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Abstract—Inner product arguments (IPA) are arguments of
knowledge that two committed vectors satisfy an inner product
relation. With the recursive proof technique by Bootle et al.
2016, the size of IPA proofs only grows logarithmically in the
length of the vectors, without a trusted setup. The succinct
proof makes IPAs well suited for blockchain applications.
However, current IPA can only handle a vector with length
a power of 2, which limits the application of the argument.
One direct solution is to pad the vectors with zeros, which
incurs additional overhead. We propose Springproofs, a new
framework deriving IPAs from many existing IPA schemes.
Springproofs are natively compatible with vectors of arbitrary
length. With a novel recursive compression structure, Spring-
proofs achieve the same proof size as the original IPA but
with more efficient computation. In particular, we instantiate
Springproofs with Bulletproofs and find the optimal recursive
structure for the IPA. First, we experimentally show that
Springproofs are almost twice as fast as Bulletproofs for
range proof, when the vector length is slightly larger than
a power of 2. Afterwards, we incorporate the Springproofs
into Monero, a popular cryptocurrency supporting privacy in
transactions, revealing that the Springproofs based Monero
outperforms Bulletproofs based Monero both in generating and
verifying transactions. Moreover, we apply the Springproofs to
the general arithmetic circuit, including SHA256, Merkle tree,
and typical statistics, the performances on which are better
than the performances by using Bulletproofs. Interestingly,
Springproofs increase the range of parameters on which the
performance of Bulletproofs exceeds that of Groth16, mean-
while naturally inherit the advantages of Bulletproofs, e.g.,
without initial trusted setup, aggregation, and batch verifica-
tion. As a result, Springproofs have many promising appli-
cations, including confidential transactions in cryptocurrency
and privacy computing for specific arithmetic circuits in smart
contracts.

Index Terms—zero-knowledge proof, inner product argument,
range proof, privacy computing, blockchain

1. Introduction

Inner product argument (IPA) is an argument of knowl-
edge that the inner product of two committed vectors equals

a given value. More specifically, if the openings of two
vectors a,b ∈ Fn

p satisfy P = gahbu⟨a,b⟩, where P ∈ G is
a given commitment, then (1) is the inner product relation.

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p ) : P = gahbu⟨a,b⟩}. (1)

An argument of knowledge of the relation (1) is called IPA.
IPAs have numerous applications. By reducing state-

ments to inner product relations, IPAs can prove a wide
range of statements from range proof to arithmetic circuit
relation. One of the popular privacy preserving cryptocurren-
cies, Monero [1], has implemented confidential transactions
with IPA. Another payment system Zether [2] also adopts an
IPA for confidential and anonymous transactions on smart
contracts.

Bulletproof [3], a notable IPA proposed by Bünz et al., is
an efficient non-interactive zero-knowledge proof for range
proof without a trusted setup. The proof sizes of Bullet-
proofs only grow logarithmically with respect to the length
of vectors, thanks to the recursive technique by Bootle et al.
[4]. Furthermore, Bulletproofs can aggregate several range
proofs to reduce the average size of proofs. Because of the
short proof size and aggregation, Bulletproofs based range
proof is particularly appropriate for blockchain applications.
Indeed, the IPAs used in Monero and Zether are Bullet-
proofs.

There are many continued works on Bulletproofs, each
with improvements in proof size or computational cost.
Following [4], many works focused on improving the IPA.
Zhang et al. [5] considered another variant of inner product
relation, and constructed an IPA with less communication
cost compared with Bootle et al. Li et al. [6] proposed Shell-
proof that reduced computational cost by eliminating parts
of the group exponentiations in the IPA of Bulletproofs.
Chung et al. [7] proposed Bulletproofs+ that accelerated
the range proof with a weighted inner product argument.
Bulletproofs+ also generated smaller proofs compared to
Bulletproofs. Daza et al. [8] proposed an improved IPA that
was updatable and had logarithmic verification time.

However, current IPAs have a fundamental limitation,
where the length of the witness vectors must be a power
of 2 in the inner product relation. Since the bit lengths
used in most systems are powers of 2, this is not a big
problem in a single IPA based range proof. But due to
the restriction of vector length, only a group of proofs



whose number is exactly a power of 2 can be aggregated.
Moreover, considering an arithmetic circuit whose number
of multiplication gates is not a power of 2, current IPAs
cannot be directly used. Naturally, there is a straightforward
countermeasure: padding the vector with zeros such that the
length of the padded vector is a power of 2. However, the
padding method brings additional computational costs. For
vector lengths only marginally larger than powers of 2, the
padding method nearly doubles the vector length in IPAs,
which incurs redundant calculations.

In order to solve the problem, we propose Springproof,
a framework to derive IPAs with native support for arbitrary
vector length. Springproofs can achieve the same proof size
as the original IPA and reduce the computational cost when
the length of vectors is not a power of 2. Specifically,
compared with the original Monero, Springproofs based
Monero only takes 59.7% of time to generate a transaction
with 9 outputs and 65.5% of time to verify it. Because of
the efficiency of the arguments, Springproofs are suitable
for many applications in blockchain. Some notable examples
include range proof in confidential transactions of cryptocur-
rency, and privacy computing of arithmetic circuit in smart
contract.

We summarize our contribution as follows.
IPA for arbitrary vector length. We revisit the basic

IPA of Bulletproofs, and find that recursive IPAs can be
constructed even only parts of the witnesses are involved
in each recursive step. For constructing a recursive IPA,
we introduce a scheme function controlling the recursive
structure of the IPA. By carefully choosing proper scheme
functions, we construct Springproofs to derive IPAs that
support witness vectors of arbitrary length. We focus on
Bulletproofs based Springproofs throughout the paper, and
discuss Springproofs based on other IPAs.

Security analysis. With special-soundness, we analyze
the security of Bulletproofs based Springproofs with dif-
ferent scheme functions, and give a sufficient condition for
scheme function to derive a proper argument of knowledge.
Furthermore, we also construct Springproofs under a zero-
knowledge setting and prove that Springproof achieves zero-
knowledge when instantiated with a zero-knowledge IPA.

Optimal scheme function. We analyze the performance
characteristics of Bulletproofs based Springproofs with dif-
ferent scheme functions. Accordingly, we give lower bounds
of the computational and communication cost, and find
optimal scheme functions that minimize the computational
cost and proof size.

Applications on Monero & Arithmetic circuit. We im-
plement the range proof protocol with Bulletproofs based
Springproofs, and integrate the protocol into Monero. Exper-
imental results show that Springproofs only require around
half of the computational cost in range proof compared with
Bulletproofs when vector length is marginally larger than a
power of 2. In digital currency scenario like Monero, Spring-
proofs can achieve notable performance improvements as
well. Moreover, we apply Springproofs to general arithmetic
circuit, and find that the verification time by using Spring-
proofs is always not more than that by using Bulletproofs,

meanwhile the proof size of them is the same. Additionally,
Springproofs increase the range of parameters on which the
performance of Bulletproofs exceeds that of zk-SNARK by
Groth [9] (Groth16), meanwhile naturally inherit the merits
of Bulletproofs.

The paper is organized as follows. First we review and
discuss concurrent works related to IPA in the introduction.
Then, we introduce the basic notions and definitions in
Section 2. Afterwards, we give a detailed construction and
analysis of Springproofs in Section 3. Finally, we evaluate
the performance of Springproofs in Section 4.

2. Preliminaries

2.1. Notations

Let Z denote integers, G denote a cyclic group whose
order is a prime p, Fp denote a finite field with the same
prime order p, and F∗p = Fp \ {0}, Z+ = {x ∈ Z | x > 0}.
Let blackboard font with superscript k denote k-dimensional
vector space, and bold font denote vectors. Let (i : j) denote
a set {i, i + 1, . . . , j} where i, j ∈ Z+, i ≤ j. The power
set of a set A is denoted by P(A). Without ambiguity,
x ∈ F∗p are uniformly distributed challenges, and x

$←− F∗p
denotes uniformly sampling x over F∗p. dim(a) denotes the
dimension of a vector a. |A| denotes the cardinality of a set
A. A⊔B denotes non-overlapping union of two sets A and
B.

Furthermore, let a ∥ b be the concatenation of two
vectors a and b. Let ⟨a,b⟩ be the inner product of two
vectors a and b. Let a ◦ b be the element-wise product
of two vectors a and b. For x ∈ Fp, k ∈ Z, let xk be
a k-dimensional vector (x0, x1, x2, . . . , xk−1) ∈ Zk

p . For
example, 2k = (1, 2, 4, . . . , 2k). We define ga :=

∏n
i=1 g

ai
i

and g−1 := (g−11 , g−12 , . . . , g−1n ), where g ∈ Gn and
a ∈ Fn

p . We use square brackets in the subscript of a vector
to denote a new vector consisting of selected components.
For instance, for I ⊆ (1 : dim(a)), a[I] denotes selecting
components of vector a with index in I , then combining
those components into a new vector sequentially. For clarity,
we write a[i:j] := a[(i:j)] for any 1 ≤ i ≤ j ≤ dim(a).
Similarly, we use square brackets in the subscript of a matrix
to denote a new matrix consisting of selected rows.

Throughout the paper, we write a,b ∈ Fn
p , g,h ∈ Gn,

u, P,Q,L,R ∈ G, and S, T ∈P(Z+).
Finally, let {(x;w) : Con} be a relation with constraints

Con using the public input x and the witness w.

2.2. Security Assumption

Definition 1 (Discrete Logarithm Relation Assumption).
For all n ≥ 2 and all probabilistic polynomial time
(PPT) adversaries A, there exists a negligible function
µ(λ) such that

Pr

[
G = Setup(1λ),g

$←− Gn;

a ∈ Fn
p ← A(G,g)

∣∣∣∣∣∃ai ̸= 0∧
ga = 1

]
≤ µ(λ).



We call ga = 1 a non-trivial discrete logarithm relation
of g. If the discrete logarithm relation assumption holds,
then any PPT adversary can not find a non-trivial discrete
logarithm relation for g $←− Gn.

2.3. Arguments of knowledge

Consider three interactive algorithms which run in prob-
abilistic polynomial time: the common reference string gen-
erator Setup, the prover P and the verifier V . The triple
Π := (Setup,P,V) forms an argument. Algorithm Setup
maps 1λ to the common reference string σ, where λ is
the security parameter such that µ(λ) is negligible. We use
tr ← ⟨P(s),V(t)⟩ to denote the transcripts of P and V with
input s and t respectively. We write ⟨P(s),V(t)⟩ = 1 if the
verifier accepts, and ⟨P(s),V(t)⟩ = 0 if the verifier rejects.

Denote by R ⊂ {0, 1}∗ × {0, 1}∗ a polynomial-time-
decidable binary relation. w is a witness for the statement
x if (x,w) ∈ R. We define the NP language as L := {x |
∃w : (x,w) ∈ R}.

