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DOUBLE SPEND RACES

CYRIL GRUNSPAN AND RICARDO PEREZ-MARCO

ABSTRACT. We correct the double spend race analysis given in Nakamoto’s foun-
dational Bitcoin article and give a closed-form formula for the probability of success
of a double spend attack using the regularized incomplete beta function. We give
a proof of the exponential decay on the number of confirmations, often cited in
the literature, and find an asymptotic formula. Larger number of confirmations are
necessary compared to those given by Nakamoto. We also compute the probability
conditional to the known validation time of the blocks. This provides a finer risk
analysis than the classical one.

To the memory of our beloved teacher André Warusfel who taught us how to have fun with the

applications of mathematics.

1. INTRODUCTION.

The main breakthrough in [Nakamoto 2008] is the solution to the double spend
problem. Before this discovery no one knew how to avoid the double spending of an
electronic currency unit without the supervision of a central authority. This made
Bitcoin the first form of peer-to-peer (P2P) electronic currency.

A double spend attack can only be attempted with a substantial fraction of the
hashrate used in the proof-of-work of the Bitcoin network. The attackers will start
a double spend race against the rest of the network to replace the last blocks of
the blockchain by secretly mining an alternate blockchain. The last section of the
Bitcoin’s white paper [Nakamoto 2008] computes the probability that the attackers
catch up. However Nakamoto’s analysis is not accurate since he makes the simplifying
assumption that honest miners validate blocks at the expected rate. We present a
correct analysis and give a closed-form formula for the exact probability.
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2 C. GRUNSPAN AND R. PEREZ-MARCO

Theorem 1. Let 0 < q < 1/2, respectively p = 1 — q, be the relative hash power
of the group of the attackers, respectively of honest miners. After z blocks have been
validated by the honest miners, the probability of success of the attackers is

P(2) = lypg(2,1/2)

where 1,(a,b) is the reqularized incomplete beta function

I,(a,b) — % /0 1 — ) i

In general, for z > 2, these probabilities P(z) are larger than those Psy(z) ob-
tained by Nakamoto. From the standpoint of bitcoin security, this shows than larger
confirmation times z are necessary compared to those zg, given by Nakamoto, in par-
ticular this happens when the share of hashrate ¢ of the attackers is important. The
following table shows the number z of confirmations to wait compared to those zgy
given by Nakamoto for an attacking hashrate of 10% (or ¢ = 0.1) and a probability
of success of the attackers less than 0.1%.

g [10.10]0.15]0.20|0.25|0.30 | 0.35| 0.40 | 0.45
z 6 9 13 [ 20 | 32 | 38 | 133 | 539
Zsn || O 8 11 | 15 | 24 | 41 | 81 | 340

Table 1. Comparison of number of confirmations.

Nakamoto claims in [Nakamoto 2008] that the probability P(z) converges expo-
nentially to 0 with z. This result is intuitively expected and cited at large but there
is no proof available in the literature. We give here a rigorous proof of this result.
More precisely we give precise asymptotics both for Psy(z) and P(z) showing the
exponential decay.

Theorem 2. When z — 400 we have , with s = 4pq < 1,

z

m(l—s)z

and with A = q/p, and ¢(A\) =X —1—1log A > 0,

P(z) ~

e—zc()\)

PSN(Z) ~

We can check that —logs > ¢(\) which means that Psy(z) < P(2) for z large.
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DOUBLE SPEND RACES 3
A finer risk analysis.

We analyze a new parameter in the risk of a double spend. The probability of
success of the attackers increases with the time 7 it takes to validate the z transactions
since they have more time to secretly mine their alternate blockchain. On the other
hand the task of the attackers is more difficult if the validations happen faster than
the expected time. The value of 77 is known, therefore what is really relevant is
the conditional probability assuming 7; is known. We introduce the dimensionless
parameter £ which measures the deviation from average time:

1
R=—
Zt()
where ¢, is the average time of block validation by honest miners (tg = 79/p, where
7o = 10 min for the Bitcoin network).

1)

050

/Y
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®

Probability P(z,«x)

Figure 1. Probability of success as a function of x with ¢ = 0.1

We study the probability P(z, k) of success of the attackers. We can recover the
previous probabilities with the P(z,x), 0 < k < 1.

Theorem 3. We have
Psn(z) = P(z,1) ,
and

P(z2) :/0 OOP(Z,&) dp. (k) ,

with the density function

a -1, -2k
dpz(/ﬁ) = mlﬁz 16 dk .
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4 C. GRUNSPAN AND R. PEREZ-MARCO

We give a closed-form formula for P(z, k).

Theorem 4. We have

P(z,k) =1—Q(z,kzq/p) + (%)Z e Q2 k2) |

Here () denotes the incomplete gamma function

[(s,z)
L(z)

Q(s,r) =
where

_ e s—1_—t
[(s,z) = et dt

We find also the asymptotics for z — +oo for different values of k.
Theorem 5. The following hold for z — +o0,
(1) For 0 <k <1,

1 1
P ~ —zc(KA) ]
(8~ Tt

(2) For k=1,
1
P(z,1) = Psn(z) ~ éefzc(/\) .
(3) For1l <k <p/q,

1- 1
P(Z, Ii) ~ K’( >\) e—zc(n)\) ]

(k= 1)(1 — KA V2rz
(4) For k =p/q, P(z,p/q) — 1/2 and

P(e,p/a) = 1/2 ~ —— (1 + L) .

2tz \3 p—q

(5) Forp/q <k, P(z,k) — 1 and

K(1 =) 1 o—2e(kN)
(k= 1) (kA= 1) 27z '

Using a concavity argument we show that P(1) < Psy(1), but in general, for

z > zg, we have Psy(z) < P(z). We do compute an explicit, non sharp, value z, for
which this inequality holds:

1 — P(z,k) ~
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Theorem 6. Let z € N. A sufficient condition for having Psy(z) < P(z) is z > 2
with zg = [2§] being the smallest integer greater or equal to

2 L (1) los (252)
r(1—q/p)? 2v2 2 V(p)

* —_—
2o = max

where 1(p) = ]% —1—log <g) —log (ﬁ) > 0.

We also provide a double entry tables of the P(z, x) for different values of (g, k)
for z = 3 and z = 6. For a complete set of tables for z = 1,2,...9 of practical use we
refer to the companion article [Grunspan & Pérez-Marco 2017].

2. MATHEMATICS OF MINING.

We review some basic results in probability (see [Feller 1971] vol.2, p.8) and of
Bitcoin mining (see [Pérez-Marco 2016] for an overview of Bitcoin protocol).

A hashing algorithm digest any file into a fixed length string of bits. The slightiest
modification of the original file produces a completely different output. The bits of
the output appear with a random frequency and it is computationnally hard to find
collisions (different inputs yielding the same output). Hashing algorithms are used
for example to check the integrity and non-tampering of files.

