
BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 1

BaseSAP: Modular Stealth Address Protocol for
Programmable Blockchains

Anton Wahrstätter , Matthew Solomon, Ben DiFrancesco, Vitalik Buterin, and Davor Svetinovic

Abstract—Stealth addresses represent an approach to enhancing privacy within public and distributed blockchains, such as Ethereum
and Bitcoin. Stealth address protocols generate a distinct, randomly generated address for the recipient, thereby concealing
interactions between entities. In this study, we introduce BaseSAP, an autonomous base-layer protocol for embedding stealth
addresses within the application layer of programmable blockchains. BaseSAP expands upon previous research to develop a modular
protocol for executing unlikable transactions on public blockchains. BaseSAP allows for developing additional stealth address layers
using different cryptographic algorithms on top of the primary implementation, capitalizing on its modularity. To demonstrate the
effectiveness of our proposed protocol, we present simulations of an advanced Secp256k1-based dual-key stealth address protocol.
This protocol is designed on top of BaseSAP and is deployed on the Goerli and Sepolia test networks as the first prototype
implementation. Furthermore, we provide cost analyses and underscore potential security ramifications and attack vectors that could
affect the privacy of stealth addresses. Our study reveals the flexibility of the BaseSAP protocol and offers insight into the broader
implications of stealth address technology.

Index Terms—Blockchain, Privacy, Security, Confidentiality, Ethereum, Stealth Address

✦

1 INTRODUCTION

S TEALTH addresses have gained importance in
blockchain technology due to their potential to

improve confidentiality and privacy in transactions on
public blockchains. In the context of public blockchains,
all transactions are recorded transparently, making it
possible to track the transaction history of a particular
pseudonymous user. This traceability could occur
unintentionally, as the parties involved in a transaction may
not have consciously aimed to establish a linkable record.
Nonetheless, since blockchains like Bitcoin and Ethereum
are transparent and publicly accessible, third parties can
analyze the data and potentially identify the participants in
a particular transaction.

Stealth address protocols (SAPs) offer a solution to the
privacy challenges faced on public blockchains by enabling
users to interact confidentially without allowing external
observers to link the parties involved in a transaction.
At their core, stealth address protocols empower the
shielding of recipient information in peer-to-peer (P2P)
transactions [1], [2].

• A. Wahrstätter is with the Research Institute for Cryptoeconomics,
Department of Information Systems and Operations Management,
Vienna University of Economics and Business, Vienna, Austria. E-Mail:
anton.wahrstaetter@wu.ac.at

• M. Solomon and B. DiFrancesco are with ScopeLift, Broomall,
Pennsylvania, United States. E-Mail: {matt, ben}@scopelift.co

• V. Buterin is with Ethereum Foundation, Singapore, Singapore. E-Mail:
vitalik@ethereum.org

• D. Svetinovic is with the Research Institute for Cryptoeconomics,
Department of Information Systems and Operations Management, Vienna
University of Economics and Business, Vienna, Austria, and the
Center for Cyber-Physical Systems, Electrical Engineering and Computer
Science, Khalifa University, Abu Dhabi, UAE.E-mail: dsve@acm.org

Manuscript received June 2023.

Stealth addresses can have numerous applications,
including but not limited to donations and payroll
payments. They can be used in any P2P interaction
where privacy concerns demand concealing the connection
between two parties. Users can transfer funds using stealth
address protocols while protecting the recipient’s identity.

The first stealth addresses were initially introduced in
the Bitcoin ecosystem and had since undergone continuous
refinement. In 2013, Nicolas van Saberhagen described the
CryptoNote protocol, which utilized stealth addresses to
enhance the privacy of blockchain transactions [1]. Peter
Todd subsequently built upon this concept in 2014 and
further improved it [2]. Ultimately, stealth addresses were
integrated into the Monero blockchain when it launched in
2014 [3].

In the Ethereum blockchain, stealth addresses can
significantly improve confidentiality. They allow users to
autonomously generate a unique, one-time address for each
transaction instead of relying on a static, publicly identified
address. The programmable nature of the Ethereum
blockchain facilitates the development of stealth address
protocols on top of it, hence leveraging the decentralization
and trust attributes of the underlying blockchain [4].

Despite their inherent promise, stealth addresses in
their present form manifest several constraints pertaining
to their prospective deployment and efficacy across diverse
blockchain frameworks. Regarding privacy-centered
blockchains, such as Monero, stealth address protocols have
been intrinsically integrated into the fundamental protocol.
However, widely-recognized programmable blockchains,
such as Ethereum, which do not inherently encompass
robust privacy assurances at the foundational protocol
layer, necessitate application-layer interventions. [3]

Within this context, the potential for stealth address
protocols on blockchains such as Ethereum becomes

ar
X

iv
:2

30
6.

14
27

2v
1

 [
cs

.C
R

]
 2

5
Ju

n
20

23

https://orcid.org/0000-0003-3816-5938
https://orcid.org/0000-0002-3020-9556

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 2

evident. They can introduce innovative privacy functions
for users, capitalizing on the Turing-complete environment
of Ethereum while concurrently harnessing the cohesive
modularity characteristic of the base blockchain
protocol. This interoperability could also be employed
advantageously for Smart Contract wallets, public goods
funding, Decentralized Finance (DeFi) systems, or the
Non-Fungible Token (NFT) landscape, thereby broadening
the potential application areas for these protocols.

Yet, associated scalability obstacles with conventional
stealth address protocols must be suitably confronted. These
must be resolved to facilitate the mainstream acceptance
of stealth addresses while guaranteeing a secure user
experience.

To overcome the aforementioned challenges, we develop
BaseSAP. BaseSAP is a fully open and reusable stealth
address protocol that can reliably offer stealth addresses
at the application layer of programmable blockchains
such as Ethereum. The protocol aims to provide a
lightweight mechanism for users to generate stealth
addresses, maintaining complete backward compatibility
and requiring no modifications to the core blockchain. Our
proposed base protocol is agnostic to various cryptographic
schemes and holds the potential to substantially improve
user interactions with stealth addresses in the context
of programmable blockchains. BaseSAP comprises a
foundational implementation, which includes the reusable
functionality required for any trustless stealth address
protocol.

We designed BaseSAP to be fully extendable, thereby
enabling the creation of unique stealth address protocols
based on particular cryptographic schemes. Examples of
such extensions include stealth addresses derived from
the Secp256k1 elliptic curve, stealth address protocols
based on elliptic curve pairings [5]–[7] or generated using
lattice-based cryptography [8], [9]. The protocol design
ensures compatibility and proactively accommodates future
quantum-resistant cryptographic schemes that require
larger key sizes.

Beyond the base protocol contribution, we create the
first practical implementation on top of BaseSAP. We
implement an improved dual-key method that relies on the
Secp256k1 elliptic curve and employs view tags to improve
parsing efficiency compared to conventional Dual-Key
Stealth Address Protocols (DKSAPs). The key contributions
of this work are as follows:

• We present a comprehensive review of stealth addresses
research’s current status and utilization across diverse
blockchains.

• We identify and address substantial challenges
associated with interoperable stealth address protocols,
emphasizing privacy concerns and Denial-of-Service
(DoS) attack vulnerabilities.

• We design and develop BaseSAP as a fully open,
cohesive, and extendable stealth address protocol to
be integrated into Ethereum [10] in active collaboration
with the Ethereum development community.

• We illustrate the inherent modularity of our protocol,
accentuating the significant potential of such
approaches when implemented at the application
layer of programmable blockchains. This could

benefit diverse areas such as Smart Contract wallets,
cryptocurrency donation platforms, public goods
funding, decentralized finance, and the Non-Fungible
Token landscape.

• We develop a preliminary stealth address prototype
that leverages the Secp256k1 elliptic curve and exhibits
superior performance in terms of parsing time when
compared to existing Stealth Address Protocols [11].

We publish the code base created for this work
under an open-source license to ensure reproducibility and
transparency [11]. Additionally, we propose the described
protocol as an ERC (Ethereum Request for Comment) [10] to
contribute to adopting stealth addresses on programmable
and decentralized blockchains.

2 RELATED WORK

Prior research has established the basis for the development
of the proposed protocol. The following section will focus
on the most relevant literature and provide an overview of
the current state of the art concerning stealth addresses.

Stealth addresses were first introduced to the blockchain
domain by an anonymous entity dubbed “bytecoin” in April
2011. Subsequently, van Saberhagen and Todd put forward
more refined stealth address protocols in 2013 and 2014,
respectively [1], [2]. These protocols laid the groundwork
for the DKSAP implemented in the Monero blockchain
upon its launch in 2014 [3]. Since DKSAP’s inception,
numerous researchers have sought to extend the capabilities
of the stealth addressing protocol and introduce additional
features and functionality.

