of the hyper-
tree structure, comes at the expense of relatively low performance. Specifically,
the signing procedure of SPHINCS+ is considered slow when compared to other
candidates, and the resulting signatures are very large [1]. For instance, com-
pared to the finalist Crystals-Dilithium [13], the smallest SPHINCS+ signature
is four times larger, and signing is a thousand times slower [1]. For this reason,
NIST considers SPHINCS+ a “conservative candidate” but decided to keep it
as an alternate for standardization in the event there are applications that can
tolerate longer signatures and slower signing.

Our Contributions. There is a clear need for research that tackles the perfor-
mance issues of SPHINCS+. Given that such a scheme represents the state of
the art in hash-based signatures design, our work provides a step towards the
goal of standardization. In what follows, we summarize the contributions of this
work.

– We propose a Verifiable Obtain Random Subset (v-ORS) mechanism which
enhances the security and performance of SPHINCS+. Using v-ORS in
SPHINCS+, henceforth referred to by vSPHINCS+, the signing algorithm
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is modified where the message digest is generated using a secret key from
the underlying addressed FORS instance which makes the process efficiently
computable by only the signer. As a consequence, with the same parameters
(see Table 1), vSPHINCS+ offers higher bit security than SPHINCS+ with
respect to generic attacks where a hash randomizer is freely chosen to obtain
the ORS.

– As v-ORS strengthens the security of SPHINCS+, we explore different param-
eter sets for the underlying few-time signing scheme, FORS, and report on
suggested instances that achieve up to a 27% reduction in the signing com-
putational complexity of vSPHINCS+while maintaining the claimed security
(see Table 2).

2 Preliminaries

In this section, we provide the notation and security definitions of hash functions
that will be used throughout the paper. We consider security notions of hash
function families which have been introduced in [18]. In what follows, let n ∈ N

be the security parameter, k = poly(n), m = poly(n), Hn = {HK(M) : {0, 1}k ×
{0, 1}m → {0, 1}n be a keyed hash function family, K ∈ {0, 1}k is the hash key,
and M ∈ {0, 1}m is the message. Hash-based signature schemes usually adopt
parameterized hash functions with m, k ≥ n. In the security analysis throughout
the paper, we assume the Quantum Accessible Random Oracle Model (QROM).

Definition 1 ((Post-Quantum) Distinct-function, Multi-target Second
Preimage Resistance (PQ-DM-SPR)). Given a (quantum) adversary A who
is provided with p message-Key pairs (Mi,Ki), 1 ≤ i ≤ p, the success probability
that A finds a second preimage of any pair (j), 1 ≤ j ≤ p using the corresponding
hash function key (Kj) is given by:

SuccPQ-DM-SPR
Hn,p (A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,M
′
) ← A((K1,M1), . . . , (Kp,Mp)) :

M
′ �= Mj ∧ HKj

(Mj) = HKj
(M

′
)]

A generic attack by a classical (resp. quantum) DM-SPR adversary who makes
qh queries to an n-bit hash function has a success probability of qh+1

2n (resp.

Θ( (qh+1)2

2n )). Note that if the keys of the hash function family are chosen ran-
domly, then the above security notion in Definition 1 is referred to as Multi-
Function, Multi-target Second-Preimage Resistance (MM-SPR).

Definition 2 ((Post-Quantum) Multi-target Extended Target Colli-
sion Resistance (PQ-M-eTCR)). Given a (quantum) adversary A who is given
a target set of p message-key pairs (Mi,Ki), 1 ≤ i ≤ p, and they are required to
find a different message-key pair (possibly the same key) whose image collides
with any of the pairs in the target set. The success probability of A is given by:
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SuccPQ-M-eTCR
Hn,p (A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,K
′
,M

′
) ← A((K1,M1), . . . , (Kp,Mp)) :

M
′ �= Mj ∧ HKj

(Mj) = HK′ (M
′
)]

A generic attack by a classical (quantum) M-eTCR adversary who is given p
targets and makes qh queries to an n-bit hash function has a success probability
of p(qh+1)

2n + pqh

2k (resp. Θ(p(qh+1)2

2n + pq2
h

2k )) when k ≥ n.

Definition 3 ((Post Quantum) Pseudorandom Function (PQ-PRF)).
Hn is called a PRF function family, if it is efficiently computable and for any
(quantum) adversary A who can query a black-box oracle O that is initialized
with either Hn function or a random function G where G : {0, 1}m → {0, 1}n.
A is required to distinguish the output of O by determining which function it is
initialized with. The success probability of A is given by:

Succ PQ-PRF
Hn

(A) =| Pr[O ← Hn : AO(·) = 1] − Pr[O ← G : AO(·) = 1] |

A generic attack by a classical (resp. quantum) PQ-PRF adversary who makes
qh queries to an Hn has a success probability of qh+1

2n (resp. Θ( (qh+1)2

2n )).

Quantum Accessible Random Oracle Model (QROM). In the security
analysis throughout the paper, we assume the QROM model [8], where all honest
parties perform classical computations and only the adversary has quantum
capabilities. Hence, all oracles that reply on behalf of unknown keyed function
work in the classical setting where no superposition queries to the quantum
oracle are allowed. For the unkeyed functions which an adversary is assumed to
be able to evaluate independently, the quantum adversary is assumed to have
access to these quantum oracles that reply on behalf of unkeyed functions. The
reader is referred to [8] and [9,18] for more details on QROM model. Considering
hash functions where a quantum adversary is searching for (second) preimages, it
is assumed that Grover’s algorithm is used. The generic security of the following
security notions of hash function families against quantum attacks based on
Grover’s algorithm are formally analyzed in [18].

