
LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

ABSTRACT
Security and privacy issues with centralized exchange services have
motivated the design of atomic swap protocols for decentralized
trading across currencies. These protocols follow a standard blue-
print similar to the 2-phase commit in databases: (i) both users first
lock their coins under a certain (cryptographic) condition and a
timeout; (ii-a) the coins are swapped if the condition is fulfilled;
or (ii-b) coins are released after the timeout. The quest for these
protocols is to minimize the requirements from the scripting lan-
guage supported by the swapped coins, thereby supporting a larger
range of cryptocurrencies. The recently proposed universal atomic
swap protocol [IEEE S&P’22] demonstrates how to swap coins
whose scripting language only supports the verification of a digi-
tal signature on a transaction. However, the timeout functionality
is cryptographically simulated with verifiable timelock puzzles, a
computationally expensive primitive that hinders its use in battery-
constrained devices such as mobile phones. In this state of affairs,
we question whether the 2-phase commit paradigm is necessary
for atomic swaps in the first place. In other words, is it possible
to design a secure atomic swap protocol where the timeout is not
used by (at least one of the two) users?

In this work, we present LightSwap, the first secure atomic swap
protocol that does not require the timeout functionality (not even
in the form of a cryptographic puzzle) by one of the two users.
LightSwap is thus better suited for scenarios where a user, run-
ning an instance of LightSwap on her mobile phone, wants to ex-
change coins with an online exchange service running an instance
of LightSwap on a computer. We show how LightSwap can be used
to swap Bitcoin and Monero, an interesting use case since Monero
does not provide any scripting functionality support other than
linkable ring signature verification.

KEYWORDS
Blockchain and Atomic swap and Bitcoin and Monero and Light-
weight applications and Adaptor signatures.

1 INTRODUCTION
The functionality of atomic swaps [21] was introduced for trading
assets between two parties such that each of them holds assets in a
different blockchain. The concept of atomicity in such a setting is
inspired by database systems where either a multi-step transaction
gets committed or it is rolled back in its entirety. In the blockchain
setting, it holds similar relevance guaranteeing that the swap either
fully occurs or fails entirely [20, 48].

As an illustrative example, consider that a user Alice has asset 𝛼
in blockchain B𝐴 and user Bob has asset 𝛽 in blockchain B𝐵 . An
atomic swap is said to be successful when Bob transfers asset 𝛽 to
Alice on B𝐵 contingent to the transfer of asset 𝛼 by Alice to Bob on
B𝐴 . If Alice decides to cancel the swap, a refund will be initiated.
Upon asset refund, Alice will retain 𝛼 in B𝐴 and Bob will retain 𝛽

in B𝐵 . A successful swap thereby leads to an exchange of asset’s

ownership [46]. Hence both the parties need to have accounts in
each of the blockchains to enable transfer of ownership [31].

While one can easily envision an atomic swap functionality
leveraging a trusted server, the blockchain community has put
significant efforts into decentralized protocols for atomic swaps
[1, 21, 29, 32, 33, 38–40, 48, 49]. In a nutshell, these different proto-
cols follow a standard blueprint based on two building blocks: (i) a
(cryptographic) locking mechanism that allows one user to locks
coins for another user in a given blockchain; and (ii) a timeout mech-
anism that allows the creator of a lock to release it after a certain
time has expired. With these building blocks, current atomic swap
protocols are based on the following blueprint: first, Alice locks 𝛼
in B𝐴 for Bob and establishes an expiration time of𝑇𝐴 to such lock.
Afterward, Bob locks 𝛽 in B𝐵 to Alice with an expiration time of
𝑇𝐵 : 𝑇𝐴 > 𝑇𝐵 . At this point, the atomic swap has been committed
and one of the following two outcomes can happen: (i) Bob allows
Alice to unlock 𝛽 in B𝐵 , which in turn “automatically” allows Bob
to unlock 𝛼 in B𝐴; or (ii) both parties decide to abort the swap by
allowing to release the locks at times 𝑇𝐵 and 𝑇𝐴 respectively.

This blueprint framework used by atomic swaps is based on two
crucial properties. First, the (cryptographic) locks should allow to
“relate” one to another in the sense that if one party opens one lock
in one blockchain, such opening operation automatically reveals
enough information to the other party to open her own lock in the
other blockchain. Such “correlated locks” have been implemented
in practice using different techniques such as leveraging the Turing-
complete scripting language of blockchains like Ethereum [43] or
more specific scripting functionality like Hash-time lock contract
[9, 15, 21, 33], using a third blockchain [24, 25, 45] as the coordinator
or bridge of the two blockchains [4, 26, 27, 37, 47] used for the
swap , leveraging trusted hardware [8], or designing cryptographic
schemes crafted for this purpose such as adaptor signatures [16, 40].

The second crucial property is that locked funds must be re-
leased to the original owner after a certain time has expired. Sur-
prisingly, all alternative protocols previously mentioned share only
two techniques with regard to handling the timelock functionality.
They either (i) rely on the scripting language of the underlying
blockchain to implement it; or (ii) rely on a cryptographic time-
lock puzzle [13, 36, 41] where a secret to unlock the locked funds
are saved under a cryptographic puzzle that can be solved after a
certain number of serial cryptographic operations are carried out.
Unfortunately, both of these techniques clearly hinder the adoption
of atomic swaps. On the one hand, timelock based on the scripting
language restricts its use to those cryptocurrencies that do not have
such support, such as Monero [34] or Zcash (shielded addresses)
[23]. On the other hand, cryptographic puzzles impose a compu-
tation burden on the users that need to compute such a puzzle for
each of the atomic swaps that they are involved in. Such a scheme
is not suitable for lightweight applications as it would drain the bat-
tery of a smartphone or would add a non-trivial cost if outsourced
to a third party (e.g., Amazon Web Services [14]).

In this state of affairs, we raise the following question: Is the
timelock functionality a necessary condition to design atomic swap

protocols? Or in other words, is it possible to design an atomic swap
protocol such that the timelock functionality is not required in (at
least one of) the two involved blockchains?

1.1 Our contribution
In this work, we present for the first time a secure, decentralized,
and trustless atomic swap protocol that does not require any type
of timelock in one of the cryptocurrencies. In particular, we present
LightSwap, a lightweight atomic swap between Bitcoin andMonero.
Similar to previous works, LightSwap leverages adaptor signatures
to implement the cryptographic condition that correlates the locks
over the committed coins. The crux of the contribution in LightSwap
is to depart from the 2-phase paradigm. Instead, we propose a novel
paradigm that maintains the security for the users (i.e., an honest
user does not lose coins) while removing the need to use timeouts
in any form for one of the two cryptocurrencies.

2 NOTATION AND BACKGROUND

Transactions in UTXO model. In this work, we focus on the
UTXO transaction model, as it is followed by both Bitcoin and
Monero.

For readability, transaction charts are used to visualize the trans-
actions, their ordering, and usage in any protocol. We follow the
notation in [6]. The charts must be read from left to right as per
the direction of the arrows. A transaction is represented as a rect-
angular box with a rounded corner, input to such transactions is
denoted by incoming arrows and output by outgoing arrows. Each
rectangular box has square boxes drawn within. These boxes rep-
resent the output of the transaction, termed as output boxes, and
the value within represents the number of coins. Conditions for
spending these coins are written on the output arrows going out of
these boxes. The notations and the illustration of the transaction
charts are provided in Figure 1.

The parties that can spend these coins present in the output box
are represented below the outgoing arrows in form of a signature.
Usually, these are represented as the public keys which can verify
this signature. Additional conditions for spending the coins are
written above the arrow. Conditions are encoded in a script sup-
ported by the underlying cryptocurrency. For our paper, we use the
notation “+𝑡” or RelTime(𝑡) which denotes the waiting time before
a transaction containing an output can be published on-chain. This
is termed as the relative locktime. If absolute locktime is used, then
it is represented as “ ≥ 𝑡” or AbsTime(𝑡). It means the condition for
spending the output is satisfied if the height of the blockchain is at
least 𝑡 . For representing multiple conditions, if it is a disjunction of
several conditions, i.e. 𝜙 = 𝜙1 ∨ 𝜙2 ∨ . . . ∨ 𝜙𝑛 , a diamond-shaped
box is used in the output box and each sub condition 𝜙𝑖 is written
above the output arrow. The conjunction of several conditions is
represented as 𝜙 = 𝜙1 ∧ 𝜙2 ∧ . . . ∧ 𝜙𝑚 .

Adaptor signatures. We recall the functionality for generation
and verification of adaptor signature with respect to a hard relation.
This becomes one building block in our approach to substitute
the functionality of HTLC. In more detail, given a hard relation
𝑅 : (𝑥,𝑋) ∈ 𝑅, where 𝑋 is the statement and 𝑥 is a witness, public
key 𝑝𝑘 having secret key 𝑠𝑘 , the language𝐿𝑅 and a signature scheme

tx

𝑥1

𝑥2

𝐵
≥ 𝑡1
pk𝐵

+𝑡2
pk𝐴, pk𝐵

tx′ 𝑥2

𝜙1

𝜙2

𝜙3 ∧ 𝜙4

Figure 1: (Left) Transaction tx has two outputs, one of value
𝑥1 that can be spent by B (indicated by the gray box) with a
transaction signed w.r.t. pk𝐵 at (or after) round 𝑡1, and one of
value 𝑥2 that can be spent by a transaction signed w.r.t. pk𝐴
and pk𝐵 but only if at least 𝑡2 rounds passed since tx was ac-
cepted on the blockchain. (Right) Transaction tx′ has one in-
put, which is the second output of tx containing 𝑥2 coins and
has only one output, which is of value 𝑥2 and can be spent by
a transaction whose witness satisfies the output condition
𝜙1 ∨ 𝜙2 ∨ (𝜙3 ∧ 𝜙4). The input of tx is not shown.

Σ = (Gen,Sign,Vrfy), an adaptor signature is defined using four
algorithms Ξ𝑅,Σ = (pSign, pVrfy, Adapt, Ext) as follows [5]:
• pSign(𝑠𝑘,𝑚,𝑋): A probabilisitc polynomial time algorithm
which on input of secret key 𝑠𝑘 , message𝑚 ∈ {0, 1}∗ and
statement 𝑋 ∈ 𝐿𝑅 , outputs an a pre-signature �̂� .
• pVrfy(𝑝𝑘,𝑚,𝑋, �̂�): A deterministic polynomial time algo-
rithm which on input the public key 𝑝𝑘 , the message𝑚 ∈
{0, 1}∗, the statement 𝑋 ∈ 𝐿𝑅 , and pre-signature �̂� , outputs
a bit 𝑏. If 𝑏 = 1, �̂� is a valid pre-signature on message𝑚.
• Adapt(�̂�, 𝑥): A deterministic polynomial time algorithmwhich
on input the witness for the statement 𝑋 , i.e. 𝑥 and the pre-
signature �̂� , outputs a signature 𝜎 .
• Ext(𝜎, �̂�, 𝑋): A deterministic polynomial time algorithm
which on input signature 𝜎 , pre-signature �̂� and the state-
ment 𝑋 ∈ 𝐿𝑅 , outputs a witness 𝑥 : (𝑥,𝑋) ∈ 𝑅 or ⊥.

In this work, we leverage the threshold adaptor signature for
ECDSA [30] for the Bitcoin side and the instance defined in [32, 42]
for Monero. In a threshold adaptor signature instance, the secret
key 𝑠𝑘 is shared by two participants, in our case Alice and Bob.

3 PROBLEM DEFINITION
Given a user Alice and the service provider Bob, the former holds
𝑥 XMR in Monero blockchain and Bob holds 𝑦 BTC in Bitcoin
blockchain. Alice wants to exchange 𝑥 XMR for Bob’s 𝑦 BTC. A
generic atomic swap protocol follows a 2-phase commit protocol
similar to that used in databases: (i) each user commits their assets
and (ii) each user claims the assets of the counterparty. To initiate
an atomic swap, both the parties need to lock their coins and set a
timeperiodwithinwhich the swapmust be completed. IfAlicewants
to cancel the swap, she will initiate a refund and the locked coins
are refunded to the original owner after the designated timeperiod.
Existing atomic swap protocols and their drawbacks.We dis-
cuss existing approaches as solution for the problem defined above.
We denote Alice as A and Bob as B.

(i) Using HTLC based approach. The simplest trustless exchange
protocol widely used across several cryptocurrency exchange is
based on Hash Timelocked Contract or HTLC. We discuss an HTLC
based solution where both A and B hold their coins at time 𝑡0. The
script used in HTLC takes the tuple (𝛼,ℎ, 𝑡,A,B), where 𝛼 is the
asset to be transferred, ℎ is the hash value, and 𝑡 is the contract’s

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

timeout period. The contract states that A will transfer 𝛼 to B
contingent to the knowledge 𝑟 whereℎ = H(𝑟) where H is a standard
cryptographic hash function if the contract is invoked within the
timeout period 𝑡 . If the timeperiod elapses and B fails to invoke the
contract, the asset 𝛼 is refunded to user A.

A can initiate exchange of 𝑥 XMR in B𝐴 for 𝑦 BTC in B𝐵
using HTLC. The former chooses a random value 𝑟 and gener-
ates ℎ = H(𝑟). She next proceeds to lock 𝑥 XMR in the contract
𝐻1 = 𝐻𝑇𝐿𝐶 (𝑥, ℎ, 𝑡5,A,B) at time 𝑡1, where 𝑡1 > 𝑡0, and sends ℎ, 𝑡5
to B. The timeout period of the contract is 𝑡5. Now B will reuse the
same terms of the contract but set the timeperiod as 𝑡4 : 𝑡4 < 𝑡5. We
will explain why the timeout period must be less than the previous
contract. B locks 𝑦 BTC in the contract 𝐻2 = 𝐻𝑇𝐿𝐶 (𝑦,ℎ, 𝑡4,B,A)
at time 𝑡2, where 𝑡2 > 𝑡1. A knows the preimage of ℎ and claim the
coins from B by invoking 𝐻2 at time 𝑡3 : 𝑡2 < 𝑡3 < 𝑡4. B gets the
preimage 𝑟 which he can use for claiming coins from A. If he had
used the timeout period 𝑡5 for 𝐻2, then it is quite possible that A
delays and claims the coins from B just at time 𝑡5. This would lead
to a race condition and B might fail to acquire the coins from A
if the time at which 𝐻1 is invoked exceeds 𝑡5. Hence he sets the
timeout period of the contract 𝐻2 less than the timeout period of
contract 𝐻1. B claims the coins from A by invoking 𝐻1 at time
𝑡4 : 𝑡3 < 𝑡4 < 𝑡5. By time 𝑡5, A holds 𝑦 BTC in B𝐵 and B holds 𝑥
XMR in B𝐴 . This depicts the situation when the swap succeeds and
the state transition from time 𝑡0 to 𝑡5 discussed above is termed as
happy path. If either of the party decides not to co-operate then it
will lead to failure of swap.

Incompatibility of HTLC in scriptless cryptocurrencies (e.g., Mon-
ero).HTLC-based approach requires the use of timelock on both the
Monero side as well as the Bitcoin side. The timeout mechanism is
essential to allow users to recover their assets in the case the swap
does not go through. Thus we require two main building blocks to
implement atomic swaps for cryptocurrencies: an atomic locking
mechanism and a timeout. However, the main challenge is that
Monero does not support hashlock and timelock. Without these
two features, it will not be possible forA to lock her coins at time 𝑡1.
The use of timelock puzzles will make our protocol unsuitable for
lightweight applications. Hence none of the paths can be initiated.