Courtois and Mercer [12] provide an overview of the
development history of stealth addresses. Furthermore, the
authors introduce multiple different spending keys to the
DKSAP, improving its resistance to attacks such as the
”bad random attack” or compromised keys. Their proposed
protocol comes at the cost of requiring the users to manage
multiple different spending keys.

Fan [13] improve the DKSAP, enabling sender and
receiver pairs to use their generated Diffie Hellman secret
multiple times with an increasing counter, enabling the
protocol users faster parsing. Their approach is based on
a similar idea as TLS and achieves performance gains of at
least 50% compared to the standard DKSAP.

Fan et al. [7] improve the DKSAP by reducing storage
costs by reducing the number of keys required from two to
one while using a bilinear mapping to maintain the desired
properties of the DKSAP. The authors demonstrated notable
efficiency gains by reducing the number of key pairs stored.

Liu et al. [8] implement stealth addresses together with
ring signatures to define a confidential layer within a
cryptocurrency system. The authors use a lattice-based
protocol to fully shield the information about the sender
and recipient of a transaction.

Feng et al. [14] propose a stealth address protocol that
does not require additional information to be published
with every stealth address transaction, allowing such
transactions to look like common transactions. The authors
use the number of transactions between certain peers
instead of generating a Diffie-Hellman secret for the
stealth address generation process. This comes with the

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 3

requirement for users to parse every transaction recorded
on a blockchain.

Lee and Song [15] use a stealth address protocol and
ring signatures to implement confidential transactions on
an Ethereum private network. The authors focus on the
exchange of healthcare information and further analyze the
security of their protocol using threat models.

Mohideen and Kumar [16] build on top of the protocol
of [14] and use the transaction ID of the most recent P2P
transaction between two entities instead of the number of
transactions in the stealth address generation process. The
authors argue that without the need to attach information
to the stealth address, related protocols become more
censorship-resistant and lightweight.

In summation, previous research underscores a
substantial acceptance of the DKSAP. Several studies
focused on reducing parsing time for recipients by
introducing efficient strategies, such as deterministic rules
that dictate the computation of stealth addresses between
two parties based on an initially generated Diffie-Hellman
secret or adopt sophisticated cryptographic algorithms such
as bilinear mappings [7], [13].

Furthermore, mitigating the problem of detectability in
stealth address transactions can be achieved by refraining
from publishing any extra information alongside stealth
address transactions. However, this approach entails a
significant drawback for blockchains that handle a large
volume of transactions, in addition to stealth address
transactions, as it requires parsing each transaction
recorded.

3 BACKGROUND ON BLOCKCHAIN PRIVACY

Privacy remains a primary concern within the realm of
public blockchains. The inherent transparency of these
systems may jeopardize users’ privacy when conducting
financial transactions or other sensitive interactions. To
address this issue, blockchain developers have attempted
to develop privacy-enhancing protocols that provide
unlinkability and untraceability or focus exclusively on
the former. In this context, we adhere to the definitions
established in the CryptoNote whitepaper to define
“unlinkability” and “untraceability”. Per this reference,
unlinkability is characterized as the inability to verify that
two outgoing transactions are directed to the same recipient.
Untraceability, on the other hand, is the inability to pinpoint
the sender of a transaction from a group of potential
senders.

ZK-SNARKs. There have been numerous efforts to
bring confidential transactions to public ledgers such as
Bitcoin and Ethereum, including the use of ZK-SNARKs
(”Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge”) [17]–[20]. ZK-SNARKs enable a user to prove
certain information without disclosing that information,
which allows for the possibility of depositing funds
into a Smart Contract using one pseudonym and then
withdrawing those funds by proving the deposit under a
different pseudonym without disclosing which deposit was
referenced for the withdrawal. In addition to promoting
enhanced scalability in the blockchain, this technology is
implemented on Ethereum through privacy-enhancing tools

like Tornado Cash or Privacy Pools and in Zero-Knowledge
rollup platforms such as Aztec. This technology ensures
both untraceability and unlinkability, thereby offering a
robust means of preserving privacy. [21]–[23].

CoinJoin. Chaumian CoinJoin is a privacy-enhancing
technology used on UTXO-based blockchains that ensures
the untraceability and unlinkability of transactions.
CoinJoin is a process in which multiple users combine
their UTXOs into a single, larger transaction. This
consolidation complicates the task of an external observer
trying to correlate input addresses (the senders) with
output addresses (the recipients) [24], [25]. CoinJoins have
been implemented in applications such as Wasabi Wallet,
Samurai Wallet, and JoinMarket [26]. Blind signatures are
employed to guarantee that the central coordinator cannot
link the input and output addresses of the participants.
Applied correctly, CoinJoins prevent the central coordinator
or any other third party from tracing the flow of funds and
de-anonymize users [27].

Stealth Addresses. Stealth addresses are a privacy-
enhancing solution that hides the recipient of a transaction
and therefore prevents third parties from linking the
interacting parties. By enabling senders to create a new
stealth address for the recipient in a non-interactive manner,
such protocols can provide unlinkability. While stealth
addresses can be implemented on the application layer
of programmable blockchains, some projects, such as
Monero [3], opted to integrate them into the core protocol.
Furthermore, stealth addresses can be employed on UTXO
and account-based blockchain protocols.
One key difference between stealth addresses and
ZK-SNARKs is the extent of privacy that can be
achieved. ZK-SNARK-based privacy applications are used
to prove information (cf. “ownership”) of an asset
without necessarily possessing that asset at the time.
This allows for commingling funds with those of other
users and consequently eliminating discernible on-chain
traces. Stealth addresses obfuscate the recipient’s ownership
within a transaction by employing newly generated
pseudonymous addresses. The funds remain traceable as
funds are not commingled with third-party assets. This
distinction is essential to consider when evaluating the
suitability of these privacy-enhancing solutions for different
use cases.
Another distinction is the computational overhead: by
the time of writing, ZK-SNARKs typically have a more
significant overhead regarding computational resources and
setup, while stealth addresses can be implemented with
minimal impact using existing tools that modern blockchain
platforms already provide.
Unlike CoinJoins or mixing pools, stealth addresses do not
aim to obfuscate the on-chain visible flow of funds but
instead hide the interaction between an identified sender
and recipient. Consequently, external observers can trace
the flow of funds to specific stealth addresses. However,
observers cannot identify the individual or entity behind
those recipient addresses. In contrast, CoinJoins provide
an additional privacy layer by allowing users to conceal
their identities within an anonymous group of CoinJoin
participants. Therefore, CoinJoins offer more comprehensive

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 4

anonymity than stealth addresses but rely on more user
interaction and coordination.
Despite the mentioned variations, we assert that employing
stealth addresses through elliptic curve mathematics offers
a more lightweight and interoperable approach, making
it accessible to a larger audience. Additionally, the
inherent decentralization of stealth addresses contributes
to the robustness of the protocol and further promotes
the principles of autonomy and user privacy. This can
potentially enhance the adoption of privacy features
on public blockchains. Numerous applications, such as
donations or payroll transactions, may not demand the high
anonymity offered by notable ZK-SNARK-based tools or
CoinJoin wallets. In particular, in situations that require
Know Your Customer (KYC) procedures, stealth addresses
present a more suitable solution. Moreover, the lack
of commingling means that users do not inadvertently
help malicious parties anonymize ill-gotten assets by
contributing to an extended anonymity set. This property
makes stealth addresses particularly suitable for interactions
where it is desired to refrain from helping malicious parties.

4 DEFINITION

The following sections outline the various components
of our proposed protocol, BaseSAP. Given that our
first implementation is based on elliptic curve (EC)
cryptography, we introduce the foundational principles of
elliptic curves. We then define our stealth address protocol,
divided into address generation and parsing sections.

4.1 Elliptic Curve Cryptography

We define an elliptic curve E over a finite field Fp where p
is a 256-bit prime and present it in Weierstrass form as

y2 = x3 + ax+ b | x, y ∈ Fp

with a and b representing constants that determine the
shape and position of the respective curve. The coordinates
(x, y) are points on the elliptic curve that can take any value
within Fp and form an Abelian group. This group structure
allows us, given two points, e.g., P and Q to solve for R by
performing a binary operation called point addition, such
that R = P + Q. For any points P and Q on the curve, we
know P +Q must also be on the curve.

