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Anonymity-Enhancing Multi-Hop Locks for
Monero-Enabled Payment Channel Networks

Xiaohu Wang, Chao Lin, Xinyi Huang, Debiao He

Abstract—Payment Channel Networks (PCNs) are innovative
second-layer scaling technologies that aim to improve transac-
tion rates, reduce on-chain storage costs, and enable efficient
atomic swaps for blockchain-based cryptocurrencies. Despite
offering features like relationship anonymity, scriptless script,
and cross-chain fairness, current PCNs encounter challenges in
achieving identity anonymity and maintaining the fungibility
of cryptocurrency units. PayMo, proposed in ESORICS’22,
addresses payment anonymity but is limited to Monero, pos-
ing difficulties in extending it to a PCN framework. In re-
sponse, this paper presents a novel Anonymity-Enhancing Multi-
Hop Locks (AEMHL) mechanism for Monero-enabled PCNs.
The AEMHL mechanism leverages our generic Linkable Ring
Adaptor Signature (LRAS) construction and a minimalist PCN
framework called anonymous multi-hop locks. This approach
effectively combines privacy protection and simplicity while
ensuring Monero’s fungibility without the need for specialized
scripting support. Security properties, including atomicity, con-
sistency, and anonymity-enhancement, are demonstrated using
a universal composability model. Additionally, two optimized
LRAS-based schemes are proposed to accommodate multi-hop
locks construction in diverse scenarios. Through rigorous security
analysis and performance evaluation, we confirm that AEMHL
meets essential security objectives and provides efficient and
practical solutions for privacy-conscious users within PCNs.

Index Terms—Blockchain, payment channel network, multi-
hop payment protocol, identity anonymity, Monero, universal
composability.

I. INTRODUCTION

BLOCKCHAIN, as a decentralized platform for distributed
operation, is changing traditional business logic and

institutional operation mode. It has been widely applied in
finance, Internet of Things, medical health, and various other
fields. For example, the blockchain empowers cryptocurrencies
driven by smart contracts, which reduces the need for inter-
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mediaries in traditional currency transactions and improves
transaction soundness to a certain extent. Despite the potential
of cryptocurrencies, a significant drawback is their low scal-
ability, which results in a low transaction rate. For instance,
Bitcoin now allows for 10 transactions per second (tps) and
demands up to an hour for confirmation. These limitations
significantly hinder the widespread application and promotion
of blockchain technology.

Prompted by the above scalability issues, the exploration
of off-chain payment solutions arises, where users can make
multiple local transactions before only registering the final
balance on the blockchain. Payment Channels (PC) and its
extension Payment Channel Networks (PCN) are two popular
off-chain payment solutions that have shown great potential for
improving scalability. The PC protocol involves two users cre-
ating a two-parties payment channel with just a single on-chain
transaction, and then being able to make multiple payments
locally by adjusting the channel’s balance without recording
them on the blockchain. Finally, a closing transaction will be
recorded on the blockchain if either party would like to close
the channel.

PCN builds on the concept of PC and enables payments be-
tween nodes who don’t share a direct PC. Instead, PCN creates
a chain of intermediate nodes that connect the receiver and the
sender, known as a payment path. This allows PCN to achieve
secure and efficient cross-currency payments, including atomic
swaps. The initial proposal for PCN relied on a scripting
functionality of blockchain dubbed Hash Time-Lock Contracts
(HTLC) [1, 2]. It enables payments throughout the path with
successful completion based on releasing a pre-image of a
hash value within a specific time limit. However, the use of
HTLC is limited to blockchains that have advanced scripting
capabilities, and it also faces on-chain privacy concerns due to
the potential linking of each payment transaction. In addition,
there are also security issues related to payment paths, such
as the possibility of wormhole attacks [3].

To address the issues with HTLC, Malavolta et al. [3] pro-
posed Anonymous Multi-Hop Locks (AMHL), which ensures
relationship anonymity without the need for special scripts
(known as scriptless scripts [4]). The scheme leverages the
algebraic structure of ECDSA and Schnorr signatures, along
with a crucial homomorphic one-way function, to construct
a cascading mechanism. It allows the two parties within
each channel to establish a lock similar to onion routing [5],
ensuring that they don’t learn locking information concerning
the other channels in an AMHL except for its immediate
neighbors. This provides a solution to both privacy leakage
and script dependency issues. Unfortunately, these techniques
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appear inadequate for extending to PCN protocols based on
other prominent signature schemes, such as ring signatures [6]
and its variants [7], which offer identity anonymity properties.
With the potential for these signature schemes to facilitate ef-
ficient identity anonymization, it is likely that more cryptocur-
rencies will adopt them in the future. Furthermore, although
AMHL successfully achieves basic relationship anonymity, it
appears to overlook the issue of identity anonymity between
users on the payment path. This may raise concerns regarding
the exposure of personal information and the risk of unautho-
rized access to sensitive data.

Thyagarajan et al. [8] proposed a scriptless locking mech-
anism in response to the above compatibility issues faced
by AMHL. This mechanism is compatible with most sig-
natures and provides on-chain privacy in the payment path.
The mechanism utilizes a lockable signature, which cascades
the previous channel’s signature hash and the next channel’s
signature hash in a scale-like manner. This lockable signature
ensures compatibility with most ‘special’ structure signatures,
and the cascade form and multiple protocol interactions of the
sender ensure the security of the payment path and privacy on
the chain. However, this mechanism necessitates the sender’s
participation in multiple interactions, which increases the cost
of channel initialization on the chain and the complexity of
off-chain operations. Additionally, it still does not achieve the
aforementioned identity anonymity.

Notably, certain existing PC protocols such as PayMo [9]
achieve user identity anonymity by seamlessly adapting to
Monero. This implementation relies on the property of the
Linkable Ring Signature (LRS) [7], allowing for anonymous
message signing within a ring of dynamically selected po-
tential signers based on the signer’s public key. Although
interesting, extending PayMo to PCNs still lacks a locking
mechanism that allows cascading channels and circumvents
on-chain scripts. Through this mechanism, intermediate nodes
can be constrained from cheating to obtain transfers in ad-
vance.
Challenges and Attempts. In summary, we emphasize the
necessity of the Monero-oriented payment channel network
we have constructed, along with the challenges encountered
in the process. These challenges include incomplete identity
anonymity, issues with token fungibility, and low protocol
adaptability. First and foremost, it is important to note that
most existing payment channel networks are primarily de-
signed for mainstream cryptocurrencies. They often fail to
address the privacy issues arising from transaction correlations
between addresses on the blockchain. For example, adversaries
can exploit transaction records associated with specific ad-
dresses to discern the true identities of transaction partners.
Hence, the need to build a payment channel network tailored
for the largest anonymous cryptocurrency, Monero, is our
primary design objective. During the construction of PCN, the
specific challenges we encountered are as follows:

1) Incomplete Identity Anonymity: This represents the core
issue that our protocol aims to resolve. Current payment
channel networks often assume that each pair of channel users
on the payment link possesses a public address (shared public
key) and its corresponding private address (personal public

key). However, these networks typically only restricts interme-
diate nodes to collect user set information of neighbor nodes
including personal public keys (i.e. relational anonymity). This
approach doesn’t prevent malicious users from deducing the
parties ivolved in each channel through shared public keys.
To address this, our new multi-hop payment protocol employs
the proposed linkable ring signature to achieve complete user
identity anonymity.

2) Impaired Fungibility: Fungibility requires that any third-
party observers cannot distinguish transactions in the payment
channel network from standard transactions on the underlying
blockchain. Existing payment channel networks, such as the
Bitcoin Lightning Network, establish channels by transfer-
ring coins to P2WSH 2-of-2 multi-signature addresses, but
that make them easily identifiable. In contrast, our off-chain
transactions follow construction methods similar to those used
in Monero. This includes using anonymous sets to obscure
signature-user pairs during the lock phase and employing
commitments and zero-knowledge proofs to hide and verify
secret information during the transaction transmission process.

3) Low Protocol Adaptability: To facilitate future work
related to currency exchange, such as atomic swaps, it is
essential to have a highly adaptable protocol. Existing payment
channel network protocols are often limited to specific signa-
ture designs. For example, the Bitcoin Lightning Network is
only compatible with ECDSA-based designs, and AMHL can
adapt to tokens based on ECDSA and Schnorr signatures but
lacks a built-in ring structure. Therefore, Our protocol aims
to provide a efficient anonymous system that can be widely
adaptable.
Our Contribution. In response to the above problems, this
paper is dedicated to designing a novel anonymity-enhancing
multi-hop locking mechanism for Monero-enabled PCNs. The
protocol has a rosy trade-off in terms of token fungibility,
privacy protection, and protocol performance, and can further
optimize performance through a series of improved signature
schemes. Our main contributions are presented as follows.

• We construct the first Anonymity-Enhancing Multi-Hop
Locks (AEMHL) (Section IV-A) for Monero-enabled PCNs
based on our proposed generic construction of Link-
able Ring Adaptor Signature (LRAS). AEMHL guarantees
meaningful identity anonymity and account security (like
wormhole resistance) within a minimal PCN framework,
which is comparable to the most advanced proposal [3, 8].
Our solution also is designed to be compatible with most
signature programs without destroying Monero’s fungibil-
ity. Moreover, AEMHL can replace the functionality of
Hash-lock, eliminating the need for specific assumptions
about the script underlying blockchain.

• We further optimize the general LRAS to reap two
improved schemes, Linkable DualRing Adaptor Signa-
ture (LDRAS) and Linkable DualRing Adaptor Signature
Plus (LDRAS+), each with independent interest (Sec-
tion V). LDRAS features a dual-ring signature structure,
which reduces computational complexity and overhead
compared to the original structure. Meanwhile, LDRAS+
leverages the Non-Interactive Sum Argument of knowledge
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(NISA) [10] algorithm to achieve “shorter signature, faster
verification”. Specifically, LDRAS+ reduces the signature
length of the LRAS from linear to logarithmic, significantly
reducing the computational overhead of the verification
algorithm. These improvements enhance the efficiency and
practicality of the locking mechanism in various applica-
tions.

• We provide theoretical analysis and conduct experiments
utilizing the Multi-precision Integer and Rational Arith-
metic C/C++ Library (MIRACL) in various environ-
ments. Our results demonstrate that the performance of
multiple instantiation schemes of our AEMHL is within
the expected range. Furthermore, our optimized signature
schemes demonstrate their versatility by adapting to differ-
ent application scenarios when building a new PCN.

Organization. Section II provides an overview of the relevant
literature on PC and PCN, as well as diverse signatures, and
Section III introduces the preliminaries. Section IV presents
AEMHL together with its security analysis, followed by the
improved LDRAS and LDRAS+ schemes and security proofs
of the former in Section V. Section VI compares and analyzes
the performance of each scheme. Finally, the last section
provides the conclusion of the paper.

II. RELATED WORK

In this section, we present a literature overview of PC and
PCN, as well as the diverse signature schemes utilized in their
construction.
PC/PCN: As the second-layer extension technology of the
blockchain, a series of PC and PCN [1–3, 8, 9] have been
widely proposed and deeply studied. In 2016, the concept of
HTLC was presented as a fundamental building block for the
Lightning Network [1, 2]. This locking mechanism has been
widely utilized in various blockchain applications [11–13].
However, these protocols, although universal to some extent,
still rely on blockchain-specific scripts and cannot achieve
scriptless scripts.

