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ABSTRACT
In privacy-preserving blockchain systems, to protect a sender’s iden-

tity of a transaction in privacy-preserving blockchain systems, ring

signature (RS) schemes have been widely implemented, which allow

users to obscure consumed tokens via including “mixin” (i.e., chaff

tokens). However, recent works point out that existing RS schemes

are vulnerable to the “chain-reaction” analysis, where adversaries

eliminate mixins of RSs by utilizing the fact that each token can

only be consumed in a RS. By “chain-reaction” analysis, adversaries

can find some definite token-RS pair sets (DTRSs) to confirm the

sender’s identity of a RS. Besides, the existing RS schemes do not

consider the diversity of mixins when generating a RS. Moreover,

since the transaction fee is proportional to the number of mixins, a

use is motivated to use a RS with the minimum number of mixins. In

this paper, we formally define the diversity-aware mixins selection

(DA-MS) problem, which aims to generate a RS with the minimum

number of mixins satisfying the constraints of its diversity and the

anonymity of other RSs. We prove the DA-MS problem is #𝑃 and

propose a breadth-first search algorithm to get the optimal solution.

Furthermore, to efficiently solve the DA-MS problem, we propose

two practical configurations and two approximation algorithms

with theoretic guarantees. Through comprehensive experiments

on real data sets as well as synthetic data sets, we illustrate the

effectiveness and the efficiency of our solutions.
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Figure 1: The Unspent Transaction Output (UTXO) model.
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1 INTRODUCTION
Recently, blockchain technologies attract much attention from both

academia and industries. From the perspective of the database com-

munity, blockchain is a kind of the distributed transaction manage-

ment solution, where nodes keep replicas data of publicly agreed

execution order of the transactions [1]. Many blockchain appli-

cations, such as cryptocurrency [2], e-voting [3], healthcare [4],

and storage sharing [5], are in the Unspent Transaction Output

(UTXO) model, where each transaction will consume some input

token(s) from its sender(s) to its receiver(s). Thus, one token can

only be consumed once. In blockchain systems, tokens represent

programmable assets or access rights, which are operable only by

the persons who have their private keys. For example, in e-voting

systems [3], a token indicates a ballot of a user.

Since the transaction data is available for all the nodes in the

blockchain system, the privacy issue (e.g., the ownership of to-

kens) needs to be handled for specific applications (e.g., e-voting or

healthcare systems). By analyzing transactions on blockchains, ad-

versaries can link users to transactions/tokens [6–8]. For instance, if

a transactionℎ2 consumes a token which is generated in a historical

transaction (HT) ℎ1, adversaries can link the receiver of ℎ1 to the

sender of ℎ2. Although current blockchain systems conceal users’

identities by pseudonymities, this kind of link is still risk. Once

adversaries link one pseudonymity with a user’s identity, they can

link the user’s identity to all pseudonymities that are linked to the

revealed pseudonymity [9]. Furthermore, they can infer who are

trade partners with this user.

To protect privacy, ring signature (RS) schemes arewidely used in

various blockchain systems, where users can utilize RSs to obscure

the ownership of input tokens by adding chaff tokens, namely

“mixins”. In some scenarios, users use RSs to hide the consumed
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tokens in transactions to avoid adversaries linking their identities

to transactions/tokens. As illustrated in Figure 1, there are multiple

input RSs and output tokens in a transaction. A RS contains only

one consumed token marked in yellow color and many other tokens

(mixins) marked in green color. The details of RS schemes will be

introduced in Section 2. Currently, existing RS schemes measure

the anonymity of a RS as its number of mixins [10, 11]. However,

there are two defects of these existing methods. The first is that, if

in a RS the consumed token and its mixins are generated by the

same transaction ℎ𝑖 , the source of the consumed token can still be

inferred as ℎ𝑖 , which is called Homogeneity Attack [12]. The second

is that, since each token can only be consumed once, adversaries

can infer the consumed token in a RS by analyzing other related

RSs, which is called Chain-reaction Analysis [10]. Besides, since the
transaction fee is proportional to the number of mixins, a user is

motivated to find an anti-attack RS with the smallest size.

To overcome the weakness of the existing solutions, in this paper,

we will consider a RS generation problem for blockchain systems,

namely diversity-aware mixins selection (DA-MS), which selects

a minimal set of mixins for a given token to generate a valid anti-

attach RS. Here is a motivation example.

Example 1 (AnMixins Selection Example). Suppose there are
four tokens (𝑡1, 𝑡2, 𝑡3, 𝑡4) and two RSs, 𝑟1 = {𝑡1, 𝑡2} and 𝑟2 = {𝑡1, 𝑡2}.
The tokens 𝑡1 and 𝑡3 are the outputs of the same HT ℎ1. The tokens 𝑡2
and 𝑡4 are outputs of another two HTs ℎ2 and ℎ3, respectively. Now
we want to generate a RS for consuming 𝑡3.

The first solution is using 𝑟3 = {𝑡1, 𝑡3}. Since 𝑡1 and 𝑡3 are all
generated in ℎ1, adversaries need not to determine the consumed
token in 𝑟3 and can directly know the consumed token of 𝑟3 is from
ℎ1, which does not resist the homogeneity attack.

The second solution is using 𝑟3 = {𝑡2, 𝑡3}. Recall that each token
can only be consumed once. Since 𝑟1 = 𝑟2 = {𝑡1, 𝑡2}, adversaries can
conclude that 𝑡1 and 𝑡2 must have been consumed. Thus, the consumed
token in 𝑟3 = {𝑡2, 𝑡3}must be 𝑡3, which means chain-reaction analysis
is not resisted in this solution.

The third solution is using 𝑟3 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}. The consumed tokens
of 𝑟1, 𝑟2, and 𝑟3 cannot be inferred. However, 𝑟3’s size is 4.

A good solution is using 𝑟3 = {𝑡3, 𝑡4}. The consumed tokens in 𝑟1,
𝑟2, and 𝑟3 cannot be inferred. Besides, this 𝑟3 contains only 2 tokens.

Motivated by the above example, we will formalize the DA-MS

problem, which targets on selecting a minimal set of mixins for

a given token to consist a RS such that the new RS and existing

RSs can resist attacks (e.g., homogeneity attacks and chain-reaction

analysis attacks). In this paper, we first define a concept called “def-

inite token-RS pair set” (DTRS) to resist the attack based on the

chain-reaction analysis. Besides, inspired by the recursive diversity

principle [13], we define the concept of a “recursive diversity RS” to

measure the anonymity of a RS. Then, based on these concepts, we

formally define the DA-MS problem as to find a recursive diversity

RS with minimal size while retaining the existing RSs’ privacy. We

prove the DA-MS problem is #P through a reduction from the prob-

lem of enumerating all perfect matchings in bipartite graphs [14].

We first propose an exact breadth-first search algorithm. However,

the time complexity is exponential high. To efficiently tackle DA-

MS, three challenges need to be addressed: (a) how to efficiently

verify if DTRSs of a RS satisfy the diversity requirement; (b) how

to guarantee that a user can always consume a token with a RS

that retains existing RSs’ diversities since the blockchain system

is distributed; and (c) how to pick an eligible set of mixins with a

minimal size. To overcome the first two challenge, we propose two

practical configurations which require that every new RS must be

the superset of an existing RS or be disjoint with it; and the diversity

requirement of a new RS should be a little higher than the diversity

requirement of its DTRSs. To tackle the third challenge, we propose

two approximation algorithms, namely the Progressive Algorithm

and the Game-theoretic Algorithm, with theoretic guarantees.

Specifically, we make the following contributions:

• We define the threat model and the notion of a recursive (𝜖 ,

𝑙 )-diversity RS in Section 2.

• We formally define the diversity-aware mixins selection (DA-MS)

problem and give the proof of its hardness in Section 3.

• We propose a breadth-first search algorithm to achieve the exact

solution of DA-MS in Section 5.

• We propose two practical configurations and two approximation

algorithms, the Progressive Algorithm and the Game-theoretic

Algorithm, with theoretic guarantees in Section 6.

• We conduct comprehensive experiments on real and synthetic

data sets to demonstrate the effectiveness and efficiency of our

solutions in Section 7.

Besides, we propose a framework, TokenMagic, in Section 4,

discuss the related work in Section 8, and conclude in Section 9.

2 PRIVACY SEMANTICS
In blockchain systems, since RSs can be verified by all users (e.g.,

miners and transaction users), adversaries can access all the data of

historical RSs. Thus, different from many privacy scenarios where

users preserve privacy through bringing in noises [6–8], users must

guarantee that RSs can be accurately executed in blockchain sys-

tems. Since users in blockchain systems are usually anonymous to

some extent (i.e., using different unknown public keys), adversaries

want to link some transactions on blockchains together and infer

more information about transactions [9] (e.g., the addresses of part-

ners of trades). Moreover, blockchain systems are distributed. Each

user customizes RSs for her/his own benefits (i.e., minimizing the

sizes of her/his own RSs) and privacy requirements. In this section,

we introduce the threat model in blockchain scenarios and define

the notion of a recursive (𝑐 , ℓ)-diversity RS.

2.1 The Ring Signature Scheme
Generally, a RS scheme can be divided into 3 parts: selecting a set

of mixins, generating a ring signature, and verifying the signature:

• Step 1. Selecting a set of mixins𝑀 . For example, in Monero [2],

a user inputs an integer 𝜁 (larger than 10) to algorithm SM, then

SM retrieves half of 𝜁 mixins from the blocks generated within

recent 1.8 days and other mixins from other blocks.

• Step 2. Generating a ring signature. With transaction message

𝑚𝑔, a set of mixins 𝑀 , the consuming token 𝑡 and its private key

𝑝𝑘 , the algorithm Gen outputs a RS 𝑟 , which contains the set of

mixins𝑀 , a token image 𝐼 , and a set of auxiliary parameters 𝜔 .

• Step 3. Verifying the signature. When other users receive 𝑟 , they

verify if 𝑟 is eligible. If 𝐼 had already been used (indicating the

corresponding token having been consumed), 𝑟 will be rejected.

With 𝜔 , the algorithm Ver can verify if the user has the private

key of 𝑡 . Besides, verifiers can check if 𝑟 satisfies some extra
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configurations (e.g., Monero requires half of mixins must come

from blocks generated in recent 1.8 days). If 𝑟 conflicts these

configurations, 𝑟 will also be rejected.

Step 1 and Step 2 are conducted offline by users themselves. Step

3 is verified by miners when they block transactions. Thus, only

the time complexity of Step 3 has an impact on the throughput of

the blockchain system. A RS is a combination of a sorted sequence

of public keys of tokens (𝑀 ∪ 𝑡 ), a token image 𝐼 of 𝑡 , and a zero-

knowledge proof 𝜔 . For a token 𝑡 , its owner can use its private

key 𝑝𝑘 to generate one token image 𝐼 , which is explicit to all users.

Observers cannot infer 𝑡 from 𝐼 . For a token, its image is unique.

When an image 𝐼 was used, we know the corresponding token was

used and cannot be used again (i.e., prevent the double-spending

attack [15]), although we do not know which token it is. The zero-

knowledge proof [16] is used to prove that the user knows the index

of the corresponding token of the image in the sorted sequence,

while the proof will not leak any information about the token or its

index. A user can use a RS to prove she/he has the right to use an

unconsumed token and do not let others know what the token is. In

this paper, we focus on how to select a desired set of mixins in Step

1 to enhance anonymity. This paper does not involve any change of

the encryption algorithm in Step 2 and the verification algorithm

in Step 3. In the rest of this paper, we simply consider a RS as a set

of tokens consisting of a consuming token and its mixins.