3 Specifications of SPHINCS+

In this section, we give a brief description of SPHINCS+ which consists of the
following three types of trees. (i) The hyper-tree is the main tree for the whole
construction. It has height h and contains d layers of subtrees, numbered 0 to
d−1, where each subtree has height h/d. The root of the top layer subtree (layer
d−1) is part of the SPHINCS+ public key. (ii) The subtrees are the Merkle trees
that build the hyper-tree. These subtrees adopt the XMSS-T construction [18].
Their leaf nodes are the public keys of WOTS+. The corresponding secret keys
of each leaf node are used to sign the root of the subtree at the lower layer. Note
that since these roots are fixed, a given WOTS+ leaf node always sign the same
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Fig. 1. Simplified SPHINCS+ depiction where the FORS trees and subtrees are 3 levels
high. The diamond, circle, and square nodes denote FORS leaves, intermediate hash
nodes, and WOTS+ leaves, respectively.

value. In any layer, j, there are 2(d−1−j)(h/d) subtrees where 0 ≤ j ≤ d − 1. (iii)
FORS instances correspond to the 2h leaf nodes of the hyper-tree. Each FORS
instance contains κ trees, each of τ levels and 2τ leaves which contain secret keys
that are used to sign the message. Each FORS instance root is the hash of the
concatenation of its κ trees Merkle roots, and is signed by a WOTS+ leaf from
the corresponding subtree at layer 0. Figure 1 gives a simplified depiction of the
SPHINCS+ construction where the FORS trees and subtrees have 3 levels. In
this figure, the message digest is signed by a FORS instance at the bottom layer
whose root is coloured in red. Such a root is in turn signed using the WOTS+ leaf
node, coloured green, in the corresponding subtree at layer 0. The authentication
paths are coloured gray and the roots of the used subtrees are coloured in yellow,
which are similarly iteratively signed by intermediate WOTS+ nodes until the
root of the top subtree is reached. The top subtree root is the public key of
SPHINCS+.

3.1 Parameters

SPHINCS+ has the following parameters:

– h is the total height of the SPHINCS+ hyper-tree and the bit-length of the
FORS instance index.

– d is the number of tree layers.
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– κ is the number of (i) sub-strings, correspondingly, the number of the ORS
elements, in the message digest and (ii) hash trees in a FORS instance where
each tree has t secret keys.

– τ is the bit length of a sub-string of the message digest and the FORS hash
tree height.

– t is the number of secret keys corresponding to the leaves in each tree in a
FORS instance, t = 2τ .

– w is the Winternitz parameter of WOTS+.
– n is the security parameter and it is the bit-length of (i) the secret seed,

SK.seed, and the secret pseudorandom number SK.prf, (ii) FORS secret keys,
SKi,j,z (0 ≤ i ≤ 2h − 1, 0 ≤ j ≤ κ − 1, 0 ≤ z ≤ t − 1), (iii) the public key,
PK.root, and the public seed PK.seed, (iv) the output of the one way function,
F , hash function, H, and tweakable hash Th (see [5] for the details), and (v)
the hash randomizer, R.

Since our mechanism modifies the signing algorithm, in th following we pro-
vide SPHINCS+ signing algorithm. See [5,7] for the details of the key generation
procedure which outputs the secret key SK=(SK.seed, SK.prf, PK.seed, PK.root)
and the public key PK= (PK.seed, PK.root), and the verification algorithm.

3.2 Signing Algorithm

The signing algorithm defines the ORS generation and the message signing steps.

ORS Generation. This procedure takes a message M , SK.prf, and PK as
inputs, and outputs the index of the FORS instance that will be used in the
signing procedure and the indexes of the secret keys (ORS elements) which are
revealed from that instance in the signature. More precisely, using a pseudoran-
dom key generation function PRF, the hash randomizer R is calculated as

R = PRFmsg(SK.prf,OptRand,M) (1)

where OptRand is a 256 bit value which by default is set to 0 and can be
any random value to prevent deterministic signing. An h-bit indx of the FORS
instance that is used to sign the message, and a κτ -bit message digest, md =
b0||b1|| . . . ||bκ−1 are evaluated using Hmsg with R as a hash randomizer as follows

md||indx = Hmsg(R,PK,M), (2)

The ORS is the set of κ substrings (b0, b1, . . . , bκ−1), each of length τ bits.

Message Signing. The FORS signature contains the set of σi which is the bi-th
secret key leaf from the i-th FORS tree of the indexed I-th FORS instance, i.e.,
SKI,i,bi

, and its corresponding authentication path Authi, 0 ≤ i ≤ κ − 1

SIGFORS = (σ0, Auth0), (σ1, Auth1), . . . (σκ−1, Authκ−1) (3)

The κ roots of the trees in the FORS instance are concatenated and hashed to
get an n-bit FORS root

FORS.root = Th(PK.seed||ADRSI ||rooto||root1|| . . . ||rootκ−1) (4)
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FORS.root is then signed using the WOTS+ of the corresponding leaf node in
the corresponding subtree at layer 0 to get the WOTS+ signature (σW0), and
its authentication path AuthW0 of h/d hash nodes, i.e., SIG(FORS.root) =
σW0 , AuthW0 (see [5] for the details of WOTS+). Then the root of this subtree
at layer 0 is signed using the WOTS+ at the corresponding subtree at layer 1.
This process is iterated until the top layer is reached, i.e., for 0 ≤ i ≤ d − 1,
SIG(tree.rooti−1) = σWi

, AuthWi
. The signature, Σ, contains the randomizer R,

the FORS signature, and d WOTS+ signatures with their authentication paths

Σ = (R,SIGFORS , (σW0 , AuthW0), . . . , (σWd−1 , AuthWd−1)) (5)

4 SPHINCS+ with Verifiable ORS

We observe that the randomizer R is sent as part of the signature to be used
by the verifier to compute the ORS elements without a means of verifying its
correct computation. In other words, consider a forging adversary who is allowed
to query the signing oracle with messages of their choice (see Appendix A for
EU-CMA security). Such an adversary is always free to choose a randomizer that
generates ORS elements which collide with the ORS sets revealed in the previous
(queried) signatures without any restriction on the signing FORS instance, i.e.,
the message digest md and FORS index indx in Eq. 2 are not bound together.
Such a security notion in SPHINCS+ is captured by its ORS function Inter-
leaved Target Subset Resilience (ITSR) (See Definition 5) which requires specific
parameterization in terms of the number and height of the FORS trees to reach
the claimed bit security. In what follows, we propose a modification to the ORS
generation in the SPHINCS+ signing algorithm that binds the message digest
md, correspondingly the ORS, with the FORS instance that is used for signing.
Our modification restricts the freedom of the adversary when attempting the
previous attack steps, hence, increasing the ITSR bit security of the modified
ORS function. Consequently, we are able to offer efficient parameter sets for the
underlying FORS scheme to enhance the performance of SPHINCS+.

