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Abstract—Monero was one of the first cryptocurrencies to
address the problem of providing privacy-preserving digital asset
trading. Currently, it has a market capitalization of over 2.5
billion US dollars and is among the 15 most valuable cryptocur-
rencies. This digital currency aims to protect users’ identities and
hide transaction information by using obfuscation mechanisms
such as stealth addresses and ring signatures. However, in spite
of the efforts to protect Monero’s users’ privacy, researchers
have found ways to identify true payment Keys within a ring
signature in the past, making attacks against transaction privacy
feasible. Since then, the system has received updates and adopted
improved measures to provide privacy. This work presents an
analysis on how an attacker can take advantage of the system’s
current settings to conduct both a high-profile transaction flood-
ing attack and a stealthier version. Our results show that after
flooding the network for 12 months, the attacker can identify
the true spend of 46.24% of newly created transaction inputs by
conducting the strongest attack and 14.47% by using the low-
profile strategy.

Index Terms—Monero, Privacy, Blockchain, Transaction trac-
ing

[. INTRODUCTION

The buzz around Bitcoin [1] and cryptocurrencies led to
fast paced innovation in payment systems around the world.
One of the main reasons for the widespread interest in digital
currencies 1s the potential carried by the technology that pow-
ers them, a distributed and decentralized data structure called
blockchain. Blockchains enable the creation of decentralized
trustless networks in which different parties can participate in
transactions without having to rely on a trusted third-party as
an Intermediary. Transactions that take place between users
are bundled into blocks and added to the end of a chain of
blocks that contain previous transactions. When a new block
is added, the state of the system is updated based on the
information it contains. In the Bitcoin network, participants
reach consensus about blocks that should be accepted by using
an algorithm called Proof-of-Work (PoW), which requires
solving a computational puzzle. Cryptocurrencies, in general,
are not regulated by a central authority. Instead, they are
maintained by world-wide contributors and both the source-
code and history of transactions are open and accessible by
anyone.

In the Bitcoin network, each user has a pair of public
and private keys, which are used for receiving and sending
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payments, respectively. The user’s public key i1s used as a
pseudonym and payment receiving address and the associated
private key is used to claim and spend the received money.
As these addresses are pseudonyms and (supposedly) do not
reveal any information about the owner, users believed that
their Bitcoin transactions were anonymous. However, research
has shown that attackers are able to associate the Bitcoin
addresses of users with their IP addresses and user names
found in forums and websites [2]—[4].

In order to provide a more secure and fungible alternative to
other cryptocurrencies, Monero was launched in 2014. It was
one of the first cryptocurrencies designed to address privacy
issues (e.g. avoid linking user data with their pseudonym
addresses) of previous digital coins. Monero is based on the
CryptoNote protocol [5], which provides two main features,
transaction untraceability and address unlinkability. Untrace-
ability means that given a transaction mput with multiple keys,
it should not be possible to reveal which one of the keys was
used to perform the payment, preventing the transaction from
being traced. Address unlinkability ensures that when given
two different addresses and no additional data, it should not be
possible to link them to the same user. Monero also provides
mechanisms to hide from blockchain observers the amount of
coins sent in a transaction.

Unlike the immutable pseudonym keys used in other cryp-
tocurrencies, Monero’s users rely on the use of two pairs
of keys, one pair of viewing keys and one of spending
keys. An user’s address is derived from the two public keys
and some additional information. Everytime someone wants
to send a payment to an address, a new, unique key 1is
generated to receive that payment. This unique key is called
a stealth address and it is used to provide unlinkability in
the blockchain. The sender’s information is protected through
decoy keys called mixins. Those keys are outputs generated
in previous transactions, which are used together with the
payment key to create a signature that prevents observers from
guessing the real input to a transaction.

Despite providing stronger security mechanisms, Monero
has been a target of attacks that reduce transaction privacy [6]—
[8]. Those attacks try to exploit weaknesses in the system
to reveal transaction payment keys. For instance, in earlier
versions of the system, design choices allowed the execution
of attacks capable of tracing a large amount of input keys [9],
[10]. In particular, those attacks exploited the fact that the



system did not enforce a minimum number of decoys in a
given input (allowing an input to be composed only by the
key being spent) and the decoy selection algorithm, which
followed a triangular distribution that leaked some information
about the age of keys.