(ii) Without using HTLC for Monero. A fix for the challenges
faced in HTLC based protocol would be to design a protocol without
having any hashlock and timelock at Monero side, but B uses HTLC
for locking 𝑦 BTC in B𝐵 . In Monero, coins locked in the address
can be spend only by the party possessing the private key of that
particular address. The modified protocol allowsA to lock her coins
in an address say pk, whose secret key is solely possessed by her.
This will allow A to initiate a refund at her will. Let the secret key
be 𝑠 . She locks 𝑥 XMR in address pk at time 𝑡1. Using this secret
key, she generates ℎ𝑠 : ℎ𝑠 = H(𝑠). She shares ℎ𝑠 with B. The latter
locks 𝑦 BTC into 𝐻𝑇𝐿𝐶 (𝑦,ℎ𝑠 , 𝑡4,B,A) at time 𝑡2. For a successful
swap, A invokes HTLC using the secret 𝑠 at time 𝑡3 and claims 𝑦
BTC. B uses the secret key 𝑠 to spend 𝑥 XMR locked in address pk
at 𝑡4 and transfers it to his address in B𝐴 .

Attack on this approach. Apparently, it might look like we can
accomplish the swap using this approach. However, the problem
is now A can initiate a refund at any time she wants. Even if she
initiates a refund after 𝑡2, she can still invoke the HTLC as 𝑡2 < 𝑡4,
and claim 𝑦 BTC from B. The service provider B will lose his coins.

To counter this problem, we can resort to 2-of-2 secret sharing
where each half of the secret key 𝑠 of address pkwill be shared with
A and B. This will make A dependent on B for issuing a refund,
violating our objective. If B does not lock his coins at 𝑡2, A’s coins
will remain locked forever.

From the above discussion, it is clear that designing an efficient
protocol without any kind of timeout in one of the two chains is a
challenging task. We provide a high-level overview of our proposed
solution in the next section.

4 OUR APPROACH
4.1 Solution overview
Our protocol must ensure that the party moving first is allowed to
issue a refund without depending on the counterparty. However, it
must also be ensured that if the swap is canceled, both the party
must get a refund. Since Monero does not support timelocks, we
need to design a protocol that leverages the timelock used in the
Bitcoin script. We use threshold adaptor signature for seamless
redemption and refund of coins without any party suffering a loss
in the process.

Signing refund transaction inMonero.Consider an atomic swap
where Alice (or A) wants to exchange her monero for Bob’s (or B)
bitcoin. If she locks her coins in an address whose secret key is
known to her, she can spend the coins at any time. It is better if
the secret key is shared where each half is possessed by A and B.
However, this would mean that A has to depend on B for initiat-
ing a refund. If B does not cooperate, then A’s coin will remain
locked forever. Hence both of them must collaborate and sign the
refund transaction even before A locks her coins. The signature
generated uses threshold version of adaptor signature. To generate
such a signature, B uses his portion of the secret key as well as a
cryptographic condition, say 𝑅, to generate the incomplete signa-
ture.A can complete the signature using her share of the secret key
and upon fulfilling the hard relation 𝑅 inserted by B. On the Bitcoin
side, once A invokes the redeem transaction, the coins can be re-
deemed by her only after a certain timeperiod, say 𝑡 , elapses. In the
meantime, if B finds thatA has refunded her coins but still invoked
the redeem transaction at the Bitcoin side, then he can publish his
refund transaction within the timeperiod 𝑡 . A valid signature for a
refund transaction can be generated by providing a witness to the
relation 𝑅. Once A has published her refund transaction on B𝐴 , B
will know the witness and hence, he can claim a refund easily.

We now describe our proposed two-party atomic swap protocol
ensuring that none of the parties lose coins in the process.

4.2 Protocol description
We present an atomic swap protocol where A wants to swap 𝑥𝐴
coins for 𝑦𝐵 coins of B locks his bitcoins. The protocol consists of
six phases: setup, lock, redeem, cancel, emergency refund and punish.
The transaction schema for BTC to XMR atomic swap is shown
in Figure 2. 𝑥𝐴 coins are held in blockchain B𝐴 and 𝑦𝐵 coins are
held in blokchain B𝐵 .
Setup phase. In this phase, A and B jointly create the public key
pk in B𝐴 B’s collaboration. A uses pk to generate an address for
locking her coins. Each partywill generate one-half of the secret key,

(i) BTCl

y𝐴 ∧ y𝐵

(iii) BTCc

y𝐵

(ii) BTCr

y𝐴 ∧ y𝐵

(v) BTCt

y𝐴

(iv) BTCe

y𝐵

+𝑡1
pk𝐴, pk𝐵

pk𝐴, pk𝐵 , 𝑆
∗
𝐴

+𝑡2
pk𝐴, pk𝐵

𝑅∗
𝐴
, pk𝐵

(A) XMRl

𝑥𝐴

(B) XMRr

𝑥𝐵

(C) XMRc

𝑥𝐴

S𝐴, S𝐵

S𝐴, S𝐵 , 𝑅𝐴

Figure 2: New transaction schema for BTC to XMR atomic swaps. Top: Transaction schema for Bitcoin. Bottom: Transaction
schema for Monero. Here 𝑥𝐴 and 𝑥𝐵 denotes the fact that 𝑥 Monero coins belong to either Alice or Bob correspondingly. Simi-
larly with 𝑦𝐴 and 𝑦𝐵 in Bitcoin.

i.e.,Awill generate 𝑠𝐴 , andBwill generate 𝑠𝐵 . A linear combination
of their secret key will result in 𝑠 . The latter serves as the private
key of the address pk. Additionally, A samples an additional secret
𝑟𝐴 and generates the statements 𝑅𝐴 for B𝐴 and 𝑅∗

𝐴
for B𝐵 . Thus,

𝑟𝐴 is the witness to both the statements 𝑅𝐴 and 𝑅∗
𝐴
Similarly, using

one half of secret key, 𝑠𝐴 , A generate the statements 𝑆𝐴 and 𝑆∗
𝐴
for

the blockchains B𝐴 and B𝐵 respectively. Similarly, B generates the
statement 𝑆𝐵 from 𝑠𝐵 . Both parties share (𝑅𝐴, 𝑅∗𝐴, 𝑆𝐴, 𝑆

∗
𝐴
, 𝑆𝐵).

Pre-signing of Monero Refund transaction: A creates a Monero
refund transaction XMRc, box (C) in Figure 2, where 𝑥𝐴 coins locked
in address pk is send to another address on B𝐴 controlled by A.

XMRc : pk
𝑥𝐴−→ A

Later,A andB collaborate and pre-sign XMRc based on the statement
𝑅𝐴 . Both the parties provide their share of private spend keys in
the process of generating the adaptor signature without revealing
it explicitly. This allows A to opt for a refund anytime she wants.

Exchanging signatures for the transactions on Bitcoin side:B shares
his funding source, 𝑡𝑥 𝑓 𝑢𝑛𝑑 , with A. The source has a balance of at
least 𝑦𝐵 coins. The transaction BTCl, box (i) in Figure 2, is created
whereBwill lock his coins in a 2-of-2 multisig redeem script, pk𝑙𝑜𝑐𝑘

𝐴,𝐵
.

The output is denoted as 𝑦𝐴 ∧ 𝑦𝐵 .

BTCl : 𝑡𝑥 𝑓 𝑢𝑛𝑑
𝑦𝐴∧𝑦𝐵
−−−−−−−−→ pk𝑙𝑜𝑐𝑘𝐴,𝐵

The coins can either be redeemed by A or refunded by B after a
certain timeperiod 𝑡1. A can publish the transaction BTCr, box (ii)
in Figure 2, spends the output of BTCl and again locks into a 2-of-2
multisig redeem script, pk𝑟𝑒𝑑𝑒𝑒𝑚

𝐴,𝐵
.

BTCr : pk𝑙𝑜𝑐𝑘𝐴,𝐵

𝑦𝐴∧𝑦𝐵
−−−−−−−−→ pk𝑟𝑒𝑑𝑒𝑒𝑚𝐴,𝐵

The output of BTCr can either be refunded to B, if there is an
emergency, or it can be claimed by A after a certain timeperiod 𝑡2.
A creates the transaction BTCt, box (v) in Figure 2, which will allow
her to spend the output of BTCr after timeperiod 𝑡2 and shares it
with B.

BTCt : pk𝑟𝑒𝑑𝑒𝑒𝑚𝐴,𝐵

𝑦𝐴

−−−−−−−−→ A

The latter signs the transaction and sends it to A. Next, B creates
the transaction BTCc, box (iii) in Figure 2, that will allow him to
refund the output 𝑦𝐴 ∧ 𝑦𝐵 coins of BTCl.

BTCc : pk𝑙𝑜𝑐𝑘𝐴,𝐵

𝑦𝐴

−−−−−−−−→ B

He shares the transaction with B, the latter signs and sends it to
A. B verifies the transaction, pre-signs the transaction BTCr based
on the statement 𝑆∗

𝐴
and sends the partially signed transaction to

A. Now A will sign the transaction BTCl and send it to B.

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

Lock phase. A creates the transaction XMRl, box (A) in Figure 2
where she locks 𝑥𝐴 coins into address pk.

XMRl : A
𝑥𝐴

−−−−−−−−→ pk

B, upon verification that A has locked the coins, proceeds with
publishing BTCl and locks his coins as well.
Redeem phase. A knows the witness 𝑠𝐴 for the statement 𝑆∗

𝐴
and

thus she generates a valid signature for BTCr. She publishes the
transaction but cannot spend the output before a timperiod of 𝑡2
has elapsed. Meanwhile, B extracts 𝑠𝐴 from the signature on BTCr.
He will create the transaction XMRr, box (B) in Figure 2 that will
allow him to redeem the coins locked in address pk.

XMRr : pk
𝑥𝐵

−−−−−−−−→ B

By combining the secret keys 𝑠𝐴 and 𝑠𝐵 , he will be able to sign XMRr
and publish it on-chain.
Cancel swap. If A wants to cancel the swap, she will generate a
valid signature for XMRc using the witness 𝑟𝐴 and publish it to claim
her coins. Meanwhile, B can wait till 𝑡1 has elapsed since BTCl was
published and A has not initiated the swap. He publishes BTCc and
unlocks his coins.
Emergency refund. Suppose A has initiated the swap by publish-
ing BTCr but she has unlocked her coins by publishing XMRc. Once
XMRc is published, B extracts 𝑟𝐴 from the signature on XMRc. He
will create transaction BTCe, box (iv) in Figure 2 and spend 𝑦𝐴 ∧𝑦𝐵
coins locked in pk𝑟𝑒𝑑𝑒𝑒𝑚

𝐴,𝐵
.

BTCe : pk𝑟𝑒𝑑𝑒𝑒𝑚𝐴,𝐵

𝑦𝐵

−−−−−−−−→ B

Now he will sign the transaction using 𝑟𝐴 and publish the transac-
tion on-chain before 𝑡2 elapses.

From the above discussion on emergency refund, we emphasize
the utility of not allowing A to redeem the coins locked by B.
Instead, a waiting time of 𝑡2 allows B to recover his coins, if A is
malicious. On one hand, A can initiate a refund any time she wants
but on the other hand, she cannot claim the bitcoins instantly.
Punish. If B has published XMRr and claimed 𝑥𝐵 coins, then A
waits for 𝑡2 timeperiod to elapse after publishing BTCr. She will
publish BTCt and claim 𝑦𝐴 coins.

Now, consider that B has stopped responding and has neither
claimed 𝑥𝐵 coins nor initiated a refund. In that case, A can punish
him for remaining inactive by publishing BTCt. Hence, this phase is
called punish phase and B loses his bitcoins. A detailed description
of the protocol can be found in the full version of our paper [3].

4.3 Security and privacy goals
• Correctness: If both parties are honest, with one party will-
ing to exchange 𝑥 units of coin for 𝑦 units of coins of the
other party, then the protocol terminates with each party
obtaining the desired amount.
• Soundness: An honest party must not lose funds while exe-
cuting the protocol with an adversary.
• Unlinkability: Any party not involved with the atomic
swap must not be able to link two cross-chain transactions
responsible for the atomic swap, except with negligible prob-
ability.

• Fungibility: An adversary must not be able to distinguish
between a normal transaction and a transaction for atomic
swap in Monero Blockchain, except with negligible proba-
bility.

We discuss how the security properties defined above holds for our
proposed protocol:

• Correctness: If both parties A and B are honest, then the
atomic swap protocol ensures that if party A is able to re-
deem 𝑦𝐴 coins then party 𝐵 can redeem 𝑥𝐵 coins as well
within a bounded timeperiod. This is possible since when A
publishes BTCr, B extracts the secret 𝑠𝐴 from signature on
BTCr and uses the same for signing transaction XMRr.
• Soundness: If partyA initiates the swap but publishes XMRc
before B publishes XMRr, then a relative locktime of 𝑡2 on
spending the output of BTCr allowsB to opt for an emergency
refund by publishing BTCe and refund his coins.
• Linkability: Since Monero transactions are confidential and
signatures on transactions are generated from random val-
ues, any malicious party observing both the Monero and
Bitcoin blockchains will be able to link a pair of Bitcoin and
Monero transactions involved in the swap with negligible
probability.
• Fungibility: There is no structural difference between a
normal Monero transaction and a Monero transaction con-
structed for LightSwap. Any malicious party observing the
Monero blockchain can distinguish between such a pair of
transactions with negligible probability.

5 OUR CONSTRUCTION
We state the security and privacy objectives to be realized by our
proposed protocol, followed by the systemmodel and cryptographic
building blocks.

5.1 Security and privacy goals
• Correctness: If both parties are honest, with one party will-
ing to exchange 𝑥 units of coin for 𝑦 units of coins of the
other party, then the protocol terminates with each party
obtaining the desired amount.
• Soundness: An honest party must not lose funds while exe-
cution of the protocol with an adversary.
• Unlinkability: Any party not involved with the atomic
swap must not be able to link two cross-chain transactions
responsible for the atomic swap, except with non-negligible
probability.
• Fungibility: An adversary must not be able to distinguish
between a normal monero transaction and a transaction for
atomic swap, except with negligible probability in Monero.

5.2 System assumptions
We assume that any transaction broadcasted, will get eventually
added in the ledger within a certain timeframe. Public keys of the
parties involved in the swap are known to the rest of the partici-
pants. Any honest party willing to execute the swap will remain
online until it acquires the coins of the counterparty.

5.3 Cryptographic building blocks

Monero Ring Signature for Untraceability. Monero account
possess two private keys - spend key and view key [44]. Private view
key allows a user to view the fund locked in the account and private
spend key allows the user to spend the fund. A one-time address
can be constructed using the public keys generated using pair of
private spend and view keys. Spender of monero fund uses set of
random one-time public addresses from the blockchain creates a
one-time ring signature using the private key of his address. Anyone
verifying the signature will know coins present in one of the address
has been spent. The Cryptonote Protocol [44] mentions the use of
type of one-time linkable spontaneous anonymous group (LSAG)
signature. Monero uses multilayered LSAG (MLSAG) in order to
handle anonymous transaction.

Monero Address Generation. We briefly describe the signing
and verification phase LSAG [34]:

• Signature Generation
– Let 𝐺 = ⟨𝑔⟩ be a group of prime order 𝑞. We define two
statistically independent hash functions H1 : {0, 1}∗ →
Z𝑞 andH2 : {0, 1}∗ → 𝐺 .

