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Abstract

halo2 is a zk-SNARK building on the original halo. It is novel in that it has
several interesting properties; in particular, it is the first system to have recursive
proof composition without needing a trusted setup. It has been developed by the
Zcash team and the Electric Coin Company for use in the Zcash blockchain, but
it is general purpose and can be used in any zero-knowledge application.

This paper presents an executable specification of halo2’s proving system, realized
using hacspec. hacspec is a specification language for producing executable
specifications of cryptographic primitives. As halo2 is one of the more extensive
projects to be specified with hacspec , it has also been an exploration of hacspec’s
abilities for projects of this size.

The tool rustdoc is used to organically present the specification together with its
description, as hacpsec is a subset of rust.

The labor of this paper also led to contributions to the official halo2 protocol de-
scription, a hacspec specification of the Pasta curves, and a hacspec specification
of a polynomial ring over the Vesta curve’s base field.
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Resumé

halo2 er en zk-SNARK som bygger oven på den originale Halo zk-Snark. halo2
er spændende da den har flere interessante egenskaber; specifikt er den det
første system til at have rekursiv bevissammensætning uden af have brug for et
trusted setup. Halo2 er udviklet af Zcash holdet og Electric Coin Company til at
blive brugt på Zcash blockchainen, men den kan bruges til alle zero-knowledge
applikationer.

I dette speciale vil vi præsentere en specifikation af halo2’s bevissystem skrevet i
hacspec. hacspec er et specifikationssprog til kryptografiske primitiver, som kan
lave eksikverbare specifikationer. Da halo2 er en af de mere omfattende projekter
der er blevet specificeret i hacspec har det også været et studie i hacspecs evner
til at specificere mere omfattende projekter.

Rustdoc kan bruges til at præsentere hacspec specifikationer på en naturlig måde,
da hacspec er et subset af rust.

Arbejdet med dette speciale har også ført til bidrag til den officielle Halo2 protokol
beskrivelse, en hacspec specifikation af Pasta kurverne, og en hacspec specifikation
af en polynomiering over Vesta kurvens base field.
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Chapter 1

Introduction

Zero-knowledge proofs can be useful in many situations, and one such situation
is for blockchains. Traditionally, the complete history of a blockchain will be
publicly available. Some cryptocurrencies are enhancing privacy by hiding receiver,
sender, amounts, etc., of transactions. This can be achieved using zero-knowledge
proof constructs, which is what the Zcash developers do with their zk-SNARK
halo2 [19]. Specifically, Zcash uses this for shielded transactions [20]. These allow
for improved privacy on the blockchain, namely that you can hide most information
in a transaction while still keeping it verifiable. One potential problem is that a
verifier might need to go through all proofs to verify the entire blockchain. Luckily,
halo2 provides an answer to this problem. halo2 is able to “accumulate” proofs
into batches. This is done with an accumulation scheme, where you construct
proofs that verify earlier instances upon verification. As such, the verifier can
verify a batch’s “final” proof and has then effectively verified the entire batch.

In practice, this zk-SNARK is realized by first having an interactive argument,
which is then made non-interactive through the use of the Fiat-Shamir trans-
formation[19, Sec. 4.2]. This paper focuses on formulating a specification of
the protocol for the interactive argument. This is done in hacspec[15], a formal
specification language for cryptography. hacspec, being a subset of Rust, aims
to facilitate succinct, readable, and executable specifications. Conceptually, this
should make it easier to port the specification to an efficient version, namely a
rust implementation. Another benefit of hacspec being a subset of Rust is the
ability to use rustdoc1, which allows us the mix hacspec code with markdown to
create a kind of unified document, linking the hacspec specification, the protocol
description, and the official implementation together.

1https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html
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We have an extensive test suite to ensure that it is a high-assurance specification.
In fact, approximately 2⁄3 of the lines of code are tests. We hope our specification
can be useful in future hacspec specifications that rely on a halo2 specification.
We hope to get our specification upstreamed to the hacspec project, and if future
modifications or additions to the specification should happen, these tests will
hopefully aid that process.

As halo 2 depends on the Pasta Curves [12], we have also created a high-assurance
specification for those, which we hope can be useful to others.

This paper will start by presenting some prerequisites for the following sections.
Then follows an overview of the halo2 protocol, with the essential pieces laid out.
Finally, we will present our contributions in the form of our specifications of the
halo2 protocol and the Pasta-curves and our contributions to the halo2 book.

Sources for the full specifications and latex sources for this paper are available in
the appendix.

Rasmus Bjerg and Lasse Schmidt are collectively responsible for every part of the
paper.
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Chapter 2

Prerequisites

2.1 Notation

a A scalar (generally from a finite field)
G A group element
X An indeterminate
[a]G Multiplication of a group element by a scalar
Fn,Gn The sets of all vectors of length n

a A vector of scalars
G A vector of group elements
⟨a,b⟩ Inner product
⟨a,G⟩ Multiscalar multiplication
Glo, alo The first half of a vector
Ghi, ahi The last half of a vector
p(X) A polynomial
p(a) An evaluation
p(X)
q(X)

The quotient polynomial, omitting the remainder
ω An nth primitive root of unity
P The prover
V The verifier

2.2 Finite Field Arithmetic

Fields are an abstraction over sets of objects(usually numbers) and the two
operators Multiplication(·) and Addition(+). For the combination of a set (F)
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and the two operators(+,·) to be a field, they must satisfy various field axioms.
The following definitions come from Guide to Elliptic Curve Cryptography[10]:

Definition 1 (Field). A field is a set (F) and two operators addition and multi-
plication which together satisfies the three arithmetic properties:

1. (F,+) is an abelian group with (additive) identity denoted by 0.

2. (F, ·) is an abelian group with (multiplicative) identity denoted by 1.

3. The distributive law holds: (a+ b) · c = a · c+ b · c for all a, b, c ∈ F

An abelian group is defined as follows[10]:

Definition 2 (Abelian Group). An abelian group (G,⋆) consists of a set G with
a binary operation ⋆ : G x G → G satisfying the following properties:

1. Associativity: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G

2. Existence of an identity: There exists an element e ∈ G such that a ⋆ e =
e ⋆ a = a for all a ∈ G.

3. Commutativity: a ⋆ b = b ⋆ a for all a, b ∈ G.

Fields are defined with two operations, addition and multiplication. From these,
we define subtraction and division as follows:

Definition 3 (Field Subtraction). Subtraction in fields is defined from addition
as follows:

for a, b ∈ F a− b = a+ (−b) where −b is unique element ∈ F such that
b+ (−b) = 0

Definition 4 (Field Division). Division in fields is defined from multiplication as
follows:

for a, b ∈ F with b ̸= 0, a
b
= a · b(−1) where b(−1) is the multiplicative inverse

of b such that b · b(−1) = 1

Cryptographic protocols often make use of Prime Fields. A Prime Field is a Finite
Field where the size of the field is determined by a prime number:

Definition 5 (Finite Field). If the set F is finite, the field is a finite field.
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Definition 6 (Prime Field). Let p be a prime number. A finite field with the
elements {0, 1, 2, ..., p− 1} with addition and multiplication performed modulo p
is a Prime Field

From a prime field Fp, we can define the multiplicative group F×
p , which is the

group over Fp − {0} where the group operator is multiplication.

Definition 7 (Subgroup). A subgroup of a group G with operation · is a subset
of elements of G that also form a group under ·.

A multiplicative subgroup is then a subgroup where the operation is multiplication.
From the Chinese remainder theorem, we know that a group of composite order
has strict subgroups. This means the multiplicative group F×

p of order (p − 1)
has strict subgroups. Furthermore, Lagrange’s theorem says that the order of
any subgroup of a finite group G must divide the order of G. Meaning that we
can create pairs of subgroups (Ga,Gb) where a ∗ b = p − 1. The generators for
these groups α and β can then be used to generate all the elements from F×

p in
the following manner:

∀x ∈ F×
p : x = αi · βj

for i mod a and j mod b.

2.3 Roots of Unity

In the context of fields, an nth root of unity is an element x in the field, which
solves the equation xn = 1 where n is some positive integer.

Definition 8 (nth Root of Unity). The nth Roots of unity is the set of elements
in F that solves xn = 1

In finite fields, there are n nth roots of unity for each positive integer n. The
primitive nth root of unity ω can generate the other nth roots of unity and is
defined as:

Definition 9 (Primitive nth Root of Unity). ω is a primitive nth root of unity if
ωn = 1 and ωk ̸= 1 for 0 < k < n

We can now express all the nth roots of unity as powers of ω {1, ω, ω2, ω3, ..., ωn−1}
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2.4 Polynomials

2.4.1 Vanishing Polynomial

The vanishing polynomial ZH(X) over a domain D is the polynomial with roots
at all points in D. The vanishing polynomial for a domain D with n elements can
be found like:

ZH(X) = (X −D1)(X −D2)(X −D3)...(X −Dn)

If we consider the domain formed by the nth roots of unity, it holds that for all
i ∈ [0, n − 1] we have that (ωi)n = (ωn)i = (ω0)i = 1. This means that if we
reduce the vanishing polynomial to:

ZH(X) = (X − ω0)(X − ω1)(X − ω2)...(X − ωn−1) = Xn − 1

2.4.2 Polynomial Rings

Polynomial rings are algebraic structures that describe a set of polynomials
defined over a ring. This is very helpful when working in fields, as fields are rings.
Polynomial Rings [4] defines polynomials over a ring as:

Definition 10 (Polynomial over a Ring). Let [R; +, ·] be a ring. A polynomial,
f(x), over R is an expression of the form

f(x) =
n∑

i=0

aix
i = a0 + a1x+ a2x

2 + ...+ anx
n

where n ≥ 0, and a0, a1, a2, ..., an ∈ R.

The group of polynomials over a ring is called a polynomial ring and is expressed
as R[X].