To prevent further attacks, Monero has received updates to
increase the number of decoy keys required in transaction
inputs and adopted more effective strategies for decoy key
selection. Currently, as of Monero version 0.16.0.3 (September
2020), transaction inputs are composed by Il input keys,
where 10 of those are decoys. For the mixin selection, the
system uses a gamma distribution to select decoys based on
their position in the blockchain [11].

We propose and evaluate a new attack based on flooding the
network with transactions to trace the payment keys of honest
users in Monero’s blockchain. While the idea is rather simple,
1.e., to flood Monero’s network with transactions whose input
and output keys are owned by the attacker, we need to address
some challenges and pay attention to details that impact the
results. First, the transaction fee is proportional to its size in
bytes, which means that the attacker should carefully chose a
cost-effective size. Second, we try to maximize the number
of output keys per transaction. Ideally, the attacker should
create cost-effective transactions with as many output keys
as possible. Third, we discuss how to explore chain reactions
on the transaction tracing attack and how it can potentially
increase the number of traced transaction inputs.

Our main contribution is as follows: (a) a new transaction
flooding attack to trace payment keys of other users of
Monero’s system; and (b) an evaluation of the effectiveness
of the attack.

This paper is organized as follows. In Section II we intro-
duce the transaction flooding attack. We evaluate the attack
using data generated with basis on empirical observations of
Monero’s blockchain in Section III. A discussion on related
work is provided in Section IV Finally, we provide final
remarks in Section V.

[I. THE TRANSACTION FLOODING ATTACK

Assuming a Monero transaction tx with one input fx.in
containing four input keys (tx.in = {pki,pko, pks,pks}),
while one of the keys (e.g. pk4) represent the real coin being
spent, the remaining three keys are being used as decoys
to hide the real output key being spent in the transaction.
However, if three of the public keys (e.g. pk;, pks and pk3) are
owned by the attacker, it becomes straightforward to find out
which one is the payment key. This is one of the most basic
principles of the transaction flooding attack, i.e., the attacker
has to own a set of valid output keys and make it as big as
possible.

The attacker can remove or mark as known a key pk, from
the input of a transaction created by another user when the key
belongs to him/her. If the attacker has not yet spent the key
on a payment, s’he knows that pk, is being used as a decoy.
Second, if the attacker knows that the key has already been
spent in a previous transaction (e.g. pky), then s/he knows that

the key is a mixin as well. In both cases, the key pk, can be
safely removed from the input keys fx.in of a transaction tx.

The previous example can be exploited in practice through
a transaction flooding attack. This attack explores Monero’s
ring signature scheme, which hides the real input keys by
mixing them with different output keys (used as decoy keys)
generated by previous transactions. The core idea of the
transaction flooding attack is simple. The attacker has to create
transactions to build up a big knowledge base (i.e. set of output
keys) from which the system might select keys to be used
as mixins in future transactions. As discussed before, if the
attacker knows all keys except one of the transaction’s input
tx.in, s’he can easily find out which key is being spent in that
input of the transaction.

In Monero, every time a new transaction is created, 10
mixins must be included in each input together with the true
spend key to form an input ring of size 11. The system selects
the mixins from the output keys of previous transactions with
a decoy picker that uses a gamma distribution [11] and adds
them to the transaction’s input, as shown in Figure 1. Each
input tx.in of transaction fx will have its own set of mixins.
Finally, a digital signature is created to allow the payee to get
the payment without requiring the payer to reveal his key.
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Fig. 1. Moneros’ ring signature.

The main challenge for a successful transaction flooding
attack is to have enough keys so that the system selects all
mixins of an input tx.in from the attacker’s set of keys. In
order to own output keys, the attacker has to flood the network
with valid transactions (ideally low-cost ones to make the
attack feasible). The outputs of those transactions will be sent
to addresses owned by the attacker.

The number of output keys of a transaction (used as decoys
in future transactions) is given by the number of addresses
receiving a share of the payment. Each receiving address will
get an output key containing a number of coins (XMR). Those
output keys can be later selected by the system to be used in
the mixin set of future transaction inputs.