– The user chooses𝑛−1 distinct public keys 𝑃1, 𝑃2, . . . , 𝑃 𝑗−1,
𝑃 𝑗+1 . . . , 𝑃𝑛 where 𝑛 > 1 where each 𝑃𝑖 = 𝑥𝑖𝐺, 𝑥𝑖 ∈ Z∗𝑞 .
He adds 𝑃 𝑗 , his own public key, to the set. The key image
corresponding to 𝑃 𝑗 is 𝐼 = 𝑥 𝑗H2 (𝑃 𝑗).

– The user selects 𝑞𝑖
$← Z𝑞, 𝑖 ∈ [1, 𝑛]. He sets 𝐿𝑗 = 𝑞 𝑗𝐺 ,

𝑅 𝑗 = 𝑞 𝑗H2 (𝑃 𝑗) and sets 𝑐 𝑗+1 = H1 (𝑚, 𝐿𝑗 , 𝑅 𝑗).
– He sets 𝐿𝑘 = 𝑞𝑘𝐺 +𝑐𝑘𝑃𝑘 , 𝑅𝑘 = 𝑞𝑘H2 (𝑃𝑘) +𝑐𝑘 𝐼 and 𝑐𝑘+1 =
H1 (𝑚, 𝐿𝑘 , 𝑅𝑘), 𝑘 ∈ [𝑗 + 1, 𝑛] where 𝑐1 = 𝑐𝑛+1.

– He sets 𝐿𝑖 = 𝑞𝑖𝐺 + 𝑐𝑖𝑃𝑖 , 𝑅𝑖 = 𝑞𝑖H2 (𝑃𝑖) + 𝑐𝑖 𝐼 and 𝑐𝑖+1 =

H1 (𝑚, 𝐿𝑖 , 𝑅𝑖), 𝑖 ∈ [1, 𝑗−1]. Hence, 𝐿𝑗 = 𝑞 𝑗𝐺−𝑐 𝑗𝑃 𝑗+𝑐 𝑗𝑃 𝑗 =
(𝑞 𝑗 − 𝑐 𝑗𝑥 𝑗)𝐺 + 𝑐 𝑗𝑃 𝑗 and 𝑅 𝑗 = 𝑞 𝑗H2 (𝑃 𝑗) − 𝑐 𝑗 𝐼 + 𝑐 𝑗 𝐼 =

(𝑞 𝑗 − 𝑐 𝑗𝑥 𝑗)H2 (𝑃 𝑗) + 𝑐 𝑗 𝐼 . Thus 𝑞′𝑗 = 𝑞 𝑗 − 𝑐 𝑗𝑥 𝑗 .
– The signer sends the ring signatures𝜎 = (𝐼 , 𝑐1, 𝑞1, 𝑞2, . . . , 𝑞 𝑗−1,
𝑞′
𝑗
, 𝑞 𝑗+1, . . . , 𝑞𝑛).

• Signature Verification
– Verifier constructs 𝐿𝑖 and 𝑅𝑖 , 𝑖 ∈ [1, 𝑛] and checks if 𝑐1

?
=

H1 (𝑚, 𝐿𝑛, 𝑅𝑛). If so then the signature is considered as
valid.

• Linkability: Given two valid signature for different messages,
if they have the same key image then one of the signature is
rejected else it would lead to double spending.

Non-interactive Zero Knowledge Proofs. In order to prove a
statement which belongs to classNP without revealing the witness,
we need the help of zero knowledge proof for convincing a verifier.
Given a pair of probabilisitc polynomial time algorithm 𝑃 and 𝑉 ,
with 𝑃 having statement 𝑋 and witness 𝑥 such that (𝑋, 𝑥) ∈ 𝑅

where 𝑅 is a hard relation [17]. We define the language 𝐿𝑅 = {𝑋 :
∃𝑥 : (𝑋, 𝑥) ∈ 𝑅} as NP-language. 𝑃 outputs a proof 𝜋 for the
statement 𝑋 .𝑉 on getting 𝑋 and proof 𝜋 checks if proof establishes
the fact that 𝑃 knows a witness 𝑥 for the statement 𝑋 .

Proof of Discrete Logarithm. We define the two algorithms in-
volved in the proof:

• 𝜋 ← PDL ((𝐺,𝑋), 𝑥): Using a probabilistic proving algorithm
PDL, which on input 𝐺 , statement 𝑋 and the witness for
statement 𝑋 , termed as 𝑥 , generates the proof 𝜋 .
• {0, 1} ← VDL ((𝐺,𝑋), 𝜋): Using a deterministic verification
algorithm, the verifier on obtaining the statement 𝑋 , the
generator 𝐺 , and the proof for possessing the witness of
statement 𝑋 , denoted as 𝜋 , checks whether VDL ((𝐺,𝑋), 𝜋)

?
=

1. If the output is 0, then the proof is rejected.
Given below is the Sigma Protocol for the relation {(𝑋, 𝑥) : 𝑋 = 𝑥𝐺}.
Prover(𝑥,𝑋) Verifier(𝑋)
𝑡 ← Z∗𝑞
𝑇 ← 𝑡𝐺

𝑐 ← H(𝑋,𝑇)

𝑧 ← 𝑡 + 𝑐𝑥 mod 𝑞 𝑇 𝑐 𝑧

𝑧𝐺
?
= 𝑇 + 𝑐𝑋

Proof of Cross-Chain Discrete Logarithmic Equality. Let us
denote the groups used for Monero and Bitcoin be G and H respec-
tively. We consider 𝐺 and 𝐺 ′ as generators of group G and 𝐻,𝐻 ′

be generators of group H, where |𝐺 | = 𝑝 and |𝐻 | = 𝑞, 𝑝 and 𝑞 being
large prime numbers, 𝑝 ≤ 𝑞. Let us define two cryptographic hash
functions HG : {0, 1}∗ → Z𝑝 and HH : {0, 1}∗ → Z𝑞 . Given the
values 𝑋 = 𝑥𝐺 ′ and 𝑌 = 𝑥𝐻 ′ where 𝑥 ∈ Z, 0 ≤ 𝑥 < 𝑝 , a prover
must prove that discrete logarithm of 𝑋 and 𝑌 is a representation
of the same integer without revealing the value 𝑥 .

We define the prover and verifier algorithm:
• 𝜋 ← PDLEQ ((𝐺,𝑋), (𝐻,𝑌), 𝑥): Bit representation of integer
𝑥 is:

𝑥 =

𝑛−1∑
𝑖=0

𝑏𝑖2𝑖 (1)

Each element 𝑏𝑖 is an element of either Z𝑝 or Z𝑞 , depending
on whether 𝑥 is discrete logarithm of 𝑋 or 𝑌 . For the n-bit
number, generate 𝑛 − 1 pair of blinding values 𝑓𝑖 ∈ Z𝑝 and
𝑔𝑖 ∈ Z𝑞, 𝑖 ∈ [0, 𝑛 − 2]. The values 𝑓𝑛−1 and 𝑔𝑛−1 are set as
follows:

𝑓𝑛−1 = −(2𝑛−1)−1
∑𝑛−2
𝑖=0 𝑓𝑖2𝑖 ∈ Z𝑝

𝑔𝑛−1 = −(2𝑛−1)−1
∑𝑛−2
𝑖=0 𝑔𝑖2𝑖 ∈ Z𝑞

(2)

This gives us the relation
∑𝑛−1
𝑖=0 𝑓𝑖2𝑖 =

∑𝑛−1
𝑖=0 𝑔𝑖2𝑖 = 0. The

values 𝑓𝑖 , 𝑔𝑖 ∈ [0, 𝑛− 1] are used for computing the Pedersen
Commitments of each bit 𝑏𝑖 .

𝐶𝐺
𝑖

= 𝑏𝑖𝐺
′ + 𝑓𝑖𝐺 ∈ G

𝐶𝐻
𝑖

= 𝑏𝑖𝐻
′ + 𝑔𝑖𝐻 ∈ H

(3)

Taking the weighted sum, we have the following relations:
𝑋 =

∑𝑛−1
𝑖=0 2𝑖𝐶𝐺

𝑖
= 𝑥𝐺 ′ and 𝑌 =

∑𝑛−1
𝑖=0 2𝑖𝐶𝐻

𝑖
= 𝑥𝐻 ′. Ring

signature is constructed on each bit to show that it is either
0 or 1, and next it is shown that the value is same in both
the groups. We analyze for both the cases (i) if 𝑏𝑖 = 0, 𝑖 ∈
[0, 𝑛 − 1], (ii) if 𝑏𝑖 = 1, 𝑖 ∈ [0, 𝑛 − 1].

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

– 𝑏𝑖 = 0: Consider pairs of random values 𝑗𝑖 ∈ Z𝑝 and
𝑘𝑖 ∈ Z𝑞, 𝑖 ∈ [0, 𝑛 − 1] and set 𝑒𝐺1,𝑖 , 𝑒

𝐻
1,𝑖 as follows:

𝑒𝐺1,𝑖 = HG (𝐶𝐺𝑖 ,𝐶
𝐻
𝑖
, 𝑗𝑖𝐺,𝑘𝑖𝐻) ∈ Z𝑝

𝑒𝐻1,𝑖 = HH (𝐶𝐺𝑖 ,𝐶
𝐻
𝑖
, 𝑗𝑖𝐺,𝑘𝑖𝐻) ∈ Z𝑞

(4)

Randomly select 𝑛 pairs of 𝑎0,𝑖 ∈ Z𝑝 and 𝑏0,𝑖 ∈ Z𝑞 , set
𝑒𝐺0,𝑖 , 𝑒

𝐻
0,𝑖 , 𝑖 ∈ [0, 𝑛 − 1].

𝑒𝐺0,𝑖 = HG (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖 (𝐶𝐺

𝑖
−𝐺′), 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖 (𝐶𝐻

𝑖
−𝐻 ′)) ∈ Z𝑝

𝑒𝐻0,𝑖 = HH (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖 (𝐶𝐺

𝑖
−𝐺′), 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖 (𝐶𝐻

𝑖
−𝐻 ′)) ∈ Z𝑞

(5)

• – The 𝑛 pair of values 𝑎1,𝑖 and 𝑏1,𝑖 are defined as:

𝑎1,𝑖 = 𝑗𝑖 + 𝑒𝐺0,𝑖 𝑓𝑖 ∈ Z𝑝

𝑏1,𝑖 = 𝑘𝑖 + 𝑒𝐻0,𝑖𝑔𝑖 ∈ Z𝑞
(6)

– 𝑏𝑖 = 1: Consider pairs of random values 𝑗𝑖 ∈ Z𝑝 and
𝑘𝑖 ∈ Z𝑞, 𝑖 ∈ [0, 𝑛 − 1] and set 𝑒𝐺1,𝑖 , 𝑒

𝐻
1,𝑖

𝑒𝐺0,𝑖 = HG (𝐶𝐺𝑖 ,𝐶
𝐻
𝑖
, 𝑗𝑖𝐺,𝑘𝑖𝐻) ∈ Z𝑝

𝑒𝐻0,𝑖 = HH (𝐶𝐺𝑖 ,𝐶
𝐻
𝑖
, 𝑗𝑖𝐺,𝑘𝑖𝐻) ∈ Z𝑞

(7)

Randomly select 𝑛 pairs of 𝑎1,𝑖 ∈ Z𝑝 and 𝑏1,𝑖 ∈ Z𝑞 , set
𝑒𝐺1,𝑖 , 𝑒

𝐻
1,𝑖 , 𝑖 ∈ [0, 𝑛 − 1] as follows:

𝑒𝐺1,𝑖 = HG (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖𝐶𝐺

𝑖
, 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖𝐶𝐻

𝑖
) ∈ Z𝑝

𝑒𝐻1,𝑖 = HH (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖𝐶𝐺

𝑖
, 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖𝐶𝐻

𝑖
) ∈ Z𝑞

(8)

The 𝑛 pair of values 𝑎0,𝑖 and 𝑏0,𝑖 are defined as:

𝑎0,𝑖 = 𝑗𝑖 + 𝑒𝐺1,𝑖 𝑓𝑖 ∈ Z𝑝

𝑏0,𝑖 = 𝑘𝑖 + 𝑒𝐻1,𝑖𝑔𝑖 ∈ Z𝑞
(9)

The proof𝜋 is the tuple (𝑋,𝑌, {𝐶𝐺
𝑖
}, {𝐶𝐻

𝑖
}, {𝑒𝐺0,𝑖 }, {𝑒

𝐻
0,𝑖 }, {𝑎0,𝑖 },

{𝑎1,𝑖 }, {𝑏0,𝑖 }, {𝑏1,𝑖 })
• {0, 1} ← VDLEQ ((𝐺,𝑋), (𝐻,𝑌), 𝜋): The verifier upon receiv-
ing tuple checks the following conditions:∑𝑛−1

𝑖=0 2𝑖𝐶𝐺
𝑖

?
= 𝑋 ∈ G∑𝑛−1

𝑖=0 2𝑖𝐶𝐻
𝑖

?
= 𝑌 ∈ H

(10)

For each 𝑖 ∈ [0, 𝑛 − 1], it computes the following:

𝑒𝐺1,𝑖 = HG (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎1,𝑖𝐺 − 𝑒𝐺0,𝑖𝐶𝐺

𝑖
, 𝑏1,𝑖𝐻 − 𝑒𝐻0,𝑖𝐶𝐻

𝑖
∈ Z𝑝

𝑒𝐻1,𝑖 = HH (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎1,𝑖𝐺 − 𝑒𝐺0,𝑖𝐶𝐺

𝑖
, 𝑏1,𝑖𝐻 − 𝑒𝐻0,𝑖𝐶𝐻

𝑖
∈ Z𝑞

(𝑒𝐺0,𝑖)′ = HG (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖 (𝐶𝐺

𝑖
−𝐺′), 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖 (𝐶𝐻

𝑖
−𝐻 ′)) ∈ Z𝑝

(𝑒𝐻0,𝑖)′ = HH (𝐶𝐺
𝑖
,𝐶𝐻

𝑖
, 𝑎0,𝑖𝐺 − 𝑒𝐺1,𝑖 (𝐶𝐺

𝑖
−𝐺′), 𝑏0,𝑖𝐻 − 𝑒𝐻1,𝑖 (𝐶𝐻

𝑖
−𝐻 ′)) ∈ Z𝑞

(11)

It next checks the following conditions:

𝑒𝐺0,𝑖
?
= (𝑒𝐺0,𝑖)

′

𝑒𝐻0,𝑖
?
= (𝑒𝐻0,𝑖)

′
(12)

If all the checks hold true, then the verifier accepts the proof else it
rejects it.
Adaptor Signature.We define the modules for generation and ver-
ification of adaptor signature with respect to a hard relation. Given
a hard relation 𝑅 : (𝑥,𝑋) ∈ 𝑅, where 𝑋 is the statement and 𝑥 is a
witness, public key 𝑝𝑘 having secret key 𝑠𝑘 , the language 𝐿𝑅 and a
signature scheme Σ = (Gen,Sign,Vrfy), an adaptor signature is de-
fined using four algorithmsΞ𝑅,Σ = (pSign, pVrfy, Adapt, Ext)
as follows [5]:
• pSign(𝑠𝑘,𝑚,𝑋): A probabilisitc polynomial time algorithm
which on input of secret key 𝑠𝑘 , message𝑚 ∈ {0, 1}∗ and
statement 𝑋 ∈ 𝐿𝑅 , outputs an a pre-signature �̂� .
• pVrfy(𝑝𝑘,𝑚,𝑋, �̂�): A deterministic polynomial time algo-
rithm which on input the public key 𝑝𝑘 , the message𝑚 ∈
{0, 1}∗, the statement 𝑋 ∈ 𝐿𝑅 , and pre-signature �̂� , outputs
a bit 𝑏. If 𝑏 = 1, �̂� is a valid pre-signature on message𝑚.
• Adapt(�̂�, 𝑥): A deterministic polynomial time algorithmwhich
on input the witness for the statement 𝑋 , i.e. 𝑥 and the pre-
signature �̂� , outputs a signature 𝜎 .
• Ext(𝜎, �̂�, 𝑋): A deterministic polynomial time algorithm
which on input signature 𝜎 , pre-signature �̂� and the state-
ment 𝑋 ∈ 𝐿𝑅 , outputs a witness 𝑥 : (𝑥,𝑋) ∈ 𝑅 or ⊥.