Intuitively, if for any (x,w) ∈ R, the verifier accepts
an honest execution of the argument with high probability,
then the argument has completeness. For any statement x,
suppose a prover convinces the verifier with probability
higher than a negligible knowledge error κ(|x|), we say the
argument has knowledge soundness, if there exists an extrac-
tor efficiently extracting a valid witness from the prover.
If for any (x,w) ∈ R, there exists an efficient simulator
that given the public input x and the randomness used by
the verifier, simulates a transcript indistinguishable from the
real transcript between the prover and the verifier, we say
the argument is honest-verifier zero-knowledge (HVZK). The
formal definitions of completeness, knowledge soundness
and HVZK can be found in Appendix A.

Definition 2 (Argument of Knowledge). An argument
(Setup,P,V) is an argument of knowledge of the re-
lation R if it is complete and knowledge sound. If
the argument is HVZK, we say it is a zero-knowledge
argument as well.

For the knowledge soundness, if we limit the prover
to be a PPT adversary, then the argument (interactive
or non-interactive) is computational knowledge sound. A
knowledge sound argument without such a requirement is a
statistical knowledge sound argument. Proof systems with
computational knowledge soundness and statistical knowl-
edge soundness are generally called arguments of knowledge
and proofs of knowledge, respectively. Since all the proof
systems we discuss only satisfy computational knowledge
soundness, we use “proof” and “argument” interchangeably
throughout the paper.

Definition 3 (Public Coin). For (Setup,P,V) that is an
argument of knowledge, if all messages sent from V
are sampled independently of those from P , and are
sampled uniformly at random, the argument is called a
public coin argument.

By applying the Fiat-Shamir transformation [10] to a
public-coin interactive argument of knowledge, i.e. making
the prover and verifier fetch the challenges from a random
oracle instead of the verifier, we have a new non-interactive
random oracle argument for the same relation.

To estimate the knowledge error of a public-coin argu-
ment of knowledge, we consider a property called special
soundness, implying that a witness for the statement can be
extracted from a transcript tree of the argument efficiently.
Definition 4 ((k1, k2, . . . , km)-Transcript-Tree). Given an

interactive public-coin argument of knowledge, a (k1,
k2, . . . , km)-transcript-tree is a depth-m tree that con-
sists of accepting transcripts between the prover and
the verifier. In the tree, every vertex corresponds to a
message from the prover, and every edge corresponds
to a challenge from the verifier. At depth i of the tree,
every vertex has exactly ki distinct children. In total,
there are

∏m
i=1 ki leaves. Every path from the root to a

leaf corresponds to a valid transcript.

Definition 5 ((k1, k2, . . . , km)-Special-Soundness). A (2m
+ 1)-move public coin argument of knowledge for re-
lation R is (k1, k2, . . . , km)-special-sound, if for any
common reference string σ ← Setup(1λ) and statement
x ∈ L, there is an efficient polynomial time algorithm
that takes a (k1, k2, . . . , km)-transcript-tree as input,
and output a witness w, such that (σ,x,w) ∈ R.

Attema et al. [11] [12] analyzed detailedly on the knowl-
edge error of special sound arguments in the following
Lemma 1 and Lemma 2.
Lemma 1. [11, Lemma 3] Let (Setup,P,V) be a (k1, k2,

. . . , km)-special-sound interactive protocol for relation
R, where all challenges from V are chosen uniformly
from a challenge set. Given a common reference string
σ ← Setup(1λ) and a statement x, and a prover P∗ such
that ϵ(x) := Pr [⟨P∗(σ,x),V(σ,x)⟩ = 1] > κ0 where

κ0 =

∑m
i=1 (ki − 1)qm−i

∏i−1
j=1(q − kj + 1)

qm

≤
∑m

i=1(ki − 1)

q
.

Then there exists a polynomial time extractor E , such
that Pr[(x, EP∗(x)) ∈ R]≥(ϵ(x) − κ0)

K where K =∏m
i=1 ki, and q is the size of challenge set, then extractor

has a rewindable black-box oracle access to P∗ and only
calls P∗ at most K times in the extraction.

Lemma 2. [12, Theorem 3] The Fiat-Shamir transforma-
tion [10] of a (k1, k2, . . . , km)-special-sound interactive
argument is knowledge sound with knowledge error
(Q+1) ·κ, where Q is the number of queries to random
oracle and κ is the knowledge error of the interactive
argument.

Lemma 1 and Lemma 2 give an estimate of knowledge
error for special sound argument of knowledge. Therefore,
we mainly focus on the special soundness in the discussion
of knowledge soundness of Springproofs.



3. Inner Product Argument for Vectors of Ar-
bitrary Length

3.1. Recursive Inner Product Argument

For the inner product relation (1), a naive IPA sends a,b
to the verifier directly. The verifier accepts if gahbu⟨a,b⟩ =
P , and rejects otherwise. But the proof size of the naive
argument is 2n elements over Fp, which is linear dependent
with the vector length.

For building a communication efficient IPA, the essential
technique is the recursive proof by Bootle et al. [4], whose
idea is to start from a basic IPA that decreases the proof size
by reducing the relation to a new inner product relation. As
long as the new relation can be proved with the basic IPA,
we can reduce the proof size further by running the basic
IPA recursively.

The basic IPA in Bulletproofs is shown in Algorithm 1,
which reduces the proof size from 2n elements over Fp to
n elements over Fp and 2 elements over G. Notice that
g′,h′, P ′,a′,b′ in step 5, 6 and 8 of Algorithm 1 form
a fresh input of Algorithm 1 if n/2 is even. Therefore, by
running the Algorithm 1 recursively instead of sending a′,b′

to the verifier directly, the proof size is further decreased.
Eventually, within O(log n) steps of Algorithm 1, the re-
cursive IPA achieves the effect of compressing two vectors
over Fn

p into two elements over Fp, at the cost of sending
additional 2 log n elements over G. It is worth noting that
Algorithm 1 is not zero-knowledge, because L,R in step 2
contains information of a,b.

Algorithm 1 Basic IPA of Bulletproofs

Input: (g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p ), where n is even.

Prover’s input: (g,h, u, P ;a,b)
Verifier’s input: (g,h, u, P )

Output: Verifier accepts or rejects
1: Prover computes:

n′ ← n/2
cL ← ⟨a[1:n′],b[n′+1:n]⟩ ∈ Fp

cR ← ⟨a[n′+1:n],b[1:n′]⟩ ∈ Fp

L← g
a[1:n′]
[n′+1:n]h

b[n′+1:n]

[1:n′] ucL ∈ G
R← g

a[n′+1:n]

[1:n′] h
b[1:n′]
[n′+1:n]u

cR ∈ G
2: Prover → Verifier: L,R
3: Verifier: x $←− F∗p
4: Verifier → Prover: x
5: Prover and Verifier compute:

g′ ← gx−1

[1:n′] ◦ g
x
[n′+1:n] ∈ Gn′

h′ ← hx
[1:n′] ◦ h

x−1

[n′+1:n] ∈ Gn′

6: Prover computes:
a′ ← xa[1:n′] + x−1a[n′+1:n] ∈ Fn′

p

b′ ← x−1b[1:n′] + xb[n′+1:n] ∈ Fn′

p

7: Prover → Verifier: a′,b′
8: Verifier computes:

P ′ ← Lx2

PRx−2 ∈ G

In fact, Algorithm 1 is one round of Bulletproofs, and
the verifier accepts if g′

a′
h′

b′
u⟨a

′,b′⟩ = P ′, and rejects
otherwise. In the complete Bulletproofs, Algorithm 1 runs
recursively for many times until the length of input be-
comes 1.

3.2. Springproofs Based on Bulletproofs

As stated above, Algorithm 1 is an IPA. However, it
does not achieve zero-knowledge, which indicates that the
Algorithm 1 can be viewed as a simple compression step
in the whole recursive argument. Instead of compressing
all components at once, the prover may intentionally reveal
some components of the vectors to the verifier and only run
the IPA on the rest of components.

This idea leads to a hybrid IPA that combines the naive
IPA and Algorithm 1. Consider a partition of the index
set of n-dimensional vectors S ⊔ T = (1 : n) where |T |
is even. Given such a partition, we can construct a hybrid
IPA. In the argument, components a[S],b[S] whose indices
are in S are directly sent to the verifier, while other com-
ponents a[T ],b[T ] with indices in T are compressed with
Algorithm 1.

For compressing a[T ],b[T ] with Algorithm 1, notice that

Q = Pg
−a[S]

[S] h
−b[S]

[S] u−⟨a[S],b[S]⟩ (2)

is a commitment of a[T ],b[T ] that is consistent with (1). By
using (g[T ],h[T ], u,Q,a[T ],b[T ]) as input of Algorithm 1,
we achieve the proof of knowledge for (1), while only parts
of vectors, a[T ] and b[T ], are compressed. The detailed
process is shown in Algorithm 2. Such an argument reduces
the proof size from 2n elements over Fp to 2n−|T | elements
over Fp and 2 elements over G.

Algorithm 2 Basic IPA of Springproofs instantiated with
S ⊔ T = (1 : n)

Input: (g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p )

Prover’s input: (g,h, u, P ;a,b)
Verifier’s input: (g,h, u, P )

Output: Verifier accepts or rejects
1: Prover → Verifier: a[S],b[S]

2: Prover and Verifier compute Q as (2)
3: Run algorithm 1 with input (g[T ],h[T ], u,Q;a[T ],b[T ])

Notice that in Algorithm 2, with g′,h′, P ′,a′,b′ in
step 5, 6 and 8 of Algorithm 1, we have(

g[S] ∥ g′,h[S] ∥ h′, u,Q′;a[S] ∥ a′,b[S] ∥ b′
)
,

where Q′ = P ′g
a[S]

[S] h
b[S]

[S] u
⟨a[S],b[S]⟩,

(3)

which is a fresh input of Algorithm 2 as well. Therefore,
the recursive technique can also be applied to further reduce
the proof size.

Combined with padding, we construct Springproofs, a
framework to derive IPAs. In Springproofs, the IPA proceeds
recursively and takes the output of the previous step as
the input of the next step, until the length of intermediate



witnesses becomes 1. In each recursive step, the protocol
performs one of the following,

• padding. Pad a and b with certain number of 0 ∈ Fp at
the end of the vectors to extend the length of vectors;

• compression. Run Algorithm 2 with input a,b to fold
the vectors by half.