It is worth emphasizing that each transaction has a fee.
This fee is used for paying off the miners that perform
computational work to validate the transaction.

On October of 2018, the Monero community announced
the launch of the Bulletproof protocol' to replace the Ring
Confidential Transaction (RingCT) on the task of generat-
ing range proofs. This new protocol generates cryptographic
proofs up to 97% smaller in size when compared to those

'https://www.getmonero.org/2018/10/11/monero-0.13.0-released.html



of RingCT. Smaller proofs lead to smaller transaction size
and, as a result, lower fees. In short, the introduction of the
Bulletproof protocol made the transaction flooding attack even
more interesting and worth investigating.

With the introduction of the Bulletproof update, Monero
transactions now pay a fee based on their weight. The weight
of a transaction is calculated based on the number of outputs it
contains. Initially, for transactions with only two outputs, their
weight is equal to their size in bytes. As the number of outputs
increases, the transaction weight also increases although it
increases more than the transaction size does. This happens
because bulletproofs increase in size sub-linearly when more
outputs are added to a transaction, but the time required to
verify those proofs is still linear to the amount of outputs.
The increase in transaction weight takes that into account and
increases the fees to make up for the time required for proof
verification [11].

In order to accommodate changes in transaction volume,
Monero supports dynamic block sizes. This means that when-
ever the volume of transactions starts to increase, the block
size will adapt over time so that users can get their transactions
into blocks without having to compete for space by paying
high fees to miners. However, this also means that if the
amount of transactions increases rapidly beyond the size limit,
the block size won’t grow accordingly. If miners wish to
increase the block size past the current limit, they will suffer
a block reward penalty. This makes the creation of oversized
blocks only profitable if the fees paid by the transactions
included in the block are higher than the block reward penalty
incurred. This prevents malicious users from bloating the
system with large blocks while paying low transaction fees.

To execute a transaction flooding attack, a malicious party
needs to take the system’s measures against flooding into
account to avoid spending large amounts of money due to
security measures. With that in mind, an optimal strategy
would be to take advantage of the free space inside blocks
to create flooding transactions. Currently, Monero’s minimum
maximum block size, i.e, the maximum block size for when
the transaction volume is low, 1s 300 kB. By keeping the block
size within the limit, the attacker does not have to pay higher
fees in order to accommodate his/her transactions, but only
try to take advantage of the unused space inside each block.
With that in mind, we would like to evaluate how can an
attacker benefit from a transaction flooding attack that simply
takes advantage of the free space inside Monero’s blocks to
perform transaction input tracing attacks.

A. The Attacker Model

As Monero’s blockchain data 1s public and accessible to
anyone, the attacker is able to access blockchain data. We
assume that the attacker is willing to pay transaction fees in
exchange for the ability to trace transaction inputs.

We also assume that the attacker possesses at least two dif-
ferent Monero addresses to use in the process of flooding the
network. One of those addresses must contain the amount of
XMR needed to cover the fees paid for the attack transactions.

The other addresses will be used to receive transactions and
store output keys. Note that creating a new Monero wallet is
easy and has no extra cost.

Finally, we assume that the attacker is able to create as
many transactions as he wants at any given time ¢ as long as
he pays the transaction fees. It is up to the miners to select
and validate the transactions, i.e., there is no timing guarantee,
and 1f the network’s transaction pool has transactions that pay
higher fees waiting to be confirmed, those will be selected by
the miners first.

B. Flooding Monero’s Network

To trace mput keys, the attacker must create a large number
of output keys before he/she tries to trace transaction inputs.
Only transactions created after the beginning of the attack are
subject to tracing. As we show in Section III, the attack gets
more effective as the attacking timeframe stretches.

Monero selects decoy keys using a gamma distribution to
select a block of transactions and then selects an output key
randomly from within that block 2. This process is repeated
until 10 decoy keys are obtained for each transaction input
ring. The decoy selection algorithm is more likely to select
output keys from blocks generated in the last few days and
as time goes on and outputs become older, their likelihood of
being selected decrease.

The strategy adopted by the attacker is to generate new
output keys by sending payments to his own Monero wallet
addresses. Each transaction output spends 1 piconero (1012
XMR), the minimum amount allowed in a transfer, leading
the cost of creating transactions to be mostly composed by
transaction fees.