ECDSA-based Adaptor Signature.Wediscuss this signature scheme
since ECDSA-based signature is used in bitcoin script. A pre-signature
(𝑟, 𝑠) is constructed for statement𝑋 , embedding𝑋 in the r-component.
The signer must get a zero knowledge proof of a valid witness for
statement 𝑋 . The four algorithms pSign, pVrfy, Adapt, Ext are
defined as follows [5]:

pSign(𝑠𝑘,𝑚,𝑋) Adapt(�̂�, 𝑥)
𝑥 := 𝑠𝑘 (𝑟𝑥 , 𝑠′, 𝐾, 𝜋) := �̂�

𝑘
$← Z𝑞 𝑠 := 𝑠′𝑥−1

𝐾 := 𝑘𝐺,𝐾 := 𝑘𝑋 return 𝜎 = (𝑟𝑥 , 𝑠)
(𝑟𝑥 , 𝑟𝑦) := 𝐾
𝑠′ := 𝑘−1 (H(𝑚) + 𝑟𝑥 .𝑥)

𝜋 ← PDLEQ ((𝐺,𝐾), (𝑋,𝐾), 𝑥)
return �̂� = (𝑟𝑥 , 𝑠′, 𝐾, 𝜋)

pVrfy(𝑝𝑘,𝑚,𝑋, �̂�) Ext(𝜎, �̂�, 𝑋)
(𝑟𝑥 , 𝑠′, 𝐾, 𝜋) := �̂� (𝑟𝑥 , 𝑠) := 𝜎
𝑢 := H(𝑚)𝑠′ (𝑟𝑥 , 𝑠′, 𝐾, 𝜋) := �̂�
𝑣 := 𝑟𝑠′−1 𝑥′ := 𝑠−1𝑠′

𝐾 ′ = 𝑢𝐺 + 𝑣𝑝𝑘 if (𝑥′, 𝑋) ∈ 𝑅

𝑏1 := ((𝑟𝑥 , 𝑟𝑦)
?
= 𝐾) then return 𝑥′

𝑏2 := VDLEQ ((𝐺,𝐾 ′), (𝑋,𝐾), 𝜋) else

return 𝑏1 ∧ 𝑏2 return ⊥

A(sk𝐴, vk𝐴, vk,𝑚,𝑌,𝑌 ∗, ®vk) B(sk𝐵, vk𝐵, vk,𝑚,𝑌,𝑌 ∗, ®vk)

®𝑠 := (𝑠1, . . . , 𝑠𝑛−1) ←$ Z
𝑛−1
𝑞 [𝑠′0]𝐵 ←$ Z𝑞

[𝑠′0]𝐴 ←$ Z𝑞 I𝐵 := sk𝐵H(vk)

I𝐴 := sk𝐴H(vk) Î𝐵 := [𝑠′0]𝐵H(vk)

Î𝐴 := [𝑠′0]𝐴H(vk) 𝑅𝐵 := [𝑠′0]𝐵𝐺

𝑅𝐴 := [𝑠′0]𝐴𝐺 𝜋𝐵 := PDLEQ ((𝐺,𝑅𝐵), (H(vk), Î𝐵), [𝑠′0]𝐵)

𝜋𝐴 := PDLEQ ((𝐺,𝑅𝐴), (H(vk), Î𝐴), [𝑠′0]𝐴) (𝑐𝐵, 𝑑𝐵) ← PCOM (I𝐵, Î𝐵, 𝑅𝐵, 𝜋𝐵)

(𝑐𝐴, 𝑑𝐴) ← PCOM (I𝐴, Î𝐴, 𝑅𝐴, 𝜋𝐴)

𝑐𝐴 𝜋𝐴 ®𝑠

𝑐𝐵 𝑑𝐵 𝜋𝐵

𝑑𝐴

if VCOM (𝑐𝐵, 𝑑𝐵)
?
= 0 abort if VCOM (𝑐𝐴, 𝑑𝐴)

?
= 0 abort

if VDLEQ ((𝐺,𝑅𝐵), (H(vk), Î𝐵), 𝜋𝐵)
?
= 0 abort if VDLEQ ((𝐺,𝑅𝐴), (H(vk), Î𝐴), 𝜋𝐴)

?
= 0 abort

ℎ0 := H(𝑚 | |𝑅𝐴 · 𝑅𝐵 · 𝑌 ∥ Î𝐴 · Î𝐵 · 𝑌 ∗)
I := I𝐴 · I𝐵
for 𝑖 ∈ 1, . . . , 𝑛 − 1 :
𝐿𝑖 := 𝑠𝑖𝐺 + ℎ𝑖−1vk𝑖
𝑅𝑖 := 𝑠𝑖H(vk𝑖) + ℎ𝑖−1I
ℎ𝑖 := H(𝑚 ∥𝐿𝑖 ∥𝑅𝑖) Compute ℎ𝑖 as done by party A

[𝑠0]𝐴 := [𝑠′0]𝐴 − ℎ𝑛−1 · [sk]𝐴 [𝑠0]𝐵 := [𝑠′0]𝐵 − ℎ𝑛−1 · [sk]𝐵
[𝜎]𝐴 := ([𝑠0]𝐴, ®𝑠,ℎ0, I) [𝜎]𝐵 := ([𝑠0]𝐵, ®𝑠, ℎ0, I)
Output [𝜎]𝐴 Output [𝜎]𝐵

Figure 3: Threshold Adaptor Ring signature: Pre-ring signature generation

Threshold Adaptor Signatures. Given public keys 𝑝𝑘1 and 𝑝𝑘2,
with corresponding secret keys 𝑠𝑘1 and 𝑠𝑘2, the two-party computa-
tion of threshold adaptor signature [2] comprises two sub-protocols
𝑝𝑆𝑖𝑔𝑛2 and 𝑝𝑉𝑟𝑦𝑓 2 defined as follows:

• pSign2(𝑠𝑘1, 𝑠𝑘2,𝑚,𝑋): Upon input of secret keys 𝑠𝑘1, 𝑠𝑘2,
message 𝑚 ∈ {0, 1}∗ and statement 𝑋 ∈ 𝐿𝑅 , the protocol
outputs an a pre-signature �̂� .
• pVrfy2(𝑝𝑘1, 𝑝𝑘2,𝑚,𝑋, �̂�): Given the public keys 𝑝𝑘1, 𝑝𝑘2,
the message 𝑚 ∈ {0, 1}∗, the statement 𝑋 ∈ 𝐿𝑅 , and pre-
signature �̂� as input, the protocol outputs a bit 𝑏. If 𝑏 = 1, �̂�
is a valid pre-signature on message𝑚.

We discuss the two-party threshold adaptor ring signature [32].
A samples a secret 𝑦 and generates the statements 𝑌 and 𝑌 ∗. A
pre-signature is constructed for a statement 𝑌 and both the parties
embed their secret share into the pre-signature. We consider here
that A and B are involved in generating the pre-signature and later,
B completes the signature using witness for 𝑌 . Given the secret
share of A as sk𝐴 and secret share of party B as sk𝐵 , the steps in
signature generation are as follows:

• Key generation: ((sk𝐴, vk𝐴, vk), (sk𝐵, vk𝐵, vk)) ← KeyGen
⟨(_), (_)⟩.A generates vk𝐴 := sk𝐴𝐺 with proof𝜋𝐴 = PDL ((𝐺,
vk𝐴), sk𝐴),B generates vk𝐵 := sk𝐵𝐺 with proof𝜋𝐵 = PDL ((𝐺,
vk𝐵), sk𝐵). Both of them exchange their public keys along
with the proof of knowledge of secret keys to construct
vk = vk𝐴 + vk𝐵 .
• Relation generation: The hard relation is abstracted away
with the following algorithm (𝑦,𝑌,𝑌 ∗) ← RelGen(_, vk),
where 𝑌 := 𝑦𝐺 and 𝑌 ∗ := 𝑦𝐻 (vk). The proof of cross-chain
discrete logarithm equality𝜋𝑌 = PDLEQ ((𝐺,𝑌), (𝐻 (vk), 𝑌 ∗), 𝑦)
is generated by A and (𝑌,𝑌 ∗, 𝜋𝑌) is shared with B. Given
the statement 𝑌 and 𝑌 ∗, the latter verifies whether both the
statement shares the same witness.
• Pre-ring signature generation: Given 𝑛 is the size of
the ring, the set ®vk is a set of 𝑛 public keys where any 𝑛 − 1
public keys 𝑣𝑘1, 𝑣𝑘2, . . . , 𝑣𝑘𝑛−1 is chosen from the partici-
pants in the Monero blockchain and the 𝑛𝑡ℎ public key is
𝑣𝑘 . The pre-signature is a two party protocol, denoted as
pSign2(𝑠𝑘𝐴, 𝑠𝑘𝐵,𝑚,𝑌), used to generate a partial signature
on message𝑚. As output, A generates [𝜎]𝐴 and B generates
[𝜎]𝐵 . The details have been provided in Fig. 3.

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

Functionality L(Valid)
Data: A list 𝐿 that stores tuples of the form (txid, tx), where tx is
the transaction identified by txid.
Operations:
• (SendTx,id,tx) On input a transaction tx, compute 𝑏 ←
Valid(tx). If 𝑏 = 0 return ⊥, otherwise compute a fresh
transaction id txid, append (txid, 𝑡𝑥) to 𝐿 and return txid.
• (ReadTx,id,txid) On input a transaction identifier txid,
check if there exists an entry in 𝐿 of the form ((tx∗id, tx))
such that tx∗id = txid and return tx. Otherwise, return ⊥.

Figure 4: Ledger functionality L using as parameter a pred-
icate Valid.

• Verification of pre-ring signature and Adapt phase:
B sends [𝜎]𝐵 toA. The latter verifies that [𝜎]𝐵 is valid “half-
signature”. A sends [𝜎]𝐴 to B. When A learns the witness 𝑦,
it can compute the full signature 𝜎 := [𝜎]𝐵 + [𝜎]𝐴 + 𝑦.
• Extraction of witness: From 𝜎 , B can get the value 𝑦 as
𝑦 := 𝜎 − ([𝜎𝐵] + [𝜎]𝐴).

5.4 Formal Description of the protocol
The protocol Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠 defined in the (G𝑐𝑙𝑜𝑐𝑘 , F𝑠𝑚𝑡 ,L)-hybrid
world, is shown in Figure 5. In the next section, we define the global
ledger functionality L before providing a detailed description of
the protocol.

5.4.1 Global Ledger Functionality. We define the interfaces for
global ledger L, as shown in Figure 4. It is parameterized by the
predicate Valid and has a list 𝐿 which maintains the set of all valid
transactions. The list 𝐿 is publicly accessible. Valid checks whether
a given transaction spends an unspent output or the terms men-
tioned in the redeem script is not violated. The functions defined
in the interfaces are:
• (SendTx,id,tx): This function enables mining of valid trans-
action into the ledger L. It is first checked whether the trans-
action denoted as tx is valid or not, by running𝑏 ←Valid(tx).
If 𝑏 = 1, then the transaction gets mined and the required
amount mentioned in tx is send from one address to another
address and return transaction id 𝑡𝑥𝑖𝑑 to the function caller
from session id 𝑖𝑑 .
• (ReadTx,id,txid): This function checks whether the trans-
action denoted by txid exists in the ledger L. If so, then
it returns to the transaction 𝑡𝑥 to the function caller from
session id 𝑖𝑑 .

5.4.2 Detailed Description. The protocol interacts with two in-
stances of the global ledger L: LBTC depicting the Bitcoin ledger
and LXMR depicting the Monero ledger. Each ledger uses different
instance of the predicate Valid, suitable for Bitcoin and Monero
transaction. We define two functions: TxXMR and TxBTC, which cre-
ates Monero and Bitcoin transactions respectively. Any off-chain
communication between A and B occurs using ideal functional-
ity for secure message transmission, F𝑠𝑚𝑡 [11]. All honest parties
follow the global clock G𝑐𝑙𝑜𝑐𝑘 [7] in order to proceed to the next
round and keep track of the elapsed time.

The protocol is divided into the following operations:
(i) Lock operation - A locks 𝑥𝐴 coins into ledger LXMR. B checks
whether A has locked her coins, then he locks 𝑦𝐵 coins in LBTC.

(ii) Swap Initiate Operation - A uses her share of secret key 𝑠𝐴
to generate a valid signature for BTCr. It is then published in LBTC

but A cannot claim 𝑥𝐴 coins before elapse of time 𝑡2.

(iii) Redeem Operation - B extracts the secret 𝑠𝐴 from the signature
𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,pk𝐵

, uses it to create secret 𝑠𝐴+𝑠𝐵 for generating ring signature

𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑥𝑚𝑟 . Using this signature, it publishes the transaction XMRr in
LXMR. After 𝑡2 units elapses from the point of publishing BTCr, A
checks if B has already applied for an emergency refund. If not,
then it generates the signature and publishes BTCt to claim 𝑦𝐵 .

(iv) Emergency Refund Operation - If A has refunded 𝑥𝐴 back
to her account, B extracts the secret 𝑟𝐴 from the signature 𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟

of XMRc published in ledger LXMR. He uses this secret to create sig-
nature 𝜎𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,pk𝐵
for BTCe and publishes it to refund the

𝑦𝐵 to his account.

(v) Refund Operation - In order to cancel the swap, A publishes
transaction XMRc in LXMR. B waits till time 𝑡1 after BTCl has been
published and claims 𝑦𝐵 coins by publishing BTCc in LBTC.

6 SECURITY ANALYSIS
6.1 Security Model
We model the security of LightSwaps in the global universal com-
posability or GUC framework [12], an extension of UC model using
global setup. By global setup we mean that any resource which is
considered as global is assumed to be accessed parallely by several
other protocol instances. Our protocol in the real world involves
set of two parties 𝐴 and 𝐵 which executes the protocol in presence
of an adversary A. We assume a static corruption model. Before
the execution of protocol, A can corrupt either of the two parties
and gets access to its internal states. Later, in the protocol execu-
tion, A controls the input and outputs of the corrupted parties. An
environment, denoted as Z, interacts with the honest parties as
well as the adversary. It observes output send out by honest parties
as well as the leakage by A.
Ideal Functionality for Transaction Creation. The ideal func-
tionality for transaction creation, Ftx, is shown in Figure 6. The
functions defined in the interface are as follows:
• (CreateTxBTC,id,𝛼,pk𝑠,pk𝑟 , 𝑡): A function caller from
session 𝑖𝑑 sends a transaction creation request to be mined
in the bitcoin ledger. The transaction after being mined must
transfer 𝛼 from sender address pk𝑠 to recipient address pk𝑟 .
The additional condition is that the transaction becomes
valid only if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 > 𝑡 . Ftx forms a valid bitcoin
transaction 𝑡𝑥 taking into consideration all the factors and
returns 𝑡𝑥 to the caller.
• (CreateTxXMR,id,𝛼,pk𝑠,pk𝑟): A function caller from ses-
sion 𝑖𝑑 sends a transaction creation request to be mined in
the monero ledger. The transaction after being mined must

Initialization:
• Two instances of global ledger functionality L:
(i) LBTC modeling the Bitcoin blockchain;
(ii) LXMR modeling the Monero blockchain.
• TxXMR(pk𝑠 , pk𝑟 , 𝑣𝑎𝑙): Creates a Monero transaction whereby a sender pk𝑠 sends an amount 𝑣𝑎𝑙 to receiver pk𝑟 .
• TxBTC(pk𝑠 , pk𝑟 , 𝑣𝑎𝑙, 𝑡): Creates a Bitcoin transaction whereby a sender pk𝑠 sends an amount 𝑣𝑎𝑙 to receiver pk𝑟 after elapse of time 𝑡 .