We denote lower and uppercase letters to scalars and
points on the curve, respectively. The scalars p and q are
random integers of size n, such that p, q ∈ {0, 1}n. It
is common for private keys, such as those used in the
Secp256k1 curve, to have a size of 256 bits [28]. An EC
multiplication of the point P by the scalar n can be done
by repeatedly performing additions of the point along
the curve, such that n × P = Pi + . . . Pi+n. Another
property of the point addition operation on an EC group
is that it is commutative, meaning for all points, e.g., P
and Q, Q + P = P + Q. The EC has a generator point
G, representing a fixed curve point. A public key can be
derived by multiplying a scalar with the generator point,
P = p×G.

We denote the “point at infinity” O as the identity
element of the EC arithmetic, such that O +O = O and

P +O = P . Finally, for every point P on the elliptic curve,
there exists an inverse point such that (−P) + P = O.

The Standards for Efficient Cryptography (SEC) is a
set of standardized elliptic curves proposed for use in
cryptography. These curves are designated as “SEC curves”
and are intended to provide a standard set of curves for use
in various cryptographic applications.

One of the most well-known SEC curves is Secp256k1,
which is defined by the equation y2 = x3 + 7 (mod p),
where p = 2256−232−977. This curve has a prime order n of
approximately 2256, and it is used as the basis for the Bitcoin
Elliptic Curve Digital Signature Algorithm (ECDSA) [28].

Secp256k1 has several attractive properties, including
a large prime order and efficient arithmetic, making it
well-suited for use in cryptocurrencies. It has been widely
adopted in various applications, including blockchain
technologies, IoT, and secure communication protocols [29]–
[31].

Our proposed stealth addresses protocol is designed to
be agnostic to the specific elliptic curve employed, although
the initial implementation utilizes the Secp256k1 curve from
the SEC set.

4.2 Stealth Address Protocol
The following section is divided into different parts. First,
we explicate how users generate a stealth address using
the Improved Stealth Address Protocol (ISAP), described by
Todd [2], when they want to perform a transaction. Second,
we introduce the DKSAP, described by van Saberhagen [1],
primarily focusing on the parsing process which the receiver
or third-party providers can perform.

Stealth Address Generation. For the stealth address
generation, we define two independent parties, the sender
C (cf. caller) and the recipient R, who both have access to
a cryptographic key pair, (p, P) and (r,R). We assume the
public key of the recipient R is published and known to
the respective sender. Furthermore, it is important to note
that the sender uses an ephemeral key pair, (p, P), which is
randomly generated for each transaction using the stealth
address protocol instead of using a key pair with a public
key directly linked to their identity.
The sender generates a shared secret using the Elliptic
Curve Diffie-Hellman (ECDH) protocol to derive a stealth
address for interaction with the recipient. A stealth address
is generated by adding the point obtained from multiplying
the Diffie-Hellman (DH) secret with the generator point to
the recipient’s public key. The sender performs the following
steps for this process:

1) Generate an ephemeral key pair (p, P) and publish the
coordinates P .

2) Multiply the randomly generated ephemeral private key
with the recipient’s public key: k = p×R. This creates the
DH secret, such that k = r × P = p×R = r × p×G.

3) Hash the shared secret kh = h(k), with h representing a
cryptographic hash function h : X → Y .

4) Multiply the hashed shared secret with the generator
point Kh = kh ×G.

5) Add the result of (4) to the recipient public key:
Rst = Kh +R.

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 5

Let Rst ∈ E(F) denote the point which party C uses as
a stealth address for R. It is important to note that there
is no direct link between the two parties, and to external
observers, it appears as if C is interacting with a random
account unrelated to R. Furthermore, it is important to
recognize that the sender can be confident that only R, as
the owner of r, can access Rst by deriving the private key
rst.

Stealth Address Parsing. The stealth address parsing
process allows potential transaction recipients to locate their
stealth address and obtain the private key required to access
it. This procedure requires that every potential recipient
conduct parsing across the complete set of published
ephemeral public keys, denoted by A = {Pi, . . . , Pn}. The
total number of unique stealth addresses generated via
the protocol is represented by |A|. To conduct parsing, a
potential recipient must first gather the set of all existing
ephemeral public keys and then perform the subsequent
steps on each P ∈ A:

1) Multiply P with the private key r: k = r × P .

2) Hash the derived shared secret kh = h(k).

3) Add the result of (2) to the own private key: rst = kh + r.

4) Multiply the result of (3) with the generator point to
derive the stealth public key: Rst = rst ×G.

5) Hash the stealth public key and take the least significant
20 bytes to derive the address: Raddr

st = h(Rst)[-20 :].
Upon deriving the point Rst, the recipient can determine
whether Raddr

st has been the recipient of the transaction or
whether Raddr

st received any assets. If the check is successful,
the receiver may store the private key rst.
To conclude, the protocol leverages the fact that kh×G+P =
(kh + p) × G. This allows for deriving a stealth address
through two different paths, while only the recipient can
generate the private key for the stealth address.

Dual-key scheme. Stealth addresses on Ethereum
require the recipient to use their private key p during the
process. This has important implications for both security
and user experience. First, users may encounter situations
where they need to use their private keys for operations
outside of their cold storage, which poses significant
security risks. Second, users cannot delegate the parsing
process to a third-party service as it involves sharing the
private key and compromising its confidentiality. Therefore,
users must perform the parsing process themselves in a local
environment.
Researchers have developed a solution to these issues,
the DKSAP, which improves both the user experience
and security [12]–[14]. The DKSAP is an extension of the
ISAP and introduces an additional key pair exclusively
used for the parsing process. Recipients have two
key pairs — scanning and spending keys — represented as
(rSC , RSC) and (rSP , RSP), respectively. Equipping the
recipient with two separate key pairs, the scanning key
pair, which is still used in the DH secret generation, can
be partially separated from the stealth address generation.
To use the DKSAP, the sender needs to follow these steps:

1) Multiply the randomly generated ephemeral private key
with the scanning public key of the recipient: k = p×RSC .

 R
SC, RSP

 ETH

s = p × RSC
Sh = h(s) × G

Rst = Sh + RSP

2

s = rSC × P
Sh = h(s) × G

Rst = Sh + RSP
rst = h(s) + rSP

 P

1

3

4

Sender C

Recipient R

Recipient Rst

Fig. 1. ISAP + DKSAP: (1) sender gets public keys of the recipient, (2)
generates the stealth address, and (3) sends to stealth address and
publishes an announcement; (4) recipient uses the announcement to
derive the private key that unlocks the stealth address.

2) Hash the shared secret kh = h(k) and multiply the result
with the generator point Kh = kh ×G.

3) Add the result of (2) to the recipient spending public key:
Rst = Kh +RSP .

Henceforth, the recipient has two options for finding the
respective stealth address Rst. First, the recipient can
calculate the DH secret by multiplying the scanning private
key rSC with the ephemeral public key P ∈ A. Having the
DH secret, the recipient can derive the stealth address by
hashing it, multiplying the hash with the generator point,
and adding the result to the spending public key. Second,
the recipient can add the DH secret to the spending private
key and multiply the result with the generator point for
deriving the stealth address Rst:

RSP + h(rSC × P)×G = (rSP + h(rSC × P))×G.

It is important to mention that the recipient can share
the scanning private key rSC with a third-party parsing
provider without compromising the spending private key.
Using the scanning key, the parsing provider can take on
the parsing task and notify users when an incoming stealth
address transaction occurs. However, without access to the
spending private key rSP , parsing providers cannot access
the stealth address.

5 BASESAP PROTOCOL

In the following, we describe our proposed stealth address
protocol in detail. This involves on-chain key management
solutions, stealth address transaction routing, and specific
efficiency improvements we propose to the DKSAP.

Our protocol is designed to operate on the application
layer of programmable blockchains such as Ethereum
and does not require integration with the core protocol
layer of a blockchain. After deployment, BaseSAP
operates autonomously, eliminating the possibility of user
interference or censorship of any party.

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 6

BaseSAP (Announcer contract)
Registry contract (optional)

SECP
256k1
+ view
tags DKSAP

EC
Pairing based
cf. EDKSAP

Lattice
based

schemes ...

Fig. 2. Modular property: BaseSAP enables different stealth address
schemes to build on top of it and leverage the modularity, interoperability
and trust of the underlying foundational protocol.

The proposed protocol can serve as a foundation for
various implementations to build upon it and leverage
the modular basis. BaseSAP comprises a single singleton
contract, the Announcer contract, which enables users to
publish the ephemeral public keys at a central place.

For the initial implementation of an improved version of
a DKSAP, built on top of BaseSAP, we propose a Registry
contract that serves as a central repository for stealth meta-
addresses associated with registered users.

We practically implement our proposed protocol on
both the Ethereum Goerli and Sepolia testnets to analyze
the performance of the proposed protocol under practical
conditions and enable the community to engage with it.