To maximize the efficiency of the attack, the output keys
must be evenly distributed across the blockchain. Due to that,
the attacker must continually create transaction outputs in
order for the transaction input tracing to be as effective as
possible. Based on empirical observations of Monero’s main
net data from blocks 2,154,590 (1 Aug, 2020) to 2,176,789
(31 Aug, 2020), we devised a strategy that can be followed to
take advantage of unused block space by an attacker. Table I
summarizes the data obtained in our observations.

In our analysis of blockchain data from the month of August
2020, we observed that the average block space taken up by
transactions i1s 50.984 kB of data and each block contains
around 18 transactions in average. Considering the minimum
maximum block size of 300 kB, this leaves around 250 kB
of free space that can be used by an attacker. Additionally,
we found out that 5.941% of the blocks mined in the network
contain no user generated transactions, only the miner reward
transaction, and therefore are empty.

We were also able to identify the number of outputs that are
generated more often by user transactions. Table II presents the
possible output set sizes for transactions and how frequently
they appear in the blockchain.

*https://github.com/monero-project/monero/blob/master/src/wallet/
wallet2.cpp#L1030



TABLE |
SUMMARY OF DATA FROM MONERO BLOCKS 2154590 TO 2176789
(AUGUST 2020).

Description Value
No. of transactions 403,755
Avg. block size 50.984 kB
Avg. transactions per block 18.187
No. of transaction inputs 880,750
Avg. inputs per transaction 2.181
No. of transaction outputs 939,566
Avg. outputs per transaction 2.327
Percentage of empty blocks 5.941%

The two most frequent output set sizes are 2, which makes
up 94.943% of transactions, and 16, which appears in 2.089%
of the transactions in the blockchain. It is interesting to note
that 16 output transactions are the most effective in terms of
the ratio between the fees required to create the transaction
and the number of outputs generated. With that in mind, since
we desire to optimize the number of outputs we can generate
given the free space available in each block, we conduct an
analysis of the transaction flooding attack when the attacker
generates 16 output transactions to flood the network.

We are aware that 16 output transactions only make up
2.089% of the total transactions in the blockchain. A sudden
increase in this type of transaction would raise suspicion and
might even lead developers to temporarily limit the number
of outputs that can be generated by a transaction to thwart
the attack. For that reason, we also analyze how an attacker
can benefit from a transaction flooding attack by creating
transactions that generate only 2 outputs.

Because the majority of honest transactions generate 2
outputs, even if the abnormal volume of transactions raises
suspicion, taking action against the the attacker without harm-
ing honest network users becomes more difficult. That is the
case because user addresses in Monero are protected by one-
time addresses [11] and are unique for every transaction. Ad-
ditionally, users’ IP addresses are protected by Dandelion++,
making it hard to take measures against the attacker’s IP

address [12], [13].

In order to evaluate the feasibility of conducting a trans-
action flooding attack in our two proposed scenarios, we
performed a preliminary analysis in a private Monero testnet
using version 0.16.0.3 of the system. We refer to the attacker’s
2 inputs/2 outputs transactions and 2 inputs/16 outputs trans-
actions as 2/2 and 2/16 transactions respectively. The objective
of this analysis was to identify how many transactions an
attacker can fit in a block while taking into account the data
obtained from the main Monero chain. For our experiment we
considered a network scenario in which every block contains
20 user generated transactions with 2 mputs and 2 outputs
each and one miner reward transaction with | output. The
average size of 2/2 transactions is 2.544 kB and this value

is the same for both honest user’s and attacker’s transactions.
The 2/16 transactions have an estimated size of 3.802 kB.
The approximate sizes were obtained by analyzing Monero’s
blockchain data and through verification using a function that
estimates transaction sizes, the latter obtained from the source
code on Monero’s Github repository”.

The 20 user generated transactions considered in our ex-
periment occupy 50.88 kB of block space, an amount that is
similar to the average amount of data contained in a block
on Monero’s network. The data obtained in our empirical
observation of Monero’s blockchain i1s shown in Table I.
Note that while transactions can have 1 input, 2 inputs are
used if users have multiple output keys in their wallet when
the transaction is created*. This strategy is used in order to
make the transactions look similar to one another, with the
majority being composed by 2 inputs and 2 outputs [14].
For that reason we chose to consider user and attacker created
transactions containing 2 inputs.