2.2 The related RS set of a RS
Definition 1 (The Related RS Set of a RS). For a RS 𝑟𝑘 , at timestamp

𝜋 , the related RS set of 𝑟𝑘 is 𝑅
𝑟𝑘
𝜋 =

⋃
𝑖=0

𝑅
𝑟𝑘 ,𝑖
𝜋 where 𝑅

𝑟𝑘 ,𝑖
𝜋 is the set

of RSs which are proposed before timestamp 𝜋 and contain some

tokens in common with some RS(s) in 𝑅
𝑟𝑘 ,𝑖−1

𝜋 .

When 𝑖 = 0, 𝑅
𝑟𝑘 ,0
𝜋 is the set of RSs containing any tokens in 𝑟𝑘 .

Example 2. At time stamp 𝜋 , there are four RSs, 𝑟1 = {𝑡1, 𝑡2, 𝑡5},
𝑟2 = {𝑡1, 𝑡3}, 𝑟3 = {𝑡1, 𝑡3}, 𝑟4 = {𝑡2, 𝑡4}, and 𝑟5 = {𝑡4, 𝑡5, 𝑡6}. The
tokens 𝑡5 and 𝑡6 are from the same historical transaction ℎ1.

By Definition 1, in Example 2, 𝑅
𝑟4

𝜋 = {𝑟1, 𝑟2, 𝑟3, 𝑟5}. Specifically,
𝑅
𝑟4,0
𝜋 = {𝑟1, 𝑟5} and 𝑅𝑟4,1

𝜋 = {𝑟2, 𝑟3}. Thus, in some cases, the related

RS set would be very large. In Section 4, we propose a framework

to limit the size of the related RS set for a given RS.

2.3 The definite token-RS pair set (DTRS)
Definition 2 (The Definite Token-RS Pair Set). At timestamp 𝜋 ,

given a RS 𝑟𝑘 , a definite token-RS pair set (DTRS) of 𝑟𝑘 is a minimum

set of token-RS pairs 𝑑𝜋,𝑘 = {𝑝1, 𝑝2, · · · , 𝑝𝑛} that can determine the

HT of the consumed token of 𝑟𝑘 , where 𝑝𝑖 = ⟨𝑡𝑖 , 𝑟𝑖 ⟩ is a token-RS
pair indicating the token 𝑡𝑖 is consumed in the RS 𝑟𝑖 .

Some researchers have proposed methods (e.g., chain-reaction

analysis) to cluster users through their historical transactions on the

blockchain [17–19]. In chain-reaction analysis, the main purpose of

adversaries is to infer the link between a RS and an entity [19]. For

a given RS 𝑟𝑘 in timestamp 𝜋 , if the token-pairs of its DTRS 𝑑𝜋,𝑘 are

revealed to adversaries, they can exactly determine the consumed

token in 𝑟𝑘 . In Example 2, {⟨𝑡2, 𝑟1⟩} is a DTRS of 𝑟5. Because when

𝑡2 is consumed in 𝑟1, the consumed token in 𝑟4 must be 𝑡4. Thus,

the consumed token in 𝑟5 must be 𝑡5 or 𝑡6, who are from HT ℎ1.

2.4 The Threat Model
Since blockchain systems are distributed, users can use different

random strategies. Besides, since a token can only be consumed

once, the procedure of generating a RS for a token happens only

once. Thus, adversaries cannot guess the probability distribution

of consumed tokens. However, because all data of RSs are recorded

on the blockchain and a token can only be consumed in a RS,

adversaries can guess the consumed token for a RS by analyzing the

transactions on the blockchain (i.e., chain-reaction analysis) [10].

As common adversary assumptions [20], we assume adversaries

know the algorithms used in blockchain systems, except for ran-

dom procedures of algorithms. Thus, adversaries cannot exactly

infer the real consumed token for a given RS without using any

other information. Besides, we assume adversaries have some side

information, i.e., they may know some token-RS pairs are revealed.

Definition 3 (The side information of adversaries). Before propos-

ing a new RS 𝑟𝑖 , the side information of adversaries is a set of re-

vealed token-RS pairs, 𝑆𝐼𝑖 = {𝑝1, 𝑝2, · · · , 𝑝𝑛}. A pair 𝑝 𝑗 = ⟨𝑡 𝑗 , 𝑟 𝑗 ⟩ ∈
𝑆𝐼𝑖 means that adversaries know the consumed token of 𝑟 𝑗 is 𝑡 𝑗 .

The side information of adversaries can be partitioned into two

disjoint parts 𝑆𝐼#

𝑖
and 𝑆𝐼∗

𝑖
(i.e., 𝑆𝐼𝑖 = 𝑆𝐼#

𝑖
∪ 𝑆𝐼∗

𝑖
and 𝑆𝐼#

𝑖
∩ 𝑆𝐼∗

𝑖
= ∅),

where 𝑆𝐼#

𝑖
is the set of token-RS pairs that adversaries know directly,

and 𝑆𝐼∗
𝑖
is the set of token-RS pairs that adversaries infer from 𝑆𝐼#

𝑖
.

For example, adversaries may be the generator of some RSs, then

their token-RS pairs 𝑆𝐼#

𝑖
are known to themselves [11].

Adversaries have two methods to get 𝑆𝐼#

𝑖
. Firstly, they can use

side information to eliminate tokens in the target RS and infer

possible token-RS pairs by the frequency of HTs of remaining to-

kens (similar to the homogeneity attacks [13]). In Example 1, if

adversaries know 𝑡2 and 𝑡4 are not consumed in 𝑟3 = {𝑡1, 𝑡2, 𝑡3, 𝑡4},
they can infer that the generator of 𝑟3 is the receiver of the HT

ℎ1 [9], since 𝑡1 and 𝑡3 are the outputs of ℎ1. The second method is

to eliminate wrong DTRSs. In Example 2, there are three DTRSs of

𝑟4, 𝑑
𝜋,4
1

= {⟨𝑡4, 𝑟5⟩}, 𝑑𝜋,4
2

= {⟨𝑡5, 𝑟5⟩}, and 𝑑𝜋,4
3

= {⟨𝑡2, 𝑟1⟩}. If adver-
saries know 𝑡5 is consumed in 𝑟5, they can eliminate 𝑑

𝜋,4
1

and 𝑑
𝜋,4
3

,

and conclude that 𝑡4 is the consumed token of 𝑟4. Thus, the more
tokens of a RS and its possible DTRSs are from different HTs, the better
anonymity of a RS would be. This provides a natural motivation

to apply the recursive diversity technique to enhance anonymity.

However, if the side information of adversaries is strong enough

(e.g., they know all consumed tokens of existing RSs), we cannot

protect users’ privacy. In Theorem 6.2, we prove that if the cardinal-

ity of 𝑆𝐼 is smaller than a threshold, with TokenMagic framework,

adversaries cannot confirm the consumed tokens.

2.5 A Recursive (𝑐, ℓ)-Diversity RS
We borrow the principle of recursive (𝑐 , ℓ)-diversity [13] to define

the notion of a recursive (𝑐 , ℓ)-diversity RS. The recursive (𝑐 , ℓ)-

diversity requires that 𝑞1 < 𝑐 · (𝑞ℓ +· · ·+𝑞𝜃 ), where 𝑞𝑖 is the number

of times that the 𝑖𝑡ℎ most-frequent sensitive value appears in the

data set, and 𝜃 is the number of possible sensitive values in the

data set. In RS scenarios, the sensitive value is the HT of a token.

Parameter 𝑐 and ℓ are set by users according to their requirements.

Definition 4 (A Recursive (𝑐 , ℓ)-Diversity RS). At timestamp 𝜋 , a

RS 𝑟𝑘 is a recursive (𝑐 , ℓ)-diversity RS, if (1) the HTs of tokens in 𝑟𝑘
satisfy the recursive (𝑐 , ℓ)-diversity; and (2) the HTs of tokens in

any DTRS of 𝑟𝑘 satisfy the recursive (𝑐 , ℓ)-diversity.
Suppose at timestamp 𝜋 , there are three RSs, 𝑟1 = {𝑡1, 𝑡2}, 𝑟2 =

{𝑡2, 𝑡3}, and 𝑟3 = {𝑡1, 𝑡3, 𝑡4}. The tokens 𝑡1 and 𝑡3 are from the same
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Table 1: Symbols and Descriptions.

Symbol Description
𝑇 The universe of tokens 𝑡𝑖
ℎ𝑖 The HT that outputs the token 𝑡𝑖

𝑅
𝑟𝑘
𝜋 The related RS set of a RS 𝑟𝑘 at the time stamp 𝜋

(𝑐𝑘 , ℓ𝑘 ) The diversity requirement of a RS 𝑟𝑘
𝑝𝑘 A token-RS pair ⟨𝑡𝑘 , 𝑟𝑘 ⟩ that means 𝑡𝑝𝑘 is consumed in 𝑟𝑝𝑘
𝑑𝜋,𝑘

A DTRS of a RS 𝑟𝑘 at the time stamp 𝜋

HT ℎ1, and 𝑡4 is from ℎ2. Thus, the HTs of tokens in 𝑟3 are ℎ1, ℎ1

and ℎ2, respectively. Thus, for the HTs of tokens in 𝑟3, 𝑞1 = 2 and

𝑞2 = 1. For 𝑟3, there is only one DTRS, 𝑑𝜋,3 = {⟨𝑡1, 𝑟1⟩, ⟨𝑡3, 𝑟2⟩}. If a
user requires a recursive (2, 1)-diversity RS, 𝑟3 is eligible for both

two conditions, i.e., 2 < 2 · (2 + 1) and 2 < 2 · 2. If a user requires
a recursive (3, 2)-diversity RS, 𝑟3 satisfies the first condition, i.e.,

2 < 3 · 1, but violates the second condition, i.e., 2 ≥ 3 · 0.

3 PROBLEM DEFINITION
In this section, we formally formulate the Diversity-aware mixins

selection (DA-MS) problem and prove that DA-MS is #P.

3.1 Diversity-aware Mixins Selection Problem
After a RS is blocked on the blockchain, its DTRSs and its anonymity

may still be changed. For example, in Example 2, if a new RS 𝑟6 =

{𝑡2, 𝑡4} is proposed, adversaries can infer that the consumed token

of 𝑟1 is 𝑡5 and the consumed token of 𝑟5 is 𝑡6. To maintain privacy, a

user can claim the anonymity requirement when committing a RS

to the blockchain. When a new RS is proposed, it should guarantee

that the DTRSs of each existing RS still satisfy its claimed anonymity

requirement. We define the DA-MS problem as follows:

Definition 5 (The Diversity-aware Mixins Selection (DA-MS) Prob-

lem). Given a mixin universe 𝑇 , a token 𝑡𝜏 that will be consumed

at timestamp 𝜋 , and a privacy requirement (𝑐𝜏 , ℓ𝜏 ), a user wants to

select a mixin set, to generate a new RS 𝑟𝜏 , such that its cardinality

is minimized and the following constraints are satisfied:

• Diversity constraint: 𝑟𝜏 is a recursive (𝑐𝜏 , ℓ𝜏 )-diversity RS;

• Non-eliminated constraint: no token of any RS can be eliminated

by the “Chain-Reaction” analysis;

• Immutability constraint: after proposing 𝑟𝜏 , each RS 𝑟𝑖 in 𝑅
𝑟𝜏
𝜋 can

maintain its requirement of recursive (𝑐𝑖 , ℓ𝑖 )-diversity.

To guarantee each RS has desired anonymity, the system will

require that each new RS must not violate the recursive diversity

requirements of the existing RSs.

3.2 Hardness of the DA-MS Problem
We prove that the DA-MS problem is #P by reducing the problem

of enumerating all perfect matchings in bipartite graphs [14].

Theorem 3.1. The DA-MS problem is #P.