2.4.3 Lagrange basis

The basis is a set of linearly independent polynomials that can be used to express
any polynomials in a given polynomial Ring. The basis allows us to express any
polynomial in the ring as a linear combination of the basis polynomials. When
working with roots of unity, the basis of a ring can be expressed with the Lagrange
basis. [19, Sec. 5.2] the Lagrange basis is defined as follows:
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Definition 11 (Lagrange Basis). Consider the order-n multiplicative subgroup H
with primitive root of unity ω. The Lagrange basis corresponding to this subgroup
is a set of functions {Li}n−1

i=0 , where

Li(ω
j) =

{
1 if i = j

0 otherwise

2.4.4 Lagrange Interpolation

Lagrange Interpolation is a way to form the lowest degree polynomial passing
through a set of points. Given n points, the Lagrange polynomial will, at most, be
of degree n− 1. Given a set of points A, you run through them, find the Lagrange
basis for the x-value, multiply that basis with the y-value of the point, and sum
all the resulting polynomials together. Using the evaluation representation of the
Lagrange polynomial, it can be defined as

Definition 12 (Lagrange Polynomial). Given the evaluation representation of A:

A : {(x0, A(x0)), (x1, A(x1)), ..., (xn−1, A(xn−1))}

The Lagrange polynomial A(X) is defined as:

A(X) =
n−1∑
i=0

A(xi)Li(X)

2.4.5 Rotation of Polynomials

As we shall see, rotating polynomials are essential to halo2 and PLONKish
circuits. The main idea is to essentially define new polynomials by multiplying
the indeterminate of a polynomial p(X) with a value ω

protated(X) = p(ωX)

Let us say for example that p(X) = a+ bX + cX2 and so we would have

protated(X) = p(ωX)

= a+ b(ωX) + c(ωX)2

= a+ bωX + cω2X2

This primarily makes sense in the context of the PLONKish matrix. Here the
columns are defined by polynomials, where we can index rows using ω. When
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ω is an n-th prime root of unity forming the domain D = (ω0, ω1, ..., ωn−1), we
can “access” the i’th row of a column represented by some polynomial a(X) with
a(ωi). The definition of ω also allows for indexing with wrap-around ; that is to
say if we want to access the “row beneath the current row”, we can rotate the
polynomial by ω, and if the current row was the final one, it wraps back to the
first row, since ωn = ω0 = 1. We shall explore this more in 3.1 and 4.2.1.

2.5 Elliptic Curves

Elliptic curves can generate what the halo2 book [19, Sec. 5.3] calls Cryptographic
Groups. These are groups where the discrete logarithm problem is hard. While
this is an oversimplification, it serves as sufficient motivation for us. Elliptic curves
come in many forms; we will focus on the curves with the following definition
from Guide to elliptic curve cryptography :

Definition 13 (Elliptic Curve). An elliptic curve E over a prime-field Fp is
defined by the solutions to the equation

y2 = x3 + ax+ b (2.1)

where a and b is from Fp

The points on the curve being pairs of (x, y) solving the equation, then forms an
Additive Group. The group laws are defined as

Definition 14 (EC Additive Identity). The point at infinity where y = ∞ is
denoted as O and it is the additive identity as the following property holds:

P +O = O + P = P (2.2)

Definition 15 (EC Point Negation). Let P = (x, y) be a point on the curve E.
−P is the negation of P and is defined by mirroring P in the x-axis:

−P = (x,−y)

also, −O = O

Definition 16 (EC Point Addition). Let P , Q, and R be points on the curve,
and ℓ is the line that intersects them. The group operation for addition is then
defined as

P +Q = −R

where P ̸= ±Q
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Definition 17 (EC Point Doubling). Let P be a point on the curve where
P ̸= −P , ℓ be the tangent to P , and −R the point on the curve where ℓ intersects.
Then:

2P = R

From this, we can define subtraction and scalar multiplication:

Definition 18 (EC Point Subtraction). Let P and Q be points on the curve:

P −Q = P + (−Q)

Definition 19 (EC Scalar Multiplication). Multiplying a point P with a scalar m
is defined by adding P to itself m times, the first being done using Point Doubling.
Scalar multiplication is denoted m · P

The halo2 Book associates two fields with an elliptic curve, the Base Field and
the Scalar Field [19, Sec. 5.4].

Definition 20 (Base Field and Scalar Field). Let E be an elliptic curve over the
prime field Fp. This is denoted by E/Fp. We denote the group created by this
elliptic curve as E(Fp) with order q. The order of E(Fp) defines a new field Fq.
We call Fp the base field of E/Fp and Fq the scalar field of E/Fp.

Furthermore the halo2 book introduces Cycles of Curves

Definition 21 (Cycles of Curves). Let Ep/Fp be a curve over the field Fp and
Eq/Fq be a curve over the field Fq. If the scalar-field of Ep/Fp is Fq and the
scalar-field of Eq/Fq is Fp they form a Cycle of Curves

9



2.6 Pedersen vector commitments

The Pedersen vector commitment scheme is an adapted version of Pedersen com-
mitments for use with vectors, such as vectors with coefficients for a polynomial.

Definition 22 (Common Reference String). A common reference string is needed
for the Pedersen vector commitment scheme. It is defined as follows[19, Sec. 5.5]:

σ = (G,G, H,Fp)

where

• G is a group of prime order p

• G ∈ Gd is a vector of random group elements

• H ∈ Gd a random group element

• Fp is finite field of order p

A Pedersen vector commitment is then defined as follows:[19, Sec. 5.5]:

Definition 23.
Commit(σ, p(x); r) = ⟨a,G⟩+ [r]H

where each entry ai ∈ Fp of a is the coefficient in p(x) for the term with degree i
and r ∈ Fp is some blinding factor.

Pedersen Vector commitments are additively homomorphic[2]. This is defined as:

Definition 24 (Additively Homomorphic Scheme). ∀a, b, r, s ∈ Fp and p(X), q(X) ∈
Fp[X], we have

[a]Commit(σ, p(X); r) + [b]Commit(σ, q(x); s) = Commit(σ, a · p(X) + b · q(X); ar + bs)

10



2.7 Zero-knowledge Proofs

From a high-level perspective, zero-knowledge proofs (and arguments) are cryp-
tographic constructs that allow a prover P to convince a verifier V that some
statement is true without revealing anything else. Three properties should hold
for such systems[23, Sec. 1.1.1]:

• Completeness: If a statement is true and both P and V follows the
protocol, then V will accept

• Soundness: If a statement is false and V follows the protocol, then V will
reject

• Zero-knowledge: If a statements is true and P follows the protocol, then
V will not learn anything but the statement’s validity

For proofs these statements are in the form of proofs of membership. That is
to say; for some common input x, you prove that it is in some language L, or
x ∈ L. For suitably chosen languages, this generally requires the prover to be
computationally unbounded[23, Sec. 1.4.3].

Another useful concept is proofs of knowledge, where the prover is given some
auxiliary secret input (the knowledge). The goal is then to prove that this secret
supports a statement without revealing the secret[23, Sec. 1.4]. More formally,
we want to prove that for some relation R, we have (x,w) ∈ R, with w being the
witness and x being the common input. This system has some special properties,
but the notion is the same as above. Loosely speaking, these properties are[13]:

• Knowledge Completeness: If P knows the claimed information, they
can almost always convince V

• Knowledge Soundness: If P can convince V (using any strategy) with
substantial probability, then P knows the claimed information

Indeed, this is what is important to us since halo2’s protocol is a Zero knowledge
Argument of Knowledge. Arguments must only preserve soundness against com-
putationally bounded provers[23, Sec. 1.1.1]. Arguments and proofs are sometimes
collectively referred to as proofs, even with this distinction.
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2.8 zk-SNARKs

Zero-knowledge succinct non-interactive arguments of knowledge, abbreviated zk-
SNARKs, are cryptographic constructs that are not unlike the concepts discussed
above. In addition to what we saw there, they have two special properties
succinctness and non-interactivity.

Succinctness, loosely speaking, mandates that a proof (a zk-SNARK) is "small"
and computationally cheap, or fast, to verify. In the context of verifiable compu-
tation, the proof should be asymptotically smaller in size and less expensive to
verify than the computation itself[2].

Non-interactivity refers to the fact that no interaction is required between a prover
and a verifier. This has the benefit that a prover can publish a proof, which can
then be independently verified. This is valuable in the context of blockchains
since such proofs can then be embedded in the blockchain. Furthermore, by
accumulating proofs and exploiting succinctness, proofs can attest to the validity
of previous proofs[2]. This allows for recursive proof composition, which is an
advantage for blockchains, where it might be undesirable to verify all blocks or
messages/transactions.

2.9 hacspec

hacspec [15] is a domain-specific sub-language of the Rust programming language.
Its main purpose is to be a specification language for cryptographic protocols and
primitives. The four most notable features of hacspec are:

1. hacspec is syntactically very similar to Rust; this makes it accessible to
most programmers and cryptographers, as Rust has gained traction in the
field.

2. Specifications written in hacspec are executable, meaning they can be tested
and act as prototype implementations.

3. Syntax is similar to pseudocode used in cryptographic standards; this allows
the implementation to act as pseudocode in a standard.

4. It comes equipped with tools to translate specifications to languages such
as Coq and F*.
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These features allow a hacspec implementation to act as both the pseudocode in a
standard, a formal specification, and a prototype implementation at the same time.
This bridges three gaps we usually see. The informality of normal pseudocode
would mean a separate specification would be needed for verification, and this
specification is then written in a language different from the implementation and
would not be usable as a prototype.

For this to be possible, hacspec has a fairly strict syntax where many of
the enhancements of Rust are not available. While this inherently makes the
language simpler and forces it to be more readable, it also makes it harder to
express certain concepts. The syntax is a strict subset of Rust, with all the
control flow operators, values, and functions. One big difference is the restriction
on borrowing. In hacspec, only immutable borrowing in function arguments
is allowed, as this simplifies the semantics. Another notable limitation is that
hacspec only supports declarations of top-level functions. Furthermore, recursive
function calls are forbidden, and the control flow is limited as return statements
are forbidden.

While some of the syntactic enhancements of Rust are not available in hacspec ,
such as while loops, the hacspec library implements some wrapper types to
bring some of the omitted functionality to hacspec . For example, the Vec<T>
type is unavailable in hacspec. Instead, Seq<T> implements some of the same
functionality but only allows for fixed length. Another significant contribution
from the hacspec team is Secret Integers. Secret integers enforce secret
independence, which prevents side-channel attacks.

Furthermore, external crates are not allowed in hacspec , as they would not pass
the hacspec type check. Instead, the hacspec library and examples are equipped
with an array of cryptographic primitives such as fields, hash functions, and
elliptic curves. This allows for easier development, as these are ready to use and
therefore do not need to be tested. The examples in this library can also be
used for guidelines for future implementations. We have drawn great inspiration
from the bls12-381 curve implementation for our pasta curve implementation.
It is also our goal to merge our contributions into this library. This includes a
halo2 specification, a pasta curve specification, and possibly a suite for basic
polynomial functionality.

hacspec allows certain parts of the code to be omitted from the compliance check.
This is useful for writing tests as randomness is not permitted in hacspec . All
our code is written to be hacspec compliant outside of testing.

