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ABSTRACT
Blockchain, as a distributed ledger technology, becomes increas-
ingly popular, especially for enabling valuable cryptocurrencies
and smart contracts. However, the blockchain software systems
inevitably have many bugs. Although bugs in smart contracts have
been extensively investigated, security bugs of the underlying
blockchain systems are much less explored. In this paper, we con-
duct an empirical study on blockchain’s system vulnerabilities from
four representative blockchains, Bitcoin, Ethereum, Monero, and
Stellar. Specifically, we first design a systematic filtering process to
effectively identify 1,037 vulnerabilities and their 2,317 patches from
34,245 issues/PRs (pull requests) and 85,164 commits on GitHub.
We thus build the first blockchain vulnerability dataset, which is
available at https://github.com/VPRLab/BlkVulnDataset. We then
perform unique analyses of this dataset at three levels, including (i)
file-level vulnerable module categorization by identifying and corre-
lating module paths across projects, (ii) text-level vulnerability type
clustering by natural language processing and similarity-based sen-
tence clustering, and (iii) code-level vulnerability pattern analysis
by generating and clustering code change signatures that capture
both syntactic and semantic information of patch code fragments.

Our analyses reveal three key findings: (i) some blockchain mod-
ules are more susceptible than the others; notably, each of the
modules related to consensus, wallet, and networking has over 200
issues; (ii) about 70% of blockchain vulnerabilities are of traditional
types, but we also identify four new types specific to blockchains;
and (iii) we obtain 21 blockchain-specific vulnerability patterns
that capture unique blockchain attributes and statuses, and demon-
strate that they can be used to detect similar vulnerabilities in other
popular blockchains, such as Dogecoin, Bitcoin SV, and Zcash.
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1 INTRODUCTION
While blockchain was first invented as a transaction ledger of the
Bitcoin cryptocurrency [68], it is now serving as a fundamental com-
ponent of many cryptocurrencies, the total market capitalization of
which is close to two trillion USD in February 2022 [40]. Smart con-
tract platforms (e.g., Ethereum [35] and Hyperledger Fabric [30])
and decentralized computing platforms (e.g., Interplanetary File
System [34] and Blockstack [29]) further evolved the blockchain
technology into various decentralized applications, such as DeFi
(Decentralized Finance) [80], smart contract oracles [83, 84], de-
centralized identities [65], decentralized IoT management [73], and
decentralized app markets [37]. To protect the decentralization of
these systems and secure those finance-critical cryptocurrencies,
security is a top priority of many blockchains.

Prior research on blockchain security focused on smart contract
vulnerability detection and network analysis. Many static program
analysis tools, e.g., Oyente [64], Zeus [51], Securify [76], Giga-
horse [47], and ETHBMC [42], have been proposed to detect vul-
nerable smart contracts via symbolic execution and model checking.
Dynamic tools [38, 49, 70, 75] and learning-based tools [45, 60, 63]
were also invented. Besides smart contract analysis, some works
analyzed network traffic hijacking [31] and mining [44] attacks and
performed transaction attack analysis [39, 53, 85, 87]. In contrast,
blockchains’ system-level security issues are much less explored in
academic research. To the best of our knowledge, there was only one
study [77] in this direction. It specifically analyzed 946 blockchain
bugs, with only 18 security bugs covered and four analyzed.
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In this paper, we aim to systematically understand blockchain sys-
tem vulnerabilities by conducting an empirical vulnerability study
of the representative blockchains in four directions, including the
classic Bitcoin [68], the smart contract platform Ethereum [35],
the anonymous coin Monero [69], and the payment network Stel-
lar [61]. They are not only popular in the cryptocurrency market
but also backed up with solid technical papers.

As depicted in Figure 1, the first step and challenge of our study
is to effectively collect vulnerable issues and their patches of those
four blockchains. This is difficult because there is very little CVE
information associated with blockchain projects (unlike other vul-
nerability mining studies [56, 81, 86]), and the large number (over
34K) of raw blockchain bugs in our crawled database makes manual
vulnerability filtering1 ineffective. To address this, we propose a
vulnerability filtering framework based on the intuition that vul-
nerabilities have unique characteristics from various aspects, and
we can gradually identify candidate vulnerabilities by analyzing
attributes of the code commits, files, labels, and keywords. Eventu-
ally, we obtain 1,037 vulnerabilities and their 2,317 patches as our
blockchain vulnerability dataset.

Based on this unique dataset, we study three key yet unex-
plored aspects of blockchain vulnerabilities, including susceptible
blockchain modules, common blockchain vulnerability types, and
blockchain-specific patch code patterns. To this end, we perform
the file-, text-, and code-level vulnerability analysis as follows.

Firstly, we conduct the module analysis by inspecting patched
files. However, inspecting each individual file is time-consuming
because there are 2,362 unique patch file paths. Therefore, we pro-
pose to identify the module path, i.e., the folder name that could
summarize the module of enclosed files (e.g., the “rpc/” folder indi-
cates the RPC module). We further correlate module paths across
different blockchains by identifying a reference blockchain archi-
tecture and mapping different module paths into this architecture.
This module categorization allows us to obtain a layered map of
blockchain vulnerabilities in different modules and pinpoint sus-
ceptible blockchain modules. We find that some modules are more
susceptible than the others, such as the highly susceptible ones
related to consensus, wallet, and networking, each with over 200
vulnerabilities.

Secondly, we perform the type analysis by analyzing vulnera-
bility text, more specifically, vulnerability titles. This is because a
vulnerability type is typically captured by the title of an issue/PR
(pull request), e.g., Bitcoin PR #17640 “wallet: Fix uninitialized read
in bumpfee(. . . ),” where “uninitialized read” is the type. To elimi-
nate noisy words and generate good-quality clusters about types,
we leverage the part-of-speech analysis of NLP (natural language
processing) to first extract type keywords before we conduct ac-
tual clustering. By extracting type keywords in various situations
and identifying a suitable clustering algorithm (and its setting), we
successfully map 75.8% of the vulnerabilities into the clusters of
different types and analyze the top 20 types that affect at least ten
vulnerabilities each. Among these types, we identify four new vul-
nerability types that are directly related to blockchain transaction,
block, peer/node, and wallet key/password. We also show that tra-
ditional vulnerability types still hold 62%∼78% of all the blockchain

1That said, we need to recognize or differentiate real vulnerabilities from regular bugs.

vulnerabilities. Furthermore, we analyze the type differences across
different blockchain projects.

Thirdly, we conduct the pattern analysis by analyzing vulner-
ability patch code. In particular, we focus on blockchain-specific
vulnerability types since the code patterns of traditional vulnerabil-
ity types are well-known. To facilitate similar patch code into the
same cluster, we design and generate the code change signatures that
concisely capture both syntactic and semantic information of patch
code fragments. By clustering 3,251 code fragments into 174 clusters
of code change signatures, we identify 21 blockchain-specific vul-
nerability patterns that check unique blockchain attributes (e.g., the
sender address, transaction order, block header, and gas limit) and
validate various blockchain statuses during node synchronization,
peer validation, wallet, and database operations. We further lever-
age these patterns to discover 20 similar vulnerabilities in other
popular blockchains, notably, Dogecoin, Bitcoin SV, and Zcash,
which have a collective market capitalization of over 25 billion USD
as of January 2022. Most of our vulnerability reports have been con-
firmed and are under patching, with only two being rejected. This
demonstrates the real-world impact of our vulnerability patterns.
A thorough detection of blockchain system vulnerabilities based
on the patterns extracted in this paper will be our future work.

To sum up, the main contributions of this paper are as follows:
• We design a systematic filtering process to curate a unique vul-
nerability dataset and will release it to the research community.
The link of the dataset is already available at https://github.com/
VPRLab/BlkVulnDataset.

• We develop a set of new methods to analyze blockchain vulnera-
bilities, build a knowledge base on previously unknown patterns
of the vulnerabilities and their fixes.