The two main hashing algorithms used in the Bitcoin protocol are RIPEMD-160
and SHA-256 that produce outputs of 160 and 256 bits respectively. The mining
algorithm consists in performing the double SHA-256 of the block header (doubled
to prevent “padding attacks”).

The consensus protocol and security in the Bitcoin network relies on the process of
bitcoin mining and validating transactions. It consists on the iteration of computation
of block header hashes changing a nonce ! in order to find a hash below a predefined
threshold, the difficulty [Nakamoto 2008]. For each new hash the work is started from
scratch, therefore the random variable T' measuring the time it takes to mine a block
is memoryless, which means that for any t1,t, > 0

]P)[T >t +t2|T > tg] = ]P[T > tl] .
Therefore we have

P[T > t; + to] = P[T >t + to|T > to) P[T > t5] = P[T > t,].P[T > 5] .

More precisely, a double hash SHA256(SHA256(header)) is computed, changing a nonce and an

extra-nonce.
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6 C. GRUNSPAN AND R. PEREZ-MARCO

This equation and a continuity argument determines the exponential function and
implies that T is an exponentially distributed random variable:

fr(t) = ae™

for some parameter a > 0, the mining speed, with t, = 1/a = E[T|.

If (T',...,T,) is a sequence of independent identically distributed exponential
random variables (for example T’y is the mining time of the k-th block), then the sum
is a random variable following a gamma density with parameters (n, «) (obtained by
convolution of the exponential density):

o 1 —at
t) = —t" e,
fsn( ) (n _ 1)! )

and cumulative distribution

t n—1 k
Fs, (t) = /O fsn(u)duzl—e“tz<olf!) :

k=0

We define the random process N (t) as the number of mined blocks at time ¢.
Setting Sy = 0, we have

N(t)=#{k>1;S, <t} =max{n >0;S, <t} .

Since N (t) = n is equivalent to S,, <t and S, 1 >t we get

PIN(1) = ] = Fs,(0) ~ Fs, () = O o=t

which means that IN(¢) has a Poisson distribution with expectation at.

3. MINING RACE.

We consider the situation described in section 11 of [Nakamoto 2008] where a group
of attacker miners attempts a double spend attack. The attacker group has a fraction
0 < g < 1/2 of the total hash rate, and the rest, the honest miners, has a fraction
p = 1 —q. Thus the probability that the attackers find the next block is ¢ while
the probability for the honest miners is p. Nakamoto computes the probability for
the attackers to catch up when z blocks have been mined by the honest group. In
general to replace the chain mined by the honest miners and succeed a double spend
the attackers need to mine z+ 1 blocks, i.e. to mine a longer chain. In the analysis it
is assumed that we are not near an update of the difficulty which remains constant 2.

2The difficulty is adjusted every 2016 blocks.
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The first discussion in section 11 of [Nakamoto 2008] is about computing the prob-
ability ¢, of the attacker catching up when they lag by z blocks behind the honest
miners. The analysis is correct and is similar to the Gamblers Ruin problem. We
review this.

Lemma 3.1. Let q, be the probability of the event E,, “catching up from n blocks
behind”. We have

@ = (q/p)" -
Proof. Note that after one more block has been mined, we have for n > 1,

Gn = qqn—1 + Pqnt1

and the only solution to this recurrence with ¢o = 1 and ¢, — 0 is ¢, = (¢/p)" (see
[Feller 1971)).

U

We consider the random variables T and S, resp. T" and S/, associated to the

group of honest, resp. attacker, miners. And also consider the random Poisson process
N(t), resp. N'(t). The random variables T' and T" are clearly independent and have
exponential distributions with parameters o and o/. We have

/

PT < T]= —— |
o+ o
SO
o«
p_Oé+Oé,’
q_oz—i-o/'

Moreover, inf(T', T") is an exponentially distributed random variable with param-
eters a + o/ which represents the mining speed of the entire network, honest and
attacker miners together. The Bitcoin protocol is calibrated such that a + o/ = 7
with 75 = 10 min. So we have

|
E[T]=- =",
a p
y 1 70
ET]=—=2.
o q

These results can also be obtained in the following way. The hash function used in
bitcoin block validation is h(x) = SHA256(SHA256(x)). The hashrate is the number
of hashes per second performed by the miners. At a stable hashrate regime, the
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average time it takes to validate a block by the network is 7p = 10 min. If the
difficulty is set to be d € (0,2%° — 1], we validate a block when h(BH) < d, where
BH is the block header. The pseudo-random output of SHA256 shows that we need
to compute an average number of m = 22°%/d hashes to find a solution. Let h, resp.
h', be the hashrates of the honest miners, resp. the attackers. The total hashrate of
the network is h + h’, and we have

_h
p_h,—‘—h,’
= Wiw

Let ty, resp. t;, be the average time it takes to validate a block by the honest
miners, resp. the attackers. We have

(h+h)rg=m,
ht():m,
bty =m |

and from this we get that 7y is half the harmonic mean of ¢, and ¢,

B toty
TO= 7, >
to ‘I— tO
and also
t/ T0
p = 0 ;7 )
to+t) to
to To
q= T
Going back to the Poisson distribution parameters, we have
I p
o= — = — s
to 7o
1 g
o = — = — s
tlo To
and we recover the relations
«
p - a + Oé, 9
O/
q g
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4. NAKAMOTO’S ANALYSIS.

Once the honest miners mine the z-th block, the attackers have mined k blocks
with a probability computed in the next section (Proposition 5.1). If £ > z, then the
attackers chain is adopted and the attack succeeds. Otherwise the probability they
catch up is (¢/p)* as computed above, therefore the probability P of success of the

attack is
z—1

P=P[N'(8.) > 2]+ Y P[N'(S.) = kl.q: .
k=0
Then Nakamoto makes the simplifying assumption that the blocks have been mined
according to average expected time per block. This is asymptotically true when
z — +oo but false otherwise. More precisely, he approximates N'(S,) by N'(t,)
where pom
t. =E[S.] = zE[T] = =2 .

p

As we have seen above, the random variable N'(¢.) follows a Poisson distribution

with parameter

A= ot = 29T 2
p p
The final calculus in [Nakamoto 2008] is then
z—1
Poy(z) =P[N'(t.) > 2] + > _P[N'(t.) = k].q.s
k=0
z—1 z—1
=1-> P[N'(t.) =kl + > PIN'(t.) = k].¢x
k=0 k=0
2 < )\k
=1 Ze‘ 75(1 — Qi)
k=0

However, this analysis is not correct since N'(S,) # N'(t.).

5. THE CORRECT ANALYSIS.

Let X, = N'(S,,) be the number of blocks mined by the attackers when the honest
miners have just mined the n-th block. We compute the distribution for X,,.