While working on this paper, hacspec2 is nearing feature parity with version 1.
This is a very interesting development as it brings many features into hacspec ,
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most notably generics, and traits, which would be very useful, specifically in our
work with polynomials.
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Chapter 3

The halo2 Protocol

halo2 is a zero-knowledge proving system developed in the open by the Zcash
team1. It is the first system that does not require a trusted setup and allows
for recursive proofs[22], which makes it suitable for use in the Zcash digital
currency. Its application is, however, not limited to crypto-currencies; as it is a
general-purpose ZKP, it is suitable for any ZKP application[22].

In the following, we will explore the different parts of halo2. As a general overview,
this includes expressing computation as circuits, their arithmetization, and the
actual protocol between a prover and a verifier. Essentially, these together make
it possible to verify arbitrary computation using halo2.

In the following, protocol will be in reference to the halo2 book’s protocol descrip-
tion[19, Sec. 4.2]. It can be found in appendix A and a version with our additions
in appendix B.

3.1 PLONK and circuits

halo2 is based on PLONK, specifically an extended version, which they call
PLONKish. PLONK[7] describes a way to express constraints as polynomials.
This is done by designing a circuit that expresses the desired computation. As a
simple example, let us imagine we know x1, x2, x3, x4 such that

x1 + x2 + x3 = x4

1https://github.com/zcash/halo2
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For this, we can design a small circuit as follows:

+x1

x2

x3

+ x4

Now, for each gate with index i, we associate xai, xbi, xci, which we can think
of as the gate’s left-hand input wire, right-hand input wire, and output wire.
Furthermore, we have some selectors, (qL)i, (qR)i, (qO)i, (qM)i, and (qC)i. With
these, we construct the following constraint:

(qL)ixai + (qR)ixbi + (qO)ixci + (qM)i(xaixbi) + (qC)i = 0

For example, to model addition, we set (qL)i = 1, (qR)i = 1, (qO)i = −1,
(qM)i = 0 and (qC)i = 0. Similarly, for multiplication, we use (qL)i = 0,
(qR)i = 0, (qO)i = −1, (qM)i = 1 and (qC)i = 0.

The (qC)i selector can be used to include constants (which we do not use in our
example).

Now we have the problem of having some intermediate result (x1 +x2, which then
have to be added to x3), which we cannot directly model with this construction.
Therefore, we need to modify the original constraint a bit. We do this by adding
some more variables, so we can capture intermediate values:

x1 + x2 = x3

x3 + x4 = x5

Note that x3 and x4 are not equivalent to their previous use and that we are now
required to know the intermediate value x3.
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This new constraint system, in some sense, more closely resembles the correspond-
ing circuit:

+x1

x2

x4

+ x5

x3

Let n denote the number of gates, then we require

(qL)ixai + (qR)ixbi + (qO)ixci + (qM)i(xaixbi) + (qC)i = 0 ∀i ∈ [0, n)

Finally, we can then encode these constraints as polynomials. First, we note that
all the selectors and the "wires" define vectors, where the vector in question at
index i has the corresponding value, e.g., (qL)i. If we look to our circuit, we could
set

x1 = 5, x2 = 7, x3 = 12, x4 = 18, x5 = 30

Here x1 and x3 would be in the xa vector. Using Lagrange interpolation, we can
represent xa = [5, 7] as follows:

xai =

{
5 if i = 0

12 if i = 1
or xa(X) = 5 + 7X

And similarly for the other vectors.

PLONKish works in roughly the same way as PLONK. PLONKish, however,
abandons the strict form for constraints we saw in PLONK. Instead, we have much
more flexibility. Where PLONK primarily facilitated addition and multiplication,
we can define our own gates and logic with PLONKish. It also allows for looking
up values relative to the current i. The halo2 book has a more formal and precise
description of the differences[19, Sec. 1.2]. It might be argued that the term and
idea of circuits might be a somewhat imprecise conceptualization for PLONKish
arithmetization. For this example, we shall, however, continue the analogy.
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If we again turn our attention to the original constraint x1 + x2 + x3 = x4, we can
try to model this with PLONKish. Since we have complete control of the circuit,
there are several ways to achieve this. One such way is to create an addition (or
sum) gate with a fan-in of 3:

x1

x2

x3

∑
x4

As before, we are interested in constraints that equal 0. We can rewrite the
constraint to the equivalent form x1 + x2 + x3 − x4 = 0. Then we introduce the
notion of defining PLONKish circuits in terms of a rectangular matrix of values.
We use the conventional meaning of rows, columns, and cells. Let us assign some
values again so that x1 = 5, x2 = 7, x3 = 18, and x4 = 30. Consider the following
table:

i a0 a1 a2 qadd

0 5 7 18 1
1 30 0

Analogously to PLONK, each column defines a polynomial, but the distinction
between in- and output wires is unclear. Instead of having a fixed form for the
constraints (as we did in PLONK), we now have to construct it ourselves. For
this construction of the table, we could express our constraint as the polynomial
g(X):

g(X) = qadd(X) · (a0(X) + a1(X) + a2(X)− a0(ωX))

If we added more types of gates, similar constructions would have to be added to
g(X). As is the case here, the construction should ensure that evaluating at each
index returns 0 for valid inputs.

In many ways, this is similar to what we saw in PLONK. we still have a selector,
qadd, which we can turn on and off. We have an n, but instead of describing the
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number of gates, it now describes the number of rows. As seen in the table, we
have a term a0(ωX). This ω should be a n-th prime root unity, allowing us to
use rows with a relative offset to the current row. As explained in 9, we can form
a domain with ω. This allows us to rotate polynomials and use values from the
next row by multiplying the indeterminate in a polynomial with ω, as we did with
a0(ωX). Generally, we can multiply with ωj to rotate the polynomial j times.

Now, the circuit is satisfied if:

g(ωi) = 0 ∀i ∈ [0, n)

With the flexibility of PLONKish, it is arguably easier to create matrices/circuits
and reason about their behavior, especially if you consider the matrix the basis for
expressing computation instead of explicit circuits. It is also worth noting that a
PLONKish circuit (or matrix) defines different types of columns. The ai columns
are called advice columns and contain witness values. Fixed columns are fixed by
the circuit (such as the selector qadd) and instance columns usually contain public
inputs.

It is also possible to permute the PLONKish matrix to achieve a smaller size.
These permutations can incur extra equality constraints, which must be part of
the final polynomial g(X). Likewise, the use of lookup arguments[19, Sec. 4.1.1]
will also have to be incorporated.
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3.2 Proving System

Once done with arithmitazation, we arrive at the actual protocol for a zero-
knowledge argument of knowledge. The protocol works with the following rela-
tion[19, Sec. 4.2]:

Let ω ∈ F be a n = 2k primitive root of unity forming the domain
D = (ω0, ω1, ..., ωn−1) with t(X) = Xn − 1 the vanishing polynomial
over this domain. Let ng, ne, na be positive integers with na, ne < n
and ng > 4.

R =


(

(g(X,C0, ..., Cna−1, a0(X), ..., ana−1 (X,C0, ..., Cna−1, a0(X), ..., ana−2(X)))) ;
(a0(X), a1(X,C0, a0(X)), ..., ana−1 (X,C0, ..., Cna−1, a0(X), ..., ana−2(X)))

)
:

g(ωi, · · · ) = 0 ∀i ∈ [0, 2k)


Here, g represents the whole PLONKish constraint system, and ai ∀i ∈ [0, n)
represents the witness values as polynomials.

The proving system can then be broken into five phases[19, Sec. 4.1]:

1. Commit to polynomials encoding the circuit

2. Construct the vanishing argument to constrain all relations to 0

3. Evaluate the above polynomials at all the necessary points

4. Construct the multipoint opening argument to check that all evaluations
are consistent with their respective commitments

5. Run the inner product argument to create a polynomial commitment opening
proof for the multipoint opening argument polynomial

We will present a brief overview of each section; complete references can be found
in the halo2 book[19].

3.2.1 Committing to the Circuit

As we saw in 3.1 when we have constructed our desired circuit, we arithmetize
it and thus obtain a number of polynomials. As discussed, there are different
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types of columns (and so polynomials). While the fixed columns are provided by
the verifier, the advice and instance columns are provided by the prover. The
commitments for fixed columns can be precomputed based on the circuit with
blinding factors of 1.

The commitments for advice and instance columns have to be constructed by the
prover and sent over to the verifier. In practice, the commitments, for instance,
and fixed columns, are computed by both the prover and the verifier so that only
the advice column commitments are stored in the final proof[19, Sec. 4.1.3].

These circuit commitments translate to steps 1 and 2 of the protocol.

3.2.2 Vanishing Argument

When done committing to the circuit, we construct the vanishing argument to
constrain all the relations for the circuit.

The simplest way to demonstrate this would be to divide each polynomial rela-
tion by the vanishing polynomial, which has roots at each value of the domain
(1, ω, ...ωn−1). In the case where the relation’s polynomial is perfectly divisible by
the vanishing polynomial (i.e., the remainder is 0), it proves that the relation’s
polynomial is 0 over the domain. Since this approach would incur the need for
a polynomial commitment for each relation, halo2 utilizes another approach. In
short, all the circuit’s relations are committed to simultaneously[19, Sec. 4.1.4].

The verifier samples a random y and sends it to the prover. The prover then
constructs a quotient polynomial

h(X) =
gate0(X) + y · gate1(X) + · · ·+ yi · gatei(X) + · · ·

t(X)

where t(X) is the vanishing polynomial, and each gatei(X) is the polynomial
corresponding to the given gate. As before, if it is perfectly divisible, then the
relations are satisfied with high probability.

If we denote the maximum degree of any relation d, then the relation polynomials
can have a degree of d(n− 1). This means that h(x) has a degree of d(n− 1)− n
(since the vanishing polynomial has degree n), which exceeds the degree which
can be used with the protocol’s commitment scheme. The prover therefore splits
h(x) into d polynomials h0(X), . . . hd−1(X) such that

d−1∑
i=0

Xnihi(X) = h(X)
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The verifier samples a random x and then wants to verify

gate0(x) + y · gate1(x) + · · ·+ yi · gatei(x) + · · ·
t(x)

= h0(x) + · · ·+ xn(d−1)hd−1(x)

In the protocol, this is combined into the multipoint opening argument. This
translates approximately to step 4 through step 12 of the protocol but is carried
on through the protocol.

3.2.3 Evaluating the Polynomials

Now that we have a number of polynomials for the gates and the vanishing
argument, we want to evaluate them in the necessary points. Step 9 evaluates
the ai polynomials at the necessary rotations. From these evaluations, both the
prover and the verifier can calculate the evaluations of the quotient polynomial
from the vanishing argument. These evaluations will be used for the multipoint
opening argument next.