Lock Operations
• A upon receiving input (lockXMR,id,𝑥, 𝐵):
– Pre-signing Phase
∗ A uses vk𝑥𝑚𝑟,𝐴 as the funding address for 𝑥 XMR, generates 2-of-2 secret shared address pk = H((𝑣𝐴 + 𝑣𝐵)𝐷)𝐺 + (𝑠𝐴 + 𝑠𝐵)𝐺
with B using their shares of private spend keys 𝑠𝐴 and 𝑠𝐵 , and shares of private view key 𝑣𝐴 and 𝑣𝐵 . A’s share of secret key is
𝑠 ′
𝐴
= H((𝑣𝐴 + 𝑣𝐵)𝐷) + 𝑠𝐴 and 𝐵′ share of secret key is 𝑠𝐵 . Both A and B exchange their view keys 𝑣𝐴 and 𝑣𝐵 with each other.

∗ A samples a secret 𝑟𝐴 and generates 𝑅𝐴 = 𝑟𝐴𝐺 and 𝑅∗
𝐴
= 𝑟𝐴𝐻 , where 𝐺 and 𝐻 are two different groups. She generates 𝑆𝐴 = 𝑠𝐴𝐺

and 𝑆∗
𝐴
= 𝑠𝐴𝐻 .

∗ A generates a refund address vk𝑥𝑚𝑟,𝐴,𝑟𝑒 𝑓 𝑢𝑛𝑑 , creates the transaction XMRl ← TxXMR(vk𝑥𝑚𝑟,𝐴, pk, 𝑥) and XMRc ←
TxXMR(pk, vk𝑥𝑚𝑟,𝐴,𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝑥), generates 𝜎𝑙𝑜𝑐𝑘𝑥𝑚𝑟 ← 𝐿𝑆𝐴𝐺 (sk𝑙𝑜𝑐𝑘 , XMRl).
∗ B verifies the signature 𝜎𝑙𝑜𝑐𝑘𝑥𝑚𝑟 and, generates the signature �̂�𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 ← pSign2(𝑠 ′

𝐴
, 𝑠𝐵, XMRc, 𝑅𝐴), in A’s collaboration, for XMRc.

– A forms 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 = (𝜎𝑙𝑜𝑐𝑘𝑥𝑚𝑟 , XMRl) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to ideal functionality L𝑋𝑀𝑅 (Valid_Monero). It returns
𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to A. The latter shares the transaction id 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 with B and outputs (lockedXMR,id, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠).

• B receives input (lockBTC,id,𝑦, 𝑡1, 𝑡2, 𝐴):
– Pre-signing Phase
∗ B first checks whether 𝑥 XMR got locked in the ledger L𝑋𝑀𝑅 (Valid_Monero). It sends instruction (ReadTx, 𝑖𝑑, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to
the ledger.
· Upon getting the corresponding transaction 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 , B parses the transaction, gets the lock address pk, uses the secret view
key 𝑣𝐴 + 𝑣𝐵 to check the amount monero locked in pk.
· If 𝑥 XMR is locked, B continues, else it aborts.

∗ A generates pair of private and public key (𝑎, pk𝐴) and B generates pair of private and public key (𝑏, pk𝐵). Both pk𝐴 and pk𝐵 is
used for signing Bitcoin transactions.
∗ B shares the Bitcoin funding address 𝑡𝑥 𝑓 𝑢𝑛𝑑 with A. Both of them generate transaction BTCl ← TxBTC(𝑡𝑥 𝑓 𝑢𝑛𝑑 , pk𝐴 + pk𝐵, 𝑦, .),
which sends 𝑦 BTC to 2-of-2 multi-sig address.
∗ Transactions BTCr, BTCc, BTCe and BTCt are created as well, where BTCr ← TxBTC(BTCl_output, pk𝐴 + pk𝐵, 𝑦, .), 𝑦 BTC is send
to a redeem script.
BTCr_output can be spend in either of the two ways:
(i) BTCe ← TxBTC(BTCr_output, 𝑎𝑑𝑑𝑟𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝑦, .) spends the output of the redeem script, refunding the money to 𝐵′𝑠
address 𝑎𝑑𝑑𝑟𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
(ii) BTCt ← TxBTC(BTCr_output, 𝑎𝑑𝑑𝑟𝑐𝑙𝑎𝑖𝑚, 𝑦, 𝑡2) allows A to claim the money after elapse of time 𝑡2, sends it to address
𝑎𝑑𝑑𝑟𝑐𝑙𝑎𝑖𝑚 .
BTCc ← TxBTC(BTCl_output, 𝑎𝑑𝑑𝑟𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝑦, 𝑡1) refunds 𝑦 BTC to B by sending it to address 𝑎𝑑𝑑𝑟𝑟𝑒 𝑓 𝑢𝑛𝑑 after elapse of time 𝑡1.

∗ B generates signature 𝜎𝑡𝑎𝑘𝑒
𝑏𝑡𝑐,pk𝐵

← Sign(𝑏, BTCt) and sends it A. The latter verifies the signature, generates 𝜎
𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,pk𝐴
←

Sign(𝑎, BTCc) and sends it to B. He generates adaptor signatures �̂�𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,pk𝐵

← pSign(𝑏, BTCr, 𝑆∗𝐴), �̂�
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐵

←
pSign(𝑏, BTCe, 𝑅∗𝐴), and sends it to A.
∗ A verifies both the signature, generates 𝜎𝑙𝑜𝑐𝑘

𝑏𝑡𝑐,𝑝𝑘𝐴
← Sign(𝑎, BTCl) and sends it to B. The latter verifies the signature and generates

𝜎𝑙𝑜𝑐𝑘
𝑏𝑡𝑐,𝑝𝑘𝐵

← Sign(𝑏, BTCl).
– B forms 𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 = (𝜎𝑙𝑜𝑐𝑘

𝑏𝑡𝑐,𝑝𝑘𝐴
, 𝜎𝑙𝑜𝑐𝑘
𝑏𝑡𝑐,𝑝𝑘𝐵

, BTCl) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘) to L𝐵𝑇𝐶 (Valid_Bitcoin). It returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑙𝑜𝑐𝑘
to B. The latter in turn shares the transaction id with A and outputs (lockedBTC,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠).

Figure 5: Formal Protocol Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠

transfer 𝛼 from sender address pk𝑠 to recipient address pk𝑟 .
Ftx forms a valid monero transaction 𝑡𝑥 which hides the
sender address pk𝑠 amongst set of other address and provides

a commitment of transaction amount 𝛼 , only the recipient
address is publicly visible. It returns 𝑡𝑥 to the caller.

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

Swap Initiate Operations
A upon receiving input (initiateSwapBTC,id):

• A uses the secret key 𝑠𝐴 corresponding to condition 𝑆∗
𝐴
and generates a valid signature 𝜎𝑟𝑒𝑑𝑒𝑒𝑚

𝑏𝑡𝑐,𝑝𝑘𝐵
← Adapt(ˆ

𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,𝑝𝑘𝐵

, 𝑠𝐴).
• A generates 𝜎𝑟𝑒𝑑𝑒𝑒𝑚

𝑏𝑡𝑐,𝑝𝑘𝐴
← Sign(𝑎, BTCr), forms 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 = (𝜎𝑟𝑒𝑑𝑒𝑒𝑚

𝑏𝑡𝑐,𝑝𝑘𝐴
, 𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,𝑝𝑘𝐵

, BTCr) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to
L𝐵𝑇𝐶 (Valid_Bitcoin). It returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 to A.

Redeem Operations
A upon receiving input (redeemBTC,id):
• If the elapsed time exceeds 𝑡2 since publishing of transaction BTCr and B has not claimed an emergency refund, then A generates
𝜎𝑡𝑎𝑘𝑒pk𝐴

← Sign(𝑎, BTCt), forms 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 = (𝜎𝑡𝑎𝑘𝑒pk𝐴
, 𝜎𝑡𝑎𝑘𝑒pk𝐵

, BTCt).
• It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚) to L𝐵𝑇𝐶 (Valid_Bitcoin). The latter returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 to A.

B receives input (redeemXMR,id):
• B sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to L𝐵𝑇𝐶 (Valid_Bitcoin). If it returns 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , it continues with the next step else
aborts.
• B parses the transaction 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , extracts 𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑏𝑡𝑐,𝑝𝑘𝐵

, gets witness 𝑠𝐴 ← Ext(𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,𝑝𝑘𝐵

,
ˆ

𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,𝑝𝑘𝐵

, 𝑆∗
𝐴
).

• It create the transaction XMRr ← TxXMR(pk, vk𝑥𝑚𝑟,𝐵,𝑟𝑒𝑑𝑒𝑒𝑚, 𝑥), where 𝑥 XMR is spend from the address pk to an address of B,
vk𝑥𝑚𝑟,𝐵,𝑟𝑒𝑑𝑒𝑒𝑚 . Next, it generates the signature 𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑥𝑚𝑟 ← 𝐿𝑆𝐴𝐺 (𝑠𝐴 + 𝑠𝐵, XMRr), forms 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 ← (𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑥𝑚𝑟 , XMRr) and sends
(SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚) to ideal functionality L𝑋𝑀𝑅 (Valid_Monero). It returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 to B, if the transaction is added to
the ledger.

Emergency Refund Operations
B receives input (emergencyRefundBTC,id):
• If A has generated a refund for monero, B sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to L𝑋𝑀𝑅 (Valid_Monero). If it returns a valid transac-
tion 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 , B continues else it aborts.

• B parses the transaction 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 , extracts the signature 𝜎
𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑥𝑚𝑟 , gets witness 𝑟𝐴 ← Ext(𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 ,

ˆ
𝜎
𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑥𝑚𝑟 , 𝑅𝐴).

• It generates signature 𝜎
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐵

← Adapt(ˆ
𝜎
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐵

, 𝑟𝐴), forms 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 =

(𝜎𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐵

, BTCe) and sends (SendTx,id, 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑) to ideal functionality LBTC (Valid_Bitcoin). It
returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 to B.

Refund Operations
• A upon receiving (refundXMR,id):
– A uses the secret 𝑟𝐴 to create a valid signature 𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 ← Adapt(�̂�𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 , 𝑟𝐴).
– A forms 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 = (𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 , XMRc) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to ideal functionality L𝑋𝑀𝑅 (Valid_Monero). It
returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 to A.

• B upon receiving (refundBTC,id):
– B checks it the elapsed time is greater than 𝑡1 since publishing of BTCl and A has not initiated the swap.
– It generates 𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,𝑝𝑘𝐵
← Sign(𝑏, BTCc), forms 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 = (𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,𝑝𝑘𝐴
, 𝜎
𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,𝑝𝑘𝐵
, BTCc) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑) to ideal

functionality L𝐵𝑇𝐶 (Valid_Bitocin).
– If the transaction is valid, the ledger returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 to B.

Figure 5: Formal Protocol Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠 (Continued)

Communication Model. It is assumed that the communication
between parties happen in a synchronized fashion, with protocol
execution taking place in rounds. All honest parties are assumed
to follow an ideal global clock G𝑐𝑙𝑜𝑐𝑘 which keep tracks of the
time of each round. Offline communication between honest parties
is assumed to occur via ideal functionality F𝑠𝑚𝑡 , which ensures
securemessage transmission.Message send by party 𝑃 to𝑄 at round
𝑡 reaches party 𝑄 at 𝑡 + 1. An adversary gets to know when the
message is being sent out but doesn’t get to know the content of the
message. Messages exchanged between parties and environment

Z or parties and the adversary is assumed to take 0 rounds for
transmission.

Ideal Functionality for Atomic Swap. We define the ideal func-
tionality for atomic swap, Fatomic_swap, as shown in Figure 7, where
party𝐴wants to exchange𝑥𝐴 coins for𝑦𝐵 coins of party𝐵.Fatomic_swap
interacts with the ideal global clock G𝑐𝑙𝑜𝑐𝑘 , which returns the cur-
rent time and keeps track of each round of the protocol. It also
interacts with two instances of ideal global ledger, one for bitcoin,
termed as LBTC, and one for monero, termed as LXMR. Each instance
of ledger is parameterized with the instance of the predicate Valid

Functionality Ftx
Operations:
• (CreateTxBTC,id,𝛼,pk𝑠,pk𝑟 , 𝑡) On input a transac-
tion amount 𝛼 , a sender’s public key pk𝑠 , a receiver’s
public key pk𝑟 and a timeperiod 𝑡 , return a Bitcoin trans-
action tx where pk𝑠 sends 𝛼 coins to pk𝑟 .
• (CreateTxXMR,id,𝛼,pk𝑠,pk𝑟) On input a transaction
amount 𝛼 , a sender’s public key pk𝑠 and a receiver’s
public key pk𝑟 , return a Monero transaction tx where
pk𝑠 sends 𝛼 to pk𝑟 .

Figure 6: Auxiliary functionality Ftx

which checks the correctness of transaction as per the conditions
defined for the ledger of that particular cryptocurrency. Here, we
have two instances - Valid_Bitcoin and Valid_Monero.

• Valid_Bitcoin checks whether a particular Bitcoin trans-
action is valid or not by checking for double spends and
whether the transaction is has been broadcasted after the
elapse of the elapse of relative locktime mentioned in the
transaction.
• Valid_Monero checks whether a particular Monero transac-
tion is valid or not by checking for duplicate key image for
double spend, correctness of range proofs and commitments
of the transaction amount.