• We reveal three key findings about blockchain system vulnerabil-
ities in terms of their susceptible modules, various vulnerability
types, and specific vulnerability patterns. Moreover, we demon-
strate the usage of these vulnerability patterns by detecting 20
similar vulnerabilities in other popular blockchains.

The rest of this paper is organized as follows. We first provide the
background of studied blockchains and their bug-fixing process in
§2 and describe our systematic data collection in §3.We then present
our multi-level vulnerability analysis in §4, §5, and §6, respectively.
§7 summarizes the related works. Finally, §8 concludes this study.

2 BACKGROUND
2.1 Four Representative Blockchains Studied
In this paper, we study the representative blockchains that are (i)
popular in the cryptocurrency market, (ii) in different directions of
blockchain usages, and (iii) backed up with solid technical papers.
Under these three conditions, we select the classic Bitcoin [68], the
smart contract platform Ethereum [35], the anonymous coin Mon-
ero [69], and the payment network Stellar [61]. Next, we present
their basic information and the development status on GitHub.

Bitcoin introduces the concept of blockchain [68] and uses it as
a distributed ledger to record transactions for public verification.
As of January 2022, the Bitcoin cryptocurrency (or BTC) has the top
one market capitalization of more than 832 billion USD. The Bitcoin
software was released in 2009, and it is actively maintained by over
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Figure 1: The overall workflow of our blockchain vulnerability study.

850 contributors on GitHub in a repository called bitcoin/bitcoin.
The primary programming language of Bitcoin is C++.

Ethereum is the first blockchain system with the capability of
constructing Turing-complete smart contracts [35], which contain a
set of pre-defined rules and regulations for self-execution. To main-
tain the operation of Ethereum, it creates a native cryptocurrency
called Ether (or ETH), which is the second largest cryptocurrency
with a market capitalization of more than 410 billion USD as of Jan-
uary 2022. The Ethereum software was released on GitHub in 2015,
and its Go implementation is maintained by over 700 contributors
in a repository called ethereum/go-ethereum.

Monero aims to mitigate the privacy leakage in blockchain sys-
tems, since each blockchain transaction is transparent and could
leak some sensitive information. To do so, Monero uses an ob-
fuscated ledger [69] to prevent the transaction details (e.g., trans-
action source, amount, and destination) from being revealed to
outside observers. As of January 2022, the Monero coin (XMR) is
ranked 47th with a market capitalization of over 3.8 billion USD.
The Monero software was released on GitHub in 2014, and it is
maintained by over 250 contributors in a repository calledmonero-
project/monero. The primary language of Monero is C++.

Stellar is a blockchain-based payment network [61] that can
perform cross-border money transfer in seconds. It uses a novel
consensus protocol called Stellar Consensus Protocol (SCP) [61] for
fast and secure transactions among untrusted participants. The
native cryptocurrency of Stellar is called XLM, which is ranked
30th with a market capitalization of around 6.7 billion USD as
of January 2022. The Stellar software was released on GitHub in
2015, and it is currently maintained by more than 80 contributors
in a repository called stellar/stellar-core. Similar to Bitcoin and
Monero, the primary language of Stellar is also C++.

2.2 Bug-fixing Process in Blockchain Projects
It is also necessary to understand the typical bug-fixing process
of blockchain projects hosted as open-source projects on GitHub
in order to collect and analyze their vulnerabilities and patches. A
commit is a set of changes submitted by developers into a project
repository; a commit can change anything, ranging from changing
source code to modifying document files or merging multiple pre-
vious commits. A change consisting of a consecutive sequence of
added/deleted lines is also known as a hunk. A patch is a collection
of changes or commits that can be applied to a set of files via a
patching tool. An issue is often a report on a project’s GitHub page;
it may describe a potential bug or sometimes an enhancement or a

question, and may come with fixes and solutions. A pull request
(PR) is the proposed commit for a project from a separate clone of
the project; it can be pulled from the project clone and accepted into
the original project based on the review of managing developers.
For simplicity, we do not explicitly distinguish an issue and a PR
in this paper since the latter often contains a bug description too.
Indeed, GitHub itself mixes up the usage of issue/PR numbers.

3 SYSTEMATIC DATA COLLECTION
As shown in Figure 1, the first and a critical step of our study is to
collect a good-quality blockchain vulnerability dataset across mul-
tiple blockchain systems that satisfies two conditions: (i) cover as
many vulnerabilities as possible in the studied blockchains (i.e., min-
imizing false negatives); and (ii) introduce as few non-vulnerability
bugs as possible in the dataset (i.e., minimizing false positives).

Some other vulnerability studies [56, 81, 86] leverage the CVE
(CommonVulnerabilities and Exposures) or Bulletin (i.e., bug bounty)
information to collect vulnerability data. However, we found that
there is very little CVE/Bulletin information aboutmost blockchains
because blockchain vulnerabilities are critical and often patched di-
rectly via the reports from bug bounty programs without releasing
a CVE. For example, Ethereum (go-ethereum) had only four CVEs
released before our data collection while Bitcoin had 33 CVEs.

We take a different way—directly analyze the blockchain projects’
issues and commits in their GitHub repositories and extract the
vulnerable ones from them. We first crawl all blockchain bugs
and organize them into a raw bug database (in §3.1). The major
challenge is how to recognize or differentiate real vulnerabilities2
from a large number of regular bugs. To address the challenge, we
propose a novel vulnerability filtering framework (in §3.2) that
systematically and effectively filters out regular bugs and extracts
blockchain vulnerabilities. We eventually obtain the first dataset
of blockchain system vulnerabilities (in §3.3), comprising more
than 1K vulnerabilities identified from over 34K issues. It could
not be done via manual analysis or via prior training-based patch
identification [74, 88] since (i) there is no ground-truth training
set for blockchain vulnerabilities and (ii) the learning-based na-
ture of those techniques tends to identify only the similar bugs or
vulnerabilities.

2In this paper, we adopt a broad definition of vulnerabilities that considers the bugs
with security impact as vulnerabilities.
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3.1 Crawling and Organizing Blockchain Bugs
As illustrated in Figure 1, our blockchain bug database is constructed
from two data sources, the issues and commits, by leveraging GitHub
APIs3. For the issues, we collect all the information of each closed
issue/PR, including the issue title, issue body, comments, events,
and bug category labels. We consider only closed issues/PRs be-
cause open issues are not confirmed bugs yet and certainly have no
patches. Note that even for closed issues, they may not be the real
bugs and could have no patches (i.e., they were simply closed by
developers). For the commits, we first crawl all the commits of a
repository and then determine which commits are bug-related. For
each commit, we collect its title, commit message, affected files, and
id/URL; for some commits filtered according to §3.2, their actual
code change hunks are also collected and processed according to
§3.3 and used for code-level pattern analysis in §6. We have col-
lected a total of 34,245 closed issues/PRs and 85,164 commits as the
raw dataset at the end of February 2020. The detailed breakdown
of these issues/PRs and commits across four blockchain projects is
available in Table 2.

With the raw data collected, a non-trivial task is to organize and
correlate the issues with their corresponding commits. Specifically,
we need to determine all the relevant commits for a given issue/PR—
if an issue/PR has no patch commits, it is not a real bug andwill be fil-
tered out. By summarizing the issue/PR and commit’s GitHub struc-
tures, we observe three kinds of information we can leverage for
such correlation. First, we leverage the issue page’s event informa-
tion (e.g., XXX mentioned this issue and YYY added a commit) and
retrieve the commit URLs from those events. For example, in https:
//github.com/bitcoin/bitcoin/issues/595, we obtain the commit URL
via the event of “laanwj added a commit that referenced this issue.”
Second, for a PR like https://github.com/bitcoin/bitcoin/pull/9366,
we can directly retrieve its commit lists at its “Commits” tab page. Al-
though these two kinds of information is useful for most issues/PRs,
some commits may not appear in the events of issues or commit
lists of PRs. To overcome this, our script analyzes all the 85,164
commits’ titles and messages and identifies issue/PR numbers from
them. With these strategies, we successfully build the relationship
between the issues and commits and finish constructing the raw
bug database shown in Figure 1.