As mitigation, Malavolta et al. [3] proposed an alternative
locking mechanism called AMHL, which provides enhanced
on-chain privacy without relying on HTLC. Nonetheless, this
protocol is specifically designed for transaction schemes using
ECDSA and Schnorr signatures and does not achieve identity
anonymity. Then, Thyagarajan et al. [9] proposed a payment
channel protocol called PayMo, which guarantees perfect
user identity anonymity. Nevertheless, PayMo still relies on
certain underlying blockchain scripts and does not appear
to be extended to PCN. To eliminate the dependency on
scripts, Thyagarajan et al. [8] presented a scriptless locking
mechanism with broader signature compatibility to address the
narrow signature adaptation of AMHL. This protocol also fails
to achieve identity anonymity, and its increased adaptability
introduces higher computational overhead and on-chain costs.
Diverse Signatures: To enable the construction of PC and
PCN with various anonymity properties, a range of related
signature schemes [6, 9, 14–18] have been proposed as their
fundamental building blocks. In 2002, Abe et al. [6] pro-
posed the first ring signature structure with identity anonymity
properties. This structure has been applied in the various

construction of PC to protect payment path privacy and
maintain the fungibility of cryptocurrencies like Monero. For
example, the proposal [9] introduced a modified LRS called
Verifiable Timed Linkable Ring Signature where signatures
could stay secret for a set amount of time while still being
verifiable. While these signatures provide privacy protection,
their applicability is limited to anonymous cryptocurrencies.

To construct a more versatile locking mechanism, re-
searchers started adopting adaptor signatures [14], which in-
volve hard relation pairs. Aumayr et al. [15] introduced a PCN
structure that is more efficient than the Lightning Network
by leveraging adaptor signatures. This structure exploits the
unique hard relation within the adaptor signature to design
a novel mechanism for revoking old state channels, thereby
avoiding the revocation overhead associated with the number
of parallel payment conditions in the Lightning Network.
Sui et al. [18] proposed a CLRAS that intends to provide
identity anonymity. Unfortunately, this scheme only formally
sign and authenticate messages against a set of public key, and
fail to achieve the claimed anonymity and linkability.

III. PRELIMINARIES

Throughout this paper, we adopt the following notations:
λ represents the security parameter, 1λ ∈ N+ is the security
binary string, negl(λ) is a negligible function concerning λ,
and ∆ denotes a suitable randomness space defined by the
algorithm. In addition, we represent the uniformly random
sampling of an element from a set S by the symbol x $←− S
when given a set S.

A. Type-T Signature and its Canonical Identification

Type-T Signatures. The Type-T signatures [6] typically con-
sists of the four algorithms listed below:
1) SETUP(λ) → params: This algorithm receives a security

parameter λ as input, and generates global public parame-
ters params as outputs.

2) KEYGEN(params) → (pk, sk): This algorithm is exe-
cuted by the certificate authority (CA). It receives global
public parameters params as inputs, and outputs a public-
private key pair (pk, sk).

3) SIGN(sk,M) → σ: This algorithm is executed by the
signer. It receives the private key sk of the signer and a
message M to be signed as inputs, and finally outputs the
signature σ.

4) VERIFY(pk, σ,M) → {0, 1}: This algorithm is executed
by the verifier. It receives a message M , the public key pk
of the signer and a signature σ of M as inputs, and outputs
1 if σ is valid on M under pk. Otherwise, it outputs 0.

The specific algorithm details of the Type-T signatures
are outlined in Algorithm 1. Examples of its implementation
include the Schnorr signatures [19], Guillou-Quisquater sig-
natures [20] are presented as follows.
Schnorr Instantiation [19]. In the Schnorr instantiation, if
the DL assumption holds, we state that the relation A(r) = gr

constitutes a hard relation. Considering ⊗ as modular addition
in a cyclic group and ⊙ as multiplication, the following
relations holds: 1) A(r1) ⊙ A(r2) = gr1 · gr2 = gr1+r2 =
A(r1 ⊗ r2); 2) A(−r) = g−r = (gr)−1 = (A(r))−1; 3)
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Algorithm 1: Type-T Signature

1 Procedure SETUP(λ) :
2 return params;
3 Procedure KEYGEN(params) :
4 return (pk, sk);
5 Procedure SIGN(sk,M ) :
6 r

$←− ∆r, R = A(r);
7 c = H(M,R);
8 z = Z(sk, r, c);
9 return σ = (z, c);

10 Procedure VERIFY(pk, σ,M ) :
11 parse σ = (z, c);
12 R

′
= V (pk, z, c);

13 if c ̸= H(M,R
′
) then

14 return 0;
15 return 1;

Algorithm 2: Experiment aWitExtA,
∏

Re,Σ

1 Procedure: aWitExtA,
∏

Re,Σ
(λ):

2 Ω = ∅; (pki, ski)← KeyGen(1λ) for i ∈ [1, n];
3 pkpkpk = {pk1, pk2, · · · , pkn};
4 (M∗, Y )← AOs,Ops (pkpkpk); σ̂ ← PreSign(pkpkpk, skj , Y );
5 σ∗ ← AOs,Ops (σ̂); y∗ ← Ext(Y, σ∗, σ̂);
6 return ((M∗ /∈ Ω)∧ (Y, y∗) /∈ Re ∧Verify(pkpkpk, σ∗,M∗) = 1);
7 Procedure: Os(M):
8 σ ← Sign(skj ,M); Ω = Ω ∪ {M};
9 return σ;

10 Procedure: Ops(M,Y ):
11 σ̂ ← PreSign(pkpkpk, skj , Y,M); Ω = Ω ∪ {M};
12 return σ̂;

Z(sk, r1, c) ⊗ r2 = r1 + c · sk + r2 = (r1 + r2) + c · sk =
Z(sk, r1⊗r2, c); 4) V (pk, z, c) = gz ·pkc = A(z)⊙V ′(pk, c).
GQ Instantiation [20]. In the GQ instantiation, if the standard
RSA assumption holds, we state that the relation A(r) = re is
a hard relation. Considering ⊗ as modular addition in a cyclic
group and ⊙ as multiplication, the following relations holds:
1) A(r1) ⊙ A(r2) = re1 · re2 = (r1 · r2)e = A(r1 ⊗ r2); 2)
A(r−1) = r−e = (re)−1 = A(r)−1; 3) Z(sk, r1, c) ⊗ r2 =
r1 · skc · r2 = (r1 · r2) · skc = Z(sk, r1 ⊗ r2, c); 4)
V (pk, z, c) = ze · pkc = A(z)⊙ V ′(pk, c).

Type-T Canonical Identification [21]. As a public-key au-
thentication protocol with three-move operating, the Canonical
identification is precisely defined in [6]. Notably, when the
Fiat-Shamir transformation is applied to Type-T canonical
identification, it results in a Type-T signature.

Definition 1. Assuming there are no Probabilistic Polyno-
mial Time (PPT ) adversary A such that Advimp

A (λ) is
non-negligible, then a Type-T canonical identification is se-
cure against impersonation under key-only attack. Where
Advimp

A (λ) is defined as follows:
Advimp

A (λ) := Pr[VERIFY(pk, z∗, ci∗ ) = 1|params← SETUP(λ),

(pk, sk)← KEYGEN(params), (ci∗ , z
∗)← ACH(·)(params, pk)].

The oracle provides A with the value ci during the i-th query
CH(Ri), where i∗ ∈ [1, qc] and qc represents the total number
of queries made to the CH oracle.

B. Formal Definition of LRAS and Security Models
If the following conditions holds, a relation Re with a

language LR = {Y |∃y : (Y, y) ∈ Re} is stated hard:
(i) There exists a PPT generator, LockGen(λ), that outputs
(Y, y) ∈ Re; (ii) The probability of adversary A computing
witness y is negligible for every PPT algorithm A when
given Y ∈ LR.
A linkable ring adaptor signature scheme

∏
Re,Σ

is defined
with respect to a hard relation Re and a signature scheme Σ.

Definition 2. (Linkable Ring Adaptor Signatures) A
linkable ring adaptor signature scheme

∏
Re,Σ

consists of
eight algorithms (Setup, KeyGen, PreSign, PreVerify, Adapt,
Verify, Ext, Link) defined below.

- Setup(λ): This algorithm receives a security parameter λ
as input, outputs system parameters params including a hash
function H : {0, 1}∗ → ∆c.

- KeyGen(params): The algorithm is executed by the CA.
It receives system parameters params as inputs, and generates
the public-private key pair (pk, sk) of signer as outputs.

- PreSign(pkpkpk, skj , Y,M ): The algorithm is executed by the
signer. It receives the set of public keys pkpkpk = {pk1, · · · , pkn}
for the user group, private key skj (j is the index of the
signer in user group), a statement Y ∈ LR and a message
M ∈ {0, 1}∗, as inputs, and outputs a pre-signature σ̂.

- PreVerify(Y,pkpkpk, σ̂,M ): This algorithm is executed by the
verifier. It receives a statement Y ∈ LR, a message M to be
signed, the set of public keys pkpkpk and a pre-signature σ̂, and
finally outputs a bit b.

- Adapt(M, σ̂,pkpkpk, (Y, y)): This algorithm is executed by the
adapter. It received a message M , a hard relation pair (Y, y),
the set of public keys pkpkpk and a pre-signature σ̂ as inputs, and
finally outputs a formal-signature σ.

- Verify(pkpkpk, σ,M ): This algorithm is executed by the ver-
ifier. It received a formal signature σ, the set of public keys
pkpkpk and a message M as inputs, and finally outputs 1 if the
formal signature is valid. Otherwise, it outputs 0.

- Ext(Y, σ, σ̂): This algorithm is executed by the extractor. It
received a statement Y ∈ LR, a signature σ and a pre-signature
σ̂ as inputs, and outputs a witness y such that (Y, y) ∈ R, or
⊥.

- Link(pkpkpk,M ′,M ′′, σ′, σ′′): This algorithm is executed by
the third-party(pre-signed and officially signed owners). It
received a set pkpkpk and two message/signature pairs (M ′, σ′)
and (M ′′, σ′′) as inputs, and outputs “Unlinked” or “Linked”.
Definition 3. (Pre-signature Adaptability) Assuming the
following condition holds for each message M to be signed
in the message space Ω, all pre-signatures σ̂, and every
hard relation pair (Y, y) ∈ Re, then a linkable ring adaptor
signature scheme

∏
Re,Σ

satisfies pre-signature adaptability:

Pr

Verify(pkpkpk, σ,M) = 1

∣∣∣∣∣∣∣∣∣
params← Setup(λ),
(pk, sk)← KeyGen(params),
σ̂ ← PreSign(pkpkpk, sk, Y,M)
PreVerify(Y,pkpkpk, σ̂,M) = 1,
σ ← Adapt(M, σ̂,pkpkpk, (Y, y)).

 = 1.

Definition 4. (Witness Extractability) Assuming the follow-
ing condition holds for each PPT adversary A executing
the experiment aWitExtA,

∏
Re,Σ

detailed in Algorithm 2, then
a linkable ring adaptor signature scheme

∏
Re,Σ

satisfies
witness extractability:

Pr[aWitExtA,
∏

Re,Σ
(λ) = 1] ≤ negl(λ).

Definition 5. (aEUF–CMA security) Assuming the following
condition holds for each PPT adversary A executing the
experiment aSignForgeA,

∏
Re,Σ

detailed in Algorithm 3, then
a linkable ring adaptor signature scheme

∏
Re,Σ

is provably
secure in the aEUF-CMA security model:

Pr[aSignForgeA,
∏

Re,Σ
(λ) = 1] ≤ negl(λ).