After adding 20 user transactions to the transaction pool,
we created attacker transactions to observe how many of those
can be added in the remaining space inside the blocks. For 2/2
transactions, we found that a maximum of 96 can be added to
a block in addition to the user transactions, leading to a total of
116 transactions and a block size of 294.43 kB according to the
Onion Monero Blockchain Explorer tool’. When it comes to
2/16 transactions, 32 can be added on top of user transactions,
increasing the block size to 293.95 kB and the number of
transactions to 52. One interesting observation 1s that when
adding up the size of the individual transactions (20 * 2.544
kB transactions and 32 * 3.802 kB transactions) we obtain
172.544 kB, but the blockchain explorer reports a block size
of 293.95 kB. If instead of the size in kB, we perform the
calculation using the transaction weight®, we obtain a total of
293.96 kB, which is closer to the actual block size displayed
in the block explorer.

Having obtained the number of attacker transactions that
can be included in the free space inside each block, we need
to execute the attack to evaluate its impact in the system.

C. The Tracing Algorithm

In order to trace transactions, a malicious actor can either
target specific transactions and its transaction inputs or run a
tracing algorithm over all blockchain transaction data gener-
ated after the attack began. In both cases, the attacker must
keep track of the keys generated by attack transactions during
the network flooding phase.

Targeting a specific input in another user’s transaction is
straightforward, the attacker only needs to check the keys
included in the input ring and mark those owned by him as
decoys. If able to identify 10 out of the 11 keys in the ring, the

Shitps://github.com/monero-project/monero/blob/8966ac3 14¢01715bede
8c2e8ed4d0a896d3edc3dS/sre/wallet/wallet2.cpp#L752
*https://github.com/monero-project/monero/blob/ 1bb4ae3b5e9c6e95991b
efb2fd311d7c¢850ff06¢/sre/wallet/wallet2.cpp#L9315
>https://github.com/moneroexample s/onion-monero-blockchain-explorer
®https://github.com/monero-project/monero/blob/8966ac314¢017 1 5bede8
c2e8e4d0a896d3edc3dS/sre/wallet/wallet2.cpp#L813



TABLE 11
FREQUENCY OF OUTPUT SET SIZES IN THE BLOCKCHAIN.

No. of outputs l 2 3 4 5 6 7

9 10 I 12 13 14 15 16

Transactions (%) | 0 | 94943 | 0989 | 0.647 | 0.256 | 0.191 | 0.156

0.106 | 0.097 | 0.104 0.091 | 0.071 | 0.061 | 2.089

remaining one is the true spend. If unable to identify 10 keys,
the attacker may still be able to reduce the size of the decoy
key set according to the number of keys he knows, allowing
him to guess which one is the true spend with a probability
of % where n is the number of keys remaining in the ring.

The input tracing procedure can also be executed for every
transaction added to the chain after the attack began. To do
that, the attacker must obtain a copy of Monero’s blockchain
data and follow the steps described in Algorithm 1. This
procedure is more effective as it allows traced inputs to be
used towards reducing the privacy of other transactions as
well. That is done by adding newly discovered true spend
keys to the attacker’s set of known transaction outputs, as now
he possesses knowledge of when this particular key has been
spent. The discovered true spend key can now be marked as
spent in other transaction inputs, since it has already been
spent somewhere else and can’t possibly be the true spend in
a different transaction input.

The procedure begins with two data inputs, namely the
block data extracted from Monero’s blockchain and the set
of keys owned by the attacker (Line 1). On each iteration of
Algorithm 1, the inputs of each transaction are extracted (Line
8). For each input (Lines 9 to 23) there’s the need to check
the output keys contained in the ring and mark those which
are in the attacker’s set of keys. If the attacker knows all but
one key of the transaction input (Lines 11 to 18), then the
remaining key is the true spend (traced key) and should be
added to the list of keys known by the attacker (Lines 19 to
21). When the set of attacker’s keys increases (Line 20), it
means new true spend keys have become known. In that case
the analysis will be run again on all blocks as more input keys
can be potentially traced (Lines 5 to 24). The algorithm will
stop only when zero inputs (Line 19) were able to be traced in
the last iteration (Line 4 and 26), meaning that there no new
keys and therefore new true spend keys cannot be identified.
Once ended, the algorithm returns the list of identified true
spend keys (Line 30).