Proposition 5.1. The random variable X,, has a negative binomaial distribution with
parameters (n,p), i.e. for k>0,

PIX, = k] = p”qk<

k+n—1
I )
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Proof. Let k > 0. We have that N’ and S,, are independent, therefore
+00
PX, =k = / P[N'(S,) = k|S, € [t,t + dt]] - P[S, € [t,t + dt]]
0
+o0
= [ BING) =kl g, (0
0

_ e (O/t)kefo/t . a” tnflefoctdt
; 0!

k! (n—1)
__ v / ety
(n— D! Jy
n k
P"q
= oo kel

U

Thus we confirm that the distribution of X, is not a Poisson law with parameter
nq/p as claimed by Nakamoto. Only asymptotically we have a convergence to the
Poisson distribution:

Proposition 5.2. In the limit n — +o00, ¢ — 0, and l,, = nq/p — \ we have:

DU
Proof. We have
n k —1)!
PIX, — k| n I (k+n-1)
(n+1,)" (n+1,)F (n—1)k!
CE 1 an+1)...(n+k-1)
CORN(14 )" (n+1,)*
and the result follows using (1 + %”)n — et O

We can now compute the probability of success of the attackers catching up a longer
chain. This computation was previously done in [Rosenfeld 2014].

Proposition 5.3. (Probability of success of the attackers) The probability of
success by the attackers after z blocks have been mined by the honest miners is

P(z) = 1—§(pzq’“ —¢'p") (kJrZ_ 1) .

k=0



Int. J. Theor. Appl. Finan. Downloaded from www.worldscientific.com
by UNIVERSITY OF LOUISIANA AT on 10/15/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

DOUBLE SPEND RACES 11

Proof. As explained before, we have

po =Y (F) e () e ()

k>z k=0
_ - z k z k ]{J—’-Z—l
=1-> (g —qp)( L )
k=0
z—1
k+2z-—1
-1 z k __ _z. k (
gég(p ¢ — ¢ p") .

g=0,1
Satoshi

— Real

- Log (Probability)

Figure 2. Nakamoto’s and real probability

Numerical application.

Converting to R code, given 0 < ¢ < 1/2 and z > 0, this simple function computes
our probability P(z):

prob<-function(z,q){
p=1-q;
sum=1;

for (k in 0:(z-1)) {sum=sum-(p~z*q"k-q z*p~k)*choose(k+z-1,k)} ;
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return(sum)

}

We can compare with the probability Psy computed in [Nakamoto 2008].

C. GRUNSPAN AND R. PEREZ-MARCO

| P(2)

EENOI

CO O Tl W+~ Of|w

Ne)

10

1.0000000
0.2000000
0.0560000
0.0171200
0.0054560
0.0017818
0.0005914
0.0001986
0.0000673
0.0000229
0.0000079

1.0000000
0.2045873
0.0509779
0.0131722
0.0034552
0.0009137
0.0002428
0.0000647
0.0000173
0.0000046
0.0000012

Table 2. Probabilities for ¢ = 0.1.

|z

| P(2)

Dsv(z) |

0

5

10
15
20
25
30
35
40
45
50

1.0000000
0.1976173
0.0651067
0.0233077
0.0086739
0.0033027
0.0012769
0.0004991
0.0001967
0.0000780
0.0000311

1.0000000
0.1773523
0.0416605
0.0101008
0.0024804
0.0006132
0.0001522
0.0000379
0.0000095
0.0000024
0.0000006

Table 3. Probabilities for ¢ = 0.3.

g 1/0.10]0.15|0.20]0.25|0.30 | 0.35 | 0.40 | 0.45
z 6 9 13 | 20 | 32 | 58 | 133 | 539
Zsn || O 8 11 | 15 | 24 | 41 | 81 | 340

Table 4. Solving for P less than 0.1%.
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Therefore the correct results for bitcoin security are worse than those given in
[Nakamoto 2008]. The explanation is that Nakamoto’s result is correct only if the
mining time by the honest miners is exactly the expected time. Times longer than
average help the attackers.

6. CLOSED-FORM FORMULA.

We give a closed-form formula for P(z) using the regularized incomplete beta func-
tion I,(a,b) (see [Abramovitch & Stegun 1970] (6.6.2)).

Theorem 6.1. We have, with s = 4pq,
P(z) =142,1/2) .

We recall that the incomplete beta function is defined (see [Abramovitch & Stegun 1970]

(6.6.1)), for a,b >0 and 0 < x <1, by

Bdmmzi/t“%l—ﬂhlﬁ,
0

and the classical beta function is defined (see [Abramovitch & Stegun 1970] (6.2.1))
by B(a,b) = Bi(a,b).

The Regularized Incomplete Beta Function is defined (see [Abramovitch & Stegun 1970]

(6.6.2) and (26.5.1)) by

 Bi(ab) T(a+b)
Le(a,b) = Blab) r(a)r(mb(“’ b

Proof. The cumulative distribution of a random variable X with negative binomial
distribution, with 0 < p < 1 and ¢ = 1—p as usual (see [Abramovitch & Stegun 1970]
(26.5.26))) is given by

Fx(k):P[Xﬁk]:szql<l+z_1> =1-1(k+1,2).

1=0 l
This results from the formula (see [Abramovitch & Stegun 1970] (6.6.1))

Pe
[p(k —+ 1, Z) = [p(kf, Z) — W s
that we prove by integrating by parts the definition of B, (a,b).
Thus we get

P(z) =1—1,(z,2) + 1,(z,2) .
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14 C. GRUNSPAN AND R. PEREZ-MARCO

Making the change of variables t — 1 — ¢ in the integral definition, we also have a
symmetry relation (see [Abramovitch & Stegun 1970] (6.6.3))

Ip(av b) + [q(ba a) = 1 .
Therefore we have I),(z, 2)+1,(z,2) = 1, and P(z) = 2[,(z, 2). The result follows using
(see [Abramovitch & Stegun 1970] (26.5.14)), I,(z, z) = 11,(z,1/2), where s = 4pq.

U

7. ASYMPTOTIC AND EXPONENTIAL DECAY.

Nakamoto makes the observation ([Nakamoto 2008] p.8), without proof, that the
probability decreases exponentially to 0 when z — +oc. We prove this fact for the
true probability P(z) using the closed-form formula from Proposition 6.1,

Proposition 7.1. When z — +o00 we have, with s = 4pg < 1,

s?

P(z) v~ ———— .
(2) (1l —s)z

By integration by parts we get the following elementary version of Watson’s Lemma:

Lemma 7.2. Let f € CY(R,) with f(0) # 0 and absolutely convergent integral
+oo
(u)e ™" du < 400 ,
0

then, when z — 400, we have
“+o0o

(u)e™*" du ~ m .