5.1 Announcer contract
To interact with a user’s stealth address, the sender must
first obtain the recipient’s public key and then generate a
stealth address. This process involves the sender using their
own randomly generated ephemeral private key and the
recipient’s public key to derive the stealth address.

To enable recipients to detect their stealth addresses,
senders must publicly announce their ephemeral public
keys. Adversaries cannot exploit this announcement to
compromise a recipient’s privacy, as they cannot recreate
the necessary Diffie-Hellman (DH) secret for generating the
stealth address.

The Announcer contract emits announcements from
a central location to which users can subscribe.
Unlike [14], where the objective was to have stealth
address transactions mimic regular transactions, providing
additional information — particularly the ephemeral public
key — in conjunction with each stealth address transaction
is necessary. Without attaching additional information to a
stealth address interaction, the protocol would require users
to parse the entire ledger [14]. However, by emitting events
containing that information, users can utilize the existing
Bloom filters on the Ethereum blockchain to identify the set
of transactions related to stealth address interactions.

The Announcer contract is designed to be agnostic
to the cryptographic scheme used, enabling different
implementations of various cryptographic schemes to share
the same source of event emissions. This means that
the same Announcer contract can be used for multiple
distinct implementations without needing modification or
adjustment. This essential characteristic is illustrated in
Figure 2.

Announcements. Employing BaseSAP, the transaction
used to transfer assets also serves to broadcast the

announcement, containing the ephemeral public key, to the
public, making the information accessible to the recipient.
To facilitate this feature, a lightweight Announcer contract
is used (refer to Listing 1). The Announcer contract can be
called by anyone to emit additional information along with
a transaction.
External Owned Accounts (EOAs) can call the Announcer
contract using regular transactions, while contracts can
interact with the Announcer through internal calls to execute
the announce function. As shown in Listing 1, the caller can
provide five parameters to the function:

1) scheme ID — to specify the cryptographic scheme that
was used. In BaseSAP, the Secp256k1 implementation
is assigned the identifier number 1. An incrementing
number is assigned for subsequent implementations.

2) stealth address — the address of the transaction recipient.

3) caller address — the address of the calling entity, the
sender.

4) ephemeral public key — compressed public key derived
from the randomly generated ephemeral private key.

5) metadata — arbitrary information that may be helpful
to the recipient in identifying the particular interaction
between the sender and the stealth address. For ERC-20
tokens, the metadata field may include the four most
significant bytes of the method id, 20 byte for the
(token) contract address, and 32 bytes carrying the
amount transferred. For ERC-721/ERC-1155 contracts,
the metadata field may include the token ID instead of
the amount transferred. For regular ETH transfers, the
metadata field may remain empty.

Incorporating an extra metadata field within the
announcement enables recipients to verify receipt of
an asset, including the amount transferred and the specific
token involved. Moreover, by incorporating the method
ID in the metadata, recipients can pinpoint the contract
interaction involving their stealth addresses. As a result,
well-known interactions, such as token approvals or
mints that carry the right to execute on a certain state,
are compatible with stealth addresses. Consequently, the
recipient isn’t obligated to perform extra Remote Procedure
Calls (RPCs) to obtain information about the nature or
quantity of an asset or right received.
Considering the metadata field’s dynamic size, it can also be
employed to incorporate additional features for enhancing
parsing at a later stage or to include more information that
might be needed for future token standards.

Costs. Executing the announce function with the
parameters used for an ERC-20 transfer consumes
approximately 35,492 units of gas on the Ethereum
blockchain. If the metadata field is left empty, as it would
be in the case of Ether transfers, the gas usage is reduced
to 34,057 units of gas. Assuming a gas price of 10 gwei
and a price for 1 Ether (ETH) of 2,000 US dollars, with
1 ETH = 10e9 gwei = 10e18 wei, the cost of calling the
announce function for Ether transfers is approximately 0.68
USD, or 0.00034057 ETH. On layer-2 rollup platforms such

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 7

1 pragma solidity ˆ0.8.0;
2

3 /// @notice Announcer emitting the Announcement event.
4 interface BaseSAPAnnouncer {
5

6 /// @notice Emitted when interacting with a stealth
address.

7 event Announcement (
8 uint256 indexed schemeId,
9 address indexed stealthAddress,

10 address indexed caller,
11 bytes ephemeralPubKey,
12 bytes metadata
13);
14

15 /// @notice To be called when interacting with a
stealth address.

16 function announce (
17 uint256 schemeId,
18 address stealthAddress,
19 bytes memory ephemeralPubKey,
20 bytes memory metadata
21)
22 external
23 {
24 emit Announcement(
25 schemeId,
26 stealthAddress,
27 msg.sender,
28 ephemeralPubKey,
29 metadata
30);
31 }
32 }

Listing 1. Announcer Contract Interface

as Optimism1 or Arbitrum2, the costs associated with the
announcement are effectively negligible.
Compressing the ephemeral public key to 33 bytes can
reduce the gas consumption to 35,064 units. Without the
metadata field, the emission of the announcement consumes
33,629 units of gas. From these figures, we can deduce that
applying public key compression results in cost savings of
1.21% for non-empty metadata emissions and 1.26% for
ETH transactions that do not require metadata.

5.2 Stealt Meta-Address Format
In the design of the DKSAP, the recipient has two separate
key pairs, the spending SP and the scanning keys SC.
We combine the two public keys to generate the stealth
meta-address, enabling a more intuitive way for users to
interact with each other. In Secp256k1, the public keys PKs
can be compressed to 33 bytes each, denoted as PKcomp.
Consequently, our proposed protocol uses the following
format for the stealth meta-address:

st : ⟨chainId⟩ : 0x⟨PKSP
comp⟩⟨PKSC

comp⟩
The “st” prefix indicates that the following address

refers to a stealth meta-address. The “chainId” parameter
distinguishes blockchain-specific addresses that the
corresponding recipient is open to interact with via stealth
addresses. Within the Ethereum ecosystem, chain IDs have
been formalized in the ERC-3770.

To compress the public key, we store only the x-
coordinate of the public key point and prefix it with either
0x2 or 0x3, depending on whether the y-coordinate is
positive or negative, respectively. The stealth meta-address

1. https://www.optimism.io/
2. https://arbitrum.io/

can be shared through off-chain communication channels or
made publicly available on the blockchain. This way, any
individual can generate stealth addresses on behalf of the
user, thereby facilitating their interaction.

For cryptographic schemes where compressing the
public key is not feasible, the full public keys can be used
instead.

5.3 Secp256k1 Implementation
In the following, we propose efficiency improvements to
the DKSAP to make it more viable for implementation on
blockchain platforms like Ethereum. Our analysis of the
existing protocols highlights two deficiencies that impede
their practical usage. First, we observe that the parsing
process required for every potential recipient to decode
every announcement can be excessively time-consuming.
Second, we note that the announcement, which merely
contains the ephemeral public key, does not offer sufficient
information for recipients to identify the relevant assets and
rights in a stealth interaction.

To remedy these limitations, we focus on enhancing
the efficiency and flexibility of the recipients by modifying
the announcement and publication process and introducing
a “view tag” approach. We intend to enhance the
overall functionality of the protocol, thereby facilitating its
application in blockchain environments.

Announcement. The set of announcements, denoted
by A | a ∈ A, contains information that enables
prospective recipients to identify themselves as the intended
recipient of a stealth address transaction and locate the
corresponding stealth address. Generally, the recipient
utilizes the ephemeral public key disclosed by the sender to
compute the stealth address and validate that it corresponds
with the recipient address of the transaction. This procedure
allows users to confirm that they are indeed the rightful
recipients of the transaction. This process involves two
RPC requests — one for procuring the announcement and
another for retrieving the transaction recipient.
To refine the parsing process and enhance its flexibility,
we propose integrating the stealth address Raddr

st into the
announcement a that is emitted for every stealth address
transaction. This enables a direct comparison between the
derived stealth address Raddr

st and the address listed in the
announcement Rx

st’, enabling the recipient to determine if
they are the intended recipient without the need to initiate
supplementary RPC requests to obtain transaction recipients
or query balances for different assets on the derived stealth
address. The condition Rx

st == Rx
st’ confirms whether the

parsing user is the intended recipient. By consolidating
all the vital information the recipient needs within the
announcement, we obviate the need for the recipient to
initiate an extra RPC call.