[II. EVALUATION AND RESULTS

In order to obtain our results we conducted simulations
for 2 distinct scenarios using data generated according to the
parameters obtained in our blockchain analysis, described in
Section II-B. Scenario I consists of a network setting where
the attacker executed a flooding attack using transactions with
2 inputs and 16 outputs, generating 32 transactions and 512
malicious outputs in each block in addition to 21 transactions
and 41 outputs generated by honest users. Scenario II analyzes
the impact of an attack where the malicious actor creates trans-
actions with 2 inputs and 2 outputs, generating 96 transactions

and 192 malicious outputs in each block for a total of 233
outputs per block when adding the 41 user generated outputs.
For each scenario we measured the attack’s impact from a
period of one month to twelve months of sustained flooding
(filling up the free space in every block). For the evaluation,
we used the same decoy key selection algorithm based on the
gamma distribution that is used on Monero’s source code.

Our results show, for a transaction input ring created after
the attack, what is the likelihood of its decoy keys set to be
composed only by attacker owned outputs. We also show how
likely it is for the decoy set to be composed of a number
of attacker’s keys ranging from 0 to 9. In order to obtain
our results, we generated the data containing the transactions
according to each attack scenario and then executed the
decoy selection algorithm on the data to generate 1 million
input rings. Based on the results obtained, we extracted the
probability for an input ring to be composed by a given number
of attacker outputs. Table III shows the results for the flooding
attack with 2/16 transactions.

For the attack with 16 output transactions, we observed
that it is unlikely for an attacker to be unable to identify at
least 3 decoy keys after flooding the network for one month.
Also, after only one month of sustained flooding, an attacker
is able to remove all of the decoy keys in 41.21% of newly
created transaction inputs. This probability grows to 46.24%
after twelve months of continuous attack. We argue that a one
month attack is the most cost effective, given the 5% increase
in traceability power from one to twelve months, but a twelve
times increase in the time and number of transactions required.

Table IV shows the results for the 2/2 transactions attack.
This can be considered a stealthier version of the transaction

flooding attack, due to the fact that the attacker’s transactions
can easily blend in with honest user’s transactions, as they
have the same number of inputs and outputs. After attacking
the network for one month, the attacker is able to identify
the true spend in 10.72% of newly created transaction inputs.
After twelve months, this probability grows to 14.47%. In this
scenario, in the same way as the first one, we can conclude
that a shorter attack duration is more cost effective. Unlike in
the first strategy however, the majority of transaction inputs
have their anonymity set size reduced by 8 and 9, leaving the
attacker with a 33.33% and 50% chance of guessing the real
input, respectively.

IV. RELATED WORK

To our knowledge, no existing strategy has been capable
of linking real-world information to user addresses on the
Monero blockchain. Known attacks against Monero, such as
tampering the wallet’s code and personification of a remote



Algorithm 1 Tracing input keys

I: procedure TRACE_INPUTS(blocks, attacker K eys)

2 tracedK eys < {}

3 while frue do

4: knownKeys « |attacker Keys|

5: for each block € blocks do

6 transactions < getTransactions(block)
7 for each transaction € transactions do
8 inputs < getInputs(transaction)

9 for each input € inputs do

> For each block

10: keys +— getKeys(input)

1 mizinSetSize « |keys| — 1 > Currently fixed at 10 mixins + true spend key
12: mixinsRemoved < ()

13: for each key € keys do

14: if key € attacker Keys then

15: | mixins Removed < mixinsRemoved + 1
16: end if

17: end for

18: if mixzinsRemoved == mixinSetSize then

19: real Key < keys — (attacker Keys N keys)
20: attacker Keys < attacker Keys U real K ey
21: traced Keys <+ traced Keys\J real Key

22: end if

23: end for

24: end for

25: end for

26: if knounKeys == |attacker Keys| then

27: | break

28: end if

29: end while

30: return traced Keys

31: end procedure

TABLE III
PROBABILITIES OF IDENTIFYING DECOY KEYS AFTER CONDUCTING A FLOODING ATTACK WITH 16 OUTPUT TRANSACTIONS.