Definition 6. (Pre-signature Anonymity) Assuming the fol-
lowing condition holds for each PPT adversary A executing
the experiment aAnonA,

∏
Re,Σ

detailed in Algorithm 4, then a
linkable ring adaptor signature scheme

∏
Re,Σ

achieves pre-
signature anonymity:∣∣∣∣Pr[aAnonA,

∏
Re,Σ

(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

Definition 7. (Linkability) Assuming the following condition
holds for each PPT adversary A executing the experiment
aLinkA,

∏
Re,Σ

detailed in Algorithm 5, then a linkable ring
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Algorithm 3: Experiment aSignForgeA,
∏

Re,Σ

1 Procedure: aSignForgeA,
∏

Re,Σ
(λ):

2 Ω = ∅,F = ∅; (pki, ski)← KeyGen(1λ) for i ∈ 1, n];
3 pkpkpk = {pk1, pk2, · · · , pkn};
4 (M∗, pki∗ , p̂kpkpk)← AOs,Ops,OCorrupt (pkpkpk),where pki∗∈p̂kpkpk⊆pkpkpk;
5 (Y, y)← LockGen(λ); σ̂ ← PreSign(ski∗ , p̂kpkpk, Y,M∗);
6 (p̃kpkpk, σ∗)← AOs,Ops,OCorrupt (σ̂, Y );
7 return ((p̃kpkpk ⊆ pkpkpk\F) ∧ ((⋆,M∗, p̃kpkpk) /∈ Ω)

∧ Verify(p̃kpkpk, σ∗,M∗) = 1);
8 Procedure: OCorrupt(i):
9 F = F ∪ {pki};

10 return ski;

11 Procedure: Os(M, i, p̄kpkpk):
12 σ ← Sign(ski,M, p̄kpkpk), where pki ∈ p̄kpkpk ⊆ pkpkpk;
13 Ω = Ω ∪ {i,M, p̄kpkpk};
14 return σ;

15 Procedure: Ops(M, i, p̄kpkpk, Y ):
16 σ̂ ← PreSign(p̄kpkpk, ski, Y,M), where pki∈p̄kpkpk and Y ∈LR;
17 Ω = Ω ∪ {i,M, p̄kpkpk};
18 return σ̂;

Algorithm 4: Experiment aAnonA,
∏

Re,Σ

1 Procedure: aAnonA,
∏

Re,Σ
(λ):

2 Ω = ∅; (pki, ski)← KeyGen(1λ) for i ∈ [1, n];
3 pkpkpk = {pk1, pk2, · · · , pkn};
4 (M∗, i0, i1, p̂kpkpk, Y )← A1

Os,Ops (pkpkpk),where pkio , pki1 ∈
p̂kpkpk ⊆ pkpkpk; /∗ Os, Ops same as Algorithm 3 ∗/

5 b
$←− {0, 1}; σ̂ ← PreSign(p̂kpkpk, skib , Y,M

∗);
6 b

′ ← A2
Os,Ops (σ̂, Y );

7 return (b = b
′ ∧ {i0, ⋆, ⋆} /∈ Ω ∧ {i1, ⋆, ⋆} /∈ Ω);

Algorithm 5: Experiment aLinkA,
∏

Re,Σ

1 Procedure: aLinkA,
∏

Re,Σ
(λ):

2 Ω = ∅,F = ∅; (pki, ski)← KeyGen(1λ) for i ∈ [1, n];
3 pkpkpk = {pk1, pk2, · · · , pkn};
4 (p̂kpkpki,M

∗
i , σ

∗
i )i=1,2 ← AOCorrupt,Ops,Os (pkpkpk);

5 /∗ OCorrupt, Ops, Os same as Algorithm 3 ∗/
6 b1 = {⋆,M∗

i , p̂kpkpki}i=1,2 /∈ Ω;
7 b2 = Verify(M∗

0 , p̂kpkpk0, σ
∗
0)) ∧ (Verify(M∗

1 , p̂kpkpk1, σ
∗
1);

8 b3 = Link((M∗
0 , p̂kpkpk0, σ

∗
0), (M

∗
1 , p̂kpkpk1, σ

∗
1));

9 b4 =
∣∣∣((p̂kpkpk0 ∪ p̂kpkpk1) ∩ F) ∪ ((p̂kpkpk0 ∪ p̂kpkpk1)\pkpkpk)

∣∣∣;
10 return (b1 = 1 ∧ b2 = 1 ∧ b3 = UnlinkedUnlinkedUnlinked ∧ b4 ≤ 1);

Algorithm 6: Experiment aNonFraA,
∏

Re,Σ

1 Procedure: aNonFraA,
∏

Re,Σ
(λ):

2 Ω = ∅,F = ∅; (pki, ski)← KeyGen(1λ) for i ∈ [1, n];
3 pkpkpk = {pk1, pk2, · · · , pkn};
4 (M,p̂kpkpk, σ)← AOCorrupt,Ops,Os (pkpkpk);
5 /∗ OCorrupt, Ops, Os same as Algorithm 3 ∗/
6 b1 = Verify(M,p̂kpkpk, σ); b2 = ({⋆, ⋆, σ} /∈ Ω);
7 b3 = (∃{M ′, ˆpkpkpk′, σ′} ∈ Ω

s.t. Link((M,p̂kpkpk, σ), (M ′, ˆpkpkpk′, σ′)) = LinkedLinkedLinked);
8 b4 = ((pkpkpk ∩ ˆpkpkpk′ ∩ (p̂kpkpk\F)) ̸= ∅);
9 return (b1 = 1 ∧ b2 = 1 ∧ b3 = 1 ∧ b4 = 1);

adaptor signature scheme
∏

Re,Σ
achieves Linkability:

Pr[aLinkA,
∏

Re,Σ
(λ) = 1] ≤ negl(λ).

Definition 8. (Non-frameability) Assuming the following con-
dition for each PPT adversary A executing the experiment
aNonFraA,

∏
Re,Σ

detailed in Algorithm 6, then a linkable ring

adaptor signature scheme
∏

Re,Σ
achieves Non-frameability:

Pr[aNonFraA,
∏

Re,Σ
(λ) = 1] ≤ negl(λ).

C. Security and Privacy Definition of PCN

We leverage Canetti’s Universal Composability (UC)
framework [22] to describe security and privacy in the context
of concurrent executions. Thus, while maintaining security and
privacy requirements, we enable the composition of linkable
dualring adaptor signatures with other application-dependent
protocols. Due to space limitations, detailed descriptions of
these protocols will be provided in Appendix A-A.

Universal Composability. When a user running protocol τ
interacts with attacker A, the output set of environment ε
through all relevant machines for random coins is declared as
EXECτ,A,ε.

Definition 9. (Universal Composability) Assuming for
each PPT adversary A, there exists a simulator S such
that for any environment ε, the ensembles EXECτ,A, ε and
EXECF,S,ε are computationally indistinguishable, then we
state that a protocol τ UC-realizes an ideal functionality F .

Ideal Functionality. We provide a formal definition of
the ideal-world function F for the anonymity enhanced
locking mechanism. To ensure modularity, we adopt a
similar approach to [3], modeling the functionality of the
dongle using the UC definition instead of a complete PCN
formulation. To maintain simplicity, we make the assumption
that each user pair only creates one link in each direction.
However, it is worth noting that the model can be readily
extended to accommodate more general cases if needed.
Additional assumptions and details of the ideal functionality
interface are provided in Appendix A-A.

In what follows we delve into how ideal functionality F
capture AEMHL-related security and privacy concepts.

Atomicity. In simpler terms, atomicity ensures that
each node in a payment path can release their left lock if
the right lock has already been released. This is achieved
through the functionality F , which keeps track of the locks’
status in the list L and provides the Release interface to
release a lock (lid) if it is locked and the subsequent lock
(getNextLock(lid)) has been released.

Consistency. AEMHL achieves consistency by ensuring
that no adversary can release their left lock before the right
lock is released first. This prevents situations where an
AEMHL is prematurely released before reaching the receiver.
The ideal functionality models this property by allowing a
node to release the left lock only if the right lock has already
been released or if the user is the receiver.

Anonymity-Enhancement. It includes two angles of
relational anonymity and identity anonymity. Among them,
each intermediary node must not discover any secret message
regarding the group of nodes in an AEMHL beyond his
neighbors to maintain relationship anonymity [23]. The lock
identification are sampled at random, and throughout the
locking phase, a node only learns the identification of his left
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Algorithm 7: Generic Construction of linkable Ring Adaptor Signature

1 Procedure Setup(λ) :
2 define H : {0, 1}∗ → ∆c, H′ : {0, 1}∗ → G;
3 return param← TA.Setup(λ);
4 Procedure KeyGen(param) :
5 return (pk, sk)← TA.KeyGen(param);
6 Procedure PreSign(param,M,pkpkpk = {pk1, · · · , pkn}, skj , Y ) :
7 h = H′(pkpkpk), I = VA(h, skj), r ←$ ∆r, zi ←$ ∆c for all i ̸= j;
8 Rj = A(r)⊙ Y ; Lj = VA(h, r); cj+1 = H(M,pkpkpk,Rj , Lj , I);
9 For i = j + 1 to j − 1:

10 Ri = A(zi)⊙ Y ⊙ V ′(pki, ci);
11 Li = VA(h, zi)⊙ V ′(I, ci); ci+1 = H(M,pkpkpk,Ri, Li, I);

12 ẑj = Z(skj , r, cj);
13 return σ̂ = (c1, ẑ̂ẑz, I) where ẑ̂ẑz = (z1, · · · , ẑj , · · · zn);
14 Procedure PreVerify(param,M,pkpkpk = {pk1, · · · , pkn}, σ̂, Y ) :
15 parse σ̂ = (c1, ẑ̂ẑz, I); h = H′(pkpkpk);
16 For i = 1 to n− 1:
17 Ri = A(zi)⊙ Y ⊙ V ′(pki, ci);
18 Li = VA(h, zi)⊙ V ′(I, ci); ci+1 = H(M,pkpkpk,Ri, Li, I);

19 Rn = A(zn)⊙ Y ⊙ V ′(pkn, cn); Ln = VA(h, zn)⊙ V ′(I, cn);
20 if c1 ̸= H(M,pkpkpk,Rn, Ln, I) then return 0;
21 return 1;

22 Procedure Adapt((Y, y), pkpkpk = {pk1, · · · , pkn}, σ̂,M) :
23 parse σ̂ = (c1, ẑ̂ẑz, I); zj = ẑj ⊗ y;
24 return σ = (c1, zzz, I) where zzz = (z1, · · · , zj , · · · zn);
25 Procedure Verify(param,M,pkpkpk = {pk1, · · · , pkn}, σ) :
26 parse σ = (c1, zzz, I); h = H′(pkpkpk);
27 For i = 1 to n− 1:
28 Ri = A(zi)⊙ V ′(pki, ci);
29 Li = VA(h, zi)⊙ V ′(I, ci); ci+1 = H(M,pkpkpk,Ri, Li, I);

30 Rn = A(zn)⊙ V ′(pkn, cn); Ln = VA(h, zn)⊙ V ′(I, cn);
31 if c1 ̸= H(M,pkpkpk,Rn, Ln, I) then return 0;
32 return 1;
33 Procedure Ext(Y, σ̂, σ) :
34 parse σ̂ = (c1, ẑ̂ẑz, I) and σ = (c1, zzz, I); y = zj ⊘ ẑj ;
35 if Y = A(y) then return y;
36 return ⊥;
37 Procedure Link(pkpkpk = {pk1, · · · , pkn}, σ′, σ′′) :
38 parse σ′ = (c1′, zzz′, I′) and σ′′ = (c1′′, zzz′′, I′′);
39 if I′ = I′′ then return LinkedLinkedLinked;
40 return UnlinkedUnlinkedUnlinked;

and right lock as well as his left and right direct neighbor,
so F satisfies this requirement. Identity anonymity further
requires that each node does not learn the original public key
of any lock other than his neighbors.

IV. ANONYMITY-ENHANCING MULTI-HOP LOCKS FOR
MONERO PCN

In this section, we will present the formal definition of
AEMHL and provide security proof for its security proper-
ties. Before that, we refer readers to Appendix A-B for an
introduction to the cryptographic building blocks combined in
the system construction.

A. Construction of AEMHL

To overcome the lack of anonymity and Linkability asso-
ciated with existing LRAS signature schemes, and to align
the foundational cornerstone with our goal of PCN anonymity
and efficiency, we propose a novel general structure for
LRAS signatures (shown in the algorithm 7) that allow any
homomorphic one-way function. Common examples of homo-
morphic one-way functions include the learning with errors
problem [24] and discrete logarithm.

It is worth noting that in comparison to the counterpart
presented in [18], our LRAS employs standard loop calcu-
lations of ring signatures(such as j + 1 to j − 1), during both
the pre-signature and pre-verification stages. This approach
virtually enables the formation of a ring signature structure.
Besides the parameter L, which is introduced to accommodate
the adapter signature, the ring structure in our LRAS scheme
aligns closely with the signature structure of the underlying
Monero blockchain. Additionally, to facilitate the adaptation of
algorithms with different algebraic structures to this solution,
we introduced a function VA(·, ·) for the computation of
parameter L in various scenarios(e.g., the generator h can be
used as a base or exponent).