Fatomic_swap interacts with auxiliary ideal functionalityF𝑡𝑥 which
enables creation of transactions. The former has local variable
𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 and 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 . Each variable keeps track of the
relative timeout period within which bitcoins must be redeemed
or in case, monero gets refunded, bitcoins can be refunded as well.
The other local variables maintained are 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 and 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅

which keeps track of the status of bitcoin and monero respectively.
If the status is 𝑙𝑜𝑐𝑘𝑒𝑑 , it denotes that funds have been frozen in
the ledger, if the status is 𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 , that means the counterparty
has claimed the amount after swap. If the status is 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 , the
party which had frozen its money has withdrawn it from the ledger.
𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 additionally maintains two other states: 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑

and 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑅𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 . The first one denotes that party 𝐴 has
initiated the process of redeeming bitcoins but cannot spend it
immediately. The latter denotes that party 𝐵 has withdrawn the
bitcoin since 𝐴 has withdrawn the monero thereby canceling the
swap. Fatomic_swap is initialized with two parameters pk𝑥𝑚𝑟,𝑓 𝑢𝑛𝑑
and pk𝑏𝑡𝑐,𝑓 𝑢𝑛𝑑 . These signify monero unspent address and bitcoin
unspent address respectively. It is assumed that unspent bitcoins
present in pk𝑏𝑡𝑐,𝑓 𝑢𝑛𝑑 is greater than 𝑦𝐵 coins and unspent monero
present in pk𝑥𝑚𝑟,𝑓 𝑢𝑛𝑑 is greater than 𝑥𝐴 . The ideal functionality
supports the following operations:

(i) Lock Operations: Party 𝐴 sends an instruction for locking 𝑥𝐴
coins, ideal functionality Fatomic_swap uses the funding address
pk𝑥𝑚𝑟,𝑓 𝑢𝑛𝑑 and creates a monero transaction, which transfers 𝑥𝐴
coins from the funding address to another address pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 , by
sending a request to F𝑡𝑥 . Once the transaction is returned by F𝑡𝑥 ,
it is send to the ideal adversary Sim. The latter sends the transac-
tion to the ledger LXMR which is parameterized by the predicate

Valid_Monero. If the transaction is valid, it returns a transac-
tion id to Sim, which is forwarded to the ideal functionality. The
variable 𝑠𝑡𝑎𝑡𝑢𝑠𝑋𝑀𝑅 is set to 𝑙𝑜𝑐𝑘𝑒𝑑 .
After the required amount of monero is locked, party 𝐵 sends an
instruction for locking 𝑦𝐵 coins along with two relative locktime
𝑡1 and 𝑡2. Fatomic_swap leaks the transaction id for locking mon-
ero, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 , to Sim. The latter verifies whether the monero
has been locked by checking the existence of the transaction
in ledger LXMR, using the id 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 . Once a confirmation
is send to Fatomic_swap, it uses the funding address pk𝑏𝑡𝑐,𝑓 𝑢𝑛𝑑
and creates a bitcoin transaction, which transfers 𝑦𝐵 coins from
the funding address to another address pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 , by sending a
request to F𝑡𝑥 . As was done for locking phase of monero, the
transaction returned by F𝑡𝑥 is send to the ideal adversary Sim.
The latter sends the transaction to the ledger LBTC which is pa-
rameterized by the predicate Valid_Bitcoin. If the transaction
is valid, it returns a transaction id to Sim, which is forwarded to
the ideal functionality. 𝑡1 is assigned to 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 and 𝑡2 is assigned
to 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 . The variable 𝑠𝑡𝑎𝑡𝑢𝑠𝐵𝑇𝐶 is set to 𝑙𝑜𝑐𝑘𝑒𝑑 .

(ii) Swap Initiate Operations: If party𝐴wants to initiate the swap,
it will sends an instruction for initiating swap to Fatomic_swap.
However, the latter creates a transaction that sends𝑦𝐵 coins from
pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 to another address pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 . The transaction is
mined by sending it to ledger LBTC. Once locked, the money can
be spend only if 𝐴 makes such a request after elapse of relative
locktime 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 or by 𝐵, if in the meantime 𝐴 has re-
funded 𝑥𝐴 coins. The variable 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 is set to 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 .

(iii) RedeemOperations: If party𝐴wants to claim𝑦𝐵 coins, it sends
the required instruction to Fatomic_swap. The ideal functionality
checks whether the current time is more than 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
and the status of 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 is 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 . If both the cri-
teria holds, then a transaction is created that sends 𝑦𝐵 coins
from pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 to an address pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 , enabling 𝐴 to
spend it. Once the transaction gets validated byLBTC, the variable
𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 is set to 𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 which signals claiming of bitcoin by
party 𝐴.
Party 𝐵 can claim 𝑥𝐴 coins by sending the required instruc-
tion to Fatomic_swap. The ideal functionality checks whether the
current time is more than 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 and the status of
𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 is not 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 . At the same time, it must be ensured
that 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 must not be 𝑙𝑜𝑐𝑘𝑒𝑑 or 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 . Claiming mon-
ero must be enabled only if party 𝐴 had initiated the swap by
enabling redeeming of bitcoins. If all the criteria holds, then a
transaction is created which sends 𝑥𝐴 coins from pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to
an address pk𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 , enabling 𝐵 to spend it. Once the trans-
action gets validated by LXMR, the variable 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 is set to
𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 which signals claiming of monero by party 𝐵.

(iv) Emergency Refund Operations: If party 𝐴 has initiated the
swap but refunded the monero as well, then 𝐵 must refund
the bitcoin as well preventing party 𝐴 from claiming both bit-
coin and monero. It sends an emergency refund instruction to
Fatomic_swap. The ideal functionality checks whether the status of
𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 and 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 . If both
the criteria holds, then a bitcoin transaction is created which
sends 𝑦𝐵 coins locked in pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 to a refund address of

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

Functionality Fatomic_swap
Setup: The ideal functionality Fatomic_swap interacts with two parties, 𝐴 and 𝐵, and the ideal adversary Sim. The ideal functionality for
global clock, G𝑐𝑙𝑜𝑐𝑘 , returns the current time. Fatomic_swap has access to the auxiliary ideal functionality Ftx. Finally, Fatomic_swap also
interacts with two instances of L: (i) LBTC modeling the Bitcoin blockchain; and (ii) LXMR modeling the Monero blockchain.

Parameters: pk𝑥𝑚𝑟,𝑓 𝑢𝑛𝑑 : Funding address for Monero.
pk𝑏𝑡𝑐,𝑓 𝑢𝑛𝑑 : Funding address for Bitcoin.

Local Variables: 𝑡refund: A variable denoting when the refund of Bitcoin can happen
𝑡emergencyRefund: A variable denoting when the emergency refund of Bitcoin can happen
stateBTC: A variable denoting the state of the swap in BTC.
stateXMR: A variable denoting the state of the swap in XMR.

Lock Operations:
• Upon receiving (lockXMR,id,𝑥𝐴,𝐵) from 𝐴:
– Generate a lock address pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 and send (CreateTxXMR,id,𝑥𝐴,pk𝑥𝑚𝑟,𝑓 𝑢𝑛𝑑,pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to Ftx and receive transaction
txxmr,lock.

– Leak (txxmr,lock,XMR) to Sim. The latter sends (SendTx,id,txxmr,lock) to LXMR (Valid_Monero)
– If LXMR responds with (Confirmed,id,txid,xmr,lock), then Sim sends txid,xmr,lock to Fatomic_swap.
∗ Fatomic_swap sets 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 = 𝑙𝑜𝑐𝑘𝑒𝑑 and outputs (lockedXMR,id, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴 and 𝐵.

– If LXMR sends ⊥ to Sim, Fatomic_swap outputs (lockedXMR,id, 𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴 and 𝐵, then abort.
• Upon receiving (lockBTC,id,𝑦𝐵, 𝑡1,𝑡2, 𝐴) from 𝐵:
– Fatomic_swap sends transaction id for locking monero, txid,xmr,lock to Sim. The latter sends (ReadTx,id,txid,xmr,lock) to
LXMR (Valid_Monero). If it responds with 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 then proceed else sends ⊥ to Fatomic_swap. In that case, the latter outputs
(lockedBTC,id, 𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴 and 𝐵.

– Generate pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 as the address for locking bitcoin. and send (CreateTxBTC,id,𝑦𝐵,pk𝐵,pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 , 𝜙) to Ftx and receive
transaction txbtc,lock. Leak (txbtc,lock, 𝐵𝑇𝐶, 𝑡1, 𝑡2) to Sim.

– If Sim gets a valid respond, send (SendTx,id,txbtc,lock) to LBTC (Valid_Bitcoin).
– If LBTC responds with (Confirmed,id,txid,btc,lock), then Sim sends txid,btc,lock to Fatomic_swap.
∗ Fatomic_swap stores 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 = 𝑡1 and 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 = 𝑡2, set 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑙𝑜𝑐𝑘𝑒𝑑 . Output (lockedBTC,id, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴 and
𝐵.

– If LBTC sends ⊥ to Sim then Fatomic_swap outputs (lockedBTC,id, 𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴 and 𝐵.
Swap Initiate Operations:
• Upon receiving (initiateSwapBTC,id) from 𝐴:
– If 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 then return (initiatedSwapBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
– Generate pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 as an address for temporary locking bitcoin. and send (CreateTxBTC,id,𝑦𝐵,pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘,pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , 𝜙)
to Ftx and receive transaction txbtc,templock. Leak (txbtc,templock,BTC) to Sim. The latter sends (SendTx,id,txbtc,templock) to
LBTC (Valid_Bitcoin).

– IfLBTC respondswith (Confirmed,id,txid,btc,templock) then Sim sends txid,btc,templock toFatomic_swap. The latter sets 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 =

𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 . Output (initiatedSwapBTC,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴.
– If LBTC sends ⊥ to Sim then Fatomic_swap outputs (initiatedSwapBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.

Redeem Operations:
• Upon receiving (redeemXMR,id) from 𝐵 :
– If stateXMR = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 and (𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 or 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑙𝑜𝑐𝑘𝑒𝑑), then return (claimedXMR,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
– Fatomic_swap sends transaction id for redeeming Bitcoin, txid,btc,templock to Sim. The latter sends (ReadTx,id,txid,btc,templock) to
LBTC (Valid_Bitcoin). If it responds with 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 then proceed else sends ⊥ to Fatomic_swap. In that case, the latter outputs
(claimedXMR,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.

– If stateXMR = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 and (𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 or 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑙𝑜𝑐𝑘𝑒𝑑), then return (claimedXMR,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
– Fatomic_swap sends transaction id for redeeming Bitcoin, txid,btc,templock to Sim. The latter sends (ReadTx,id,txid,btc,templock) to
LBTC (Valid_Bitcoin). If it responds with 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 then proceed else sends ⊥ to Fatomic_swap. In that case, the latter outputs
(claimedXMR,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.

Figure 7: Interface of Ideal Functionality Fatomic_swap

• – Generate pk𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 as the refund address for monero. and send (CreateTxXMR,id,𝑥𝐴,pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘,pk𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚) to Ftx and re-
ceive transaction txB,redeem. It leaks (txxmr,redeem,XMR) to Sim. The latter sends (SendTx,id,txxmr,redeem) toLXMR (Valid_Monero)

– If LXMR responds with (Confirmed,id,txid,xmr,redeem) then Sim sends txid,xmr,redeem to Fatomic_swap. The latter set 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 =

𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 , sends (claimedXMR,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴.
– If Sim receives ⊥ then Fatomic_swap outputs (claimedXMR, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
• Upon receiving (redeemBTC,id) from 𝐵

– If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 < 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 or stateBTC ≠ 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 then return (claimedBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
– Generate pk𝑏𝑡𝑐,𝑐𝑙𝑎𝑖𝑚 as the address for claiming bitcoins after timeout and send (CreateTxBTC,id,𝑦𝐵,pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚,pk𝑏𝑡𝑐,𝑐𝑙𝑎𝑖𝑚,
𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑) to Ftx and receive transaction txbtc,redeem. Leak (txbtc,redeem,BTC) to Sim. The latter sends
(SendTx,id,txbtc,redeem) to LBTC (Valid_Bitcoin)

– If LBTC responds with (Confirmed,id,txid,btc,redeem) then Sim sends txid,btc,redeem to Fatomic_swap. The latter sends
(claimedBTC,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴 and sets 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 .

– If Fatomic_swap receives ⊥ from Sim then output (claimedBTC, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
Emergency Refund Operations:
• Upon receiving (emergencyRefundBTC,id) from 𝐵:
– If stateBTC ≠ 𝑟𝑒𝑑𝑒𝑒𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑑 and 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 ≠ 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 , then return (emergencyRefundedBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
– Fatomic_swap sends transaction id for refunding Monero, txid,xmr,refund to Sim. The latter sends (ReadTx,id,txid,xmr,refund) to
LXMR (Valid_Monero). If it responds with 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 then proceed else sends ⊥ to Fatomic_swap. In that case, the latter outputs
(emergencyRefundedBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.

– Generate pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 as the emergency refund address for bitcoins.
– Send (CreateTx,id,𝑥𝐴,pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚,pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝜙) to Ftx and receive transaction txbtc,emergency_refund. Leak
(txbtc,emergency_refund,BTC) to Sim. The latter sends (SendTx,id,txbtc,emergency_refund) to LBTC (Valid_Bitcoin).

– If LBTC responds with (Confirmed,id,txid,btc,emergency_refund), then Sim sends txbtc,emergency_refund to Fatomic_swap. The latter
sets stateBTC = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑅𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 , sends (emergencyRefundedBTC,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐵.

– If Fatomic_swap receives ⊥ from Sim then output (emergencyRefundedBTC, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
– Generate pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 as the emergency refund address for bitcoins.
– Send (CreateTx,id,𝑥𝐴,pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚,pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝜙) to Ftx and receive transaction txbtc,emergency_refund. Leak
(txbtc,emergency_refund,BTC) to Sim. The latter sends (SendTx,id,txbtc,emergency_refund) to LBTC (Valid_Bitcoin).

– If LBTC responds with (Confirmed,id,txid,btc,emergency_refund), then Sim sends txbtc,emergency_refund to Fatomic_swap. The latter
sets stateBTC = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑅𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 , sends (emergencyRefundedBTC,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐵.

– If Fatomic_swap receives ⊥ from Sim then output (emergencyRefundedBTC, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
Refund Operations:
• Upon receiving (refundXMR,id) from 𝐴 :
– If stateXMR = 𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 , then return (refundedXMR,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
– Generate pk𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 as the refund address for monero.
– Send (CreateTxXMR,id,𝑥𝐴,pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘,pk𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to Ftx and receive transaction txxmr,refund. Leak (txxmr,refund,XMR) to Sim.
The latter sends (SendTx,id,txxmr,refund) to LXMR (Valid_Monero)

– If LXMR responds with (Confirmed,id,txid,xmr,refund), then Sim sends txid,xmr,refund to Fatomic_swap. The latter send
(refundedXMR,id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐴 and sets stateXMR = 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 .

– If Fatomic_swap receives ⊥ from Sim, then output (refundedXMR, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐴.
• Upon receiving (refundBTC,id) from 𝐵:
– If 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 ≠ 𝑙𝑜𝑐𝑘𝑒𝑑 or 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 < 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 then return (refundedBTC,id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.
– Generate pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 as the refund address for bitcoins.
– Send (CreateTxBTC,id,𝑦𝐵,pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘,pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 , 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑) to Ftx and receive transaction txbtc,refund. It leaks (txbtc,refund,BTC)
to Sim. The latter sends (SendTx,id,txbtc,refund) to LBTC (Valid_Bitcoin).

– If LBTC responds with (Confirmed,id,txid,btc,refund) then Sim sends txid,btc,refund to Fatomic_swap. The latter sets 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 =

𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 and outputs (refundedBTC, id,𝑠𝑢𝑐𝑐𝑒𝑠𝑠) to 𝐵.
– If Sim receives ⊥ then Fatomic_swap outputs (refundedBTC, id,𝑓 𝑎𝑖𝑙𝑒𝑑) to 𝐵.

Figure 7: Interface of Ideal Functionality Fatomic_swap (Continued)

𝐵. The transaction is send to LBTC for validation. Once it gets
validated, set 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑅𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑 .

(v) Refund Operations: If party 𝐴 wants to refund 𝑥𝐴 coins, it re-
quests for refund to Fatomic_swap. The ideal functionality checks
whether the status of 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 is 𝑙𝑜𝑐𝑘𝑒𝑑 . If the criteria holds,

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

then a monero transaction is created which sends 𝑥𝐴 coins from
pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to an address pk𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 . Once the transaction gets
validated by LXMR, the variable 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 is set to 𝑟𝑒 𝑓 𝑢𝑛𝑑𝑒𝑑

which signals refund of 𝑥𝐴 coins to 𝐴.
Party 𝐵 can refund its 𝑦𝐵 coins by requesting Fatomic_swap for a
refund. The ideal functionality checks whether the current time
is more than 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 and the status of 𝑠𝑡𝑎𝑡𝑒𝐵𝑇𝐶 = 𝑙𝑜𝑐𝑘𝑒𝑑 . If both
the criterias holds, then a bitcoin transaction is created which
sends 𝑦𝐵 coins from pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 to a refund address pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 .
If the transaction gets validated by LBTC, the latter returns t the
variable 𝑠𝑡𝑎𝑡𝑒𝑋𝑀𝑅 is set to 𝑟𝑒𝑑𝑒𝑒𝑚𝑒𝑑 which signals claiming of
monero by party 𝐵.