3.2.4 Multipoint Opening Argument

Based on the example from the halo 2 book[19, Sec. 4.1.5], let us consider the
commitments A,B,C,D for polynomials a(X), b(X), c(X), d(X), where a(X) and
b(X) have been queried at x while c(X) and d(X) have been queried at x as well
as ωx. We want to be able to open these commitments with regard to the required
evaluations (naturally, we should not reveal the polynomials). The simplest way
to achieve this would be to have a polynomial for each point we queried at, but
this would not be efficient; in our example, both c(X) and d(X) would appear in
multiple polynomials. Instead, we collect polynomials queried in the same points
into sets. In our example, we would have

{x} : {a(X), b(X)}
{x, ωx} : {c(X), d(X)}

For each of these sets, we can define polynomials as

q1(X) = a(X) + x1b(X)

q2(X) = c(X) + x1d(X)
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where x1 is sampled randomly to keep a, b, c, d linearly independent. Likewise, we
define polynomials

r1(X) =
{
a(x) + x1b(x) if X = x

r2(X) =

{
c(x) + x1d(x) if X = x

c(ωx) + x1d(ωx) if X = ωx

and so we can define some f polynomials, similar to what we saw in the vanishing
argument:

f1(X) =
q1(X)− r1(X)

X − x

f2(X) =
q2(X)− r2(X)

(X − x)(X − ωx)

Again, we can sample a random x2 to combine these into

f(X) = f1(X) + x2f2(X)

which we can evaluate at a randomly sampled x3:

f(x3) = f1(x3) + x2f2(x3)

=
q1(x3)− r1(X)

x3 − x
+ x2

q2(X)− r2(X)

(x3 − x)(x3 − ωx)

where x3 is the same point we see in the inner product argument in the following
section. Finally, we sample x4 and construct

p(X) = f(X) + x4q1(X) + x2
4q2(X)

corresponding to step 19.

This polynomial is what is used for the inner product argument.

3.2.5 Inner Product Argument

The inner product argument essentially allows the prover to show that for a
commitment C to a polynomial a(X), a challenge point x, and an evaluation v;
we have a(X) = v.

This corresponds to a Pedersen vector commitment for a ∈ Fn, such that with
a public b ∈ Fn and v ∈ F it is the case that ⟨a,b⟩ = v. Specifically, in our
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case, a is a polynomial a(X) in its coefficient form and b is a vector on the form
(1, x3, ..., x

n−1
3 ). This means that ⟨a,b⟩ is actually equivalent to the evaluation

a(x3). In the context of the protocol, we know that the evaluation v should be 0.

Let us consider the polynomial of degree 2k − 1:

p′(X) = p(X)− p(x3) + ξs(X)

, which is presented in step 23 of the protocol. We will not go into details about
p(X) and ξs(X), but we will note that if the parties have followed the protocol
correctly, s(X) should have a root at x3 and so p′(X) by construction will also
have a root at x3. For this example, we will say that the coefficient form for
p′(X) is p′ = (p1, p2). Likewise, let us set b = (1, x3), fix a basis G′ = (G1, G2)
with G1, G2 ∈ G and U,W ∈ G. We then have a commitment for p′(X) as
P ′ = ⟨p′,G′⟩ = ([p1]G1 + [p2]G2). Finally, the verifier should send a challenge
z ∈ F after having received the commitment.

Only the prover should know p′ while the other values are known to both the
prover and the verifier. There will be k = 1 rounds of interaction, which means
there will only be one round for this example. In the first and only round 0, the
argument proceeds as follows:

1. The prover calculates and sends

L0 = ⟨p′
hi,G

′
lo⟩+ [z⟨p′

hi,blo⟩]U + [L∗
0]W

and
R0 = ⟨p′

lo,G
′
hi⟩+ [z⟨p′

lo,bhi⟩]U + [R∗
0]W

(here, L∗
0 and R∗

0 is the blindness)

2. The verifier responds with a non-zero challenge u0

3. Both the prover and the verifier set

G′
0 = G′

lo + u0G
′
hi = G1 + [u0]G2

and
b0 = blo + u0bhi = 1 + u0x3

4. The prover sets and sends

c = p′
lo + u−1

0 p′
hi = p1 + u−1

0 p2

and
f = u−1

0 L∗
0 + u0R

∗
0
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Now the verifier wants to check that ⟨p′,b⟩ = v = 0. This is done by the following
check

[u−1
0 ]L0 + P ′ + [u0]R0

?
= [c]G′

0 + [cb0z]U + [f ]W

Let us first examine the left-hand side

L =[u−1
0 ]L0 + P ′ + [u0]R0

=[u−1
0 p2]G1 + [u−1

0 zp2]U + [u−1
0 L∗

0]W+ ([u0]L0)

[p1]G1 + [p2]G2+ (P ′)

[u0p1]G2 + [u0zp1x3]U + [u0R
∗
0]W ([u0]R0)

and the right-hand side

R =[c]G′
0 + [cb0z]U + [f ]W

=[p1]G1 + [u0p1]G2 + [u−1
0 p2]G1 + [u−1

0 u0p2]G2+ ([c]G′
0)

[zp1 + u0zp1x3 + u−1
0 zp2 + u−1

0 u0zp2x3]U+ ([cb0z]U)

[u−1
0 L∗

0 + u0R
∗
0]W ([f ]W )

=[p1]G1 + [u0p1]G2 + [u−1
0 p2]G1 + [p2]G2+ ([c]G′

0)

[zp1]U + [u0zp1x3]U + [u−1
0 zp2]U + [zp2x3]U+ ([cb0z]U)

[u−1
0 L∗

0]W + [u0R
∗
0]W ([f ]W )

So now we can subtract them and find

R−L = [zp1]U + [zp2x3]U

= [zp1 + zp2x3]U

= [z(p1 + p2x3)]U

We notice that p1+p2x3 is the evaluation p′(x3), so the equation is satisfied exactly
when p′(X) has a root at x3. If both parties followed the protocol, the verifier
should be convinced that P ′ is a commitment to a polynomial with a root at x3.
Looking at the construction of P ′ in step 22, this ensures that the polynomial
created in the multipoint opening argument p(X) evaluates to v at x3.

On top of proving this to the verifier, the inner product argument also allows
for smaller proofs since we only need to send 2k group elements (the Li’s and
Ri’s) and the field elements c and f . The naive approach would be to send p′,
which has 2k field elements. The gain for this example is not immense, but as
it generalizes to much larger values for k, the reduction in size can be increased.
Generally, we go from a size linear in the size of p′ to a size logarithmic in the
size of p′. Furthermore, we also eliminate the need to reveal p′.
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We note that for this example, we have omitted some of the accumulated blindness
for f . At the time of writing, the Halo 2 book’s section on the Inner product
argument[19, Sec. 4.1.6] is not completed, so we have primarily used the protocol
description[19, Sec. 4.2] and the original halo paper[2] as reference.

3.3 Proof Recursion

In the inner product argument, the verifier needs to compute G′
0 = ⟨s,G⟩ and b0

= ⟨s,b⟩, which both are n-length multiexponentiations, and s is the challenges
u0, ..., uk−1 represented in a binary counting structure:

s =



1
u0

u1

u0u1

u2
...

u0u1 · · ·uk−1


This is an adapted version of what is presented in [2] since the original halo IPA
is slightly different.

These calculations would undermine the optimization we have just achieved
by using the inner product argument to reduce the communication cost to be
logarithmic in n, as they are both linear in n. To reduce the cost of calculating
b0 we realize that we can define the n− 1 degree polynomial g:

g(X, u0, ...uk) =
k∏

i=1

(1 + uiX
2k−i

)

then we can calculate b0 in logarithmic time as:

b0 = g(x3, u0, ...uk) = ⟨s,b⟩

Furthermore, this polynomial g allows us another possibility to express G′
0:

G′
0 = Commit(σ, (g(X, u0, ...uk−1))

where σ is the same common reference string used throughout the protocol. While
committing to an n-degree polynomial is also linear in n, we have just shown
that we can check an evaluation in logarithmic time. This suggests the following
recursion strategy. Instead of the verifier calculating G′

0 itself, some untrusted
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third party can send it (it could be the prover) and use it as if it was known to
be correct (if the rest of the proof is correct) and then accumulates the actual
check of it to the next proof in the following way.

Figure 3.1: Single prove instance in an atomic accumulation
scheme

π0 is the proof from the previous round, π1 is the proof for this round, acc0 is the
accumulation of the rounds before, and acc1 is the accumulation for this round
and the previous rounds. The accumulating verifier then only does the succinct
check, the one including b0, and then passes the linear check on to the next round
within an accumulation of the previous proof (π0) and accumulation (acc0). This
accumulation works as follows. All π and acc have the same structure:

For q0 = π0 and q1 = acc0

qi = (Ci, xi, vi, si, (Li, Ri,G
(0)
i , p

(0)
i ))

where the last 4-tuple is an IPA proof and G(0) is equivalent to what we earlier
called G′

0.

In each round, the accumulating verifier performs the following steps:

1. Perform succinct check on π0 and acc0

2. Generate random α

3. Set C = G(0)
0 + αG(0)

1

Set s = s0 + αs0

4. Generate random x

5. Set v = s(x)
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6. Run IPA with input (C, s, v) generating new IPA proof (L,R,G(0), p(0))

7. Set acc1 = (C, x, v, (s), (L,R,G(0), p(0)))

This can be chained for as many proofs as we want. Each accumulation only
costs log(n) time. When we have accumulated a desired number of proofs, we can
run the expensive check that includes the linear ⟨s,G⟩ multiscalar multiplication
for both the last acc and the last π. Due to the way the commitment (C)
and challenges (s) are accumulated by the accumulating verifier, the last check
convinces the verifier that the prover could only have cheated in any earlier round
with negligible probability.
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Chapter 4

Our Contributions

4.1 Pasta Curves

For our implementation of the Pasta Curves, we used the blogpost[12] by the
Electric Coin Company and the readme accompanying their implementation
on github[11], both written by Daira Hopwood. We also leaned a lot on the
hacspec implementation of the bls12-381 curve, copying and adapting most of
their tests and logic.
The Pasta curves consist of two elliptic curves, the Pallas and the Vesta curves.
Together these two curves form a curve cycle. This means that the order of
each curve is exactly the order of the base field for the other. This is important
for the efficiency of the recursive proof system in halo2. In essence, this allows
the accumulation to happen over two proof systems on the different curves to
efficiently accumulate proofs by sending anything not in their scalar field to the
other proof system. Let us say we have proof system PA to create a proof in its
base field Fp, which would create curve elements with coordinates in Fp. This can
be passed to proof system PB with base field Fq, and scalar field Fp and therefore
Fp-arithmetic circuit which can efficiently verify the proof from PA. This way, we
can keep switching between PA and PB.