In this paper, the ideal functionality for a channel with
anonymous communication is set to Fanon, the homomor-
phic one-way function is set to A(·) : R −→ D, and the
homomorphic one-way function with different generators is

set to VA(·, ·). Furthermore, we present successive ⊙ and ⊗
operations, respectively, using the symbols

⊙
and

⊗
:

n⊙
i=1

Ai = A1 ⊙A2 · · ·An−1 ⊙An,

n⊗
i=1

bi = b1 ⊗ b2 ⊗ · · · ⊗ bn−1 ⊗ bn.

Our generic construction and its Schnorr-based instantiation
algorithms are shown in Figure 1 and Appendix B-A, respec-
tively.
KeyGen phase. Calls to Fkgen form the body of the
Generation algorithm. After this stage, user Ui and user Uj

will obtain their public-private key pair (xi, pk) and (xj , pk)
respectively, so that pk = A(xi ⊗ xj).
Setup phase. The user U0 initializes the path of channel
by sampling n values (y0, · · · , yn−1) from the domain of R.
Then it proves that U0 holds y =

⊗i
j=0 yj s.t. Yi = A(y)

by NIZK algorithm, convincing Ui that U0 is credible and the
triple it received is valid. Finally, it sends the first key kn
to Un via Fanon, and sends each intermediate node a triple
(A(

⊗i−1
j=0 yj), A(

⊗i
j=0 yj), (πi, yi)) respectively. Then the

triplet will be verified by the intermediate node Ui using the
homomorphic attribute of A(·) to verify whether it is correctly
generated.
Locking phase. Before the Locking phase, the statement
Yi of the witness and the transaction tx to be signed are
privately negotiated and finalized by users Ui and Ui+1. The
main aim of the Locking algorithm is to calculate the partial
signature of the transaction tx in a distributed manner between
the two parties. First, the two parties confirm their identities
by verifying the common public key and determine n groups
of values zi ∈ ∆z(i ∈ [0, n − 1]) randomly selected and the
common index j. Based on this, both parties can hide their real
identities in n groups of public keys pki using index j. Then,
they compute respectively R0, R1 using selected ephemeral
key r0, r1. Simultaneously with the first round of interactions,
they exchange the value R through the commitment algorithm
and verify its validity through NIZK. Then R0 ⊙ R1 as a
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SetupUi
(1λ) SetupU0

(1λ, U1, · · · , Un) SetupUn
(1λ)

y0
$←− Zq , Y0 = A(y0)

∀i ∈ [1, n− 1] : yi
$←− Zq

Yi = Yi−1 ⊙A(yi)
stmti = {∃y s.t. Yi = A(y)} stmti = {∃y s.t. Yi = A(y)}

b←− VNIZK(stmti, πi)
Yi−1,Yi,(πi,yi)←−−−−−−−−− πi = PNIZK(

⊗i
j=0 yj , stmti)

Yn−1,kn=
⊗n−1

i=0 yi

⊗n−1
i=0 yi−−−−−−−−−−−−−−−−−−→

if b = 0 then abort, Yi = Yi−1 ⊙A(yi)
return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi
(sIi , ski, pk) LockUi+1

(sIi+1, ski+1, pk)

parse sIi as (Y
′

0 , Y0, y0) parse sIi+1 as (Y
′

1 , Y1, y1), pk1 = A(ski+1)

j
$←− Zn, h = H ′(pkpkpk), I1 = VA(h, ski+1), zi

$←− ∆z(i ∈ [0, n− 1]) for all i ̸= j

z⃗ = {z1, . . . , zn}, r1
$←− Zq , R1 = A(r1)⊙ Y

′

1 , L1 = VA(h, r1)

stmt1 = {∃r1 s.t. R1 = A(r1)⊙ Y
′

1}, π1 ←− PNIZK(r1, stmt1)

if pk ̸= pk1 ⊙A(ski) then abort
pk1,j,I1,z⃗,L1,com←−−−−−−−−−−− (decom, com)←−Commit(1λ, (R1, π1))

h = H ′(pkpkpk), I0 = VA(h, ski), r0
$←− Zq , R0 = A(r0)⊙ Y0

L0 = VA(h, r0), stmt0 = {∃r0 s.t. R0 = A(r0)⊙ Y0}
I = I0 ⊙ I1, π0 ←− PNIZK(r0, stmt0)

I0,R0,L0,π0−−−−−−−→ I = I0 ⊙ I1
if VNIZK(stmt0, π0) ̸= 1 then abort, cj+1 = H(pkpkpk||R0 ⊙R1||L0 ⊙ L1||tx)
for i = j + 1 to j − 1

Ri = A(zi)⊙ Y
′

1 ⊙ V ′(pki, ci), Li = VA(h, zi)⊙ V ′(I, ci)
ci+1 = H(pkpkpk||Ri||Li||tx)

if Vcom(com, decom, (R1, π1)) ̸= 1 then abort
decom,R1,π1,z←−−−−−−−−− z = Z(ski+1, r1, 2cj)

if VNIZK(stmt1, π1) ̸= 1 then abort
cj+1 = H(pkpkpk||R0 ⊙R1||L0 ⊙ L1||tx)
for i = j + 1 to j − 1

Ri = A(zi)⊙ Y0 ⊙ V ′(pki, ci)
Li = VA(h, zi)⊙ V ′(I, ci), ci+1 = H(pkpkpk||Ri||Li||tx)

if A(z)⊙ Y0 ⊙ V ′(pk ⊘⊙A(ski), cj) ̸= R1 then abort

zj = Z(ski, z ⊗ r0, 2cj)
zj−→ if A(zj)⊙ Y

′

1

2
⊙ V ′(pk, 2cj) ̸= R0 ⊙R1 then abort

return ((tx,pkpkpk = {pk1, . . . , pkn}, Y0, c1, I), z⃗) return ((tx,pkpkpk = {pk1, . . . , pkn}, Y
′

1 , c1, I), (R0 ⊙R1||L0 ⊙ L1, z⃗))

Release(k,(sI ,sL,sR)) Verify(l,k)
parse k as (R,sss), parse sI as (Y

′
, Y, y) parse l as (tx,pkpkpk, Y, c1, I), parse k as (R,sss)

parse sL as (W0,w1w1w1) for i = 1 to n

sv
vth←−− sss, zj

jth←−− w1w1w1, sR
vth←−− sRsRsR Ri = A(zi)⊙ Y ⊙ V ′(pki, ci)

z′j = zj ⊗ sv ⊘⊗(sR ⊗ y ⊗ y) mod q Li = VA(h, zi)⊙ V ′(I, ci)
w0w0w0 = {z1, · · · , z′j , · · · , zn} ci+1 = H(pkpkpk||Ri||Li||tx) if i ̸= n
return (W0,w0w0w0) return c1 = H(pkpkpk||Rn||Ln||tx)

Fig. 1: Generic construction of AEMHL.

random value commitment of the signature is calculated by
both parties involved and participates in subsequent calcula-
tions. But because they don’t learn the discrete logarithm of
Yi, the signature still cannot be completed at this time. Under
normal circumstances, zj = Z(ski ⊗ ski+1, r0 ⊗ r1, 2cj) will
be jointly calculated by both parties, but this value lacks Yi in
the random value commitment. Actually, the calculated zj also
cannot be used as a usable signature on the message tx about
transaction due to the lack of the additive item y∗ (where
A(y∗) = Yi = Yi−1 ⊙ A(yi)). Eventually, both parties will
sequentially merge zj into the random value set z⃗ and save
these tuples. Among them, (R0 ⊙R1||L0 ⊙ L1, z⃗) is used as
the left identification sLi+1 of Ui+1, and the set of z⃗ is used
as the right identification sRi of Ui.
Release phase. Ui+1 first parses his own identity
sLi+1, s

I
i+1 and the received unlocking key ki+1 into (W0,w1w1w1),

(Y
′

i ,Yi, yi) and (Ri+1, si+1si+1si+1). Then Ui+1 respectively extracts
the locked value both of the current channel and the specific
position of the next channel (where it is assumed that the real
locked value position of the latter channel is v) and updating
the locked value z′j = zj ⊗ sv ⊘ ⊗(sR ⊗ y ⊗ y). Finally,
Ui+1 puts z′j in the set w0w0w0 and returns (Ri, sisisi) as the unlock

key ki of the previous channel. This means that the effective
signature on the transaction can be calculated by Ui+1 after
the discrete logarithm of the statement Yi of the witness is
revealed. Knowing this, the open with atomicity is enforced
by Ui+1, and the lock between Ui+1 and Ui+2 bounded by
Yi+1 = Yi ⊙A(yi+1) is opened. In this perspective, the value
y∗ ⊗ yi+1 is revealed after opening the right lock, and user
Ui+1 can immediately use his secret value yi+1 to extract y∗

and release its left lock with a usable formal signature on the
transaction.
Verify phase. This step is mainly used by the channel to
verify the validity of the generated unlock key. The channel
user Ui first parses the lock information li and unlock the key
value ki, then calculate Ri, Li and ci+1 for i from 1 to n loop
(where i = n, no longer calculates the last ci+1). Finally, the
verification passes if c1 = H(pkpkpk||Rn||Ln||tx); otherwise, the
verification fails.

B. Security Analysis

In the next sections that follow, we will briefly review our
ideal functionality and will present the security analysis of
our construction in more detail.
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Key Generation Functionalities. Figure 2 presents the
ideal functionality Fkgen used in the KeyGen stage of
AEMHL. It simulates the key generation of a two-party Type-
T signature, an issue that has been extensively researched
(e.g., [25]).

KeyGen(param)

Upon invocation by both U0 and U1 on input (param):
select a hash function H : {0, 1}∗ → R
sample x← R and compute pk = A(x)
set skU0,U1

= x
sample x0 and x1 randomly s.t. x = x0 ⊗ x1

send (x0, pk,H) to U0 and (x1, pk,H) to U1

ignore future calls by (U0, U1)

Fig. 2: Ideal functionality Fkgen for key generation.

Theorem 1. The protocal in Figure 1 UC-realizes the
ideal functionality F in the (Fkgen, Fsyn, Fsmt, Fanon)-hybrid
model if COM is a robust commitment scheme, NIZK is a non-
interactive zero-knowledge proof and A(·) is a homomorphic
one-way function. (please see [22, 26, 27] for the concrete
functionality or examples of Fsyn, Fsmt, and Fanon respectively
and see A-A for the relationships between them and AEMHL)

Proof. In the subsequent hybrids we define, the initial
experiment is gradually changed.

H0: is the same as the procedure outlined in Figure 1.

H1: Interactions in this hybrid with the ideal functionality
Fcom showed in Figure 3 replace all uses of the commitment
scheme compared to H0.

Commit(sid,M)

Upon execution by Ui (where i ∈ {0, 1}):
store (sid, i,M) and return (com, sid) to U1−i

if some (sid, ·, ·) is already recorded, then disregard the message
Decommit(sid)
Upon execution by Ui (where i ∈ {0, 1}):
if (sid, i,M) is stored, then return (decom, sid,M) to U1−i

Fig. 3: Ideal functionality Fcom.

Rather than directly invoking the Commit algorithm with
a certain message M to be signed, the parties now transmit
a message in the form of Commit(sid,M) to the ideal
functionality. Similarly, the Decommit algorithm is substituted
with a invocation to algorithm Decommit(sid). As for the
verifying party, it merely store the messages received from
Fcom.

H2: Interactions in this hybrid with the ideal functionality
FNIZK described in Figure 4 replace all uses of the NIZK
scheme compared to H1.

Prove(sid, x, w)
Upon execution by Ui (for i ∈ {0, 1}):
if Re(x,w) = 1, then return (proof, sid, x) to U1−i

Fig. 4: Ideal functionality FNIZK.

