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Fig. 1. Supernodes can observe relayed transaction propagation metadata to infer which node was the source
of a transaction message (tx).

1 INTRODUCTION
Anonymity is an important property for a financial system, especially given the often-sensitive
nature of transactions [16]. Unfortunately, the anonymity protections in Bitcoin and similar cryp-
tocurrencies can be fragile. This is largely because Bitcoin users are identified by cryptographic
pseudonyms (a user can have multiple pseudonyms). When a user Alice wishes to transfer funds
to another user Bob, she generates a transaction message that includes Alice’s pseudonym, the
quantity of funds transferred, the prior transaction from which these funds are drawn, and a
reference to Bob’s pseudonym [38]. The system-wide sequence of transactions is recorded in a
public, append-only ledger known as the blockchain. The public blockchain means that users only
remain anonymous as long as their pseudonyms cannot be linked to their true identities.

This mandate has proved challenging to uphold in practice. Several vulnerabilities have enabled
researchers, law enforcement, and possibly others to partially deanonymize users [13]. Publicized
attacks have so far included: (1) linking different public keys that belong to the same user [34], (2)
associating users’ public keys with their IP addresses [11, 31], and in some cases, (3) linking public
keys to human identities [24]. Such deanonymization exploits tend to be cheap, easy, and scalable
[11, 31, 34].
Although researchers have traditionally focused on the privacy implications of the blockchain

[34, 39, 44], we are interested in lower-layer vulnerabilities that emerge from Bitcoin’s peer-to-peer
(P2P) network. Recent work has demonstrated P2P-layer anonymity vulnerabilities that allow
transactions to to be linked to users’ IP addresses with accuracies over 30% [11, 31]. Understanding
how to patch these vulnerabilities without harming utility remains an open question. The goal
of our work is to propose a practical, lightweight modification to Bitcoin’s networking stack that
provides theoretical anonymity guarantees against the types of attacks demonstrated in [11, 31],
and others. We begin with an overview of Bitcoin’s P2P network, and explain why it enables
deanonymization attacks.
Bitcoin’s P2P Network. Bitcoin nodes are connected over a P2P network of TCP links. This
network is used to communicate transactions, the blockchain, and control packets, and it plays a
crucial role in maintaining the network’s consistency. Each peer is identified by its (IP address, port)
combination. Whenever a node generates a transaction, it broadcasts a record of the transaction
over the P2P network; critically, transaction messages do not include the sender’s IP address—only
their pseudonym. Since the network is not fully-connected, transactions are relayed according to
epidemic flooding [40]. This ensures that all nodes receive the transaction and can add it to the
blockchain. Hence, transaction broadcasting enables the network to learn about them quickly and
reliably.
However, the broadcasting of transactions can also have negative anonymity repercussions.

Bitcoin’s current broadcast mechanism spreads content isotropically over the graph; this allows
adversarial peers who observe the spreading dynamics of a given transaction to infer the source
IP of each transaction. For example, in recent attacks [11, 31], researchers launched a supernode
(disguised as a regular node) that connected to all P2P nodes (Figure 1) and logged their relayed
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traffic. This allowed the supernode to observe the spread of each transaction over the network
over time, and ultimately infer the source IP. Since transaction messages include the sender’s
pseudonym, the supernodes were able to deanonymize users, or link their pseudonyms to an IP
address [11, 31]. Such deanonymization attacks are problematic because of Bitcoin’s transparency:
once a user is deanonymized, her other transactions can often be linked, even if she creates fresh
pseudonyms for each transaction [34].
There have been recent proposals for mitigating these vulnerabilities, included broadcasting

protocols that reduce the symmetry of epidemic flooding. Bitcoin Core [6], the most popular Bitcoin
implementation, adopted a protocol called diffusion, where each node spreads transactions with
independent, exponential delays to its neighbors on the P2P graph. Diffusion is still in use today.
However, proposed solutions (including diffusion) tend to be heuristic, and recent work shows
that they do not provide sufficient anonymity protection [22]. Other proposed solutions, such as
Dandelion [14], offer theoretical anonymity guarantees, but do so under idealistic assumptions that
are unlikely to hold in practice. The aim of this work is to propose a broadcasting mechanism that
(a) provides provable anonymity guarantees under realistic adversarial and network assumptions,
and (b) does not harm the network’s broadcasting robustness or latency. We do this by revisiting
the Dandelion system and redesigning it to withstand a variety of practical threats.
Contributions. The main contributions of this paper are threefold:
(1) We identify key idealistic assumptions made by Dandelion [14], and show how anonymity is
degraded when those assumptions are violated. In particular, [14] assumes an honest-but-curious
adversary that has limited knowledge of the P2P graph topology and only observes one transaction
per node. If adversaries are instead malicious and collect more information over time, we show
that they are able to weaken the anonymity guarantees of [14] through a combination of attacks,
including side information, graph manipulation, black hole, and intersection attacks.
(2) We propose a modified protocol called Dandelion++ that subtly changes most of the implemen-
tation choices of Dandelion, from the graph topology to the randomization mechanisms for message
forwarding. Mathematically, these (relatively small) algorithmic changes completely change the
anonymity analysis by exponentially augmenting the problem state space. Using analytical tools
from Galton-Watson trees and random processes over graphs, we evaluate the anonymity tradeoffs
of Dandelion++, both theoretically and in simulation, against stronger adversaries. The main
algorithmic changes in Dandelion++ rely on increasing the amount of information the adversary
must learn to deanonymize users. Technically, the anonymity proofs require us to bound the amount
of information a single node can pass to the adversary; on a line graph, this is easy to quantify, but
on more complicated expander graphs, this requires reasoning about the random routing decisions
of each node in a local neighborhood. Exploiting the locally-tree-like properties of such graphs
allows us to analyze these settings with tools from the branching process literature.
(3) We demonstrate the practical feasibility of Dandelion++ by evaluating an implementation on
Bitcoin’s mainnet (i.e., the live Bitcoin network). We show that Dandelion++ does not increase
latency significantly compared to current methods for broadcasting transactions, and it is robust to
node failures and misbehavior.

The paper is structured as follows: in §2, we discuss relevant work on anonymity in cryptocur-
rencies and P2P networks. In §3, we present our adversarial model, which is based on prior attacks
in the literature. §2 presents Dandelion in more detail; in §4, we analyze Dandelion’s weaknesses,
and propose Dandelion++ as an alternative. We present experimental evaluation results in §5, and
discuss the implications of these results in §6.
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2 RELATEDWORK
The anonymity properties of cryptocurrencies have been studied extensively. Several papers have
exploited anonymity vulnerabilities in the blockchain [8, 34, 39, 42, 44], suggesting that transactions
by the same user can be linked, even if the user adopts different addresses [34]. In response,
researchers proposed alternative cryptocurrencies and/or tumblers that provide anonymity at the
blockchain level [5, 28, 29, 32, 45, 46]. In 2014, researchers turned to the P2P network, showing
that regardless of blockchain implementation, users can be deanonymized by network attackers
[11, 12, 22, 31]. Researchers were able to link transactions to IP addresses with accuracies over 30%
[11]. These attacks proceeded by connecting a supernode to most all active Bitcoin server nodes.
More recently, [9] demonstrated the serious anonymity and routing risks posed by an AS-level
attacker. These papers suggest a need for networking protocols that defend against deanonymization
attacks.
Anonymous communication for P2P/overlay networks has been an active research topic for

decades. Most work relies on two ideas: randomized routing (e.g., onion routing, Chaumian mixes)
and/or dining cryptographer (DC) networks. Systems that use DC nets [15] are typically designed
for broadcast communication, which is our application of interest. However, DC nets are known
to be inefficient and brittle [27]. Proposed systems [17, 26, 51, 52] have improved these properties
significantly, but DC networks never became scalable enough to enjoy widespread adoption in
practice.

Systems based on randomized routing are generally more efficient, but focus on point-to-point
communication (though these tools can be adapted for broadcast communication). Early works
like Crowds [43], Tarzan [23], and P5 [48] paved the way for later practical systems, such as Tor
[20] and I2P [53], as well as recent proposals like Drac [19], Pisces [37], and Vuvuzela [49]. Our
work differs from this body of work along two principal axes: (1) usage goals, and (2) analysis
metrics/results.
(1) Usage goals. Among tools with real-world adoption, Tor [20] is the most prominent; privacy-
conscious Bitcoin users frequently use it to anonymize transmissions.1 However, expecting Bitcoin
users to route their traffic through Tor (or a similar service) poses several challenges, depending
on the mode of integration. One option would be to hard-code Tor-like functionality into the
cryptocurrency’s networking stack; for instance, Monero is currently integrating onion routing into
its network [4]. However, this requires significant engineering effort; Monero’s development effort
is still incomplete after four years [7], and no other major cryptocurrencies (Bitcoin, Ethereum,
Ripple) have announced plans to integrate anonymized routing. Principal challenges include the
difficulty of implementing cryptographic protocols correctly, as well as the fact that onion routing
clients need global, current network information to determine transaction paths, whereas existing
systems (and Dandelion++) make local connectivity and routing decisions. Another option would
be to have users route their transactions through Tor. However, many Bitcoin users are unaware of
Bitcoin’s privacy vulnerabilities and/or may lack the technical expertise to route their transactions
through Tor. Our goal in Dandelion++is instead to propose simple, lightweight solutions that can
easily be implemented within existing cryptocurrencies, with privacy benefits for all users.
(2) Analysis. The differences in analysis are more subtle. Many of the above systems include
theoretical analysis, but none provide optimality guarantees under the metrics discussed in this
paper. Prior work in this space has mainly analyzed per-user metrics, such as probability of linkage
[23, 43, 49]. For example, Crowds provides basic linkability analysis [43], and Danezis et al. show

1Network crawls show 300 hidden Bitcoin services available https://web.archive.org/web/20180211193652/https://bitnodes.
earn.com/nodes/?q=Tor%20network. Clients may alternatively use Tor exit nodes, but prior work has shown this is unsus-
tainable and poses privacy risks [12].
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that Crowds has an optimally-low probability of detection under a simple first-spy estimator that
assigns each transaction to the first honest node to deliver the transaction to the adversary [18].
Such analysis overlooks the fact that adversaries can use more sophisticated estimators based on
data from many users to execute joint deanonymization. We consider the (more complex) problem
of population-level joint deanonymization over realistic graph topologies, using more nuanced
estimators and anonymity metrics. Indeed under the metrics we study, Crowds is provably sub-
optimal [14]. We maintain that joint deanonymization is a realistic adversarial model as companies
are being built on the premise of providing network-wide identity analytics (e.g. Chainalysis [3]). In
addition to using a different anonymity metric, the protocols of prior work exhibit subtle differences
that significantly change the corresponding anonymity analyses and guarantees. We will highlight
these differences when the protocols and analysis are introduced.
The most relevant solution to our problem is a recent proposal called Dandelion [14], which

uses statistical obfuscation to provide anonymity against distributed, resource-limited adversaries
(pseudocode in Appendix A). Dandelion propagates transactions in two phases: (i) an anonymity
(or stem) phase, and (ii) a spreading (or fluff ) phase. In the anonymity phase, each message is
passed to a single, randomly-chosen neighbor in an anonymity graph H (this graph can be an
overlay of the P2P graph G). This propagation continues for a geometric number of hops with
parameter q. However, unlike related prior work (e.g., Crowds [43]), different users forward their
transactions along the same path in the anonymity graph H , which is chosen as a directed cycle
in [14]; this small difference causes Crowds to be sub-optimal under the metrics studied here
and in [14], and significantly affects the resulting anonymity guarantees. In the spreading phase,
messages are flooded over the P2P network G via diffusion, just as in today’s Bitcoin network.
Dandelion periodically re-randomizes the line graph, so the adversaries’ knowledge of the graph is
assumed to be limited to their immediate neighborhood.

Under restrictive adversarial assumptions, Dandelion exhibits near-optimal anonymity guaran-
tees under a joint-deanonymization model [14]. Our work illustrates Dandelion’s fragility to basic
Byzantine attacks and proposes a scheme that is robust to Byzantine intersection attacks. This
relaxation requires completely new analysis, which is the theoretical contribution of this paper.