Proof. We first prove the decision version of the DA-MS prob-

lem (DDA-MS) is #P. Given a new RS 𝑟𝜏 , a set of related RS set 𝑅
𝑟𝜏
𝜋 ,

and a privacy requirement (𝑐𝜏 , ℓ𝜏 ), the DDA-MS aims to prove if 𝑟𝜏
satisfies the tree constraints in Definition 5.

We prove DDA-MS is #P by a reduction from the problem of

enumerating all perfect matchings in bipartite graphs (EPMBG) [14].

Let 𝐺 = (𝑆1, 𝑆2, 𝐸) be a bipartite graph with row vertex set 𝑆1,

column vertex set 𝑆2, satisfying that |𝑆1 | = |𝑆2 | = 𝑛, and edge set

𝐸 ⊆ 𝑆1 × 𝑆2. A matching𝑀 is a subset of 𝐸, where any two edges

do not intersect at the same vertex. If each vertex in 𝐺 is covered

Figure 2: TokenMagic.
by an edge in𝑀 ,𝑀 is termed as a perfect matching. The EPMBG

problem aims to enumerate all perfect matchings in the 𝐺 .

Given an EPMBG problem instance, we reduce it to a DDA-

MS problem instance as follows: Generate a related RS set 𝑅𝑇𝜋 =

{𝑟1, · · · , 𝑟𝑛−1}, where 𝑟𝑖 is the set of vertexes in 𝑆2 which are con-

nected with the 𝑖𝑡ℎ vertex in 𝑆1. The new RS 𝑟𝜏 is the set of vertexes

in 𝑆2 which are connected with the 𝑛𝑡ℎ vertex in 𝑆1. To verify if 𝑟𝜏
is a recursive (𝑐 , ℓ)-diversity RS, we need to enumerate all possible

token-RS pairs of RSs in 𝑅𝑇𝜋 ∪ 𝑟𝜏 . Since each token can only be con-

sumed once, the set of perfect matchings in𝐺 is the set of token-RS

combinations when the consumed token in 𝑟𝜏 is 𝑡𝜏 .

Thus, if the transformed DDA-MS problem instance can be

solved, the EPMBG problem instance also can be solved. Since

the EPMBG problem is #P [14], the DDA-MS problem is also an #P

problem. Since the DA-MS problem is an optimization problem, the

hardness of the DA-MS problem is at least #P. □

4 TOKENMAGIC FRAMEWORK
Since a new RS’s anonymity is impacted by the related RSs, before

selecting mixins, a user needs to retrieve the mixin universe 𝑇

and the related RS set 𝐴
𝑟𝜏
𝜋 . The mixin universe can be retrieved

by the user’s interest or the blockchain system’s requirement (e.g.,

Monero [2] requires half of the mixins are generated within the

recent 1.8 days). As discussed in Subsection 2.2, by this method,

the size of a related RS set may be very large and can unlimitedly

increase over time. Take an extreme example, if any two existing RSs

contain at least one same token, the related RS set would contain

all RSs on the blockchain. To generate a new RS, a user needs to

retrieve all RSs and find DTRSs among these RSs, which is costly.

In this paper, we propose a novel framework, namely Token-

Magic, to retrieve the mixin universe𝑇 as well as the related RS set

𝑅
𝑟𝜏
𝜋 and generate a new RS 𝑟𝜏 for a given token 𝑡𝜏 at timestamp 𝜋 . As

shown in Figure 2, TokenMagic partitions the blocks in a blockchain

into disjoint and sequential batches B = [𝐵1, 𝐵2, · · · ]. The number

of tokens in each batch 𝐵𝑖 is bounded in a range 𝜆 specified by the

system. Specifically, when we build the batch list B, we scan from

the first block 𝑏1 in the blockchain system and initialize the first

batch 𝐵1 as empty. We traverse the blocks in ascending order. Every

time we visit a block 𝑏𝑥 , we check whether the current batch 𝐵𝑖
has enough tokens after adding 𝑏𝑥 (i.e., 𝑡 (𝑏𝑥 ) +

∑
𝑏 𝑗 ∈𝐵𝑖

𝑡 (𝑏 𝑗 ) ≥ 𝜆,

where 𝑡 (𝑏𝑖 ) indicates the number of tokens in 𝑏𝑖 ). If 𝐵𝑖 has enough

tokens, we move to build the next batch 𝐵𝑖+1. For batch 𝐵𝑖 , let 𝑇𝑖
be the tokens in the blocks in 𝐵𝑖 .

For full-node users [21] who store full blockchain data in their

devices, they can build the batch list by themselves and update the

batch list when they update their blockchain state from the local

Research Data Management Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1362



Algorithm 1: TokenMagic Framework.

Input: the consuming token 𝑡𝜏 , and the required diversity constraint (𝑐 ,

ℓ)

Output: an new RS to consume 𝑡𝜏

1 retrieve the tokens𝑇 of the batch where 𝑡𝜏 is generated;

2 initialize𝐶𝑎𝑛𝑑𝑖 = ∅ for each 𝑡𝑖 ∈ 𝑇 ;
3 foreach token 𝑡𝑖 in𝑇 do
4 use BFS, Progressive, or Game-theoretic approaches to generate a

new RS 𝑟 satisfying the constraints in Definition 5;

5 foreach token 𝑡𝑖 in 𝑟 do
6 add 𝑟 to𝐶𝑎𝑛𝑑𝑖 ;

7 return a RS from𝐶𝑎𝑛𝑑𝜏 randomly;

state to the global state. Since 𝜆 is a public system parameter and

users have a consensus about the block list in the blockchain system,

users can have a consensus about the batch list too. For light-node

users [21] who do not store full blockchain data in their devices,

they can query the wanted batch data from full-node users. For

each consuming token, its mixins are only selected within the same

batch where the consuming token is generated. Note that there is

a gap between the timestamp when a token is generated and the

timestamp when the token is consumed by a RS in a transaction.

For example, in Figure 2, a token is generated in the block 𝑏1, but

the RS which contains 𝑏1 is proposed in the block 𝑏𝑔+1.
Thus, to generate a RS for a token 𝑡 , the mixin universe is the set

of tokens that are generated in the same batch of 𝑡 . Thus, cardinality

of the mixin universe is limited to the number of tokens in the

corresponding batch. Since batches are disjoint, the mixin universes

of tokens in different batches are disjoint. Furthermore, since each

RS selects mixins only from its mixin universe, the related RS sets

of RSs in different batches are also disjoint. Because each token

can only be consumed once, the cardinality of the related RS set

of a RS is bounded by the cardinality of the mixin universe. Thus,

the cardinality of the related RS set is bounded by the number of

tokens in the corresponding batch.

Algorithm 1 is the pseudocode of the TokenMagic framework.

We first retrieve the batch 𝑏 where 𝑡𝜏 is (line 1). To avoid adversaries

inferring the consumed token by the framework and algorithms, we

generate a new RS with a random procedure (line 2-5). Specifically,

we first initialize candidate set 𝐶𝑎𝑛𝑑𝑖 of each token 𝑡𝑖 as empty

(line 1). Then, for each token 𝑡𝑖 , we use our BFS, Progressive, or

Game-theoretic approach to generate a new RS 𝑟 satisfying the

constraints of diversity, immutability, and non-eliminated (line 3).

Since the new RS 𝑟 may be eligible for multiple tokens, we add 𝑟 to

candidate sets of these tokens (line 4-5). After that, we randomly

select a RS from 𝐶𝑎𝑛𝑑𝜏 , where 𝐶𝑎𝑛𝑑𝜏 is the candidate RS set of the

input token 𝑡𝜏 (line 6). Since blockchain systems are distributed,

and the random selection in line 6 is made by users themselves,

adversaries cannot observe or guess the probability distribution of

selection. Therefore, adversaries cannot further infer the consumed

token of a RS by the framework and algorithms.

Since the diversity requirement is customized by the user, if

users think the returned RS is not desirable (e.g., the size is too

large) or the framework cannot return an eligible RS, they can relax

the diversity requirement by increasing 𝑐 or decreasing ℓ . Besides,

since a RS only selects mixins within the same batch where the

consumed token is, there could be a situation that a user cannot find

a RS satisfying constraint of non-eliminated. Although we cannot

confirm the consumed token of each RS, we still can find out that

some tokens have been consumed. In Example 1, suppose the user

chooses 𝑟3 = {𝑡1, 𝑡3} and the mixin universe is 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}.
When another user wants to consume 𝑡4, she/he cannot find a RS 𝑟

satisfying non-eliminated constraint, since adversaries can easily

find that 𝑡1, 𝑡2, and 𝑡3 have been consumed in the previous three

RSs (i.e., 𝑟1, 𝑟2, 𝑟3) and 𝑡4 must be the consumed token in the new

RS 𝑟 . To avoid this issue, we require that when there are 𝑖 RSs in

the possible related RS set 𝑅𝑇𝜋 , the number of infer-able consumed

tokens cannot exceed 𝑖 −𝜂 · ( |𝑇 | − 𝑖), where 𝜂 is a system parameter.

Theorem 4.1. Given a set of RSs, 𝑅∗ = {𝑟1, · · · , 𝑟𝑛 }, suppose 𝑇 ∗ =⋃𝑛
𝑖=1

𝑟𝑖 . If |𝑇 ∗ | = 𝑛, the tokens in 𝑇 ∗ are all consumed.
Proof. If a token in 𝑇 ∗ has not been consumed, there are only

𝑛 − 1 tokens have been consumed in 𝑅∗. By the Pigeonhole prin-

ciple [22], there is at least a token that has been consumed in two

RSs, which is impossible. Thus, the proof is completed. □

Let 𝑛𝑠 𝑗 =< 𝑟1, · · · , 𝑟𝑚 > be a “neighbor” set of token 𝑡 𝑗 where 𝑟𝑖
contains 𝑡 𝑗 and RSs are sorted by the proposed timestamps. Let𝑇 #

𝑗
=⋃

𝑟𝑖 ∈𝑛𝑠 𝑗 𝑟𝑖 . By Theorem 4.1, if the number of tokens in a neighbor set

is equal to the number of RSs in the neighbor set (i.e., |𝑇 #

𝑗
| = |𝑛𝑠 𝑗 |),

the corresponding token has been consumed. We store a neighbor

set for each token and append RSs which contain the token to the

neighbor set. Suppose, when the number of RSs that consumes

token in 𝑇 is 𝑖 , the number of tokens that can be determined to

have been consumed is 𝜇𝑖 . To avoid that users cannot find eligible

RSs to consumed their tokens, we require that at any moment

𝑖 − 𝜇𝑖 ≥ 𝜂 · ( |𝑇 | − 𝑖). When the number of tokens in a batch is

smaller than 𝜆, we consider |𝑇 | as 𝜆+𝜆′-1.
The overhead of TokenMagic framework. The TokenMagic is

implemented for the Step 1 of a RS scheme introduced in Section

2.1. The Step 1 is made offline and its time complexity does not

affect the throughput of a blockchain system. TokenMagic brings

extra overhead to the Step 1 of RS scheme, but no extra overhead

to the throughput of the online blockchain system. In conclusion,

our framework only affects the speed to offline generate new RSs,

but does not affect the online blockchain processes at all.

5 AN EXACT APPROACH FOR DA-MS

As illustrated in Subsection 3.2, the DA-MS problem is #𝑃 . However,

if the size of the input (i.e, |𝑇 |) is small enough, brute-force methods

still can find an optimal solution. In this section, we propose a

breadth-first search (BFS) algorithm, to illustrate the problem space

of DA-MS. We first introduce a basic concept as follows:

Definition 6 (Token-RS Combination). Given a RS set 𝑅, a token-

RS combination of 𝑅 is a set of |𝑅 | token-RS pairs, denoted by

𝑢 = {𝑝1, 𝑝2, · · · , 𝑝 |𝑅 |} where ∀𝑝𝑖 , 𝑝 𝑗 ∈ 𝑢, 𝑡𝑖 ≠ 𝑡 𝑗 and 𝑟𝑖 ≠ 𝑟 𝑗 .