Verifiable ORS (v-ORS) Generation. The signer first generates a hash ran-
domizer, R, as given in Eq. 1. Then R is used as a hash randomizer to calculate
the index of the FORS instance used for signing and a secret key index within
that same FORS instance. Formally, given H1 : {0, 1}n × {0, 1}2n × {0, 1}∗ →
{0, 1}n, we obtain

hmsg = H1(R,PK,M), (6)

Let the first h+	log2 κ
+τ bits of hmsg an index for a secret key in a FORS tree
within a FORS instance. Specifically, the first h bits denote the I-th index for
a FORS instance, the following 	log2 κ
 bits denotes the J-th index of a FORS
tree within the I-th FORS instance, and 0 ≤ J ≤ κ − 1, and the last τ bits
denotes the Z-th index of a secret key, (SKI,J,Z), within the J-th FORS tree.
Note that the bit length of J is 	log2 κ
, so if κ is not a power of 2, J is reduced
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to J mod κ. SKI,J,Z is then used as a hash key to compute the message digest
md. Formally, consider H2 : {0, 1}n × {0, 1}2n × {0, 1}2n → {0, 1}κτ , then

md = b0||b1|| . . . ||bκ−1 = H2(SKI,J,Z , PK,R||hmsg), (7)

where bj indexes a FORS signature secret key from the j-th FORS tree in the I-th
FORS instance. Hence, the ORS is given by the set of indexes {b0, b1, . . . , bκ−1}.
Note that such an ORS is valid if it can be generated using the hash randomizer,
(SKI,J,Z), which is sent as part of the signature to the verifier. Hence, the reason
for naming the modified ORS generation v-ORS, is that only a legitimate signer
can efficiently generate it and this fact is verifiable. We refer to a SPHINCS+

using v-ORS by vSPHINCS+.

Signing and Verification in vSPHINCS+. The FORS signature, SIGFORS ,
is evaluated as in SPHINCS+, see Eq. 3. However, a vSPHINCS+ signature
includes (SKI,J,Z) along with its authentication path

Σ = (R, (σ′, Auth′), SIGFORS , (σW0 , AuthW0), . . . , (σWd−1 , AuthWd−1)),

where σ′ is the secret key SKI,J,Z and Auth′ is its corresponding authenti-
cation path. Note that since the same FORS instance is used in signing, Auth′

is generated when the J-th FORS tree is built to evaluate (σJ , AuthJ). In the
verification procedure, the signature verifier uses R as a hash randomizer to cal-
culate the FORS index I, FORS tree index J , and the key index Z, from the
selected tree from the FORS instance, see Eq. 6.

During verification, the received signature element σ′ is used to generate the
message digest md (respectively the ORS), as shown in Eq. 7. After that, (σ′

and Auth′) are used to calculate the root of the FORS tree J , and compare it
with the root obtained from the FORS signature elements (σJ , AuthJ ). If they
are different, the signature is invalid, otherwise, the FORS root is calculated and
the same verification process as in SPHINCS+ is performed.

4.1 Rationale of Design Choices

Binding the ORS generation with the signing FORS instance restrains the adver-
sary freedom to generate an ORS set which also has to be a valid subset of the
ORSs of the queried messages. Precisely, Eq. 6 in v-ORS restricts choosing the
hash randomizer that generates the ORS in Eq. 7 to a specific FORS secret key,
which is infeasible for the adversary to guess unless it was revealed through the
queried messages (this event occurs with low probability as given in Eq. 8).

For evaluating the ORS, i.e., md in Eq. 7, we initially planned to hash the
message itself by applying H2(SKI,J,Z , PK,M) but we realized that such a deci-
sion reduces the signing performance if the message size is large. Specifically, the
message is going to be hashed twice; once to generate, hmsg in Eq. 6, which pro-
vides the FORS secret key that is used as a hash randomizer. The second time
is during the ORS evaluation using H2. Accordingly, we decided on hashing
the message hash output, hmsg, in Eq. 7 by applying H2(SKI,J,Z , PK, hmsg).
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Nevertheless, we found that for a valid forgery, an adversary needs to find a
message-randomizer pair (M ′, R′) which outputs hmsg = H1(R′, PK,M ′) where
hmsg is a second preimage of any of the queried messages. Such an attack is equiv-
alent to breaking the security of multi-target extended target collision resistance
M-eTCR of the hash function H1 of vSPHINCS+ as given in Definition 2.

An M-eTCR attack has a success probability of qs·(q+1)
2n + q·qs

2n [18], where qs
is the number of targets, i.e., the queried messages and q is the computational
cost that the adversary needs to query the hashing oracle. In case of an M-eTCR
attack on H1, a forgery is certain because hmsg leads to the same SKI,J,Z and
consequently same ORS as ORS = H2(SKI,J,Z , PK, hmsg). Consequently, we
decided to include the hash randomizer R with hmsg as an input to the second
hash call H2(SKI,J,Z , PK,R||hmsg). In such a case, a valid forgery requires
the adversary to find a message M ′ that outputs hmsg = H1(Rj , PK,M ′) =
H1(Rj , PK,Mj) were Rj is the hash randomizer used with a message Mj out of
the queried messages and 0 ≤ j < qs. Such an attack is equivalent to breaking
the security of multi-function multi-target second preimage resistance (MM-SPR)
of the hash function H1 of vSPHINCS+ (see Definition 1) which has a success
probability of q+1

2n [18], where q is the computational cost that the adversary
needs to query the hashing oracle. Note that an MM-SPR of H1 leads to SKI,J,Z

and an ORS where ORS = H2(SKI,J,Z , PK,R||hmsg). Note that by increasing
the length of message digest, one may get SKI,J,Z plus the ORS elements using
one hash evaluation, however, using the second hashing H2 decreases the freedom
of the choice of the hash randomizer R as it is verifiable via H2.