To give a formal description of Springproofs, we intro-
duce the scheme function f : Z+ → Z+⊔P(Z+), that maps
a vector length n to either a number, implying that we will
pad the number of zeros after the input vector; or an index
set with even cardinality belonging to (1 : n), implying that
we will compress the input vector into a half by Algorithm
2. With f , one can instantiate an IPA from the Springproofs
framework. Denote by SIPA(f) a Springproof with scheme
function f . Algorithm 3 shows an instantiation SIPA(f) with
a proper scheme function f . Notice that the initial value of
the total number of padding zeros is uniquely determined by
the length n of witness vectors and the scheme function f .
For example, if SIPA(f) is instantiated as the widely used
padding method (see Section 3.4.1 for the detailed scheme
function), the initial value of np is 2⌈logn⌉ − n. Similarly,
for other f and n, the initial value of np is determined by
the flow of Algorithm 3 and counting all the padding zeros.

Algorithm 3 A Springproof SIPA(f) that instantiated with
a scheme function f : Z+ → Z+ ⊔P(Z+)

Input: (g,h ∈ Gn,gp,hp ∈ Gnp , u, P ∈ G;a,b ∈ Fn
p )

where np is the total number of padding zeros of
SIPA(f) when running with n-dimensional witnesses.
Prover’s input: (g,h,gp,hp, u, P ; a,b)
Verifier’s input: (g,h,gp,hp, u, P )

Output: Verifier accepts or rejects
1: while n ̸= 1 do
2: if f(n) ∈ Z+ then
3: Prover compute: // Padding step

a′ ← a ∥ 0f(n), b′ ← b ∥ 0f(n)

4: Prover and Verifier compute:
g′ ← g ∥ gp[1:f(n)], h′ ← h ∥ hp[1:f(n)],
gp ← gp[f(n)+1:np]

, hp ← hp[f(n)+1:np]
,

np ← dim(gp), P ′ ← P
5: else if f(n) ∈P(Z+) then
6: Prover and Verifier compute: // Compression step

T ← f(n), S ← (1 : n) \ f(n)
n′ ← |T |/2, l← (1 : n′), r ← (n′ + 1 : |T |)
gt ← g[T ], ht ← h[T ]

7: Prover compute:
c← a[T ], d← b[T ]

cL ← ⟨c[l],d[r]⟩ ∈ Fp

cR ← ⟨c[r],d[l]⟩ ∈ Fp

L← gt
c[l]

[r] ht
d[r]

[l] ucL ∈ G
R← gt

c[r]

[l] ht
d[l]

[r] u
cR ∈ G

8: Prover → Verifier: L,R
9: Verifier: x $←− F∗p

10: Verifier → Prover: x

11: Prover and Verifier compute:
g′ ← g[S] ∥ (gt

x−1

[l] ◦ gt
x
[r]) ∈ Gn−n′

h′ ← h[S] ∥ (ht
x
[l] ◦ ht

x−1

[r] ) ∈ Gn−n′

12: Prover computes:
a′ ← a[S] ∥ (xc[l] + x−1c[r]) ∈ Fn−n′

p

b′ ← b[S] ∥ (x−1d[l] + xd[r]) ∈ Fn−n′

p
13: Verifier compute:

P ′ ← Lx2

PRx−2 ∈ G
14: end if
15: Prover and Verifier compute:

n← dim(g′), g← g′, h← h′

16: Prover computes: a← a′,b← b′

17: Verifier computes: P ← P ′

18: end while
19: Prover → Verifier: a = (a) ∈ F1

p,b = (b) ∈ F1
p

// Now dim(a) = dim(b) = dim(g) = dim(h) = 1
20: Verifier accepts if gahbuab = P , rejects otherwise

Given a proper scheme function f , it is clear that
SIPA(f) is compatible with vectors of any length. In fact,
the padding method is a special case of Springproofs. We
will discuss this in detail in Section 3.4.1.

Note that with an arbitrary f , SIPA(f) may not halt. For
example, let f(n) = 1, then SIPA(f) will keep padding the
vectors and never halt. We only consider f that instantiates
a terminative argument for any n ∈ Z+.

Theorem 3 reveals that with some constraints, Algo-
rithm 3 is an argument of knowledge for inner product
relation (1).

Theorem 3 (Springproofs). Given a terminative SIPA(f), if
the number of compression steps in SIPA(f) is O(log n),
then SIPA(f) is a complete and computational knowl-
edge sound argument of relation (1). Moreover, the Fiat-
Shamir transformation of SIPA(f) is a non-interactive
random oracle argument having completeness and com-
putational knowledge soundness as well.

Proof: A SIPA(f) with m = log(n) steps of compres-
sion is a (2m+1)-move interactive protocol. In the following
proof, we first consider the case of m = 0, then prove the
general cases by mathematical induction.

Completeness. If m = 0, then P = gahbuab. Hence,
SIPA(f) is trivially complete. Suppose SIPA(f) is complete
when m = m′. For m = m′ + 1, consider the first
compression step. There could be i padding steps before
the step i + 1 for compression. Let nz be the total num-
ber of padding zeros in the previous i padding steps. Let
(g0,h0, P0;a0,b0) be the public input and the witnesses
in the original inner product relation. Then before the first
compression step, we have

a = a0 ∥ 0nz ∈ Fn+nz
p , b = b0 ∥ 0nz ∈ Fn+nz

p ,

g = g0 ∥ gp[1:nz ]
∈ Gn+nz , h = h0 ∥ hp[1:nz ]

∈ Gn+nz .

Notice that P0 = ga0
0 hb0

0 u⟨a0,b0⟩ = gahbu⟨a,b⟩, and
padding setup does not modify P . Therefore, for the first



compression step we have P = P0 and

g′
a′

h′
b′

u⟨a
′,b′⟩

=gt
c[l]+x−2c[r]

[l] gt
x2c[l]+c[r]

[r] ht
d[l]+x2d[r]

[l] ht
x−2d[l]+d[r]

[r]

ux2⟨c[l],d[r]⟩+⟨c,d⟩+x−2⟨c[r],d[l]⟩g
a[S]

[S] h
b[S]

[S] u
⟨a[S],b[S]⟩

=(gt
c[l]

[r] ht
d[r]

[l] u⟨c[l],d[r]⟩)x
2

(gt
c[r]

[l] ht
d[l]

[r] u
⟨c[r],d[l]⟩)x

−2

(g
a[S]

[S] h
b[S]

[S] u
⟨a[S],b[S]⟩ · ga[T ]

[T ] h
b[T ]

[T ] u
⟨a[T ],b[T ]⟩)

=Lx2

Rx−2

P0 = P ′.

The rest of the argument forms a (2m′ + 1)-move SIPA(f)
with input (g′,h′, P ′;a′,b′). By mathematical induction,
we conclude that SIPA(f) has completeness. For non-
interactive SIPA(f) derived by Fiat-Shamir transformation,
the statement holds analogously.

Computational Knowledge Soundness. We first discuss
the special soundness of SIPA(f). Consider a (k1, k2, . . . ,
km)-transcript-tree of SIPA(f), where ki = 4, (i ∈ (1 : m)).
For a vertex in depth d ∈ (1 : m − 1), the vertex itself
corresponds to the prover message L, R, and the four edge
from the depth-d vertex to the children vertices correspond
to different challenges from the verifier x(j) (j ∈ (1 : 4)).
Notice that every vertex corresponds to a few padding steps
followed by a compression step in the argument. The value
of g, h, gt, ht, P , S, T , n, n′, l and r in the corresponding
compression step can be recovered by following the path
from root to the vertex and calculating as the argument.

If d = m−1, then the intermediate witnesses a′(j), b′(j)

(j ∈ (1 : 4)) of the children vertices are directly obtained
from the leaves. If d < m − 1, suppose a′

(j) and b′
(j)

are already extracted, we now show how to further extract
witnesses for the depth-d vertex. For each child vertex, let
a′

(j)
s = a′

(j)
[1:|S|], b

′(j)
s = b′

(j)
[1:|S|], a

′(j)
t = a′

(j)

[|S|+1:dim(a′(j))]

and b′
(j)
t = b′

(j)

[|S|+1:dim(b′(j))]
we have

Lx2
(j)PR

x−2
(j)

=u⟨a
′(j),b′(j)⟩g

a′(j)
s

[S]

(
gt

x−1
(j)

[l] ◦ gt
x(j)

[r]

)a′(j)
t

h
b′(j)

s

[S]

(
ht

x(j)

[l] ◦ ht

x−1
(j)

[r]

)b′(j)
t

(j ∈ (1 : 4)). (4)

Consider a system of linear equations:x2
(1) x2

(2) x2
(3)

1 1 1
x−2(1) x−2(2) x−2(3)

θ1
θ2
θ3

 =

1
0
0

 . (5)

Because x1, x2, x3 are distinct challenges and the left hand
side of (5) is equivalent to a Vandermonde matrix, we can
obtain θ1, θ2, θ3. With coefficients θ1, θ2, θ3, the linear
combination of (4) gives L = gaLhbLucL , where aL, bL,
cL can be calculated from a′

(j)
,b′

(j)
, j = 1, 2, 3. Similarly,

we can calculate R = gaRhbRucR , P = gaPhbP ucP . By
substituting L,P,R in (4), for j ∈ (1 : 4), we have

g
x2
(j)aL+aP+x−2

(j)
aRh

x2
(j)bL+bP+x−2

(j)
bRu

x2
(j)cL+cP+x−2

(j)
cR

=g
a′(j)

s

[S] gt

x−1
(j)

a′(j)
t

[l] gt
x(j)a

′(j)
t

[r] h
b′(j)

s

[S] ht
x(j)a

′(j)
t

[l] ht

x−1
(j)

b′(j)
t

[r]

u⟨a
′(j),b′(j)⟩.

Because of the discrete logarithm relation assumption (Def-
inition 1) , with overwhelming probability,

x−1(j)a
′(j)
t = x2

(j)aL,[T ][l] + aP,[T ][l] + x−2(j)aR,[T ][l],

x(j)a
′(j)
t = x2

(j)aL,[T ][r] + aP,[T ][r] + x−2(j)aR,[T ][r],

x(j)b
′(j)
t = x2

(j)bL,[T ][l] + bP,[T ][l] + x−2(j)bR,[T ][l],

x−1(j)b
′(j)
t = x2

(j)bL,[T ][r] + bP,[T ][r] + x−2(j)bR,[T ][r],

⟨a′(j),b′(j)⟩ = x2
(j)cL + cP + x−2(j)cR.

(6)
where j ∈ (1 : 4). From (6), we deduce that

x3aL,[T ][l] + x(aP,[T ][l] − aL,[T ][r])

+x−1(aR,[T ][l] − aP,[T ][r])− x−3aR,[T ][r] = 0,
(7)

x3bL,[T ][r] + x(bP,[T ][r] − bL,[T ][l])

+x−1(bR,[T ][r] − bP,[T ][l])− x−3bR,[T ][l] = 0.
(8)

The challenges, x(j), j ∈ (1 : 4), are distinct solutions of
(7). This implies that the polynomials on the left side of (7)
are zero polynomials. Similarly, for (8). Therefore,

aP,[T ][l] = aL,[T ][r], aP,[T ][r] = aR,[T ][l],

bP,[T ][r] = bL,[T ][l], bP,[T ][l] = bR,[T ][r],

aL,[T ][l] = aR,[T ][r] = bL,[T ][r] = bR,[T ][l] = 0.