In Example 1, when the new RS is 𝑟3 = {𝑡2, 𝑡3, 𝑡4}, {⟨𝑡1, 𝑟1⟩,
⟨𝑡2, 𝑟2⟩, ⟨𝑡3, 𝑟3⟩} is a token-RS combination of the RSs.

5.1 The BFS Approach
Algorithm 2 illustrates the BFS approach, which applies the breadth

first search strategy to check all possible valid RSs and returns the
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Algorithm 2: BFS Approach.
Input: the consuming token 𝑡𝜏 , a mixin universe𝑇 , and the required

diversity constraint (𝑐 ,ℓ)

Output: an eligobile RS to consume 𝑡𝜏

1 𝜎 = 𝑇 \𝑡𝜏 ;
2 for 𝑖 = 𝑙𝜏 -1 to |𝜎 | do
3 𝐶𝑅𝑖 ← possible RSs with 𝑖 tokens from 𝜎 ;

4 for 𝑐𝑟 ∈ 𝐶𝑅𝑖 do
5 𝑟𝑠 = 𝑡𝜏 ∪ 𝑐𝑟 , retrieve 𝑅𝑟𝑠

𝜋 ;

6 𝐻 ← historical transactions of tokens in 𝑟𝑠 ;

7 if 𝐻 does not satisfy the recursive (𝑐 , ℓ)-diversity then
8 continue;

9 𝑈 ← all token-RS combinations of 𝑟𝑠 ∪ 𝑅𝑟𝑠
𝜋 ; 𝑘 = 0;

10 while 𝑘 ≤ |𝑅𝑟𝑠
𝜋 | do

11 𝑆𝑇 = ∅, 𝑘 + +;
12 foreach 𝑢 𝑗 in𝑈 do
13 if 𝑤𝑗,𝑘 ∉ 𝑆𝑇 then
14 𝑆𝑇 = 𝑆𝑇 ∪ 𝑤𝑗,𝑘 ;

15 if 𝑆𝑇 ≠ 𝑟𝑘 then
16 go to Line 4 for the next for-iteration

17 for 𝑘 = 1 to |𝑅𝑟𝑠
𝜋 | + 1 do

18 𝐷𝑘 ← GetDTRSs(𝑘 ,𝑈 , |𝑅𝑟𝑠
𝜋 |); 𝑔 = 0;

19 while 𝑔 < |𝐷𝑘 | do
20 𝑔++, 𝐻 ← HTs of tokens in 𝑑𝑔 ;

21 if 𝐻 violates recursive (𝑐𝑘 , ℓ𝑘 )-diversity then
22 go to Line 4 to the next for-iteration

23 return rs;

optimal one. Since 𝑡𝜏 has to be contained in the new RS, we let the

set of candidate tokens 𝜎 for the new RS be 𝜎 = 𝑇 \𝑡𝜏 (line 1). We

search an eligible RS following the ascending order of the sizes of

RSs, and 𝑖 indicates the number of mixins in the RS (lines 2-23). In

each iteration of lines 2-23, there is a set𝐶𝑅𝑖 of different RSs, where

each 𝑐𝑟 ∈ 𝐶𝑅𝑖 contains 𝑖 different tokens of 𝜎 (line 3). For each

𝑐𝑟 , the corresponding candidate RS is 𝑟𝑠 = 𝑡𝜏 ∪ 𝑐𝑟 , and the related

RS set is 𝑅𝑟𝑠𝜋 (line 5). Let 𝐻 be the set of HTs of tokens in 𝑟𝑠 (line

6). 𝐻 should satisfy the recursive (𝑐𝜏 , ℓ𝜏 )-diversity, otherwise, we

go to check the next RS (lines 7-8). If 𝐻 is valid, we go to check if

𝑟𝑠 satisfies the non-eliminated constraint (lines 9-16). We retrieve

all valid token-RS combinations over 𝑅𝑟𝑠𝜋 ∪ 𝑟𝑠 as 𝑈 (line 9). For

each 𝑟𝑘 ∈ 𝑅𝑟𝑠𝜋 ∪ 𝑟𝑠 , we check if there are some tokens in 𝑟𝑘 can be

eliminated by traversing 𝑈 (lines 10-16). 𝑆𝑇 stores all consumed

token of 𝑟𝑘 in any token-RS combination𝑢 𝑗 ∈ 𝑈 , and𝑤 𝑗,𝑘 indicates

the consumed token of 𝑟𝑘 in 𝑢 𝑗 . If it satisfies the non-eliminated

constraint, we check if, for any 𝑟𝑘 ∈ 𝑅𝑟𝑠𝜋 ∪ 𝑟𝑠 , its DTRSs all satisfy
the recursive (𝑐𝑘 , ℓ𝑘 )-diversity, where 𝑟 |𝑅𝑇𝜋 |+1 = 𝑟𝑠 (lines 17-22). We

retrieve all DTRSs of 𝑟𝑘 by the GetDTRSs procedure (line 18). Let 𝐻

be the set of HTs of tokens in 𝑑𝑔 (line 20). If𝐻 violates recursive (𝑐𝜏 ,

𝑙𝜏 )-diversity, we go to check the next RS (lines 21-22). If 𝑟𝑠 satisfies

all constraints, we return it as the result (line 23).

The GetDTRSs Procedure. Algorithm 3 illustrates the GetDTRSs

procedure. We set the candidate DTRS sets 𝐷∗ and 𝐷#
as empty

sets. Let 𝐷𝐻 be the set of determined HT of consumed tokens of 𝑟𝑘
by DTRSs in 𝐷∗. Given a DTRS 𝑑𝑖 , we can determine that the HT of

Algorithm 3: GetDTRSs
Input: a integer 𝑘 , a set of token-RS combinations𝑈 , and a integer 𝑛

Output: a set of DTRSs whose size is 𝑘
1 𝐷∗ = 𝐷# = ∅, 𝐷𝐻 = ∅;
2 foreach 𝑢 ∈ 𝑈 do
3 𝑝∗ ← the token-RS pair of 𝑟𝑘 in 𝑢, 𝑢∗ ← 𝑢\𝑝∗;
4 for 𝑖 = 1 to 𝑛 do do
5 𝐷∗ = 𝐷∗ + the set of combinations of choosing 𝑖 pairs from 𝑢∗;

6 for 𝑗 = 1 to𝐶 (𝑛, 𝑖) do do
7 𝐷𝐻 = 𝐷𝐻 + the historical transaction of the token in 𝑝∗;

8 foreach 𝑑𝑖 ∈ 𝐷∗ do
9 for 𝑗 = 1 to |𝑈 | do
10 𝑝# ← the token-RS pair of 𝑟𝑘 in 𝑢 𝑗

11 if 𝑑𝑖 ∉ 𝑢 𝑗 then
12 continue;

13 if the HT of the token in 𝑝# is not equal to 𝑑ℎ𝑖 then
14 go to Line 8 to next for-iteration

15 𝐷#
= 𝐷# + 𝑑𝑖 ;

16 remove the super set in 𝐷#
;

17 return 𝐷#
;

the consumed token in 𝑟𝑘 is 𝑑ℎ𝑖 . For each token-RS combination 𝑢

in𝑈 and a size 𝑖 , we enumerate all combinations of 𝑖 pairs in𝑢 (lines

2-7). Let 𝑝∗ be the token-RS pair of 𝑟𝑘 in𝑢 and𝑢∗ be the𝑢 excluding

𝑝∗ (line 3). We add these candidate DTRSs into 𝐷∗ (line 5) and their
corresponding 𝑑ℎs in 𝐷𝐻 are the HTs of the tokens in 𝑝∗ (lines
6-7). These candidate DTRSs in 𝐷∗ may not be the “true” DTRSs

as Definition 2 defined. For each 𝑑𝑖 in 𝐷∗, we check all token-RS

combinations in𝑈 (lines 9-14). If a DTRS 𝑑𝑖 is in a 𝑢 𝑗 but the HT of

the consumed token of 𝑟𝑘 in 𝑢 𝑗 is not 𝑑ℎ𝑖 , 𝑑𝑖 is a “fake” DTRS (lines

13-14), otherwise, we add it to 𝐷#
(line 15). Since the supersets of

“true” DTRSs are also added to 𝐷#
, we remove them and return the

updated 𝐷#
as the result (line 16-17).

Time Complexity. Let𝑚 = |𝑅𝑟𝑠𝜋 | = O(𝑛). There are
∑𝑛−1

𝑖=ℓ𝜏−1
𝐶 (𝑛−

1, 𝑖) = O(2𝑛) possible RSs in⋃ |𝜎 |
𝑖=ℓ𝜏−1

𝐶𝑅𝑖 , where 𝐶 (𝑛 − 1, 𝑖) is the
number of combinations of selecting 𝑖 elements from 𝑛 − 1 ele-

ments [23]. For each 𝑟𝑠 , the cardinality of𝑈 is O(∏𝑟𝑖 ∈𝑅𝑟𝑠
𝜋 ∪𝑟𝑠 |𝑟𝑖 |)

= O(𝑛𝑚). In the GetDTRSs procedure, the time complexity of get-

ting 𝐷∗ is O(𝑛𝑚) · ∑𝑚
𝑖=1

𝐶 (𝑚, 𝑖) = O(𝑛𝑚2
𝑚) and the cardinality

of 𝐷∗ is O(𝑛𝑚2
𝑚). Thus, the time complexity of getting 𝐷#

is

O(𝑛2𝑚
2
𝑚). Thus, the total time complexity of the BFS approach is

O(𝑚 · 2𝑚+𝑛 · 𝑛2𝑚) = O(𝑛𝑛).

6 PRACTICAL SOLUTIONS FOR DA-MS
Although the BFS approach can get the optimal solution, its time

complexity is unacceptable for most real-world applications. Be-

sides, users sometimes cannot find a new RS satisfying the im-

mutability constraint. For example, 𝑇 = {𝑡1, · · · , 𝑡4}, where four to-
kens are from four different HTs. The first user uses 𝑟1 = {𝑡1, 𝑡2, 𝑡3}
with recursive (1, 2)-diversity to consume 𝑡1. The second user uses

𝑟2 = {𝑡1, 𝑡2, 𝑡4} with recursive (2, 3)-diversity to consume 𝑡4. The

third user uses 𝑟3 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} with recursive (1, 3)-diversity to

consume 𝑡3. Then, the fourth user cannot find an eligible RS to

consume 𝑡2 satisfying the immutability constraint.
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To efficiently solve the DA-MS problem, we have three challenges:
(1) how to efficiently verify if DTRSs of a RS satisfy the anonymity

requirement; (2) how to guarantee that a user can always find a RS

satisfying the immutability constraint; and (3) how to pick a desired

set of mixins with the minimal cardinality under the constraints in

Definition 5. In this section, we propose two practical configurations

to tackle the first two challenges. To solve the third challenge, we

design two approximation algorithms, the Progressive Algorithm

and the Game-theoretic Algorithm.

6.1 Practical Configurations
In this section, we propose two practical configurations to help solve

the first two challenges. These two configurations guide the mixin

selection in the Step 1 of a RS scheme. In the Step 3 of a RS scheme,

verifiers would check if a RS satisfies these two configurations.

The first practical configuration is that each new RS should be the

superset of some RSs in 𝑅𝑇𝜋 and be disjoint with the other RSs in

𝑅𝑇𝜋 , where 𝑅
𝑇
𝜋 is the set of RSs containing tokens in 𝑇 . With this

configuration, we have some special RSs in 𝑅𝑇𝜋 , called as super RSs.