4.2 Performance Implications

Compared to SPHINCS+, the signature size is increased by (τ + 1) × n bits
because SKI,J,Z and its authentication path are included in vSPHINCS+ sig-
natures. Note that different key sets are used for each ORS element to mitigate
the weak-message attack [3], which means that the ORS elements are not dis-
tinct. Hence, it is not necessary to dedicate an extra FORS tree to choose the
key (SKI,J,Z) from because it is a single value and even if it has the same
index value, Z, as one of the ORS elements, they might come from a different
key sets (tree). To counter the effect of increasing the signature size, one can
leverage the increase in the security due to the restrictions imposed by ORS
generation using v-ORS (See Sect. 5) to explore more efficient parameters for
FORS. More precisely, if we can decrease the number of ORS elements by one,
then the number of FORS trees is decreased by one, so the signature size is the
same as in SPHINCS+. Accordingly, we achieve a better performance by saving
the computations required to generate a FORS tree. Various FORS parameter
sets are explored in Sect. 7, with some achieving around 27% reduction in the
number of hash calls to generate a signature. On top of that, the majority of
SPHINCS+ instances when using v-ORS maintain the same signature size while
offering reduction in signing computation. For some instances, we obtain better
performance and smaller signatures, e.g., for SPHINCS+-192s, v-ORS achieves
around 11% reduction in the signing computation with 0.44% decrease in the
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signature size when compared to SPHINCS+-192s. In what follows, we analyze
the interleaved target subset resilience of v-ORS.

5 Interleaved Target Subset Resilience of v-ORS

The notion of target subset resilience (TSR) of ORS functions has been used to
evaluate the security of HORS and other few-time hash-based signature schemes
against (non) adaptive chosen message attacks [24]. For such schemes, an adver-
sary is successful in forging signatures if they are successful in generating a valid
ORS for a message when given the ORSs of previously queried messages. Simi-
larly in SPHINCS+where its security with respect to forgery attacks is reduced
to the TSR security of the ORS function of FORS.

Definition 4. An ORS function is r-target subset resilient if for any polynomial
time adversary A who is given the ORSs of r messages

⋃r
i=1 ORSκ(mi), it is

infeasible to find a message mr+1 such that its κ-element ORSκ(mr+1) is a
subset of the union of the ORSs of the r messages.

Following the analysis in [7], to map such a security notion to FORS, which may
be viewed as a huge HORS instance with interleaved key sets, we analyze its
interleaved target subset resilience. In vSPHINCS+, we may view all the FORS
instances as one large FORS instance that consists of 2h key pools, and each
pool contains κ sets of t n-bit keys. The two successive calls to H1 and H2 in
Eqs. 6 and 7 bind and map the message to a specific key pool and generates a
set of values, {bj}κ−1

j=0 , such that each FORS signature secret element is the bj-th
value in the j-th key set. We define our v-ORS function by

H2 ◦ H1
def= H2(SKI,J,Z , PK,R||H1(R,PK,M)),

where each of H1 and H2 can be viewed as a composition of a keyed hash
function and a mapping function. Formally, let H1 and H2 denote two keyed
hash functions where H1 : {0, 1}k × {0, 1}∗ → {0, 1}n and H2 : {0, 1}k ×
{0, 1}2n → {0, 1}md. Consider the following two mapping functions, MAP1

and MAP2, where MAP1 : {0, 1}n → {0, 1}h × [0, κ − 1] × [0, t − 1], and
MAP2 : {0, 1}md → [0, t − 1]κ. For the parameters h, κ, t, let G1 = MAP1 ◦ H1

map a message of arbitrary length to the Z-th secret key within the J-th tree
of the I-th FORS instance. Such a key is then used for keying H2. Moreover, let
G2 = MAP2 ◦ H2 map 2n-bit message (the concatenation of the hash key, R,
of H1 and the hash output of H1) to a set of κ indices within the I-th FORS
instance, ((I, 0, b0), (I, 1, b1), . . . , (I, κ − 1, bκ−1)). To this end, our v-ORS func-
tion is represented by G = G2◦G1. In what follows, we give a formal definition of
the (post-quantum) interleaved target subset resilience ((PQ)-ITSR) of v-ORS.

Definition 5 ((PQ)-ITSR). Let A denote a (quantum) adversary who has
access to the signing oracle which on input of an m-bit message Mi,
samples a key Ki at random and returns Ki, KG1 ← G1(Ki,Mi), and
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G2(KG1 ,Ki||H1(Ki,Mi)). A is allowed to query qs messages of their choice.
The success probability of (PQ)-ITSR adversary on v-ORS is given by

Succ
(PQ)-ITSR
H2◦H1 ,qs (A) = Pr[(K ′,M ′) ← A(1n)

s.t. G(K ′,M ′) ⊆
qs⋃

i=1

G(Ki,Mi) ∧ M ′ /∈ {Mi}qs
i=1],

The (PQ)-ITSR insecurity of keyed hash functions H1 and H2 against any (quan-
tum) adversary A who runs in time ≤ ξ and makes no more than qs-queries is
given by

InSecPQ-ITSR(H2 ◦ H1; ξ; qs) = max
A

Succ
(PQ)-ITSR
H2◦H1,qs(A).

Note that for the target subset resilience problem used in SPHINCS [6], the
adversary A was able to freely choose the HORST index I in the multi-target
setting, while in SPHINCS+, the FORS instance I is verifiable by applying the
hash on the message to be signed. Moreover, A was also able to freely generate
an ORS by freely choosing a hash randomizer R, but in v-ORS the generation
of an ORS is restricted by using a secret key from the the FORS instance used
as the hash randomizer, which should be verified at the verification process. In
what follows we analyze the complexity of a generic attack on the interleaved
target subset resilience of v-ORS.