J0

Then we get the following asymptotics (see also [Lépez & Sesma 1999)):
Lemma 7.3. For s,b € R, we have when z — 400,
By(2,b) ~ (1 — )L
z

Proof. Making the change of variable u = log(s/t) in the definition

Ba(2,b) / FU - )t
0
we get
+oo
Bg(z,b) = SZ/ (1—se ™) e du ,
0

and the result follows applying Lemma 7.2 with f(u) = (1 — se™*)*"L. O
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Now we end the proof of Proposition 7.1. By Stirling asymptotics,
['(z)I'(1/2) s

B(Z,1/2):mw P
0 _Bz1/2) (-8t il
Io(z1/2) = B(z,1/2) = al ez

8. A FINER RISK ANALYSIS.

In practice, in order to avoid a double spend attack, the recipient of the bitcoin
transaction waits for z > 1 confirmations. But he also has the information on the time
71 it took to confirm the transaction z times. Obviously the probability of success of
the attackers increases with 71. The relevant parameter is the relative deviation from
the expected time

1 P11

K=—= )
zto 270

Our purpose is to compute the probability P(z, k) of success of the attackers. Note
that P(z,1) is the probability computed by Nakamoto [Nakamoto 2008],

PSN(Z) = P(Z, 1) .

Computation of P(z, k).

The attackers mined k£ > 0 blocks during the time 7y with probability that follows
a Poisson distribution with parameter

Az, k) =ad'm = k4 ,
p

o \F
Gr)
——K
p
k!
For k = 1 we recover Nakamoto’s approximation.

that means

PIN'(y) = k] =

The cumulative Poisson distribution can be computed with the incomplete regu-
larized gamma function ([Abramovitch & Stegun 1970] (26.4))

Qo) = 175

where

_ oo s—1 _—t
[(s,z) = et dt
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is the incomplete gamma function and I'(s) = I'(s,0) is the regular gamma function.
We have

z—1

Qz,\) = Z e
k=0
We compute as before

—+00 k z—1 z—k k
A A
P(Z, Ii) _ ( (Zv H)) 6—)\(2,/{) + § : (%) ( (Z, ’%)) e—A(z,n)
k=0

k! k!
k==z
z—1 z—k k
q (A= K)) —A(z,k)
=1- 1—1(= —_— a
,; ( (p) ) oS

=1-Q(z,kzq/p) + <%>Zemppq (z,Kk2) .

1.00

0.754 4=0.1

—z=2

—z=8
——z=8
—z=10
—z=12
— =14
—z=16

Probability P(z «)
=)

—z=20

0.004

Figure 3. Probability of success as a function of s

Thus we get a explicit closed-form formula for P(z, k),

Theorem 7. We have

q

P(z,8) = 1 — Q(z, k2q/p) + (%)Zemp; (z,87) |
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and

Pax(2) = P(:.1) = 1= QGeysafp) + (1) Qe

9. ASYMPTOTICS OF P(z,k) AND Pgy(2).

We find the asymptotics of Q(z, \z) when z — +oo for different values of A > 0.

Lemma 9.1. We have

(1) For0 <A <1, Q(z,Az) > 1 and 1 — Q(z, A\z) ~ ﬁﬂlﬁe—zﬁ_l_log’\).

_ 1
(2) For A=1, Q(z,2) = 1/2 and 1/2 = Q(z,2) ~ 370=.
(3) For A > 1, Q(z,Az2) ~ e—z(A=1=logA)

1 1
A—=1+2mz

Proof. (1) By [Digital Library of Mathematical Functions] (8.11.6) and Stirling for-
mula,for A < 1 we have

7(2,A2)
I'(z)
Zz)\ze—z)\
11— A)
1 1 e—z()\—l—log A)

r 1= AV272

1 —-Q(z,A2) =

(2) Also by [Digital Library of Mathematical Functions] (8.11.12) and Stirling for-
mula,
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and
22*16*2\/_ (1 — = + o(z *1/2)>
(z — 1).
Vam(z/e)? ( 1 /2 _1/2)>

L | 1 of
2 z! 3V 7z oF

V212 (z/e)? (1 1 /2 21/2))

11 1 /2
= - — — 1 —_— . 1__ _1/2
2 2( +122+0 )) ( 3\ Tl >>

B 3V 27rz

(3) By [Digital Library of Mathematical Functions| (8.11.7) and Stirling formula,for
A > 1 we have

Q(z,A\z) =

1 1 e—z()\—l—log A)

g

For z > 0 we define ¢(x) = = — 1 — logx, which is positive since the graph of
x — 1 — z is the tangent at x = 1 to the concave graph of the logarithm function.
We denote 0 < A =¢q/p < 1.

We have that the Nakamoto probability Psy(z) also decreases exponentially with
z as claimed by Nakamoto in [Nakamoto 2008] without proof.

Proposition 9.2. We have for z — +o00,
—zc(N)
e

2

PSN(Z) ~

Proof. The result follows from the closed-form formula from Theorem 7,

P(z,k) = 1= Q(z, kzq/p) + (a/p)7e"™" T Q(z, k2) |
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and then from points (1) and (2) of Lemma 9.1,

1 — Q (27 gz) =0 (e_zc(q/p)) ,
p
and
<g) 62(17%)62(2,2) ~ %e—zc(q/p) )
0

More generally, we have five different regimes for the asymptotics of P(z, k) for
O<k<l,k=1,1<k<p/q, k=p/qand k > p/q.

Proposition 9.3. We have for z — 400,

(1) For0 <k <1,

1 1
P ~ — ”[—zc(n)\) )
(2 8) ~ 77— o

(2) For k =1,
1
P(z,1) = Psy(2) ~ 5 2N
(3) For1l <k <p/q,

2 k) ~ /{(1 N /\> 1 e—zc(n )
Pz, k) (k —1)(1 — KA) V272 Y

(4) For k =p/q, P(z,p/q) — 1/2 and

1 1 q
Pleplg) —1/2~0 — (24 -2 .
(5) Forp/q <k, P(z,k) = 1 and
1—A 1
1—P(z,k) ~ al ) e

(k—1) (kA —1)\2rz

Proof. (1) If k < 1 then also kg/p < 1, and

1 1
1—Q<Z,I€ZQ/;O> ~ 1-/@(]/}7\/%

e —#(ra/p—1=log(rq/p)) 7

and
(q/p)zeﬂz% _ ¢—2(ra/p—1-log(xq/p))

e #(1=r)(=a/p) . o=2(a/p=1-log(a/p))
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and then

(CJ/p)z@m% —z(1-k)(1— - —1-log(q/p)— 11
~ (1 —kq/p)-V2rz-e z(1=r)(1=a/p) , ,—=(a/p—1-log(q/p)—(kq/p—1-log(rq/p)))
1= Q(z,k2q/p) ( /2)
~ (1 o H(]/p) X /27TZ X efz(lfn)(lfq/p) i efz(lfn)q/p . e*ZlOgK
~ (1 = kq/p) - V2mz - e 2U7r7loem) — (1)

Since Q(z, kz) — 1 we have,

P(z,k) =1—Q(z,k2q/p) + (q/p)zemp%qQ(z, KZ)

~1- Q(Z, /QZQ/p)
1

~ . e—#(ra/p—1-log(rq/p))

(1= rg/p)V2rz

(2) This was proved in Proposition 9.2.