Definition 7 (A Super Ring Signature). Given a related RS set 𝑅𝑇𝜋 ,

a RS 𝑟𝑖 is a super RS if for any 𝑟 𝑗 in 𝑅𝑇𝜋 that is proposed after 𝑟𝑖 , 𝑟 𝑗

is not the super set of 𝑟𝑖 . Let 𝜈𝑖 be the number of RSs in 𝑅𝑇𝜋 that are

the subsets of 𝑟𝑖 .

Let 𝑆𝑇𝜋 = {𝑠1, · · · , 𝑠𝑛} be the set of super RSs in 𝑅𝑇𝜋 . Some tokens

in 𝑇 may not be contained in any RS in 𝑅𝑇𝜋 . We call these tokens as

fresh tokens. Let 𝐹𝑇𝜋 = {𝑓1, · · · , 𝑓𝑛} be the set of fresh tokens in 𝑇 .

Definition 8 (Fresh Token). Given a related RS set 𝑅𝑇𝜋 , if a token 𝑡

is not contained in any RS in 𝑅𝑇𝜋 , 𝑡 is a fresh token.

For example, 𝑟1 = {𝑡1, 𝑡2} is proposed at time 𝜋 , 𝑟2 = {𝑡1, 𝑡2, 𝑡3}
is proposed at time 𝜋 + 1, and 𝑟3 = {𝑡4, 𝑡5} is proposed at time 𝜋 + 2.

Suppose 𝑇 = {𝑡1, · · · , 𝑡6} and 𝑅𝑇𝜋 = {𝑟1, 𝑟2, 𝑟3}. Then, 𝑟2 and 𝑟3 are

two super RSs while 𝑟1 is not a super RS. The subset number 𝜈𝑖 of

𝑟2 is 2 (i.e., 𝑟1 and 𝑟2). Besides, 𝑡6 is a fresh token.

Thus, by the first practical configuration, each new RS is made

up of some super RSs and some fresh tokens. Then, we show how

to get the token set of a DTRS of a RS.

Theorem 6.1. In a blockchain system, a new RS is made up of
some super RSs and some fresh tokens. For a related RS set 𝑅, let
the super RS of a RS 𝑟𝑖 ∈ 𝑅 be 𝑟𝑖∗ and its subset number be 𝜈𝑖∗ . Let
𝑇𝑖, 𝑗 be the set of tokens in 𝑟𝑖 whose historical transaction is ℎ 𝑗 . Let
𝜓𝑖, 𝑗 = 𝑟𝑖\𝑇𝑖, 𝑗 . If 𝜈𝑖∗< |𝑟𝑖 |-|𝑇𝑖, 𝑗 |+1, there is no DTRS of 𝑟𝑖 that can
determine the historical transaction of the consumed token of 𝑟𝑖 is ℎ 𝑗 .
Otherwise,𝜓𝑖, 𝑗 is the token set of a DTRS of 𝑟𝑖 that can determine the
HT of the consumed token of 𝑟𝑖 is ℎ 𝑗 .

Proof. To determine the historical transaction of the consumed

token of 𝑟𝑖 is ℎ 𝑗 , 𝑟𝑖\𝑇𝑖, 𝑗 should be eliminated. If 𝜈𝑖∗ < |𝑟𝑖 | − |𝑇𝑖, 𝑗 | + 1,

by the Pigeonhole principle [22], there is at least one token in 𝑇𝑖, 𝑗

have not been consumed. Thus, if 𝜈𝑖∗ < |𝑟𝑖 | − |𝑇𝑖, 𝑗 | + 1, there is

no DTRS of 𝑟𝑖 that can determine the historical transaction of the

consumed token of 𝑟𝑖 is ℎ 𝑗 . Let 𝑑 be a DTRS that determine the

historical transaction of the consumed token of 𝑟𝑖 is ℎ 𝑗 and 𝑡∗ is
the set of tokens in 𝑑 . Thus, 𝑡∗ ⊆ 𝑟𝑖\𝑇𝑖, 𝑗 . Let 𝑢∗ be a set of token-RS
pairs whose token’s union is 𝑟𝑖\𝑇𝑖, 𝑗 . Assume 𝑝 = (𝑡, 𝑟 ) is a token-RS

pair in 𝑢∗ and not in 𝑑 . Since 𝑡 ∈ 𝑟𝑖 , 𝑡 can be the consumed token of

𝑟𝑖 . Since 𝑡 ∉ 𝑇𝑖, 𝑗 , when 𝑡 is the consumed token of 𝑟𝑖 , the historical

transaction of 𝑟𝑖 is not ℎ 𝑗 , which violates the definition of a DTRS.

Thus, the assumption does not hold. Thus, if 𝜈𝑖∗ ≥ |𝑟𝑖 | − |𝑇𝑖, 𝑗 | + 1,

𝜓𝑖, 𝑗 is the token set of a DTRS of 𝑟𝑖 that can determine the historical

transaction of the consumed token of 𝑟𝑖 is ℎ 𝑗 . □

Thus, to verify if all DTRSs of a RS satisfy the recursive diversity,

we just need to verify if each𝜓𝑖, 𝑗 satisfies the recursive diversity,

which can be solved in polynomial time. Thus, the first challenge

is solved. Besides, we prove that if the cardinality of the side infor-

mation of an adversary is smaller than a threshold, she/he cannot

confirm the historical transaction of the consumed token of a RS.

Theorem 6.2. If the cardinality of the side information of an
adversary is smaller than |𝑟𝑖 | − 𝑞𝑀 , she/he cannot confirm the HT of
the consumed token of a RS 𝑟𝑖 , where 𝑞𝑀 is the number of times that
the most-frequent HT of tokens appears in 𝑟𝑖 .

Proof. By Theorem 6.1, to confirm the historical transaction of

the spent token of 𝑟𝑖 is ℎ 𝑗 , an adversary needs to know at least 𝑟𝑖

- |𝑇𝑖, 𝑗 | token-RS pairs. Since 𝑞𝑀 is the number of times the most-

frequent HT of tokens in 𝑟𝑖 , if the cardinality of the side information

of an adversary is smaller than |𝑟𝑖 | - 𝑞𝑀 , the adversary cannot

confirm the historical transaction of the consumed token of 𝑟𝑖 . □

By Theorem 6.2, to increase the threshold of the cardinality of

an adversary’s side information, when the size of a RS is fixed,

a user should decrease the number of times the most-frequent

HT of tokens in the RS. It exactly meets the idea of the recursive

(𝑐, ℓ)-diversity (e.g, let the set of HTs are not dominated by the

most-frequent HT), which provides the motivation for us to use

the recursive (𝑐, ℓ)-diversity principle to measure the anonymity

of a RS. Besides, we prove that, if before observing a new RS 𝑟 , an

adversary cannot confirm if 𝑡 is the spent token of a RS 𝑟 ′, after
observing 𝑟 , she/he still cannot confirm if 𝑡 is the spent token of 𝑟 ′.

Theorem 6.3. Let 𝑡 be a token in a RS 𝑟 ′. Suppose before observing
a new RS 𝑟 , an adversary cannot confirm if 𝑡 is the spent token of 𝑟 ′.
The adversary still cannot confirm if 𝑡 is the spent token of 𝑟 ′ after
observing 𝑟 .

Proof. Suppose 𝐷 ′
𝑏
is the set of DTRSs of 𝑟 ′ before observing a

new RS 𝑟 and 𝐷 ′𝑎 is the set of DTRSs of 𝑟 ′ after observing 𝑟 . By the

first practical configuration, 𝑟 ∩ 𝑟 ′ = ∅ or 𝑟 ′ ⊆ 𝑟 . By Theorem 6.1,

if 𝑟 ∩ 𝑟 ′ = ∅, 𝐷 ′
𝑏
= 𝐷 ′𝑎 . Thus, if 𝑟 ∩ 𝑟 ′ = ∅, after observing 𝑟 , the

adversary still cannot confirm if 𝑡 is the spent token of 𝑟 ′. If 𝑟 ′ ⊆ 𝑟 ,

𝑡 ∈ 𝑟 . Since the adversary cannot confirm if 𝑡 is the spent token of

𝑟 ′, the adversary also cannot confirm if 𝑡 is the spent token of 𝑟 .

Thus, 𝑡 at least may be consumed in 𝑟 ′ or 𝑟 . Thus, the adversary still
cannot confirm if 𝑡 is the spent token of 𝑟 ′ after observing 𝑟 . □

For the second challenge, we propose the second practical config-
uration. Specifically, if a user wants to generate a RS and guarantee

that each DTRS satisfies the recursive (𝑐, ℓ), she/he should ask the

HT set of tokens of new RS satisfies the recursive (𝑐, ℓ +1)-diversity.

Theorem 6.4. If the HT set of tokens of 𝑟 satisfies the recursive
(𝑐, ℓ + 1)-diversity, the HT set of tokens of any one of its DTRSs must
satisfy the recursive (𝑐, ℓ)-diversity.
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Algorithm 4: Progressive Algorithm.

Input: the consumed token 𝑡𝜏 , a mixin universe𝑇 , the realted RS set

𝑅𝑇𝜋 , and the required diversity constraint (𝑐 ,ℓ)

Output: An eligible RS 𝑟𝜏

1 get the super RS set 𝑆 and the fresh token set 𝐹 , get 𝑋 , 𝑟𝜏 = 𝑥𝜏 , get 𝐻 ;

2 while |𝐻 | < ℓ𝜏 do
3 calculate 𝛼𝑖 for each 𝑥𝑖 ∈ 𝑋 ;

4 𝑟𝜏 ← 𝑟𝜏 + 𝑥𝑖 in 𝑋 wit the minimal 𝛼𝑖 , update 𝐻 and 𝑋 ;

5 while |𝐻 | violates the recursive (𝑐𝜏 , ℓ𝜏 )-diversity requirement do
6 calculate 𝛽𝑖 for each 𝑥𝑖 ∈ 𝑋 ;

7 𝑟𝜏 ← 𝑟𝜏 + 𝑥𝑖 in 𝑋 wit maximal 𝛽𝑖 , update 𝐻 and 𝑋 ;

8 return 𝑟𝜏

Proof. Suppose the tokens of 𝑟 come from 𝜃 historical trans-

actions. Let 𝑞𝑟,𝑖 be the number of times the 𝑗𝑡ℎ most-frequent HT

of tokens in 𝑟 . Suppose 𝑑 is a DTRS of 𝑟 . By Theorem 6.1, the to-

kens of 𝑑 come from 𝜃 − 1 historical transactions. Let 𝑞𝑑,𝑖 be the

number of times the 𝑗𝑡ℎ most-frequent HT of tokens in 𝑑 . Since

the HT set of tokens of 𝑟 satisfies the recursive (𝑐, ℓ + 1)-diversity,
𝑞𝑟,1 < 𝑐 · (𝑞𝑟,ℓ+1 + · · ·𝑞𝑟,𝜃 ). Since 𝑞𝑑,1 ≤ 𝑞𝑟,1 and 𝑞𝑟,ℓ+1 + · · ·𝑞𝑟,𝜃
≤ 𝑞𝑑,ℓ + · · ·𝑞𝑑,𝜃−1

, 𝑞𝑑,1 < 𝑐 · (𝑞𝑑,ℓ + · · ·𝑞𝑑,𝜃−1
). Thus, if the HT

set of tokens of 𝑟 satisfies the recursive (𝑐, ℓ + 1)-diversity, the HT

set of tokens of its any one of its DTRSs satisfies the recursive

(𝑐, ℓ)-diversity. □

With Theorem 6.4, if the HT set of tokens of a RS 𝑟 satisfies

the recursive (𝑐𝜏 , ℓ𝜏 + 1)-diversity, other users always can find new

RSs to maintain 𝑟 ’s recursive (𝑐𝜏 , ℓ𝜏 )-diversity. Thus, the second
challenge is solved.

