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Abstract. Range proofs are widely adopted in practice in many privacy-
preserving cryptographic protocols in the public blockchain. The perfor-
mances known in the literature for range proofs are logarithmic-sized
proofs and linear verification time. In contexts where the proof verifi-
cation is left to the ledger maintainers and proofs are stored in blocks,
one might expect higher transaction fees and blockchain space when the
size of the relation over the proof grows. With this paper, we improve
Bulletproofs, a zero-knowledge argument of knowledge for range proofs,
by modifying its Inner Product Argument (IPA) subroutine. In partic-
ular, we adopt a new relation from the polynomial commitment scheme
of Halo, based on standard groups and assumptions (DLOG and RO)
with a trustless setup. We design a two-step reduction algorithm and we
obtain a constant number of two rounds in the IPA and a constant-sized
proof composed of 5 (z; points and 2 Z, scalars.

1 Introduction

Bootle et al. [3] develop an Inner Product Argument (IPA) system, in which
computational soundness relies on discrete logarithm (DLOG) assumption in
standard groups. The IPA consists of an argument of knowledge of the openings
of Pedersen commitments satisfying an inner product relation. Biinz et al. [7]
adopt the system of Bootle and propose Bulletproofs, a zero-knowledge proof
system optimized for range proofs. Such proofs are useful in confidential trans-
actions where a sender wants to prove that a value is in a particular range,
without revealing the value to the receiver of the transaction. Bulletproofs opti-
mizes the communication complexity through a logarithmic number of rounds
in the IPA protocol used as a subroutine in the range proof. From these results,
many cryptographic protocols have been applied with range proofs in blockchain
contexts: Quisquis [13] and Zether [6] are privacy-preserving payment schemes
using range proofs to prove that transfer amounts and balances over homomor-
phic encryptions are non-negatives; ZeroMT [10] extends the Zether’s relation
to many transfer amounts and balances, proving that a batch of aggregated val-
ues are non-negatives; Lelantus [14] and Monero [1] are private cryptocurrencies
that hide the coin values through Pedersen commitments, and prove that out-
put commitments in a spend transaction are in the range of admissible values.
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However, due to the complexity of the IPA protocol, range proofs are logarith-
mically sized and proof verification time is linear in the bit length of the range.
It follows that many works try to optimize the IPA protocol with solutions from
standard groups or pairing-friendly groups, e.g., the inner-pairing products (a
complete description can be found in the related works Sect.4). In our work,
we consider the optimizations proposed by Bowe et al. in [5], and we show how
Halo’s modified IPA can be applied to Bulletproofs, keeping the trustless setup
and avoiding expensive pairing checks.

Our Contribution. We present a new two-step reduction algorithm for the
IPA of Bulletproofs. The reduction exploits the structure of the polynomial
commitment of Bulletproofs and a new IPA relation presented in Sect.3. Sur-
prisingly, this adaptation vields a constant number of two rounds in the IPA
and a constant-sized proof composed of 5 (z; points and 2 Z, scalars. As a part
of the contribution, we implement and evaluate concretely our solution in the
arkworks [2| Rust ecosystem.

2 Preliminaries

Groups. Let (G, p, g) be a description of a cyclic group G, where p is the order
of the group and is a prime number, ¢ € G is a generator of the group, we
consider groups in which the discrete logarithm problem is computationally hard.
In particular, we refer to the Discrete Logarithm (DLOG) and Decisional Diffie-
Hellman (DDH) security assumptions for such groups.

Pedersen Commitment. A Pedersen commitment can be defined over a cyclic
group (& of prime order. A binding and hiding commitment for a message m € Z,,,
from the set of integers modulo p, can be generated by applying the Commit
function such that: Commit(m;r) = (¢™h") € G, where g and h are two distinct
generators of the group (¢, and r is a randomly chosen blinding factor. One
variant is Pedersen vector commitment which allows multiple messages to be
committed at once. Pedersen commitments are homomorphic additive when the
group operator - is applied between commitments.