Hence, for j ∈ (1 : 4),

a′
(j)
t = x(j)aP,[T ][l] + x−1(j)aP,[T ][r],

b′
(j)
t = x(j)bP,[T ][r] + x−1(j)bP,[T ][l].

Now we have

⟨a′(j),b′(j)⟩ =⟨a′(j)s ,b′
(j)
s ⟩+ ⟨a′

(j)
t ,b′

(j)
t ⟩

=⟨a′(j)s ,b′
(j)
s ⟩+ x2

(j)⟨aP,[T ][l],bP,[T ][r]⟩
+ ⟨aP,[T ],bP,[T ]⟩+ x−2(j)⟨aP,[T ][r],bP,[T ][l]⟩

=x2
(j)cL + cP + x−2(j)cR,

where j ∈ (1 : 4). Since x(j) is distinct, we conclude that

⟨a′(j)s ∥ aP,[T ],b
′(j)
s ∥ bP,[T ]⟩ = cP , (j ∈ (1 : 4)).

Since the padding steps before the compression intro-
duce extra padding zeros, by removing them from a′

(1)
s ∥

aP,[T ],b
′(1)
s ∥bP,[T ], we obtain the “intermediate witnesses”

of the depth-d vertex.
At the end, by repeatedly extracting witnesses for ev-

ery vertex from the bottom of the tree to the top, the



extracted witnesses of the root is a valid witnesses for
relation (1). Hence, we have an extractor of witnesses for
(k1, k2, . . . , km)-transcript-tree of SIPA(f). The extraction
process above takes O(n) to finish, and the whole extractor
repeats the process for

∑m−1
d=1 4i−1 ≤ 4m times. Overall,

the extractor runs in O(n4m) = O(n4logn)= O(n3) time
and is efficient. Therefore, SIPA(f) has (4, . . . , 4)-special-
soundness.

Similar to the discussion of Bünz et al. [13, Lemma 1],
by Lemma 1, we have the knowledge error κ ≤ ϵ(λ) −
(ϵ(λ) − κ0)

K . Since K = 4m = O(n2) is a polynomial of
λ and the size of challenge set is p = O(2λ), the knowl-
edge error is negligible. Therefore, SIPA(f) is knowledge-
sound. For the Fiat-Shamir transformation of SIPA(f), the
number of queries to random oracle is up-bounded by m.
By Lemma 2, the non-interactive SIPA(f) has knowledge-
soundness as well.

3.3. Optimal Scheme Functions

In this section, we discuss the theoretical lower bound of
computational cost and proof size of Springproofs, and the
existence of an optimal argument reaching the lower bound.
First, we consider arguments consisting of compression
steps only, then discuss IPAs with both compression and
padding steps.

In order to analyze the lower bound of the cost of the
whole IPA, it is necessary to first consider Algorithm 1,
the core of a single compression step. The number of unit
computational operations of Algorithm 1 is listed in Table 1.
In terms of proof size of Algorithm 1, the prover sends n
elements over Fp and 2 elements over G in total. Afterwards,
the n elements over Fp will be further compressed in the
next round of Springproofs, and reduced to 2 elements over
Fp eventually. Therefore, the proof size contribution of a
single compression step of Springproofs is 2 elements over
G.

TABLE 1: Computational Complexity of Operations of Al-
gorithm 1

Prover Verifier Unit Operation
2n− 2 0 Field Addition
3n 2 Field Multiplication
1 1 Field Inversion
3n n+ 2 Group Multiplication

4n+ 2 2n+ 2 Group Exponentiation

From Table 1 and the analysis above, the computational
cost and the contribution of proof size are both linear
dependent with the compression length 2 ≤ |T | ≤ n in
a single compression step, i.e. Algorithm 2.

More specifically, let i = |T |/2, αci + βc, (αc ≥
0, αc + βc ≥ 0) be the computational cost of a single
compression step, and αpi+βp(αp ≥ 0, αp +βp > 0) be the
contribution of proof size of a single compression step. The
αc, βc, αp and βp here are factors in the linear functions of
the computational costs and the contribution of proof size.
For instance, if we use the basic IPA of Bulletproofs for

compression steps, the proof size contribution of a single
compression step is 2 elements on G. Hence, αp is 0, and βp
is the total size of 2 elements on G. Similarly, from Table 1,
the values of αc and βc for the prover and the verifier are
calculated as well.

For a SIPA(f) consisting only of compression steps, let
costαc,βc(n) be the optimal overall computational cost, and
costαp,βp(n) be the optimal proof size. Since αci+ βc, and
αpi+βp are all linear functions, we unify them into a single
function costα,β(n). Then, costα,β(n) is consistent with the
following recursive equation

costα,β(1) = 0,

costα,β(n) =
⌊n/2⌋
min
i=1
{costα,β(n− i) + αi+ β},

(9)

where the solution is as follows: (10):

costα,β(n)=

{
α(n− 1) + β⌈log n⌉, β ≥ 0;

(α+ β)(n− 1), −α < β < 0.
(10)

Now we will prove (10) by mathematical induction.
First, it is straightforward that costα,β(1) = 0 in (10).

Assuming (10) holds for n− 1,
(i) if β ≥ 0, we have

costα,β(n)

=
⌊n/2⌋
min
i=1
{α(n− 1)+β⌈log(n− i) + 1⌉}

=α(n− 1)+β⌈log(n− ⌊n/2⌋)⌉+ β

=α(n− 1)+β⌈log n⌉;

(11)

(ii) if −α < β < 0, we have

costα,β(n) =
⌊n/2⌋
min
i=1
{(α+ β)(n− i− 1) + αi+ β}

=
⌊n/2⌋
min
i=1
{α(n− 1) + β(n− i)}

=(α+ β)(n− 1).

Therefore, costα,β(n) is solved by (10). From Table 1
we know that in a single compression step, αc > 0, βc >
0 holds for the computational cost, and αp = 0, βp > 0
holds for the proof size contribution. So the lower bound of
computational cost and proof size are both consistent with
(11).

From (11), we conclude that the optimal cost is achieved
by choosing compression length |T | of Algorithm 2 greedily
in each step. Therefore, the existence of optimal argument
is guaranteed.

Now we consider Springproofs incorporating padding
and compression steps. After the last padding step of the
argument, the rest steps are all compression steps. Instead
of padding before compression steps, we compress directly
with an optimal argument within all arguments only con-
sisting of compression steps. Because costα,β(n) increases
monotonically, the computational and communication cost
of the new argument do not increase compared with the



original argument, but the last padding step is removed in the
new argument. Eventually, by applying this trick repeatedly,
all padding steps are removed without increasing cost of
proof size or computational cost. Therefore, Springproofs
without padding steps are more efficient than that with
padding, as the following theorem demonstrates.

Theorem 4. For any scheme function f : Z+ → Z+ ⊔
P(Z+) satisfying Theorem 3, if costα,β(n) increases
monotonically, there exists a scheme function g : Z+ →
P(Z+) satisfying Theorem 3, such that the computa-
tional cost and proof size of SIPA(g) is not greater than
SIPA(f) for any n.

Proof: Given a scheme function f satisfying Theorem 3,
let m be the number of recursive steps involved in SIPA(f).
We define the length function ℓf : Z+ → Z+ that measures
the length of a and b after the first step of SIPA(f),

ℓf (n) =

{
n+ f(n), f(n) ∈ Z+;

n− |f(n)|/2, f(n) ∈P(Z+).

ℓkf (n) =

{
n, k = 0;

ℓf (ℓ
k−1
f (n)), 0 < k ≤ m,

(k ∈ [0,m]).

(12)
Similarly, from (12) we derive the length of a and b after
the first k recursive steps in SIPA(f).

Suppose SIPA(g0) is an optimal IPA within all SIPA(g)
where g and g0 are Z+ → P(Z+). For any given f :
Z+ → Z+ ∪P(Z+) and n ∈ Z+, we have a vector length
sequence {ℓkf (n)}mk=0. Suppose k0 is the maximum k that
f(ℓkf (n)) ∈ Z+. Then step k0+1 is a padding step, and step
k0+2 to step m are all compression steps. Since costα,β(n)
increases monotonically, by replacing the scheme function
f by g0 after recursive step k0, the padding step k0 + 1
is removed without an increment of computational cost or
proof size.

We keep replacing the scheme function until the whole
argument transforms from SIPA(f) to SIPA(g0). Since nei-
ther computational cost nor proof size increases in each
transformation of the argument, we conclude that the com-
putational cost and proof size of SIPA(g0) are not greater
than that of SIPA(f) for any n ∈ Z+.

3.4. Practical Instantiations of Springproofs

This section describes some practical instantiations of
Springproofs. For comparison, we first show a straightfor-
ward instantiation, padding method; then give two optimal
arguments under Springproofs. Figure 1 illustrates the recur-
sive proof structures of these three methods when the input
vector length n = 11.

3.4.1. Padding Method. The most straightforward solution
to eliminate the vector length limitation is padding the
witnesses a,b to a 2⌈logn⌉-dimensional vector with 0, as

we discussed earlier. Padding method is instantiated with
the scheme function

fp(n) =

{
2⌈logn⌉ − n, n ̸= 2⌈logn⌉;

(1 : n), n = 2⌈logn⌉.

It is clear that after padding, only ⌈log n⌉ steps of
compression is required, which is bounded by 2 log n. The
computational cost is

αc(2
⌈logn⌉ − 1) + βc⌈log n⌉.

When n is a power of 2, the computational cost reaches
the theoretical optimum (11). However, such an optimal
performance does not hold when n is not a power of 2.
If n = 2k + 1, k ∈ Z+, the computational cost is nearly 2
times of theoretical optimum. Therefore, padding method is
not an ideal method in terms of performance.

As for proof size, in total, ⌈log n⌉ steps of compression
require sending 2⌈log n⌉ elements over G which is the
theoretical optimum.

3.4.2. Greedy Method. The scheme function of greedy
method is

fg(n) =

{
(1 : n), n is even;
(2 : n), n is odd.

As discussed in Section 3.3, greedy method is an optimal
method. The computational cost and proof size are both
characterized by (11).

With mathematical induction, it is straightforward to
prove that the greedy method takes ⌈log n⌉ of compression
steps in total. Therefore, the method is an argument of
knowledge of relation (1) by Theorem 3.