6.2 Progressive Algorithm
In this subsection, to tackle the third challenge and approximately

get a solution of the DA-MS problem, we propose the Progressive

Algorithm. It first greedily finds a set of mixins coming from more

than ℓ𝜏 HTs. Then it greedily changes the candidate RS to satisfy

the recursive (𝑐𝜏 , ℓ𝜏 )-diversity.

Algorithm 4 illustrates the pseudo-code of our Progressive Al-

gorithm. We first retrieve the set of super RSs and the set of fresh

tokens (line 1). With the first configuration in Subsection 6.1, each

RS is consisted of some super RSs and some fresh tokens. Thus,

we consider a super RS or a fresh token as a module which can

be selected in 𝑟𝜏 and 𝑋 is the set of modules (line 1). The module

𝑥𝜏 is the super RS which contains 𝑡𝜏 or the 𝑡𝜏 itself when 𝑡𝜏 is a

fresh token (line 1). Let 𝐻 be the set of HTs outputting tokens in

𝑟𝜏 and 𝐻𝑖 is the set of HTs outputting tokens in 𝑥𝑖 . We first let

the tokens in 𝑟𝜏 come from at least ℓ𝜏 different HTs (line 2-4). For

each 𝑥𝑖 ∈ 𝑋 , we calculate 𝛼𝑖 =
|𝑥𝑖 |

min{ℓ𝜏−|𝐻 |, |𝐻𝑖\(𝐻∩𝐻𝑖 ) | } (line 3). We

add the module 𝑥𝑖 with the minimal 𝛼𝑖 to 𝑟𝜏 and update 𝐻 and 𝑋

(line 4). Next, we let 𝐻 satisfy the recursive (𝑐𝜏 , ℓ𝜏 )-diversity (line

5-7). Let 𝑡𝑟𝑖 = 𝑟𝜏 ∪ 𝑥𝑖 and 𝑡𝐻𝑖 be the set of HTs outputting tokens

in 𝑡𝑟𝑖 . Let 𝑞𝑖, 𝑗 be the number of times the 𝑗𝑡ℎ most-frequent HT

of tokens in 𝑡𝑟𝑖 . For each 𝑥𝑖 in 𝑋 , we calculate 𝛽𝑖 =
𝛿−𝛿𝑖
|𝑥𝑖 | , where

𝛿 = 𝑞𝜏,1−𝑐𝜏 · (𝑞𝜏,ℓ𝜏 +· · ·+𝑞𝜏, |𝐻 |), 𝛿𝑖 = 𝑞𝑖,1−𝑐𝜏 · (𝑞𝑖,ℓ𝜏 +· · ·+𝑞𝑖, |𝑡𝐻𝑖 |),
and |𝑥𝑖 | is the size of 𝑥𝑖 (line 6). We greedily add the module whose

𝛽𝑘 is maximal and update 𝐻 and 𝑋 (line 7). Finally, we return 𝑟𝜏
(line 8).

Algorithm 5: Game-theoretic Algorithm.

Input: the consumed token 𝑡𝜏 , a mixin universe𝑇 , the realted RS set

𝑅𝑇𝜋 , and the required diversity constraint (𝑐 ,ℓ)

Output: An eligible RS 𝑟𝜏

1 get the super RS set 𝑆 and the fresh token set 𝐹 , get 𝐴, 𝑟𝜏 = 𝑎𝜏 , get 𝐻 ;

2 while |𝐻 | < ℓ𝜏 do
3 calculate 𝛾𝑖 for each 𝑎𝑖 ∈ 𝐴;
4 set the strategy of 𝑎𝑖 with the minimal 𝛾𝑖 as 𝜙 , update 𝑟𝜏 and 𝐻 ;

5 repeat
6 foreach play 𝑎𝑖 ∈ 𝐴 do
7 𝑒𝑖 = 𝜙 ;

8 if the cost of ¯𝜙 is lower then
9 𝑒𝑖 = ¯𝜙 ;

10 update 𝑟𝜏 and 𝐻 ;

11 until reaching a Nash equilibrium
12 return 𝑟𝜏

Example 3. There are four super RSs, 𝑠1 = {𝑡1, · · · , 𝑡6}, 𝑠2 =

{𝑡7, · · · , 𝑡10}, 𝑠3 = {𝑡11, 𝑡12}, and 𝑠4 = {𝑡13, · · · , 𝑡15}. The tokens 𝑡1,
𝑡2, 𝑡7 and 𝑡8 are from ℎ1. The tokens 𝑡3, 𝑡4, and 𝑡9 are from ℎ2. The
tokens 𝑡5, 𝑡13 and 𝑡14 are from ℎ3. The tokens 𝑡6 and 𝑡10 are from
ℎ6. The token 𝑡11 and 𝑡15 are from ℎ4. The token 𝑡12 are from ℎ5. A
user wants to generate a RS to consume 𝑡11 with the recursive (1,4)-
diversity. Then, 𝑥𝜏 = 𝑠3. In the first iteration of the first while-loop,
we add 𝑠2 to 𝑟𝜏 since 𝛼2 is minimal. After the first while-loop, we get
𝑟𝜏 = 𝑠3 ∪ 𝑠2. In the first iteration of the second while-loop, we add 𝑠4

to 𝑟𝜏 , since 𝛽4 = 1

3
and 𝛽1 = − 1

6
.

Theorem 6.5. The Progressive Algorithm’s approximation ratio
is 𝜖+𝑞𝑀 ·𝑧𝑀

10
−𝛾 , where 𝜖 =

∑ℓ𝜏
𝑖=1

1

𝑖 , 𝑞𝑀 is the number of times the most-
frequent HT of tokens in 𝑇 , 𝑧𝑀 is the maximal size of a super RS in
𝑅𝑇𝜋 , and 𝛾 is the minimum integer such that 10

𝛾 · 𝜖𝜏 is an integer.
Proof. Suppose𝑂𝑃𝑇 is the size of the optimal result of the input

DA-MS problem instance. Let 𝑧∗ be the minimal size of a selection

from 𝑋 whose tokens are from at least ℓ𝜏 different HTs. Let 𝑞𝑚𝑖𝑛 be

the number of times the most-infrequent HT of tokens in 𝑇 . Thus,

𝑂𝑃𝑇 ≥ 𝑧∗ ≥ ℓ𝜏𝑞𝑚𝑖𝑛 . Let 𝑧
#
be the size of 𝑟𝜏 when the first while-

loop terminates. By [24],
𝑧#

𝑧∗ ≤ 𝜖 . Let 𝑥𝑘 be the last module which is

added to 𝑟𝜏 and 𝑧𝑟 is the size of 𝑟𝜏 that the Progressive Algorithm

returns. In each iteration of the second while-loop, 𝛿 decrease at

least 10
−𝛾
. Since |𝑥𝑘 | ≤ 𝑧𝑀 and 𝛿 ≤ 𝑞𝑀 , 𝑧𝑟 ≤ 𝑧# + 𝑞𝑀 ·𝑧𝑀

10
−𝛾 . Thus,

𝑧𝑟
𝑂𝑃𝑇

≤ 𝑧#

𝑂𝑃𝑇
+ 𝑞𝑀 ·𝑧𝑀

10
−𝛾 ·ℓ𝜏 ·𝑞𝑚𝑖𝑛

≤ 𝜖 + 𝑞𝑀 ·𝑧𝑀
10
−𝛾 . □

In Example 3, 𝑞𝑀 = 4, 𝑞𝑚𝑖𝑛 = 1, 𝑧𝑀 = 6, and 𝛾 = 0. These parame-

ters are determined by the problem instance. When ℓ𝜏 is larger, it is

harder to satisfy the diversity constraint. Then, the first while-loop

(lines 2-4) would get a RS with higher size, which is denoted by the

first term of the approximation ratio (i.e., 𝜖). When 𝑐𝜏 is smaller,

it is harder to satisfy the diversity constraint. Then, the second

while-loop (lines 5-7) would get a RS with higher size, which is

represented by the second term of the approximation ratio (i.e.,

𝑞𝑀 ·𝑧𝑀
10
−𝛾 ).

Time Complexity. Let the cardinality of the mixin universe be 𝑛,

i.e., 𝑛 = |𝑇 |. In each iteration of the first while-loop, |𝐻 | increases
by at least 1. Thus, the round of the first while-loop is O(ℓ𝜏 ). For
each round, there are O(𝑛) modules in 𝑋 . For each module, the
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Figure 3: The Distribution of the Number of Tokens.

calculation of 𝛼𝑘 is O(𝑛). Compared with 𝑛, ℓ𝜏 usually can be ig-

nored. Thus, the time complexity of the first while-loop is O(𝑛2).
In each iteration of the second while-loop, 𝛿 decreases by at least

10
−𝛾
. Thus, the round of the second while-loop is O( 𝑞𝑀

10
−𝛾 ). For

each module, the calculation of 𝛽𝑘 is O(𝑛). Compared with 𝑛,
𝑞𝑀
10
−𝛾

usually can be ignored. Thus, the time complexity of the second

while-loop is O(𝑛2). Thus, the total time complexity is O(𝑛2).

6.3 Game-theoretic Algorithm
Since the Progressive Algorithm greedily picks modules (super RSs

or fresh tokens), it may result in local optimal solutions. In this

subsection, we develop a game-theoretic algorithm, where super

RSs and fresh tokens will be considered as players to find an eligible

𝑟𝜏 whose size is as small as possible until the game reaches a Nash

equilibrium [25]. In this section, we prove that the game can reach

a Nash equilibrium within polynomial time and the size of 𝑟𝜏 is

theoretically guaranteed when a Nash equilibrium is converged.

Algorithm 5 illustrates the pseudo-code of our Game-theoretic

Algorithm. We first retrieve the set of super RSs and the set of

fresh tokens (line 1). With the first configuration in Subsection 6.1,

each new RS should be made up of some super RSs and some fresh

tokens. Thus, we consider a super RS or a fresh token as a player

who competes the right to be picked in 𝑟𝜏 with other players. Each

player has two strategies, 𝜙 and
¯𝜙 , which indicate being selected

and being not selected in the new RS, respectively. The player

𝑎𝜏 is the super RS which contains 𝑡𝜏 or the 𝑡𝜏 itself when 𝑡𝜏 is a

fresh token (line 1). Since 𝑎𝜏 has to been contained in 𝑟𝜏 , we re-

move it from 𝐴. Suppose 𝐻 is the set of HTs outputting tokens

in 𝑟𝜏 and 𝐻𝑖 is the set of HTs outputting tokens in 𝑎𝑖 . Then, we

first let the tokens in 𝑟𝜏 be from at least ℓ𝜏 different HTs (line 2-4).

For each player 𝑎𝑖 ∈ 𝐴, we calculate 𝛾𝑖 = |𝑎𝑖 |
min{ℓ𝜏−|𝐻 |, |𝐻𝑖\(𝐻∩𝐻𝑖 ) | }

(line 3). We add the player 𝑎𝑖 with the minimal 𝛾𝑖 to 𝑟𝜏 and update

𝐻 (line 4). Next, we let 𝐻 satisfy the recursive (𝑐𝜏 , ℓ𝜏 )-diversity

(line 5-11). For each player, we calculate the cost of two strate-

gies when other users’ strategies are given and chose the strategy

with the minimal cost (line 6-10). When the cost of two strate-

gies are the same, we chose the strategy 𝜙 (line 7). Specifically,

for each player 𝑎𝑖 , the cost function of strategies is 𝑐𝑖 (𝑒𝑖 , 𝑒𝑖 ) ={ |𝑟𝜏 |
|𝐴 | , 𝐻 satisfies the recursive (𝑐𝜏 , ℓ𝜏 )-diversity

∞, otherwise

, where 𝑒𝑖 is the

set of strategies of players in 𝐴 except 𝑎𝑖 , and 𝑟𝜏 is the RS gener-

ated by 𝑒𝑖 and 𝑒𝑖 (line 8). Finally, we return 𝑟𝜏 as the result of the

Game-theoretic Algorithm (line 12).