3 MODEL
3.1 Adversary
The adversaries studied in prior work exhibit two basic capabilities: creating nodes and creating
outbound connections to other nodes. At one extreme, a single supernode can establish outbound
connections to every node in the network; this resembles recent attacks on the Bitcoin P2P network
[11, 31] and related measurement tools [30, 36]. At the other extreme is a botnet with many honest-
but-curious nodes, each of which creates few outbound edges according to protocol. This captures
the adversarial model in [14] and botnets observed in Bitcoin’s P2P network [33]. In this paper,
we combine both models: a botnet adversary that can corrupt some fraction of Bitcoin nodes and
establish arbitrarily many outbound connections.
We model the botnet adversary as a set of colluding hosts spread over the network. Out of n

total peers in the network, we assume a fraction p (i.e., np peers) are malicious. The botnet seeks to
link transactions and their associated public keys with the IP addresses of the hosts generating
those transactions. The adversarial hosts (or spies) need not follow protocol. Spies can generate as
many outbound edges as they want, to whichever nodes they choose; however, they cannot force
honest nodes to create outbound edges to spies. The spies perform IP address deanonymization
by observing the transaction propagation patterns in the network. Adversaries log transaction
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information, including timestamps, sending hosts, and control packets. This information, along
with global knowledge (e.g., network structure) is used to deanonymize honest users.2

We assume adversaries are interested in mass deanonymization, and our anonymity metrics
(Section 3.2) capture the adversary’s success at both the individual level and the population level.
This differs from a setting where the adversary seeks to deanonymize a targeted user. While the
latter is a more well-studied problem [8, 12, 13], our adversarial model is motivated in part by
the growing market for wide-area cryptocurrency analytics (e.g., Chainalysis [3]). Our goal is to
provide network-wide anonymity that does not require users to change their behavior. While
this approach will not stop targeted attacks, it does provide a first line of defense against broad
deanonymization attacks that are currently feasible.

Note that recent work on ISP- or AS-level adversaries [9] can be modeled as a special case of this
botnet adversary, except edges rather than nodes are corrupted. This adversary is outside the scope
of this paper, but the topic is of great interest. A principal challenge with ISP-level adversaries is
that they can eclipse nodes; under such conditions, routing-based defenses (like Dandelion++)
cannot provide any guarantees for a targeted node. Nonetheless, in §6, we discuss the compatibility
of our proposed methods with the countermeasures proposed in [9] for large-scale adversaries.

3.2 Anonymity Metrics: Precision and Recall
The literature on anonymous communication has proposed several metrics for studying anonymity.
The most common of these captures an adversary’s ability to link a single transaction to a single
user’s IP address; this probability of detection, and variants thereof, have been the basis of much
anonymity analysis [15, 18, 21, 43, 49]. However, this class of metrics does not account for the fact
that adversaries can achieve better deanonymization by observing other users’ transactions. We
consider such a form of joint decoding.

The adversary’s goal is to associate transactionswith users’ IP addresses through some association
map. This association map can be interpreted as a classifier that classifies each transaction (and its
corresponding metadata) to an IP address. Hence an adversary’s deanonymization capabilities can
be measured by evaluating the adversary’s associated classifier. We adopt a common metric for
classifiers: precision and recall. As discussed in [14], precision and recall are a superset of the metrics
typically studied in this space; in particular, recall is equivalent (in expectation) to probability
of detection. On the other hand, precision can be interpreted as a measure of a node’s plausible
deniability; the more transactions get mapped to a single node, the lower the adversary’s precision.

Let VH denote the set of all IP addresses of honest peers in the network, and let ñ = |VH | denote
the number of honest peers. In this work, a transaction is abstracted as a tuple containing the
sender’s address, the recipient’s address, and a payload. To begin, we will assume that each peer
v ∈ VH generates exactly one transaction Xv . We relax this assumption in §4.2. Let X = ∪v ∈VHXv
denote the set of all transactions. We assume the sets VH and X are known to the adversaries. Let
M : X → VH denote the adversary’s map from transaction x ∈ X to IP address M(x) ∈ VH . The
precision and recall of M at any honest peer v ∈ VH are given, respectively, by

D(v) =
1(M(Xv ) = v)∑

u ∈VH 1(M(Xu ) = v)
(1)

R(v) = 1(M(Xv ) = v), (2)

where 1(·) denotes the indicator function. Precision (denoted D(v)) measures accuracy by nor-
malizing against the number of transactions associated with v . A large number of transactions

2Honest users are Bitcoin hosts that are not part of the adversarial botnet. We assume honest users follow the specified
protocols.
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Algorithm 1: Approximate 2η-Regular Graph
Input: Set V = {v1,v2, . . . ,vn} of nodes;
Output: A connected, directed graph G(V ,E) with average degree 2η
for v ← V do

/* pick η random targets */

N ← ∅

for i ← {1, . . . ,η} do
e ∼ Unif(V \ {v} \ N )
N ← N ∪ {e}

end
/* make connections */
E = E ∪ {(v → u), u ∈ N }

end
return G(V ,E)

mapped to v implies a greater plausible deniability for v . Recall (denoted R(v)) measures the accu-
racy or completeness of the mapping. We define the average precision and recall for the network
as D =

∑
v∈VH D(v)
|VH |

and R =
∑
v∈VH R(v)
|VH |

. In our theoretical analyses under a probabilistic model
(see §3.3), we will be interested in the expected values of these quantities, denoted by D and R,
respectively.
Fundamental bounds. [14] shows fundamental lower bounds on the expected precision and recall
of any spreading mechanism. In particular, no spreading algorithm can achieve lower expected
recall than p, where p is the fraction of spy nodes, or expected precision lower than p2. These
lower bounds assume an honest-but-curious adversary, in which case the recall lower bound is
tight, and the precision bound is within a logarithmic factor of tight. However, the solution in
[14] does not consider Byzantine adversaries. Hence in this work, we will aim to match these
fundamental lower bounds for an honest-but-curious adversary, while also providing robustness
against a Byzantine adversary. Obtaining tight lower bounds for general Byzantine adversaries
remains an open question, though the lower bounds from [14] naturally still hold. We will show in
Section 4.2 that for certain classes of Byzantine adversaries, we can achieve [14]’s lower bound on
expected recall and within a logarithmic factor of its lower bound on precision.

3.3 Transaction and Network Model
We follow the probabilistic network model of [14, §2]. We assume a uniform prior on Xv over the
set X, i.e., the ordered tuple (Xv1 ,Xv2 , . . . ,Xvñ ) is a uniform random permutation of messages in
X where VH = {v1,v2, . . . ,vñ}. We also assume transaction times are unknown to the adversary.
We model the Bitcoin network as a directed graph G(V ,E) where the vertices V = VH ∪ VA

comprise honest peers VH and adversarial peers VA. The edges E correspond to TCP links between
peers in the network. Although these links are technically bidirectional, the Bitcoin network treats
them as directed. An outbound link from Alice to Bob is one that Alice initiated (and vice versa for
inbound links); we also refer to the tail node of an edge as the one that originated the connection.
To construct the Bitcoin network, each node establishes up to eight outbound connections,

and maintains up to 125 total connections [2]. In practice, the eight outbound connections are
chosen from each node’s locally-maintained address book; we assume each node chooses outbound
connections randomly from the set of all nodes (Algorithm 1). This graph construction model results
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Table 1. Summary of changes proposed inDandelion++, with references to relevant evidence and/or analysis.

Attack Effect on Dandelion [14] Dandelion++
Proposed solution Effect

Graph-learning (§4.1) Order-level precision increase [14] 4-regular anonymity graph Limits precision gain (Thm. 1, Fig. 3)
Intersection (§4.5) Empirical precision increase (Fig. 5) Pseudorandom forwarding Improved robustness (Thm. 2)

Graph-construction (§4.3) Empirical precision increase (Fig. 9) Non-interactive construction Reduces precision gain (Figs. 7, 8)
Black-hole (§4.4) Transactions do not propagate Random stem timers Provides robustness (Prop. 3)

Partial deployment (§4.5) Arbitrary recall increase (Fig. 10) Blind stem selection Improves recall (Thm. 3, Fig. 10)

in a random graph where each node has expected degree 2η = 16. Although this approximates the
behavior of many nodes in Bitcoin’s P2P network, Byzantine nodes need not follow protocol. We
will describe the behavior of Byzantine nodes as needed in the paper.

Upon creating a transaction message, peers propagate it according to a pre-specified spreading
policy. The propagation dynamics are observed by the spies, whose goal is to estimate the IP
addresses of transaction sources. For each transaction x ∈ X received by adversarial node a ∈ VA,
the tuple (x ,v, t) is logged where v is the peer that sent the message to a, and t is the timestamp
when the message was received. The botnet adversary may also know partial information about
the network structure. Clearly, peers neighboring adversarial nodes are known. However in some
cases the adversary might also be able to learn the locations of honest peers not directly connected
to botnet nodes, either through adversarial probing or side information. For simplicity, we use O
to denote all observed information—message timestamps, knowledge of the graph, and any other
control packets—known to the adversary. Given these observations, one common source estimator
is the simple-yet-robust first-spy estimator, used in [11, 18, 31]. Recall that the first-spy estimator
outputs the first honest node to deliver a given transaction to the adversary as the source.

4 DANDELION++
Dandelion’s theoretical anonymity guarantees make three idealized assumptions: (1) all nodes
obey the protocol, (2) each node generates exactly one transaction, (3) all Bitcoin nodes run
Dandelion. None of these assumptions necessarily holds in practice. In this section, we show how
Dandelion’s anonymity properties break when the assumptions are violated, and propose a modified
solution called Dandelion++ that addresses these concerns. Dandelion++ passes transactions
over intertwined paths, or ‘cables’, before diffusing to the network (Fig. 2). In practice, these cables
may be fragmented (i.e. all nodes are not connected in a single Hamiltonian cycle), but the cable
intuition applies within each node’s local neighborhood.

Fig. 2. Dandelion++ forwards messages over one of two intertwined paths on a 4-regular graph, then
broadcasts using diffusion. Here, tx propagates over the blue solid path.

We begin with a brief description of Dandelion++, and then give a more nuanced picture
of how this design came about. We start with Dandelion as a baseline, adopting the same ‘stem
phase’ and ‘fluff phase’ terminology, along with dandelion spreading (Algorithm 4). Like Dandelion,
Dandelion++ proceeds in asynchronous epochs; each node advances its epoch when its internal
clock reaches some threshold (in practice, this will be on the order of 10 minutes). Within an epoch,
the main algorithmic components of Dandelion++ are:
(1) Anonymity Graph: Use a random, approximately-4-regular graph instead of a line graph for the
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anonymity phase (§4.1). This quasi-4-regular graph is embedded in the underlying P2P graph by
having each node choose (up to) two of its outbound edges, without replacement, uniformly at
random as Dandelion++ relays (§4.3). The choice of Dandelion++ relays should be independent
of whether the outbound neighbors support Dandelion++ or not (§4.5). Each time a node changes
epoch, it selects fresh Dandelion++ relays.
(2) Transaction Forwarding (own): Every time a node generates a transaction of its own, it forwards
the transaction, in stem phase, along the same outbound edge in the anonymity graph. In Dandelion,
nodes are assumed to generate only one transaction, so this behavior is not considered in prior
analysis.
(3) Transaction Forwarding (relay): Each time a node receives a stem-phase transaction from another
node, it either relays the transaction or diffuses it. The choice to diffuse transactions is pseudo-
random, and is computed from a hash of the node’s own identity and epoch number. Note that
the decision to diffuse does not depend on the transaction itself—in each epoch, a node is either a
diffuser or a relay node for all relayed transactions. If the node is not a diffuser in this epoch (i.e.,
it is a relayer), then it relays transactions pseudorandomly; each node maps each of its incoming
edges in the anonymity graph to an outbound edge in the anonymity graph (with replacement).
This mapping is selected at the beginning of each epoch, and determines how transactions are
relayed (§4.2).
(4) Fail-Safe Mechanism: Each node tracks, for each stem-phase transaction that was sent or relayed,
whether the transaction is seen again as a fluff-phase transaction within some random amount of
time. If not, the node starts to diffuse the transaction (§4.4).
These small algorithmic changes completely alter the anonymity analysis by introducing an

exponentially-growing state space. For example, moving from a line graph to a 4-regular graph (item
(1)) invalidates the exact probability computation in [14], and requires a more complex analysis
to understand effects like intersection attacks. We also simulate the proposed mechanisms for all
attacks and find improved anonymity compared to Dandelion.3
The remainder of this section is structured according to Table 1. The weak adversarial model

in [14] enables five distinct attacks: graph learning attacks, intersection attacks, graph construction
attacks, black hole attacks, and deployment attacks. For each attack, we first demonstrate its
impact on anonymity (and/or robustness); in many cases, these effects can lead to arbitrarily high
deanonymization accuracies. Next, we propose lightweight implementation changes to mitigate
this threat, and justify these choices with theoretical analysis and simulations.