3.2 A Vulnerability Filtering Framework
To evolve the raw bug database into the final vulnerability dataset,
we design a systematic vulnerability filtering framework expressed
as a seven-step process (i.e., S0∼S4b in Table 1) to effectively dif-
ferentiate vulnerabilities from regular bugs with minimal manual
work. The intuition is that vulnerabilities have unique character-
istics at various aspects, and we can gradually identify candidate
vulnerabilities by analyzing attributes of the code commits, files,
labels, and keywords. As shown in Table 1, we perform the filtering
at the following four aspects:

Commit-based filtering. Firstly, in the step S0, we leverage the
most straightforward characteristic that a closed vulnerability must
associate with code commits. In other words, an issue/PR without
any commit could be excluded directly. Since we have already built

3https://docs.github.com/en/rest/reference/commits and https://docs.github.com/en/
rest/reference/issues

Table 1: Intermediate results of the filtering in each step.

Action Commit File Label Keyword
S0 S1 S2 S3a S3b S4a S4b

Include/
Exclude -10,101 -3,798 -1,522 56 -4,400 1,227 -6,330

Remain 24,144 20,346 18,824 18,768 14,368 13,141 6,811

the relationship between issues/PRs and commits in §3.1, we easily
exclude 10,101 issues/PRs out of the entire 34,245 issues/PRs.

File-based filtering. Secondly, we leverage two characteristics
of patch files to filter out the bugs that are certainly not vulnerabil-
ities. The basic idea of these two characteristics is that the patch of
a vulnerable issue/PR must make some real code changes, including
changing files with actual source code and not containing only
test code. Specifically, in the step S1, we determine the file types
with actual source code (by their file suffixes) for four blockchains.
An issue/PR whose commits do not modify any file in these types
should be excluded. For example, there are 152 different file types
for Bitcoin’s commits, but only these seven file types, [‘.cpp’, ‘.h’,
‘.py’, ‘.sh’, ‘.cc’, ‘.c’, ‘.java’], contain actual source code whereas other
file types like ‘.yml’ and ‘.mk’ are unlikely related to vulnerabili-
ties. This step filters out 3,798 more issues/PRs, then the remaining
20,346 are further filtered by the step S2. Specifically, S2 excludes
the test-only commits and their associated issues/PRs. With the
file-based filtering, we exclude 22% (5,322/24,144) of the issues/PRs.

Label-based filtering. Thirdly, we leverage the characteristic
of the labels of issues/PRs: certain words in the labels could indicate
whether an issue/PR is related to a vulnerability or not. For example,
the ‘Privacy’ label marks privacy-related bugs in the Bitcoin project
and the ‘obsolete:vuln’ label indicates the early-stage vulnerabil-
ities of Ethereum. To avoid false positives, we are conservative
in specifying vulnerability labels — we assign only three labels
(i.e., the ‘Privacy’, ‘obsolete:vuln’, and special label ‘SEC-XXX’ that
appeared in the beginning of issue/PR titles) and mark their cor-
responding 56 issues/PRs explicitly as vulnerabilities in the step
S3a. In contrast, there are much more labels clearly indicating non-
vulnerability issues/PRs. Specifically, out of the entire 87 labels from
four blockchain projects, we manually determine that 48 of them
are not related to vulnerabilities, such as ‘Refactoring’, ‘Docs’, and
‘type:feature’. With these labels, we filter out their associated 4,400
issues/PRs in the step S3b. After this step, we have narrowed the
filtering scope from 34,245 to 14,368 issues/PRs, a reduction of 58%.

Keyword-based filtering. Lastly, we directly check issues/PRs’
text based on the characteristic that some keywords could indicate
an issue/PR vulnerable whereas others could imply an issue/PR not
related to vulnerabilities. To this end, we first perform a word count
analysis on the words in issue/PR titles and bodies, sort these words
by their appearance frequency, and exclude the words that appear
only once. We then group the words by their semantic similarity
using the spaCy [25] NLP library. Since similar words are grouped
together, we manually go through all the clusters to obtain a set of
vulnerability-related words (Step S4a) or non-vulnerability words
(Step S4b). Specifically, we obtain 62 clusters of vulnerability-related
words and 79 clusters of non-vulnerability words, which allows us
to automatically identify 1,227 vulnerable issues/PRs and exclude
6,330 irrelevant issues/PRs in the step S4a and S4b, respectively.
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Table 2: Metadata of the raw and vulnerability datasets.

Repository Raw Bug Database Vulnerability Dataset
Closed

Issues/PRs Commits Vulnerable
Issues/PRs

Patch
Commits

Bitcoin 16,731 41,706 442 942
Ethereum 9,321 23,764 365 826
Monero 5,918 12,656 178 286
Stellar 2,275 7,038 52 263
Total 34,245 85,164 1,037 2,317

Eventually, our filtering framework extracted 1,283 (=1,227+56)
suspicious issues/PRs (in the step S3a and S4a) from the entire 34,245
issues/PRs. We have manually examined all these candidates and
confirmed that 1,059 of them were actually vulnerability-related.
This suggests that our filtering achieves a precision of 82.5% in
identifying true vulnerabilities. It is also worth noting that our
filtering framework may potentially have a high recall in identi-
fying all patched vulnerabilities in the projects although there is
no ground-truth for exact measurement, since it handles at least
80.1% (27,434/34,245) of all the issues/PRs; although the remaining
6,811 after step S4b are discarded, we believe that they have a low
chance of being vulnerabilities due to no relevant keywords.

3.3 The Vulnerability Dataset and Its Metadata
We then retrieve the actual code hunks for the identified 1,059 is-
sues/PRs from their corresponding 2,933 commits. This allows us to
further exclude 22 issues/PRs because they associate with “invalid”
code commits through the code hunk analysis. Specifically, we
identified 586 duplicate code commits whose code hunks were the
same (e.g., https://github.com/bitcoin/bitcoin/commit/d4781ac6 and
https://github.com/bitcoin/bitcoin/commit/8a445c56), for which we
kept just one code commit for each duplicate pair. We also found 30
empty code commits where we were not able to obtain their code
hunks due to disappeared (e.g., https://github.com/bitcoin/bitcoin/
commit/7e193ff6) or large diffs (e.g., https://github.com/ethereum/
go-ethereum/commit/34dde3e2). As a result, our final vulnerability
dataset consists of 1,037 vulnerability-related issues/PRs and their
2,317 commits, as shown in Table 2. It is worth noting that while
items in our dataset are all security patches, some of them are not
conventionally technical vulnerabilities but more like security en-
hancements, such as upgrading weak crypto algorithms to strong
ones. In this paper, we do not distinguish them.

In Table 2, we also list the metadata of each blockchain project.
We can see that Bitcoin and Ethereum contribute 77.8% of the
vulnerabilities in our dataset, whereas the percentages of Monero
and Stellar vulnerabilities are relatively low. This is mainly because
Bitcoin and Ethereum have muchmore code commits than the other
two blockchains, holding a similar percentage (76.9%) of the entire
85,164 commits. Additionally, we notice that Stellar has around
the same number of patches as Monero, whereas the number of
issues/PRs is three times lower (56 v.s. 178). The main reason is that
Stellar developers tended to use one PR to cover multiple-bug fixes
at the early stage of Stellar development.

Based on this unique dataset, we perform a comprehensive vul-
nerability analysis at three different levels in §4, §5, and §6.

4 FILE-LEVEL MODULE CATEGORIZATION
At the first-level of our study, we perform the module analysis of
patched files.We first propose a lightweightmethod for categorizing
vulnerable modules in §4.1, and then present the categorization
result and its implication in §4.2.