Zero-Knowledge Proofs. Let R be a relation between an instance x and a
witness w such that (z,w) € R and £ be the language for that relation such
that £ = {x | Jw : (x,w) € R}. An interactive zero-knowledge proof is a
protocol between a prover P and a verifier V in which P convinces V that x € L
for the given relation R without revealing the witness. From the transcript of
the protocol, the verifier can accept or reject the proof, which essentially reveals
nothing beyond the validity of the proof. A proof system is honest-verifier perfect
zero-knowledge (HVZK) if it has the properties of perfect completeness, special
soundness and honest-verifier perfect zero-knowledge. The HVZK protocol is
defined public coin if the messages from the verifier are uniformly random and
are independent of the messages of the prover.
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Bulletproofs Notation. The notations we use are those of Bulletproofs [7]. In
summary, we denote:

e 7, is a ring of integers modulo p prime and G, is a cyclic group of prime

order p.

g and h are generators of (z,,.

Pedersen commitment to the value a with blinding factor o is: A = g*h“.

Bold letters are vectors, e.g., a = (ai, ..., a,) with a € Z7.

The inner-product of two vectors is (a,b) = >  a; - b;.

Pedersen vector commitment to a vector a € Z3: A = g* = [['_, g7" is

binding (but not hiding) commitment, where g = (g1, ...,9,) € G" is a vector

of generators.

e Vector polynomial is defined as p(X) = E?:() pi - X' € Z7[X], meaning that
each coefficient of the polynomial p is a vector of field elements in Z7.

For the full notation of Bulletproofs, refer to Sect. 2.3 of [7].

Bulletproofs Proof System. Bulletproofs is zero-knowledge argument of
knowledge in which a prover demonstrates that a value v is in a specific range,
between zero and 2"~ !, where n is the range domain. Given as public parameters
the tuple (g, h,V = g"h"), where g and h are generators of a group G, and V' is
a Pedersen commitment of the value v, with a hiding factor from the randomness
~, the system ends by proving the equality { = (l,r), i.e., that the inner-product
of two committed vectors 1, r is a certain t. In what follows, we first present the
steps of the range proof prior to the inner-product. The prover generates two
vectors ay, and ag where {(a;,2") = v and agp = ay — 1", and commits to these
vectors producing one commitment A. Further, the prover generates a second
commitment S to blinding terms s; and si. The verifier generates and sends
to the prover two random challenges y and z. The prover defines a polynomial
t(X) from the inner product of two vector polynomials [(X) and r(X), which
in turn are derived from a linear combination of the vectors a; and ap, the
blinding vectors s;, and sy and the two verifier challenges y and z. This results
in a degree-two polynomial ¢(X) with coefficients t,,t; and s, where t; is the
constant term, £, is the degree-one term and 5 is the degree-two term. Then,
the prover does not commit to the coefficient g, instead creates and sends to
the verifier the commitments 77 and 75 to the coefficients ¢, and t5. The prover
convinces the verifier that it has the knowledge of the coefficients by proving
that the polynomial ¢(X) evaluates to a specific value t at a random point x.
After receiving the challenge x, the prover sends to the verifier a blinding term
7, for £, a blinding factor u for the commitments A and S and the two blinded
vectors 1 = [(x) and r = r(x).
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Finally, the verifier can check the commitment V' (which is public) of the value v,
that the two vectors 1 and r are valid and that ¢ = (1, r). In order to reduce the size
of the range proof from linear to logarithmic size in n (bits of the range), instead
of transmitting the vectors 1 and r, the prover and verifier engage in an Inner-
Product-Argument (IPA) protocol with the two vectors becoming witnesses. In
the next section, instead, we present how we modify the IPA protocol following
the IPA relation of Halo [5], to reduce the size of the proof to a constant size.