This is great as out-of-field operations are generally very expensive.

This has not been a factor in our project, as we have not specified the accumulation
scheme of halo2. However, since we needed an elliptic curve for the commitment
scheme, we decided to implement the pasta curves. In our implementation of the
halo2 protocol, we only used the Pallas curve.
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Figure 4.1: Simplified illustration from [19, Sec. 5.5] of two proof
systems accumulating proves in different fields

The same curve equation defines both the Pallas and the Vesta curve

y2 = x3 + 5

but as mentioned before, over different fields.
Pallas over:

GF (40000000000000000000000000000000224698FC094CF91B992D30ED00000001)

Vesta over:

GF (40000000000000000000000000000000224698FC0994A8DD8C46EB2100000001)

where GF is short for Galois field, another name for a finite field.
We implemented this using the public_nat_mod!() macro from hacspec . This
is a hacspec safe macro that can be used to define finite fields over a given modulo
value.
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1 public_nat_mod ! (
2 type_name : FpPallas ,
3 type_of_canvas : PallasCanvas ,
4 b i t_s i z e_o f_f i e ld : 255 ,
5 modulo_value : "
6 40000000000000000000000000000000
7 224698FC094CF91B992D30ED00000001"
8 ) ;
9

10 public_nat_mod ! (
11 type_name : FpVesta ,
12 type_of_canvas : VestaCanvas ,
13 b i t_s i z e_o f_f i e ld : 255 ,
14 modulo_value : "
15 40000000000000000000000000000000
16 224698FC0994A8DD8C46EB2100000001"
17 ) ;

The public_nat_mod!() comes with a fully implemented algebraic function set
for the field elements, including addition, multiplication, division, and inverse.
This greatly helped us as we did not need to implement and test these ourselves.

Another thing to consider is that normally elliptic curves would be associ-
ated with both a base field and a scalar field. Here the two curves are only defined
by their base field. As mentioned earlier, each base field is the other curve’s scalar
field. If you wanted to do scalar multiplication with a curve point on the Pallas
curve, the scalar should have type FpVesta.

As there is no specification available for the Pasta curves, we only imple-
mented the defined elliptic curve operations from section 2.5, the additive identity,
point-negation, -addition, -doubling, -subtraction, and scalar multiplication. All
this was already implemented and tested in the bls12-381 curve implementation,
so we copied most of it, only fixing some parameters depending on the size of the
fields. This is one of the significant advantages of having a library of examples
like hacspec does. It is possible to find examples of similar specifications of small
primitives like point-negation for elliptic curves or even entire curve definitions.
Our initial goal was to make a generic implementation of elliptic curves, over
types implementing a Field trait, with basic elliptic curve functions. This could
then be extended with curve-specific functions like pairings. While neither traits
nor generics are allowed in hacspec v1, there was hope that hacspec -v2 might
be ready in time for us to implement it there. This, however, turned out not to
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be the case. Instead, we created this specific implementation of the Pasta curves.
After submitting a pull request[16] to the hacspec repository, we got it merged
into the hacspec library alongside the existing example specifications.

Testing

As mentioned, all our testing of the arithmetic was copied from the bls12-381 curve
implementation. The only thing left to test was the curves’ cyclic property. This
is tested by counting the order of one curve to see if it matches the order of the
other curve’s base field. This is done using some variation of Schoofs algorithm[18].
Ideally, we would have a verified implementation of this in hacspec. While this is
feasible, it is outside the scope of this paper. Instead, we used the Pari/GP[3]
tool to find the order of the curves. While this does not test our implementation
of the curves exactly, it tests that the cyclic property holds true if the curves are
implemented correctly. As expected, this property was upheld.

4.2 Polynomials

hacspec has a non hacspec compliant crate, hacspec-lib, which can still be
used in hacspec . This library has a generic implementation of polynomials and
most of the arithmetic concerning them. However, the public_nat_mod!() macro
does not implement all the required traits to utilize them. As a result, we could
not use the polynomials from hacspec-lib and had to implement our own. We
once again had the idea of implementing a generic type for polynomials over
rings in hacspec -v2, but we started by implementing a non-generic version for
the FpVesta type. Since we only use commitments in the Pallas curve, we only
needed to implement polynomials for Vesta’s base field, which is the scalar field
of the Pallas curve. We used the coefficient representation, where a polynomial
is represented as a list of scalars. The index of the scalar is the power of the
indeterminate. Let

A = [a0, a1, a2, ..., an−1]

be a list of scalars of the polynomial f(X), then

f(X) =
n−1∑
i=0

AiX
i

This was implemented with a type alias over a sequence.

pub type Polyx = Seq<FpVesta>;
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As mentioned in section 2.9, the Seq<T> is a byte array of fixed length used as a
hacspec alternative to the Vec<T> from rust. The FpVesta type is a field point
from the base field of the Vesta curve. For functionality, we implemented the
basic set of arithmetic functions one would expect to be available for polynomials,
a few wrapper functions, and some helper functions. Full documentation can
be found in appendix C. The only function posing interesting choices was the
divide_polyx(n: Polyx, d: Polyx) implementing polynomial long division.
The following is the pseudocode for polynomial long division from [21]:

1: n / d is
2: require d ̸= 0
3: q ← 0
4: r ← n
5: while r ̸= 0 and degree(r) ≥ degree(d) do
6: t ← lead(r) / lead(d)
7: q ← q + t
8: r ← r - t × d
9: end while

10: return (q, r)

Here we see the use of a while loop which is not permitted in hacspec, as they
are not guaranteed to terminate. It is, however, possible to find an upper bound
for this while loop, which we then use to replace the while loop with a for loop.
The upper bound is found by realizing that we will remove the leading term
from the r polynomial for each iteration. This is true as we define t to be the
quotient of the two leading terms of r and d. In line 8, we subtract t × d from
r. The polynomial t × d is guaranteed to include the leading term of r. This
way, we get an upper bound of the while loop being the degree of the dividend
(n). Actually, this could be set to the difference between the degree of the two
polynomials, as the while loop stops once the degree of r is smaller than that of d.
With this change, we could implement polynomial long division in the following
way:

33



1 pub fn divide_polyx (n : Polyx , d : Polyx ) −> ( Polyx , Polyx ) {
2 l e t mut q : Polyx = Seq :: <FpVesta >: : c r e a t e (n . l en ( ) ) ;
3 l e t mut r : Polyx = n . c l one ( ) ;
4
5 l e t mut loop_upper_bound = d . l en ( ) ;
6 i f q . l en ( ) > d . l en ( ) {
7 loop_upper_bound = q . l en ( ) ;
8 }
9 f o r _ in 0 . . loop_upper_bound {

10 i f check_not_zero_polyx ( r . c l one ( ) )
11 && degree_polyx ( r . c l one ( ) ) >= degree_polyx (d . c l one ( ) ) {
12 l e t t : Polyx =
13 divide_leading_terms ( r . c l one ( ) , d . c l one ( ) ) ;
14
15 q = add_polyx (q , t . c l one ( ) ) ;
16 l e t aux_prod : Polyx = mul_polyx (
17 d . c l one ( ) , t . c l one ( )
18 ) ;
19 r = sub_polyx ( r , aux_prod ) ;
20 }
21 }
22
23 ( trim_polyx (q ) , trim_polyx ( r ) )
24 }

We also implemented a function for rotating polynomials, a concept introduced
in the halo2 book. The idea is that if you are only interested in the evaluations
of a polynomial in a given domain, which has a generator ω, you can rotate the
polynomial m times by multiplying with ωm. Here the polynomial f(X) (with
coefficients a0, ..., an−1) is rotated m times.

f(ωmX) = a0(ω
mX)0 + a1(ω

mX)1 + ...+ an−1(ω
mX)n−1

In halo2, the domain we evaluate polynomials in is generated by the n-th primitive
root of unity. These rotations are used to index into the circuit as described in
section3.1. We implemented this just as you would expect, but we wanted to
include it as it is non-standard.
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1 fn rotate_polyx (p : Polyx , r o t a t i on : FpVesta ) −> Polyx {
2 l e t mut r e s = p ;
3 f o r i in 0 . . r e s . l en ( ) {
4 l e t c o e f = r e s [ i ] ;
5 l e t ro t = ro t a t i on . pow( ( i as u128 ) ) ;
6 r e s [ i ] = co e f ∗ ro t ;
7 }
8
9 r e s

10 }

4.2.1 Testing

For most of our tests, we have used QuickCheck[8] to do property-based testing.
QuickCheck allows you to generate random values for types that implement the
Arbitrary trait, which demands that you implement the arbitrary function.
For the Polyx type our implementation of the Arbitrary trait looks like this:

1 #[de r i v e ( Clone , Debug , Defau l t ) ]
2 s t r u c t PolyxContainer ( Polyx ) ;
3
4 impl Arb i t rary f o r PolyxContainer {
5 fn a r b i t r a r y ( g : &mut quickcheck : : Gen) −> PolyxContainer {
6 l e t s i z e = u8 : : a r b i t r a r y ( g ) ;
7 l e t mut v : Vec<FpVesta> = vec ! [ ] ;
8 f o r _ in 0 . . s i z e {
9 l e t new_val : FpVesta =

10 FpVesta : : f r om_l i t e r a l ( u128 : : a r b i t r a r y ( g ) ) ;
11 v . push ( new_val ) ;
12 }
13 PolyxContainer ( Seq :: <FpVesta >: : from_vec (v ) )
14 }
15 }

Since Polyx is just a type alias, we need to wrap it in a container struct as Rust
does not allow implementing traits (Arbitrary) from outside the crate, for types
from outside the crate (Seq<T>).
We can then implement the Arbitrary trait and the arbitrary function for the
container struct PolyxContainer. The arbitrary takes a QuickCheck generator
g, which can be used to generate random elements of different types that imple-
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ment the Arbitrary trait, like this: T::arbitrary(g). In the arbitrary function
for PolyxContainer, we use this to generate a random length for the polynomial
and then generate random scalars for each entry.

For testing our polynomial implementation, we created two series of tests.
One to test the algebraic functionality of our functions and one to test the ring
property of our polynomial implementation.

Our functionality tests all followed the same idea: to check each operation
against the same operation in the field, with some x.

Let:
p1(X) = p2(X)× p3(X)

Check:

p1(x)
?
= p2(x)× p3(x)

for × ∈ {+, ·,−}

This check should hold as is for addition, multiplication, and subtraction. Poly-
nomial division is a little different as we have remainders which is not the case
for division in fields. The idea is, however, the same. We divide the evaluated
remainder with the evaluated divisor and add the evaluated quotient.