View Tag. View tags represent a technique employed
within the Monero blockchain protocol, allowing recipients
of stealth address transactions to bypass certain steps in the
parsing process under specific conditions [3], [32]. Rather
than computing the stealth address and comparing it to the
address in the announcement, the recipient can hash the
DH secret and compare the most significant n bytes with
the “view tag” documented in the announcement. In this

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 8

5,000
10,000

20,000
40,000

80,000

nr. of announcements |A|

0

10,000

20,000

30,000

40,000
m

ill
is

ec
on

d
s

(m
s)

2,362
4,694

9,393

18,797

37,558

308 614 1,225
2,450

4,885

legacy parsing

with view tags

Fig. 3. View tag improvements: Conventional parsing (without employing
view tags) versus an upgraded variant using view tags. In summary,
the view tags approach operates approx. 7.6 times more efficient
concerning parsing time than conventional parsing. Both algorithms
have a complexity of O(n).

case, n can be kept very small, so setting n = 1 means
that a full derivation of the stealth address must only be
attempted 1/256 of the time at the cost of only a single-
byte view tag. To construct the view tag, senders use their
ephemeral key pair (p, P) to compute the hashed DH secret
kh = h(p × RSC) and select the most significant n bytes of
kh. The resultant view tagQ, whereQ = kh[:n], is disclosed
alongside the stealth address transaction.
The recipient, possessing the scanning key pair (rSC , RSC),
can also compute the view tag by following the same
procedure, Q′ = h(rSC × P)[:n], and compare it to the
view tag listed in the announcement Q == Q′. If the
view tags do not match, the parsing user can omit every
subsequent operation for the current announcement and
advance to the next one. It’s worth noting that exposing
n bytes of the hashed DH secret affects the users’ privacy,
as attackers may attempt to brute-force a user’s stealth
address by applying the view tag to potential recipients.
Nevertheless, such attacks are likely to be successful only
for sufficiently large n.
The parsing process then involves the following steps on
each announcement (P,Raddr

st ,Q) ∈ a | ∀a ∈ A:
1) Multiply P with the scanning private key rSC :

k = rSC × P .

2) Hash the derived shared secret kh = h(k).

3) Derive the view tag Q’= kh[:n]

4) Compare the derived view tag with the one in the
announcement Q == Q′.

5) Only if the view tag matches, the recipient continues to
compute the stealth address and compare it to the address
logged Raddr

st ’= h((kh + rSP)×G)[-20 :] = Raddr
st .

Similar to Monero we use view tags that are 1 byte in size
and prepend them to the metadata field, taking up the first
byte of it.

Figure 3 presents simulations that juxtapose the efficiency
gains achieved by implementing view tags, as measured
by parsing time. We compare the view tag approach to
the conventional DKSAP method (cf. “legacy parsing”). The
experiments were carried out on a machine with a 10-
core CPU Apple M1 Max chip using Node.js/JavaScript,
with the elliptic.js3 and js-sha3.js4 libraries employed for EC
operations and hash functions, respectively. No efficiency
improvements through multiprocessing were leveraged.
Legacy parsing requires the recipients of a stealth address
transaction to perform the following operations to ascertain
if they were the recipients of stealth address transactions:
• 2x ecMUL — DH secret & hashed secret times generator,

• 2x HASH — hash of DH secret & address derivation,

• 1x ecADD — deriving the stealth address
Adopting view tags significantly decreases parsing time
by approximately 86.84%. In most cases, users are only
required to perform a single EC multiplication operation
(ecMUL) and a single hash operation (HASH), thus
eliminating the necessity for an additional ecMUL, ecADD,
and HASH. With a 1-byte view tag, the likelihood that
users can bypass the remaining computations after hashing
the shared secret is 1/256 . This suggests that users can
almost certainly bypass the aforementioned three operations
for most announcements. The realized reduction in parsing
time comes with a significant positive impact on the
user experience. As displayed in Figure 3, for 80,000
announcements, view tags enable the reduction of the
parsing time from 37.56 to 4.89 seconds.

5.4 Public Key Management

Considering the usage of dual-key mechanisms, we
advocate for integrating a key management solution that
facilitates blockchain users to store their stealth meta-
addresses in a predefined location publicly. Absent a dual-
key configuration, a central repository for storing public
keys wouldn’t be necessary. Users could alternatively derive
another user’s public key by extracting it from a transaction
that the latter has signed. It’s crucial to mention that
the stealth address protocol could still be employed even
without a central repository. Thus, any key management
solution can be built atop the fundamental protocol.

We design a fully autonomous and lightweight registry
contract to maintain a record of registered users and
their corresponding stealth meta-addresses. This contract
predominantly consists of getter and setter methods that
assist users in registering their stealth meta-addresses on
the blockchain or retrieving those of others. Moreover, the
registry permits users to register a stealth meta-address on
behalf of another user by providing a valid signature from
the respective registrant. Finally, an event is broadcasted
each time a user registers a new stealth meta-address.

Our proposed registry contract includes dynamic
size storage slots for the stealth meta-address to
ensure compatibility with various elliptic curves and
cryptographic schemes. This allows for the construction

3. https://github.com/indutny/elliptic
4. https://github.com/emn178/js-sha3

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 9

1 pragma solidity ˆ0.8.0;
2

3 interface IERC5564Registry {
4

5 /// @dev Emitted when a registrant updates their
stealth meta-address.

6 event StealthMetaAddressSet(
7 bytes indexed registrant,
8 uint256 indexed scheme,
9 bytes stealthMetaAddress

10);
11

12 /// @notice Maps a registrant's identifier to the
scheme to the stealth meta-address.

13 mapping(bytes => mapping(uint256 => bytes)) public;
14

15 /// @notice Sets the caller's stealth meta-address for
the given stealth address scheme.

16 function registerKeys(
17 uint256 scheme,
18 bytes memory stealthMetaAddress
19) external;
20

21 /// @notice Sets the `registrant`s stealth
meta-address for the given scheme.

22 function registerKeysOnBehalf(
23 address registrant,
24 uint256 scheme,
25 bytes memory signature,
26 bytes memory stealthMetaAddress
27) external;
28 }

Listing 2. Registry Contract Interface

of supplementary stealth address implementations atop
the existing framework, capitalizing on the benefits of a
shared registry. Users can register distinct stealth meta-
addresses for different cryptographic schemes by specifying
a scheme ID. For instance, a user could register one stealth
meta-address with an elliptic curve E(F) and another for
the curve E(F ′) | F ̸= F ′, thus avoiding conflicts. This
provision ensures compatibility with future cryptographic
methods.

Algorithm 1 — Register Stealth Meta-Address
Input I: Scheme ID id

Input II Stealth Meta-Address SMA in byte-format
Input III: Caller/Signer C
Input IV: (optional): Signature sig

1: Rx
SC , R

x
SP ← parse compressed pubkeys(SMA)

2: Rpre
SC , R

pre
SP ← Rx

SC[0], Rx
SP [0]

3: Rx
SC , R

x
SP ← Rx

SC[1:], Rx
SP [1:]

4: assert Rpre
SP == (2|3) & Rpre

SC == (2|3)
5: assert on curve(Rx

SP , id) & on curve(Rx
SC , id)

6: if sig then
7: registerKeysOnBehalf(id, C, SMA, sig)
8: else
9: registerKeys(id, C, SMA)

The registerKeys function accepts the scheme ID,
the stealth meta-address, and, optionally, a signature.
The stealth meta-address includes a variable-sized field,
allowing for managing diverse public key formats and
sizes. As illustrated in Algorithm 1, the registration
process involves parsing the stealth meta-address to
confirm that the two public keys are on the specified

elliptic curve. This validation can be performed off-chain,
hence circumventing unnecessary computations. For other
cryptographic methods, other validation methods must be
used.

Our proposed registerKeys function registers the public
keys through a mapping that associates the scheme ID with
the stealth meta-address. This mapping is subsequently
linked to the registrant’s address in another mapping.
Senders can interact with the registry to retrieve the stealth
meta-address of another user by providing a scheme ID and
the recipient’s address.

6 SECURITY IMPLICATIONS

In this section, we present an overview of the security
implications that arise from our proposed protocol. Initially,
we focus on DoS attack vectors that may compromise our
protocol and put forth a cost function to guide the choice
of appropriate DoS attack prevention measures. Our focus
is on two different DoS attack prevention mechanisms: a
toll and a staking system. After that, we direct our attention
toward the privacy implications of the protocol, with a
specific emphasis on the risks of user de-anonymization.