(3) When 1 < k < p/q then by Lemma 9.1,

p—q 1
ZefF g —z(rq/p—1—log(xq/p))
€ a Z,REZ) N —————————— ¢ ,
(¢/p) Q(z, k2) PR
and
1
1 —Q(z,kzq/p) ~ . o~ #(ka/p—1-log(ra/p))
(1 — kq/p)V2rz
So we have

P(z,Kk) ~ ( L + 1 ) 1 . ¢~ #(ra/p—1-log(rq/p))
1—rg/p r-1 2m2

r(1—a/p) L ~=(sa/p-1-log(ra/p)

T i — 11— ke/p) Vorz

(4) The previous asymptotic at the start of the proof of (3) is also valid for 1 <
Kk = p/q and gives

(a/p) e Qe me) ~ — L ]

P—q 2z ’

and by Lemma 9.1,

P(z,p/q) = 1= Q(z,2) + (a/p)’e™" 7 Q(z,r2)
11

3+ <%+Z%q)+o(1/ﬁ).
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(5) For k > p/q we use again the same asymptotic of (3) to get

1 1 e —#(ra/p—1-log(rq/p))

Q(z, kzq/p) ~ Py R ,

and again

2 Oz, k2) ~ v
(4/p) Q(z,r2) e

e—z(nq/p—l*l‘)g(fW/p)) )

SO

1-— P(z, K}) ~ ( 1 1 > /27_(_2/ efz(f{q/pflflog(fiq/p))

/iq/p—l_/-@—l

k(1 —q/p) 2z e~Ama/p=1=
~ O~ o 2(ra/p—1=log(rq/p))
(kq/p—1)(k —1)

O
10. COMPARING ASYMPTOTICS OF P(z) AND Pgy(z).
We have an asymptotic comparison,
Proposition 10.1. We have for z — +o0,
PSN<Z> < P(Z) .
Proof. Note that
q q 1 1 1
(9 e () w221 (L)]
p p 4pq 2p 2p
So with s = 4pg < 1 we have
L q q
0<log—<-=—1—-log—==c(q/p) =c(N),
o<1 L= clafp) = ()
and for z large
PSN(Z) < 6_20()\) < S— ~ P(Z) .
(1l —3s)z
O

As we will see later we can be more explicit about the inequality between Pgy(z)
and P(z).
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11. RECOVERING P(z) FROM P(z, k).

We have seen above that Pgy(z) can be recover from P(z, k) by taking the value
at k = 1. It turns out that we can also recover P(z) as a weighted average on x of

P(z, k).
Theorem 8. We have

with the density function

dp. (k) = K le* dk .

/Omdpz(ﬁ) 1

P =1- 3 fulk)

il = (1 - (z%)k> Cal) e

Then the Theorem follows from a direct computation,

We check that

We can write

where

Lemma 11.1. For k > 0, we have

“+o0o

0 k

We give a second more conceptual proof.

Proof. Consider the random variable

K= iSZ )
ZTo

We have seen above that S. ~ I'(z,a) so kK ~ I'(z,a22) = I'(z, 2).

dp, is the distribution of k. It is enough to prove that
P(z) =E[P(z,k)] .

() = et - (V)

So the density
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We have
z—1
P(z) =P[N'(S.) > 2] + ) _P[N'(S.) = k] .q
k=0
z—1
1= 301 g WPIN'(S.) = K]
k=0
And by conditioning by S, we get
z—1
= (1 — q:-k)E[P[N'(S.) = k| S.]]
k=0
z—l( 'S )k z z—1 (apS )k
_ > o, —a'S, g a’?sz q 7% _org,
—1—EZ I e —i—(p) Ele i e
k=0 k=0
=K [1 - Q (z, ﬁn) + <g> ezO*Z)KQ(z zm)}
p p
=E[P(z,K)],
since P[N'(S.) = k[S.] = &22e2'S= g, = (¢/p)**, and
z—1 .flj‘k
Qlz,z) = Z Fe_z
k=0
O

We also note that E[k] = 1.
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12. RANGE OF k.

The probability to observe a deviation greater than « is P[k > x| with k = &

Z7T0

We have that & follows a I-distribution, k ~ I'(z, z), so

1 /+OO th_l —zt dt
z e
I'(2) J«

1 “+o00 . .
= et dt
r(2) / ‘

['(z,k2)
I'(2)
=Q(z,kz) .

Plk > k] =

Then, by Lemma 9.1, P[k > k] ~ ﬁ\/ﬁ

S..

—_e#°") for k > 1. Note that this probability

does not depend on p. For z = 6, we have Pk > 4] ~ 3-107% and for z = 10,
Pl > 4] &~ 4-107°. So, in practice, the probability to have kK > 4 is very unlikely.
Below, we have represented the graph of Kk — P(z, k) for different values of z

(¢q=0.1) and 0 < Kk < 4.

0.015 q=0,1
—z=68
z2=8
—z=10
=12
0.010 —z=14
—z=16
—z=18
—z=20

Probability P(z,«)

02 04 06 08 10 12 14 16 18 20 22 24 26 28 30
®

Figure 4. Probability P(z, ) as a function of

We see that x — P(z,k) is convex in the range of values of x considered.
study the convexity in more detail in the next section.
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13. COMPARING Psy(z) AND P(z2).
Now we study the convexity of k +— P(z,k). Recall that A = ¢/p < 1. From
Theorem 7 we have
P(z,k) =1 —Q(z,20k) + Ne&*1V5Q(z, 2k) .
Since
[(2)0:Q(z,z) = —2* e ™ |
we get, after some cancellations,

[(2) 2P (2, k) = N2(1 — ) eV (2, 25)

We observe that 0,P(z, k) > 0, so P(z, k) is an increasing function of x as expected.
For the second derivative we have

[(2) 95 P(z, k) = N*2*(1 = N)e* N7 [(1 = ND(2, 2k) — (2r)7 e
= N2(1 = N)e ™M (2r)" [(1 = NQ(z, zK)zle™ (26) " — k7] .
Therefore we study the sign of
Irz(K) = (1= N)Q(z, zr)2le™ (k) * — k!

z—1

2| 1 —1
= (1—)\)me{sz N\

k=0

2 (092 -9 (-8 )

For z = 1 we have

(k) ==-AKk<0,
therefore k — P(1, k) is a concave function and by Jensen’s inequality

P(1) = 0+OO P(z,k)dpi(T) < P(1,k) = P(1,1) = Psn(1) .

Corollary 13.1. We have (for all 0 < ¢ < 1/2)
P(1) < Psn(1) .
In general, for z > 2, we have the reverse inequality. To determine the sign of g, .
we study its zeros.

The equation to solve is

1\ 1 1 2\ 1 1 2—1\ 1 A
)=+ (1= (1=2) =+, — =) (1= = .
O e G G o (b R G P
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This is a polynomial equation in 1/k, the coefficients are increasing on z, and the left
hand side is decreasing on k € (0,400) from +o0o to 0, therefore there is a unique
solution k(z), and
k(2) < K(3) < ...
We compute
1—X 1
2)=——=—-1>0.