H3: In this hybrid, the tuple (li, li+1, s
L, sR), the public-

private key pair (ski, pk), the honest node Ui, the state sI

and other variable collections interact with A such that

{·, (li, sL)} ←
〈
·,LockUi

(sI , ski, pk)
〉

and
{(li+1, s

R), ·} ←
〈

LockUi
(sI , ski, pk), ·

〉
The experiment ends if the adversary returns some k for all

collection of these variables such that Vf(li+1, k) = 1 and
Vf(li,Rel(k, (sI , sL, sR))) ̸= 1.

H4: In this hybrid, a public-private key pair (ski, pk),
a collection of possibly corrupted nodes (U1, · · · , Un), a pair
of honest nodes (U0, Ui), a collection of initial states

(sI0, · · · , sIn)←
〈SetupU0

(1λ, U1, · · · , Un),

· · · ,
SetupUn

(1λ)

〉
,

and a pair of locks (li−1, li) interact with A such that
{·, (li−1, ·)} ←

〈
·,LockUi

(sIi , ski, pk)
〉

and
{(li, ·), ·} ←

〈
LockUi

(sIi , ski, pk), ·
〉
.

The experiment ends if the adversary returns some ki−1 for
all collection of these variables such that Vf(li−1, ki−1) = 1
before the node Ui outputs a key ki such that Vf(li, ki) = 1.

H5: Let S = (U0, · · · , Um) be an ordered set of nodes that
may have corrupted users. Assuming node Ui is honest and
(Ui+1, · · · , Uj) has been corrupted, we state that the ordered
subset SA = (Ui, · · · , Uj) to be adversarial. The tandem
of adversarial subsets S = (SA1 || · · · ||SA1

m′
) is used to

represent each group of node sets. It initializes a separate lock
for each subset (SAi

, S0
Ai+1

) when an honest node is asked
to establish a lock for a collection S = (SA1 || · · · ||SAm′ ). If
existing, S0

Ai+1
is the first item of the (i+ 1)-th collection. It

will release the key for the new lock (SA1
|| · · · ||SAm′ ) when

an honest user S0
Ai+1

is asked to turn over the key of the
associated lock. At this time, it means that each adversarial
subset is statically corrupted by only one different adversary,
and the shared public key pklock of each lock is hidden, which
satisfies relational anonymity and strong identity anonymity
between each subset.

S: The only difference between the simulator’s interaction
and that of H3 is that simulator’s behaviors are determined
by its interaction with ideal functionality F . The S is asked
by adversary A on the following collection of inputs after
reading the communications between adversary A and the
honest nodes through Fanon.

1) (·, ·, ·, ·, Init): The S creates a new lock chain and rebuilds
the adversarial collection using the ids.

2) (·, Lock): Initiating the locking process with the A, the
S responds with ⊥ if the execution is unsuccessful.

3) (·, Rel) The S publishes and releases the key for the
relevant lock.

The simulator requests the matching interface of F if A
interacts with an honest node.

Keep in mind that the S works well and interacts with
the ideal world as the F . Additionally, the simulation always
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PreSign(M,y)

Upon invocation by both U0 and U1 on input (M,y):
compute (R, zj) = SigLRAS(skU0,U1 ,M,A(y))
return (R, z = {z1, · · · , zj , · · · , zn})

Fig. 5: Ideal functionality FPreSign for signing.

reflects the ideal world. That means it will stop if the actions of
F are not accommodated by the interfaces of ideal functional-
ity. What needs to be demonstrated is that the adjacent hybrids
are indistinguishable from the sight of environment ε.
Lemma 1. For all PPT distinguishers ε, it holds that

EXECH0,A,ε ≈ EXECH1,A,ε.

Proof. Its security directly results from the security of the
commitments COM.
Lemma 2. For all PPT distinguishers ε, it holds that

EXECH1,A,ε ≈ EXECH2,A,ε.

Proof. Its security directly results from the security of the
non-interactive zero-knowledge scheme NIZK.
Lemma 3. For all PPT distinguishers ε, it holds that

EXECH2,A,ε ≈ EXECH3,A,ε.

Proof. First of all, we hand over the locking algorithm process
to the ideal functionality as shown in Figure 5, where skU0,U1

is established by Fkgen proposed earlier.
The upper limit of the number of interactions is set to q

in this paper. we will prove Pr[abort|H3] ≤ negl(λ) below
to show that H2 and H3 are indistinguishable. Now assuming
that the above negative proposition is true, we can construct
a reduction algorithm to break the EUF of LRAS:

The random index j ∈ [1, q] and public key pk are given to
the reduction algorithm. Every request made to the signature
algorithm converts to a question to the signature oracle. Let X
be the public key of the Uj for key generation. The algorithm
sets X = pk when the adversary interacts with the j-th user. If
an event triggering H3 abort occurs, the reduction algorithm
return (k∗, l∗) = ((R, s), (M∗, pk∗)) using signature oracle.
Otherwise the experiment aborts.

Now amusing that the sequence number of the interaction
that triggers the H3 abort is j, and the sequence number of
the current lock l∗ is i+1. The left identification sLi and key
k∗ will be parsed into (Wi,0,wi,1) and (R∗, s∗) by the release
algorithm when the abort incident is triggered. And then the
release algorithm will return (Wi,0,wi,0), where (zj ⊗ sv ⊘
⊗(sR ⊗ y ⊗ y)) ⊂ wi,0. So we can do the conversion as
follows:

zj ⊗ sv ⊘⊗(sR ⊗ y ⊗ y)

= si ⊘
i−1⊗
j=0

(yj)⊘
i−1⊗
j=0

(yj)⊗ sv ⊘⊗

sj ⊘
i⊗

j=0

(yj)⊘
i⊗

j=0

(yj)⊗ y ⊗ y

= si ⊗ sv ⊘⊗sj

where sj is the response obtained from asking the random
oracle for mj in the j-th session. This implies that there
is s∗ ̸= sj . Otherwise, the valid signature generated by
the random oracle is returned to the adversary. Since the
messages of each session are different, ((R, s), (M∗, pk∗))
is a pair of valid forgery. In summary, there is at least a

1
q·poly(λ) probability that an A will succeed in breaking the
EUF of the LRAS. Furthermore, regardless of whether the
adversary corrupts the left or right node of the channel,
the simulator responds appropriately and checks whether the
obtained witness is valid.

Lemma 4. For all PPT distinguishers ε, it holds that

EXECH3,A,ε ≈ EXECH4,A,ε.

Proof. Let q denote the bound on the number of interactions.
we will prove Pr[abort|H4] ≤ negl(λ) below to show thatH3

and H4 are indistinguishable. Now assuming that the above
negative proposition is true, we can construct a reduction
algorithm to break the EUF of LRAS: Set the commitment
value Y ∗ corresponding to the user Ui, and the session
index is j. When the i-th node is asked in the setup phase,
returns Yi = Y ∗; when index i ∈ [0, i − 1] of users are
asked, returns (Yi = Yi+1 ⊗ A(yi+1 ⊗ yi+1)

−1, Yi+1, yi);
when index i ∈ [i + 1, n − 1] of users are asked, return
(Yi = Yi−1 ⊗ A(yi ⊗ yi), Yi−1, yi). The reduction fails if
user Ui is required to open the lock. Otherwise, the reduction
algorithm parses the updated right identifier sR from Ui and
returns s∗ ⊗ yi−1 ⊗ yi−1 ⊗ (sR)−1 ∈ w0w0w0 after the adversary
finally outputs the unlock key k∗.

Since node Ui is honest and group G is an exchange group,
from the perspective of A, the updated setup algorithm’s
distribution is identical to the original distribution. The aborts
of H4 will only happen when the output k∗ is valid and can
successfully pass the release algorithm. We have sR ∈ sRsRsR in
the form of s′ ⊗ y−1 = Z(ski, Z(ski+1, r1, 2cj)⊗ r0, 2cj)⊗
y−1 for some y. Hence (R, s′) can be determined to be a
valid LRAS signature on the message Mi−1 due to successful
release. Therefore we have

A(s ∗ ⊗yi−1 ⊗ yi−1 ⊗ (sR)−1)

= A(s ∗ ⊗yi−1 ⊗ yi−1 ⊗ (s′)−1 ⊗ y)

= A(yi−1 ⊗ yi−1 ⊗ y ⊗ y)

= A(yi−1 ⊗ yi−1)⊙ (Y ∗ ⊙A(yi−1 ⊗ yi−1))

= Y ∗.

In summary, the probability of A breaking the EUF of LRAS
is at least 1

q·n·poly(λ) . This in turn proves that the probability
of H3 aborts is negligible(i.e. Lemma 4 holds).

Lemma 5. For all PPT distinguishers ε it holds that

EXECH4,A,ε ≈ EXECH5,A,ε.

Proof. According to the hybrid definition in H5 introduced
earlier, different adversarial subsets are always linked by
honest nodes. Therefore, there is always a witness y such that
Yi = Yi−1⊗A(y). And the A at the end of the set is unknown
y for each Ai in H4. This is the same as the adversary’s
perspective in H5 (i.e. the simulation does not aborts).

Lemma 6. For all PPT distinguishers ε it holds that

EXECH5,A,ε ≈ EXECF,S,ε.

Proof. Aside from possibly slightly different syntax and be-
havior, the execution of the environment is largely the same
in both cases.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3346177

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 26,2023 at 05:54:39 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

V. GENERIC CONSTRUCTION OF LINKABLE DUALRING
ADAPTOR SIGNATURES

Building upon the structure of the LRAS, we have con-
structed a locking mechanism in the previous section that
fulfills the initial privacy and simplicity requirements. But
in order to further meet the practical needs for efficient and
versatile deployment, we present two optimized schemes based
on the LRAS that possess unique efficiency attributes. To
demonstrate the security of our signatures, we select the
representative LDRAS for formal proof under the random
oracle model.

A. Our New Basic Cryptographic Cornerstone

We give the generic construction of linkable dualring adap-
tor signature and its instantiations respectively in Algorithm 8
and Appendix B-B. In addition, the locking mechanism based
on the generic construction of the LDRAS has been placed in
Appendix B-C due to space reasons.

Given the intricate structure of LDRAS, we aim to provide
a more comprehensive algorithmic description. Initially, the
Setup and KeyGen phases initialize system parameters and
generate the signer’s public-private key pairs, respectively.
Moving to the pre-signing stage, the signer first maps the
public key set to the anonymous public key hash h of group
G, using this hash along with the private key to compute
the link identification I . Subsequently, a random value r and
n− 1 random challenge values ci are selected. These random
values are then employed to calculate the commitment R
that embeds statement Y , and the verification identifier L,
used for auxiliary verification. The signer then substitutes
R and L into the signature hash H to compute the total
challenge value. Using the total challenge value and the chosen
n−1 random challenge values, the signer calculates the actual
challenge cj . The partial signature z is then computed through
the random value r, the private key sk, and the signer’s
actual challenge value. As the final signature takes the form
(z, c1, · · · , cn, I), the signer’s true challenge value is con-
cealed within n challenge values. The pre-verification phase
is conducted directly using the pre-signed content, anonymous
public key collection, and statement, without requiring the
signer’s actual public key. The other stages mirror those
of the adapter signature, including the pre-signing and pre-
verification stages, with the exception of the generation of
J in the adaptation and verification stages. The J value is
primarily generated after the adapter successfully adapts the
formal signature to pass verification. Additionally, the Link
stage can identify whether two signatures were generated by
the same signer by comparing the link identifiers of the two
signatures.

Compared to the basic LRAS, the LDRAS scheme employs
two independent rings and simpler group operations. This
transforms the pre-signature and pre-verification processes
from the original loop calculations to cumulative calculations,
leading to a change in the composition structure of the signa-
ture. The new computing mode alters the signature from the
original structure of a single challenge value and n response
values to n challenge values and a single response value. This
adjustment will facilitate the construction of shorter signa-

tures in lattice-based encryption systems, effectively reducing
storage overhead. In addition, by eliminating the constraints
of loop calculations and performing commitment calculations
only once, LDRAS simplifies the security proof, necessitating
just one rewind simulation. In contrast, LRAS requires n
rewinds due to the calculation of n commitments within the
loop. This results in a more concise security reduction for
LRAS.