4.1 Identifying and Correlating Module Paths
for Vulnerable Module Categorization

We found that 1,037 vulnerable issues/PRs (or more precisely, 2,317
patch commits) totally generated 2,362 unique file paths (544 in
Bitcoin, 1,376 in Ethereum, 251 in Monero, and 191 in Stellar), which
makes inspecting each individual file time-consuming. Therefore,
we propose to identify the module path, i.e., the folder name that
could summarize the module of enclosed files (e.g., the “rpc/” folder
indicates the RPC module). For some paths of generic names (e.g.,
the “src/” folder), we consider its sub-folders as module paths. Since
Ethereum’s folder structure is more complicated than the other
three projects, we also consider three additional folders (the “core/”,
“swarm/”, and “eth/” folders) as generic, and consider their sub-
folders as module paths. Eventually, we obtain a total of 146 module
paths (28 in Bitcoin, 71 in Ethereum, 26 in Monero, and 21 in Stellar)
from 2,317 patch commits in the four studied blockchains.

Further, since different blockchains have different path names for
the same module (e.g., the Consensus module of Bitcoin/Ethereum
is in “consensus/” while that of Stellar is in “src/scp/”), we need to
correlate those module paths across projects. Our solution is to iden-
tify a reference blockchain architecture and map different module
paths into this architecture. Since many blockchains are based on
Bitcoin, we use Bitcoin Core’s architecture [22] as our reference. For
easier understanding, we separate the entire architecture into four
layers [18], as shown in Figure 2, and unify the traditional Miner,
Mempool, and Validation Engine components into the Consensus
module. We then manually map those 146 module paths into our
blockchain architecture one by one.

It is worth noting that a vulnerable issue/PR may affect multiple
modules, so the sum of the numbers of vulnerabilities of all the mod-
ules is larger than 1,037. Also, some patch commits change only the
files directly under the generic “src/” folder and do not have module
paths. We inspect all such patch files (107 in Bitcoin, 31 in Ethereum,
6 in Monero, and 4 in Stellar) and map their corresponding vulner-
abilities into the modules in Figure 2 based on the patch file names.

4.2 Susceptible Blockchain Modules
Figure 2 shows the result of our module categorization in a layered
map of blockchain modules and the numbers of vulnerabilities in
those modules.We can see that modules in the Policy, Peer, Network
layers each introduce around one-fourth of the vulnerabilities, while
the UI modules and other uncategorized modules contribute the
remaining 30%. Among all modules, we find that some modules are
more susceptible than the others. Notably, the modules related to
Consensus,Wallet, andNetConn contain over 200 issues each. Other
modules about RPC, GUI/CMD, and Storage are also susceptible,
affecting around 100 issues each. We observe that:
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GUI/CMD: 141

Policy: 45

Node: 63

RPC: 160 P2P: 49
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Storage: 93
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Others: 123

8.47%
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22.22%
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24.92%

NetConn: 206

Wallet: 214 EVM: 28

External: 82

Utils: 129

Figure 2: A layered map of blockchain vulnerabilities in dif-
ferent modules.

• The Consensus module covers the consensus (e.g., the Proof-of-
Work mechanism [68]), miner, block/transaction related compo-
nents. Unfortunately, it was affected by 265 vulnerabilities, with
the major module path from the “consensus/” folder. Other mod-
ule paths include “miner/”, “ethchain/”, “src/cryptonote_core/”,
“src/scp/”, and “src/ledger/”.

• In the Peer layer, theWallet module handles transactions for each
peer and the Storage module manages the storage of those trans-
actions. As shown in Figure 2, the Wallet module was affected by
214 vulnerabilities, which are mainly from the “src/wallet/” and
“accounts/” module paths. In contrast, the Storage was affected by
93 vulnerabilities, all of which are from database-related module
paths, such as “src/blockchain_db/”, “src/leveldb/”, and “ethdb/”.

• The NetConn and RPC modules collectively incurred the most
blockchain vulnerabilities in our dataset. As a distributed system
by nature, blockchain systems heavily rely on network synchro-
nization and RPC (Remote Procedure Call). Since it deals with
complex network communication of different peers, multiple
security issues could occur, such as data race, deadlock, resource
leak, and denial-of-service.

• Surprisingly, the GUI/CMD module is also a major source, with
141 vulnerabilities from the module paths like “src/qt/”, “ethere-
al/ui/”, “src/daemon/”, and “cmd/”. The underlying faults vary,
but segfault and deadlock are typical bugs.

5 TEXT-LEVEL TYPE CLUSTERING
At the second-level of our study, we conduct the type analysis by
analyzing vulnerability text. In this section, we first present a NLP-
based approach for clustering vulnerability types in §5.1, and then
summarize the clustering results and showcase common blockchain
vulnerability types in §5.2, including the ones not known before.

5.1 NLP-based Analysis of Vulnerability Titles
for Type Clustering

We find that a vulnerability type is typically captured by the title
of an issue/PR page, e.g., Bitcoin PR #17640 “wallet: Fix uninitial-
ized read in bumpfee(. . . ),” where “uninitialized read” is the type.
However, simply clustering issue/PR titles does not generate good-
quality clusters about vulnerability types because each title could
have some noises. For instance, in the earlier example, “wallet” and

“bumpfee” would affect the clustering quality. To address this prob-
lem, we propose a novel NLP-based method to first extract type
keywords before we conduct actual clustering. This method is based
on a grammatical pattern of vulnerability titles we observed, that a
type is often a noun phrase located in between a verb (e.g., “fix”)
and a preposition (e.g., “in”). Figure 3 shows an intuitive illustration.
Overall, our approach consists of two major steps: NLP-based key-
word extraction and clustering the obtained type keywords. Before
these two steps, we also need to perform some pre-processing.

Pre-processing. To this end, we remove useless words and for-
malize remaining words in the vulnerability titles. Specifically, the
useless words include (i) the module/version information (e.g., the
word before “:”, such as the “wallet” above, or the word inside “[]”,
such as “[rpc]” or “[RELEASE]”), (ii) the special word (e.g., “SEC-*”
for Ethereum and one-character word like “a”; note that numbers
and symbols like “–” or “(...)” could be automatically handled by
tokenizing), and (iii) noun-like adjective words (e.g., “possibility of”
and “use of”). After cleaning useless words, we further formalize
the remaining words by setting them to the lower case and tok-
enizing them via the NLP nltk [24] library’s RegexpTokenizer.
During this process, we also unify a few words (e.g., replacing all
“tx”/“txs”/“txns” using “transaction”). In Table 3, we list several
example titles our script automatically cleaned.

NLP-based keyword extraction.According to the grammatical
pattern shown in Figure 3, our objective is to find the target verb and
preposition that could determine the range of type words. However,
one vulnerability title may contain multiple verbs or prepositions.
Moreover, some verbs mainly act as nouns in our context, such as
“check” and “leak”. Based on these two reasons, we do not directly
use the nltk [24] library’s pos_tag() for a real-time part-of-speech
analysis. Instead, we perform a pre-analysis of words’ parts of
speech in our cleaned vulnerability titles and build a vocabulary of
verbs and prepositions and count their frequencies in our dataset.
Eventually, we obtain a list of 33 verbs and 21 prepositions and
rank them by frequencies. Table 4 shows the top 10 frequently used
verbs and prepositions in our dataset.

Based on our vocabulary of verbs and prepositions and their
frequencies, we are able to automatically locate the target verb and
preposition for a cleaned vulnerability title in various situations
using the following rules:
• If only one verb and one preposition exist and the preposition
appears after the verb (with one or more words in between), such
a verb and preposition, e.g., the word fix and in of the example
E1 in Table 3, are the target words.

• If there is no verb but the preposition exists (e.g., the example E2)
or there is no preposition but the verb exists (e.g., the example
E3), the preposition or the verb will be determined as the target.

• If multiple verbs appear in a title, the one with the highest fre-
quency will be regarded as the target verb. For example, in Figure
3 (or the example E4), the word fix has higher frequency than
the word read in our vocabulary, fix is used as the target verb.

• If multiple prepositions appear in a title, the first one appearing
after the target verb (with one or more words in between) is
determined as the target preposition. For instance, in the example
E5 in Table 3, both words on and in are prepositions, but since
the word on appears before in, on is then determined as the
target preposition.
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Table 3: Examples of the cleaned issue/PR titles and their corresponding type keywords extracted.