Let:

(pq(X), pr(X)) =
p1(X)

p2(X)

Check:

pq(x) +
pr(x)

p2(x)
?
=

p1(x)

p2(x)

Our test for divide_polyx(n: Polyx, d: Polyx) -> (Polyx, Polyx) looks
like this:
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1 fn test_poly_div (
2 p1 : PolyxContainer ,
3 p2 : PolyxContainer ,
4 x : u128 )
5 {
6 l e t p1 = p1 . 0 ;
7 l e t p2 = p2 . 0 ;
8 l e t x = FpVesta : : f r om_l i t e r a l ( x ) ;
9

10 l e t (q , r ) = divide_polyx ( p1 . c l one ( ) , p2 . c l one ( ) ) ;
11 l e t eval_q = eval_polyx (q , x ) ;
12 l e t eval_r = eval_polyx ( r , x ) ;
13 l e t eval_r_div = eval_r / eval_polyx ( p2 . c l one ( ) , x ) ;
14
15 l e t expected = eval_polyx (p1 , x ) /
16 eval_polyx ( p2 . c l one ( ) , x ) ;
17 l e t a c tua l = eval_q + eval_r_div ;
18
19 assert_eq ! ( expected , a c tua l ) ;
20 }

For the second series of tests, we tested all the ring axioms [5]. Once again, we
used QuickCheck to do property-based testing. All functions once again followed
the same structure, where we used QuickCheck to generate random polynomials
and check if the specific axiom held. We also tested if the ring was communicative
by testing for the communicative property over multiplication:

f(x) · g(x) ?
= g(x) · f(x)

which it was. These are straightforward and can be found in appendix C for
further inspection.

Finally, we made a test for the rotate_polyx function. As this is not a common
concept in the literature, we used a test from the halo2 implementation and
rewrote it for our implementation. This test generates a random polynomial of
degree 7 and a random evaluation point x. It then rotates the polynomial by
three different values, 1, ω and ω−1, where ω is an n-th primitive root of unity
from the halo2 test. It then evaluates the rotated polynomials in x and compares
them to the original polynomials evaluated in 1x, ωx, and ω−1x. A transcript of
this test can be found in appendix D.
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4.3 The halo2 Protocol

The goal of our halo2 implementation is to specify the protocol described in
the halo2 book[19, Sec. 4.2]. In this lies some very conscious decisions. The
efficient implementation created by the halo2 team includes a lot of optimizations.
These optimizations are described in the book and could have been part of our
specification. We decided not to do this, as we wanted only to specify the math
described in the protocol description. This decision was made because we were
interested in the protocol’s correctness, as opposed to the optimizations’. We
could see new and better optimizations in the future, while the protocol should
remain the same. Another approach could also have been to make hacspec
specifications of the arguments presented in chapter 3. This would have been
more in line with earlier specifications in hacspec, but as we wanted to explore
hacspec capabilities, we decided to specify the protocol with all its parts as one
complete implementation.

To stay as true as possible to the protocol, we decided to implement each step
in the protocol as its own function. Furthermore, we have tried to keep the use
of "helper functions" to a minimum, such that the functions can be understood
in isolation. This should, in theory, help readability since you do not have to
follow function calls around to understand what is going on. We have made an
exception to this in step 24 in the first bullet where Lj and Rj are calculated:

• P sends Lj = ⟨p′hi,G′lo⟩ + [z⟨p′hi,b′lo⟩]U + [·]W and Rj = ⟨p′lo,G′hi⟩ +
[z⟨p′lo,b′hi⟩]U + [·]W

The calculations of Lj and Rj are very similar and quite long, so we decided that
it would help readability to put it in a helper function. We called this function
calculate_L_or_R:
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1 fn calculate_L_or_R (
2 p_part : Polyx ,
3 b_part : Polyx ,
4 g_part : Seq<G1_pallas >,
5 z : FpVesta ,
6 U: G1_pallas ,
7 W: G1_pallas ,
8 b l i nd ing : FpVesta ,
9 ) −> G1_pallas {

10 // <p ’ _part , G’ _part>
11 l e t p_g_msm: G1_pallas = msm( p_part . c l one ( ) , g_part ) ;
12 l e t p_b_ip : FpVesta = inner_product ( p_part , b_part ) ;
13 l e t z_ip : FpVesta = z ∗ p_b_ip ;
14 l e t z_ip_U : G1_pallas = g1mul_pallas ( z_ip , U) ;
15
16 l e t multed_W: G1_pallas = g1mul_pallas ( b l ind ing , W) ;
17
18 l e t mut part_j : G1_pallas = g1add_pallas (p_g_msm, z_ip_U ) ;
19 part_j = g1add_pallas ( part_j , multed_W ) ;
20
21 part_j
22 }

Other than that, we only allowed helper functions for well-defined ideas such as
polynomial division, Lagrange interpolation, and vanishing polynomials.
Here is step 5 as presented in the protocol description in the halo2 book:

5. P computes at most n− 1 degree polynomials h0(X), h1(X), ..., hng−2(X) such
that h(X) =

∑ng−2
i=0 Xnihi(X).

And here is our implementation of step 5 in hacspec:
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1 fn step_5 (h : Polyx , n : u128 , n_g : u128 ) −> Seq<Polyx> {
2 l e t h = trim_polyx (h ) ;
3 l e t n_g = n_g as u s i z e ;
4 l e t n = n as u s i z e ;
5
6 l e t mut index_in_h = 0 ;
7 l e t mut poly_parts = Seq :: <Polyx >: : c r e a t e (n_g − 1 ) ;
8
9 f o r i in 0 . . n_g − 1 {

10 l e t mut current_poly_part = Seq :: <FpVesta >: : c r e a t e (n ) ;
11 f o r j in 0 . . n {
12 i f index_in_h < h . l en ( ) {
13 current_poly_part [ j ] = h [ index_in_h ] ;
14 index_in_h = index_in_h + 1 ;
15 }
16 }
17 poly_parts [ i ] = current_poly_part ;
18 }
19 poly_parts
20 }

The implementation is not as readable as the short mathematical description
from the book. This is, however, not the goal, as the goal is to have readability
comparable to forms of pseudocode. The above implementation looks fairly similar
to what you would expect from pseudocode, and using this as a reference for
future implementation/optimization should be intuitive. Three things that stand
out from a readability standpoint are

1. the curly brackets; and

2. the cumbersome create statement of Seq<T>

3. Function calls instead of mathematical operators

There is not much to do about the brackets. However, they are common in
conventional programming languages and make the specification valid Rust, an
essential idea of hacspec.

The need for the create(l: usize) statement is primarily a limitation of
hacspec. Where you might usually just pop or push to some form of vector
or list, Seq<T> needs the length at creation time.
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Finally, in the above example, field elements are added together using the + oper-
ator. This is possible due to the public_nat_mod!() macro, which implements
the necessary traits to allow the usage of such operators. This is not possible
for custom types, such as group elements from the elliptic curves. Version 1
of hacspec does not allow implementing traits, which would have allowed this.
Consider the following example for two elliptic curve group elements, G1 and G2

G1 +G2

is expressed as something akin to

g1add_pallas(g1, g2)

It suffers from some terseness, and we also involve the name of the specific curve
used.

The halo2 protocol makes use of quite a bit of randomness, both in the form of
challenges from the verifier and blindness for the Pedersen commitments. We do
not use randomness in our specification for two reasons. Firstly hacspec does
not allow randomness, as it, of course, is nondeterministic. Secondly, randomness
might not be desirable in a reference implementation. What we do instead is to
take all needed randomness as an argument in the different functions. This way,
when using the hacspec specification as a reference implementation or testing up
against your own code, you can fix the randomness and pass it to the hacspec
function. That way, you can be sure the inputs are the same; therefore, the
behavior should be the same. This also leads us to a rather unconventional
implementation of steps 15, 16, and 17. All that happens is the verifier creates
and sends challenges to the prover.

15. V responds with challenge x3.

As we wanted to stay as true to the protocol as possible, we have implemented
this as an identity function:

1 fn step_15 (x_3 : FpVesta ) −> FpVesta {
2 x_3
3 }

Finally, we decided to let the verifier and the prover act in the same function call.
This is not optimal from a cryptographic standpoint where you would want the
two to have separate views. As our focus is on specifying the protocol and its
math and not actual application of the system, we consider this acceptable.
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After discussing with the halo2 team, we decided not to include the first three
steps of the protocol in our specification. This was done as these steps mainly
relate to the arithmetization of PLONKish circuits, which is outside the scope of
this paper.

In the halo2 book, the protocol makes use of a helper function σ(i) defined as:

For all i ∈ [0, na):

• Let pi be the exhaustive set of integers j(modulo n) such that ai(ωjX, · · · )
appears as a term in g(X, · · · ).

• let q be a list of distinct sets of integers containing pi and set q0 = {0}

• let σ(i) = qj when qj = pi

In other words, when passing an argument i to the sigma function, it should return
a list of all the rotations of ai(X) present in g(X, · · · ). We have implemented this
as follows:

1 fn sigma (
2 i : u128 , s igma_l i s t : Seq<u128>, q : Seq<Seq<u128>>
3 ) −> Seq<u128> {
4 l e t idx = s igma_l i s t [ i as u s i z e ] ;
5 q [ idx as u s i z e ] . c l one ( )
6 }

As we do not have a sense of state, we have to pass both the list q and sigma_list
to the function. These have to be created manually beforehand as they depend on
the arithmetization from PLONKish. sigma_list is a list of integers such that
sigma_listi = j when qj = pi.

4.3.1 Testing

The protocol itself proved rather challenging to test systematically. On the surface,
it is composed of somewhat straightforward math without many obvious invariants.
The underlying implementations of elliptic curves and polynomials have, of course,
been tested thoroughly, as described in previous sections, but testing the logic
described in the protocol quickly turned into retesting the underlying math.
Because of this, we hoped to find some unit-tests in the efficient halo2 implemen-
tation, which we could rewrite to test our code. Unfortunately, most of their tests
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were testing either their PLONKish arithmetization or their optimization of the
protocol.

Instead, we approached testing with the following strategies:

1. Small isolated tests

(a) Unit tests, with fixed value

(b) Automated tests

2. Cross-testing/Integration tests

3. Complete run of the protocol

This way, testing began with the small and isolated parts of the code and gradually
turned to testing increasingly more integrated parts of the code.

Small Isolated Tests

The most basic approach was a unit test with predetermined inputs, where we
calculated the result manually and compared it against our implementation of
the given step. This served as a sanity check and confirmed our understanding.
For some of the unit tests, we followed up with automated versions.