M2 =5 T 5
In this case the function x — P(z, k) is convex only in the interval (0,x(z)). For z
large, most of the support of the measure dp, is contained in this interval and we

have by Jensen’s inequality

k()
P(z) = /0 P(z,k)dp,(k) > P(z,k,) = P(z,1) = Psn(2) ,

K(2) ~+00
R, = / kdp, (k) = / kdp.(k)=1.
0 0

We can get some estimates on k(z) for z — +o00. The first observation is that for
z large we have k(z) > 1. The asymptotic limits for Q(z,kz) for K < 1 and kK = 1
(Lemma 9.1) and Stirling asymptotic formula give that

where

Q(z, r2)2le™ (2r)” = o0,
and g.-() # 0.

For k > 1, we can use the asymptotic [Digital Library of Mathematical Functions]
(8.11.7), z — +o0,

(Hz)ze—liz
T(z,k2) ~o ol &
and
(1= Nz, 52) — (k2) e ~ (k2)*le* ((1 )= - - 1) ,
/{/ —_
thus, since
grz(k) = (1 = ND(2,k2)ze™(k2) 7 — kL
we have
1 K 1—A 1
(k)= i Jr)=—((1=\ -1 = ——
G0 (1) oo (x) K <( >/-€— 1 ) k—1 &
Now, if
k(oo) = lim k(z),
z—+400

we have gy (ko) = 0, S0 wWe get:
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Proposition 13.2.

k(00) = zginoo/i(z) =\t= .

Using the second order asymptotic ([Digital Library of Mathematical Functions]
(8.11.7)), for k > 1, z — 400,

D(zm2) ~ BT (1— a ) ,

z(k —1) (k —1)%z
1—-A K _
QA,z(H)NH_l(l—m>—ﬁ .
Writing
P
K(:) =2 - o),
and using
1—A k(z) ()
=1 (- )~
we get

Proposition 13.3. For z — +00

2
p 1 -1
kK(z) == — —+olz
2 ¢ qlp—2q) 2 =)
Also we have
2

1

]_)_1> p _

q q(p—1q) =

for

2
2> <—p ) |
p—4q

so, for z of the order of (1 — A)~2 we have r(z) > 1.
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14. BOUNDS FOR P(z)

Remember that we have set s = 4pq. We have the following inequality that is a
particular case of more general Gautschi’s inequalities [Gautschi 1959]:

Lemma 14.1. Let z € R,. We have

Z F(Z—F%)
- < <1.

Proof. By Cauchy-Schwarz inequality, we have:

1 e —1 —t
'iz+=-]= t*"2e " dt
2 0

On the other side, the last inequality with z replaced by z + % gives:
1 1 1 1
I'(2) =T -+ - < =r =
2I'(2) <z+2+2>_\/z+2 <z+2>

Lemma 14.2. For z > 1, we have

I\
VA
I
—_
VA
N

[N
+
DO =
9
N
[S—
|
V2]
9
N
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Proof. The function x —— (1 — x) 2 is non-decreasing. So, by definition of I, and
the upper bound of the inequality of Lemma 14.1, we have

P(z) = I, (z%) = M/O #(1 — )2 dt

< r (z + %) s*
— VzT(2) (1l —s)z
< 1 s*

In the same way, using the lower bound of the inequality of Lemma 14.1, we have

P(z) =1, (z%) > %%/{) 1 g

r (z + %) s7
> .
T Vz2T(z2) w2
Z s?
>

Note that this gives again the exponential decrease of Nakamoto’s probability.

15. AN UPPER BOUND FOR Pgy(z)

Proposition 15.1. We have,

1 1 g9 q 1 g9 q
P - —(f-1-log )z | L —(E-1-log(%)2)
sn(2) 1_% _27T26 + 5¢
This upper bound is quite sharp in view of the asymptotics in Proposition 9.3 (2).

Lemma 15.2. Let z € N* and A € R,

(1) [f)\ E]O, 1[, then 1 — Q(Z, )\z) < ﬁﬁe—(/\—l—log)\)z
(2) Q(z,2) < 3

Proof. For (1) We use [Digital Library of Mathematical Functions] (8.7.1)

n

aaN~_ L(a)
’}/(CL,.Z')ZG T Zmﬂ? s
n=0
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which is valid for a,z € R. Let A €]0,1[. Using I'(z + 1) = 2I'(z), we get:

X I(z)

Y(z,Az) = e ¥ (\2)? Z e

—T(z+n+ 1)(Az>n

— () e + ﬁ()\z) + (A2) + .. )

< e (2) G + %(Az) + %(AZ)Q 4o )
1 1
21—\
)\zzzflef)\z
ST

S 67)‘2()\2)2

On the other hand, by [Digital Library of Mathematical Functions] (5.6.1), we have

and for any 0 < A < 1,

< ef()\flflog)\)z

1—AV272

For (2) this comes directly from [Digital Library of Mathematical Functions] (8.10.13).

g

Recalling that Psy(z) = P(z,1) =1—-Q <z, %z) + (q/p)?e*P=/PQ(2, 2), we get

Proposition 15.1.
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16. COMPARING AGAIN Psy(z) AND P(z2).
The aim of this section is to compute an explicit rank z, (no sharp) for which
Psn(z) < P(z) for z > z.

Lemma 16.1. Let oo > 0. For all z > log v, €* —ax > $(z —loga)? + a(1 — log ).

Proof. Let g(z) = €” — ax — §(z —log@)® — a(1 — loga). We have ¢'(z) = e” —a —
a(z—loga), ¢"(z) = ¢ —a and ¢®)(z) = €*. So, g(loga) = ¢'(loga) = ¢"(loga) =0
and g©® > 0. Therefore, g(x) > 0 for z > log a. O

Lemma 16.2. For a > 0 and x > (1 + 1/\/5) log @ we have e > ax.

Proof. The inequality is trivial when x < 0. So, we can assume that x > 0. For 0 <
a < 1, we have e > > ax. For 1 < a < e, by Lemina 16.1, we have ¢ —ax > 0 for
z > log ov. For a > e, the largest root of the polynomial § (z —log @)* 4+ (1 —log a) is

log a++/2(log a — 1) which is smaller than (1+1/v/2)log a since \/2(u — 1) < u/v/2
U

for u > 1. So, the inequality results from Lemma 16.1 again.
Lemma 16.3. For p,v,z > 0, if

. 1 1+ V2 log(29p?)
V2 2v2 (0

then we have

e VT < a
T+ %
Proof. We have
eV« L (x4 1/2) e 2" < 1f?
T+ %

= (x+1/2) e @D 2oV

1/2
e/ o 1/

pre=
1
W(x4+1/2) o~ .
— e > e 20 (x4 1/2)
By Lemma 16.2, the last inequality is satisfied as soon as
1
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Moreover, we have

Qw-(x+1/2)>(1+1/\/§)10g( ><:>21/1~x+1/1>(1+1/\/§)10g( e’ )

1
2¢ppre v 2¢p?