ID Raw Title Cleaned Title Type Keywords
E1 accounts: fix two races in the account manager [‘fix’, ‘two’, ‘races’, ‘in’, ‘the’, ‘account’, ‘manager’] [‘two’, ‘races’]
E2 blockchain_db: sanity check on tx/hash vector sizes [‘sanity’, ‘check’, ‘on’, ‘transaction’, ‘hash’, ‘vector’, ‘sizes’] [‘sanity’, ‘check’]
E3 [net] Avoid possibility of NULL pointer dereference [‘avoid’, ‘null’, ‘pointer’, ‘dereference’] [‘null’, ‘pointer’, ‘dereference’]
E4 wallet: Fix uninitialized read in bumpfee(. . . ) [‘fix’, ‘uninitialized’, ‘read’, ‘in’, ‘bumpfee’] [‘uninitialized’, ‘read’]
E5 Prevent DOS attacks on in-flight data structures [‘prevent’, ‘dos’, ‘attacks’, ‘on’, ‘in’, ‘flight’, ‘data’, ‘structures’] [‘dos’, ‘attacks’]

fix uninitialized read in bumpfee
Operation: 

Verb

Vulnerability Type
Keywords

Location:
Preposition

Figure 3: An example issue/PR title to illustrate the gram-
matical pattern of vulnerability titles we observed.

Table 4: The top 10 frequently used verbs and prepositions.

Verb add remove fix make fixed
set avoid improve handling added

Preposition in for on of with
from by before if after

• If none of above applies for a vulnerability title, we conclude that
it has no target word.

After recognizing the target verb and preposition for each vul-
nerability title, the keywords in between the two target words are
extracted as the type for the vulnerability. However, as we list above,
some cleaned titles may end up with only one target word or even
no any target word. We handle those special titles as follows:
• If only the target verb exists, all words after the target verb will
be regarded as the type keywords.

• If only the target preposition exists, all words before the target
preposition will be treated as the type keywords.

• If no target word exists, the entire cleaned title becomes the type
keywords.

Clustering type keywords.With the extracted type keywords,
we aim to cluster them based on their semantic meaning rather than
their appearance as a string of letters. Thus, after embedding all
the keywords into the vector space using word2vec [66], we choose
the Word Mover’s Distance (WMD) [55] as the similarity metric.
Another reason for applying WMD is that it performs well on short
sentences like our type keywords. Then, we calculate their pairwise
similarity with WMD and generate a large similarity matrix.

The last step is to cluster the type keywords based on the simi-
larity matrix. To reach an optimal clustering result, we tested four
clustering algorithms: K-means [32], Gaussian Mixture [27], Ag-
glomerative Clustering [26], and Affinity Propagation (AP) [43].
The first three algorithms require a pre-defined number of clusters
as the key parameter, while AP needs a damping factor. For the first
three algorithms, we tried a wide range of cluster numbers from 25
to 225 with an interval of 2. For AP, we tried the damping factor
from 0.5 to 1 with an interval of 0.01. We kept other parameters

unchanged as default. After clustering with the given parameters,
we computed the Silhouette Coefficient score [71] to determine
the performance of the corresponding combination. As a result,
Agglomerative clustering with 125 clusters was the best setting for
our similarity matrix, which reached a coefficient score of 0.66.

5.2 Common Blockchain Vulnerability Types
According to Table 5, we obtain not only the traditional vulnerabil-
ities, such as race condition and sanity check, but also blockchain-
specific vulnerabilities. Among the top 20 vulnerability types, we
find that seven of them are related to blockchains’ characteris-
tics. In particular, the 130 (22.1%) vulnerabilities from four types
(T4, T7, T9, and T12) are blockchain-specific, which are related
to blockchains’ transaction, block, peer/node, and wallet key/pass-
word. Additionally, we have three more vulnerability types, T2, T14,
and T20, that have some portions of their vulnerabilities related
to blockchains’ features. The rest of 366 (62.4%) vulnerabilities are
solely the traditional vulnerabilities, not specific to blockchains.

Next, we explain three categories of these blockchain types: spe-
cific, partially specific, and traditional. For the patterns of blockchain-
specific vulnerabilities, we will present them in §6.2.

Blockchain-specific vulnerability types. Since transactions,
blocks, gas fees are the unique characteristics of blockchain systems,
the type T4 and T7 record a large number of such new vulnerabili-
ties. Examples are Bitcoin PR #8312 “Fix mempool DoS vulnerability
from malleated transactions” and Ethereum PR #1354 “gpo non-
existent block checks”. Moreover, as a peer-to-peer software by
nature, blockchains could suffer from peer/node vulnerabilities.
By inspecting 28 such vulnerabilities in the type T9, we find that
they are mainly related to the unique P2P features in blockchains,
such as header sync and block validation. Examples include Bitcoin
PR #10345 “timeout for headers sync” and Ethereum issue #604
“SEC-41 Peer TD in NewBlockMsg not verified”. Lastly, blockchain
systems often provide wallets to end users, which cause the new
vulnerabilities related to wallet keys and passwords in the type T12.
For example, Bitcoin PR #10308 describes the vulnerability patch
of “[wallet] securely erase potentially sensitive keys/values”.

Partially blockchain-specific vulnerability types.We also
observe three vulnerability types partially specific to blockchains,
i.e., T2, T14, and T20. Specifically, 64 vulnerabilities in the type
T2 performed various checks, e.g., error and length checks, and
some of them checked blockchain-related properties. For example,
Bitcoin issue #1167 “check for duplicate transactions earlier” for
DoS prevention, and Ethereum PR #20546 “check propagated block
malformation on receiption”. In contrast, the type T14 and T20 fixed
more traditional vulnerabilities related to RPC calls and database
corruption (due to exceptional closing), with a few vulnerabilities
directly related to blockchains. Examples of blockchain-related
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Table 5: The top 20 blockchain vulnerability types that affect
at least ten vulnerabilities in our dataset.

ID Type # Vulnerability Issues/PRs Specific?*All B⋄ E⋄ M⋄ S⋄

T1 Race Condition 77 14 48 10 5 –
T2 Check/Validation 64 36 14 10 4 H#
T3 Resource Leak 47 24 12 9 2 –
T4 Transaction Related 43 24 9 6 4 ✔

T5 Deadlock 36 16 13 6 1 –
T6 Go Panic 36 0 36 0 0 –
T7 Block Related 34 9 21 4 0 ✔

T8 Denial-of-Service 31 17 11 3 0 –
T9 Peer/Node Related 28 12 11 3 2 ✔

T10 Sanity Check 28 11 3 13 1 –
T11 Overflow 27 11 8 6 2 –
T12 Wallet Key/Password 25 12 6 7 0 ✔

T13 Uninitialized Read 19 14 0 5 0 –
T14 RPC Related 16 9 5 2 0 H#
T15 Out-of-Bound 14 9 4 1 0 –
T16 Off-by-One 14 5 2 7 0 –
T17 Segfault 13 13 0 0 0 –
T18 Memory Pool 12 10 1 1 0 –
T19 Nil Pointer Deref 12 6 5 1 0 –
T20 Database Corruption 11 4 3 4 0 H#
Sum – 587 256 212 98 21 –(%) 56.6 24.7 20.4 9.5 2.0
*: ✔ means most in this type are blockchain-specific and H# means some are specific.
⋄ : B, E, M, and S represent Bitcoin, Ethereum, Monero, and Stellar, respectively.

vulnerabilities are Ethereum PR #19401 “implement cli-configurable
global gas cap for RPC calls” and Monero issue#706 “DB corruption”
due to unfinished blockchain tasks.

Traditional vulnerability types in blockchains. Besides
blockchain-specific vulnerabilities, Table 5 also shows that 366
vulnerabilities are solely from the 13 traditional vulnerability types.
The top types, such as race condition, deadlock, and denial-of-
service, aremore frequent probably because it is difficult for blockchain
systems to avoid them due to the sync among distributed nodes.