The automated tests were essentialy re-implementations of the function. These
re-implementations were written with QuickCheck so it could be run with a range
of random inputs. We ensured that whoever had written the implementation of
the function did not write the re-implementation for the test. The idea behind
this was that we might be able to catch some errors in our original implementation
by rewriting with a fresh mind. Some of the automated tests were adapted version
of tests with fixed inputs.

We explored using these different types of tests, so they have been used somewhat
interchangably.

After these tests, we were somewhat confident in the functions’ correctness from
an isolated view. Consequently, we went on to start testing their integration and
test the combination of larger parts of the protocol.
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Cross-testing

The third approach was "cross-testing" where we tested properties across multiple
steps of the protocol. Furthermore, we test across the view of the verifier and
the prover. By doing this, we were able to find some properties we could use for
property-based testing.

An example of this is steps 5 to 8. Looking at the protocol description[19, 4.2,
Protocol], it can be seen that steps 5, 6, 7, and 8 are closely related. As such,
testing that this relation holds for the specification is important. These relations
we capture generally involve the prover knowing some polynomial a(X), which the
verifier only knows a commitment A for. We present a small example of how to
test that A is a commitment for a(X) with some specific randomness, or blindness,
using the Pedersen vector commitment scheme.

First, we have to find a concrete way to associate the involved values.
Let us start by outlining the concerned values

• From step 5, we have h0(X), . . . , hng−2(X) (and implicitly the vectors of
coefficient h0, . . . ,hng−2)

• From step 6, we have Hi = ⟨hi,G⟩+ [·]W for all hi

• From step 7, we have x and H ′ =
∑ng−2

i=0 [xni]Hi

• From step 8, we have h′(X) =
∑ng−2

0 xnihi(X)

We start by exploring H ′. Let us say we use randomness ri for the commitment
in the ith summand. We see that

H ′ =

ng−2∑
i=0

[xni]Hi =

ng−2∑
i=0

[xni](⟨hi,G⟩+ [ri]W ])

=

ng−2∑
i=0

(
[xni]⟨hi,G⟩+ [xniri]W

)
=

ng−2∑
i=0

[xni]⟨hi,G⟩+
ng−2∑
i=0

[xniri]W

=

〈
ng−2∑
i=0

xnihi,G

〉
+

[
ng−2∑
i=0

xniri

]
W
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Now, let us look at a commitment to h′(X). We recall Definition 23, which gives
us a commitment to h′(X) using some randomness r′ and the same values for σ
as above:

Commit(σ, h′(x); r′) =

〈
ng−2∑
i=0

xnihi,G

〉
+ [r′]W

Let us set r′ =
∑ng−2

i=0 xniri. Comparing with what we found above, we now see
that this is equal to H ′:

Commit

(
σ, h′(x);

ng−2∑
i=0

xniri

)
=

〈
ng−2∑
i=0

xnihi,G

〉
+

[
ng−2∑
i=0

xniri

]
W = H ′

This means we can test these steps’ interdependence by running steps 5 to
8, then commit to h′(X) with the "randomness" r′ as above, and check that
this commitment corresponds with H ′. This corresponds to the accumulated
blindness of the protocol. Looking at the protocol description with our annotations
(appendinx B), it can be seen that these values matches.

We have similair tests, where we compare polynomials and their purported
commitments, for

• Steps 11 and 12

• Steps 18 and 19

• Steps 22 and 23

These tests depend on previous values of the protocol, so they iteratively include
more and more of the protocol. In the end we have essentialy included the whole
protocol, which we present next.

Test Run

Finally, we made a test run of the complete protocol. This functions as a test for
the entire protocol. The circuit we used was a simple circuit of just two addition
gates:
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i a0 a1 a2 qadd

0 2 3 4 1
1 10 0
2 5 8 13 1
3 26

As we have not implemented the PLONKish arithmetization nor steps 1-3 in
the protocol, we have to manually calculate a valid g′(X). First, we created
the a0(X), a1(X), a2(X) and qadd(X) polynomials using Lagrange interpolation
through the points specified in the circuit table. For example a0(X) was deter-
mined by Lagrange interpolation through [(ω0, 2), (ω1, 10), (ω2, 5), (ω3, 26)]. From
these polynomials we set g(X) = qadd(X) · (a0(X)+a1(X)+a2(X)−a0(ωX)). We
omit all the the challenges c0, ...cna−1 such that a′i(X) = ai(X) and g′(X) = g(X).
The final thing we need to compute before the protocol is the p and q lists used
by the sigma function. First we set p = [[0, 1], [0], [0]], where p0 is the list of
rotations a0(X) is evaluated in. From g(X) we see that a0(X) is the only one
that is rotated, and therefore p1 and p2 are both [0]. Then we set q = [[0], [0, 1]],
which is the list of unique lists from p with q0 = [0]. With this, we have all
the inputs needed to start the protocol. Throughout the protocol, more inputs
are needed in the form of blinding factors, challenges, and random polynomials.
These are all selected according to the requirements stated in the protocol.

This test was critical as it did not pass at first. While it was hard to lo-
cate the errors causing this to fail (it depended on the entire implementation),
we narrowed it down by iteratively letting some of the inputs be 0. We got it
narrowed down to be an error with our calculation of f in step 25. The calculation
of this variable was not included in the protocol, but after discussing with the
halo2 team, we agreed that it should be included. Through a process we touch
more on in section 4.5, we determined the calculation of f and sent a pull request
with our changes to the halo2 protocol description. As this specification of the
calculation for f was being reviewed by halo2 members, it turned out that we
had missed part of the calculation. This shows the importance of proper testing.
Not only had we made a critical omission in our implementation, but we had also
tried to get an incomplete calculation of f merged into the halo2 book. After
iteratively setting different blinding factors to 0, we were able to narrow the error
down to the blinding factors used in steps 1, 3, and 6. After looking at how
the accumulation of blinding factors (the calculation of f) is used to align the
polynomials on the prover’s side with the commitments on the verifier’s side, we
realized that we were missing some blindings and narrowed it down to step 12 of
the protocol. Specifically, we did not update the q∗0 in bullet 2. Our calculation of
f can be seen in the notes column of appendix B. After mitigating this omission,
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our test passed, and we sent the update to the halo2 team.

Based on this test run, we created some QuickCheck tests testing both some
illegal and legal inputs. First, we made a positive test to test different inputs to
the same circuit making sure the constraints were upheld in the following manner:

i a0 a1 a2 aadd

0 rnd1 rnd2 rnd3 1
1 rnd1 + rnd2 + rnd3 0
2 rnd4 rnd5 rnd6 1
3 rnd4 + rnd5 + rnd6

We also created a positive test with random inputs for blinding and one with
random inputs for challenges. Finally, we also made a negative test where all the
inputs to the circuit were generated randomly. Specifically, the values at (a0, 1)
and (a0, 3) were random and not calculated from the others. This means that the
circuit would be satisfied with a very low probability.
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4.4 halo2 Specification in Rustdoc

To make the specification more accessible, we have used the tool rustdoc, which
can render a document with documentation for rust (or hacspec ) code and
arbitrary markdown. Rust constructs annotated with rustdoc comments are
automatically included, so we have documented all functions so they can easily
be viewed in the rustdoc document. As an example of this, we have our inner
product function:

1 /// Inner product , between two equal−length ve c t o r s o f f i e l d e lements
2 ///
3 /// # Arguments
4 ///
5 /// ∗ ‘u ‘ − LHS vecto r
6 /// ∗ ‘v ‘ − RHS vecto r
7 fn inner_product (u : Polyx , v : Polyx ) −> FpVesta {
8 l e t mut r e s = FpVesta : :ZERO( ) ;
9 f o r i in 0 . . u . l en ( ) {

10 r e s = r e s + u [ i ] ∗ v [ i ] ;
11 }
12
13 r e s
14 }

The comments preceding the function signature are the rustdoc annotation. The
first line is a high-level description of the function. Following is a markdown
header “Arguments” and a list of arguments and their descriptions. Notice how
this is just regular markdown.

As stated, it is also possible to include arbitrary markdown content by using the
doc attribute

#![ doc = inc lude_st r ! ( " . . / t ab l e .md" ) ]

Here we include a markdown file called table.md, which contains the complete
halo2 protocol description. We have used a table where each row corresponds to
a step in the protocol. For each of these steps, we have also included a reference
to the corresponding hacspec specification and a link to the corresponding part
of the efficient implementation. This way, we hope to make it easier to get an
overview and compare our specification with the efficient implementation. Finally,
there is also a “Notes” column. Here we have added some omissions from the
protocol, specifically regarding how blindness is used and accumulated through
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the protocol. This has been instrumental in getting an overview of what we believe
should be added to the protocol description and helped communicate and discuss
these ideas with the halo2 developers. Our rustdoc document (appendix E) has
been made publicly available with the use of GitHub Pages1, which allows for free
hosting of static content in a git repo.

Finally, the protocol description is written in markdown but uses a lot of la-
tex math-mode. To be able to render this with rustdoc, we used “KaTeX”2,
which can generate math symbols, etc., to be viewed with a web browser. The
precise procedure to make this possible was greatly inspired by the rust crate
rustdoc_katex_demo[14]. Essentially, we have included a katex html header,
where we also defined the latex macros that the protocol description uses. This
header file is then placed in the root of the rust workspace. We can then gen-
erate the final document with the cargo doc command. We have to adjust the
environment variable RUSTDOCFLAGS to utilize katex. One way to do this is by
running the following commands:

# bash or s im i l a r
export RUSTDOCFLAGS="--html−in−header katex−header . html"
cargo doc --no−deps --document−pr ivate−items # or any de s i r ed f l a g s

This will place the generated HTML in a directory doc under the rust target
directory. This can be viewed locally in a browser, or hosted publicly, as we did.

4.5 Changes to halo2 book

While implementing the halo2 protocol[19, 4.2, Protocol], we communicated with
the halo2 team in their open community Discord channel, where we had a dedicated
thread. Through this discussion, we were able to clarify some uncertainties we had
about the protocol, and in that process, we were also able to point out aspects
of the protocol that might need to be changed. This could be due to actual
errors, typos, or to improve exposition. As another result of this discussion, the
halo2 team also detected some discrepancies between the protocol description and
the efficient implementation in steps 18 and 19. These changes are part of the
pull request [17]. The current version from the book (appendix A) can also be
compared with our version with these changes and notes (appendix B).