3 Two-Step Reduction Inner-Product-Argument

Bulletproofs [7] implements an Inner-Product-Argument in which the prover
proves the knowledge of two vectors a and b to the verifier for the relation:

{(gheG", ,T€G; abeZ) : T=g*h" uab} (1)

Halo [5] introduce a new relation considering the following intuitions: by
fixing the vector b = (1,z,22,...,2%7!), where d is a fixed polynomial degree,
we can claim that an evaluation v of a polynomial t(z) = (a,b) = v at random
point x, where a is the vector with the coefficients of the polynomial t. With this
variant, the vector h is no longer necessary, and we rewrite the new relation:

{(geG", heG, w,TeG, z,veEZ,; acZ,

P’ r E Zp) . T — ga’lr . IL(ab>}

(2)
where the additional generator h serves for the purpose of blinding the commit-
ment 7' through the randomness r, x is the evaluation point used to construct
the vector b, and v = (a, b). Given the relation (2), in the following we design a
two-step reduction IPA, adding the new relation to the range proof protocol of
Bulletproofs.

From the definition of the polynomial ¢(X) = ty + t; X + t2X?, we oberve
that its evaluation at point x is

t(x) = (t,b) =1

where t = (ty,t1,t2) is the vector of coefficients of +(X) and b = (1,z, 2%). This
means that if the prover proves the knowledge of a = t and r for relation (2)
also the relation (1) holds given

tz) = (Lr) =i

with a = 1 and b = r for relation (1).
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However, the length of t and b vectors is not a power of two, and so we
cannot use them directly inside the Halo IPA. Then, we add an extra round into
the protocol before the actual reduction step occurs.

In the first move, prover P and verifier V initialize a commitment

T =T .4

where T' = g*h”, with t = (ty,t;,t2), and u € G is a random group element sent
by V. Then, P and V engage in an IPA for relation (2). Assuming d = 2 the
degree of t(X), the protocol proceeds in k = 2 rounds, from one extra round (at
j =k —1) to one reduction step (at j = 0).

In round j = 1, the prover sets three vector:

t® = (to,t1) , B = (1,2), g® = (g0, 91)

Then, the prover samples at random [y, r, € Z, and computes and sends to
the verifier:

t l to-
L1=g10 'hl .quE
R, = g(t)‘ Rttt

The verifier samples and sends to the prover a random challange p, € Z,,.
Then, the prover computes t'!) € Z,, b'Y) € Z, and g'!) € G, such that:

t =ty 7t + o -

b =1 pt o
—1
gt =gt - gl

Now the prover prepares for the next round (j = 0) three other vectors (note
that in this way an effective reduction step does not occur):

t(o) - (f(1)1f2) ) b(o) - (b(l)’$2) ) g(()) - (9(1)192)

In round j = 0, the prover samples at random [y, € Z, and computes and
sends to the verifier:

(1)
L() = gé . hlo U

). 22

L)
R() — g(l)t2 . hrn . ut2 b

The verifier samples and sends to the prover a random challenge po € Z,,.
Then, the prover computes t'? € Z,, b\%) € Z, and ¢'*) € G, such that:

O =ty g+t

b = b gt + 2® - g
-1

g(o) = g(l)ﬂ'o . ggo
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After this final round, the verifier computes:

k—1 ) k—1 L,
70) _ H(L;‘J) T H(R;‘J )
7=0 j=0
And the verifier wants to check that:
7O 2 JOED prt O ) (3)

where r’ = ZJ' o Lips) + 1+ ZJ So(rin?).
Note that the verifier can compute ¢'*) and b by itself from the following
inner-products:

9" = (s,8) = ((1g ", 10), (9", g2)) with gV = (7", i), (90, 91))  (4)

b0 = (s,b) = (5", o), (1, 22)) with bV = (4", ), (L)) (5)

To check the equality (3), we first rewrite the right side:

7(0) (0) bt )t“’) ) (6)