6.1 Stealth Addresses and DoS attacks
Ensuring the parsing process does not consume excessive
time or CPU resources is vital. As previously mentioned,
the parsing process involves several EC operations executed
off-chain, circumventing blockchain-associated gas costs.
However, this leaves the protocol vulnerable to DoS
attacks, in which malicious actors flood the network with
announcements. This forces users to carry out redundant EC
operations on false announcements, leading to unnecessary
consumption of computational resources. The costs of
emitting an announcement may be lower than the costs of
parsing it, which can result in inefficiencies and negatively
impact the user experience by unnecessarily prolonging
the parsing process. The following section focuses on
two different approaches for mitigating DoS attacks. We
elaborate on both and highlight why a staking-based
approach is better aligned with our purpose.

Toll. The DoS attack vector can be addressed by
introducing a toll system that accounts for the computational
costs incurred during the parsing process. In particular, the
toll T may cover the parsing costs c, which are accrued until
the hashed DH secret is derived. These costs comprise an EC
multiplication cmul ∈ c and a hashing operation chash ∈ c.
The toll can be attached to the transaction and paid by the
sender, who generates announcements and contributes to
the parsing costs. This strategy ensures that the parsing
costs associated with announcements are not exclusively
shouldered by the recipients but also shared by the senders.
For the toll, we assume that:

T ≥ cmul + chash,

while the costs without using view tags can be described
as 2(cmul + chash) + cadd. To ensures that adversaries pay
at least for the effort imposed on a single individual stealth
address recipient, the protocol must collect a fee of up to T .
The keccak-256 opcode, used with a 64 bytes input, costs
42 gas and is therefore negligible. Taking the EIP-196 [33]

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 10

precompiled contracts for the alt bn128 curve a reference for
the cost of EC operations, we assume a gas usage of 40,000
units for EC multiplications. Therefore, a toll of 40,000 gas
units might be suitable. Based on a gas price of 10 gwei, the
toll would amount to 0.0004 ETH.
Indeed, the purpose of the toll is to introduce a financial
hurdle that makes spamming economically unviable rather
than covering the entire costs of the parsing process.
Therefore, it is possible to significantly reduce the toll while
still achieving the goal of discouraging DoS attacks. The
specific value of the toll should be carefully determined
based on various factors such as network conditions, the
overall cost structure of the protocol, and the desired level
of protection against spamming. Finding the right balance
enables establishing a cost-effective solution that effectively
mitigates DoS attacks without imposing excessive financial
burdens on legitimate users.
There are various ways to utilize the collected toll, but
ensuring that it does not directly return to the originator to
maintain the DoS attack protection is essential. One option
for the proposed protocol is to send it to the coinbase
address of the respective block, which is the address of
the block proposer. This approach would distribute the
toll among block proposers, giving them an additional
incentive to include stealth address transactions in blocks.
Proposers then have an additional source of extractable
value, encouraging them to prioritize stealth address
transactions in block creation. However, the initiators
of stealth address transactions may offset the expenses
associated with the toll by reducing the gas price. Since
block proposers are indifferent to whether the paid fee
originates from transaction fees or payments to a block’s
coinbase, this strategy would effectively impede the toll’s
spam prevention.
Further research and analysis are needed to determine the
optimal value of the toll in different network environments
and under varying circumstances. The same applies to the
optimal use of the toll to not introduce trust requirements or
centralizing vectors through the back door.

Staking. It is worth mentioning that the dual-key setup
of our proposed stealth address protocols enables users
to share the private scanning key with third-party entities
specializing in the parsing process. These parties can offer
their services for a market price and come equipped with
defense measures against DoS attacks. These measures can
be based on specific heuristics that help identify spammers.
As a result, third-party parsing providers can provide
additional protection against DoS attacks targeting users,
thereby ensuring the effectiveness and reliability of the
parsing process.
A staking system can be implemented to equip parsing
providers with an additional tool for managing spam
and Sybil attacks. The Announcer contract may permit
users to stake an arbitrary amount of ETH and lock it
within the contract. Parsing providers can then confirm
if the sender of a stealth address transaction has staked
some necessary collateral. If not, they can deprioritize the
respective announcements of that sender when serving
them to parsing users.
Analogous to the ERC-4337 standard, a

MIN STAKE VALUE and a MIN UNSTAKE DELAY
variable are established. The latter could be directly encoded
into contracts communicating with the Announcer contract
and may be set to one day. The MIN STAKE VALUE
can be agreed upon off-chain and change over time.
Theoretically, every parsing provider may independently
set the minimum stake required for prioritization.
We define the staking system as follows:
• Let A be the set of all announcements, where

A = {a1, a2, a3, . . . , an}.
• Let U be the set of all users, where

U = {u1, u2, u3, . . . , um}.
• For each user u ∈ U , let D(u) be the amount of ETH

deposited by user u.

• Let F be the function that maps a prioritization factor PF
to users F : ui → PF .

We can define two priority factors, one based on the amount
of ETH staked (PF1) and the other based on the number of
announcements made by a user (PF2).

1) PF1: Staking priority factor
For each user ui ∈ U and their corresponding deposited
ETH amount D(ui), we can define the staking priority
factor (PF1) as:

PF1(ui) = min(D(ui), MIN STAKE VALUE)

Users staking more than the MIN STAKE VALUE are
assigned a first prioritization factor equaling the
MIN STAKE VALUE

2) PF2: Announcement count priority factor
For each user ui ∈ U and the number of announcements
made by ui, the announcement count priority factor can
be defined as:

n(ui) = |{aj ∈ A : aj is made by ui}|
We want to assign a higher priority to users who made
fewer announcements to discourage spamming. We can
define the announcement count priority factor (PF2) as:

PF2(ui) =
1

n(ui)

Higher values of PF2 indicate higher priority for a user’s
announcements.

Now, we can combine these two priority factors into a single
prioritization factor (PF) for each user:

PF (ui) = w1 · PF1(ui) + w2 · PF2(ui)

Where w1 and w2 are weights assigned to PF1 and PF2,
respectively, to balance their importance in determining the
overall priority. For example, if we want to prioritize ETH
staked over the number of announcements made, we could
assign w1 > w2. Initially, w1 and w2 are set to 1.
Finally, parsing providers can order the list of
announcements based on each user’s computed PF
values, prioritizing announcements made by users with
higher PF values.

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 11

The proposed mechanism guarantees that the
announcements from staking users are prioritized in
the parsing process over those from users who did not
stake. Furthermore, announcements from users with fewer
announcements are given precedence.
It is worth noting that the staking-based DoS attack
prevention is implemented on the parsing side, allowing
parsing providers to manage spam more effectively.
Spamming users can be disregarded or deprioritized when
serving their announcements to parsing users. By requiring
a stake for prioritization, Sybil attacks become inefficient,
and the stake of known spammers can be traced. This
prevents spammers from switching addresses to evade
deprioritization.
In addition to preventing spam via Sybil attacks, the
staking method does not impose any costs on the user
side. The minimum required stake can be directly locked
in the contract communicating with the Announcer contract
within the transaction that ultimately interacts with a stealth
address. This allows for a seamless user experience.
Based on the reasons discussed, we deem the staking
approach superior for our specific case instead of requiring
a toll for every stealth address transaction.

6.2 Privacy Guarantees and De-anonymization
Stealth addresses can provide users with an additional layer
of confidentiality by allowing them to interact with certain
entities without letting the public know. Several things
must be considered to remain private as a stealth address
recipient. Mistakes, such as compromising private keys, can
cause de-anonymization or even the loss of user funds.

Commingled Funds. In Ethereum de-anonymization
studies, various heuristics are typically used to cluster
addresses on a user basis [34]–[36]. The use of stealth
addresses on Ethereum has the potential to improve
privacy by concealing the identity of the recipient of
funds. However, commingling these funds, i.e., mixing
them with other assets, can introduce risks to the overall
privacy of the protocol. Particularly, when stealth address
funds become intermingled with “doxxed” funds — assets
already associated with a specific individual or entity
through public records or other means — they forfeit the
privacy benefits they initially offered. This intermingling
can transpire during transactions involving withdrawals
from a stealth address. Users who lack a comprehensive
understanding of the privacy enhancements provided by
stealth addresses may unintentionally transfer funds from
a stealth address to an exposed, or “doxxed,” address.
This practice can effectively erode the anonymity of the
stealth recipient. Therefore, it is paramount for users to
thoughtfully assess the risks associated with commingling
funds destined for a stealth address.