Security Proof. We first add the challenge values ci and
accompanying decoy public keys pki to the commitment R
using V ′. The element cj = c ⊘

⊗
i ̸=j ci ∈ ∆c of challenge

value collection is calculated by the signer indexed as j after
receiving its actual challenge value c. The signer calculates
z using the Type-T signature technique. All keys pki and
their corresponding challenge value ci are used to recreate
the commitment R for verification. The value

⊗n
i=1 ci will

match the actual challenge value c.
Theorem 2. The linkable dualring adaptor signature satisfies

pre-signature adaptability.
Proof. It is known that pkpkpk = {pk1, · · · , pkn}, c =
{c1, · · · , cn}. We substitute σ̂ into the PreVerify algorithm
to calculate R′ = A(ẑ) ⊙ Y ⊙

⊙n−1
i=0 V ′(pki, ci), L′ =

VA(h, ẑ)⊙
⊙n−1

i=0 V ′(I, ci), c′ =
⊗n−1

i=0 ci and then calculate
σ = (z = ẑ⊗y, c, ∗) by Adapt algorithm. So we can calculate
as follows:
c′ = H(M,pkpkpk,R′, L′)

= H(M,pkpkpk,A(ẑ)⊙ V ′(pkpkpk, c)⊙ Y, VA(h, ẑ)⊙ V ′(I, ccc))

= H(M,pkpkpk,A(ẑ)⊙ Y ⊙
n−1⊙
i=0

V ′(pki, ci), VA(h, ẑ)⊙
n−1⊙
i=0

V ′(I, ci))

= H(M,pkpkpk,A(z)⊙A(y)−1 ⊙ Y ⊙
n−1⊙
i=0

V ′(pki, ci),

VA(h, r)⊙
n−1⊙
i=0

V ′(I, ci)⊘⊙V ′(I, cj))

= H(M,pkpkpk,A(z)⊙
n−1⊙
i=0

V ′(pki, ci), VA(h, r)⊙
n−1⊙

i=0,i̸=j

V ′(I, ci))

= H(M,pkpkpk,A(z)⊙ V ′(pkpkpk, c), L)

Hence, Verify(pkpkpk, σ = (z, c, ∗),M) = 1 holds, that means σ
is valid.

Theorem 3. The linkable dualring adaptor signature satisfies
witness extractability.
Proof. At present, a PPT adversary capable of breaking the
witness extractability of the linkable dualring adapter signature
is assumed to exist in our proof. And we state that all adversary
queries to the random oracle can be simulated.
Simulate Phase. The simulator S sends a statement Y and
a pre-signature σ̂ = (ẑ, c, I) on message M∗ to adversary
A. These values holds relation ẑ = Z(skj , r, cj) and c =
H(pkpkpk||R||L||M∗) =

⊗n−1
i=0 ci.

Challenge Phase. Finally, A outputs a usable formal σ =
(z∗, c∗, I, J), where R∗ = A(z∗) ⊙ V ′(pkpkpk,ccc∗) and L∗ =
VA(h, z

∗)⊙J⊙V ′(I, ccc∗). It demonstrate that Ext (Y, σ∗, σ̂) did
not outputs⊥ if adversary win. Hence c = c∗. By the collision-
resistant property of H , then R = R∗, L = L∗. It demonstrate
A(z∗)⊙ V ′(pkpkpk,ccc∗) = A(r)⊙ Y ⊙

⊙n
i=1,i̸=j V

′(pki, c
∗
i ). The

Ext algorithm allows us to calculate y = z∗ ⊘ ẑ. Thus, we
have:

A(z∗)⊙ V ′(pkpkpk,ccc∗) = A(ẑ ⊗ y)⊙ V ′(pkpkpk,ccc∗)

= A(ẑ)⊙ Y ⊙ V ′(pkpkpk,ccc)

= V (pkpkpk, ẑ, c∗)⊙ Y
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Algorithm 8: Generic Construction of Linkable DualRing Adaptor Signature

1 Procedure Setup(λ) :
2 define H : {0, 1}∗ → ∆c, H′ : {0, 1}∗ → G;
3 return param← TA.Setup(λ);
4 Procedure KeyGen(param) :
5 return (pk, sk)← TA.KeyGen(param);
6 Procedure PreSign(param,M,pkpkpk = {pk1, · · · , pkn}, skj , Y ) :
7 h = H′(pkpkpk); I = VA(h, skj); r ←$ ∆r, ci ←$ ∆c for all i ̸= j;
8 R = A(r)⊙ Y ⊙

⊙n
i=1 V

′(pki, ci) for all i ̸= j;
9 L = VA(h, r)⊙

⊙n
i=1 V

′(I, ci) for all i ̸= j;
10 c = H(pkpkpk||R||L||M); cj = c⊘

⊗n
i=1 ci for all i ̸= j;

11 ẑ = Z(skj , r, cj);
12 return σ̂ = (ẑ, ccc, I) where ccc = (c1, · · · , cn);
13 Procedure PreVerify(param,M,pkpkpk = {pk1, · · · , pkn}, σ̂ = (ẑ, ccc, I), Y )

:
14 h = H′(pkpkpk); R′ = A(ẑ)⊙ Y ⊙

⊙n
i=1 V

′(pki, ci);
15 L′ = VA(h, ẑ)⊙

⊙n
i=1 V

′(I, ci); c′ =
⊗n

i=1 ci;
16 return c′ = H(pkpkpk||R′||L′||M);

17 Procedure Adapt((Y, y), pkpkpk = {pk1, · · · , pkn}, σ̂,M) :
18 parse σ̂ = (ẑ, ccc, I); h = H′(pkpkpk);
19 J = VA(h, y); z = ẑ ⊗ y;
20 return σ = (z, ccc, I, J);
21 Procedure Verify(param,M,pkpkpk = {pk1, · · · , pkn}, σ) :
22 parse σ = (z, ccc, I, J); h = H′(pkpkpk);
23 R′′ = A(z)⊙

⊙n
i=1 V

′(pki, ci);
24 L′′ = VA(h, z)⊙ J ⊙

⊙n
i=1 V

′(I, ci); c′′ =
⊗n

i=1 ci;
25 return c′′ = H(pkpkpk||R′′||L′′||M);
26 Procedure Ext(Y, σ̂, σ) :
27 parse σ̂ = (ẑ, ccc, I) and σ = (z, ccc, I, J); y = z ⊘ ẑ;
28 If Y = A(y) then return y;
29 return ⊥;
30 Procedure Link(pkpkpk = {pk1, · · · , pkn}, σ′, σ′′) :
31 parse σ′ = (z′, ccc′, I′, J ′) and σ′′ = (z′′, ccc′′, I′′, J′′);
32 If I′ = I′′ then return LinkedLinkedLinked;
33 return UnlinkedUnlinkedUnlinked;

Then by the nature of Type-T identity authentication, it can
be calculated:

V (pkpkpk, ẑ ⊗ y, c∗) = A(ẑ)⊙A(y)⊙ V ′(pkpkpk, c∗)
= V (pkpkpk, ẑ, c∗)⊙A(y)

Hence y could be extracted such that A(y) = Y .

Theorem 4. Assuming that Type-T signature satisfy secure
against special impersonation under key-only attack, |∆c| >
(qs+qps)(qh−1)+qps

2+qs
2 and LR is a hard relation, where

qh, qps, and qs are the amount of queries to the H oracle, pre-
signing oracle, and the signing oracle respectively, then the
linkable dualring adaptor signature scheme is provably secure
in the aEUF–CMA security model.
Proof. In this proof, we set A for PPT who can win the
aEUF-CMA security game with non-negligible probability. If
such an adversary exists, algorithm B can be constructed,
which can break the special impersonation under the key-only
attack of Type-T signature or the hardness of relation LR.
Before the queries, the simulator B will receive the system
parameter param and the public key pk∗.
Setup. The algorithm B randomly samples an index j∗ ∈
[1, qk]. And then he executes (pki, ski) ← KeyGen(1λ) for
i ∈ [1, qk], i ̸= j∗ and sets pkj∗ = pk∗. finally, this algorithm
return param and S = {pki}qki=1 to adversary A.
Oracle Simulation. The algorithm B responds to the
adversary’s queries to random oracle as follows.

ORH: The hash function H is simulated by algorithm B
as a random oracle.

ORCorrupt: If i = j∗, the B states failure and aborts.
Otherwise, algorithm B responds with private key ski.
ORpre−signing: The algorithm B outputs ⊥ if pki /∈ p̄kpkpk.

If the key is asked, and its index is not j∗, B interacts honestly
like the PreSign algorithm. Otherwise, this algorithm provides
the pre-signature for pkj∗ as follows: Everything is identical
to the PreSign algorithm, with the following exception: B
picks random ẑ ∈ ∆ẑ, ci ∈ ∆c for all i, and calculates
R = V (p̄kpkpk, ẑ, c)⊙ Y = A(ẑ)⊙

⊙n
i=1 V

′(pki, ci)⊙ Y where
pki ∈ p̄kpkpk, L = VA(h, ẑ)⊙

⊙n
i=1 V

′(I, ci). Then the challenge
value c = H(M,p̄kpkpk,R, L) =

⊗n
i=1 ci will be set by B in the

random oracle. The algorithm B aborts if this input of hash
function H has previously been queried. In the absence of this,
this algorithm outputs pre-signature σ̂ = (ẑ, c, I).

ORsigning: If the LR in this input of is NULL, B outputs
⊥ when pki /∈ p̄kpkpk. If the key is asked, and its index is not j∗, B
outputs σ ← SIGN(param,M, p̄kpkpk, ski) honestly. Otherwise,
this algorithm randomly samples z ∈ ∆z, ci ∈ ∆c for all i, and
calculates R′ = V (p̄kpkpk, z, c) = A(z)⊙

⊙n
i=1 V

′(pki, ci) where
pki ∈ p̄kpkpk, L′ = VA(h, z) ⊙ J ⊙

⊙n
i=1 V

′(I, ci). Then B will
be set c = H(M,p̄kpkpk,R′, L′) =

⊗n
i=1 ci in the random oracle.