ITSR Security of v-ORS. A PQ-ITSR adversary wants to find a message with
ORS elements which are revealed in the ORSs of the queried qs messages. The
adversary considers the following part of the signature

(R, (σ′, Auth′), SIGFORS) =R, (SKI,J,Z , AuthJ ), (SKI,0,b0 , Auth0), . . . ,
(SKI,κ−1,bκ−1 , Authκ−1),

where R is the randomizer that chooses the hash function which evaluates the
FORS instance index I and secret key index, (J, Z). The secret key, SKI,J,Z is
used as a new verifiable randomizer that generates the ORS = b0||b1|| . . . ||bκ−1.
First the forger needs to find a message-randomizer pair (R′,M ′) such that the
obtained FORS secret key, SKI,J,Z ← H1(R′, PK,M ′), is revealed in the qs
queries. Assuming that, the I-th FORS instance is used r times out of the qs
queries, and the secret key SKI,J,Z is revealed in those r signatures (κ+1 FORS
secret keys are revealed in each signature), then the probability of getting an
SKI,J,Z that is also a previously revealed FORS secret key is given by.

Pr(SKIr,J,Z) = Pr(Ir) × Pr(SKI,J,Z |Ir)

=
(

qs

r

)(

1 − 1
2h

)qs−r 1
2hr

×
(

1 −
(

1 − κ + 1
κ2τ

)r)

, (8)

where Pr(Ir) denotes the probability of hitting a FORS instance I such that
I was used to sign r messages out of the qs queries. Pr(Ir) is given by the
binomial probability formula

(
qs
r

)(
1 − 1

2h

)qs−r 1
2hr where

(
qs
r

)
is the number of



Verifiable Obtained Random Subsets for Improving SPHINCS+ 705

outcomes we want, i.e., the targeted FORS instance I is used r times out of qs.
(1 − 1

2h )qs−r 1
2hr is the probability of each outcome, where 1

2hr is the probability
of targeting the I-th (out of 2h) FORS instance for r times, and (1 − 1

2h )qs−r

is the probability of not targeting the I-th FORS instance for the remaining
qs − r times. Pr(skI,J,Z |Ir) denotes the probability that the secret key SKI,J,Z

is revealed in the queries where the I-th FORS instance is used r times and it is
given by

(
1−(

1−κ+1
κ2τ

)r). Note that each query reveals (κ+1) secret keys from the
same FORS instance, i.e., κ secret keys from the FORS trees corresponding to the
ORS elements and one secret key that is used as the verifiable ORS randomizer.
To this end, the forger uses (SKI,J,Z) as a new verifiable hash randomizer to
generate the message digest md and correspondingly a valid ORS. Note that
(SKI,J,Z) could be any secret key that was previously revealed, whether as a
hash randomizer, σ′, which is the output of G1, or as a FORS signature element,
σi which is an output of G2.

For successful forgery, the elements of the generated ORS should be previ-
ously seen in the r queries for that I-th FORS instance. Recall that in each
query, there are κ + 1 revealed n-bit secret key elements. Let P(r-TSR) denote
the success probability of breaking the r-target subset resilience of v-ORS which
is the probability that all the generated ORS κ elements by an adversary are
revealed in the r queries that are signed by the I-th FORS instance. Such a
probability is given by P(r-TSR) =

(
1 − (

1 − κ+1
κ2τ

)r)κ.
Let Pr(ITSR) denote the success probability of a classical adversary in break-

ing the interleaved target subset resilience vSPHINCS+. Specifically, it denotes
the probability of an adversary that is successful in finding an (R′, M ′) pair such
that SKI,J,Z ← H1(R′, PK,M ′) where SKI,J,Z is revealed in r signatures and
that when such an SKI,J,Z is used to evaluate md, the resulting ORS elements
are revealed in the r messages signed using the I-th instance. Formally, Pr(ITSR)
is the combination of Pr(SKIr,J,Z) and P(r-TSR) over all r possible values and
is given by

Pr(ITSR) =
∑

r

Pr(SKIr,J,Z) × Pr(r-TSR)

=
∑

r

(
qs

r

)(
1 − 1

2h

)qs−r 1
2hr

×
(
1 −

(

1 − κ + 1
κ2τ

)r)κ+1

(9)

Therefore, a classical adversary that makes qh queries to H2 ◦ H1 has success
probability

(qh + 1)
∑

r

(
qs

r

)(
1 − 1

2h

)qs−r 1
2hr

×
(
1 −

(

1 − κ + 1
κ2τ

)r)κ+1

A quantum adversary that is running a second preimage Grover search for the
hash functions H1 and H2 has a success probability

O
(
(qh + 1)2

∑

r

(
qs

r

)(
1 − 1

2h

)qs−r 1
2hr

×
(
1 −

(

1 − κ + 1
κ2τ

)r)κ+1)
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6 vSPHINCS+ Security Reduction

The security of SPHINCS+ is evaluated with respect to existential unforgeabil-
ity under adaptive chosen message attack (PQ)-EU-CMA, see Appendix A for
definition. It has been shown that the insecurity function of SPHINCS+ with
respect to (PQ)-EU-CMA is bounded by the summation of the insecurity func-
tions of the underlying hash and PRF functions with respect to specific security
notions [5]. We follow similar strategy to evaluate the insecurity function of
vSPHINCS+ with respect to PQ-EU-CMA. However in vSPHINCS+, an adver-
sary that is successful in breaking either the ITSR of v-ORS or the MM-SPR
of H1 is also successful in forging signatures. In what follows, we present the
insecurity function of vSPHINCS+.

Theorem 1. For security parameter n ∈ N and parameters w, h, d,m, t, κ, τ ,
vSPHINCS+ is (PQ)-EU-CMA if

– F,H, and Th are PQ-DM-SPR hash function families,
– PRF,PRFmsg are post-quantum pseudorandom function families,
– H2 ◦ H1 is post-quantum ITSR hash function families.
– H1 is a PQ-DM-SPR hash function family.

The insecurity function, InSecPQ-EU-CMA(vSPHINCS+, ξ, 2h), that describe the
maximum success probability over all adversaries running in time ≤ ξ against
the PQ-EU-CMA security of vSPHINCS+ and making a maximum of qs = 2h

queries is bounded by

InSecPQ-EU-CMA(vSPHINCS+, ξ, 2h) ≤ 1
2n

+ InSecPQ-PRF(PRF, ξ)

+ InSecPQ-PRF(PRFmsg, ξ) + InSecPQ-MM-SPR(H1, ξ) + InSecPQ-ITSR(H2 ◦ H1, ξ)

+ InSecPQ-DM-SPR(H, ξ) + InSecPQ-DM-SPR(Th, ξ) + InSecPQ-DM-SPR(F, ξ)

Proof. The proof is based on the approach of the proof given in [7,18]. In what
follows, let the original PQ-EU-CMA game denote the game in Appendix A where
A is allowed to make qs queries to a signing oracle running vSPHINCS+. A wins
the game if they find a valid forgery (M ′,Σ′) where the message M ′ is not in
the queried set of qs messages. The success probability of A is reduced to the
probability of winning any of the following games.