In Example 3, by the Game-theoretic Algorithm, the RS is 𝑟𝜏 =

𝑠1 ∪ 𝑠3. Specifically, after the first while-loop, we get 𝑟𝜏 = 𝑠3 ∪ 𝑠2.

Figure 4: The running time of the 𝑖𝑡ℎ RS by the𝑇𝑀_𝐵 Approach.

Then, for the player 𝑠1, the 𝑐1 (𝜙, 𝑒1) = 𝑐1 ( ¯𝜙, 𝑒1) = ∞. Thus, 𝑒1 = 𝜙

and 𝑟𝜏 = 𝑠1 ∪ 𝑠2 ∪ 𝑠3. For the player 𝑠2, the 𝑐2 ( ¯𝜙, 𝑒2) = 8

3
and

𝑐2 (𝜙, 𝑒2) = ∞. Thus, 𝑒2 = ¯𝜙 and 𝑟𝜏 = 𝑠1 ∪ 𝑠3.

Next, we prove that the Game-theoretic Algorithm can converge

on a Nash equilibrium within polynomial time.

Theorem 6.6. Game-theoretic Algorithm can converge on a Nash
equilibrium within O(𝑛3), where 𝑛 = |𝑇 |.

Proof. Define the potential function of the game as Φ(𝑒) ={ |𝑟𝜏 |
|𝐴 | , 𝐻 satisfies the recursive (𝑐𝜏 , ℓ𝜏 )-diversity

∞, otherwise

, where 𝑒 is the

set of strategies of players in 𝐴, 𝑟𝜏 is the RS which is generated

according to 𝑒 , and 𝐻 is the set of HTs outputting tokens in 𝑟𝜏 .

Thus, ∀𝑎𝑖 ∈ 𝐴, 𝑐𝑖 (𝑒𝑖 , 𝑒𝑖 ) −𝑐𝑖 (𝑒 ′𝑖 , 𝑒𝑖 ) = Φ(𝑒) −Φ(𝑒 ′), where 𝑒 = 𝑒𝑖 +𝑒𝑖
and 𝑒 ′ = 𝑒 ′

𝑖
+ 𝑒𝑖 . By [26], when ∀𝑎𝑖 ∈ 𝐴, 𝑐𝑖 (𝑒𝑖 , 𝑒𝑖 ) − 𝑐𝑖 (𝑒 ′𝑖 , 𝑒𝑖 ) =

Φ(𝑒) − Φ(𝑒 ′) and the strategy set of each player is finite, the game

can converge on a Nash equilibrium. Since in each iteration, Φ(𝑒)
decreases by at least

1

𝐴
and Φ(𝑒) ≤ 𝑛

|𝐴 | , the number of iteration

is O(𝑛). For each iteration, we calculate the cost function of O(𝑛)
players and the time complexity of each calculation is O(𝑛). Thus,
the total time complexity is O(𝑛3). □

Then, we prove the approximation ratio of the Game-theoretic

Algorithm. Suppose 𝑂𝑃𝑇 is the cost of the optimal solution to

the problem where the the sum of each user’s cost function is

minimized. As standard measurements, price of stability (PoS) and
price of anarchy (PoA) are often used to evaluate the quality of an

equilibrium [27–29]. Specifically, 𝑃𝑜𝑆 of a game is the ratio of the

minimized cost when it reaches an equilibrium to the𝑂𝑃𝑇 . Besides,

𝑃𝑜𝐴 of a game is the ratio of the maximized cost when it reaches

an equilibrium to the 𝑂𝑃𝑇 .

Theorem 6.7. The 𝑃𝑜𝑆 is bounded by 1 and the 𝑃𝑜𝐴 is bounded
by 𝑞𝑀 · (1 + 1

𝑐𝜏 ·ℓ𝜏 ) +
𝑧𝑀
ℓ𝜏
, where 𝑞𝑀 is the number of times that the

most-frequent HT of tokens appears in𝑇 , and 𝑧𝑀 is the maximal size
of a super RS in 𝑅𝑇𝜋 .

Proof. By the definition of the potential function in the proof

of Theorem 6.6, when a Nash equilibrium is converged, Φ(𝑒) = |𝑟𝜏 ||𝐴 | .
Let 𝑂𝑃𝑇 be the size of the optimal result, denoted by 𝑟𝑜 , of the

input DA-MS problem instance and let 𝑒∗ be the corresponding

strategy set of players in 𝐴. Let 𝑒#
be the strategy set of players

in 𝐴 that yields the minimum of Φ(𝑒). In other words, when the

strategy set of players in 𝐴 is 𝑒#
, the game reaches the best Nash

equilibrium. Let 𝑟#
be the RS when the strategy set of players is 𝑒#

.

Thus,𝑂𝑃𝑇 = |𝐴| ·Φ(𝑒∗) ≥ |𝐴| ·Φ(𝑒#) = |𝑟# |. Thus, 𝑃𝑜𝑆 =
|𝑟 # |
𝑂𝑃𝑇

≤ 1.

Let 𝑟𝑐 be a RS that the Game-theoretic Approach converges, 𝑎𝑘 be

the last player who changes her/his strategy before the converging,
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Table 2: Experimental Settings (Real).
Parameters Values

the 𝑐𝜏 of the recursive (𝑐𝜏 , ℓ𝜏 )-diversity 0.2, 0.4, 0.6, 0.8, 1
the ℓ𝜏 of the recursive (𝑐𝜏 , ℓ𝜏 )-diversity 20, 30, 40, 50, 60

Table 3: Experimental Settings (Synthetic).
Parameters Values

the size of each super RS |𝑠𝑖 | [1,10], [5,15], [10,20], [15,25], [20,30]
the number of super RSs |𝑆 | 10, 30, 50, 70, 90
the number of fresh tokens |𝐹 | 0, 5, 10, 15, 20
the variance 𝜎 of tokens’ distribution 8, 10, 12, 14, 16

and 𝑟𝑘 be the RS before the last change of 𝑟𝑐 . Thus, |𝑟𝑐 | ≤ |𝑟𝑘 | + |𝑎𝑘 |.
Denote 𝑞𝑐,𝑖 as the number of times the 𝑖𝑡ℎ most-frequent HT of

tokens in 𝑟𝑐 and 𝑞𝑘,𝑖 as the number of times the 𝑖𝑡ℎ most-frequent

HT of tokens in 𝑟𝑘 . Since 𝑟𝑘 violates the recursive (𝑐𝜏 , ℓ𝜏 )-diversity,

𝑞𝑘,ℓ𝜏 + · · · + 𝑞𝑘, |𝐻𝑘 | ≤
𝑞𝑘,1
𝑐𝜏
≤ 𝑞𝑀

𝑐𝜏
, where 𝐻𝑘 is the set of different

HTs outputting tokens in 𝑟𝑘 . Thus, |𝑟𝑐 | ≤ |𝑟𝑘 | + |𝑎𝑘 | = 𝑞𝑘,1 +
· · ·𝑞𝑘, |𝐻𝑘 | + |𝑎𝑘 | ≤ 𝑞𝑀 · (ℓ𝜏 − 1) + 𝑞𝑀

𝑐𝜏
+𝑧𝑀 . Let 𝑞𝑚𝑖𝑛 be the number

of times the most-infrequent HT of tokens in 𝑇 . Since 𝑟𝑜 satisfies

the recursive (𝑐𝜏 , ℓ𝜏 )-diversity constraint, 𝑂𝑃𝑇 ≥ ℓ𝜏 · 𝑞𝑚𝑖𝑛 . Thus,

𝑃𝑜𝐴 =
|𝑟𝑐 |
𝑂𝑃𝑇

≤
𝑞𝑀 · (ℓ𝜏−1)+𝑞𝑀

𝑐𝜏
+𝑧𝑀

ℓ𝜏 ·𝑞𝑚𝑖𝑛
≤ 𝑞𝑀 · (1 + 1

𝑐𝜏 ·ℓ𝜏 ) +
𝑧𝑀
ℓ𝜏
. □

When 𝑞𝑀 is higher, it is harder to satisfy the diversity constraint

and the algorithm would pick more tokens, which would increase

the approximation ratio. Because of the first practical configuration

in Subsection 6.1, each super RS cannot be partly picked. Thus,

when 𝑧𝑀 is larger, the final RS which is generated by our algorithms

would be larger, which would increase the approximation ratio.

7 EXPERIMENTAL STUDY
7.1 Experiment Configuration
Data Sets.We test our proposed practical approaches over real data

sets as well as synthetic data sets. For real data sets, we retrieve

the tokens in the blocks between 2,028,242 and 2,028,273 from the

Monero System, which were generated in one hour. There are 285

transactions and 633 tokens in these blocks. Since inMonero System,

most RS’s size is 11, we generate 57 super RSs and 6 fresh tokens.

For each super RSs, it randomly selects 11 tokens. Figure 3 shows

the distribution of the number of tokens in a transaction. Most

transactions output two tokens. In other words, the distribution

of HTs of tokens is almost uniform, and in a RS most 𝑞𝑖 does not

exceed 2. If we set 𝑐𝜏 large and set ℓ𝜏 small, the recursive (𝑐𝜏 , ℓ𝜏 )-

diversity constraint would be very relax. In experiments over the

real data sets, we vary 𝑐𝜏 from 0.2 to 1 and vary ℓ𝜏 from 20 to 60.

To further examine the effects of the distribution of HTs of

tokens, the number of super RSs, the number of fresh tokens, and

the size of each super RS, we generate the synthetic data sets and

run the experiments. For synthetic data sets, we generate |𝑆 | super
RSs where |𝑆 | is varied from 10 to 90. We uniformly set the size of

a super RS within the range [𝑠−, 𝑠+], which is varied from [1, 10]
to [20, 30]. We generate |𝐹 | fresh tokens, where |𝐹 | is varied from

0 to 20. In Monero, as shown in the real data sets, the number of

tokens in an hour is less than 800. Thus, this setting is realistic and

can cover most application scenarios. Moreover, we set the HT of

each token by the normal distribution with variances from 8 to

16. When the variance is 16 and the number of tokens is around

(a) Size (b) Running Time

Figure 5: Effect of 𝑐𝜏 of the Recursive (𝑐𝜏 , ℓ𝜏 )-Diversity (Real).

(a) Size (b) Running Time

Figure 6: Effect of 𝑐𝜏 of the Recursive (𝑐𝜏 , ℓ𝜏 )-Diversity (Real).

800, the number of tokens from the same historical transaction is

around 16. In Monero [2], the maximal number of tokens from the

same historical transaction is 16. Thus, our setting is practical.

Compared Approaches. Let𝑇𝑀_𝑃 and𝑇𝑀_𝐺 indicate the Token-

Magic framework with the Progressive Algorithm and the Game-

theoretic Algorithm to generate RSs, respectively. We conduct ex-

periments on both the real data sets and the synthetic data sets

to evaluate the effectiveness and efficiency of our two approaches,

𝑇𝑀_𝑃 and𝑇𝑀_𝐺 , in terms of the size of the new RS and the running

time. We compare our approaches with two baseline algorithms,

noted as 𝑇𝑀_𝑆 and 𝑇𝑀_𝑅. The 𝑇𝑀_𝑆 denotes the TokenMagic

framework using the Smallest Algorithm to generate RSs, which

repeatedly adds the super RS or the fresh token with smallest size

to the RS until the new RS is eligible. The𝑇𝑀_𝑅 is the TokenMagic

framework with the Random Algorithm to generate RSs, which

repeatedly adds a super RS or a fresh token in random until the

new RS is eligible.