= 2-x > (1+1/V2)1 — (1+1/v2)log(2¢p?)
= 2T > % b — (14 1/v2) log(2¢ %)

1 14 1/V2log(2¢p%)
2V/2 2 W

T >

g

Theorem 16.4. Let = € N. A sufficient condition for having Psy(z) < P(z) is
z > zg with zo = [2§] being the smallest integer greater or equal to

* 2 1 (e d)es(®)
Zy = max N

7T<1_2)2 1 2V/2 2 ¥(p)

where P(p) = £ —1 — log (%) — log (ﬁ) > 0.

Proof. First, note that

_q q 1p
V)= —1-log <p) ~loe (m)

AL ()

So, ¥(p) > 0 and zj is well defined. Let z > zy. By Lemma 14.2 and Corollary 15.1
it is enough to prove that

1 1 (a1 et 1 (a1 10e(s Z s*
e D G < [T
We have z > 2z, > W(IE%)Q, thus é le < % So, the inequality is satisfied as soon
vt < (F)
as e~ #¥0P) < \/%_% and the result follows from Lemma 16.3. ]

20 2 3 4 5 6 7 8 9 10 11
g > 0.000 | 0.232 | 0.305 | 0.342 | 0.365 | 0.381 | 0.393 | 0.401 | 0.409 | 0.415

Table 5. Sharp values
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17. TABLES FOR P(z,k).

For complete Satoshi Tables see [Grunspan & Pérez-Marco 2017].
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| k\¢ [ 0.02]0.04[0.06[0.08] 0.1 | 012 | 0.14 [ 0.16 | 018 | 0.2 [ 0.22 | 0.24 | 0.26 |
0.1 0 [0.01]0.03]0.09[ 0.18 [ 0.33 [ 0.55 | 0.88 | 1.34 | 1.96 | 2.78 [ 3.87 | 5.27
02 0 [0.01]0.05[0.11]0.23 | 042 | 0.71 | 1.12 [ 1.68 | 2.44 | 3.44 [ 4.74 | 6.39
03] 0 ]0.02]0.06[0.15] 0.3 | 055 | 0.91 | 1.42 | 2.11 | 3.04 [ 4.24 | 577 | 7.7
04 0 [0.02]0.08[0.19]0.39 | 0.69 | 1.14 | 1.77 [ 2.62 [ 3.74 [ 5.17 | 6.98 | 9.22
0.5 0 [0.03]0.1[024]049 | 087 | 143 | 22 | 322 [ 456 [ 6.25 | 8.36 | 10.93
0.6 [ 0 [0.04]0.13]0.31] 0.61 | 1.08 [ 1.76 | 2.69 | 3.92 | 549 | 747 | 9.9 [12.83
0.7 [0.01[0.05]0.16 [0.38 | 0.75 | 1.33 | 2.14 | 3.25 | 47 [ 6.54 [ 8.82 [ 11.59 | 14.89
0.8 [[0.01[0.06|0.19[0.46 | 0.92 | 1.61 | 258 | 3.88 | 5.57 | 7.7 [ 10.3 [13.42 | 17.11
0.9 [[0.01]0.07]0.240.56 [ 1.11 | 1.92 | 3.06 | 4.58 | 6.53 | 8.96 | 11.9 [15.39 | 19.45
1 [0.01]0.08][0.28[0.67| 1.32 [ 2.27 | 3.6 | 5.36 | 7.58 [ 10.32 | 13.61 [ 17.47 [ 21.9
1.1]0.01] 01 [034] 08 [ 1.55[266 [ 419 | 62 | 871 [11.7815.42|19.64 | 24.44
12 ]0.02]0.12[ 0.4 [0.94] 1.81 [ 3.09 [ 484 [ 7.1 | 9.92 [13.32|17.32|21.91 [ 27.05
1.3]0.02]0.14[0.47 [1.09| 2.1 [ 355 [ 553 | 8.07 | 11.2 [14.95 | 19.3 |24.24 [ 29.72
1.4 0.02]0.16 [0.54 [1.26 | 2.4 [ 4.06 | 6.27 [ 9.1 |12.55]16.64 | 21.34 | 26.62 | 32.41
1.5 [0.02]0.19[0.62 [ 1.44 | 2.74 [ 459 | 7.06 [10.18 | 13.96 | 18.39 | 23.44 | 29.04 | 35.12
1.6 [[0.03]022[0.71[1.64| 3.1 [ 517 [ 7.9 [11.32]15.43 ] 20.2 | 25.58 | 31.49 | 37.83
1.7 [[0.03]0.25[0.81 | 1.85 | 3.48 | 5.78 | 8.78 [ 12.51 | 16.95 [ 22.06 | 27.76 | 33.96 | 40.53
1.8 [[0.04]0.28[0.91[2.08] 3.89 [ 6.42 | 9.7 [13.75|18.52 [ 23.95 | 29.96 | 36.42 | 43.2
1.9 [0.04]0.32[1.03]2.33] 432 [ 7.1 [10.67 [15.03 | 20.13 | 25.88 | 32.18 | 38.88 | 45.84
2 [[0.05]0.36[1.15[2.58 | 478 | 7.8 [11.67 [16.35 | 21.77 [ 27.83 | 34.4 | 41.32 | 48.43
2.1 [[0.05] 04 [1.28[2.86] 5.26 | 854 |12.71 | 17.7 [23.44 [ 29.8 [ 36.62 | 43.74 | 50.96
2.2 [0.06 [0.44 |1.41[3.15 | 5.77 | 9.31 | 13.78 [ 19.09 [ 25.14 [ 31.78 [ 38.84 [ 46.12 | 53.43
2.3 [0.07[0.49 | 1.56 [3.46 | 6.3 |10.11 | 14.88 [ 20.51 [ 26.86 | 33.77 [ 41.04 [ 48.46 | 55.84
2.4 [[0.07]0.54 | 1.71 | 3.78 [ 6.85 | 10.94 | 16.01 | 21.95 | 28.59 | 35.75 | 43.21 [ 50.76 | 58.17
2.5 [0.08] 0.6 |1.87 [4.11 | 7.42 |11.79 |17.17 [ 23.41[30.34 [ 37.73 [45.36 | 53 |60.43
2.6 [ 0.090.652.04[4.46 | 8.01 |12.67 |18.35 | 24.89 | 32.09 | 39.7 [47.48 | 55.19 | 62.6
2701 [0.71]222 483 8.62 | 13.57 [ 19.56 | 26.39 | 33.84 | 41.65 | 49.56 | 57.32 | 64.7
2.8 [0.11]0.78 241 [5.21 ] 9.26 | 14.49 | 20.78 | 27.9 [35.59 [ 43.59 [ 51.6 [ 59.38 | 66.71
2.9 [0.12]0.85] 2.6 [ 5.6 | 9.91 |15.44]22.0229.42[37.34[ 45.5 [ 53.6 [ 61.39 | 68.64
3 ]/0.13]0.922.81[6.01 | 10.58 | 16.4 | 23.28 [ 30.94 | 39.08 [ 47.38 | 55.55 [ 63.32 | 70.49
3.1 [0.14]0.99 | 3.02[6.44 [ 11.27 | 17.38 | 24.55 | 32.47 [ 40.81 | 49.24 [ 57.45 [ 65.19 | 72.25
3.2 [0.15[1.07 | 3.24 | 6.87 [ 11.97 | 18.38 [ 25.83 | 34 [42.52 |51.06 [59.31| 67 |73.93
3.3 [[0.16 | 1.15 | 3.47 | 7.32 [ 12.69 | 19.39 | 27.12 | 35.52 | 44.22 | 52.85 [ 61.11 | 68.73 | 75.53
3.4 [0.17[1.23] 3.7 [7.78 [ 13.43]20.42 | 28.42 | 37.05 | 45.9 | 54.61 [ 62.86 [ 70.39 | 77.05
3.5 [0.19]1.32]3.95[8.26 | 14.18 | 21.46 | 29.73 | 38.56 | 47.56 | 56.32 [ 64.55 [ 71.99 | 78.5