4.1 Graph-Learning Attacks
Theoretical results in [14] assume that the anonymity graph is unknown to the adversary; that
is, the adversary knows the randomized graph construction protocol, but it does not know the
realization of that protocol outside its own local neighborhood. Under these conditions, Dandelion,
which uses a line topology, achieves a maximum expected precision of O(p2 log(1/p)), which is
near-optimal (recall that p denotes the fraction of malicious nodes in the network). However, if
an adversary somehow learns the anonymity graph, the maximum expected precision increases
to O(p) [14, Proposition 4]—an order-level increase. On the other hand, recall guarantees do not
change if the adversary learns the graph. This is because under dandelion spreading (Algorithm
4), the first-spy estimator is recall-optimal [14], meaning it maximizes the adversary’s expected
recall. Since the first-spy estimator is graph-independent, learning the graph does not improve the

3Code for reproducing simulation results can be found at https://github.com/gfanti/dandelion-simulations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 29. Publication date: June 2018.

https://github.com/gfanti/dandelion-simulations


29:10 Giulia Fanti et al.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10-1

d = 2 (line), max-weight
d = 4, max-weight
d = 6, max-weight

Complete graph
(theoretical)

Line, max-weight
(theoretical)

Line, first-spy
(theoretical)

Max-weight estimator
(simulated)

First-spy estimator
(simulated)

Fraction of spies, p

Av
er
ag
e
pr
ec
is
io
n

Fig. 3. Average precision as a function of p for random, directed d-regular graphs.

adversary’s maximum expected recall. A natural question is whether one can avoid this jump in
precision.
Dandelion proposes a heuristic solution in which the line graph is periodically reshuffled to a

different (random) line graph [14]. The intuition is that changing the line graph frequently does
not allow enough time for the adversaries to learn the graph. However, the efficacy of this heuristic
is difficult to evaluate. Fundamentally, the problem is that it is unclear how fast an adversary can
learn a graph, which calls into question the resulting anonymity guarantees.

4.1.1 Proposal: 4-Regular Graphs. We explore an alternative solution that may protect against
adversaries that are able to learn the anonymity graph—either due to the Dandelion++ protocol
itself or other implementation issues. In particular, we suggest that Dandelion++ should use
random, directed, 4-regular graphs instead of line graphs as the anonymity graph topology. 4-
regular graphs naturally extend line graphs, which are 2-regular. For now, we study exact 4-regular
graphs, though the final proposal uses approximate 4-regular graphs. Although the forwarding
mechanism is revisited in §4.2, for now, let us assume that users relay transactions randomly to
one of their 2 outbound neighbors in the 4-regular graph until fluff phase.

Although theoretical analysis of expected precision ond-regular anonymity graphs is challenging
for d > 2, we instead simulate randomized spreading over different topologies, while measuring
anonymity empirically using theoretically-optimal (or near-optimal) estimators. Figure 3 plots the
average precision obtained on d-regular graphs, for d = 2 (corresponding to a line graph), 4 and 6,
as a function of p, the fraction of adversaries, for a network of 50 nodes. Since we are (for now)
studying exact 4-regular graphs, the adversarial nodes also have degree 4; this assumption will
be relaxed in later sections. The blue solid line at the bottom corresponds to the line graph when
the graph is unknown to the adversary; this matches the theoretical precision of O(p2 log(1/p))
shown in [14]. The solid lines in Figure 3 (i.e., unknown graph) were generated by running the
first-spy estimator, which maps each transaction to the first honest node that forwarded the
transaction to an adversarial node. When the graph is unknown, we show in Theorem 1 that the
first-spy estimator is within a constant factor of optimal; hence, Figure 3 shows results from an
approximately-precision-optimal estimator.
When the graph is known, we approximate the maximum-precision estimator differently. [14]

showed that the precision-optimal estimator is a maximum-weight matching from transactions to
nodes, where the weight of the edge between node v and transaction x is the posterior probability
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P(Xv = x |O) (Theorem 3, [14]). Since the anonymity graph contains cycles, this posterior is
difficult to compute exactly, because it requires (NP-hard) enumeration of every path between a
candidate source and the first spy to observe a given transaction [47]. We therefore approximate
the posterior probabilities by assuming that each candidate source can only pass a given message
along the shortest path to the spy that first observes the message (note that the shortest path is
also the most likely one). This path likelihood can be computed exactly and used as a proxy for the
desired posterior probability. Given these approximate likelihoods, we compute a maximum-weight
matching, and calculate the precision of the resulting matching.
Assuming the adversary knows the graph and uses this quasi-precision-optimal estimator, the

precision on a line graph increases to the blue dotted line at the top of the plot. For example, at
p = 0.15, knowing the graph gives a precision boost of 0.12, or about 250% over not knowing the
graph. On the other hand, if a 4-regular graph is unknown to the adversary, it has a precision very
close to that of line graphs (orange solid line in Figure 3). But if the graph becomes known to the
adversary (orange dotted line), the increase in precision is smaller. At p = 0.15, the gain is 0.06—half
as large as the gain for line graphs. This suggests that 4-regular graphs are more robust than lines
to adversaries learning the graph, while sacrificing minimal precision when the adversary does not
know the graph.

Figure 3 also highlights a distinct trend in precision values, as the degree d varies. If the adversary
has not learned the topology, then line graphs have the lowest expected precision and hence offer
the best anonymity. As the degree d increases, the expected precision progressively worsens until
d = n, where n is the number of peers in the network. When d = n (i.e., the graph is a complete
graph), peers forward their transactions to a random peer in each hop of the dandelion stem. On
the other hand, if the topologies are known to the adversary, then the performance trend reverses.
In this case, line graphs (for d = 2) have the worst (highest) expected precision among random
d-regular graphs; As the degree increases, precision decreases monotonically until d = n.

Finally, recall that our simulations used the ‘first-spy’ estimator as the deanonymization policy
for d-regular graphs when the graph is unknown to the adversary. A priori, it is not clear whether
this is an optimal estimator for d-regular graphs for d ≥ 4 ([14] shows that the first-spy estimator
is optimal for line graphs). As such the optimal precision curve could be much higher than the one
plotted in Figure 3. However, the following theorem—our first main theoretical contribution of this
paper—shows that this is not the case.

Theorem 1. The maximum expected precision on a random 4-regular graph with graph unknown
to the adversary is bounded by DOPT ≤ 8DFS + 6p2 +O(p3), where DOPT and DFS denote the expected
precision under the optimal and first-spy estimators respectively.

(Proof in Appendix B.1) The proof of this result relies on bounding the amount of information
that a single node can pass to the adversary, and enumerating the local graph topologies that a
single node can see. This result says that precision under the first-spy estimator is within a constant
factor of optimal (p2 is a fundamental lower bound on the maximum expected precision of any
scheme [14]). Thus the precision gain from line graphs to 4-regular graphs is indeed small, as
Figure 3 suggests. These observations motivate the use of 4-regular graphs, specifically in lieu of
higher-degree regular graphs. First, 4-regular graphs have similar precision to complete graphs
when the graph is known (i.e., the red dotted line is close to the middle black solid line, which is a
lower bound on precision for regular graphs), but they sacrifice minimal precision when the graph
is unknown. Hence, they provide robustness to graph-learning.
Lesson: 4-regular anonymity graphs provide more robustness to graph-learning attacks than line
graphs.
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Fig. 4. Pseudorandom
forwarding. Thick, colored
lines denote forwarding
rules for incoming edges
and the node’s own
transactions (green dotted
line).

Fig. 5. Recall vs. number of transac-
tions per node in random 4-regular
graphs.

Fig. 6. First-spy precision for 4-
regular graphs under various for-
warding schemes.

Note that constructing an exact 4-regular graph with a fully-distributed protocol is difficult in
practice; we will discuss how to construct an approximate 4-regular graph in §4.3, and how this
approximation affects our anonymity guarantees.

4.2 Intersection Attacks
The previous section showed that 4-regular graphs are robust to deanonymization attacks, even
when the adversary knows the graph. However, those results assume that each user generates
exactly one transaction per epoch. In this section, we relax the one-transaction-per-node assumption,
and allow nodes to generate an arbitrary number of transactions. Dandelion specifies that each
transaction should take an independent path over the anonymity graph. In our case, this implies that
if a node generates multiple transactions, each one will traverse a random walk (of geometrically-
distributed length) over a 4-regular digraph. Under such amodel, adversaries can aggregatemetadata
from multiple, linked transactions to launch intersection attacks. We first demonstrate Dandelion’s
vulnerability to intersection attacks, and then provide an alternative propagation technique.
Attack. Suppose the adversary knows the graph. For each honest source v ∈ VH , each of its
transactions will reach one of the np spy nodes first. In particular, each spy node has some fixed
probability of being the first spy for transactions originating at v , given a fixed graph topology. We
let Ψv denote the pmf of the first spy for transactions starting at v ; the support of this distribution
is the set of all spies. We hypothesize that in realistic graphs, for v , w , Ψv , Ψw .

This hypothesis suggests a natural attack, which consists of a training phase and a test phase. In
the training phase, for each candidate source, the adversary simulates dandelion spreading N times.
The resulting empirical distribution of first-spies for a given source determines the adversary’s
estimate of Ψv . The adversary computes such a signature for each candidate source.

At testing, the adversary gets to observem transactions from a given node,m ≪ N . The adversary
again computes the empirical distribution Ψ̂ of first-spies from thosem observations. The adversary
then classifies Ψ̂ to one of the |VH | classes (i.e., source nodes) by matching Ψ̂ to the closest Ψi from
training. For each trial, Ψ̂ and Ψv are matched by maximizing the likelihood of signatures (i.e. by
minimizing the KL divergence).
Figure 5 shows the recall for such an attack on a 4-regular graph of size 1000 with various

fractions of spies, as a function of the number of transactions observed per node. By observing
10 transactions per node, the recall exceeds 0.8 when 30% of nodes are adversarial. This sug-
gests that independent random forwarding leads to serious intersection attacks. Hence, a naive
implementation of Dandelion critically damages anonymity properties.
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Solution. To address these attacks, we consider forwarding mechanisms with correlated random-
ness. The key insight is that messages from the same source should traverse the same path; this
prevents adversaries from learning additional information from multiple transactions. However,
a naive implementation (e.g., adding a tag that identifies transactions from the same source, and
sending all such transactions over the same path) makes it trivial to infer that otherwise unlinkable
transactions originate from a common source. Hence, we consider three forwarding schemes that
pseudorandomize the forwarding trajectory. In “one-to-one" forwarding, each node maps each of
its inbound edges to a unique outbound edge; messages in stem mode only get relayed according
to this mapping (Fig. 4). This one-to-one forwarding captures the ‘cable’ behavior described in
Figure 2. Each node also chooses exactly one outbound edge for all of its own transactions. Here
we randomize not by source, but by incoming edge (for relayed transactions). Similarly, “all-to-
one" forwarding maps all inbound edges to the same outbound edge, and “per-incoming-edge"
forwarding maps each inbound edge to a uniform outbound edge (with replacement).
Perhaps counterintuitively, these spreading mechanisms alter the anonymity guarantees even

when the graph is unknown. Our next result—the second main theoretical contribution of this
paper—suggests that one-to-one forwarding has near-optimal precision when the adversary does
not know the graph, even in the face of intersection attacks (recall the lower bound of p2, where p is
the fraction of spies [14]). The other two mechanisms do not.

Theorem 2. Suppose the graph is unknown to the adversary, each node generates an arbitrary
number of transactions, and the adversary can link transactions from the same user.4 The expected
precision of the precision-optimal estimator for the one-to-one (DOPT−OtO), all-to-one (DOPT−AtO), and
per-incoming-edge (DOPT−PIE) message forwarding schemes are:

DOPT−OtO = Θ
(
p2 log

( 1
p

))
(3)

DOPT−AtO = Θ(p) (4)
DOPT−PIE = Ω(p). (5)

(Proof in Appendix B.2) This analysis exploits the tree-like neighborhoods of random 4-regular
graphs. We first build a branching process that captures each routing mechanism, and then analyze
the precision-optimal estimators accordingly.
Figure 6 illustrates simulated first spy precision values for each of these techniques, as well as

diffusion (the status quo). Simulations were again run on a 100-node graph with an exact 4-regular
topology; spies and sources were selected uniformly at random. ‘Per-transaction’ forwarding
denotes the baseline i.i.d. random forwarding. This figure is plotted for the special case of one
transaction per node; if nodes were to generate arbitrarily many transactions, the pseudorandom
lines would stay the same (all-to-one, one-to-one, and per-incoming-edge), whereas Figure 5
suggests that the per-transaction curve could increase arbitrarily close to 1. The same is true for
diffusion, as illustrated in prior work [50]. In addition, when the graph is unknown and there is
only one transaction per node, Figure 6 suggests that one-to-one forwarding achieves precision
values that are close to the lower bound of per-transaction forwarding. The following corollary
bounds the jump in precision when the graph is known to the adversary.

Proposition 1. If the adversary knows the graph and internal routing decisions, then the precision-
optimal estimator for one-to-one forwarding has an expected precision of O(p).

(Proof in Appendix B.3)
4If the user is using the same pseudonym for different transactions, this linkage is trivial. However, even when users use
fresh keys for different transactions, practical attacks have been able to link the pseudonyms [34].
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Fig. 9. Malicious spies make out-
bound edges to every honest node.