3.4.3. Pre-Compression Method. Another approach to in-
stantiate an IPA is to compress a,b to a smaller length
that equals to a power of 2, instead of padding them to a
greater length. Since the method is basically compressing
the vectors once before the original Bulletproofs when n is
not a power of 2, we call it the pre-compression method.
The scheme function is

fc(n) =

{
(2⌈logn⌉ − n+ 1 : n), n ̸= 2⌈logn⌉;

(1 : n), n = 2⌈logn⌉.

Because the IPA only adds a single compression step be-
fore the original Bulletproofs, the pre-compression method
also takes ⌈log n⌉ compression steps in total. And the proof
size is 2⌈log n⌉ elements over G and 2 elements over Fp as
well. By Theorem 3, pre-compression method is a proof of
knowledge for relation (1).

The computational cost of pre-compression method is
consistent with (11):

αc(2
⌈logn⌉−1 − 1) + βc⌈log(2⌈logn⌉−1)⌉

+ αc(n− 2⌈logn⌉−1) + βc

=αc(n− 1) + βc⌈log n⌉.



T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅T = fp(2) = (1 : 2), S = ∅

T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅T = fp(4) = (1 : 4), S = ∅

T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅T = fp(8) = (1 : 8), S = ∅

0 0000

fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5fp(11) = 5

2 4 6 8 10 12 14 1611

T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅T = fp(16) = (1 : 16), S = ∅

Length

(a) Padding method

T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)T = fg(11) = 2 : 11, S = (1 : 1)

T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅T = fg(6) = (1 : 6), S = ∅

T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)T = fg(3) = (2 : 3), S = (1 : 1)

T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅T = fg(2) = (1 : 2), S = ∅

Length 2 4 6 8 10 11

(b) Greedy method

T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅T = fc(8) = (1 : 8), S = ∅

T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅T = fc(4) = (1 : 4), S = ∅

T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅T = fc(2) = (1 : 2), S = ∅

Length 2 4 6 8 10 11

T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),T = fc(11) = (6 : 11),
S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)S = (1 : 5)

(c) Pre-Compression method

Figure 1: Recursive proof structure of 3 different instantiations of Springproofs when the length of the witness vector is 11

Hence, the performance of pre-compression method reaches
the theoretical optimum (11).

Therefore, we conclude that the pre-compression method
is also an optimal argument. Although greedy method and
pre-compression method are both optimal arguments, the re-
cursive structure of pre-compression method is more concise
than that of greedy method. Therefore, it is easier to build
an optimized verification algorithm for pre-compression
method, as we will see in Section 3.5.

3.5. Non-interactive Springproofs and Optimized
Verification

Since every message from the verifier to the prover
is sampled uniformly from Fp, Bulletproofs based Spring-
proofs are public-coin IPAs. Therefore, by Fiat-Shamir
heuristic [10], we convert Springproofs into non-interactive
IPAs in the random oracle model. In non-interactive Spring-
proofs, the proof generated by the prover consists of a ∈
Fp, b ∈ Fp, L1, L2, . . . , Lm ∈ G and R1, R2, . . . , Rm ∈ G,
where m is the total number of compression steps.

Moreover, because Springproofs is public coin IPAs, the
verifier can defer most of the computation to the end, and
verify the proof with a single multi-exponentiation. Because
a single multi-exponentiation is much faster than separate
group multiplication, such an optimized verification is more
efficient than the original verification.

Specifically in the multi-exponentiation based verifica-
tion, the verifier skips the computation of g′,h′,a′,b′ in
steps 5, 6 and 7 of Algorithm 1, and calculates

(g ∥ gp)
av(h ∥ hp)

bv−1

uab = P

m∏
j=1

L
x2
j

j R
x−2
j

j (13)

in step 20 of Algorithm 3. If (13) holds in step 20 of
Algorithm 3, the verifier accepts the proof. Otherwise, the
verifier rejects the proof. In (13), v is a vector over Fp that
only depends on the challenges x1, x2, . . . , xm, where xj is
the challenge sent from the verifier in the jth compression
step of Springproofs. The dimension of v is the sum of the
length of the witness vector and the total number of padding

zeros in SIPA(f). For instance, we have dim(v) = 2⌈logn⌉

in padding method, and dim(v) = n in greedy and pre-
compression method.

The determination of v could be a time-consuming
part in (13), but could be more efficient once the related
scheme function derives a nice intrinsic structure for v. The
structure of v heavily depends on the recursive structure of
SIPA(f), which is controlled by the scheme function f . In
padding method, v is basically consistent with Bulletproofs.
For i = 1, . . . , 2⌈logn⌉ we have vi =

∏m
j=1 x

b(i,j)
j , where

b(i, j) = 1 if the (m + 1 − j)th bit of i − 1 is 1, and
b(i, j) = −1 otherwise [14]. For efficiently calculating v,
Bünz et al. [14] pointed out that vi = vi−kx

2
k+1, where

k = 2⌊log(i−1)⌋. Furthermore, since dim(v) is a power
of 2, the jth component of v−1 is exactly v2⌈log n⌉+1−j .
Therefore, the structures of v and v−1 are reciprocally
symmetric. By one batch field inversion and 2⌈logn⌉−1 field
multiplication, we calculate v and v−1 from the challenges.

Normally such a symmetric structure does not exist for
most SIPA(f), including greedy method. However, with a
little modification to fc, we create an optimal argument of
Springproofs with an efficient calculation procedure of v.
Let

f ′c(n):=

{
(ih : it) ∪ (N + 1 : n), n ̸= N ;

(1 : n), n = N,

where N = 2⌈logn⌉−1, ih = ⌊(2N − n)/2⌋+ 1, it = ⌊n/2⌋.
Then SIPA(f ′c) is a variant of pre-compression method
whose left parts of a[T ] and b[T ] are chosen from the middle
of a[1:N ] and b[1:N ] in the first round of recursive proof.
Figure 2 illustrates the recursive proof structures of SIPA(f ′c)
when the input vector length n = 11.

Since the left parts of vectors are chosen from the
middle, the v of SIPA(f ′c) has a symmetric structure similar
to Bulletproofs. In SIPA(f ′c), we have

vi =


vi−kx

2
k+1x

−1
1 , ih ≤ i ≤ it ∧ i− k < ih;

vi−kx
2
k+1x1, it < i ≤ N ∧ ih ≤ i− k ≤ it;

vi−N−1+ihx
2
1, i > N ;

vi−kx
2
k+1, otherwise,



T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅T = f ′
c (8) = (1 : 8), S = ∅

T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅T = f ′
c (4) = (1 : 4), S = ∅

T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅T = f ′
c (2) = (1 : 2), S = ∅

Length 2 4 6 8 10 11

T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),T = f ′
c (11) = (3 : 5) ∪ (9 : 11),

S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)S = (1 : 2) ∪ (6 : 8)

Figure 2: Recursive proof structure of SIPA(f ′c) when the
length of the witness vector n is 11

where k = 2⌊log(i−1)⌋, and v1 = (x1x2 . . . xm)−1 when
ih = 1, v1 = (x2x3 . . . xm)−1 otherwise. Moreover, because
of the symmetric structure of v, v−1 can be calculated from
v efficiently. If n is even, we rearrange v directly to get
v−1. If n is odd, we have v−1ih

= vit+1x1, v
−1
it+1 = vih ·

x1, v
−1
N+1 = vit+1x

−1
1 . For each of rest components of v,

we find its inverse as another component in v. Overall, we
calculate v and v−1 from challenges in SIPA(f ′c) with one
batch field inversion and less than 2n field multiplications.

3.6. Springproofs Based on Other IPAs

For clarity, we only consider Springproofs based on
Bulletproofs previously. However, there are currently IPAs
that achieve lower computational cost or communication
cost, or have broader applications than Bulletproofs, such
as Bulletproofs+ [7], Shellproof [6], the IPA of Gentry et
al. [15], the generalized IPAs of Lai et al. [16], and the
generalized IPAs of Bünz et al. [13].

For the IPAs listed above, it is possible to instantiate
Springproofs on top of them. Due to space constraints, we do
not look into the details of Springproofs based on each IPA.
In general, because Springproofs directly invoke the basic
IPA in the arguments, extractors of Springproofs are con-
structed without much modification to the extractors of the
original IPAs. Therefore, the completeness and knowledge
soundness could be analyzed similarly as in Theorem 3.

Section 3.4 describes a number of optimal scheme func-
tions of Springproofs based on Bulletproofs. They may not
be optimal for an IPA different from Bulletproofs. However,
as long as the computational and communication cost in
a single compression step is linear dependent with the
compression size |T |, we can use costα,β(n) in (10) to
describe the overall cost of SIPA(f), and check whether
fg and fc yield optimal arguments or not.

It is worth noting that if Springproofs are instantiated
with a non-zero-knowledge IPA, such as the IPA of Bullet-
proofs, Springproofs are not zero-knowledge. However, if
the Springproofs are based on a zero-knowledge IPA, then
Springproofs preserve the zero-knowledge property of the
original IPA. We discuss the zero-knowledge property of
Springproofs in detail in Section 3.7.

3.7. Zero-knowledge Springproofs

In this section, we analyze Springproof and prove that
it preserves the zero-knowledge property of the basic IPA.

First of all, the original inner product relation of Bul-
letproof (1) is not zero-knowledge. Since the commitment
P in (1) contains the information of the witnesses a and b.
For analyzing the zero-knowledge property of Springproofs,
we instead consider a variant of (1):

Rzk,n ={(g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p , γ ∈ Fp) :

P = gahbu⟨a,b⟩u′γ}.

In Rzk,n, by introducing a blinding γ, the commitment
becomes a Pedersen commitment [17]. Because a Pedersen
commitment is indistinguishable from a random element
on G, i.e., perfectly hiding, the commitment does not leak
information of the witnesses. Some IPAs, including the IPA
of Gentry et al. [15], are zero-knowledge IPAs for some
relations similar to Rzk,n.

We omit the detail of specific IPAs, only assume that
IPAk, the IPA instantiating the Springproof, satisfies the
following properties:

(i) IPAk reduces the relation Rzk,k into relation Rzk,k/2, in
which the blinding factors of the two relations distribute
independently.

(ii) IPAk is HVZK, i.e., there exists an efficient simulator
that simulates transcripts of IPAk, whose statistical
difference ϵ(λ) from the real transcripts is negligible.

With IPAk, we now construct the basic IPA of zero-
knowledge Springproof.

Algorithm 4 Basic zero-knowledge IPA of Springproofs
instantiated with S ⊔ T = (1 : n) and IPA|T |

Input: (g,h ∈ Gn, u, u′, P ∈ G;a,b ∈ Fn
p )

Prover’s input: (g,h, u, u′, P ;a,b)
Verifier’s input: (g,h, u, u′, P )

Output: Verifier accepts or rejects
1: Prover → Verifier: a[S],b[S]

2: Prover and Verifier compute:
PS ← g

a[S]

[S] h
b[S]

[S] u
⟨a[S],b[S]⟩, Q← PP−1S .