Hence, the prover and verifier engage in a Schnorr protocol in which the prover
proves to the verifier the knowledge of t°) and »’.
The prover samples at random d,s € Z,, computes and sends to the verifier

a new Conlnlit- ment R (0)
R - (g(()) ) 'lLb )d . hs

The verifier samples and sends to the prover a random ¢ € Z,,.
The prover computes and sends to the verifier the scalars z; and zs:

AR t(o)C + d

zo=1r'c+s

Finally, the verifier accepts or rejects the proof if and only if:

T7Oe . R 2 (g(()) "U,b(h))zl B

Two-Step Reduction IPA Proof Size. A zero-knowledge proof is composed
of all the scalars (elements in Z,,), and elliptic curve points (elements in ) that
the prover forwards to the verifier. Our two-step reduction IPA generates two
collections of elliptic curve points (L, L) and (R;, Rg) at each j-th round, one
group element R and two scalar field elements z;, z5 in the Schnorr protocol.
The proof size is constant given the constant number of rounds in the IPA and
the total proof consists of 5 (z; points and 2 Z, scalars.
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4 Related Work

Bowe et al. [5] propose Halo, a recursive proof composition from the notion of
Incrementally Verifiable Computation (IVC), i.e. a method to inductively prove
within a single proof the validity of past proofs. The recursion is made via a
cycle of normal prime-order elliptic curves, such that proofs over one curve can
verify proofs over the other curve. An interesting technique is the amortized
succinctness for polynomial commitments: by the structure of the two vectors
behind the IPA, the linear-time work of the verifier is amortized across many
proofs. This is done by an untrusted third party who executes the linear-time
operations for each step proof and then proves the correctness of a batch of that
proofs to the verifier. The verifier performs the same operations once for the
entire batch. This batch of proofs is handled via an accumulator which does
not grow in size with each step proof. With this amortization strategy, the IPA
verifier results in a logarithmic cost barring the single linear time check.

Biinz et al. [8] establish an exciting result that generalizes the Halo’s recur-
sive composition to a class of non-interactive arguments which do not necessarily
have succinct verification. The authors provide theoretical efficiency and secu-
rity proofs for constructing accumulation schemes for any SNARK, which yields
to Proof-Carrying-Data (PCD) scheme. Moreover, the authors prove a second
theorem stating that if the SNARK verifier is succinct except for a specific pred-
icate, and has an accumulation scheme for that predicate, it is possible to derive
an accumulation scheme for the SNARK. Further, the authors prove that two
polynomial commitment schemes have accumulation schemes in Random Oracle:
(i) PCpr, polynomial commitment scheme based on discrete logarithm assump-
tion; (ii) PCagas, polynomial commitment based on knowledge assumption in
bilinear groups. From this follows an interesting open question of whether con-
structions exist in the standard assumption instead of in the “trivial” knowledge
assumption. From the efficiency perspective, PCpy achieves an asymptotic log-
arithmic cost to check accumulation steps and a linear cost in the polynomial
degree during the final opening check. Instead, PC 44/ has an asymptotic linear
cost to check accumulation steps, while only one pairing is required in the final
check.

Xiong et al. [19] propose VERI-ZEXE, an improvement of Zexe’s Decen-
tralized Private Computation (DPC) scheme [4], translating the circuit-specific
trusted setup into a universal setup where a structured reference string (SRS)
is reused for different circuits. Universal SNARKSs built on Polynomial Interac-
tive Oracle Proofs (PIOP) are often instantiated with pairing-based Polynomial
Commitment Schemes (PCS) that require expensive pairing operations in the
verifier circuit. To lighten the cost of pairing checks, VERI-ZEXE relies on the
generalized accumulation scheme of Biinz et al. in PCD [§], designing a two-step
IVC. Hence, with this algorithm, their goal is to delay the final bilinear pairing
check, by attaching 2(z; points to the transaction validity proof to be verified
by the ledger maintainers.