6.2 Security Discussions
We discuss how the ideal functionality Fatomic_swap guarantees the
security properties discussed in Section 5.1.

• Correctness: If both parties 𝐴 and 𝐵 are honest, then the
atomic swap protocol ensures that if party𝐴 is able to redeem
𝑦𝐵 coins then party 𝐵 can redeem 𝑥𝐴 coins as well within a
bounded timeperiod.
• Soundness: If party𝐴 initiates the swap but refunds monero
before party 𝐵 can claim it, then a relative locktime of 𝑡2,
between initiating swap and claiming of bitcoins, allows
party 𝐵 to opt for an emergency refund and refund its bitcoin.
• Linkability: If all the parties are honest, and the amount in
the Monero transaction remains hidden, any malicious party
observing the ledger L cannot link between a pair of bitcoin
and monero transaction involved in the swap.
• Fungibility: There is no structural difference between a nor-
mal Monero transaction and a Monero transaction involved
in the swap. Any malicious party observing the ledger L
can distinguish between such transactions with negligible
probability.

We show that any attack that can be performed on Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠
can also be simulated on F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , or in other words that
Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠 is at least as secure as F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 . To prove this, we
design a simulator Sim, that acts like an ideal attacker for the ideal
functionality. We show that no PPT environment can distinguish be-
tween interacting with the real world and interacting with the ideal
world. In the real world, the environmentZ sends instructions to a
real attacker A and interacts with Π𝐿𝑖𝑔ℎ𝑡𝑆𝑤𝑎𝑝𝑠 . In the ideal world,
Z sends attack instructions to Sim and interacts with F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .
We provide the design of simulator Sim in Figure 9 - when 𝐴 is
dishonest and 𝐵 is honest, and in Figure 10 - when 𝐴 is honest and
𝐵 is dishonest. We prove formally that the protocol Π GUC-realizes
the protocol Fatomic_swap in the (G𝑐𝑙𝑜𝑐𝑘 , F𝑠𝑚𝑡 ,L)-hybrid world.

7 DISCUSSION
7.1 Building Monero transactions
Pre-signing transactions involve signing a transaction where the
outputs that need to be spent as input in this transaction have not
been added to the blockchain. Since the private spend key and pri-
vate view key for spending the output of XMRl is generated using
2-of-2 secret sharing, it requires both parties to co-operate and
generate a valid signature for spending this output. However, if Bob

stops responding, Alice will never get back her coins. Pre-signing
XMRc will allow her to go for refund anytime she wants prior to sign-
ing of XMRl [28]. Unfortunately, it is not possible to implement the
pre-signing of Monero transaction in its present form. We specify
the key components for building a Monero transaction - (i) a trans-
action has a ring signature per input to hide exactly which output
is being spent, (ii) a unique key image for an input being spent to
avoid double-spending, (iii) Pedersen commitments [35] for every
input and output, retaining the confidentiality of the transaction,
and lastly, (iv) to show that input and output balance out and the
output is non-negative, bulletproofs [10] are used for the output.

The input of aMonero transaction, denoted as vin, consists of the
amount, key offsets, and key image. Since the amount is confidential,
it is set to 0. The key offset allows verifiers to find ring member keys
and commitments in the blockchain. It consists of the real output
public key along with 10 other decoy outputs. The first offset value
is the absolute height of the block where the first member is present.
Rest are assigned values relative to the absolute value. For example,
if the set of 11 public keys forming ring members have real offsets
{ℎ,ℎ+4, ℎ+6, ℎ+10, ℎ+20, ℎ+33, ℎ+45, ℎ+50, ℎ+67, ℎ+77, ℎ+98},
then it is recorded as {ℎ, 4, 2, 4, 10, 13, 12, 5, 17, 10, 21} where ℎ is the
height of the block where the first public key can be found and each
subsequent offset is relative to the previous. This set is termed as
“ring” and is stored in the transaction. To ensure that a particular
output can only be used once as an input, Monero includes a key
image of the output’s public key. The key image is constructed
using the public key of the output that will be spent. This avoids
double-spending attacks in Monero blockchain. Next, we discuss
how the input “ring” is used for constructing the ring signature
CLSAG.

For computing the signature hash 𝑐𝑖+1,∀𝑖 ∈ {0, 1, . . . , 10} where
𝑐11 = 𝑐0, “ring” is taken as input along with other parameters
and concatenated with 𝐿𝑖 and 𝑅𝑖 . To generate the signature, the
offsets must be known. Offsets are not known until and unless all
the outputs in set ring have been added to the blockchain. Lack
of offsets violates the policy of pre-signing where the transaction
must be signed before the output that needs to be spent gets added
to the blockchain. To avoid this problem, instead of using the key
offsets as input for generating a signature hash, the set of public
keys can be used as input. However, this would require changing
Monero’s codebase but the change is necessary for realizing Layer
2 protocols in Monero blockchain.

7.2 Building Bitcoin transactions
We created the necessary Bitcoin transactions for LightSwap and
deployed these transactions on the Bitcoin testnet. We observed
and recorded the size of transactions in bytes, where BTCl and
BTCr is 360 B each, BTCc is 230 B, BTCe is 231 B, and BTCt is 229
B. Our result demonstrates the compatibility of the protocol with
the current Bitcoin network. The code is available in https://an
onymous.4open.science/r/btc_xmr_swap-A7B1, forked from
https://github.com/generalized-channels/gc.

8 RELATEDWORK
There have been efforts to design time locks onMonero. DLSAG [32]
mentions that Monero is locked in a 2-of-2 joint address comprising

https://anonymous.4open.science/r/btc_xmr_swap-A7B1
https://anonymous.4open.science/r/btc_xmr_swap-A7B1
https://github.com/generalized-channels/gc

two different public keys. Any one of the public keys can be used
to spend Monero from the address based on certain conditions,
for example, pre-defined block height. However, Monero needs to
undergo a hard fork to implement DLSAG. Thyagarajan et al. [42]
proposed the first payment channel for Monero, PayMo, without
requiring any system-wide modifications. Additionally, the authors
have also proposed a secure atomic cross-chain swap using PayMo.
The payment channel uses a new cryptographic primitive called
Verifiable Timed Linkable Ring Signature (VTLRS). The signature
scheme uses the timed commitment of a linkable ring signature on
a given Monero transaction. However, timed commitment requires
a huge computation overhead, making it unsuitable for designing
lightweight protocols.

Threshold ringmulti-signature proposed by Goodell and Noether
[18] was used for spender-ambiguous cross-chain atomic swaps.
Their construction doesn’t involve any timelock mechanism, it is
based on sharing of secret keys - whenever one party goes on-chain
for claiming the amount, the other party can reconstruct the secret
key completely. However, the paper doesn’t formally define the
refund method in case one of the parties acts maliciously.

Gugger proposed a protocol which tries to solve the problem
[19]. A locks its monero in a 2-of-2 secret shared address, where a
part of the private spend key remains with B. On the other hand,
B locks Bitcoin in a multisig address having two outputs, one is
redeem and one is for refunding. The redeem script uses hash lock
where the preimage of the hash must be used for claiming Bitcoins.
First, B locks Bitcoin and upon confirmation, A locks its Monero.
When the former confirms that the required amount of XMR has
been locked, it sends the preimage of the hash defined in the redeem
script. Using it, B publishes the redeem transaction and releases
his part of private spend key to A. The latter uses it to construct
the private spend key and claim XMR. Note that in our case, we
require A to lock XMR before B does. If we change the order then
A is at a risk of losing its deposit forever if B refuses to collaborate
i.e. unhappy path (4). There is no way A can go for refund at time
𝑡5. Even unhappy path (2) is not realizable using this protocol, since
A can claim BTC but cannot initiate a refund since it is dependent
on B for that. The schematic diagram of the protocol is shown
in Figure 8. Hoenisch and Pino [22] provide a high-level sketch
of a protocol that mitigates the limitations of Gugger’s protocol.
However, it avoids any detailed description of the construction of
the adaptor ring signature on Monero.

To address these problems, we propose a protocol which allows
A to refund instead of depending on B. With this guarantee, A can
always make the first move by locking XMR before B locks BTC.

9 CONCLUSIONS
We propose LightSwap, a lightweight two-party atomic swap facil-
itating the exchange of Bitcoin and Monero. LightSwap does not
require any type of timeout at one of the two blockchains, without
additional trust assumptions. Our protocol is thus efficient, fungi-
ble, scalable, and can be used for any cryptocurrency whose script
does not support timelock. Either the party can initiate a refund,
even if the counterparty does not cooperate. We provide steps for
implementing LightSwap that demonstrate the ability to seamlessly
deploy the protocol if Monero’s codebase is changed to enable Layer

2 protocols. In the future, we are interested to study if a protocol
can be designed without using timelock even at the Bitcoin side
and what additional trust assumptions would be needed.

REFERENCES
[1] 2013. TierNolan. Technical Report. https://github.com/TierNolan.
[2] 2019. 26th Annual Network and Distributed System Security Symposium, NDSS

2019, San Diego, California, USA, February 24-27, 2019. The Internet Society. https:
//www.ndss-symposium.org/ndss2019/

[3] anonymous. 2022. LightSwap: An Atomic Swap Does Not Require Timeouts At
Both Blockchains (Full version). https://anonymous.4open.science/r/Lightswap-
B982/Final-LongversionXMR_lock_then_BTC.pdf.

[4] Team Ark. 2019. ARK Ecosystem Whitepaper. https://ark.io/Whitepaper.pdf.
[5] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostakova, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2020. Gen-
eralized Bitcoin-Compatible Channels. IACR Cryptol. ePrint Arch. 2020 (2020),
476.

[6] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2021.
Blitz: Secure Multi-Hop Payments Without Two-Phase Commits. In𝑈𝑆𝐸𝑁𝐼𝑋
Security 21.

[7] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.
Bitcoin as a transaction ledger: A composable treatment. In Annual international
cryptology conference. Springer, 324–356.

[8] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.
2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware.
In CCS ’19, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1521–1538. https:
//doi.org/10.1145/3319535.3363221

[9] Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli Hukkinen, and
Stefan Schulte. 2019. DeXTT: Deterministic cross-blockchain token transfers.
IEEE Access 7 (2019), 111030–111042.

[10] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315–334.

[11] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[12] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally
composable security with global setup. In Theory of Cryptography Conference.
Springer, 61–85.

[13] Peter Chvojka, Tibor Jager, Daniel Slamanig, and Christoph Striecks. 2021. Ver-
satile and sustainable timed-release encryption and sequential time-lock puzzles.
In ESORICS ’21. Springer, 64–85.

[14] Amazon Elastic Compute Cloud. 2011. Amazon web services. Retrieved November
9, 2011 (2011), 2011.

[15] Bingrong Dai, Shengming Jiang, Menglu Zhu, Ming Lu, Dunwei Li, and Chao Li.
2020. Research and implementation of cross-chain transaction model based on
improved hash-locking. In International Conference on Blockchain and Trustworthy
Systems. Springer, 218–230.

[16] Apoorvaa Deshpande and Maurice Herlihy. 2020. Privacy-preserving cross-chain
atomic swaps. In FC ’20. Springer, 540–549.

[17] Oded Goldreich. 2007. Foundations of cryptography: volume 1, basic tools. Cam-
bridge university press.

[18] Brandon Goodell and Sarang Noether. 2018. Thring Signatures and their Applica-
tions to Spender-Ambiguous Digital Currencies. IACR Cryptol. ePrint Arch. 2018
(2018), 774.

[19] Joël Gugger. 2020. Bitcoin-Monero Cross-chain Atomic Swap. Cryptology ePrint
Archive, Report 2020/1126. https://eprint.iacr.org/2020/1126.

[20] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2019. On the optionality and fairness
of Atomic Swaps. In ACM AFT ’19. 62–75.

[21] Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. In PODC ’18, Egham, United
Kingdom, July 23-27, 2018, Calvin Newport and Idit Keidar (Eds.). ACM, 245–254.
https://doi.org/10.1145/3212734

[22] Philipp Hoenisch and Lucas Soriano del Pino. 2021. Atomic Swaps between
Bitcoin and Monero. CoRR abs/2101.12332 (2021). arXiv:2101.12332 https:
//arxiv.org/abs/2101.12332

[23] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. [n.d.]. Zcash
protocol specification. ([n. d.]).

[24] Aggelos Kiayias and Dionysis Zindros. 2019. Proof-of-work sidechains. In FC ’19.
Springer, 21–34.

[25] Komodo. 2018. Komodo (Advanced Blockchain Technology, FocusedOn Freedom).
https://cryptorating.eu/whitepapers/Komodo/2018-02-14-Komodo-White-
Paper-Full.pdf.

[26] Jae Kwon and Ethan Buchman. 2019. Cosmos whitepaper. A Netw. Distrib. Ledgers
(2019).

https://www.ndss-symposium.org/ndss2019/
https://www.ndss-symposium.org/ndss2019/
https://anonymous.4open.science/r/Lightswap-B982/Final-LongversionXMR_lock_then_BTC.pdf
https://anonymous.4open.science/r/Lightswap-B982/Final-LongversionXMR_lock_then_BTC.pdf
https://ark.io/Whitepaper.pdf
https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1145/3319535.3363221
https://eprint.iacr.org/2020/1126
https://doi.org/10.1145/3212734
https://arxiv.org/abs/2101.12332
https://arxiv.org/abs/2101.12332
https://arxiv.org/abs/2101.12332
https://cryptorating.eu/whitepapers/Komodo/2018-02-14-Komodo-White-Paper-Full.pdf
https://cryptorating.eu/whitepapers/Komodo/2018-02-14-Komodo-White-Paper-Full.pdf

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

BTCl

𝑎 ∧ 𝑏

BTCr

𝑥𝐴

BTCc

𝑎 ∧ 𝑏

BTCt

𝑥𝐵

BTCp

𝑥𝐴

𝐴, 𝐵

+𝑡1
𝐴, 𝐵

𝐴, 𝐵

+𝑡2
𝐴, 𝐵

XMRl

𝑥𝐵

XMRr

𝑥𝐴

XMRc

𝑥𝐵

𝑠𝐴, 𝑠𝐵

𝑠𝐴, 𝑠𝐵

Figure 8: Transaction schema for BTC to XMR atomic swaps from Gugger et al [19]. Top: Transaction schema for Bitcoin.
Bottom: Transaction schema for Monero. Note: Monero view keys are omitted for clarity.

[27] Rongjian Lan, Ganesha Upadhyaya, Stephen Tse, and Mahdi Zamani. 2021. Hori-
zon: A Gas-Efficient, Trustless Bridge for Cross-Chain Transactions. arXiv
preprint arXiv:2101.06000 (2021).

[28] Lucas. 2021. How to build a Monero transaction. https://comit.network/blog/2
021/05/19/monero-transaction/.

[29] Léonard Lys, Arthur Micoulet, and Maria Potop-Butucaru. 2021. R-SWAP: Relay
based atomic cross-chain swap protocol. Ph.D. Dissertation. Sorbonne Université.