If this input of H is queried previously, B aborts. Otherwise,
the B returns σ = (z, c, I, J). If the content of LR as input
is (Y, y), the B first executes the aforementioned PreSign
simulation procedure to obtain the σ̂. The Adapt algorithm
is then executed, yielding the σ. Finally, the B returns σ.
Challenge. A returns the target message (M∗, pki∗ , ˆpkpkpk∗)
to B. Using the simulation approach described above, the
algorithm B selects a hard relation pair (Y, y) from LockGen
that hasn’t been leveraged before and generates a pre-signature
σ̂. Then B returns (σ̂, Y ) to A. At the end, a linkable
dualring adaptor signature ( ˜pkpkpk∗, σ∗) on M∗ is forged by
the adversary A for (( ˜pkpkpk∗ ⊆ pkpkpk\F) ∧ ((⋆,M∗, ˜pkpkpk∗) /∈
Ω) ∧ Verify( ˜pkpkpk∗, σ∗,M∗) = 1). Among them, the F ,Ω is
identical to that in the aSignForge experiment. The σ∗ is
denoted as (z∗, c∗, ∗). The following two possible cases for the
adversary’s forgery are discussed: Case 1 : All the components
of σ∗ are identical to σ = Adapt(y, σ̂), and ˜pkpkpk∗ = ˆpkpkpk∗.
This implies that adversary A receives the witness y, which
breaks the hardness of relation LR. Case 2 : Case 1 did
not occur. In the PreSign phase, the algorithm B computes
the corresponding R∗ = V ( ˜pkpkpk∗, z∗, c∗)) first. Then he can
control the random oracle rewinding to the point when H
is questioned for ( ˜pkpkpk∗, R∗,M∗, ∗) according to the forking
lemma [28]. A different c′ is returned by algorithm B instead.
Another signature is returned byA as (z′, c′ = ci

′, · · · , cn′, ∗).
Since both σ∗ and σ′ are usable formal signatures, We have:

R∗ = A(z∗)⊙
n⊙

i=1

V ′( ˜pki, ci
∗) = A(z′)⊙

n⊙
i=1

V ′( ˜pki, ci
′)

Note that it is impossible to have ci
∗ = ci

′ for all i ∈ [1, n]
(since

⊗n
i=1 ci

∗ ̸=
⊗n

i=1 ci
′). Algorithm B claims failure and

terminates if ci
∗ = ci

′. We have ci
∗ ̸= ci

′ with probability at
least 1/n. Observe that:

A(z∗)⊙
n⊙

i=1

V ′( ˜pki, ci
∗)

= A(z∗ ⊗ (n− 1)r ⊘
n⊗

i=1

zi
∗(i ̸= j))⊙ V ′(pkj

∗, cj
∗)

= A(z̃zz∗)⊙ V ′(pkj
∗, cj

∗)

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3346177

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 26,2023 at 05:54:39 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Similarly we have A(z′) ⊙
⊙n

i=1 V
′( ˜pki, ci

′) = A(z̃zz′) ⊙
V ′(pkj

∗, cj
′) for some z̃zz′, then algorithm B will output

(cj
∗, z̃zz∗, ci

′, z̃zz′).
Thus, the simulator B can extract the signer’s private key

skj
∗ through two different signature pairs corresponding to

the same commitment value R∗ in Type-T. For example, the
simulator B can output skj = (z∗ − z′) · (cj ′ − cj

∗)−1 as
a break of the secure against impersonation under key-only
attack of Type-T signature in the Schnorr-based instantiation.
Alternatively, B can output skj = (z∗ · z′−1

)(cj
∗−cj

′)−1

as
a break of the secure against impersonation under key-only
attack of Type-T signature in the GQ-based instantiation.
Probability Analysis. We examine the probability that
the simulation described above will succeed (i.e., not fail).

The probability that a qc query will succeed in the first
attempt is (1 − 1

qk
) for queries to the ORCorrupt. The prob-

ability of success in the 2-th query is at least (1 − 1
qk−1 ).

The probability of success after qc queries is at least (1 −
1
qk
)( 1

qk−1 ) · · · (1−
1

qk−qc+1 ) =
qk−qc
qk

= 1− qc
qk

.
For qps queries to the ORpre−signing, the probability of

success in the 1-th query is at least (1 − qh
|∆c| ), where the

amount of queries to the H oracle represents qh. After qps
queries to ORpre−signing, the probability that it will succeed
is no less than

(1 −
qh

|∆c|
)(1 −

qh + 1

|∆c|
) · · · (1 −

qh + qps − 1

|∆c|
) ≥ 1 −

qps(qh + qps − 1)

|∆c|
.

From the simulation process of queries to the ORsigning, we
know that its probability that it will succeed after qs queries
to ORsigning is no less than 1− qs(qh+qs−1)

|∆c| .
The probability of ˜pkpkpk∗ ̸⊆ {pkpkpk\F} in the challenge phase

is (1− 1
qk−qc

)(1− 1
qk−qc−1 ) · · · (1−

1
qk−qc−n+1 ) =

qk−qc−n
qk−qc

.
The probability that B will fail before rewinding is

ϵB = ϵ(1 −
qc

qk
)(1 −

qps(qh + qps − 1)

|∆c|
)

· (1 −
qs(qh + qs − 1)

|∆c|
)(1 −

qk − qc − n

qk − qc
)

= ϵ(
n

qk
)(1 −

qc

qk
)(1 −

qps(qh + qps − 1)

|∆c|
)(1 −

qs(qh + qs − 1)

|∆c|
)

if the probability of forgery by A is ϵ.
If |∆c| > 8nqh/ϵB (it runs in time τ ·8nqh/ϵB · ln(8n/ϵB)

if A runs in time τ ), the probability of an effective rewinding
is no less than ϵB

8 according to the generalized forking
lemma [29]. As a result, the probability ϵ′B of algorithm B
breaking the special impersonation is:

ϵ
′
B ≥ (

ϵn

8qk
)(1 −

qps(qh + qps − 1)

|∆c|
)(1 −

qs(qh + qs − 1)

|∆c|
)

where 2|∆c| > (qs + qps)(qh − 1) + qps
2 + qs

2 and |∆c| >
8nqh/ϵB . If we take |∆c| > (qs + qps)(qh − 1) + qps

2 + qs
2,

the probability ϵ′B can be further simplified. Meanwhile, if
|∆c| > 16nqh/ϵB ,we have ϵ′B ≥ ϵn

32qk
.

Theorem 5. Assuming |∆c| > (qs+qps)(qh−1)+qps
2+qs

2,
where qh, qps and qs are the number of queries to H oracle,
pre-signing oracle and signing oracle respectively, the linkable
dualring adaptor signature satisfies anonymity.
Proof. Assuming that the PPT adversary A can win the
experiment aAnonA,

∏
Re,Σ

with a non-negligible probability,
we can construct an algorithm B with anonymity under the
random oracle model.

Setup. (pki, ski)← KeyGen(1λ) for each index i ∈ [1, qk]
are executed by algorithm B, then he returns parameters
param and the set pkpkpk of public key to adversary A1.
Oracle Simulation. The following is the response from
algorithm B to the oracle query.
ORH: The random oracle H is simulated by algorithm
B.
ORpre−signing: It is the same as the pre-signing oracle in

the proof of Theorem 4.
ORsigning: It is the same as the signing oracle in the proof

of Theorem 4.
Challenge. Adversary A1 returns algorithm B a statement
Y from hard relation LR, two indexes i0, i1, a collection of
public keys p̂kpkpk and a message M∗. According to the distri-
bution of the output of Z(·), algorithm B randomly samples
c1, · · · , cn ∈ ∆c and samples z from the domain of response
Deltaz . Algorithm B generates R = A(z)⊙

⊙n
i=1 V

′(pki, ci),
then he sets H(M∗, p̂kpkpk,R, ∗) =

⊗n
i=1 ci in the random oracle.

Algorithm B announces failure and aborts if the hash value
has already been set by the H oracle. In the absence of this,
algorithm B sends Y and σ = (c1, · · · , cn, z, ∗) to adversary
A2. In the end, algorithm B samples a bit b at random.
Output. In the end, adversary A2 returns a bit b′. Be aware
that bit b isn’t utilized in the generation of σ. Because of this,
A2 only has a 50% chance of winning.
Probability Analysis. We examine the probability that
the aforementioned simulation will succeed (i.e., not fail).
The probability of success in the 1-th query is at least
(1− qh

|∆c| ) where qh queries to the H oracle, qps queries to the
ORpre−Signing and qs queries to the ORSigning. After sending
queries to all oracle, there is at least (1 − qs(qh+qs−1)

|∆c| )(1 −
qps(qh+qps−1)

|∆c| ) probability of success. Assumed in this case is
that |∆c| > (qs+qps)(qh−1)+qps

2+qs
2. No PPT opponent

can win with a non-negligible probability greater than 1/2 if
B does not abort.

Theorem 6. Assuming the DL assumption is hard, the linkable
dualring adaptor signature satisfies linkability w.r.t. insider
corruption under the random oracle model.
Proof. Assuming that the PPT adversary A can win the
experiment aLinkA,

∏
Re,Σ

with a non-negligible probability,
we can construct an algorithm B who can break the DL
assumption. Suppose the instance of the hard problem that
B desires to solve is (g, ga).
Setup. Algorithm B executes (pki, ski) ← KeyGen(1λ)
for each index i ∈ [1, n] where pk∗i = ga. B gives param and
pkpkpk = {pk1, · · · , pkn} to adversary A.
Oracle Simulation. The following is the response from
algorithm B to the oracle query.
ORcorrupt: If A asked pk∗i , B fails.
ORpre−signing: It is the same as the pre-signing oracle in

the proof of Theorem 4.
ORsigning: It is the same as the signing oracle in the proof

of Theorem 4.
Output. Adversary A generates two signature tu-
ples (σi,M

∗
i , p̂kpkpki)i=1,2. If A never asked any tuple

(⋆,M∗
i ,

ˆpkpkpki)i=1,2 and If two pairs of unlinkable valid signa-
tures are generated when the amount of corrupted nodes is not
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Algorithm 9: Linkable DualRing Adaptor Signature with NISA

1 Procedure Setup(λ) :
2 select H : {0, 1}∗ → ∆c, H′ : {0, 1}∗ → G;
3 return param← TA.Setup(λ);
4 Procedure KeyGen(param) :
5 return (pk, sk)← TA.KeyGen(param);
6 Procedure PreSign(param,M,pkpkpk = {pk1, · · · , pkn}, skj , Y ) :
7 σ̂ ← LDRAS.PreSign(param,M,pkpkpk, skj , Y );
8

→
a = (c1, · · · , cn) in σ̂; store (e, L,R) in LDRAS;

9 P = L⊙A(ẑ)−1 ⊙R⊙ VA(h, ẑ)−1 ⊙ Y −1;
10 π ← NISA.Proof(param,pkpkpk, I, P, e,

→
a );

11 return σ̂ = (ẑ, L,R, I, π);
12 Procedure PreVerify(param,M,pkpkpk = {pk1, · · · , pkn}, σ̂, Y ) :
13 parse σ̂ as (ẑ, L,R, I, π); h′ = H′(pkpkpk); e′ = H(pkpkpk||R||L||M);
14 P ′ = L⊙A(ẑ)−1 ⊙R⊙ VA(h′, ẑ)−1 ⊙ Y −1;
15 return NISA.Verify(param,pkpkpk, I, P ′, e′, π) = 1;

16 Procedure Adapt((Y, y), pkpkpk = {pk1, · · · , pkn}, σ̂,M) :
17 parse σ̂ = (ẑ, L,R, I, π); h′ = H′(pkpkpk); J = h′y ; z = ẑ ⊗ y;
18 return σ = (z, L,R, I, π, J);
19 Procedure Verify(param,M,pkpkpk, σ = (z, L,R, I, π, J)) :
20 h′′ = H′(pkpkpk); e′′ = H(pkpkpk||R||L||M);
21 P ′′ = L⊙A(z)−1 ⊙R⊙ VA(h′′, z)−1 ⊙ J ;
22 return NISA.Verify(param,pkpkpk, I, P ′′, e′′, π) = 1;
23 Procedure Ext(Y, σ̂ = (ẑ, c1, · · · , cn, I), σ = (z, c1, · · · , cn, I, J)) :
24 y = z ⊘ ẑ;
25 If Y = A(y) then return y;
26 return ⊥;
27 Procedure Link(pkpkpk = {pk1, · · · , pkn}, σ′, σ′′) :
28 parse σ′ = (z′, L′, R′, I′, π′, J ′) and

σ′′ = (z′′, L′′, R′′, I′′, π′′, J ′′);
29 If I′ = I′′ then return LinkedLinkedLinked;
30 return UnlinkedUnlinkedUnlinked;

greater than 2, the adversary wins. According to the proof of
unforgeability, B can rewind to the point when the R value
has been generated and calculates a corrupted skb and another
unknown private key sk∗1−b. Finally, B returns the latter as a
solution to the DL hard problem.
Probability Analysis. There is at least 1

|pkpkpk|−qc
proba-

bility to complete the extraction of sk∗1−b (from pk∗i = ga )
for B, where qc is the number of queries to ORCorrupt.