Daza et al. [11] propose an optimization of the IPA protocol of Bootle et al.
[3] on the verifier side. In particular, the authors try to achieve a logarithmic
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verification complexity in the circuit size. Their scheme is based on bilinear
groups, secure under the standard assumption and Random Oracle, with an
updatable and universal setup.

Biinz et al. [9] present a Generalized Inner Product Argument (GIPA) in
pairing-based groups. With GIPA, the authors achieve a logarithmic-time verifier
for a polynomial commitment scheme with a universal setup. This comes at the
cost of square root complexity for prover time bounded to the polynomial degree
and square root SRS size.

Lee [15] proposes Dory, an argument of knowledge system from inner-pairing
products with a transparent setup. This result is established in the standard
SXDH (Symmetric eXternal Diffie-Hellman) assumption which implies DLOG.
The verifier work has an asymptotic logarithmic cost of n multi-exponentiation
with respect to the length n of the IPA vectors, plus a constant number of
pairings.

5 Implementation and Evaluation

In this section, we present an implementation and proof size evaluation of our
two-step reduction IPA presented in Sect. 3, compared to the IPA of Bulletproofs
[7]. The source code, available on GitHub [12], is written in Rust and is based
on the arkworks [2] libraries. The elliptic curve we use for all group operations
is the Barreto-Naehrig curve (BN-254). In Table 1, we report the evaluations in
byvtes of the size of the proofs, considering a fixed range domain of n = 16 bits
and a variable number of aggregate range values m, from 2 up to 64 values.
Measurements are executed on a machine running the Rust compiler with an

Intel Core i7-10750H CPU and 16 GB of RAM.

Table 1. Inner-Product-Argument (IPA) proof size comparison. BP-IPA is the IPA of
Bulletproofs [7]. TS-IPA is our fwo-step reduction IPA presented in this work. n and
m are respectively the bit-range domain and the number of aggregate range values.

n | m BP-IPA proof size (bytes) TS-IPA proof size (bytes)
16| 2 720 400
16| 4 848 400
16| 8 976 400
16 | 16 1,104 400
16 | 32 1,232 400
16 | 64 1,360 400

The results in Table1l highlight that as the number of aggregated values
increases, hence m, the proof size of BP-IPA grows logarithmically while in
our TS-IPA the proof size is clearly constant. This is in line with the theo-
retical results: the aggregated Bulletproofs (in [7], Sect.4.3) shows a logarith-
mic proof size asymptotically equal to O(logz(m - n)), considering that at each
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IPA round there are two collections of group elements (Li,...,Ljy4,(m.n)) and
(Ry,..., Ripg,(m-n))- Instead, in TS-IPA the two collections end up having only
4 group elements (L, Ly) and (R, Ry). Hence, the proof size is constant and
the total proof consists of 5 (z; points and 2 Z, scalars. Figurel shows the
asymptotic sizes of the BP-IPA and TS-IPA proofs.

Proof size (log-const)

—=— TS-IPA
—— BP-IPA
1.5
7 !
=
e
O
— |
=
IS
“ 05
EBa—-8 8 i)
24 8 16 32 64

(m) aggregate values

Fig. 1. Proof size comparison TS-IPA and BP-IPA

6 Conclusion and Future Work

Range proofs in standard security assumptions, standard groups and without
trusted setup are attractive in confidential transaction protocols. However, range
proofs lack succinct verification and proof size. We presented a modified Inner-
Product-Argument protocol for range proof systems such as Bulletproofs, and
our two-step reduction algorithm keeps the size of the proof constant. More-
over, we also reduce the communication complexity since the proof size is in the
order of bytes. In this work, we assumed that the new relation for IPA intro-
duced by Halo is sound and has zero-knowledge, however, further investigations
are needed. As future work, we will validate our approach in real case studies
involving streams of sensor data [16-18].
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