An adversary that does not know internal forwarding decisions for all nodes has lower precision,
because it must disambiguate between exponentially many paths for each transaction. Despite
requiring completely new analysis, the 4-regular graph results for Theorem 2 and Proposition 1 are
order-equivalent to the line graph results in [14]. This raises an important question: are 4-regular
graphs really better than line graphs? In an asymptotic sense, no. However, in practice, the story is
more nuanced, and depends on the adversarial model. For adversaries that lack complete knowledge
of the graph and each node’s routing decisions, we observe constant-order benefits, which become
more pronounced once we take into account the realities of approximating 4- and 2- regular graphs.
This is explored in §4.3. However, when the adversary has full knowledge of the graph and each
node’s internal, random routing decisions, the combination of 4-regular graphs and one-to-one
routing has slightly higher (worse) precision than a line graph. We detail this tradeoff in Appendix
C. Another issue to consider is that line graphs do not help the adversary link transactions from
the same source; meanwhile, on a 4-regular graph with one-to-one routing, two transactions from
the same source in the same epoch will traverse the same path—a fact that may help the adversary
link transactions.
Hence we recommend making the design decision between 4-regular graphs and line graphs

based on the priorities of the system builders. If linkability of transactions is a first-order concern,
then line graphs may be a better choice. Otherwise, we find that 4-regular graphs can give constant-
order privacy benefits against adversaries with knowledge of the graph. Overall, both choices
provide significantly better privacy guarantees than the current diffusion mechanism. We also want
to highlight that the remaining sections of this paper are agnostic to the choice of graph topology;
the lessons apply equally whether one uses a 4-regular graph or a line graph.
Lessons. If running Dandelion spreading over a 4-regular graph, use pseudorandom, one-to-one
forwarding. If linkability of transactions is a first-order concern, then line graphs may be a more
suitable choice.

4.3 Graph-Construction Attacks
We have so far considered graph-learning attacks and intersection attacks. Another important
aspect of Dandelion++ is the anonymity graph construction, which should be fully distributed.
Dandelion proposed an interactive, distributed algorithm (explained below) that constructs a
randomized approximate line graph. In this section, we study how Byzantine nodes can change the
graph to boost their accuracy. First, we show how to generate 4-regular graphs in the presence of
Byzantine nodes. Next, we show how to choose q (path length parameter) for robustness against
Byzantine nodes.
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4.3.1 Graph construction in Dandelion [14]. For any integral parameter ℓ > 0, Dandelion uses
the protocol ApxLine(ℓ) to build a ℓ-approximate line graph as follows: (1) Each node contacts ℓ
random candidate neighbors, and asks for their current in-degrees. (2) The node makes an outbound
connection to the candidate with the smallest in-degree. Ties are broken at random. This protocol is
simple, distributed, and allows the graph to be periodically rebuilt. Though the resulting graph need
not be an exact line, nodes have an expected degree of two, and experiments show low precision for
adversaries. Increasing ℓ also enhances the likeness of the graph to a line and reduces the expected
precision in simulation.

4.3.2 Construction of 4-regular graphs. A natural extension of Dandelion’s graph-construction
protocol to 4-regular graphs involves repeating ApxLine(ℓ) twice for parameter ℓ > 0. That is, each
peer makes two outgoing edges, where the target of each edge is chosen according to ApxLine(ℓ).
As in the approximate line algorithm, the resulting graph is not exactly regular. However, the
expected node degree is 4, and because each node generates two outgoing edges, the resulting
graph has no leaves. This improves anonymity because leaf nodes are known to degrade average
precision [14].

4.3.3 The impact of Byzantine nodes. Byzantine nodes can misbehave as recipients and/or
creators of edges. As recipients, nodes can lie about their in-degrees during the degree-checking
phase. As creators of edges, misbehaving nodes can generate many edges, even connecting to each
honest node.
Lying about in-degrees. In step (1) of the graph-construction protocol, when a user queries an
adversarial neighbor for its current in-degree, the adversarymight deliberately report a lower degree
than its actual degree. This can cause the querying user to falsely underestimate the neighbor’s
in-degree and make a connection. In the extreme case, the adversarial node can consistently report
an in-degree of zero, thus attracting many incoming edges from honest nodes. This degrades
anonymity by increasing the likelihood of honest nodes passing their transactions directly to the
adversary in the first hop. We find experimentally that such attacks significantly increase precision
as ℓ grows; plots are omitted due to space constraints.

To avoid nodes lying about their in-degrees, we abandon the interactive aspect of Dandelion graph
construction. In ApxLine(1), users select a random peer and make an edge regardless of the recipi-
ent’s in-degree. We therefore run ApxLine(1) twice, as shown in Algorithm 2. Note that Algorithm 2
closely mirrors the graph construction protocol used in Bitcoin’s P2P network today, so the protocol
itself is not novel. In the line graphs of Dandelion, a higher ℓ value was needed since ApxLine(ℓ) for
ℓ = 1 was shown to have significantly worse anonymity performance than ℓ ≥ 2. However such a
loss is avoided in Dandelion++ since the application of ApxLine(1) twice eliminates leaves.
What is not previously known is how the approximate-regular construction in Algorithm 2

affects anonymity compared to an exact 4-regular topology. First, note that the expected recall
does not change because dandelion spreading (Algorithm 4) has an optimally-low maximum recall
of p + O( 1n ), regardless of the underlying graph (Thm. 4, [14]). Hence, we wish to understand
the effect of approximate regularity on maximum expected precision. We simulated dandelion
spreading on approximate 4-regular graphs and exact 4-regular graphs, using the same approximate
precision-optimal estimator from Figure 3. For comparison, we have also included the first-spy
estimator. Figure 7 shows that the difference in precision between 4-regular graphs and approximate
4-regular graphs (computed with Algorithm 2) is less than 0.02 across a wide range of spy fractions
p. Compared to line graphs [14, Figure 8], 4-regular graphs appear significantly more robust to
irregularities in the graph construction.
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Algorithm 2: Approximate 4-Regular Graph Approximates a directed 4-regular graph
in a fully-distributed fashion.
Input: Set V = {v1,v2, . . . ,vn} of nodes;
Output: A connected, directed anonymity graph H (V ,E) with average degree 4
for v ← V do

/* pick two random targets */

u1 ∼ Unif(V \ {v})
u2 ∼ Unif(V \ {v,u1})
/* make connections */
E = E ∪ (v → u1) ∪ (v → u2)

end
return H (V ,E)

Creating many edges. Dandelion is naturally robust to nodes that create a disproportionate
number of edges, because spies can only create outbound edges to honest nodes. This matters
because in the stem phase, honest nodes only forward messages on outbound edges.

Proposition 2. Consider dandelion spreading (Algorithm 4) with q = 0 over a connected anonymity
graph H constructed according to graph-construction policy P (Algorithm 1).5 Let DOPT(P) and
ROPT(P) denote the maximum expected precision and recall over graphs constructed according to
P. Now consider an alternative policy Q that is identical to P except adversarial nodes are allowed
to choose their outbound edges arbitrarily. Let DOPT(Q) and ROPT(Q) denote the maximum expected
precision and recall over all graphs constructed according to Q. Then

ROPT(Q) = ROPT(P)

DOPT(Q) = DOPT(P). (6)

(Proof in Appendix B.4). This result bounds the deanonymization abilities of Byzantine nodes in
general and supernodes in particular [11, 31], neither of which was covered by the analysis of [14].
It shows that for the special case where the transition probability from stem to fluff phase q = 0
(i.e., infinite stem phase), supernodes gain no deanonymization power by connecting to most or
all of the honest nodes. In practice, we need q > 0 to reduce broadcast latency, but analyzing this
requires an upper bound on the probability of detecting the source of a diffusion process under
sampled timestamp observations—a known open problem [41, 54]. We therefore simulate precision
for nonzero q as a function of spy fraction p, when spies obey protocol (Figure 8) and when they
form outbound edges to all honest nodes (Figure 9). We generate a P2P graph via Algorithm 1 with
out-degree η = 8, and an anonymity graph H via Algorithm 2, except spies form outbound edges to
all honest nodes.
Figures 8 and 9 highlights two points: First, even when spies follow protocol, increasing q

increases precision. q has the largest effect when p is small; when p = 0.1, using q = 0.5 increases
the expected precision by about 0.1 compared to q = 0.0. For q ≤ 0.2, we expect increases in
precision on the order of 0.05. Second, spies can increase their precision by adding outbound edges;
when p = 0.1 and q = 0.5, we observe a precision increase of about 0.2. Thus by choosing parameter
q ≤ 0.2, we can limit the increase in average precision to 0.1, even when spies connect to every
honest node.
Lesson. To defend against graph-manipulation attacks, use noninteractive protocols and small q.

5q denotes the probability of transitioning to fluff phase in each hop.
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4.4 Black-Hole Attacks
Since dandelion spreading forwards messages to exactly one neighbor in each hop, propagation
can terminate entirely if an adversarial relay in the stem chooses not to forward a message; we
refer to this as a black-hole attack. To prevent black-hole attacks, Dandelion++ sets a random
expiration timer at each stem relay immediately upon receiving transaction messages. If the relay
does not receive an INV (i.e. an advertisement) for the transaction before his timer expires, then
the relay diffuses the transaction. This policy provides a two-fold advantage over Dandelion: (1)
messages are guaranteed to eventually propagate through the network, and (2) the random timers
can help anonymize peers initiating the spreading phase in the event of a black-hole attack.
To implement this, Dandelion++ nodes are initialized with a timeout parameter Tbase. In the

stem phase, when a relay v receives a transaction, it sets an expiration time Tout(v):
Tout(v) ∼ current_time + exp(1/Tbase), (7)

i.i.d. across relays. If the transaction is not received again by relay v before Tout(v), v broadcasts
the message using diffusion. Pseudocode is shown in Algorithm 5 (Appendix A).
Algorithm 5 solves the problem of message stalling, as relays independently broadcast if they

have not received the message within a certain time. However, the protocol also ensures that the
first relay node to broadcast is approximately uniformly selected among all relays that have received
the message. This is due to the memorylessness of the exponential clocks: conditioned on a given
node blocking the message, each of the remaining clocks can be reset assuming propagation latency
in the stem is negligible. Ideally, the exponential clocks should be slow enough that they only
trigger (with high probability) during a black-hole attack. On the other hand, they must also be fast
enough to keep propagation latency low. This trade-off is analyzed in the following proposition.

Proposition 3. For a timeout parameter Tbase ≥
−k (k−1)δhop
2 log(1−ϵ ) , where k, ϵ are parameters and δhop is

the time between each hop (e.g., network and/or internal node latency), transactions travel for k hops
without any peer initiating diffusion with a probability of at least 1 − ϵ .

(Proof in Appendix B.5) Let ∆1 ≜ kδhop be the time taken for the message to traverse k hops.
Conditioned on reaching k hops and stalling, let ∆2 denote the additional time taken for the message
to start diffusion. Then, ∆2 is the minimum of exponential random variables each of rate 1/Tbase.
As such ∆2 is itself exponentially distributed with rate k/Tbase. Choosing Tbase as in Proposition 3,
the mean additional time taken to diffuse the message is

E[∆2] =
Tbase
k
=
−(k − 1)δhop
2 log(1 − ϵ)

≤
−∆1

2 log(1 − ϵ)
≈

∆1

2ϵ
. (8)

The standard deviation of ∆2 is identical to the mean. Thus by choosing Tbase as in Proposition 3
in Algorithm 5 we incur an additional delay at most a constant factor 1/(2ϵ) from our delay ∆1
otherwise.
Lesson. Use random timers selected according to Prop. 3.

4.5 Partial-Deployment Attacks
The original Dandelion analysis does not consider the fact that instantaneous, full-network de-
ployment of Dandelion++ is practically infeasible. In this section, we show that if implemented
naively, Byzantine nodes can exploit partial Dandelion deployment to launch serious anonymity
attacks. We also demonstrate a (counterintuitive) implementation mechanism that neutralizes this
threat. We consider two natural approaches for constructing the anonymity graph.
Version-checking (Algorithm 3) generates an anonymity graph from edges between
Dandelion++-compatible nodes. Each node v first identifies its outbound peers on the main
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Algorithm 3: Version-checking. Nout (G,v) denotes the out-neighbors of node v on
digraph G.
Input: Main (directed) P2P graph G(V ,E), desired degree d of output anonymity graph
Output: Directed anonymity graph H (V , Ẽ)
for v ∈ V do

/* Find TwistedPair neighbors */

Dv ← {w ∈ Nout (G,v) | w supports Dandelion++}
if 0 ≤ |Dv | <

d
2 then

Ẽ ← Ẽ ∪ Dv
end
/* Non-TwistedPair neighbors */

if |Dv | == 0 then
R ← d

2 nodes drawn uniformly from Nout (G,v), without replacement
Ẽ ← Ẽ ∪ R

end
end

P2P network that support Dandelion++; we call this set Dv . Dv can be learned from existing
signaling in Bitcoin’s version handshake. Next, v runs Algorithm 2, drawing candidate neighbors
only from Dv . If |Dv | = 1, v uses the single node in Dv as its outbound anonymity graph edge. If
|Dv | = 0, v picks 2 outbound neighbors uniformly at random, and uses them as anonymity graph
edges. Upon forwarding a transaction to a node that does not support Dandelion++, the receiving
node will, by default, relay the message using diffusion, thereby ending the stem phase. While
version checking is a natural strategy, adversarial nodes can lie about their version number and/or
run nodes that support Dandelion++.