Table 2 and Table 3 show experiment settings on two data sets,

where the default values of parameters are in bold font. In each

set of experiments, we vary one parameter, while keeping other

parameters to their default values. For each experiment, we sample

1000 problem instances. We report the average value of the running

time and the size of the RS. All experiments were run on an Intel

CPU @2.2 GHz with 16GM RAM in Java.

7.2 Result of the Small-Scale Data Sets
We first run the TokenMagic framework with BFS to generate RSs

(noted as 𝑇𝑀_𝐵) on a synthetic small-scale data set. There are 20

tokens in 𝑇 . Each RS requires a recursive (5,3)-diversity. Figure 4

illustrates the running time of the generation of the 𝑖𝑡ℎ RS. As

illustrated in Section 5, the running time of 𝑇𝑀_𝐵 increases expo-

nentially. The running time of generating 8
𝑡ℎ

RS is around 2 hours.

Thus, it is important to implement the practical configurations in

Subsection 6.1 and use our practical algorithms, the Progressive

Algorithm and the Game-theoretic Algorithm, to generate RSs.
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(a) Size (b) Running Time

Figure 7: Effect of the variance of tokens’ distribution (Synthetic).

7.3 Results on Real Data Sets
To exam the performance of 𝑇𝑀_𝑃 and 𝑇𝑀_𝐺 , we conduct experi-

ments on the real data sets.

Effect of 𝑐𝜏 for the recursive (𝑐𝜏 , ℓ𝜏 )-diversity requirement.
Figure 5 illustrates the experimental result on different 𝑐𝜏 , from 0.2

to 1. In Figure 5(a), when 𝑐𝜏 gets larger, the sizes of the new RSs

that generated by four approaches decrease. Because when 𝑐𝜏 is

larger, it is easier to satisfy the diversity constraint and the new

RS can contain fewer tokens from infrequent HTs. The sizes of the

new RSs that generated by TM_G and TM_P are much less than

the sizes of the new RSs that generated by two baseline algorithms.

In Figure 5(b), at beginning, when 𝑐𝜏 increases, the running time of

four approaches decreases. Because when 𝑐𝜏 is larger, it is easier

to satisfy the diversity constraint. Then, when 𝑐𝜏 is large enough,

the running time of four approaches keeps stable. Because when

𝑐𝜏 is large enough, the constraint caused by 𝑐𝜏 is relaxed and the

running time is dominated by other factors.

Effect of ℓ𝜏 for the recursive (𝑐𝜏 , ℓ𝜏 )-diversity requirement.
Figure 6 illustrates the experimental result on different ℓ𝜏 , from

20 to 60. In Figure 6(a), when ℓ𝜏 increases, the sizes of the new

RSs increase linearly as proved in Theorem 6.5 and 6.7. Because

when ℓ𝜏 is larger, the new RS has to contain more tokens from

infrequent HTs to meet the recursive (𝑐𝜏 , ℓ𝜏 )-diversity constraint. In
Figure 6(b), when ℓ𝜏 increases, the running time of four approaches

increases. Among four approaches, 𝑇𝑀_𝐺 is the slowest and it is

more sensitive to the change of ℓ𝜏 compared with the other three

algorithms.

In the experiments on the real dataset, we find that the sizes of

the new RSs generated by our proposed two approaches are much

less than the sizes of the new RSs that generated by two baseline

algorithms. However, since the size of each super RS is the same and

the distribution of HTs of tokens is almost uniform, the difference

between the performance of four approaches is not obvious.

7.4 Results on Synthetic Data Sets
We further examine the effects of the distribution of HTs of tokens,

the number of super RSs, the number of fresh tokens, and the size

of each super RS on the synthetic data sets.

Effect of the variance 𝜎 of distribution of the HTs of tokens.
Figure 7 illustrates the experimental results on different 𝜎 , from 8 to

16. In Figure 7(a), when 𝜎 gets larger, the sizes of the new RSs that

generated by four approaches decrease. When 𝜎 gets larger, tokens

in𝑇 would come from more different HTs and the number of times

a HT outputting a token in 𝑇 decrease. Thus, when 𝜎 gets larger,

it is easier to satisfy the diversity constraint and the new RS can

contain fewer tokens from infrequent HTs. In Figure 7(b), when 𝜎

(a) Size (b) Running Time

Figure 8: Effect of the number of super RSs |𝑆 | (Synthetic).

increases, the running time of four approaches decreases. Although

𝑇𝑀_𝑃 also takes more time than the two baseline algorithms, the

time it takes is much less than that of 𝑇𝑀_𝐺 .

Effect of the size of each super RS |𝑠𝑖 |. Figure 9 shows the

experimental result on different ranges of |𝑠𝑖 |, from [1, 10] to [20,

30]. In Figure 9(a), when |𝑠𝑖 | increases, the sizes of the new RSs

generated by four approaches increase. Because of the first practical
configuration, each super RS cannot be partially picked in the new

RS. Thus, when |𝑠𝑖 | increases, the sizes of new RSs increase. In

Figure 8(b), when |𝑠𝑖 | increases, the running time of four approaches

increases. Because when |𝑠𝑖 | increases, the number of tokens |𝑇 |
increases.

Effect of the number of super RSs |𝑆 |. Figure 8 illustrates the
experimental result on different numbers of super RSs, |𝑆 |, from 10

to 90. In Figure 8(a), when |𝑆 | gets larger, the sizes of the new RS

generated by 𝑇𝑀_𝑅 keep stable but the sizes of the new RSs gen-

erated by the other three approaches decrease. Since 𝑇𝑀_𝑅 picks

mixins randomly, the increment of the number of super RSs has

no effect on the size of the new RS. But when |𝑆 | gets larger, there
are more candidate super RSs can be picked and the other three

algorithms can find RSs with smaller sizes. As shown in Figure 8(b),

when |𝑆 | increases, the running time of four approaches increases.

Specifically, the running time of 𝑇𝑀_𝑃 increases quadratically and

the running time of 𝑇𝑀_𝐺 increases cubically, which confirm the

time complexities we analyzed in Section 6.

Effect of the number of fresh tokens |𝐹 |. Figure 10 illustrates
the experimental result on different numbers of fresh tokens, |𝐹 |,
from 0 to 20. In Figure 10(a), when |𝐹 | gets larger, the sizes of the
new RS generated by 𝑇𝑀_𝑅 keep stable but the sizes of the new

RSs generated by the other three approaches decrease. Since𝑇𝑀_𝑅

picks mixins randomly, the increment of |𝐹 | has no effect on the size
of the new RS. But when |𝐹 | gets larger, there are more candidate

fresh tokens can be picked and the other three algorithms can find

RSs with smaller sizes. In Figure 10(b), when |𝐹 | increases, the
running time of four approaches also increases. Because when |𝐹 |
is larger, there are more candidate fresh tokens that can be picked,

which increases the time complexity of each algorithm.

Summary ofResults. For blockchain systems adopting RS schemes

to preserve users’ privacy, our methods can help to resist the “chain-

reaction” attack. The TM_G outputs the RS with the smallest size

while it is the slowest. Since RSs are generated offline and the gen-

eration time of a RS does not affect the throughput of a blockchain

system, it does not matter that the running time of TM_G is a little

higher, compared with other approaches. Thus, for the applications

where the transaction fee (proportional to the size of RS) is high,

like cryptocurrencies (e.g., Moner [2], Bytecoin[31]) and storage
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(a) Size (b) Running Time

Figure 9: Effect of the size of each super RS |𝑠𝑖 | (Synthetic).

sharing systems (e.g., Oodrive [32]), users can save transaction fee

from using TM_G, since the size of a RS generated by TM_G is the

smallest. For the applications where users need to make transac-

tions fast, like healthcare systems (e.g., MedBlock [33]) and e-voting

systems (e.g., Blockvotes [34]), TM_G is infeasible. For example,

in a polling station, if the time cost of generating a RS for a vote

increases by 100ms, it would delay more than one minute for a

queue with 1000 voters. Thus, for the applications where users

should make transactions quickly and the size of a RS is not very

sensitive, like healthcare systems (e.g., MedBlock [33]) and e-voting

systems (e.g., Blockvotes [34]), TM_P is suitable.

8 RELATEDWORK
To solve the privacy problem, some researchers have proposed

some privacy-preserved blockchain systems. These works can be

classified into two categories. The works in the first category focus

on developing mixing protocols. In these protocols, anonymous

service providers use mixing protocols to confuse the trails of trans-

actions. However, there is a risk of theft by the service. Researchers

proposed a novel protocol, Mixcoin [35], with an accountability

mechanism, to avoid such risk. Generally, the server would sign

warranties to users and if the server steals users’ tokens, users can

publish warranties to expose the theft. However, by these mixing

protocols, a user has to communicate with others, and she/he cannot

make a transaction by herself/himself. When the communication

channel is unsafe, users’ privacy may be disclosed.

The second category focus on developing advanced encryption

methods. The ZCash privacy-preserving blockchain system [36] is

built on the zero-knowledge succinct non-interactive argument of

knowledge (zk-SNARKs) protocol [37]. However, it needs a trusted

entity to initially set up the system, which is unacceptable in many

distributed applications. Since the RS schemes does not require an

initial set up by a trusted entity, they are widely implemented in

blockchain systems in various domains, like cryptocurrency [2, 31],

e-voting [3, 34], healthcare [4] and storage sharing [5, 32]. The RS

schemes are used to conceal the real token of a transaction and a

token can represent the identity of a user, not only cryptocurrency.

In a cryptocurrency system [2], the RS scheme is adopted to hide

the real token of an input in a transaction and in a RS, a mixin is a

UTXO. In an e-voting system [3], the RS scheme is adopted to hide

the real user of a vote, and in a RS, a mixin is a user’s identity. In

a healthcare system [4], the RS scheme is adopted to hide the real

patient of a transaction, and in a RS, a mixin is a patient’s identity.

In a storage sharing system [5], the RS scheme is adopted to hide

the real user of a transaction who wants to operate the data, and in

a RS, a mixin is a user’s identity. These works are the variants of

(a) Size (b) Running Time

Figure 10: Effect of the number of fresh tokens |𝐹 | (Synthetic).

the RS scheme adopted in the Monero system, and they all do not

consider the anonymity of a RS.

As introduced in Subsection 2.1, the generation of a RS includes

two processes (i.e., Step 1 and Step 2). Step 1 picks some mixins

and Step 2 runs an encryption algorithm to generate a RS using

the selected mixins. The existing works focus on decreasing the

number of auxiliary parameters in Step 2. For the advanced RS

scheme [16], the number of auxiliary parameters is O(log𝑛) where
𝑛 is the number of tokens. However, it randomly pick mixins in

Step 1 [2], whose time complexity is O(𝑛) where 𝑛 is the number

of tokens. Our methods focus on Step 1. The time complexities

of the Progressive Algorithm and the Game-theoretic Algorithm

are O(𝑛2) and O(𝑛3), respectively. Although the time cost of our

algorithms is higher, the RSs generated by our algorithms can resist

the “chain-reaction” analysis and the homogeneity attack. Besides,

since Step 1 is made offline, the increase of its time complexity

does not affect the throughput of a system. For Step 2, we use the

advanced encryption algorithm [16].

9 CONCLUSION
In this paper, we target on solving privacy weakness in block-chain

systems that adopt RS schemes. We formulate the diversity-aware

mixin selection problem, which aims to find a RS that satisfies the

diversity requirement and contains a minimal number of tokens.

We prove the problem is #P. We propose an exact algorithm to

solve it when the input is small. Besides, we propose two practical

configurations with two approximation algorithms, the Progres-

sive Algorithm and the Game-theoretic Algorithm, with theoretic

guarantees. When evaluated on the real and synthetic data sets, our

approaches achieved clearly better performance than two baselines.
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