3: Run IPA|T |
(
g[T ],h[T ], u, u

′, Q;a[T ],b[T ], γ
)

In Algorithm 4, notice that by running IPA|T |, a reduced
relation,

Rzk,|T |/2 ={(g′,h′ ∈ G|T |/2, u, P ′ ∈ G;a′,b′ ∈ F|T |/2
p ,

γ′ ∈ Fp) : P
′ = g′a′

h′b′
u⟨a′,b′⟩u′γ′

},

is obtained. We further construct(
g[S] ∥ g′,h[S] ∥ h′, u, u′, P ′PS;a[S] ∥ a′,b[S] ∥ b′, γ′) , (14)

which is a fresh input of Algorithm 4. Therefore, by the
recursive technique, a Springproof similar to Algorithm 3
is constructed. Denote by SIPAIPA(f) the Springproof in-
stantiated with a scheme function f and an inner product
argument IPA. Similar to Theorem 3, the completeness and
the knowledge soundness of SIPAIPA(f) are analyzed with



TABLE 2: Comparison of Computational Complexity of Operations between Bulletproofs and SIPA(f ′c)

Bulletproofs SIPA(f ′
c ) Unit OperationProver Verifier Prover Verifier

2 · 2⌈logn⌉ − 2⌈logn⌉ − 2 0 2n− 2⌈logn⌉ − 2 0 Field Addition
3 · 2⌈logn⌉ − 3 2⌈logn⌉+ 1 3n− 3 2⌈logn⌉+ 1 Field Multiplication

⌈logn⌉ ⌈logn⌉ ⌈logn⌉ ⌈logn⌉ Field Inversion
3 · 2⌈logn⌉ − 3 2⌈logn⌉ + 2⌈logn⌉+ 1 3n− 3 n+ 2⌈logn⌉+ 1 Group Multiplication

4 · 2⌈logn⌉ + 2⌈logn⌉ − 4 2 · 2⌈logn⌉ + 2⌈logn⌉+ 1 4n+ 2⌈logn⌉ − 4 2n+ 2⌈logn⌉+ 1 Group Exponentiation

the relations of blinding factors within IPA. We omit the
detailed proof here due to space limitations.

Notice that Algorithm 4 is zero-knowledge for com-
ponents a[T ] and b[T ] but not for components a[S] and
b[S]. However, because SIPAIPA(f) has multiple rounds
and is terminative, the relation Rzk,n is reduced into Rzk,1
as in Algorithm 3 ultimately. At the end, intuitively all
components of the witnesses participate the argument IPA
for at least once. Therefore, no information of the witnesses
is leaked in SIPAIPA(f).

For the proof of zero-knowledge of SIPAIPA(f), we
construct an efficient extractor of the argument. Suppose
SIPAIPA(f) has a total of m compression steps when proving
the relation Rzk,n. Then SIPAIPA(f) runs Algorithm 4 (IPA)
for m times, the only interaction between the prover and
the verifier excluding IPA is a[S] and b[S] in Algorithm 4.
Because a[S] and b[S] in a compression step will always
participate in the IPA of the next compression step, all the
interactions between the prover and the verifier are limited
within the IPA of each compression step. Therefore, the
whole transcript is simulated by running the simulator of IPA
for m times, and confirming that the inputs to each simulator
distributes indistinguishably from the inputs of IPA in a real
SIPAIPA(f).

By randomly choosing an element Q′ from G uniformly,
we obtain PQ′−1 and P ′PQ′−1 which correspond to PS and
P ′PS respectively. Using P ′PS as the commitment of a new
relation Rzk,|T |/2+|S|, the simulator continues the simula-
tion for the rest steps and simulates the whole transcript
of SIPAIPA(f) ultimately. Because Pedersen commitment
is perfectly hiding, Q′ has the same distribution as Q in
Algorithm 4, and P ′PQ′−1 has the same distribution as
P ′PS in (14). Therefore, the distribution of the whole tran-
script from the simulator of SIPAIPA(f) is indistinguishable
from the real transcript. The following theorem shows that
SIPAIPA(f) is HVZK. See the formal proof in Appendix B.
Theorem 5. Suppose IPAk is a HVZK IPA which reduces a

relation Rzk,k into a relation Rzk,k/2, and the blinding
factors in the two relations distribute independently.
Given a scheme function f , if the SIPAIPA(f) is termi-
native for any lengths n of the witness vector, and there
exists a polynomial poly(λ) such that the number of
rounds m < poly(λ), then SIPAIPA(f) is HVZK when
n ≥ 2.

Since n=O(λ), it is clear that SIPAIPA(fp). SIPAIPA(fg),
SIPAIPA(fc), and SIPAIPA(f

′
c) run in only ⌈log n⌉ rounds

of compression steps, and thus satisfy the requirement of
Theorem 5.

In Theorem 5, n must be greater than 1. If n = 1,
the prover sends the witnesses to the verifier directly in
SIPAIPA(f). Correspondingly, SIPAIPA(f) is replaced by a
zero-knowledge argument of a product relation on F, such
as the argument by Gentry et al. [15].

4. Performance Evaluations

In this section, we evaluate the performance of Spring-
proofs based on SIPA(f ′c), with theoretical analysis and
practical experiments in different aspects, including range
proof, generation and verification of Monero transaction,
and privacy computing of arithmetic circuits. We also com-
pare the performance among SIPA(f ′c), Bulletproofs, and
Groth16 by experimental results. All experiments operate
on an Intel Xeon Silver 4210 CPU with a single thread.

In the experiments, the argument of arithmetic circuit
satisfiability and the argument of range proof, including the
aggregation and batch verification algorithm, are identical
to the arguments by Bünz et al. [3] except their IPAs. The
IPAs are chosen between the original IPA of Bulletproofs
and SIPA(f ′c) for evaluation. The argument of range proof
and arithmetic circuits satisfiability achieve zero-knowledge
even without zero-knowledge IPAs. Therefore, all the argu-
ments in the experiments run with zero-knowledge setups
for a fair comparison.

4.1. Theoretical Evaluation

We summarize the theoretical performance of Bullet-
proofs and SIPA(f ′c) in Table 2 listing the overall unit
operations required by the prover and the verifier during
the argument. As shown in Table 2, Springproofs require
less group multiplication and group exponentiation which
dominate the computational cost when n is not a power of
2.

4.2. Range Proof

For evaluating the performance of Springproofs, we
use an implementation [18] of Bulletproofs in Rust as the
reference, and implement the padding method, SIPA(fp),
and a variant of pre-compression method, SIPA(f ′c), based
on the reference implementation to incorporate Bulletproofs
into Springproofs.

The Rust implementation of Bulletproofs are built with
Ristretto group [19], which is based on the quotient group
of the elliptic curve Curve25519 and provides 126 bits of
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(a) Creation time of padding method
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(c) Proof size of padding method
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(f) Proof size of pre-compression method

Figure 3: Aggregated range proof performance and proof size comparison between padding method and pre-compression
method, with different number of proofs s and range [0, 2r)

security. With point compression, every Ristretto point can
be stored in 32 bytes.

We run the aggregated range proof in different range
[0, 2r) where r ∈ [1, 64] and the number of proofs s ∈
[1, 1024], then measure the size of the generated proofs and
time consumption of proof creation and proof verification.
For comparison, we perform the experiments on Spring-
proofs and Bulletproofs with padding illustrated in Figure 3.

Comparing Figures 3a, 3b and 3c with Figures 3d, 3e
and 3f, we see the proof sizes of pre-compression method
and the padding method are identical with different numbers
of proofs and ranges, since they both reach the theoreti-
cal lower bound of Springproofs. But the pre-compression
method performs better than the padding method. When
sr is only marginally larger than a power of 2, the pre-
compression method achieves an almost 2 times speedup
compared with the padding method. In particular, when
s = 576, r = 57, compared with padding method, pre-
compression method takes only 59.2% and 49.9% of time to
generate and verify an aggregated range proof respectively.

4.3. Generation and Verification of Monero Trans-
action

Based on Bulletproofs, we implement SIPA(f ′c) in C++
and integrate it into Monero. In Monero, group operations
are based on Ed25519 which is birationally equivalent to
Curve25519.

We run experiments on Monero with SIPA(f ′c) and
Monero with plain Bulletproofs respectively. We record the
transaction generation and verification time with different
number of outputs. The batch verification time of 100 trans-
actions is also measured with different number of outputs.

The results of transaction generation and verification
time are illustrated in Figure 4. From Figures 4a and 4b, we
conclude that the generation and verification time is nearly
identical when the number of outputs is a power of 2 in the
transaction. However, Springproofs has lower computational
complexity when the number of outputs is not a power of
2. In particular, compared to Bulletproofs based Monero,
Springproofs based Monero only takes 59.7% of time to
generate a transaction with 9 outputs, and only 65.5% of
time to verify it.

The results of transaction batch verification time are il-
lustrated in Figure 5. Since multi-exponentiation are merged
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Figure 4: Generation and verification time for a Monero
transaction
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Figure 5: A batch verification time of 100 Monero transac-
tions

into a single multi-exponentiation in the batch verification,
the difference from Springproofs and Bulletproof on the
batch verification time is less than that on a single transac-
tion verification time. However, when the number of outputs
of transaction is not a power of 2, Springproofs based
Monero is still notably more efficient than Bulletproofs
based Monero. In particular, when number of outputs is 9,
the batch verification with Springproofs is 17.5% faster than
the batch verification with Bulletproof.

4.4. Privacy Computing of Arithmetic Circuit

We implement the argument of arithmetic circuits from
[3] and accelerate the IPA of the argument with an instan-
tiation of Springproofs, SIPA(f ′c). The implementation is
built on top of arkworks [20], which is a Rust library
and offers implementations for finite fields, elliptic curves,
and arithmetic circuits in Rank-1 Constraint System (R1CS)
format.

In the experiments, we Springproofs the performance
of Bulletproofs and Springproofs in different arithmetic
circuits, including SHA256 circuits, membership proof for
Merkle tree, circuits for statistics such as expected value and
variance. For each circuit, we compare the proof generation
time, proof verification time, and proof size between Bul-
letproofs and Springproofs. The performance of Groth16 is
also measured in the experiments of circuit for statistics.

It is worth noting that arkworks only provides arith-
metic circuits in R1CS format, different from the format
supported by Springproofs and Bulletproofs natively. There-
fore, a format reduction of arithmetic circuits is required as

a preprocessing step in the experiments involving arithmetic
circuits. See the reduction method in detail in Appendix C.

4.4.1. SHA256 Circuits. In the SHA256 circuit experi-
ments, we test four circuits with different sizes of input
messages. Specifically, the size of the message is one of
512 bits (1 Block), 1024 bits (2 Blocks), 1536 bits (3
Blocks), and 2048 bits (4 Blocks). We choose the secp256k1
provided by arkworks as the cyclic group in Bulletproofs
and Springproofs. The curve has 128 bits of security. With
point compression, every element on the secp256k1 fits in
33 bytes.