Under the second approach, no-version-checking, each nodev instead selects 2 outgoing edges
uniformly from the set of all outgoing edges, without consideringDandelion++-compatibility. This
noninteractive protocol shortens the expected length of the stem, thereby potentially weakening
anonymity guarantees.

If all nodes supported Dandelion++, these two approaches would be identical. To model gradual
deployment, we assume that all spy nodes run Dandelion++, and a fraction β of the remaining
honest nodes are using Dandelion++. Honest users are distributed uniformly over the network.
LetVD denote the nodes that support Dandelion++: |VD | = pn+ (1−p)βn. We wish to characterize
the maximum expected recall of Dandelion++ as a function of p and β , for version-checking and
no-version-checking. The following theorem bounds this quantity under a recall-optimal estimator.

Theorem 3. Consider n nodes in an approximately-2η-regular graph G generated according to
Algorithm 1. A fraction p of nodes are spies running Dandelion++. Among the remaining honest
nodes, a fraction β support Dandelion++. Under version-checking, the expected recall across honest,
Dandelion++-compatible nodes, under a recall-optimal mapping strategy satisfies

p

f
(1 − (1 − f )η) ≤ ROPT ≲

p

f
(1 − (1 − f )η) + (1 − f )η +C(1 − β)) (9)

where f is the fraction of all nodes that support Dandelion++ and C =(
1 − p

f

)
(1 − (1 − f )η)

1−(1−ϕ)ñ
ñϕ , where ϕ = 1 − (1 − 1

n−η )
η , and ñ = (1 − p)n is the number
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of honest nodes in the system. Under no-version-checking,

p ≤ ROPT ≲ p + (1 − β(1 − q))(1 − p)
1 − (1 − ϕ)ñ

ñϕ
. (10)

(Proof in Appendix B.6) Here ≲ denotes approximate inequality; i.e., A(n) ≲ B(n) implies that
there exist constants n0 > 0 and C ′ > 0 such that for all n > n0, A(n) ≤ C ′B(n). In this case, such a
condition holds for any C ′ > 1.
Figure 10 plots these results for p = 0.2 fraction of spies and q = 0.2 probability of ending the

Dandelion++ stem, on an approximately-16-regular P2P graph. Our theoretical bounds delimit the
shaded regions; for comparison, we include a lower bound on the recall of diffusion, computed by
simulating diffusionwith a first-spy estimator. The green solid line is a lower bound on themaximum
expected recall of any spreading protocol (Thm. 2, [14]). When β is small, version-checking recall
is close to 1; in the same regime, no-version-checking exhibits lower recall than both diffusion and
version-checking. Intuitively, when adoption is low (low β), any Dandelion++ peers are likely to
be spies. Therefore, version-checking actually increases the likelihood of getting deanonymized. In
the same low-β regime, no-version-checking is more likely to choose a Dandelion++-incompatible
node w as the next stem node. While this prematurely ends the stem, it still introduces more
uncertainty than vanilla diffusion.
Lesson. Use no-version-checking to construct the graph.

5 EVALUATION
5.1 Implementation in Bitcoin
We have developed a prototype implementation of Dandelion++. Our prototype is a modification
of Bitcoin Core (referred to as Core from now on), the most commonly-used client implementation
in the Bitcoin network. In total, our implementation required a patch modifying approximately
500 lines of code. A vital part of our implementation is allowing nodes to recognize other Dan-
delion++ nodes in a straightforward way. In Core, supported features are signaled by modifying
the nServices field in the handshake. For example, segwit support is signalled by setting bit 4 in
nServices. In our case, Dandelion++ support is signaled by setting the 25th bit.

To minimize our footprint on the Core codebase, we insert Dandelion++ functionality into the
preexisting main threads/signals that handle the processing and transmission of messages. However,
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creating the 4-regular anonymity graph and processing Dandelion++ transactions requires careful
consideration of the many concurrency and DoS-protection mechanisms already at play in Core. For
instance, Core’s data structures for transactions and inventory messages are designed to facilitate
responses to GetData requests, while broadcasting transactions to all nodes with exponential
delays. These data structures are insufficient for Dandelion++ because they facilitate broadcasting
knowledge of transaction and block hashes. In particular, Dandelion++ nodes need to hide
knowledge of transactions that are still in the stem phase, but at the same time ensure that they are
relayed properly and not stalled by adversaries. Our approach is to store stem mode transactions in
an additional data structure, the “embargo map,” such that embargoed transactions are omitted
from GetData responses. The embargo map serves two purposes: 1. it tracks transactions currently
in the stem phase and 2. it ensures that malicious adversaries can not stop transaction propagation
(§4.4).

5.2 Experimental Setup
We used our prototype implementation to conduct integration experiments, by launching our own
nodes running the Dandelion++ software, and connecting to the actual Bitcoin network. The goal
of our experiments is to characterize how Dandelion++ affects transaction propagation latency.
The experiments also validate our implementation and its compatibility with the existing network.

For our experiments we launched 30 Dandelion instances of m3.medium Amazon EC2 nodes
(t2.medium used in Seoul and Mumbai where m3.medium is not available). The nodes are spread
geographically across 10 different AWS regions (California, Sydney, Tokyo, Frankfurt, etc.)—3 nodes
per region [1]. To control the topology between the Dandelion nodes, we use Core’s -connect or
-addnode command line flags. Our measurements use the Coinscope [36] tool to connect to each
node in the Bitcoin network and record a timestamped log of transaction propagation messages.

5.3 Evaluation Results
5.3.1 Propagation latency at fixed stem lengths. We conducted a preliminary experiment to

inform our choice of the coin flip (stem length) parameter, q. In this experiment, we arranged our
Dandelion++ nodes in a chain topology (each with one outgoing connection to the next, with the
last node connected to the Bitcoin network) so that we could deterministically control the stem
length. Based on 20 trials for stems up to length 12, we estimated that each additional hop adds
an expected 300 miliseconds to the propagation latency. There is also a constant 2.5 second delay
added to each transactions due to the exponential process of propagation when it first enters the
fluff phase. Taking a propagation delay of 4.5 seconds as our goal, we chose q = 0.1 or q = 0.2 as
our parameter (recall the expected stem length is 1/q).
The observed delays originate from two main sources. First, each hop incurs network latency

due to transit time between nodes. A recent measurement study of the Bitcoin network estimated
a median latency of 110ms between nodes [25], and Bitcoin transaction propagation requires
three messages (INV, GETDATA, TX). The latency between our EC2 nodes is faster, with a median
of only 86ms across all pairs. Although our EC2 nodes are geographically distributed, they are
closely connected to internet backbone endpoints. Second, Bitcoin Core buffers each Inv message
for an average of 2.5 seconds; however, our implementation relays Dandelion++ transactions
immediately, so internal node delays should be negligible. We therefore estimate 300 miliseconds
of delay per stem node, which is consistent with our preliminary experiments.

5.3.2 Topology. In order to create a connected graph of Dandelion++ nodes, we use all of the
eight outgoing connections from each of our nodes to connect to other Dandelion++ nodes. This
ensures that we can measure many different stem lengths and how they affect the propagation to
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the rest of the network. We must also account for an artifact of our experiment setup, namely that
short cycles in the stems are more likely among our 30 well connected Dandelion++ nodes 6. We
therefore parse debug logs from our nodes for each trial in order to determine the effective stem
length, which we then use as the basis of our evaluation.

In our experiment, we re-randomize the topology to avoid biasing our results. For each randomiza-
tion of the connections, we generate 5 transactions, 10 seconds apart. We repeat this “burst” 4 times a
day over three separate days. The transactions are injected into the network via a randomly-chosen
node. We show the results of the experiment in Figures 11 and 12.
Figure 11 plots the time it takes Dandelion++ transactions to reach 10% of the network. As

mentioned in Section 5.3.1, for every additional hop in the stem phase there is a minimum delay
added by three messages and a expected delay of 2.5 seconds. The solid green line represents the
minimum expected delay and the dotted blue line representst the best linear fit over the transaction
data. The propagation delay to reach 10% coverage increases with the path length due to the
minimum added delay. We also computed the two-sided Pearson Correlation Coefficient over the
two variables: path length and time to reach 10%. The coefficient r = 0.292 implies a small positive
correlation between the two variables.

Figure 12 plots the the time it takes a transaction to go from 10% to 50% of the networkwith respect
to the path length. Unlike the first scatter plot, visual inspection doesn’t reveal any relationship
between the two variables in this case. This is also what we expect because Dandelion++ should
not have any impact on transaction propagation after it has entered fluff phase. We also perform
a Mann-Whitney U Test to test the null hypothesis: time from 10-50% coverage does not depend
on path length. Using the path length as the independent variable, we split it into two categories:
high and low. The blue dotted line in Figure 12 is the boundary of the two categories where there
are 26 samples in “low” and 29 in “high”. The Mann Whitney U test gives a U statistic of 443 and a
p-value of 0.269. This implies that there is weak evidence against the null hypothesis, therefore we
fail to reject it.
As expected, the minimum delay brought on by Dandelion++ has a positive correlation with

the time it takes to reach 10% of the Bitcoin network. Similarly, once a transaction has left the stem
phase, it begins normal propagation through the network and is therefore no longer be affected
by Dandelion++. This prediction is confirmed by our test of independence of hop length (high v.
low) and time from 10-50% coverage.

6 CONCLUSION
A gap exists between the theory and practice of protecting user anonymity in cryptocurrency
P2P networks. In particular, there are no safeguards against population-level deanonymization,
which is the focus of this paper. We aim to narrow that gap by identifying strong or unrealistic
assumptions in a state-of-the-art proposal [14], demonstrating the anonymity effects of violating
those assumptions, and proposing lightweight, theoretically-justified fixes in the form of Dan-
delion++. This methodology complements the usual development pattern in cryptocurrencies,
which has mainly evolved by applying ad hoc patches against specific attacks. We instead take a
first-principles approach to design.

Note that Dandelion++ does not explicitly protect against ISP- or AS-level adversaries, which
can deanonymize users through routing attacks [9]. Understanding how to analyze and protect
against such attacks is of fundamental interest. However, Dandelion++ is already compatible
with a number of the countermeasures proposed in [9]. For instance, [9] proposes to enhance
network diversity through multi-homing of nodes and routing-aware network connectivity. Such

6Our implementation enters fluff mode if there is a loop in the stem.
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Algorithm 4: Dandelion Spreading [14]. Nout (G,v) denotes the out-neighbors of node
v on directed graph G.
Input: Message Xv , source v , anonymity graph H , spreading graph G, parameter q ∈ (0, 1)
anonPhase← True
head← v

recipients← {v}
while anonPhase do

/* relay message to random node */

target ∼ Unif(Nout (H , head))
recipients← recipients ∪{Xv } from head to target
head← target
u ∼ Unif([0, 1])
if u ≤ q then

anonPhase← False
end

end
/* Run diffusion on G from ‘head’ */
Diffusion(Xv , head,G)

countermeasures directly support Dandelion++ by ensuring that nodes are less likely to establish
outbound anonymity edges exclusively to spies.

A ALGORITHMS
Dandelion pseudocode is presented in Algorithm 4. Pseudocode for handling black-hole attacks is
included in Algorithm 5.

B PROOFS
B.1 Proof Theorem 1
Theorem 1. The maximum expected precision on a random 4-regular graph with graph unknown
to the adversary is bounded by DOPT ≤ 8DFS + 6p2 +O(p3), where DOPT and DFS denote the expected
precision under the optimal and first-spy estimators respectively.

Proof. Each node has two predecessors and two successors; let us arbitrarily label these as the
left predecessor (successor) and the right predecessor (successor). For i, j,k, l ∈ {a,h}, let Ev (i, jk,l )
denote the event that v’s left successor, right successor, left predecessor and right predecessor are
of types i, j,k and l respectively, where type of a denotes an adversarial node and a type h denotes
an honest node. Also, assume that for any honest node v ∈ VH the number of messages forwarded
by v is statistically independent of the local neighborhood upstream of v . This assumption follows
from the locally-tree-like nature of sparse random graphs [35]. We use the following two lemmas,
whose proofs are included below.