Further analysis. According to the detailed distribution of vul-
nerability types across different blockchain projects in Table 5, we
make three observations. First, Ethereum has more than half of the
T1 (Race) vulnerabilities, much higher than the other three. After
investigating all the race-related vulnerability issues/PRs, we iden-
tify that the Swarm [28] subsystem is the major cause. Specifically,
Swarm is only available in Ethereum and used for distributed stor-
age and content distribution. Second, we notice that T6 (Go Panic)
appears only in Ethereum because only Ethereum is implemented
in Go. Moreover, since Go is a memory-safe language, Ethereum
has fewer memory-related (T13, T18) vulnerability issues/PRs than
Bitcoin. Third, we find that Monero has the most number of T10
(Sanity Check) and T16 (Off-by-One) vulnerabilities, while Stellar
has the least number of vulnerability types since it is relatively new.

6 CODE-LEVEL PATTERN ANALYSIS
At the third-level of our study, we perform the pattern analysis
by analyzing vulnerability patch code. In particular, we focus on
blockchain-specific vulnerability types (i.e., the seven types men-
tioned in §5.2) since the code patterns of traditional vulnerability
types like race condition, deadlock, overflow, and uninitialized read

are well-known (e.g., [36, 62, 79, 82]). In this section, we first pro-
pose our approach to summarizing patch code patterns in §6.1, and
then present blockchain-specific code patterns in §6.2.

6.1 Generating and Clustering Code Change
Signatures for Vulnerability Patterns

To obtain vulnerability code-level patterns, our objective is to put
similar patch code changes into the same cluster so that analysts
can summarize patterns from each cluster. To this end, we need an
effective representation of code changes so that it keeps important
semantic information yet ignores unimportant or noisy informa-
tion. We call this representation the code change signature. Table 6
illustrates the evolution process from raw code hunks to their code
fragments (i.e., contiguous lines of code) and the corresponding
code change signatures using three examples. Taking the code in Ta-
ble 6b and 6c as an example, both patches check whether the sender
of a transaction is valid. However, if the variable name senderAddr
is different, the similarity between their raw code fragment change
(i.e., the syntactic changes indicated by F2 and F3) would be low.
To capture the essential changes in patch code, we do not use the
syntactic changes but their code change signatures like S2 and S3,
the details of which will be illustrated during their generation.

Next, we introduce our approach to generating code change
signatures and clustering them. Before these two major steps, we
first clean up code hunks and turn them into fragments, and then
align up the changed lines of code in each fragment.

Cleaning and splitting each code hunk into fragments. The
raw code hunks we retrieved contain not only meaningful diff code
but also test code, neighboring context (e.g., in-line and block com-
ments, unchanged code lines, #include and import statements),
and modification of none-code files (e.g., mark-down, JSON, and
text files). Therefore, we first initiate a cleaning process [81] to keep
only the actual diff code hunks and separate them into individual
fragments by continuous ‘+’ and ‘-’ lines. Taking the code hunk in
Table 6a as an example, it is separated into four code fragments,
F1-1 (line 2-5), F1-2 (line 8-9), F1-3 (line 15-16), and F1-4 (line 19-21)
after removing the neighboring context lines (i.e., line 1, 6-7, 10-14,
17-18, 22-23, and the comments in line 3 and 4).

Aligning up changed lines of code in each fragment. Be-
fore we generate each code fragment’s change signature based on
deleted and added lines in it, we need to first pair up the changed
lines of code since only some code fragments have one-to-one line
change (i.e., at most one ‘-’ line and one ‘+’ line). For example, in
Table 6, only the fragments F1-2 and F1-3 have one-to-one line
change. For a multiple-line change in other fragments, we measure
the edit distance similarity between each ‘-’ line and all ‘+’ lines
and pair the one with the highest similarity. For instance, line 3 in
Table 6c is paired with line 8 since it has the highest similarity with
line 8 as compared with all the other lines. However, some lines
could be simply deleted or added, causing their similarity with all
other lines to be low. We handle this by not pairing the lines with
the highest similarity of less than 0.5. As a result, line 3 in Table 6a
will not be paired with line 5 due to the low similarity.

Generating the signatures of code changes. After determin-
ing the paired lines of code, we extract their syntactic changes [81]
to generate the signatures with the following alterations:
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Table 6: The evolution from raw code hunks to their code fragments and code change signatures.

(a) Example 1: Monero commit 1d5e8f46.

src/crypto/tree-hash.c - void tree_hash(
const char (*hashes)[HASH_SIZE], size_t count, char *root_hash) {
Code Hunk (line 1–23)

1 size_t cnt = tree_hash_cnt( count );
2 - char ints[cnt][HASH_SIZE];
3 - memset(ints, 0 , sizeof(ints)); // zero out as extra...
4 + char *ints = calloc(cnt, HASH_SIZE); // zero out as extra...
5 + assert(ints);
6 memcpy(ints, hashes, (2 * cnt - count) * HASH_SIZE);
7 for ({OMIT}) {
8 - cn_fast_hash(hashes[i], 64, ints[j]);
9 + cn_fast_hash(hashes[i], 64, ints + j * HASH_SIZE);

10-14 ...
15 - cn_fast_hash(ints[i], 64, ints[j]);
16 + cn_fast_hash(ints + i * HASH_SIZE, 64, ints + j * HASH_SIZE);

17-18 }}
19 - cn_fast_hash(ints[0], 64, root_hash);
20 + cn_fast_hash(ints, 64, root_hash);
21 + free(ints);
22 }

Code Fragments

F1-1

- char ints[cnt][HASH_SIZE];
- memset(ints, 0 , sizeof(ints));
+ char *ints = calloc(cnt, HASH_SIZE);
+ assert(ints);

F1-2 - cn_fast_hash(hashes[i], 64, ints[j]);
+ cn_fast_hash(hashes[i], 64, ints + j * HASH_SIZE);

F1-3 - cn_fast_hash(ints[i], 64, ints[j]);
+ cn_fast_hash(ints + i * HASH_SIZE, 64, ints + j * HASH_SIZE);

F1-4
- cn_fast_hash(ints[0], 64, root_hash);
+ cn_fast_hash(ints, 64, root_hash);
+ free(ints);

Code Change Signatures
S1-1 VAR[][] ==> calloc() memset() assert()

S1-2 cn_fast_hash()

S1-3 cn_fast_hash()

S1-4 cn_fast_hash() free()

(b) Example 2: Ethereum commit b765e2d1.

core/transaction_pool.go - func (pool *TxPool)
ValidateTransaction(tx *types.Transaction) error {
Code Hunk (line 1–9)
1-2 return fmt.Errorf("tx.v != (28 || 27) = % v", v)}
3 + senderAddr := tx.From()
4 + if senderAddr == nil || len(senderAddr) != 20 {
5 + return fmt.Errorf("invalid sender")
6 + }
7 /* XXX this kind of validation needs to happen elsewhere...

Code Fragment

F2
+ senderAddr := tx.From()
+ if senderAddr == nil || len(senderAddr) != 20
+ return fmt.Errorf("invalid sender")

Code Change Signature
S2 From() if NIL || LEN return ERR

(c) Example 3: Ethereum commit 7c24cd79.

chain/transaction_pool.go - func (pool *TxPool)
ValidateTransaction(tx *types.Transaction) error {
Code Hunk (line 1–10)
1 //sender := pool.{OMIT}.proState.GetAccount(tx.Sender())
2 - sender := pool.{OMIT}.CurrentState().GetAccount(tx.Sender())
3 + senderAddr := tx.Sender()
4 + if senderAddr == nil {
5 + return fmt.Errorf("Invalid sender")
6 + }
7 + sender := pool.{OMIT}.CurrentState().GetAccount(senderAddr)
8 totAmount := new(big.Int).Set(tx.Value)

Code Fragment

F3

- sender := pool.{OMIT}.CurrentState().GetAccount(tx.Sender())
+ senderAddr := tx.Sender()
+ if senderAddr == nil
+ return fmt.Errorf("Invalid sender")
+ sender := pool.{OMIT}.CurrentState().GetAccount(senderAddr)

Code Change Signature
S3 GetAccount() Sender() if NIL return ERR

• (Recognizing and marking the type of statements.) We first deter-
mine the control-flow statements by six reserved keywords, if,
for, while, return, throw, and defer. If a control-flow state-
ment is identified, we keep not only their type keyword but
also their logical operators, e.g., “||” in line 4 in Table 6b. If a
statement does not contain any control-flow keyword, we regard
it as a function call if it includes a function or an assignment
statement if it does not. For example, neither line 2 and line 4
in Table 6a have a control-flow keyword, but line 4 contains a
function calloc(), so we regard line 4 as a function call and line
2 as an assignment.