– GAME0 is the original PQ-EU-CMA game.
– GAME1 is GAME0 except the outputs of the PRF functions are replaced by

values generated by a truly random generator. The difference in the success
probabilities between GAME1 and GAME0 is bounded by InSecPRF(PRF).
Otherwise, A can be used to distinguish the PRF function from a truly ran-
dom generator which contradicts the assumption of the used PRF functions.

– GAME2 is similar to GAME1 except that the hash randomizer R is generated
using truly number generator instead of the PRFmsg function. Following the
same reasons as GAME1, the difference in the success probability between
the two games is bounded by the insecurity function of the used PRFmsg

function (InSecPRF(PRFmsg)).
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– GAME3 is similar to GAME2 except that the game is considered lost if the
resulting valid forgery (M ′,Σ′) satisfies either of the following three cases.

• Case 1: In such a case, the adversary A could find M ′ such that
H1(Rj , PK,M ′) = H1(Rj , PK,Mj) = hmsg where Mj is in the queried
messages. In other words, A finds a second preimage M ′, for any message
of the qs queried messages, (w.l.o.g., Mj) using the j-th hash random-
izer Rj . Accordingly, the output of G1 is the same FORS secret key
index, SKI,J,Z , thus, the ORS of M ′ is the same as that of Mj , i.e.,
H2(SKI,J,Z , PK,Rj ||H1(Rj , PK,M ′)) = H2(SKI,J,Z , PK,Rj ||H1(Rj ,
PK,Mj)). Consequently, the rest of the signature will be the same. This
case describes an adversary A that is able to break the multi-target multi-
function second preimage resistance of the hash function H1 ( PQ-MM-
SPR for the H1 function), this happens with success probability equals
q+1
2n , where q is the number of queries to the hash function H1 (see [18]

for the proof of success probability of MM-SPR).
• Case 2: In this case, the adversary could find a message-randomizer pair

(M ′, R′) where both of the following condition hold.
– G1 = MAP1 ◦ H1(R′, PK,M ′) function maps to an index of a pre-

viously revealed FORS secret key, SKI,J,Z , i.e., it is one from those
keys that were revealed through the qs queried messages.

– G2 = MAP2 ◦ H2(SKI,J,Z , PK,R′||H1(R′, PK,M ′)) function maps
to indexes of previously revealed FORS secret keys, SKI,j,bj

for 0 ≤
j ≤ κ − 1.

In this case, the adversary can break the security of post-quantum inter-
leaved target subset resilience of H2 ◦ H1, PQ-ITSR(H2 ◦ H1), which has
the success probability that is given in Eq. 9.

• Case 3: In the case where the adversary does not find a message-
randomizer pair (M ′, R′) that satisfies Case 2, then there is at least one
signature element (except the randomizer R) of the message signature Σ
was not revealed through the qs signatures i.e. there is at least one element
(FORS secret key) of the FORS signature that is not revealed previously.
Accordingly, the forged signature must result in a second preimage of a
revealed node of any of the following

– A FORS tree node in which the secret key corresponding to ORS
element is not previously revealed: the adversary is required to find
a value (the corresponding secret key that supposed to be revealed)
along with an authentication path in which there is a node that is a
second preimage of any node of the revealed authentication paths for
the same FORS tree. Accordingly from that colliding node and up,
the authentication path will be the same as in the previous revealed
signature. Hence, the adversary needs to break the PQ-DM-SPR secu-
rity of the H function,

– The FORS instance root, i.e., the adversary is required to find a value
(the corresponding secret key that is supposed to be revealed) along
with an authentication path that results in a FORS tree root such
that when concatenated with the other FORS tree roots of the FORS
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instance, collides with the revealed FORS instance root. Hence, the
adversary needs to break the PQ-DM-SPR security of the Th function

– A WOTS+ node from the d leaf nodes that sign the root of the down
layer tree. Hence, the adversary needs to break the PQ-DM-SPR for
the F function or the Th function that evaluates WOTS+.PK,

– Any node of the d subtrees except the leaf nodes (breaking the PQ-
DM-SPR of the H function)

The difference in the success probability between GAME3 and GAME2

is bounded by InSecPQ-MM-SPR(H1) + InSecPQ-ITSR(H2 ◦ H1) + 2−n +
InSecPQ-DM-SPR(H) + InSecPQ-DM-SPR(Th) + InSecPQ-DM-SPR(F ), otherwise,
the adversary could break the security of the post-quantum multi-function
multi-target second-preimage resistance of H1 hash function, or the secu-
rity of the post-quantum interleaved target subset resilience of H2 ◦ H1,
or the security of the post-quantum distinct-function multi-target second-
preimage resistance of F,H, or Th. Combining all the games together
gives the bound of the insecurity function of vSPHINCS+ with respect to
EU-CMA.

vSPHINCS+ Bit Security. The EU-CMA bit security of vSPHINCS+ is calcu-
lated by − log2 of the InSecEU-CMA(vSPHINCS+) which is bounded by combining
the success probabilities of the ITSR of the hash functions H1 ◦ H2 introduced
in Sect. 5 and those security notions in Theorem 1, where the classical adversary
makes qh queries to the hash function. Note that in such a case, the PRF, MM-
SPR, and DM-SPR success probabilities are given by qh+1

2n , and consequently the
InSecEU-CMA(vSPHINCS+) is bounded by.