Lemma 1. Let Jv denote the number of transactions (from honest servers) that reach v before reach-
ing an adversary. Then, for each event E ∈ {Ev (

a,h
h,h), Ev (

h,a
h,h), Ev (

h,h
a,h ), Ev (

h,h
h,a )} E[maxx ∈X P(Xv =

x |O, E, Jv )|E, Jv ] ≤ 1
Jv+1 .
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Algorithm 5: Dandelion++ Spreading at node v . The protocol guarantees eventual
network-wide propagation of transactions.
Input: Message and timeout parameter (X ,Tbase) received by v in the anonymity phase,

out-neighbors Nout (G,v) on anonymity graph G, spreading graph H , parameter
q ∈ (0, 1)

Tout(v) ∼ exp(1/Tbase) // set timer

forward (X ,Tbase) according to dandelion
/* wait until message re-received */

while current_time ≤ Tout do
if X received then

timer← inactive
break

end
continue

end
/* start diffusion */

if timer is active then
Diffusion(X ,v,H )

end

Lemma 2. For any server v ∈ VH , let Fv denote the number of transactions that (i) reach v before
reaching any adversary and (ii) are forwarded by v along its left outgoing edge. Then E

[
1

Fv+1

]
≤

2DFS(v)
p .

Now, recall the events Ev (i, jk,l ), where i, j,k, l ∈ {a,h}. There are a total of 2
4 = 16 such events

that are possible for the neighborhood around server v . Out of these events,
(4
2
)
= 6 of them occur

with a probability of p2(1 − p)2 (such as Ev (a,ah,h) for e.g.). Similarly
(4
3
)
= 4 events occur with a

probability of p3(1 − p) and one event occurs with a probability of p4. Since the per-node precision
can be at most 1, the above events contribute to a cumulative precision gain of at most 6p2+4p3+p4.

The remaining cases are events where only one neighbor is adversarial—Ev (a,hh,h), Ev (
h,a
h,h), Ev (

h,h
a,h )

and Ev (h,hh,a )—or when all of the neighbors are honest Ev (h,hh,h). Note that each of these events occur
with a probability of at least p(1 − p)3 and hence the trivial bound used above cannot be used here.
Let us first consider the event Ev (h,ha,h ) where only the left predecessor node of v is an adversary.
Let U ∈ VH denote the right predecessor of v and FU the number of fresh transactions that are
forwarded byU to v . Then from Lemma 1 we have

E[maxx ∈X P(Xv = x |O), FU , Ev (h,ha,h ))|FU , Ev (
h,h
a,h )] ≤

1
FU +1

⇒
∑
f ≥0
P(FU = f , Ev (

h,h
a,h )) ·

E[max
x ∈X
P(Xv = x |O, FU , Ev (h,ha,h ))|FU , Ev (

h,h
a,h )]

≤ P(Ev (
h,h
a,h ))E

[
1

FU + 1

]
≤ p

2DFS(v)

p
= 2DFS(v).
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where we use (a) the independence of FU and the local neighborhood upstream of U , and (b)
Lemma 2. By analogous arguments we can similarly bound the expected precision under events
Ev (

h,h
h,a ), Ev (

a,h
h,h) and Ev (

h,a
h,h).

Finally consider Ev (h,hh,h), in which case v’s location is completely hidden from the adversaries.
Let I be the set of such nodes. Since each adversary is a neighbor to at most 4 honest nodes, there
are at least ñ − 4np = (1 − 5p)n nodes in I . So ∀x ∈ X, we have P(Xv = x |O,G, I , Ev (h,hh,h))

= P(Xv ′ = x |O,G, I , Ev (h,hh,h)) ∀v ′ ∈ I (11)

⇒ P(Xv = x |O,G, I , Ev (h,hh,h)) ≤
1
|I |
≤

1
(1 − 5p)n

⇒ max
x ∈X
P(Xv = x |O, Ev (h,hh,h)) ≤

1
(1 − 5p)n

, (12)

and hence E[maxx ∈X P(Xv = x |O, Ev (h,hh,h))|Ev (
h,h
h,h)] ≤

1
(1−5p)n . Summing over all the cases consid-

ered gives the result. □

B.1.1 Proof of Lemma 1.

Lemma 1. Let Jv denote the number of transactions (from honest servers) that reach v before reach-
ing an adversary. Then, for each event E ∈ {Ev (

a,h
h,h), Ev (

h,a
h,h), Ev (

h,h
a,h ), Ev (

h,h
h,a )} E[maxx ∈X P(Xv =

x |O, E, Jv )|E, Jv ] ≤ 1
Jv+1 .

Proof. W.l.o.g., letU1,U2, . . . ,UJv be the servers whose transactions are received by v and let
Wv = {v,U1,U2, . . . ,UJv }. Consider any matching x where xu is the message assigned to server u.
Then

P(S|G,Wv ,X = x) = P(S|G,Wv ,X = x′) (13)

where x′ is a new assignment of messages such that x ′u = xu for all u ∈ VH ,u <Wv and x ′Wv
= xWv .

This implies, for any fixed x ∈ X, P(Xv = x |O, E, Jv ,G,Wv ,XVH \Wv ) =

=
P(Xv = x ,O,XVH \Wv |E, Jv ,G,Wv )

P(O,XVH \Wv |E, Jv ,G,Wv )

=
P(O|E, Jv ,G,Wv ,Xv = x ,XVH \Wv )∑
x ′ P(O|E, Jv ,G,Wv ,Xv = x ′,XVH \Wv )

≤
1

Jv + 1
(14)

⇒ P(Xv = x |O, E, Jv ) ≤
1

Jv + 1

⇒ max
x ∈X
P(Xv = x |O, E, Jv ) ≤

1
Jv + 1

⇒ E[max
x ∈X
P(Xv = x |O, E, Jv )|E, Jv ] ≤

1
Jv + 1

. (15)

The claim follows. □
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B.1.2 Proof of Lemma 2.

Lemma 2. For any server v ∈ VH , let Fv denote the number of transactions that (i) reach v before
reaching any adversary and (ii) are forwarded by v along its left outgoing edge. Then E

[
1

Fv+1

]
≤

2DFS(v)
p .

Proof. For server v , consider event Ev in which the node incident on v’s left outgoing edge is
an adversary. Also, let Lv denote the event that Xv is forwarded along v’s left outgoing edge. Then
clearly,

DFS(v) ≥ P(Ev ,Lv )E[DFS(v)|Ev ,Lv ] =
p

2
E[DFS(v)|Ev ,Lv ]. (16)

Now, from our assumption Fv is independent of the events Ev and Lv . In this case, the expected

precision becomes E[DFS(v)|Ev ,Lv ] = E

[
1

Fv+1

����Ev ,Lv ] = E [ 1
Fv+1

]
, which combined with Equa-

tion (16) gives the lemma. □

B.2 Proof of Theorem 2
Theorem 2. Suppose the graph is unknown to the adversary, each node generates an arbitrary
number of transactions, and the adversary can link transactions from the same user.7 The expected
precision of the precision-optimal estimator for the one-to-one (DOPT−OtO), all-to-one (DOPT−AtO), and
per-incoming-edge (DOPT−PIE) message forwarding schemes are:

DOPT−OtO = Θ
(
p2 log

( 1
p

))
(3)

DOPT−AtO = Θ(p) (4)
DOPT−PIE = Ω(p). (5)

Proof. We start with two lemmas that reduce the problem to a first-spy precision calculation.

Lemma 3 (Intersection). Under each of the spreading mechanisms (all-to-one, one-to-one, and per-
incoming-edge), the adversary’s maximum expected precision DOPT is not a function of the number of
transactions per node.

This proof follows directly from the pseudorandomness of the forwarding mechanisms, and is
omitted for brevity.

Lemma 4 (First-Spy Optimality). For all spreading mechanisms (all-to-one, one-to-one, and per-
incoming-edge), there exists a constant C such that DOPT ≤ C · DFS +O(p

2), where DFS denotes the
expected precision of the first-spy estimator.

Lemma 4 is proved analogously to Theorem 1. The full proof is omitted for brevity. Together,
lemmas 3 and 4 imply that to characterize the precision-optimal estimator, we can focus on the
first-spy estimator. For brevity, we prove only all-to-one and one-to-one results in the following
lemmas.

Lemma 5 (One-to-One First-Spy). The expected precision of the first-spy estimator for one-to-one
forwarding satisfies DFS-OtO = O

(
p2 log

(
1
p

))
.

7If the user is using the same pseudonym for different transactions, this linkage is trivial. However, even when users use
fresh keys for different transactions, practical attacks have been able to link the pseudonyms [34].
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Fig. 13. Branching process model of upstream neighborhood. Red nodes are spies; blue dots denote nodes
that divert their transactions out of the tree. Both events result in pruning.

Proof. Let v ∈ VH , and denote the vertex to which v forwards its message Xv as s ∈ V . In the
case that s ∈ VH the precision of the first spy estimator for v is 0, because Xv is never matched
to v . When s ∈ VA, the precision of the first spy estimator for v is 1

|Wv |
, whereWv denotes the set

of nodes from which all fresh messages that v transmits to s originate. Note that v ∈ Wv . Now
E[DFS(v)] = P(s ∈ VA)E[

1
|Wv |
|s ∈ VA], where P(s ∈ VA) = p and E

[
1
|Wv |

���s ∈ VA] = ∑∞
w=1 P

(
|Wv | =

w
��s ∈ VA) 1

w .

Lemma 6. Under one-to-one forwarding, P
(
|Wv | = w

��s ∈ VA) = 2p
1−p

(
1−p
1+p

)w
.

(Proof in Appendix B.2.1).

Using Lemma 6 to expand the summation gives E
[

1
|Wv |

���s ∈ VA
]
=

∑∞
w=1

1
w

2p
1−p

(
1−p
1+p

)w
=

−2p
1−p log

(
2p
1+p

)
. Thus, E

[
1
|Wv |

���s ∈ VA] = 2p
1−p log

(
1+p
2p

)
and E[DFS-OtO(v)] =

2p2
1−p log

(
1+p
2p

)
. □

Lemma 7 (All-to-One First-Spy). The expected precision of the first-spy estimator for all-to-one
forwarding satisfies DFS-AtO = Θ(p).

Proof. We demonstrate upper and a lower bounds on DFS-AtO. As before, these bounds are
obtained by computing the expected precision of a given node v ∈ VH , and we denote the node to
whichv forwards its messageXv as s ∈ V . LetWv be the set of nodes from which all fresh messages
transmitted by v to s originate; our goal is to compute E[ 1

Wv
|s ∈ VA].

Lower bound. We use the following lemma:

Lemma 8. Under all-to-one forwarding, P
(
|Wv | = w

��s ∈ VA) = (2w )!
(w+1)!w !

(
1−p
2

)w−1 ( 1+p
2

)w+1
.

(Proof in Appendix B.2.2).
Note that E

[
1
|Wv |

���s ∈ VA] = ∑∞
w=1 P

(
|Wv | = w

��s ∈ VA) 1
w . We can lower bound this summation

by computing only the first term using Lemma 8. This gives P(|Wv | = 1|s ∈ VA) = 1
4p

2 + 1
2p +

1
4 .

Hence E[DFS(v)] = P(s ∈ VA)E[
1
|Wv |
|s ∈ VA] ≥

p
4 +O(p

2), or E[DFS(v)] = Ω(p).
Upper bound. Due to the branching properties of all-to-one forwarding, we now model v’s
upstream neighborhood (i.e. nodes that can send transactions to v) as a Galton-Watson (GW)
branching process [10]. This modeling assumption is appropriate as n →∞ due to the locally-tree-
like properties of sparse random graphs [35].

Each node in a realization of the GW process is a viable candidate source whose own transactions
could reach v . The branching distribution of the process is therefore determined by the fraction of
spies p, and the forwarding mechanism (in this case, all-to-one).Wv is the number of nodes in this
tree. Figure 13 illustrates this model. Suppose we start with a binary tree rooted at v—this includes
the entire upstream anonymity graph with respect to v . Each node has a second outbound edge
(dashed grey line); due to our locally-tree-like assumption, those edges cannot be used to reach v ,
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and are not part of the branching process. If a node is a spy, the spy and its upstream ancestors get
pruned from the tree. Similarly, if a node chooses to forward its incoming messages along the grey
edge, then none of its upstream children’s transactions will reach v ; hence we prune the node and
its ancestors. We let ν denote the probability that a node is a spy or forwards its transactions on its
grey edge, ν = 1

2 (1 + p). The mean of this offspring distribution µ = 2(1 − ν ) = 1 − p < 1 for p , 0,
so this GW process is subcritical and goes extinct with probability 1 [10]. Hence we can focus our
analysis on trees of finite size. We use Lemma 8 to expand E

[
1
|Wv |

���s ∈ VA] =
=

∞∑
w=1

1
w

(2w)!
(w + 1)!w!