Probability of having decoy keys identified by the attacker
Attack length (months) |- keys | 1 key | 2 keys | 3 keys 4 keys 5 keys 6 keys 7 keys 8 keys 9 keys 10 keys
1 0% 0% 0% 0.0002% | 0.0066% | 0.0688% | 0.6532% | 3.9523% | 15.9134% | 38.1883% | 41.2172%
2 0% 0% 0% 0.0002% | 0.0029% | 0.0481% | 0.4912% | 3.2209% 14.3293% | 37.5354% 44.372%
3 0% 0% 0% 0.0003% | 0.0035% | 0.0408% | 0.4454% | 3.0567% 13.8596% | 37.3604% | 45.2333%
4 0% 0% 0% 0.0001% | 0.0031% | 0.0441% | 0.4193% 2.984% 13.6687% | 37.1598% | 45.7209%
5 0% 0% 0% 0.0002% | 0.0035% | 0.0361% | 04114% | 29119% 13.5591% | 37.2122% | 45.8656%
6 0% 0% 0% 0.0002% | 0.0016% | 0.0377% | 0.4183% | 2.8909% | 13.3983% | 37.137% 46.116%
7 0% 0% 0% 0% 0.0026% 0.04% 04119% | 2.8625% | 13.5346% | 37.0752% | 46.0732%
8 0% 0% 0% 0.0001% | 0.0026% | 0.038% | 0.4007% | 2.8797% | 13.4402% | 37.0942% | 46.1445%
9 0% 0% 0% 0.0002% | 0.0029% | 0.0411% | 03922% | 2.8597% | 13.354% | 37.1057% | 46.2442%
10 0% 0% 0% 0% 0.0024% | 0.0405% | 0.4041% | 2.8443% | 13.3535% | 37.059% | 46.2962%
11 0% 0% 0% 0% 0.0029% | 0.034% | 04051% | 2.876% 13.3579% | 37.0503% | 46.2738%
12 0% 0% 0% 0.0003% | 0.0022% | 0.0408% | 0.4035% | 2.8446% | 13.3959% | 37.0663% | 46.2464%

node, are limited to revealing the real keys spent in transaction
inputs [9], [I5]-[17].

In earlier versions of Monero, the biased results of the
mixin sampling algorithm and the creation of transactions
without any decoy keys could be explored by an attacker
to trace transaction inputs [9], [10]. The biased sampling
algorithm favored older output keys when choosing mixins

to be included in a transaction mput. That led to the spent key
being the most recent one, 1.e, generated in the highest block
among all the mixins, in more than 90% of inputs created
before the algorithm was updated. The lack of decoy keys
happened because there was no enforcement of rules to ensure
a minimum amount of mixins for each input. Inputs without
mixins are traceable as they contain only the spent key. If



TABLE 1V

PROBABILITIES OF IDENTIFYING DECOY KEYS AFTER CONDUCTING A FLOODING ATTACK WITH 2 OUTPUT TRANSACTIONS.