• (Preserving the name only for a function call.) For function calls, we
found that the function name itself is often enough to capture the
statement nature despite parameter changes. Therefore, in code
change signatures, we eliminate the function’s parameters and
caller variables. For example, we eliminate the three parameters
of cn_fast_hash() in Table 6a and keep its function name only.
As a result, it is easy for the generated three signatures (S1-2/3/4)
to be in the same cluster. The symbols for calling a function vary,
including ., ->, and ::. Additionally, if a function is called by
another in a statement, we consider the last one as the actual
function call of this statement, e.g., GetAccount() in Table 6c.

• (Abstracting variable names and variable values.)We also abstract
variable names and variable values for a more concise signature.
Specifically, we substitute variable names with the keyword VAR.
If a variable is an array, we further add one or more [][], such as
VAR[][] for line 2 in Table 6a. For variable values, we define six
keywords for the substitution of different types of values: NIL for
nil, null, and none; BOL for true and false; NUM for numbers;
TXT for strings; LEN/SIZE for size-related functions (e.g., len(),
length(), size(), and sizeof()); and ERR for error functions.

Clustering code change signatures. As mentioned earlier, we
cluster code change signatures from the vulnerabilities of blockchain-
specific types. Since the RPC-related and database corruption types
(i.e., the type T14 and T20 in Table 5) have only one or two blockchain-
specific vulnerabilities, there is no need to cluster their signatures.
Eventually, our target is 3,251 code fragments from 194 vulnerabili-
ties of the type T2, T4, T7, T9, and T12 (see §5.2). The clustering
process is similar to that in §5.1. One difference is that the WMD
similarity is no longer applicable because code fragment signatures
cannot be mapped to the token-based vector space. Therefore, we
choose the Normalized Levenshtein distance [57] as the metric for
calculating the similarity between code fragment signatures.
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Table 7: 21 blockchain-specific patch code patterns obtained from the clustering result of 3,251 code fragments.

Type ID Description Pattern (in the revised code change signature with some generalizations) Example*

Transaction
Related

P1 Check the transaction sender address From|Sender|address() if ==NIL||LEN()!=NUM | IsValid() return ERR() E: #272 [4]
P2 Check the size of transactions in a pool GetSerializeSize()|SIZE() if > MAX_STANDARD_TX_SIZE return BOL B: #2273 [2]
P3 Shuffle the transaction order; otherwise, fingerprinting clear() selected_coins() shuffle() push_back() B: #12699 [14]
P4 Prevent the duplicated transaction BOOST_FOREACH() insert() if SIZE() != SIZE() return DoS() B: #1167 [1]
P5 Prevent the malformed transaction if !IsStandardTx() return DoS() B: #8312 [8]
P6 Prevent the double-spent transaction (relay) if RelayableRespend() VAR = BOL B: #4514 [3]

Block
Related

P7 Validate the new header not from an invalid block if IsValid() while!= insert() return DoS() B: #11531 [11]
P8 Check the gas limit in a block header CalcGasLimit() if Cmp() != NUM return ERR() E: #389 [5]
P9 Check the block timestamp time() int64() if < M: #5902 [20]
P10 Validate some block fields (number and hash) not null GetBlockByNumber()|Hash() if != NIL E: #1354 [6]
P11 Do not connect a corrupted block if CorruptionPossible() return AbortNode()|BOL B: #12561 [13]
P12 Prevent a malformed block to be propagated or forked if CalcUncleHash()!=UncleHash() | if DeriveSha()!=TxHash() break E: #20546 [23]

Peer/Node
Related

P13 Disconnect after the timeout of header synchronization if GetBlockTime() <= GetAdjustedTime()-NUM return BOL B: #10345 [10]
P14 Disconnect outbound peers on the invalid chain if GetHash()!= fDisconnect = BOL B: #11568 [12]
P15 Drop the remote peer on an invalid or unverified TD if Cmp(BlockTd) != 0 E: #604 [7]

Wallet
Key/Password

P16 Immediately wipe the memory for critical secret keys rct2sk()|MLSAG_Gen() memwipe()|memory_cleanse() return M: #4268 [16]
P17 Try to keep the wallet address in testnet or memory generate() if != MAINNET || create_address_file ERR() M: #3315 [15]
P18 Do not skip asking for password when watch-only if ask_password() M: #4791 [17]

Other Check P19 Check the validity of Quorum set if !isQuorumSetSane() ERR() if throw invalid_argument() S: #2233 [21]
RPC Related P20 Enforce a gas cap of caller to protect against DoS if := RPCGasCap() if != NIL if Cmp() > NUM Warn() E: #19401 [19]

DB Corruption P21 Avoid corruption due to unfinished blockchain tasks CRITICAL_REGION_LOCAL() M: #706 [9]
*: This column lists one example issue/PR for each code pattern, where B, E, M, and S represent Bitcoin, Ethereum, Monero, and Stellar, respectively.

To find a suitable clustering algorithm here, we also tested the
four algorithms in §5.1, i.e., K-means, Gaussian Mixture, Agglomer-
ative Clustering, and Affinity Propagation (AP). For the first three
algorithms that require a pre-estimation of the number of clusters,
we compute the Silhouette Coefficient score in a wide range of
cluster numbers, but the result is not satisfactory. Therefore, we
choose AP as our code clustering algorithm since it does not re-
quire pre-setting the number of clusters and performs well with a
gradual tuning of the damping factor to 0.78. Under this setting, we
eventually obtain a total of 174 clusters for further pattern analysis.

6.2 Blockchain-specific Patch Code Patterns
After clustering code change signatures, we inspect all the clusters
and generalize the code patterns from them. Table 7 lists the 21
evidently blockchain-specific vulnerability patterns. They are orga-
nized in seven categories by their types (see §5.2), and most check-
related patterns have been categorized into the detailed types.

Transaction-related patterns. We have identified six patterns
(P1–P6) related to blockchain transactions. They check the sender
(P1), size (P2), and order (P3) of a transaction, and prevent duplicated
(P4), malformed (P5), double-spent (P6) transactions. Specifically,P1
checks a sender address function to guarantee non-null values with
valid lengths. P2 checks the maximum size of transactions allowed
in a pool. Besides the sender and length, the order of transactions
could incur privacy risks like fingerprinting if not randomized. To
address this and as the case of Bitcoin #12699, P3 is to clear the
original order, shuffle it, and push_back the new order. Both P4
and P5 check the blockchain structure to prevent duplicated or
malformed transactions; otherwise, DoS could happen. P6 prevents
double-spent transaction relays via Relayable-Respend(), which
was checked in Bitcoin #4515 and #4450.

Block-related patterns. We identify another six patterns (P7–
P12) related to blockchain blocks. As a basic blockchain unit, a block
stores multiple transactions and will be appended to the chain ac-
cording to the consensus protocols. However, vulnerabilities could

happen if the header (P7), gas limit (P8), and timestamp (P9) of a
new block is invalid, or if some block fields are not null (P10), or if a
corrupted (P11) or malformed (P12) block is identified. Specifically,
P7 validates that a newly appended block header is not from an
invalid block. P8 checks the gas limit in a block header, where gas
is the fee for running smart contracts in Ethereum [35]. P9 checks
whether the timestamp in a block is less than the current time(),
such as Monero #5902 and Ethereum #1355. P10 validates the block
fields like number and hash, and guarantees they are not null. Both
P11 and P12 check the structure of a block to prevent a corrupted
or malformed block being connected or forked.