InSecEU-CMA(vSPHINCS+, qh) ≤ qh + 1
2n

+
qh + 1

2n
+

qh + 1
2n

+
qh + 1

2n
+ InSecITSR(H2 ◦ H1, ξ) +

qh + 1
2n

+
qh + 1

2n
+

qh + 1
2n

≤ 7 · qh + 1
2n

+ (qh + 1)
∑

r

(
2h

r

)(
1 − 1

2h

)2h−r 1
2hr

(
1 −

(
1 − κ + 1

κ2τ

)r)κ+1

≤ O
(qh + 1

2n
+ (qh + 1)

∑

r

(
2h

r

)(
1 − 1

2h

)2h−r 1
2hr

(
1 −

(
1 − κ + 1

κ2τ

)r)κ+1)
,

The classical bit security of vSPHINCS+ is given by

b = − log2

(
1
2n

+
∑

r

(
2h

r

)(
1 − 1

2h

)2h−r 1
2hr

(
1 −

(
1 − κ + 1

κ2τ

)r)κ+1
)

(10)

The quantum bit security is given by

b = −1
2

log2

(
1
2n

+
∑

r

(
2h

r

)(
1 − 1

2h

)2h−r 1
2hr

(
1 −

(
1 − κ + 1

κ2τ

)r)κ+1
)
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7 vSPHINCS+: Comparison and New Parameters

The success probability of an ITSR adversary on vSPHINCS+is provided in Eq. 9,
the corresponding success probability for SPHINCS+ is given by

∑

r

(
2h

r

)(
1 − 1

2h

)2h−r 1
2hr

(
1 −

(
1 − 1

2τ

)r)κ

Our modification enhances the security of SPHINCS+ because the power of the
last term is greater than the corresponding one in SPHINCS+. Note that we
can approximate κ+1

κ2τ by 1
2τ for 2τ  κ, but this is not considered in the results

presented in this section. In Table 1, we provide the ITSR bit-security, signature
size, and the signing computational cost (i.e., the number of hash calls required
to generate a signature, where the inputs to all of these hash calls have the same
length) for both SPHINCS+ and vSPHINCS+ using the original parameters of
different versions of SPHINCS+. The signature size for SPHINCS+ is given by

(h + κ(τ + 1) + d.l + 1)n bits.

For vSPHINCS+, this signature size is given by

(h + (κ + 1)(τ + 1) + d.l + 1)n bits.

The number of hash calls required for signing in SPHINCS+ is given by

2(d(l · 2w · 2h/d + 2h/d − 1) + 2 · κ · 2τ + κ(2τ − 1)).

In vSPHINCS+, one more hash call is required which is negligible when
compared to the large number of hash calls. SPHINCS+ provides two instan-
tiations, simple and robust. The former istantiation does not require the use
of bismasks, hence, provides faster signing. Our calculations in this work con-
sider the instances of the simple instantiation. Nevertheless, for robust instan-
tiations, vSPHINCS+ attains the same performance ratios when compared to
SPHINCS+ as it does with the simple instantiations. In both instantiations,
SPHINCS+ offers 6 instances with different parameters at different security lev-
els. Specifically, for each n-bit security, SPHINCS+ offers one parameter set for
fast computation, denoted by SPHINCS+-nf and another for small signature
size, denoted by SPHINCS+-ns.

Table 1. ITSR bit security, signature size, and number of hash calls for SPHINCS+

and vSPHINCS+ with the original recommended SPHINCS+ round-three parameters

SPHINCS+ instance h d τ κ SPHINCS+ vSPHINCS+

bitSec size Hash calls bitSec size Hash calls

SPHINCS+-128s 63 7 12 14 133 7856 4372438 141 8064 4372439

SPHINCS+-128f 66 22 6 33 128 17088 210386 132 17200 210387

SPHINCS+-192s 63 7 14 17 193 16224 7534544 203 16584 7534545

SPHINCS+-192f 66 22 8 33 194 35664 338514 198 35880 338515

SPHINCS+-256s 64 8 14 22 255 29792 6561732 265 30272 6561733

SPHINCS+-256f 68 17 9 35 255 49856 691672 260 50176 691673
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As depicted in Table 1, vSPHINCS+ provides higher bit-security than
SPHINCS+. Note that, SPHINCS+ parameters were chosen to achieve a certain
n-bit security, hence, using the same parameters, vSPHINCS+ achieves higher
than n bits of security. On the other hand, the corresponding signature size of
vSPHINCS+ is slightly increased by (τ +1)n bits. For instance, for SPHINCS+-
128s (128 bit-security is required), SPHINCS+ achieves 133 bit security while
vSPHINCS+ achieves 141 bit security. Since the recommended parameters for
SPHINCS+-128s enable vSPHINCS+ to offer 13 bits more than the required
128-bit security, we can search for different parameters for the FORS scheme to
improve the performance of vSPHINCS+.

7.1 Efficient Parameter Sets

Our initial goal was to have the same signature size as SPHINCS+while providing
a bit security equal to or greater than that required. Accordingly, we chose to
decrease the value of κ by one which means a FORS instance in vSPHINCS+

has one less FORS tree than in SPHINCS+. This enables vSPHINCS+ to have
the same signature size as SPHINCS+ while maintaining an ITSR bit security
that is higher than that required. Note that we are comparing the ITSR bit
security of the two schemes because if the chosen parameters enable an ITSR-
bit security more than the targeted n bits, then an adversarial forgery is more
efficient through a generic SPR attack on one of the used hash functions. Table 2
presents the security level, signature size, computational cost, the percentage
difference in signature size and hash calls when vSPHINCS+ with newly explored
parameters is compared to the original SPHINCS+ instances. A red +x (resp.
green −y) denotes an increase (resp. decrease) by x% (resp. y%) relative to that
of an SPHINCS+instance.

Table 2. ITSR bit security, signature size, and number of hash calls for vSPHINCS+

with the new FORS parameters.