Theorem 7. The linkable dualring adaptor signature is non-
slanderable w.r.t. insider corruption in the random oracle
model if DL assumption is hard.
Proof. Assuming that the PPT adversary A can win the
experiment aNonFraA,

∏
Re,Σ

with a non-negligible probability,
we can construct an algorithm B who can break the DL
assumption. Suppose the instance of the hard problem that
B desires to solve is (g, ga).
Setup. Algorithm B executes (pki, ski) ← KeyGen(1λ)
for each index i ∈ [1, n] where pk∗i = ga. B gives param and
pkpkpk = {pk1, · · · , pkn} to adversary A.
Oracle Simulation. The following is the response from
algorithm B to the oracle query.
ORcorrupt: If A asked pk∗i , B fails.
ORpre−signing: It is the same as the pre-signing oracle in

the proof of Theorem 4.
ORsigning: It is the same as the signing oracle in the proof

of Theorem 4.
Output. Adversary A generates a signature tuple
(σ,M, p̂kpkpk). If A forges a valid signature under the condition
that the signature has not been asked and the users set p̂kpkpk
has not been corrupted for all, and the signature and another
signature tuple (σ′,M ′, p̂kpkpk

′
) is linked, then A wins. According

to the proof of unforgeability, B can rewinds to the point when
the R value has been generated and calculates sk∗i such that
gsk

∗
i = ga ∈ (pkpkpk ∩ ˆpkpkpk′ ∩ (p̂kpkpk\F)). Finally, B returns the sk∗i

as a solution to the DL hard problem.
Probability Analysis. There is at least 1

|pkpkpk|−qc
proba-

bility to complete the extraction of sk∗i (from pk∗i = ga ) for
B, where qc is the amount of queries to ORCorrupt.

B. LDRAS+: A Further Improved Scheme
In this subsection, we further combine the NISA algorithm

to reduce the size of the signature as well as its computational

complexity. The NISA algorithm can prove that the prover
learn the tuple

→
a such that H(M,pkpkpk, L,R) = ⊗n

i=1ci without
exposing

→
a . Its specific optimization is aimed at the PreSign

and PreVerify phases. The concrete algorithm structure of
LDRAS+ is given in Algorithm 9.

Compared to the original basic LRAS, LDRAS+ incor-
porates the sum arguments of knowledge algorithm into the
signature and verification stages. This algorithm transforms
the accumulation operation of the challenge value into a proof
of the knowledge tuple

→
a and substitutes the challenge value

in the pre-signature with the proof π, effectively reducing the
signature size. Furthermore, in terms of computation, while
the pre-signature process may experience a slight increase
in computational complexity due to the NISA algorithm PF
function, it proves advantageous as it significantly reduces the
signature verification overhead.

VI. PERFORMANCE ANALYSIS

A. Implementation Details
This section performs a programming simulation on the

protocol and tests the running time of each algorithm in the
protocol. We utilize the Multi-precision Integer and Rational
Arithmetic C/C++ Library (MIRACL) as a function calling
tool in the simulation process. The implementation was based
on a classic elliptic curve with its affine equation as y2 = x3+
ax+b, satisfying ∆ = 4a3+27b2 ̸= 0. The group element size
of the elliptic curve is set to be |G| = 256 bits. The hardware
environment set up for the simulation experiment in this work
includes a Lenovo desktop host equipped with 16.0 GB of
RAM and the central processing unit of Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz 2.90 GHz. The operating system
version on the host is 64-bit Windows 11 Home Chinese
Edition. For programming, Visual Studio 2022 is employed,
using the C language in accordance with the ISO C11 standard.
The simulation result data in this paper are the average of 100
running results of some round.

B. Evaluation
Communication Overhead. For the communication overhead
of the PCN protocol, we measure it as the amount of informa-
tion that the user needs to send when executing the interactive
protocol. As shown in Table I, the communication overhead
of the protocol in the Setup phase and the Lock phase is
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TABLE I: Comparison of the cost required to execute the algorithms for the different instantiations of generic construction of
AEMHL. (We denote by m the numbers of intermediate nodes.)

Time(ms)\Comm(byte) Schnorr-based GQ-based

Setup 2.36 + 1.28m\96 + 224m 2.16 + 1.21m\96 + 224m
Lock 68.19m\865m 71.99m\865m
Rel 0.001(m+ 1)\0 0.003(m+ 1)\0
Vf 22.74(m+ 1)\0 24.02(m+ 1)\0

Link 0.04(m+ 1)\0 0.05(m+ 1)\0

96 + 224m byte and 865m byte respectively, and there is no
communication load in other phases. For the communication
overhead of LDRAS and LDRAS+, we measure it as the
signature size. As shown in Table II, assuming that c and
z use the same integer field Zq , the signature size of LRAS
and LDRAS is the same and both are linear to the number
of ring members positive correlation, while LDRAS+ can
reduce the storage overhead of signatures from linear to
logarithmic. In addition, the size of our signatures is only
1 or 2 cycles longer in group length compared to existing
work. This increase is almost negligible when considering the
security and functionality benefits offered by our signature.
Computation Time. We assess the computation time needed
by the user to run the various steps of the algorithm for
the PCN protocol. As shown in Table I and Figure 6, GQ-
based scriptless construction requires high average compu-
tational overhead. This is mainly because its signing keys
are distributed in a multiplicative manner compared to the
Schnorr method. Furthermore, observing that the sum of the
running time of each phase does not exceed 1s when the path
length of ten hops is used as the performance index [30]. This
shows that the protocol performance of each instantiation is
within the expected range. For signature schemes in Table II,
we measure computation time by measuring computational
complexity. In general, due to its special dual-ring structure,
LDRAS can reduce exponent operations in the calculation
process. LDRAS+ has the characteristics of signing intricately
and verifying quickly because of the addition of the NISA
algorithm.
Comparison of underlying solutions. Compared to exist-
ing work, the computational complexity of our LRAS pre-
signature is slightly higher, but the complexity of its opti-
mization scheme, LDRAS, is comparable and the complexity
of signature verification of LDRAS+ is even lower than that
of the original ring signature. Moreover, this slight efficiency
gap brings obvious security and functionality advantages. As
shown in the lower part of Table II, the ring signature of
[6] provides only unconditional anonymity, a property that
gives the users the possibility of cheating because it is not
restricted. Linkability and non-slanderability can reasonably
address the above problem by effectively inhibiting the be-
havior of malicious users and guaranteeing a certain degree
of user anonymity, but the CLRAS of [18] only implements
the authentication function of signature and fails to embody
these aspects of the property. Additionally, the adaptation and
extraction algorithm of adapter signatures in [15] can provide
the function of locking the coins on the chain, but fails to
provide user anonymity and anonymity-related properties.

Throughput. We assume that the time for AEMHL to process
off-chain transactions is approximately equal to the time
to execute the algorithm, including Setup(·), Lock(·), Rel(·),
Vf(·), and Link(·), which is about 92 ms in total. Since
typical network latency for 4G WAN and Internet connections
is approximately 60 ms, a single channel in AEMHL takes
approximately 152 ms to process a transaction. In addition, we
assume that T is the number of channels opened on Monero,
then AEMHL can increase the throughput on Monero from
1000 tps 1 to 6.58T tps. If AEMHL had the same scale as
the Bitcoin Lightning Network (over 73,000 open channels 2),
it would have the potential to provide over 438,000 tps
throughput.

In Figure III, we compare AEMHL with three state-
of-the-art solutions that also have privacy protection as a
design goal. Except for EC-VTS, which is not specified,
other solutions all leverage the Lightning Network as the
simulation topology. Since the simulation environments set
up are quite different, we have standardized and unified the
relevant data of each scheme. For example, for Twilight, we
first converted the throughput of 820 tps per relay into 28
tps per channel and then converted it into a computational
cost of 35 ms. Finally, we combined the average round-trip
delay of 84 ms in its simulation environment to calculate
the standard transaction throughput. For EC-VTS and zk-
PCN, we only unified their network delay data and estimated
standard transaction throughput combined with computational
overhead. Through comparison, it can be found that, except for
Twilight, AEMHL’s data performance in terms of computing
overhead and transaction throughput is better than the other
two solutions. The reason for Twilight’s strength is that its TEE
does not store the status of the channel, which minimizes the
basis for trusted computing. In summary, compared with the
latest PCNs with privacy protection, AEMHL demonstrates
better system operational performance.

VII. CONCLUSION

This paper introduced a new mechanism called Anonymity-
Enhancing Multi-Hop Locks (AEMHL) based on the Linkable
Ring Adaptor Signature (LRAS) construction, which ensures
identity anonymity for node users, maintains the fungibility
of Monero, and does not rely on specific scripts underlying
blockchain. In addition, we optimize LRAS to reap two
improved schemes (linkable dualring adaptor signature and
linkable dualring adaptor signature plus) to achieve a more

1Data sourced from https://alephzero.org/blog/what-is-the-fastest-
blockchain-and-why-analysis-of-43-blockchains/.

2Data sourced from https://txstats.com/d/000000012/lightning-
network?orgId=1&from=now-2d&to=now on 5 Nov, 2023.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3346177

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 26,2023 at 05:54:39 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

0 2 4 6 8 10
0

100

200

300

400

500

0 2 4 6 8 10
0

25

50

75

100

125

150

175

200

Setup phase
Ti
m
e(
m
s)

 Schnorr
 GQ

Lock phase

The numbers of intermediate nodes

Vf  phase

Fig. 6: Comparison of computing overhead based on Schnorr and GQ in main stages of AEMHL

TABLE II: Comparison among diverse signatures about (Pre-)Signature comparison, security and functionality. (We assume
that |G| = 256 bits, |q| = 80 bits, n is the number of ring members selected by both parties, TM is the amount of point
multiplication operations, TE is the amount of power exponentiation operations, a red cross is ‘unsatisfied’, a green checkmark
is ‘satisfied’, and ‘-’ is ‘claimed but unsatisfied’.)

Schemes (Pre-)Signature Size Computational complexity of (pre-)sign Computational complexity of (pre-)verify

Schnorr-Ring [6] (c1, z1, · · · , zn) (n+ 1)|q| (n− 1)TM + (2n− 1)TE nTM + (2n)TE
ECDSA-Adaptor [15] (xK , z,K, π) 4|q|+ (2 log2 n+ 1)|G| 2TE 1TM + 2TE

CLRAS [18] (c1, z1, · · · , zn) (n+ 1)|q| (n+ 1)TM + 2TE nTM
Our LRAS (c1, z1, · · · , zn, I) (n+ 1)|q|+ |G| (3n− 2)TM + (4n− 1)TE (3n)TM + (4n)TE

Our LDRAS (ẑ, c1, · · · , cn, I) (n+ 1)|q|+ |G| (2n− 1)TM + (2n+ 1)TE (2n+ 1)TM + (2n+ 2)TE
Our LDRAS+ (ẑ, L,R, I, π) 3|q|+ (2 log2 n+ 3)|G| (3n+ 2 log2 n+ 1)TM + (6n+ 2 log2 n)TE (n+ 2 log2 n+ 3)TM + (n+ 7)TE

Adaptability Extractability Linkability Anonymity Non-slanderability Functionality

Schnorr-Ring [6] ✓ Hiding identity
ECDSA-Adaptor [15] ✓ ✓ Locking coin

CLRAS [18] ✓ ✓ - - - Locking coin & Hiding identity incompletely
Our LRAS ✓ ✓ ✓ ✓ ✓ Hiding identity & Locking coin

Our LDRAS ✓ ✓ ✓ ✓ ✓ Improving efficiency evenly
Our LDRAS+ ✓ ✓ ✓ ✓ ✓ Providing efficient verification

TABLE III: Performance comparison of AEMHL and other solutions. (We denote ‘-’ as the absence of relevant information
and ‘⋆’ as the value estimated for standardized comparison)

Schemes Topology Setting Computational cost(ms) Latency(ms) Throughput(tps)

Twilight [31] LN Intel SGX-1 TEE 35⋆ 84 584000⋆

EC-VTS [32] - - 370 - 146000⋆

zk-PCN [33] LN Aleo 4 162 - 292000⋆

Our AEMHL LN 4G cellular data connection 92 60 438000

efficient multi-hop lock protocol. The performance evaluation
shows promising results, with Schnorr-based and GQ-based
AEMHL protocols demonstrating superior performance. The
optimized scheme reduces computational complexity and over-
head, making the protocols suitable for different scenarios with
specific requirements.

As a promising future direction, we intend to investigate
the widespread implementation of our dualring-based structure
to assess the advantages of efficient identity anonymization
within payment channel networks at a large scale.
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