We compare the proof sizes between Bulletproofs and
Springproofs in Table 3. From Table 3, we observe that
Springproofs and Bulletproofs have the same proof size.
Thus, Springproofs preserve the succinct proof sizes of
Bulletproofs. The generation time and the verification time
of proofs for SHA256 are illustrated in Figure 6. Since
the numbers of multiplication gates of all the SHA256
circuits are not powers of 2, the performance of Springproofs
exceeds that of Bulletproofs in all cases. Specifically, when
the size of the input message is 1 block, Springproofs only
takes 57.8% and 59.1% of the time to generate and verify a
single proof of SHA256 circuit compared to Bulletproofs.

TABLE 3: Proof Size of Bulletproofs and SIPA(f ′c) for
SHA256 Circuits

Number of
Blocks

Number of
Multiplication

Gates

Proof Size of
Bulletproofs

Proof Size of
Springproofs

1 73950 1562 bytes 1562 bytes
2 115030 1562 bytes 1562 bytes
3 156110 1628 bytes 1628 bytes
4 197190 1628 bytes 1628 bytes
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Figure 6: Comparison of generation and verification time
for a single proof of SHA256 circuit between Bulletproofs
and SIPA(f ′c)

4.4.2. Membership Proof for Merkle Tree. In the experi-
ment of membership proof for Merkle tree. The Merkle trees
are built on the Pedersen hash. The Pedersen hash used in
the experiments has a 4-bits window size and is based on a
twisted Edwards curve whose base field is the scalar field
of the curve BLS12-377 [21]. Therefore, we use the curve
G1 of BLS12-377 as the curve to build Bulletproofs and
Springproofs in the membership proof.



We list the proof size of membership proof of the
Bulletproofs and Springproofs in Table 4. From Table 4,
we conclude the proof size of Springproofs is consistent
with the proof size of Bulletproofs. Furthermore, the size
of proof grows logarithmically in the number of multipli-
cation gates. The generation time and verification time of
membership proofs are illustrated in Figure 7 for Merkle
trees with different heights. We observe that Springproofs
is notably faster than Bulletproofs in membership proof.
Compared with Bulletproofs, when the height of Merkle
tree is 7, Springproofs only takes 54.3% of time to generate
a membership proof and 54.4% of time to verify.

TABLE 4: Proof Size of Bulletproofs and SIPA(f ′c) for
Membership Proof of Merkle Tree

Height of
Merkle Tree

Number of
Multiplication

Gates

Proof Size of
Bulletproofs

Proof Size of
Springproofs

2 3809 1712 bytes 1712 bytes
3 6346 1808 bytes 1808 bytes
4 8883 1904 bytes 1904 bytes
5 11420 1904 bytes 1904 bytes
6 13957 1904 bytes 1904 bytes
7 16494 2000 bytes 2000 bytes
8 19031 2000 bytes 2000 bytes
9 21568 2000 bytes 2000 bytes
10 24105 2000 bytes 2000 bytes
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Figure 7: Comparison of generation and verification time
for a single membership proof for Merkle tree between
Bulletproofs and SIPA(f ′c)

4.4.3. Circuits for Statistics. For evaluating the perfor-
mance of Springproofs on circuits for typical statistics, we
build arithmetic circuits for expected value and variance.
Given n samples, the circuit for expected value has ⌈n/2⌉
multiplication gates, and the circuit for variance has n
multiplication gates. We compare the generation time and
verification time of proof for Bulletproofs, Springproofs and
Groth16. We choose secp256k1 to build the Bulletproofs and
the Springproofs, and use a Groth16 implementation based
on BLS12-377 from arkworks [20] in the experiments.

The experimental results of generation time and verifi-
cation time of proof of the expected value are illustrated in
Figure 8 for different numbers of samples. From the figure,
we conclude that Springproofs exceed Bulletproofs in the
speed of proof generation and proof verification. Interest-
ingly, compared with Groth16 and Bulletproofs, when the
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Figure 8: Comparison of generation and verification time
for a single proof of expected value between Bulletproofs,
SIPA(f ′c) and Groth16

number of samples is within [33, 55], the performance of
Springproofs exceeds both the Groth16 and Bulletproofs.
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Figure 9: Comparison of generation and verification time for
a single proof of variance between Bulletproofs, SIPA(f ′c),
and Groth16

The experimental results of generation time and verifi-
cation time of proof of variance are illustrated in Figure 9
for different numbers of samples. From the figure, we
conclude that Springproofs outperform Bulletproofs in the
speed of proof generation and proof verification. Notice the
performance of Springproofs exceeds both the Groth16 and
Bulletproofs when the number of samples is within [16, 25].

5. Conclusion

In order to overcome the limitation of the length of
witness vectors for IPAs and improve the efficiency of the
arguments, we have presented Springproof, a framework to
derive new IPAs from existing arguments. We have analyzed
the characteristics of Bulletproofs based Springproofs, and
have found optimal scheme functions of the arguments. With
an optimal scheme function, Springproofs support vectors of
arbitrary lengths, and achieve the theoretical lower bound of
computational and communication cost, hence leading to an
optimal IPA, by which we do not pay the cost of zero-
padding.

Springproofs are well-suited for blockchain applications.
By employing Springproofs in confidential transactions of
cryptocurrencies, we improve the efficiency of a transaction
generation and verification, and increase the throughput of



confidential transactions accordingly. For privacy related
smart contracts, Springproofs make the privacy computing
of arithmetic circuits always efficient compared with Bul-
letproofs, meanwhile the proof sizes of them are the same.

Experimental results show that Springproofs preserve
the succinct proof size of Bulletproofs, and Springproofs
can achieve an almost 2 times speedup compared with
Bulletproofs, when the length of the witness vectors is
only marginally larger than a power of 2. Digital curren-
cies such as Monero may also benefit from Springproofs.
Compared with Bulletproofs based Monero, Springproofs
based Monero only takes 59.7% and 65.5% of time cost to
generate and verify a transaction with 9 outputs respectively.
Moreover, Springproofs increase the range of parameters on
which the performance of privacy computing supported by
Bulletproofs exceeds that of Groth16, for instance privacy
computing on the statistics like expected value and variance.
Note that the available circuit size can be further increased
because the most time-consuming multi-exponentiation part
of Springproofs can be parallelly accelerated, while the
paring of Groth16 could be hardly parallelly accelerated.
Meanwhile, Springproofs naturally inherit the advantages of
Bulletproofs, such as without initial trusted setup, aggrega-
tion, and batch verification.
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Appendix A.
Formal Definitions of Arguments of Knowledge

Definition 2 states that an argument of knowledge is
an argument with completeness and knowledge soundness.
And a zero-knowledge argument is a HVZK argument of
knowledge. In this section, we give formal definitions of
completeness, knowledge soundness and zero-knowledge
(HVZK).

Definition 6 (Completeness). An argument (Setup, P, V)
is complete, if for any statement x ∈ L and witness w
such that (x,w) ∈ R, there exists a negligible function
µ(λ), such that

Pr [⟨P(σ,x,w),V(σ,x)⟩=1|σ←Setup(1λ)] ≥ 1− µ(λ).

Definition 7 (Knowledge Soundness). An interactive argu-
ment (Setup, P, V) for relation R is knowledge sound,
if there exists an efficient knowledge extractor E and
a positive polynomial z, such that for any statement
x ∈ {0, 1}λ and prover P∗,

Pr
[
(x,w′)∈R

∣∣∣σ←Setup(1λ),

w
′←EP

∗
(x)

]
≥ ϵ(P∗,x)− κ(|x|)

z(|x|)
,

where ϵ(P∗,x) := Pr [⟨P∗(σ,x),V(σ,x)⟩ = 1], κ is the
knowledge error and is negligible. E has a black-box
oracle access to the prover P∗.

Definition 8 (HVZK). An interactive argument (Setup, P,
V) for a relation R is honest-verifier zero-knowledge
(HVZK), if there exists a PPT simulator SIM, such that
there exists a negligible function ϵ(λ), for all adversaries
A1 and A2,∣∣∣∣∣∣∣∣

Pr

(x,w)∈R∧
A1(tr)=1

∣∣∣∣∣∣
σ←Setup(1λ)

(x,w,ρ)←A2(σ)
tr←SIM(x,ρ)

−
Pr

(x,w)∈R∧
A1(tr)=1

∣∣∣∣∣∣
σ←Setup(1λ)

(x,w,ρ)←A2(σ)
tr←⟨P(σ,x,w),Vρ(σ,x)⟩



∣∣∣∣∣∣∣∣ ≤ ϵ(λ),

where ρ is the randomness used by the verifier Vρ, and
ϵ(λ) is the statistical difference between SIM(x, ρ) and
⟨P(σ,x,w),Vρ(σ,x)⟩.

By Fiat-Shamir transformation, we can obtain a non-
interactive random oracle argument from a public-coin in-
teractive argument. For such a non-interactive argument, the
random oracle must be considered in knowledge soundness.
Definition 9 (Knowledge Soundness - Non-interactive). A

non-interactive random oracle argument (Setup, P, V)
for relation R is knowledge sound, if there exists a effi-
cient knowledge extractor E and a positive polynomial
z, such that for any statement x ∈ {0, 1}λ and prover
P∗ with at most Q query to the random oracle RO,

Pr
[
(x,w′)∈R

∣∣∣σ←Setup(1λ),
w

′←EP∗ (x)

]
≥ ϵ(P∗,x)− κ(|x|, Q)

z(|x|)
,

where ϵ(P∗,x) := Pr [⟨P∗RO(σ,x),VRO(σ,x)⟩ = 1],
κ(λ,Q) ∈ [0, 1] is the knowledge error and is negligible.
E has a black-box oracle access to the prover P∗ and
can manipulate the random oracle RO for A arbitrarily.

Appendix B.
Proof of Theorem 5

Proof: Consider a SIPAIPA(f) with padding steps and
compression steps. Suppose the length of the witness vectors
is n, the total number of padding zeros in SIPAIPA(f) is np,
and the public input of SIPAIPA(f) is x = (g,h ∈ Gn,
gp,hp ∈ Gnp , u, u′, P ∈ G). We now construct a sim-
ulator of SIPAIPA(f). Let τ be the total number of steps
of SIPAIPA(f). For i ∈ (1 : τ), let ni be the length
of the witness vector at the beginning of the ith step,
np,i be the number of rest padding zeros at the begin-
ning of the ith step, and xi = (gi, hi, gp, hp, u, u′,
Pi) be the public input of the ith step. Thus, we obtain
n1 = n, np,1 = np, and x1 = x. Furthermore, denoted by
m =

∣∣{i | f(ni) ∈ P(Z+), i ∈ (1, τ)}
∣∣ the total number

of compression steps in the argument. Denoted by SIMk

the simulator of IPAk. Finally, let ϵ(λ) be the statistical
difference between the transcript simulated by SIMk and
the real transcript.