SPHINCS+ instance h d τ κ vSPHINCS+

bitSec size Hash calls % size % calls

SPHINCS+-128s 63 7 12 13 132 7856 4347864 0 −0.56

SPHINCS+-128s 63 7 10 17 131 8112 4132816 +3.25 −5.48

SPHINCS+-128f 66 22 6 32 129 16976 210004 0 −0.18

SPHINCS+-192s 63 7 14 16 192 16224 7436242 0 −1.3

SPHINCS+-192s 63 7 13 17 192 16152 6698960 −0.44 −11

SPHINCS+-192f 66 22 8 32 193 35664 336980 0 −0.45

SPHINCS+-256s 64 8 14 21 254 29792 6463430 0 −1.5

SPHINCS+-256s 64 8 11 30 256 31136 4767668 +4.5 −27

SPHINCS+-256f 68 17 8 41 255 50752 647116 +1.8 −6.4



Verifiable Obtained Random Subsets for Improving SPHINCS+ 711

The small instances, e.g., SPHINCS+-128s, have fewer tree layers and FORS
trees than the fast instances, e.g., SPHINCS+-128f, which results in a smaller
signature size but more hash calls for signing as the tree has more leaves than
the fast instance. Accordingly, by decreasing the value of κ in vSPHINCS+, we
are removing a FORS tree from the original instance which maintains the same
signature size as in SPHINCS+. As the number of FORS trees within a FORS
instance in the fast construction is larger and the FORS tree itself is smaller
than those in the small construction, removing a FORS tree results in a lesser
effect (i.e., reduction in signature size and saving more hash calls) than deleting
a FORS tree in the small construction. Note that the computation savings is a
percentage of all SPHINCS+ hash calls, including the hash calls for the subtrees.
As a result, the percentages in Table 2 for instances with just one FORS tree
deleted (denoted by 0% for the size change) are not large.

We have looked for other parameters that achieve better computational cost.
For each instance, we were able to find around two parameter sets that lead
to computation saving and either no or slight increase in the signature size.
For instance, we found parametrizations that attain computational savings of
around 27% in vSPHINCS+-256s (resp. 5.5% for vSPHINCS+-128s) with a very
small increase in the signature size, 4.5% (resp. 3.25%). Note that the signature
size increase in the case of the vSPHINCS+-256s instance is slightly higher than
the other instance because these new parameters enable vSPHINCS+ to achieve
the required 256-bit security while SPHINCS+ attains 255 bits of security. For
vSPHINCS+-192s, we achieve computational saving of 11% and a signature size
saving of 0.44% relative to SPHINCS+-192s with the original parameters.

7.2 SPHINCS+ Re-parameterization in Round Three Submission

On October 23, 2020, 4 instances of SPHINCS+ had their parameters modi-
fied in the round three submission to the NIST PQC. For SPHINCS+-128f and
SPHINCS+-256f, the parameter change improved the computational cost by
22.6% and 9.9%, and increased the signature sizes by 0.66% and 1.3%, respec-
tively. For SPHINCS+-128s, the new parameters resulted in an increase of 2.4%
in the computation cost and decrease of 2.8% in the signature size. Table 3 depicts
the new round 3 parameters for SPHINCS+ instances and the percentage change
relative to round 2 parameters. As shown in Table 2, even with the new round 3
parameters, v-ORS improves the computational cost of all SPHINCS+ instances,
with one instance, i.e., SPHINCS+-256s, attaining around 27% decrease in the
signing computation.
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Table 3. ITSR bit security, signature size, H calls number for SPHINCS+ rounds 2
and 3 parameters, and the percentage change in the signature size and H calls number

SPHINCS+ instance SPHINCS+ R3 SPHINCS+ R2 % change

bitSec size Hash calls bitSec size Hash calls % size % H calls

SPHINCS+-128s 133 7856 4372438 133 8080 4267996 −2.8 +2.4

SPHINCS+-128f 128 17088 210386 128 16976 271900 +0.66 −22.6

SPHINCS+-192s 193 16224 7534544 196 17064 8855508 −4.9 −14.9

SPHINCS+-192f 194 35664 338514 194 35664 338514 0 0

SPHINCS+-256s 255 29792 6561732 255 29792 6561732 0 0

SPHINCS+-256f 255 49856 691672 254 49216 768482 +1.3 −9.9

Note on the Small Instances. We observed that in the re-parameterized small
instances, SPHINCS+-128s and SPHINCS+-192s, the hyper-tree height h and
the number of layers d are decreased from 64 to 63 and from 8 to 7, respectively.
We can tweak this strategy for vSPHINCS+ to achieve more computational
saving. Concretely, for vSPHINCS+-128s, we can choose the number of layers,
d, to be 9 instead of 7 with τ = 12, and κ = 13, which leads to 63.08% saving in
the hash calls, while increasing the signature size by 14.25% when compared to
SPHINCS+-128s with round 3 parameters.

8 Conclusion

We proposed v-ORS, a new ORS generation mechanism that enables SPHINCS+

to provide better performance at the same security level. Using v-ORS, a signed
message is bound with the signing FORS instance which restricts a forging adver-
sary to searching among those queries that use that specific FORS instance. The
increased restrictions allow some freedom in exploring efficient parameters for
the underlying FORS scheme, which in turns enable SPHINCS+ using v-ORS
to achieve better performance. More precisely, v-ORS allows some versions of
SPHINCS+ to offer around 27% savings in the signing computational cost with
minimal effect on the signature size. Given that the high computational cost is
the main reason for selecting SPHINCS+ as an alternate candidate in round 3
of the NIST post quantum cryptography competition, the results presented here
are a positive step towards making its practical adoption widely accepted.

A Existential Unforgeability Under Adaptive Chosen
Message Attacks

Digital Signature Schemes are analyzed with respect to existential unforgeability
under adaptive chosen message attacks (EU-CMA). EU-CMA is usually defined
by a security game in which the adversary A who has access to the scheme’s
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public key is allowed to ask the signing challenger, Chall, for signatures of the
messages of their choice. A wins the game if they are able to return a message
and signature pair such that the signature is valid for that message and the
message is not one of the queried ones. A digital signature scheme is secure with
respect to EU-CMA if the probability of A winning the game (SuccEU-CMA

Σ(n) (A) =
Pr[Game: EU-CMAΣ(n) = 1]) is negligible. For a digital signature scheme Σ and
a security parameter n, the formal EU-CMA security game is given by.

Game: EU-CMAΣ(n)
(SK,PK) ← Σ.kGen(1n)
while σj ← A(query(Mj), PK, Challsign(SK,.)) , j++ do;
(M ′, σ′) ← A(forge, PK)
if M ′ /∈ {M1,M2, . . . , Mq} // where q < j
Return Σ.verify(PK,M ′, σ′)
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