Table 6. P(3,k) (z = 3) for different values of x and ¢ in %.
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| k\¢ [ 0.02]0.040.06[0.08] 0.1 [0.12] 0.14 | 0.16 | 0.18 [ 0.2 | 0.22 | 0.24 [ 0.26
01 oo Jo0o]o0o[oO0OT]oO 0 [0.010.02]0.04]0087]0.15] 028
02 0 [ 0] 0] 0] 0] 0 [001]0.01]003][0.06]012][0.23]0.41
03 0 ] 0] 0] 0[O0 ] 0 [001[0.02]005]0.09]018[034] 06
04 0 [ 0] 0] 0 [ 0 [001]001][0.03]007 015028 [ 0.51 | 0.88
05/ 0 [ 0 ] 0 ] 0 [ 0 [001]002[0.05]011]0.23]042[0.75 | 128
06 0 [ 0] 0] 0] 0 J001]004[0.08]017[0.34]063][ 1.1 | 184
07/ 0 [ 0 ] 0 ] 0 [001]002]0.06]0.13] 026|051 | 091 [1.57 | 2.57
08 0 [ 0 ] 0 | 0 [001]0.03]008[019 039073 1.3 [219 | 353
09 0 [ 0] 0 ] 0 [002]005]012]0.28 055/ 1.03] 181 [2.99 | 473
1 [ 0o ] 0] 0 [001]002[007]018 039 ]0.78 | 1.43 | 2.45 | 3.99 [ 6.19
11 0 [ 0 [ 0 J0.01][004[01]025]054][1.06] 192325 ] 52 [7.93
12 0 | 0 [ 0 [001]0.05[0.14]0.35 | 0.74 | 1.42 | 253 [ 421 | 6.63 [ 9.94
13 0 [ 0 [ 0 [0.02]0.07[0.2]0.47 | 0.98 | 1.86 | 3.26 | 5.35 | 8.29 [12.23
14 0 | 0 [ 0 [0.03]0.09[0.26] 0.62 | 1.28 | 2.39 [ 4.14 [ 6.68 [10.19 | 14.79
15[ 0 | 0 [0.00]0.03][0.12[0.34] 0.8 | 1.64 | 3.02 [ 515 [ 8.19 [ 12.3 [ 17.58
16 0 | 0 [0.01]0.05[0.16[0.45] 1.02 | 2.06 | 3.76 | 6.31 | 9.89 | 14.63 | 20.59
1L7] 0 | 0 [0.00]0.06]021[0.57]1.29 | 256 | 4.6 | 7.62 [11.77 [17.16 | 23.78
18] 0 | 0 [0.02]0.08]0.27[0.71| 1.6 [ 3.14 [ 5.56 | 9.07 | 13.82|19.86 | 27.13
19 0 | 0 [0.02] 0.1 [0.34[0.89] 1.96 | 3.79 | 6.63 | 10.67 | 16.04 | 22.72 | 30.59
2 [ 0 | 0 [0.03]012]0.42[1.09[ 2.37 | 453 | 7.82 [12.42] 18.4 [25.71 [ 34.14
21 0 [ 0 [0.03[0.15]0.51 |1.32] 2.83 [ 5.35 | 9.12 | 14.29| 20.9 | 28.81 | 37.73
22 0 | 0 ]0.04[0.19]0.62|1.58] 3.36 | 6.26 | 10.54 | 16.29 | 23.51 | 31.98 | 41.34
23] 0 [ 0 ]0.05[0.23[0.75[1.88] 3.95 [ 7.26 | 12.06 | 18.41 | 26.23 [ 35.21 | 44.94
24 0 [0.01]0.06[0.28]0.89 221 [ 459 | 8.35 | 13.69 | 20.64 | 29.02 | 38.47 | 48.49
25 [ 0 [0.01]0.07]0.33[1.05[259] 5.3 [ 9.52 |15.42[22.95 | 31.87 [ 41.73 | 51.97
26 | 0 [0.00]0.09] 04 |1.24] 3 | 6.08 [10.78 [ 17.24 [ 25.35 | 34.77 [ 44.98 | 55.35
27 0 [0.01] 0.1 [047[1.44 345][ 6.92 [12.12]19.15 | 27.81 | 37.69 | 48.19 | 58.63
28 [ 0 [0.01]0.12[0.55[1.67 [3.95] 7.82 [13.54 | 21.14 [ 30.33 | 40.62 [ 51.34 | 61.78
2.9 0 [0.02]0.14]0.64 | 1.92 449 [ 8.79 [15.04 [ 23.19 | 32.89 | 43.54 | 54.42 | 64.8
3]0 [0.02]017]0.74 2.2 [5.08] 9.82 | 16.6 | 25.31 | 35.48 [ 46.44 | 57.41 | 67.66
31 0 [0.02]0.19]0.85[ 2.5 |5.71 [ 10.91 [ 18.24 | 27.47 [ 38.08 | 49.29 | 60.3 | 70.38
3.2 0 [0.03]0.220.97[2.83]6.39 | 12.06 [ 19.93 | 29.68 [ 40.68 | 52.1 [ 63.09 | 72.94
33 0 [0.03]0.26]1.11[3.18|7.11 | 13.27[21.68 | 31.93 [ 43.28 | 54.84 [ 65.75 | 75.33
34| 0 [0.03] 03 [1.25]357|7.88]14.54[23.48 | 34.2 | 45.86 | 57.52 | 68.3 | 77.57
35 0 [0.04]034]1.41[3.98]8.69|15.86]25.3336.48 [ 48.41 | 60.11 [ 70.72 | 79.66

Table 7. P(6,x) (z = 6) for different values of « and ¢ in %.
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