(
1 − p
2
)w−1(

1 + p
2
)w+1

=
1
4
(1 + p)2

∞∑
w=1

1
w

2e2

π

1
w + 1

4w−1
( 1
4
(1 − p2)

)w−1
. (17)

where (17) uses Stirling’s inequalities. For p ∈ [0, 1],
∑∞
w=1

(1−p2)w−1
w (w+1) ≤

∑∞
w=1

1
w (w+1) = 1. Thus,

E
[

1
|Wv |

���s ∈ VA] ≤ e2
2π (1 + p)

2 and DFS-AtO ≤
e2
2π p +O(p

2). □

□

B.2.1 Proof of Lemma 6.

Lemma 6. Under one-to-one forwarding, P
(
|Wv | = w

��s ∈ VA) = 2p
1−p

(
1−p
1+p

)w
.

Proof. Under one-to-one forwarding, all messages other than Xv transmitted by v to s are
received by v from the same predecessor v ′. Likewise, all messages transmitted by v ′ to v are
received byv ′ from the same predecessorv ′′ (other thanXv ′ in the case thatXv ′ is transmitted tov).
Continuing this reasoning results in a line graph of predecessor nodes. Note that the first adversary
predecessor node in this line graph prevents any subsequent predecessors from contributing
toWv . We condition on |T |, the number of vertices in the line graph: P

(
|Wv | = w

��s ∈ VA
)
=∑∞

t=w P
(
|T | = t

��s ∈ VA
)
P
(
|Wv | = w

��|T | = t , s ∈ VA
)
. Here, P

(
|T | = t

��s ∈ VA
)
= p(1 − p)t−1

(recall that v is a member of T with probability 1). Additionally, P
(
|Wv | = w

��|T | = t , s ∈ VA
)
=( t−1

w−1
)
( 12 )

w−1( 12 )
t−w . Therefore, P

(
|Wv | = w

��s ∈ VA) = ∑∞
t=w p(1 − p)t−1 (t−1)!

(w−1)!(t−w )!

(
1
2

)w−1 (
1
2

)t−w
=

p
(w−1)!

(
1
2

)w−1 ∑∞
t=w (1 − p)t−1

(t−1)!
(t−w )!

(
1
2

)t−1 (
1
2

)1−w
=

p
(w−1)!

∑∞
t=w

(t−1)!
(t−w )!

(
1
2 (1 − p)

)t−1
= 2p (1−p)

w−1

(1+p)w =

2p
1−p

(
1−p
1+p

)w
□

B.2.2 Proof of Lemma 8.

Lemma 8. Under all-to-one forwarding, P
(
|Wv | = w

��s ∈ VA) = (2w )!
(w+1)!w !

(
1−p
2

)w−1 ( 1+p
2

)w+1
.

Proof. In a 4-regular digraph, every v ∈ V has two predecessors. Thus, the upstream graph
of v may be modeled as a binary tree Bv rooted at v . For any member vertexm of Bv , ifm ∈ VA
then neitherm nor any members of the sub-tree rooted atm transmit fresh messages to s via v .
Additionally, every vertex transmits all received and generated messages across one outbound
edge (either left or right with equal probability) for the entire epoch. No messages are transmitted
across the other outbound edge for the entire epoch. For any member vertexm of Bv , ifm transmits
messages across the outbound edge that is not part of Bv then neither m nor any members of
the sub-tree rooted atm may contribute messages transmitted by v to s . These cases occur with
probability 1

2 .
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Accounting for these cases yields a new treeTv rooted atv . This treeTv consists of the remaining
members of Bv after pruning sub-trees rooted at adversary nodes and sub-trees rooted at nodes
that transmit all messages across the outbound edge that is not part of Bv . A node is the root of a
pruned sub-tree with probability 1

2 (1 + p).
All messages generated by members of Tv are transmitted by v to s . The number of nodes in

Tv is equal to |Wv |. Since a node is the root of a pruned sub-tree with probability 1
2 (1 + p), then a

node is a member of Tv with probability 1
2 (1 − p). Note that v is a member of Tv with probability

1. When Tv consists of |Wv | = w nodes, the leaves of Tv each have two pruned children (w + 1 in
total). Therefore, P

(
|Wv | = w

��s ∈ VA) =
(2w )!
(w+1)!w !

(
1−p
2

)w−1 ( 1+p
2

)w+1
. □

B.3 Proof of Proposition 1
Given a graph G and observations after one epoch S, an adversary can construct sets Sv at every
adversary node. Each set Sv consists of the fresh messages forwarded by v . As a worst-case
assumption, suppose the adversary learns the one-to-one forwarding mappings, but not the edges
over which honest nodes send their own messages. As a result, an adversary must first match each
honest node u ∈ VH with one of two possible sets Sv and Sv ′ . Then, the adversary must match
these honest nodes with messages in these sets. Let AS denote the event in which u is matched to
the correct set Sv , and let AC

S denote the event in which u is matched to the incorrect set Sv ′ .
The expected precision for u ∈ VH is E[DMAT(u)|G, S] = P(AS )E[DMAT(u)|G, S,AS ] +

P(AC
S )E[DMAT(u)|G, S,AC

S ] = P(AS )E[DMAT(u)|G, S,AS ] = P(AS )E
[

1
|Sv |

���G, S,AS

]
= P(AS )

1
|Sv |
.

The overall expected precision may be written as 1
(1−p)n

∑
u ∈VH P(AS )

1
|Sv |

. Each term 1
|Sv |

occurs
in the summation |Sv | times, which means that the expected precision over all graphs G may be
written as 2pn

(1−p)nP(AS )P(|Sv | > 0).
Note that P(|Sv | = 0) is given by P(|Sv | = 0) =

∑∞
t=0 P(|T | = t)P

(
|Sv | = 0

��|T | = t
)
=
∑∞

t=0(1 −

p)tp2
(
1
2

)t
= p2 2

1+p . Thus, P(|Sv | > 0) = 1 − 2p2
1+p =

1+p−2p2
1+p . Since

1
2 ≤ P(AS ) ≤ 1, then

2pn
(1 − p)n

1
2
1 + p − 2p2

1 + p
≤ DMAT ≤

2pn
(1 − p)n

1
1 + p − 2p2

1 + p

Simplifying gives p+p2−2p3
(1−p2) ≤ DMAT ≤

2p+2p2−4p3
(1−p2) .

B.4 Proof of Proposition 2
The proof follows by identifying that the first spy node to receive a message along dandelion’s stem
is a sufficient statistic for detection. Since the stem-phase occurs via peers’ outbound edges, P and
Q have similar stem-phase propagation and differ only in the diffusion phase. As such precision
and recall are not affected by how the message spreads in the diffusion phase.
For simplicity, let us assume a small q, i.e., messages are always received by a spy node in

the stem-phase before diffusion begins. For any message x ∈ X let O1
x be the random variable

comprising a three-tuple (Uh ,Ua ,T ) where, in the stem-phase propagation of x (i)Ua ∈ VA is the
first spy to receive x , (ii)Uh ∈ VH is the honest peer that forwarded x toUa and (iii) T is the time
when x was received byUa . Next, let O2

x denote the random variable that comprises of observations
made by the adversary after it has been forwarded byUa in the stem-phase. This includes all tuples
(u,v, t) such that honest peer u ∈ VH forwarded x to v ∈ VA at time t > T . Lastly let Yx denote
the honest peer v ∈ VH that is the source of transaction x . To get a worst-case guarantee we also
assume that the adversary has complete knowledge of the topology H of the anonymity graph.
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Since the stem-phase propagation is over a line, we observe that once a message x reaches a spy
nodeUa for the first-time, the subsequent spreading dynamics depends entirely on the action taken
byUa (who it forwards x to, when it forwards etc.) and is conditionally independent of the past.
This is true for every message x ∈ X. As such we have,

P(O2
x1 , . . . ,O

2
xn |O

1
x1 , . . . ,O

1
xn ,Yx1 , . . . ,Yxn ,H )

= P(O2
x1 , . . . ,O

2
xn |O

1
x1 , . . . ,O

1
xn ,H ) (18)

⇒ P(Yx1 , . . . ,Yxn |O
1
x1 , . . . ,O

1
xn ,O

2
x1 , . . . ,O

2
xn ,H )

= P(Yx1 , . . . ,Yxn |O
1
x1 , . . . ,O

1
xn ,H ) (19)

⇒ P(Yxi |O
1
x1 , . . . ,O

1
xn ,O

2
x1 , . . . ,O

2
xn ,H )

= P(Yxi |O
1
x1 , . . . ,O

1
xn ,H ) ∀i ∈ [n]. (20)

Thus the posterior is conditionally independent of later observations, given stem-phase observations
O1
x1 , . . . ,O

1
xn . Now, consider a network H

′ that is derived from H by removing all outgoing edges
from adversarial peers. Since the observations O1

x log transactions that have been received for the
first time by a spy, it implies the routes taken by the transactions do not include any spy node.
Hence the statistics of the stem-phase spreading are identical in H ′ and H . Mathematically this
implies,

P(Yxi |O
1
x1 , . . . ,O

1
xn ,H ) =

P(Yxi ,O
1
x1 , . . . ,O

1
xn |H )

P(O1
x1 , . . . ,O

1
xn |H )

=
P(Yxi ,O

1
x1 , . . . ,O

1
xn |H

′)

P(O1
x1 , . . . ,O

1
xn |H

′)
= P(Yxi |O

1
x1 , . . . ,O

1
xn ,H

′). (21)

From Theorems 3 and 4 in [14] we know that the optimal value of the expected precision and
recall is a function of the posterior probabilities P(Yxi |O1

x1 , . . . ,O
1
xn ,O

2
x1 , . . . ,O

2
xn ,H ), which by

combining Equations (20) and (21) in turn equals P(Yxi |O1
x1 , . . . ,O

1
xn ,H

′).
We finish the proof by applying the above results on networks P and Q. Let HP and HQ denote

the topologies of P and Q respectively; let H ′
P
and H ′

Q
denote the networks obtained by removing

outgoing spy edges from P and Q respectively. By construction we have H ′
P
= H ′

Q
. As such the

two probability spaces, each comprising of the random variables Yx1 , . . . ,Yxn ,O1
x1 , . . . ,O

1
xn ,H

′,
pertaining to the networks P andQ are identical. Hence we conclude the optimal values of precision
and recall in the two networks must also be the same.

B.5 Proof of Proposition 3
Proof. Let v1 be the source of a message that propagates along a path v1,v2, . . . ,vk of length k .

Let δhop be the delay incurred between each hop, and let Tout(vi ) be the random timeout at node vi
for i = 1, . . . ,k . Note that the message takes δhopk time to traverse k hops and reach vk . We desire
that none of the vi , i = 1, . . . ,k , initiate diffusion during this time with high probability. Since the
random variables Tout(vi ) are exponential, this probability can be bounded as(

e−(k−1)δhop/Tbase
) (

e−(k−2)δhop/Tbase
)
. . .

(
e−(k−k )δhop/Tbase

)
= e−k(k−1)δhop/(2Tbase) ≥ 1 − ϵ ⇒ Tbase ≥

−k(k − 1)δhop
2 log(1 − ϵ)

,

□
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B.6 Proof of Theorem 3
Under dandelion spreading, for any message x , the recall-optimal estimator chooses the node v
that maximizes P(Xv = x |O) (Theorem 4 [14]). Since we assume a uniform prior on sources, this is
equivalent to a maximum-likelihood estimator that returns v̂ = argmaxv P(O|Xv = x). From [14],
we know that for a given adversarial mapping strategy, the expected recall is equivalent to the
probability of detection, P(v̂ = v).

Consider a Dandelion++ source node v that transmits a transaction x . In order to characterize
the expected recall over all honest nodes in VD , by symmetry, it is sufficient to compute the
probability of detecting v as the source of x , where the probability is taken over the spreading
realization, randomness in the graph, and any randomness in the adversary’s estimator. This proof
bounds the probability of detection for v under version-checking and no-version-checking. Let D
denote the event where v has at least one outbound neighbor that supports Dandelion++ (i.e.,
|Dv | > 0), and let D denote the complement of that event.
Version-checking: For the lower bound, we have P(v̂ = v) = P(v̂ = v |D)P(D)+P(v̂ = v |D)P(D) ≥
P(v̂ = v |D)P(D). We can separately bound each of these terms:

P(D) = 1 −
n − 1 − |VD |

n − 1
n − 2 − |VD |

n − 2
. . .

n − η − |VD |

n − η

≥ 1 −
(
n − 1 − |VD |

n − 1

)η
≥ 1 −

(
1 −
|VD |

n

)η
= 1 − (1 − f )η ,

where f = p + (1 − p)β is the total fraction of nodes running Dandelion++, and P(v̂ = v |D) ≥ p
f ,

since the first-spy estimator detects the true source if the first node in the stem is a spy node. Thus
P(v̂ = v) ≥ p

f (1 − (1 − f )η).