Transaction fee funding. To cover the transaction fees
associated with either spending an ERC-20 token or
executing an approval right on the Ethereum blockchain,
it becomes necessary for the recipient to furnish their stealth
address with a minor quantity of ETH, avoiding the use of
a publicly identifiable address. To circumvent this issue, the
sender can append a small amount of ETH to each stealth
address transaction, enabling the recipient to perform an

on-chain action incurring a gas cost. By definition, this is
not an issue for non-transferable assets, such as Soulbound
tokens [37]. Alternatively, the recipient can fund the stealth
address with anonymized ETH retrieved through another
privacy tool, such as Tornado Cash, or via a trusted
centralized exchange.
Another solution to the recipient’s transaction fee
funding problem involves entrusting specialized transaction
aggregators, often known as “searchers” in the Miner
Extractable Value (MEV) context. These intermediaries can
provide users with the option of a one-time payment in
exchange for a batch of “tickets,” which are subsequently
used to cover the on-chain inclusion costs of transactions.
When a user intends to initiate a transaction from a stealth
address, they present the aggregator with one such ticket.
This ticket is encoded using a Chaumian blinding scheme,
a protocol widely employed in the privacy-focused e-
cash systems first proposed in 1983 [27]. Upon receipt of
the ticket, the aggregator funds the recipient’s account,
bundles the transaction with others, and includes it within
a block. Given that the funds involved in this process are
minimal and exclusively used for transaction fees, the trust
prerequisites are significantly lower than those associated
with a full-scale implementation of privacy-preserving e-
cash. This approach has significant potential to bridge the
gap between privacy and functionality of stealth addresses.

Stealth Address Detection. A critical balance between
privacy and detectability must be considered when
addressing stealth address transactions. A public on-
chain announcement is made whenever a stealth address
transaction occurs, potentially enabling blockchain forensics
to discern related transactions. To mitigate this issue,
it is possible to broadcast the announcement through
different channels than the stealth address transaction,
breaking the link between the announcements and the
actual transactions.
Detectability is not an issue exclusive to Ethereum-based
privacy tools. Prominent Bitcoin CoinJoin wallets, such
as Wasabi and Samurai Wallet, also integrate techniques
enabling users to mix their funds and obscure their origins.
Despite these efforts, the resulting transactions may still
be identifiable using certain heuristic techniques [25], [38],
[39]. Similarly, Tornado Cash, a popular privacy tool within
the Ethereum ecosystem, confronts a comparable challenge,
as any deposit and withdrawal can be identified through
publicly available event logs. However, it is crucial to
recognize that external observers cannot de-anonymize the
recipient of a stealth address interaction without access to
the shared DH secret between the sender and the recipient.

7 CONCLUSION

Stealth addresses have significant potential to enhance the
privacy of programmable blockchain interactions. This work
proposes BaseSAP as a blockchain-based foundation-layer
protocol for stealth addresses compatible with different
cryptographic schemes.

BaseSAP is designed to function entirely autonomously,
leveraging the immutable nature of Smart Contracts
to deliver the required functionality for deploying
interoperable stealth addresses on programmable

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 12

blockchains. Compared to the previous solutions, the
protocol’s modularity not only encourages the evolution of
cohesive auxiliary layers on top of its core implementation
but also underscores its adaptability in accommodating
various user applications, such as programmable wallets,
public goods funding, Decentralized Finance (DeFi),
Non-Fungible Tokens (NFTs), and more.

Through the simulations of an optimized Secp256k1-
based stealth address protocol, we demonstrated the
operational effectiveness of BaseSAP, the results of which
we validated on the Goerli and Sepolia test networks via
our initial prototype implementations.

Additionally, we conducted thorough cost analyses
and identified possible security vulnerabilities and attack
vectors that could undermine the privacy offered by stealth
address protocols. The findings accentuate the necessity
of confronting privacy issues prevalent in public and
distributed blockchains.

In conclusion, our research provides the basis for
implementing stealth address technology on programmable
blockchains. It demonstrates the efficacy of BaseSAP in
augmenting the privacy of public blockchain transactions.
Furthermore, it underlines the significant potential of such
protocols, mainly when applied on the application layer
of programmable blockchains, to enhance interoperability
across various aspects of blockchain technology. The code
base created for this work is available under an open-source
license to ensure reproducibility and transparency [11].
The described protocol is available as an ERC (Ethereum
Request for Comment) [10].

REFERENCES

[1] N. van Saberhagen, “Cryptonote v 2.0,” Oct 2013. [Online].
Available: https://web.archive.org/web/20201028121818/https:
//cryptonote.org/whitepaper.pdf

[2] P. Todd, “[bitcoin-development] stealth addresses,”
Jan 2014. [Online]. Available: https://web.archive.
org/web/20220209182020/https://www.mail-archive.com/
bitcoin-development@lists.sourceforge.net/msg03613.html

[3] “The monero project.” [Online]. Available: https://www.
getmonero.org/

[4] V. Buterin, “Ethereum white paper: A next generation smart
contract & decentralized application platform,” 2013. [Online].
Available: https://ethereum.org/en/whitepaper/

[5] C. Feng, L. Tan, H. Xiao, X. Qi, Z. Wen, and Y. Liu, “Edksap :
Efficient double-key stealth address protocol in blockchain,” in
2021 IEEE 20th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), 2021, pp. 1196–1201.

[6] W. Li, Z. Lin, and Q. Chen, “A hybrid design of linkable
ring signature scheme with stealth addresses,” Security and
Communication Networks, vol. 2022, 2022.

[7] J. Fan, Z. Wang, Y. Luo, J. Bai, Y. Li, and Y. Hao, “A new stealth
address scheme for blockchain,” in Proceedings of the ACM Turing
Celebration Conference - China, ser. ACM TURC ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3321408.3321573

[8] Z. Liu, K. Nguyen, G. Yang, H. Wang, and D. S. Wong, “A lattice-
based linkable ring signature supporting stealth addresses,” in
Computer Security – ESORICS 2019, K. Sako, S. Schneider, and
P. Y. A. Ryan, Eds. Cham: Springer International Publishing,
2019, pp. 726–746.

[9] M. F. Esgin, R. Steinfeld, and R. K. Zhao, “Matrict+: More efficient
post-quantum private blockchain payments,” Cryptology ePrint
Archive, Paper 2021/545, 2021, https://eprint.iacr.org/2021/545.
[Online]. Available: https://eprint.iacr.org/2021/545

[10] A. Wahrstätter, M. Solomon, B. DiFrancesco, and V. Buterin,
“ERC-5564: Stealth Addresses,” https://eips.ethereum.org/EIPS/
eip-5564, 2022, [Online; accessed 19.06.2023].

[11] A. Wahrstätter and M. Solomon, “EIP-Stealth-Address-
ERC: Stealth Addresses for Ethereum,” https://github.com/
nerolation/EIP-Stealth-Address-ERC, 2023.

[12] N. T. Courtois. and R. Mercer., “Stealth address and key
management techniques in blockchain systems,” in Proceedings of
the 3rd International Conference on Information Systems Security and
Privacy - ICISSP,, INSTICC. SciTePress, 2017, pp. 559–566.

[13] X. Fan, “Faster dual-key stealth address for blockchain-based
internet of things systems,” in Blockchain – ICBC 2018, S. Chen,
H. Wang, and L.-J. Zhang, Eds. Cham: Springer International
Publishing, 2018, pp. 127–138.

[14] C. Feng, L. Tan, H. Xiao, K. Yu, X. Qi, Z. Wen, and Y. Jiang, “Pdksap
: Perfected double-key stealth address protocol without temporary
key leakage in blockchain,” in 2020 IEEE/CIC International
Conference on Communications in China (ICCC Workshops), 2020, pp.
151–155.

[15] D. Lee and M. Song, “Mexchange: A privacy-preserving
blockchain-based framework for health information exchange
using ring signature and stealth address,” IEEE Access, vol. 9, pp.
158 122–158 139, 2021.

[16] M. M. AbdulKader and S. G. Kumar, “A privacy-preserving data
transfer in a blockchain-based commercial real estate platform
using random address generation mechanism,” The Journal of
Supercomputing, pp. 1–27, 2022.

[17] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer, and M. Virza, “Zerocash:
Decentralized anonymous payments from bitcoin,” 2014.
[Online]. Available: http://zerocash-project.org/media/pdf/
zerocash-extended-20140518.pdf

[18] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party
computation for zk-snark parameters in the random beacon
model,” Cryptology ePrint Archive, 2017.

[19] A. Banerjee, M. Clear, and H. Tewari, “Demystifying the role of zk-
snarks in zcash,” in 2020 IEEE Conference on Application, Information
and Network Security (AINS), 2020, pp. 12–19.

[20] Z. Guan, Z. Wan, Y. Yang, Y. Zhou, and B. Huang, “Blockmaze: An
efficient privacy-preserving account-model blockchain based on
zk-snarks,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 3, pp. 1446–1463, 2022.

[21] A. Pertsev, R. Semenov, and R. Storm, “Tornado cash privacy
solution version 1.4,” 2019.