[30] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability, See [2]. https://www.ndss-symposium.org/ndss-paper/an
onymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/

[31] Mahdi H Miraz and David C Donald. 2019. Atomic cross-chain swaps: devel-
opment, trajectory and potential of non-monetary digital token swap facilities.
Annals of Emerging Technologies in Computing (AETiC) Vol 3 (2019).

[32] Pedro Moreno-Sanchez, Arthur Blue, Duc Viet Le, Sarang Noether, Brandon
Goodell, and Aniket Kate. 2020. DLSAG: Non-interactive Refund Transactions for
Interoperable Payment Channels in Monero. In FC ’20, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 12059), Joseph Bonneau and Nadia Heninger (Eds.). Springer, 325–345. https:
//doi.org/10.1007/978-3-030-51280-4_18

[33] Krishnasuri Narayanam, Venkatraman Ramakrishna, Dhinakaran Vinayaga-
murthy, and Sandeep Nishad. 2022. Generalized HTLC for Cross-Chain Swapping
of Multiple Assets with Co-Ownerships. arXiv preprint arXiv:2202.12855 (2022).

[34] Shen Noether. 2015. Ring Signature Confidential Transactions for Monero. Cryp-
tology ePrint Archive, Report 2015/1098. https://eprint.iacr.org/2015/1098.

[35] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference. Springer,
129–140.

[36] Ronald L. Rivest, Adi Shamir, and David A. Wagner. 1996. Time-lock puzzles and
timed-release crypto. Technical Report.

[37] Drew Stone. 2021. Trustless, privacy-preserving blockchain bridges. arXiv
preprint arXiv:2102.04660 (2021).

[38] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. A2L: Anonymous
Atomic Locks for Scalability and Interoperability in Payment Channel Hubs.
IACR Cryptol. ePrint Arch. 2019 (2019), 589. https://eprint.iacr.org/2019/589

[39] Stefan Thomas and Evan Schwartz. 2015. A protocol for interledger payments.
URL https://interledger. org/interledger. pdf (2015).

[40] Sri AravindaKrishnan Thyagarajan, GiulioMalavolta, and PedroMoreno-Sánchez.
2021. Universal Atomic Swaps: Secure Exchange of Coins Across All Blockchains.
Cryptology ePrint Archive (2021).

[41] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döt-
tling, Aniket Kate, and Dominique Schröder. 2020. Verifiable Timed Signa-
tures Made Practical. In CCS ’20, USA, November 9-13, 2020, Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1733–1750. https:
//doi.org/10.1145/3372297.3417263

[42] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Fritz Schmidt, and Do-
minique Schröder. 2020. PayMo: Payment Channels For Monero. IACR Cryptol.
ePrint Arch. 2020 (2020), 1441. https://eprint.iacr.org/2020/1441

[43] Hangyu Tian, Kaiping Xue, Xinyi Luo, Shaohua Li, Jie Xu, Jianqing Liu, Jun Zhao,
and David SL Wei. 2021. Enabling cross-chain transactions: A decentralized
cryptocurrency exchange protocol. IEEE Transactions on Information Forensics
and Security 16 (2021), 3928–3941.

[44] Nicolas Van Saberhagen. 2013. CryptoNote v 2.0.
[45] Gilbert Verdian, Paolo Tasca, Colin Paterson, and Gaetano Mondelli. 2018. Quant

Overledger Whitepaper. https://uploads-ssl.webflow.com/6006946fee85fda61f
666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.
pdf.

[46] Gang Wang. [n.d.]. SoK: Exploring Blockchains Interoperability. ([n. d.]).
[47] Gavin Wood. 2016. Polkadot: Vision for a heterogeneous multi-chain framework.

White Paper 21 (2016), 2327–4662.
[48] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2019. Atomic commit-

ment across blockchains. arXiv preprint arXiv:1905.02847 (2019).
[49] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur

Gervais, and William J. Knottenbelt. 2019. XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets. In IEEE S & P ’19, San Francisco, CA, USA, May
19-23, 2019. IEEE, 193–210. https://doi.org/10.1109/SP.2019.00085

https://comit.network/blog/2021/05/19/monero-transaction/
https://comit.network/blog/2021/05/19/monero-transaction/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://doi.org/10.1007/978-3-030-51280-4_18
https://doi.org/10.1007/978-3-030-51280-4_18
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2019/589
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://eprint.iacr.org/2020/1441
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://doi.org/10.1109/SP.2019.00085

Lock Operations
• For locking monero:
– Sim gets funding address vk𝑥𝑚𝑟,𝐴 from 𝐴∗. It samples pairs of private key and secret key (sk𝐴, pk𝐴) and (sk𝐵, pk𝐵) to sign bitcoin
transactions on behalf of 𝐴 and 𝐵 respectively.

– It creates a locking address for monero denoted as vk∗, refund address vk𝐴 .
– It creates XMRl ← 𝑆𝑒𝑛𝑑𝑋𝑀𝑅(vk𝑥𝑚𝑟,𝐴, vk∗) and signs the transaction XMRl. The signature on XMRl is 𝜎𝑙𝑜𝑐𝑘𝑥𝑚𝑟 . It also creates transaction
XMRc ← 𝑆𝑒𝑛𝑑𝑋𝑀𝑅(vk∗, vk𝐴).

– It creates 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 = (𝜎𝑙𝑜𝑐𝑘𝑥𝑚𝑟 , XMRl) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to LXMR (Valid_XMR). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 then Sim
sends (lockXMR,id,𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to Fatomic_swap.

• For locking bitcoins:
– If Sim gets 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , it sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to LXMR (Valid_Monero). If the latter responds with
𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 , then Sim forwards it to the ideal functionality.

– If the 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 is correct, F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 leaks (𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 , 𝑡1, 𝑡2) to Sim. It parses 𝑡𝑥𝐵,𝑙𝑜𝑐𝑘 to get pk𝑏𝑡𝑐,𝑓 𝑢𝑛𝑑𝑖𝑛𝑔 , pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 and the
amount 𝑦𝐵 .

– Sim sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘) to LBTC (Valid_BTC). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 then Sim sends 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 to Fatomic_swap.
Swap Initiate Operations
• Sim internally executing the protocol between 𝐴∗ and 𝐵.
• If 𝐴∗ knows the secret 𝑠𝐴 for condition 𝑆∗

𝐴
and wants to initiate swap:

– Sim checks if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 < 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 , generates a 2-of-2 multisig address pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , creates transaction BTCr, sending 𝑦𝐵
coins from pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 to pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , uses 𝑠𝐴 and creates the signature 𝜎𝑟𝑒𝑑𝑒𝑒𝑚

𝑏𝑡𝑐,pk𝐵
.

– It forms 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 = (𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,pk𝐴

, 𝜎𝑟𝑒𝑑𝑒𝑒𝑚
𝑏𝑡𝑐,pk𝐵

, BTCr) and sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to LBTC (Valid_BTC). If it returns
𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 then send (initiateSwapBTC,id,𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

• Else Sim goes idle.
Redeem Operations
• For redeeming bitcoins:
– If 𝐴∗ wants to redeem 𝑦𝐵 coins by publishing BTCt, Sim does the following:
∗ Sim checks if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ≥ 𝑡𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 , generates a claim address pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 , creates transaction BTCt, sending 𝑦𝐵
from pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 to pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 .
∗ It signs the transaction on behalf of both 𝐴∗ and 𝐵, forms 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 = (𝜎𝑡𝑎𝑘𝑒

𝑏𝑡𝑐,pk𝐴
, 𝜎𝑡𝑎𝑘𝑒
𝑏𝑡𝑐,pk𝐵

, BTCt) and sends
(SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚) to LBTC (Valid_BTC). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 then send (claimBTC,id,𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚) to
F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

– Else Sim goes idle.
• For redeeming monero:
– If Sim gets 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , it sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to LBTC (Valid_Bitcoin). If the latter
returns a valid transaction 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 , it forwards it to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

– F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 leaks 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 , Sim parses the transaction to get pk𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 .
– It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚) to LXMR (Valid_XMR). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 then send 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

EmergencyRefund Operations
• If Sim gets 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , it sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to LXMR (Valid_Monero). If the latter returns a
valid monero transaction 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 , it forwards it to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .
• F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 leaks 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 to Sim, it parses the transaction to get pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 .
• It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑) to LBTC (Valid_Bitcoin). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 then send
𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

Refund Operations
• For refunding monero:
– If 𝐴∗ has the secret 𝑟𝐴 , generates the signature for XMRc and publishes the transaction, then Sim does the following:
∗ Sim generates 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 = {𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑𝑥𝑚𝑟 , XMRc},
∗ It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to LXMR (Valid_Monero). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 then Sim sends
(refundXMR,id,𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to Fatomic_swap.

– Else Sim goes idle.
• For refunding bitcoin:
– If Sim gets 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 from Fatomic_swap, it parses the transaction to get pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 .
– It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑) to LBTC (Valid_Bitcoin). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 then send 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

Figure 9: Simulator design when 𝐴∗ is dishonest and 𝐵 is honest

LightSwap: An Atomic Swap Does Not Require Timeouts At Both Blockchains

Lock Operations
• For locking monero:
– Sim receives 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 . It will parse 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to get the lock address vk.
– It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to LXMR (Valid_Monero). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 then send 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .
• For locking bitcoins:
– Sim gets (𝑡𝑥 𝑓 𝑢𝑛𝑑𝑖𝑛𝑔, 𝑦, 𝑡1, 𝑡2) and funding address 𝑡𝑥 𝑓 𝑢𝑛𝑑𝑖𝑛𝑔 for 𝑦𝐵 coins from 𝐵∗. If no message is received, Sim goes idle.
– It sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑙𝑜𝑐𝑘) to LXMR (Valid_Monero). If LXMR replies with ⊥, Sim goes idle, else it continues with the next
step.

– It samples pairs of private and public key to sign bitcoin transactions on behalf of parties 𝐴 and 𝐵, denoted as (sk𝐴, pk𝐴) and
(sk𝐵, pk𝐵).

– Sim generates the transaction BTCl by sending 𝑦𝐵 coins from 𝑡𝑥 𝑓 𝑢𝑛𝑑𝑖𝑛𝑔 to a multisig address denoted as pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 .
– It signs the transaction BTCl on behalf of both 𝐴 and 𝐵, generating 𝜎𝑙𝑜𝑐𝑘

𝑏𝑡𝑐,pk𝐴
and 𝜎𝑙𝑜𝑐𝑘

𝑏𝑡𝑐,pk𝐵
.

– It creates 𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 = (𝜎𝑙𝑜𝑐𝑘
𝑏𝑡𝑐,pk𝐴

, 𝜎𝑙𝑜𝑐𝑘
𝑏𝑡𝑐,pk𝐵

BTCl) and (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑙𝑜𝑐𝑘) to LBTC (Valid_Bitcoin). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 then
Sim sends (lockBTC,id,𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑙𝑜𝑐𝑘) to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

Swap Initiate Operations
• If Sim gets 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , it parses the transaction to get the redeem address pk𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 .
• It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to LBTC (Valid_BTC). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘 then send 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

Redeem Operations
• For redeeming bitcoins:
– Sim receives 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 . It will parse 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 to get the redeem address pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 .
– It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑑𝑒𝑒𝑚) to LBTC (Valid_Bitcoin). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 then send 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .
• For redeeming monero:
– If 𝐵∗ has the secret 𝑠𝐴 and publishes the transaction XMRr, Sim checks if 𝐴 has initiated the swap by querying the ledger LBTC. It
sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑡𝑒𝑚𝑝𝑙𝑜𝑐𝑘) to the ledger. If it responds with a valid transaction, then Sim continues with the next step,
else it remains idle.

– It creates the transaction XMRr, sending 𝑥𝐴 coins from pk𝑥𝑚𝑟,𝑙𝑜𝑐𝑘 to pk𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 .
– It generates the signature 𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑥𝑚𝑟 ← 𝐿𝑆𝐴𝐺 (𝑠𝐴 + 𝑠𝐵, XMRr).
– It creates 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚 = (𝜎𝑟𝑒𝑑𝑒𝑒𝑚𝑥𝑚𝑟 , XMRr) and (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚) to LXMR (Valid_Monero). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚
then Sim sends (claimedXMR,id,𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒𝑑𝑒𝑒𝑚) to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

EmergencyRefund Operations
• If 𝐵∗ has the secret 𝑟𝐴 and publishes the transaction BTCe, Sim checks if 𝐴 has refunded monero by querying the ledger LXMR. It
sends (ReadTx,id, 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to the ledger. If it responds with a valid transaction, then Sim continues with the next step, else it
remains idle.
• It creates the transaction BTCe, sending 𝑦𝐵 coins from pk𝑏𝑡𝑐,𝑟𝑒𝑑𝑒𝑒𝑚 to pk𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 .

• It generates the signature for the transaction BTCe using witness for statement 𝑅∗
𝐴
, denoted as 𝜎𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,pk𝐵
.

• It creates 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 = (𝜎𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐴

, 𝜎
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐵

, BTCe) and (SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑) to
LBTC (Valid_Bitcoin). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑 then Sim sends (emergencyRefundBTC,id,𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦_𝑟𝑒 𝑓 𝑢𝑛𝑑)
to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

Refund Operations
• For refunding monero:
– If Sim gets 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 from F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 , it parses the transaction to get the refund address pk𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 .
– It sends (SendTx, 𝑖𝑑, 𝑡𝑥𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑) to LXMR (Valid_XMR). If it returns 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 then send 𝑡𝑥𝑖𝑑,𝑥𝑚𝑟,𝑟𝑒 𝑓 𝑢𝑛𝑑 to F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .
• For refunding bitcoin:
– If 𝐵∗ wants to refund 𝑦𝐵 coins by publishing BTCc, Sim does the following:
∗ Sim checks if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ≥ 𝑡𝑟𝑒 𝑓 𝑢𝑛𝑑 , generates a claim address pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 , creates transaction BTCc, sending 𝑦𝐵 coins from
pk𝑏𝑡𝑐,𝑙𝑜𝑐𝑘 to pk𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 .

∗ It signs the transaction on behalf of both 𝐴∗ and 𝐵, forms 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 = (𝜎𝑟𝑒 𝑓 𝑢𝑛𝑑
𝑏𝑡𝑐,pk𝐴

, 𝜎
𝑟𝑒 𝑓 𝑢𝑛𝑑

𝑏𝑡𝑐,pk𝐵
, BTCc) and sends

(SendTx, 𝑖𝑑, 𝑡𝑥𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑) to LBTC (Valid_BTC). If it returns 𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑 then send (refundBTC,id,𝑡𝑥𝑖𝑑,𝑏𝑡𝑐,𝑟𝑒 𝑓 𝑢𝑛𝑑) to
F𝑎𝑡𝑜𝑚𝑖𝑐_𝑠𝑤𝑎𝑝 .

– Else Sim goes idle.

Figure 10: Simulator design when 𝐴 is honest and 𝐵∗ is dishonest

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Notation and background
	3 Problem Definition
	4 Our approach
	4.1 Solution overview
	4.2 Protocol description
	4.3 Security and privacy goals

	5 Our construction
	5.1 Security and privacy goals
	5.2 System assumptions
	5.3 Cryptographic building blocks
	5.4 Formal Description of the protocol

	6 Security Analysis
	6.1 Security Model
	6.2 Security Discussions

	7 Discussion
	7.1 Building Monero transactions
	7.2 Building Bitcoin transactions

	8 Related work
	9 Conclusions
	References