To compute the upper bound, we have

P(D) ≤ 1 −
(
n − η − |VD |

n − η

)η
= 1 −

(
1 −

f n

n − η

)η
P(D) ≤

(
n − 1 − |VD |

n − 1

)η
= (1 − f )η .

Trivially, P(v̂ = v |D) ≤ 1.To bound P(v̂ = v |D), we condition on the event S , where v’s first node
in its Dandelion++ stem (call it w) is a spy node. The first-spy estimator is recall-optimal if
there is a spy node in the stem (Theorem 4 in [14]). We have P(v̂ = v |D) = P(v̂ = v |D, S)P(S |D) +
P(v̂ = v |D, S)P(S |D), and

P(v̂ = v |D, S) ≤ 1, P(S |D) =
pn

f n − 1
, P(S |D) ≤ 1 −

p

f
.

To bound P(v̂ = v |D, S), we condition on F , the event where w chooses to extend the stem.
P(v̂ = v |D, S) = P(v̂ = v |F ,D, S)P(F |D, S) + P(v̂ = v |F ,D, S)P(F |D, S). For this upper bound, we
also assume that an oracle gives the adversary the source of the diffusion process in the spreading
phase. That is, let ℓ1(x), . . . , ℓMx (x) denote the stem nodes associated with transaction x ; in this
case, ℓ1(x) = v , andMx denotes the length of the stem. We assume an oracle gives the adversary
ℓMx (x). Ifw chooses not to extend the stem (event F ), then the ℓMx (x) = w . We also assume that
the adversary knowsVD , the set of nodes running Dandelion++. Hence, we have P(F |D, S) = 1−q
and P(F |D, S) = q. We now wish to bound P(v̂ = v |F ,D, S) and P(v̂ = v |F ,D, S)—the probabilities
of detection given that v passed the message to honest Dandelion++ neighborw , conditioned on
w’s decision to either extend or terminate the stem, respectively.
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Recall that if there is a spy in the stem (e.g., ℓi (x) ∈ VA for some i ∈ [Mx ]), then the first-spy
estimator is recall-optimal. If there are no spies in the stem (i.e., when VA ∩ {ℓ1(x), . . . , ℓMx (x)} =
∅), ℓ1(x) → ℓMx (x) → O form a Markov chain. Since none of the stem nodes are are spies,
the spy observations are conditionally independent of the source node given ℓMx (x). Since the
adversary learns ℓMx (x) = ℓ exactly from the oracle, the recall-optimizing strategy becomes
v̂ = argmaxu P(ℓMx (x) = ℓ |Xu = x).

Part 1: To bound P(v̂ = v |F ,D, S), note that ℓMx (x) = w . Suppose that in addition to revealingw , the
oracle also tells the adversary thatw is not the true source. Consider the set R = {u ∈ VD |w ∈ Du },
which contains all nodes that could have feasibly relayed aDandelion++ transaction tow . For nodes
u ∈ R, the likelihood of each node being the source is P(ℓMx (x) = w |Xu = x) = 1

|Du |
(q + (1 − q)δ )

where δ is the probability that the stem, having reachedw without terminating, loops back tow
and terminates at some later hop. Conditioned on the stem passing throughw , the rest of the stem
is independent of the source, so δ does not depend on u. Let v̂ denote the most likely source among
the nodes in R. v̂ = argmaxu ∈R P(ℓMx (x) = w |Xu = x) = argminu ∈R |Du |. It is straightforward to
show that for any alternative source z , v̂ , z ∈ VH has a lower likelihood. This follows trivially if
z ∈ R. If z < R, the stem from z tow would require at least two hops, which reduces the likelihood
of candidate source v∗ by a factor of at least (1 − q). Hence v̂ is the ML source estimate, and we
want to know P(v̂ = v). Since each node u in R is equally likely to have the smallest Du set, we
have P(v̂ = v |F ,D, S) ≤ E[ 1

|R | ]. We know that |R | ≥ 1, because v is connected tow by construction.
Since each node chooses its η connections independently, this can be computed as E[1/(Z + 1)]
where Z ∼ Binom(ñ − 1,ϕ), and ϕ is the probability of any given node choosing w as one of its
outbound edges. We can compute ϕ as ϕ = 1 − n−2

n−1
n−3
n−2 . . .

n−η−1
n−η

≥ 1 −
(
1 − 1

n−η

)η
. Henceforth, we will abuse notation and take ϕ = 1 −

(
1 − 1

n−η

)η
. By using this

lower bound on ϕ, we are reducing the probability of any given node choosingw as an outbound
edge, and thereby increasing the overall probability of detection. Given that, it is straightforward
to show that

P(v̂ = v |F ,D, S) ≤ E
[

1
Z + 1

]
=

1 − (1 − ϕ)ñ

ñϕ
≜ ζ . (22)

Part 2: We want to show that limn→∞ P(v̂ = v |F ,D, S) = 0; if this is the case, then the asymptotic
inequality in Theorem 3 holds for any C ′ > 1. There are three ways the adversary can identify the
correct source v under conditions F , D, and S : 1) the stem eventually loops back to v , and then
transmits to a spy node (we call this eventA), 2) the stem loops back tov , which terminates the stem
(event B), or 3) the stem terminates before reaching a spy node, and the set of Dandelion++ nodes
with outbound edges to the stem’s terminus ℓ includes v (event C). Note that we are still assuming
the adversary learns the last stem node ℓ. Also, B and C are not sufficient conditions for detection,
but they do guarantee a nonzero probability of detection under a recall-optimal estimator. Therefore,
since these events are disjoint, P(v̂ = v |F ,D, S) ≤ P(A) + P(B) + P(C); we can individually bound
each of these events.

To bound P(A), we first compute the probability of the stem looping back to v without reaching
any spy nodes or terminating (we call this event A′); since this event is necessary but not sufficient
for detection under event A, we have P(A) ≤ P(A′). P(A′) can be upper bounded by relaxing the
restriction of not hitting any spy nodes before reachingv . So we just want the probability of the stem
looping around and reaching v before terminating. We let M̃x denote the stem length (ignoring the
first two hops of v andw); it is a geometric random variable with parameter q. We letTv denote the
random number of hops before hitting node v , given starting pointw (the number of hops excludes
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w). Thus P(A′) ≤ P(Tv ≤ M̃x ). As an upper bound, we assume all nodes run Dandelion++. Hence,
each node has an equal probability 1

n−1 of forwarding the message to v , so Tv ∼ Geom( 1
n−1 ). Then

P(Tv ≤ M̃x ) =
∑∞

i=1 P(M̃x = i)P(Tv ≤ i) =
∑∞

i=1 q(1−q)i−1(1− (1− 1
n )

i ) = 1−q(1− 1
n )

1
1−(1−q)(1− 1

n )
.

Taking the limit gives limn→∞ 1 − q(1 − 1
n )

1
1−(1−q)(1− 1

n )
= 1 − q

q = 0, so limn→∞ P(A) = 0. The same
argument applies for event B, so limn→∞ P(B) = 0.

For event C we have P(C) =
∑
u ∈VH \{v } P(ℓMx (x ) = u)P(u ∈ Dv ) =

= P(ℓMx (x ) = w) +
∑

u ∈VD\{v,w }

P(ℓMx (x ) = u)P(u ∈ Dv ) (23)

≤ P(ℓMx (x ) = w) + γ (24)

where (23) holds because we already know thatw ∈ Dv by definition, and since we are conditioning
on event D, v will never relay the message to a non-Dandelion++ node. (24) holds because each
Dandelion++ node other thanw is equally likely to be inDv , so foru ∈ VD \{v,w},γ ≜ P(u ∈ Dv )

does not depend on u. By the same logic as before, limn→∞ P(ℓMx (x )=w ) = 0. Hence we only need

to show that limn→∞ γ = 0. We can write out γ =
( nη−2)

( nη−1)
=

η−1
n−η+2 , so limn→∞ γ = 0. Given this, we

have that limn→∞ P(v̂ = v |F ,D, S) = 0.
Combining the two parts gives

P(v̂ = v |D, S) ≲ ζq. (25)

Overall, we have P(v̂ = v) ≲
(
1 −

(
1 − f n

n−η

)η ) ( pn
f n−1 + (1 −

p
f )qζ

)
+ (1 − f )η . Taking the limit as

n →∞ gives (1 − (1 − f )η)
(
p
f + (1 −

p
f )qζ

)
+ (1 − f )η . The claim follows.

No-version-checking: The lower bound comes directly from Theorem 2 in [14].
To prove the upper bound, we first condition on whether v’s selected stem relayw is a spy node;

as before, S denotes this event. In this section, we will repurpose our previous notation and use D
to denote the event where the selected relay supports Dandelion++. Again, we will assume that
the adversary knows the underlying graph H , VD , and the final stem node ℓMx (x). We have

P(v̂ = v) = P(v̂ = v |S)P(S) + P(v̂ = v |S)P(S) (26)

P(S) =
pn

n − 1
P(S) =

(1 − p)n
n − 1

P(v̂ = v |S) = 1

To bound P(v̂ = v |S), we condition on D: P(v̂ = v |S) = P(v̂ = v |S,D)P(D |S)+P(v̂ = v |S,D)P(D |S).

P(D |S) =
β(1 − p)n
(1 − p)n − 1

=
βñ

ñ − 1

P(D |S) =
(1 − β)(1 − p)n
(1 − p)n − 1

=
(1 − β)ñ
ñ − 1

P(v̂ = v |S,D) ≲ ζq, (27)
P(v̂ = v |S,D) ≤ ζ , (28)

where (27) follows from (25), and (28) follows from (22) by assuming the adversary is told thatw is
not the true source. Combining gives

P(v̂ = v |S) ≲ ζ

(
qβñ

ñ − 1
+
(1 − β)ñ
ñ − 1

)
=

ζ (1 − β(1 − q))ñ
ñ − 1

.
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Fig. 14. One-to-one transaction forwarding when
the adversary knows the graph but does not know
the nodes’ internal routing decisions.
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Fig. 15. One-to-one transaction forwarding when
the adversary knows the graph and knows the
nodes’ internal routing decisions.

Plugging into (26) gives P(v̂ = v) ≤ pn
n−1 +

(1−p)n
n−1

ζ (1−β (1−q))ñ
ñ−1 . Taking the limit as n → ∞ gives

p + ζ (1 − β(1 − q))(1 − p).

C TRADEOFFS IN GRAPH TOPOLOGY
As discussed in Section 4.2, there are tradeoffs between using 4-regular graphs with one-to-one
routing and line graphs (recall that on line graphs, there is only one possible routing scheme,
which can be viewed as a special case of one-to-one routing). In this section, we give some more
explanation and empirical results detailing these tradeoffs. In our experiments, we have considered
three different adversarial settings:

(a) An adversary who does not know the underlying graph
(b) An adversary who knows the graph, but does not know any routing decisions
(c) An adversary who knows the graph and also knows each node’s relay routing decisions. That

is, it knows how node v will route incoming transactions from edge e , but it does not know
how v will route v’s own transactions.

Adversarial model (c) is motivated by the fact than an adversary can send probe transactions
that get relayed through honest nodes, but it cannot force honest nodes to produce their own
transactions. Hence learning a node’s relay routing choices is feasible, whereas learning a node’s
own transaction routing choices is significantly more difficult. We also considered two different
graph settings:

(a) Exact regular graphs (idealized setting)
(b) Approximate regular graphs (proposed construction mechanism detailed in Section 4.3)
Since the adversary with no graph knowledge was already discussed in Section 4.1, we focus on

adversarial models (b) and (c). We begin by considering an adversary that knows the graph, but
not the internal routing decisions. Figure 14 shows the average precision of such an adversary on
exact 4-regular and line graphs, each with 100 nodes. The error bars give the standard error for
our experiments. Our simulations show that 4-regular graphs have a lower average precision than
line graphs. This trend is similar to what we observed for adversaries that do not know the graph,
discussed in Section 4.1. However, Figure 15 illustrates the average precision for an adversary that
knows both the graph and the internal routing decisions of each node. Here, the trend is reversed:
line graphs have a precision that is upper bounded by p, whereas on 4-regular graphs, the precision
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can be higher than p. This makes sense because on line graphs, each node has only one possible
routing decision, so the additional routing knowledge of the adversary does not help.

These simulated observations suggest that if the adversary is strong enough to learn the internal,
random routing decisions of each node, a line graph actually gives greater protections. However,
we expect such learning to be expensive, since the only way to learn a node’s routing decisions
is to relay transactions through that node. To learn routing decisions for all nodes in the graph
will require at least a linear number of transactions in the number of nodes. Such an attack would
quickly grow expensive, especially considering that the graph is changing periodically.
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