[22] A. Soleimani, “Privacy pools,” https://github.com/ameensol/
privacy-pools, Mar. 2022, accessed on 2023-03-21.

[23] Z. J. Williamson, “The aztec protocol,” URL: https://github.
com/AztecProtocol/AZTEC, 2018.

[24] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,”
Aug. 2013. [Online]. Available: https://bitcointalk.org/index.
php?topic=279249.0

[25] Ádám Ficsór, “Zerolink the bitcoin fungibility framework,” 2017.
[Online]. Available: https://github.com/nopara73/ZeroLink

[26] D. Deuber and D. Schröder, “Coinjoin in the wild,” in European
Symposium on Research in Computer Security. Springer, 2021, pp.
461–480.

[27] D. Chaum, “Blind signatures for untraceable payments,” in
Advances in Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman,
Eds. Boston, MA: Springer US, 1983, pp. 199–203.

[28] Certicom Research, “secp256k1,” http://www.secg.org/sec2-v2.
pdf, 2010.

[29] A. Takahashi and M. Tibouchi, “Degenerate fault attacks on elliptic
curve parameters in openssl,” in 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), 2019, pp. 371–386.

[30] S. Zhai, Y. Yang, J. Li, C. Qiu, and J. Zhao, “Research on the
application of cryptography on the blockchain,” in Journal of
Physics: Conference Series, vol. 1168, no. 3. IOP Publishing, 2019,
p. 032077.

[31] M. A. Mehrabi, C. Doche, and A. Jolfaei, “Elliptic curve
cryptography point multiplication core for hardware security
module,” IEEE Transactions on Computers, vol. 69, no. 11, pp. 1707–
1718, 2020.

[32] UkoeHB, “Reduce scan times with 1-byte-per-output ’view
tag’ #73,” 2020. [Online]. Available: https://github.com/
monero-project/research-lab/issues/73

[33] C. Reitwiessner. (2017, February) Eip-196: Precompiled contracts
for addition and scalar multiplication on the elliptic curve
alt bn128. Ethereum Improvement Proposals. [Online; accessed
23.06.2023]. [Online]. Available: https://eips.ethereum.org/EIPS/
eip-196

https://web.archive.org/web/20201028121818/ https://cryptonote.org/whitepaper.pdf
https://web.archive.org/web/20201028121818/ https://cryptonote.org/whitepaper.pdf
https://web.archive.org/web/20220209182020/ https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://web.archive.org/web/20220209182020/ https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://web.archive.org/web/20220209182020/ https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.getmonero.org/
https://www.getmonero.org/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/3321408.3321573
https://eprint.iacr.org/2021/545
https://eprint.iacr.org/2021/545
https://eips.ethereum.org/EIPS/eip-5564
https://eips.ethereum.org/EIPS/eip-5564
https://github.com/nerolation/EIP-Stealth-Address-ERC
https://github.com/nerolation/EIP-Stealth-Address-ERC
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://github.com/ameensol/privacy-pools
https://github.com/ameensol/privacy-pools
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://github.com/nopara73/ZeroLink
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://github.com/monero-project/research-lab/issues/73
https://github.com/monero-project/research-lab/issues/73
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196

BASESAP: MODULAR STEALTH ADDRESS PROTOCOL FOR PROGRAMMABLE BLOCKCHAINS 13

[34] W. Chan and A. Olmsted, “Ethereum transaction graph analysis,”
in 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST), 2017, pp. 498–500.

[35] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp.
1484–1492.

[36] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and
understanding ethereum transaction records via a complex
network approach,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 11, pp. 2737–2741, 2020.

[37] E. G. Weyl, P. Ohlhaver, and V. Buterin, “Decentralized society:
Finding web3’s soul,” Available at SSRN 4105763, 2022.

[38] T. Tironsakkul, M. Maarek, A. Eross, and M. Just, “The unique
dressing of transactions: Wasabi coinjoin transaction detection,”
in Proceedings of the 2022 European Interdisciplinary Cybersecurity
Conference, ser. EICC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 21–28. [Online]. Available:
https://doi.org/10.1145/3528580.3528585

[39] A. Wahrstätter, J. Gomes, S. Khan, and D. Svetinovic, “Improving
cryptocurrency crime detection: Coinjoin community detection
approach,” IEEE Transactions on Dependable and Secure Computing,
pp. 1–11, 2023.

Anton Wahrstätter received his BSc in
Economics and LL.B. in Business Law from the
University of Innsbruck, Austria, in 2018/2019.
He completed his MSc in Digital Business
from the University of Innsbruck, Austria, in
2020 and an MSc in Blockchain and Digital
Currency from the University of Nicosia, Cyprus,
in 2022. He has been contributing as an Open
Source developer to the Bitcoin and Ethereum
community since 2016, primarily focusing on
privacy and quantitative data analysis. He is

currently affiliated with the Institute for Distributed Ledgers and Token
Economy at the Vienna University of Economics and Business, and the
Research Institute for Cryptoeconomics in Vienna, Austria. His research
focuses on blockchain privacy and trust, as well as the application of
data science techniques to blockchain data.

Matthew Solomon received his Bachelor
of Science (B.S.) in Aerospace Engineering
from the University of Miami, US in 2014
and an M.S. in Aerospace, Aeronautical,
and Astronautical/Space Engineering from
the University of Maryland, US in 2016. He
then spent several years at Lockheed Martin
as an aerospace engineer and developed a
keen interest in the field of cryptocurrencies. His
academic and professional pursuits have led him
to cultivate a deep interest in the intersections of

open-source software development, privacy, and blockchain technology.
Presently, Matt contributes to these domains, focusing on the design
and implementation of privacy-oriented smart contract mechanisms.

Ben DiFrancesco earned his degree in
Aerospace Engineering and began his career
at Boeing as an aerospace engineer. In 2013,
around the same time he discovered Bitcoin,
he founded ScopeLift, a company initially
focused on native mobile development. As his
interest in cryptocurrencies grew, Ben pivoted
the focus of ScopeLift towards the emerging
crypto ecosystem. An engineer at heart, Ben
has fostered a culture of technical excellence
at ScopeLift. Currently, he is deeply involved in

enhancing privacy on blockchains like Ethereum, particularly through
the implementation of stealth address protocols.

Vitalik Buterin is a renowned computer
scientist and programmer, best known for
co-founding Ethereum, a pioneering platform
in blockchain technology. His engagement in
the world of cryptocurrency began in 2011
when he co-founded Bitcoin Magazine. His
most significant contribution came in 2015 with
the launch of Ethereum. Buterin has written
numerous influential papers and is a highly-
cited researcher in the field of blockchain
technology. His research interests include

blockchain technology, cryptoeconomics, consensus protocols, privacy
and scalability solutions, and the security of blockchain systems and
smart contracts. His pioneering work on Ethereum has significantly
impacted the landscape of blockchain technology and the broader field
of cryptocurrency.

Davor Svetinovic (SM’16) is a professor of
computer science at the Department of Electrical
Engineering and Computer Science, Khalifa
University, Abu Dhabi, and the Department
of Information Systems and Operations
Management, Vienna University of Economics
and Business, Austria (on leave), where he is
the head of the Institute for Distributed Ledgers
and Token Economy, and the Research Institute
for Cryptoeconomics. He received his doctorate
in computer science from the University of

Waterloo, Waterloo, ON, Canada, in 2006. Previously, he worked at
TU Wien, Austria, and Lero – the Irish Software Engineering Center,
Ireland. He was a visiting professor and a research affiliate at MIT and
MIT Media Lab, MIT, USA. Davor has extensive experience working
on complex multidisciplinary research projects. He has published
more than 95 papers in leading journals and conferences and is a
highly cited researcher in blockchain technology. His research interests
include cybersecurity, blockchain technology, cryptoeconomics, trust,
and software engineering. His career has furthered his interest and
expertise in developing advanced research capabilities and institutions
in emerging economies. He is a Senior Member of IEEE and ACM, and
an affiliate of the Mohammed Bin Rashid Academy of Scientists.

https://doi.org/10.1145/3528580.3528585

	Introduction
	Related Work
	Background on Blockchain Privacy
	Definition
	Elliptic Curve Cryptography
	Stealth Address Protocol

	BaseSAP Protocol
	Announcer contract
	Stealt Meta-Address Format
	Secp256k1 Implementation
	Public Key Management

	Security Implications
	Stealth Addresses and DoS attacks
	Privacy Guarantees and De-anonymization

	Conclusion
	References
	Biographies
	Anton Wahrstätter
	Matthew Solomon
	Ben DiFrancesco
	Vitalik Buterin
	Davor Svetinovic