Probability of having decoy keys identified by the attacker

Aftack length (months) 0 keys 1 key 2 keys 3 keys 4 keys S keys 6 keys 7 keys 8 keys 9 keys 10 keys
1 0% 0.0005% | 0.0069% | 0.0841% | 0.5484% | 2.6789% | 8.8621% | 20.1555% 30.236% 26.7017% | 10.7259%
2 0% 0.0004% | 0.0032% | 0.0495% | 0.3862% 2.06% 7.3786% | 18.3691% | 30.0532% | 29.0775% | 12.6223%
3 0% 0.0002% | 0.0026% | 0.0436% | 0.3491% | 1.8562% | 69399% | 17.7506% | 299131% | 29.7777% 13.367%
4 0% 0% 0.0034% | 0.0436% | 0.3212% 1.792% 6.6444% | 17.4056% | 29.8314% | 30.2132% | 13.7452%
5 0% 0.0002% | 0.0034% | 0.0378% | 0.3193% | 1.7167% | 65851% | 17.1911% | 29.7151% | 30.3689% | 14.0624%
6 0% 0.0001% | 0.003% | 0.0403% | 0.304% 1.68669% | 64669% | 17.1548% | 29.7657% | 30.4862% | 14.0924%
7 0% 0.0001% | 0.0019% | 0.0353% | 0.2933% | 1.6499% | 6.4279% 17.015% 29.6069% 30.676% 14.2937%
8 0% 0.0002% | 0.0029% | 0.0357% | 0.2937% | 1.6397% | 6.3376% | 16.9802% | 29.6957% | 30.7021% | 143122%
9 0% 0.0002% | 0.0027% | 0.0336% | 0.2927% | 1.6322% | 6.3519% | 16.8741% | 29.6969% | 30.7457% 14.37%
10 0% 0.0001% | 0.0025% | 0.0387% | 0.2896% | 1.6376% | 6.3203% | 16.9527% | 29.6454% | 30.7178% | 14.3953%
11 0% 0.0002% | 0.0032% | 0.0385% | 0.2891% | 1.6215% | 62682% | 16.8732% | 29.6624% | 30.8374% | 14.4063%
12 0% 0.0002% | 0.0031% | 0.0366% | 0.2803% | 1.6359% 6.315% 16.8408% | 29.5862% | 30.8318% | 14.4701%

the spent key was chosen by the system to be included as a
mixin in a future transaction it could be ignored because it was
already spent before, thus it could not be the key being spent
in the input. Those strategies allowed attackers to compromise
Monero’s privacy just by analyzing transaction data contained
in the blockchain. The weakness of existing mixin selection
algorithms in CryptoNote-style blockchains, including Mon-
ero, has been further studied and formalised [6]. Yu et al.
have identified two new inference attacks on the transaction
untraceability, modelled the mixin selection process as “The
Sun-Tzu Survival Problem™ and analysed it by using graph
theory [6]. They provided theoretical foundations including the
least upper bound of transaction untraceability guarantee and
a general solution that achieves provably optimal transaction
untraceability.

The Monero wallet code was also a target of recent at-
tacks [15]. Findings have shown that an attacker can tamper a
wallet code and, consequently, choose the mixins for a given
input. As the system will not verify wether or not those keys
are being spent in other inputs of the same transaction, this
makes it possible to mark all the keys in the transaction as
spent, regardless of which input each key is spent in. By
setting up a fake cryptocurrency wallet service, the attacker
takes control of the selection of mixins and is able to include
the spent keys in transactions created by other users, reducing
the Monero’s essencial privacy guarantees.

Attackers can also use personified remote nodes to trace
inputs in the Monero network [16]. To avoid the heavy
work of making and keeping up to date a full copy of the
blockchain, clients of the network commonly rely on remote
nodes to request transaction information and send payments.
After checking the possible mixins of the request, the node
operator may abort the client transaction and wait for a retry.
Upon receiving the retry request, the attacker might be able
to identify the real key by searching for the one appearing in
both requests.

A recent work proposed a strategy to trace transaction inputs
by finding closed-sets of public keys included in transaction
inputs [17]. A closed-set 1s defined as a set of transaction
inputs in which the number of distinct keys across all the
inputs is the same as the number of inputs in the set. In a

closed-set each public key must have been spent in one of the
inputs in the set and used as mixin in the other inputs. This
allows an attacker to identify output keys that have already
been spent and remove them from other inputs. As the number
of decoys is reduced the privacy of the transaction inputs is
weakened, allowing the execution of further attacks.

V. CONCLUSION

This work presented an analysis on the traceability of
Monero’s transactions using a transaction flooding attack.
The proposed attack consists in exploiting the Bulletproof
protocol to create a large number of transactions, aiming to
control a large portion of the keys that are used to provide
privacy to Monero’s transaction inputs. Simulation results
show that by executing the proposed attack for one month,
a malicious actor could trace 41.21% of all transaction inputs
created after the month. The results show the existence of
vulnerabilites on Monero’s privacy mechanisms. The presented
analyses emphasize the importance of detecting and patching
vulnerabilities in privacy and security mechanisms provided
by cryptocurrencies.
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