Suppose the transcripts before the ith step is simulated,
we now simulate the transcript in the ith step. Depending on
the specific value of f(ni), the simulator works differently:

(i) f(ni) ∈ Z+. Hence, step i is a padding step, and there
is no interaction between the prover and the verifier.
The simulator calculates
ni+1 = ni + f(ni), np,i+1 = np,i − f(ni), Pi+1 = Pi,

gi+1 = gi ∥ gp,i+1[1:f(ni)]
, hi+1 = hi ∥ hp,i+1[1:f(ni)]

,

gp,i+1 = gp,i[f(ni)+1:np,i]
, hp,i+1 = hp,i[f(ni)+1:np,i]

,

and continues simulating for the rest of the argument;
(ii) f(ni) ∈P(Z)+. Hence, step i is a compression step.

Let Ti = f(ni), Si = (1 : ni) \ Ti. The simulator
samples Q′i

$←− G at random uniformly if Si ̸= ∅,
otherwise the simulator directly let Q′i = Pi. With Q′i,
the simulator runs

Ti = SIM|Ti/2|(g[Ti],h[Ti], u, u
′, Q′i),

https://ristretto.group/
https://arkworks.rs


to simulate a transcript Ti for the ith step. From Ti,
we calculate the input of the reduced public relation,
g′i,h

′
i ∈ G|Ti|/2, u, u′, P ′i ∈ G. In order to simulate the

rest of the argument, the simulator computes

ni+1 = ni − |Ti|/2, np,i+1 = np,i, Pi+1 = P ′iPiQ
′−1
i ,

gi+1 = g′i ∥ gi[S], hi+1 = h′i ∥ hi[S],

gp,i+1 = gp,i, hp,i+1 = hp,i.

and continues simulating for the rest of the argument.
By simulating with the aforementioned approach for

τ times, finally the whole transcript of the argument is
simulated. Therefore a simulator SIM of SIPAIPA(f) is con-
structed. Since m < poly(λ) and the simulator calls SIMk

exactly m times, the simulator is efficient. Additionally,
all the inputs to SIMk include parts either calculated by
the verifier directly, or derived from the public input and
the simulated transcript at the previous step. Because IPAk

always introduces new independently distributed blinding
factors in reduction, the transcripts at different steps are in-
dependent from each other. Therefore, for any adversary A1

and each step i, let Prsim,i be the probability that A1 outputs
1 for Ti, Prreal,i be the probability that A1 outputs 1 for the
real transcript in step i. We have |Prsim,i − Prreal,i| ≤ ϵ(λ)
for i ∈ (1 : τ). Therefore, the statistical difference between
the final simulated transcript and the real transcript is∣∣∣∣∣
m∏
i=1

Prsim,i −
m∏
i=1

Prreal,i

∣∣∣∣∣ ≤
m∑
i=1

|Prsim,i − Prreal,i| ≤ mϵ(λ).

Because m < poly(λ), mϵ(λ) is negligible. We now con-
clude that SIPAIPA(f) is honest-verifier zero-knowledge.

Appendix C.
Reduction of Arithmetic Circuit Formats

In this section, we discuss the reduction of arithmetic
circuit formats between rank-1 constraint systems (R1CS)
and Bulletproofs (BP).

First, R1CS is a format of arithmetic circuits proposed
by Ben-Sasson et al. [22] and is widely used because of the
simplicity and efficiency of the format in arithmetization,
see the definition as follows:
Definition 10 (R1CS). An R1CS is a relation of the form

{(A,B,C ∈ FNc×(1+Ni+Nw)
p ,x ∈ FNi

p ; w ∈ FNw
p ) :

A·(11 ∥ x ∥w) ◦B ·(11 ∥ x ∥w) = C ·(11 ∥ x ∥w)},
(15)

where x are the public inputs of the circuit, w are the
private inputs of the circuit, and A,B,C specify the
constraints of the circuit.

Next, BP is the arithmetic format used in Bulletproofs.
A significant feature of BP is that the Pedersen commitment
can be used as the input of the circuit directly. In contrast,
using commitments as inputs in R1CS requires embedding
the commitment circuit into the R1CS constraints, which
brings overhead, and the definition of BP is in Definition 11.

Definition 11 (BP). A constraint system in BP format is a
relation of the form

{(g, h ∈ G,V ∈ GNv ,WL,WR,WO ∈ FNq×Na
p ,

WV ∈ FNq×Nv
p , c ∈ FNq

p ; aL,aR,aO ∈ FNa
p ,v,γ ∈ FNv

p ) :

Vj = gvjhγj ,∀j ∈ (1 : Nv) ∧ aL ◦ aR = aO∧
WL · aL +WR · aR +WO · aO = WV · v + c},

where g, h are the generators of the Pedersen commit-
ment, V are the commitment inputs, v are the committed
values, γ are the blinding factors, aL, aR and aO are
the left inputs, the right inputs and the outputs of all
2-fan-in multiplication gates of the circuit respectively,
and WL,WR,WO,WV and c specify the constraints of
the circuit.

C.1. BP to R1CS

For the commitment constraints Vj = gvjhγj , j ∈ (1 :
Nv) in BP, we have to incorporate the constraints into the
R1CS by verifying the commitments are consistent with
committed private inputs in arithmetic circuit. A possible
solution is to introduce a new curve, such as the Jubjub
curve in ZCash [23], for the Pedersen hash.

For the rest of the constraints, it is straightforward to
transform the BP into R1CS format by letting

w = (aL ∥ aR ∥ aO ∥ v) ∈ F3Na+Nv
p ,

A =

(
I

0 WL WR WO 0

)
∈ F(Na+Nq)×(1+3Na+Nv)

p ,

B =

(
I

1 0 0 0 0

)
∈ F(Na+Nq)×(1+3Na+Nv)

p ,

C =

(
I

c 0 0 0 WV

)
∈ F(Na+Nq)×(1+3Na+Nv)

p ,

and x be a zero-dimensional vector in R1CS. It is clear that(
A · (11 ∥w)

)
◦
(
B · (11 ∥w)

)
= C · (11 ∥w) holds in the

new R1CS if and only if aL◦aR = aO∧WL ·aL+WR ·aR+
WO · aO = WV · v + c in the original BP. Combined with
the constraints of commitments, a BP relation is transformed
into a R1CS.

C.2. R1CS to BP

Since R1CS does not natively support commitments as
inputs, we do not consider the commitment constraints of
BP here.

To begin with the reduction, if we split (15) row by row,
for j ∈ (1 : Nc) we have

⟨Aj , (1
1 ∥ x ∥w)⟩ · ⟨Bj , (1

1 ∥ x ∥w)⟩ = ⟨Cj , (1
1 ∥ x ∥w)⟩,

where Aj , Bj and Cj are the jth row of A, B and C
respectively. Now we put all the indices of the equations
whose ⟨Aj , (1

1 ∥ x ∥ w)⟩ and ⟨Bj , (1
1 ∥ x ∥ w)⟩ are not

constant into a set J . Let

J := {j ∈ (1 : Nc) | Aj,[2:Ni+Nw] ̸= 0 ∧Bj,[2:Ni+Nw] ̸= 0},
K := (1 : Nc) \ J.



It is clear that(
A[J] · (11 ∥ x ∥w)

)
◦
(
B[J] · (11 ∥ x ∥w)

)
= C[J] · (11 ∥ x ∥w)

(16)

represents the constraints of multiplication gates, and(
A[K] · (11 ∥ x ∥w)

)
◦
(
B[K] · (11 ∥ x ∥w)

)
= C[K] · (11 ∥ x ∥w)

(17)

represents the linear constraints. Based on (16), we assign
values to the witnesses of the new BP as follows:

aL = A[J] · (11 ∥ x ∥w),

aR = B[J] · (11 ∥ x ∥w),

aO = C[J] · (11 ∥ x ∥w).

(18)

If we consider (18) as a system of linear equations with
unknowns x and w, there are three cases:

1) There exist aL, aR and aO, such that (18) has an exact
solution. In this case, we obtain a solution

(x ∥w) = MLaL +MRaR +MOaO. (19)

2) For any aL, aR and aO, (18) is either overdetermined
or underdetermined. For the case where (18) is under-
determined, we expand the dimension of aL, aR and
aO and add new equations aL,i = wi to (18) for some
components of w, such that (18) combined with the
new equations does have an exact solution. The final
solution is similar to (19).

3) For any aL, aR and aO, (18) is overdetermined, imply-
ing that the original R1CS is impossible to be satisfied.
In this case, the R1CS is equivalent to any BP without
any solutions. Therefore, any unsolvable BP is a valid
reduction. We ignore this case in rest of the discussion,
since an unsolvable R1CS is unlikely in real scenarios.

Notice that the solution (19) maps aL, aR and aO into x
and w. By plugging (19) into (17), we have(

A · (11 ∥ (MLaL +MRaR +MOaO))
)
◦(

B · (11 ∥ (MLaL +MRaR +MOaO))
)

=C · (11 ∥ (MLaL +MRaR +MOaO)).

With rearrangements to the linear relations, we obtain an
equivalent equation

WL · aL +WR · aR +WO · aO = c,

where WL, WR, WO ∈ F|K|×|J|p and c ∈ F|K|p . Combined
with the relation aL ◦ aR = aO, we have a new BP whose
Nq = |K|, Na = |J | and Nv = 0. By applying (19) to aL,
aR and aO, we derive the witnesses of the original R1CS
from the witnesses of the new BP. Therefore, the new BP
is indeed the reduction of the original R1CS.

Appendix D.
Meta-Review

D.1. Summary

The paper introduces Springproofs, a new framework
for inner product arguments (IPAs) that makes it more
efficient to use inner-product arguments like Bulletproofs
with vectors of size n that are not powers-of-two. Existing
methods involve zero-padding the vector up to the nearest-
power-of-two, which can be expensive for n just greater than
a power of two.

The Springproofs framework modifies the recursion in
IPAs to avoid the need for this zero-padding, and shows
that one can achieve up to 50% performance improvements
over standard padding-based IPAs. This is demonstrated
by a fairly comprehensive evaluation that demonstrates the
efficacy of Springproofs in various applications of IPAs, in-
cluding polynomial commitments, NIZKs, and range proofs.

D.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field.

D.3. Reasons for Acceptance

The paper’s techniques provide a valuable step forward
in improving the efficiency of all existing IPAs. This directly
impacts existing deployments of IPAs, such as range proofs,
which have thus far had to unnecessarily pay the cost of
zero-padding.
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