Peer/node-related patterns. We also identify three patterns
(P13–P15) related to peer/node synchronization and validation.
Specifically, P13 checks the time of block header synchronization,
and if it is timed out, the node would disconnect. Bitcoin #10345
shows such an example in Bitcoin #10345, where the timeout is
checked via GetBlockTime(). A similar case is Bitcoin #5463 for
the block download timeout. Additionally, P14 and P15 perform the
validation of remote peers and drop them if they fail. For example,
Bitcoin #11568 and #11446 in P14 validate the hash of outbound
peers via GetHash(). P15, on the other hand, checks the Ethereum-
specific TD (Total Difficulty) field of a peer and guarantees the
advertised TD actually deliverable, as in Ethereum #604 and #1451.

Wallet-related patterns. We further identify three patterns re-
lated to the blockchainwallet. First, since secret keys of a blockchain
wallet are critical,P16 immediatelywipes thememory via memwipe()
(Monero #4268) or memory_cleanse() (Bitcoin #10308) after gen-
erating some secrets. Second, the addresses in a wallet are also
sensitive and should be kept in testnet or memory. For example,
Monero #3315 in P17 adds a create_address_file option for the
address generating function generate() to create an address file
only in the testnet environment. Similarly, Bitcoin #787 keeps the
address table in memory and only writes to file when necessary.
Third, a blockchain wallet requires users to always input passwords
for critical operations. For example, Monero #4791 in P18 performs
such password checks via ask_password().
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Other blockchain-specific patterns. From P19 to P21, we
summarize the last three kinds of blockchain-specific patterns.
Specifically, P19 checks the validity of a Stellar-specific concept
called Quorum, which represents a set of nodes that are suffi-
cient to reach an agreement in the Stellar network [61]. For ex-
ample, Stellar #2233 and #2209 check the sanity of Quorum via
isQuorumSetSane(). P20 is a RPC-related pattern, which restricts
the gas cap of RPC calls. If the requested gas exceeds the cap limit via
RPCGasCap(), the caller should be warned (see Ethereum #19401).
The last pattern, P21, asks a blockchain client to gracefully shut-
down itself when there are unfinished block synchronization and
processing. This can be done by setting a global blockchain lock
via CRITICAL_REGION_LOCAL(), as shown in Monero #706.

6.3 Applying the Obtained Patterns for
Vulnerability Detection

While the focus of this paper is not vulnerability detection, we
demonstrate the impact of obtained patterns by applying them
to detect the same kinds of vulnerabilities in other blockchain
projects. Specifically, in the blockchain world, it is normal for new
blockchains to fork or partially reuse the code of classic blockchains,
such as Bitcoin and Ethereum. These “forked” blockchains thus
could encounter similar vulnerabilities that appeared in Bitcoin
and Ethereum. Here we demonstrate a simple direct search of the
vulnerable clones and leave a variant search to the future work.

Among the top 100 cryptocurrencies4, we identified that 11
blockchains were forked from Bitcoin or had similar codebase as
Bitcoin, including the rank #6 Dogecoin, #11 Bitcoin Cash, #12
Litecoin. For each blockchain 𝑏 and a given vulnerability pattern
𝑝 , we leverage the vulnerable file 𝑓 , vulnerable function method
𝑚, and surrounding code 𝑐 to first locate a clone of the original
(unpatched) code (of 𝑝). We then determine whether the cloned
code is vulnerable or not by checking if a patch (of 𝑝) has been
applied. We use the pattern P3, P7, P11, P13, and P14 (see §6.2) that
caused Bitcoin vulnerabilities in recent years to detect their cloned
ones in the 11 projects. The results are worrisome: six projects are
affected by at least one vulnerability, and two projects, Dogecoin
and Bitcoin SV, even suffer from all five kinds of vulnerabilities.
Among a total of the 20 vulnerabilities discovered, only ten use
the same file and function name as the original vulnerability. This
suggests the importance of generalized code patterns over the exact
signatures relying on file names or function names.

We have reported all the 20 vulnerabilities to their correspond-
ing vendors (via Email, GitHub, Discord, and Dash’s Bounty) and
offered them fix suggestions in late June and early July 2021. A sum-
mary of our vulnerability reporting is available at https://tinyurl.
com/fse-227. Dogecoin promptly confirmed all of our five reports
and planned to fix them in their next minor release version. Zcash,
Horizen, and Ravencoin also confirmed our reports and are coordi-
nating with their developers for fixes. Dash checked our report on
P3 and believed that they had applied a different patch by sorting
inputs and outputs based on BIP69. Bitcoin SV replied to two of our
reports on P7 and P14; however, they seem not keen to fix them. We
are still waiting for Bitcoin SV’s replies on the other three reports.

4Based on the market cap at https://coinmarketcap.com/ on 15 June 2021.

7 RELATEDWORK
Blockchain vulnerability research. Existing blockchain secu-
rity studies mainly focus on smart contract vulnerability detection
and transaction- or network-level analysis of the blockchains. For
smart contract vulnerability detection, both static and dynamic pro-
gram analysis tools have been proposed. For instance, Oyente [64],
Zeus [51], Securify [76], Gigahorse [47], and ETHBMC [42] detected
vulnerable smart contracts via symbolic execution, while Contract-
Fuzzer [49] and ConFuzzius [75] used fuzzing inputs to detect smart
contract vulnerabilities, and Sereum [70] and SODA [38] monitored
run-time contract execution to detect on-chain attacks in modified
EVMs. For transaction-level analysis, Karame et al. [53] analyzed the
double-spending resilience of Bitcoin fast payments. TxSpector [85]
studied Ethereum transactions by replaying historical transactions
and recording EVM bytecode-level traces. DeFiPoser [87] proposed
methods for discovering profit-generating transactions in DeFi pro-
tocols just in time. For network-level analysis, Apostolaki et al. [31]
analyzed routing attacks by hijacking BGP prefixes and showed
that such attacks could delay the propagation of blocks without
being detected. Gao et al. [44] showed that by power adjusting and
bribery racing, attackers could increase their mining rewards.

Mining-based vulnerability detection. Code clone detection
is a long-standing research topic in the software engineering area [41,
46, 59, 67, 72, 78]. Existing approaches are mainly based on detect-
ing duplicated token subsequences or identifying exact or similar
subtrees in abstract syntax tree (AST) representations. For token-
based approaches, CCFinder [52], CP-Miner [58], and ReDeBug [48]
are the representative work. Recently, a token-based approach,
VUDDY [54], generated code fingerprints via abstraction and nor-
malization to speed up code clone detection. For tree-based ap-
proaches, e.g., DECKARD [50] and CloneDR [33], they considered
code’s structural information by generating ASTs and embedding
them into a vector space for similarity comparison.

8 CONCLUSION
In this paper, we conducted the first empirical study of blockchain
system vulnerabilities and their security patches using four repre-
sentative blockchains. To enable this study, we proposed a vulnera-
bility filtering framework to effectively identify 1,037 vulnerabilities
and their 2,317 patches from 34,245 issues/PRs and 85,164 commits
on GitHub. Based on this unique dataset, we performed three levels
of analyses. Our analysis revealed three key findings of blockchain
system vulnerabilities, including (i) the modules related to con-
sensus, wallet, and networking are highly susceptible, each with
over 200 issues; (ii) around 70% of blockchain vulnerabilities are in
traditional types, but we also identify four new types specific to
blockchains; and (iii) we are able to obtain 21 blockchain-specific
vulnerability patterns that check unique blockchain attributes and
validate various blockchain statuses, and demonstrate that they can
be applied to detect similar vulnerabilities in other top blockchains.
In the future, we will perform a thorough detection of blockchain
system vulnerabilities based on the patterns extracted in this paper.
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