Here the rustdoc specification again proved very useful as a communicative tool,
as we were able to illustrate proposed changes to the protocol. One of these

1https://pages.github.com/ (accessed 2023-06-14)
2https://katex.org/ (accessed 2023-06-14)
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proposals was to include the calculation of the variable f introduced in step 25.
The variable was described as

synthetic blinding factor f [is] computed from the elided blinding
factors

in the protocol description. The decision not to include the calculation was made
because it would allow eliding the blinding factors for exposition. While this
elision helps the readability of the protocol, it also makes it impossible to describe
the calculation of f , as the variables used in the calculation were not defined.
After discussion with the halo2 team, we agreed that it would be suitable to
include the calculation and the needed blinding factors explicitly named in the
protocol. As a result, we sent a pull request with these changes [17]. However, as
mentioned in section 4.3.1, there were some missing factors with the calculation of
f . We once again presented these omissions to the halo2 team using our rustdoc
as a medium for showing the corrections, and they were eventually merged into
the earlier pull request.

4.6 Development of hacspec-v2

While we did not get to do any implementation specifically in hacspec-v2, we did
get to try the early stages of the tools into, linter, and json. The into tool
translates the Rust crate into Coq, fstar, or easycrypt. The linter tool has two
options hacspec, which checks if your Rust code is in the Hacspec subset, that is,
a simple enough subset of Rust suited for specifications, or Rust, which makes a
fast check whether translation into a backend is possible, as the into tool is too
slow for using in language server protocols. The json creates a typed AST of the
Rust crate as a JSON file. Our halo2 implementation, including Pasta Curves
and polynomial implementation, successfully ran the lint without any warnings.
We were also able to extract the typed AST using the JSON tool. The engine to
translate into a backend was, however, not fully implemented yet, and we ran into
a problem with our for loop in our implementation of polynomial division. We
reported the issue in the hacspec-v2 repository[6].
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Chapter 5

Conclusion

This thesis presents our high-assurance (hacspec) specification for halo2’s interac-
tive argument of knowledge. hacspec , as a subset of Rust, is relatively similar to
conventional programming languages, which is a great strength, but some features
have been left out due to its rigorous nature. In particular, randomness is not
allowed and has to be supplied from outside of hacspec . Similarly, only top-level
functions are allowed, which restricts the possible model of interaction, which is
at the core of an interactive argument. Since our focus has been on correctness
and specification, this perceived inaccuracy has not been a problem for the paper.

hacspec has also made translating the protocol description to a specification
relatively intuitive, even if the specification is not exactly as readable as the
description. This partly comes from the fact that hacspec (version 1) does
not allow implementing traits, which means that mathematical operators for
custom types have been expressed as function calls. For instance, the addition
of group elements G1 + G2 is expressed as g1add_pallas(g1, g2). Version 2
of hacspec should improve on some of these aspects, which would be a natural
development for future work on the specification.

Through the work with the protocol specification, we believe we have added some
value to the protocol description. Initially, we believed the protocol description
to be the authoritative source and expected that if any modifications were to
happen, it would be in the efficient implementation. As we found out during the
project, it turned out that the halo2 team adapted the protocol description to fit
the efficient implementation instead. Through discussion with the developers, we
have suggested additions to the description that we believe are key to the protocol,
the specification, and anyone interested in alternative implementations of halo2.
Practically, this has been done by bringing the protocol description closer to the
efficient implementation, which in some sense has been the authoritative source.
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As such, our specification should serve as a one-to-one mapping for the protocol
description.

Finally, we have, through the work with this paper, created a high assurance spec-
ification of steps 4 through 26 of the halo2 protocol, a high assurance specification
of a polynomial ring specifically over the scalar field of the Pallas curve, and a
high assurance specification of the Pasta curves. The last of which has already
been published in the hacspec library.
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Chapter 6

Related Work in hacspec

In this chapter, we will briefly describe some other projects to be specified in
hacspec and compare them to our specification of halo2. Looking through the
examples included in the hacspec library[9], we have found two specifications that
can be considered the largest (to the best of our knowledge). These two turned
out to be the specifications of Gimli and bls12-381-hash to curve.

In an effort to compare the sizes of our specifications with these other specifications,
we will present some measurements. Measuring the size of software is challenging,
but we hope the measurements used can give some indication. These measurements
are

• Number of non-blank lines for all source code of the given specification

• The size of all source code, after being ZIP compressed

Since some of the specifications include many constant declarations (using the
const keyword), tests and constants for testing, we also show these measurements
where they are excluded. In some way, this should represent the actual logic and
code that went into the specification.
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gimli bls12-381-hash halo2 pasta
Zip size (KiB) 1.9 4.7 (9.7 with constants) 9.4 1.5
Non-blank lines 206 582 (1182 with constants) 1199 189

Size excluding tests and constant declerations

gimli bls12-381-hash halo2 pasta
Zip size (KiB) 78.7 16.8 23.8 3.0
Non-blank lines 6989 2046 4889 468

Total size

This data can be interpreted in several ways, but it should underline that the
halo2 specification is among the more extensive projects. If tests and constants are
excluded, halo2 could be considered the largest. Pasta is also somewhat extensive.
It is worth again pointing out that the Pasta specification includes both the Pallas
and Vesta curves, which are essentially adapted versions of the bls12-381 curve
specification.
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Chapter 7

Future Work

In some sense, this has been a project of feasibility, exploring hacspec’s ability
to specify more extensive protocols such as halo2. This project could have gone
in many directions, and naturally, we could not pursue all of them. Therefore,
we will present some of the projects that were outside our scope as proposals
for future work. These proposals can be categorized as either halo2 or hacspec
related.

As we have focused on specifying the proof protocol of the halo2 zk-SNARK, it
would be interesting to look into specifying the entire zk-SNARK. This would
include the PLONKish arithmetization before the protocol and the recursive
proving system described in section 3.3. The specification of PLONKish would be
a vast project, as it includes not only the arithmetization of a circuit but also the
creation of an environment for writing gates and planning circuit layouts. Having
this would also allow the specification of the entire protocol, including the first
three steps, which we have omitted. Specifying the recursive proof system and
the accumulation scheme would also be an interesting project, which might also
be suitable for use in other specifications.

Another interesting project would be to look into generating random circuits for
testing. This would allow us to give a higher assurance specification compared
to the tests we use now, which only work on predefined circuits. This could
possibly be done using something like Noir[1] from Aztec. Noir is an open-source
programming language for writing and verifying zero-knowledge proofs, which
uses the UltraPlonk backend, which resembles PLONKish a lot.

The final halo2-specific proposal would be to further integrate the specifica-
tion with the efficient implementation. This would be done by making some
integration tests where we would test our specification against the efficient
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implementation. This could be done by either testing entire protocol runs against
each other or testing smaller parts. If any discrepancies were found, it would
raise an interesting question as to which result is correct. As we have based our
implementation solely on the protocol description from the halo2 book, such
discrepancies should indicate differences between the protocol description and
the efficient implementation. Going into the project, we expected the protocol
description to be the authoritative source. Throughout the project, we have,
however, seen the halo2 team make corrections to the protocol descriptions as a
result of discrepancies between that and the efficient implementation.

As for future work with hacspec, the generic implementations of both the elliptic
curves and the polynomial rings are natural suggestions. Most of the logic is
already there; the only thing missing is the integration of generics and traits
in hacspec. As of writing this, hacspec-v2 is very close to feature parity with
hacspec. When that is done, generics for both elliptic curves and polynomial
rings should be possible.

With the testing of the Pasta curves, we discovered the need for a verified
implementation of Schoof’s algorithm to determine the order of an elliptic curve
group. This would also be an interesting project, as it would be a useful primitive
to have in the hacspec library.
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Appendix

A halo2 Protocol Description

See next page. (from [19])
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1.  and  proceed in the following  rounds of interaction, where in round  (starting
at )

 sets 
 sends a hiding commitment  where  are the coefficients of

the univariate polynomial  and  is some random, independently sampled
blinding factor elided for exposition. (This elision notation is used throughout this
protocol description to simplify exposition.)

 responds with a challenge .

2.  sets .
3.  sends a commitment  where  are the coefficients of a

randomly sampled univariate polynomial  of degree .

4.  computes univariate polynomial  of degree .

5.  computes at most  degree polynomials  such

that .

6.  sends commitments  for all  where  denotes the vector of
coefficients for .

7.  responds with challenge  and computes .

8.  sets .

9.  sends  and for all  sends  such that  for all
.

10. For all   and  set  to be the lowest degree univariate polynomial
defined such that  for all .

11.  responds with challenges  and initializes .

Starting at  and ending at   sets .
 finally sets .

12.  initializes .

Starting at  and ending at   sets .
 finally sets .

13.  and  initialize .

Starting at  and ending at   and  set .

Finally  and  set  and where  is computed by  as 

using the values  provided by .

14.  sends  where  defines the coefficients of the polynomial
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15.  responds with challenge .
16.  sends  such that  for all .
17.  responds with challenge .

18.  sets  and 

19.  sets .

20.  samples a random polynomial  of degree  with a root at  and sends a
commitment  where  defines the coefficients of .

21.  responds with challenges .
22.  sets .
23.  sets  (where  should correspond with the

verifier's computed value ).
24. Initialize  as the coefficients of  and  and . 

and  will interact in the following  rounds, where in the th round starting in round
 and ending in round :

 sends  and 
.

 responds with challenge  chosen such that  is nonzero.
 and  set  and .
 sets .

25.  sends  and synthetic blinding factor  computed from the elided blinding
factors.

26.  accepts only if .
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B Rustdoc Protocol Description

See next page. (from C/E)
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Crate hacspec_halo2

Step Spec Impl. Protocol Notes

1 NA ?
 and  proceed in the following  rounds of interaction, where in round 

(starting at )

*  sets 

*  sends a hiding commitment  where  are the
coefficients of the univariate polynomial  and  is some random,
independently sampled blinding factor elided for exposition. (This elision
notation is used throughout this protocol description to simplify exposition.)

We denote the
blinding  used in
round  as 

*  responds with a challenge .

2 NA ?  sets .

3 NA link
 sends a commitment  where  are the coefficients of

a randomly sampled univariate polynomial  of degree .
We denote the
blinding  used as 

4 step_4 link  computes univariate polynomial  of degree .

5 step_5 link
 computes at most  degree polynomials 

such that .

6 step_6 link
 sends commitments  for all  where  denotes the

vector of coefficients for .

We denote the
blinding  used in
round  as 

7 step_7 link(?)  responds with challenge  and computes .

8 step_8 link  sets .
 sets 

.

9 step_9 link
 sends  and for all  sends  such that 

for all .

10 step_10 link(?)
For all   and  set  to be the lowest degree univariate
polynomial defined such that  for all .

11 step_11 link  responds with challenges  and initializes .

* Starting at  and ending at   sets .

*  finally sets .

12 step_12 link  initializes .
 initializes

.

* Starting at  and ending at   sets .

Starting at  and
ending at  
sets 

.

*  finally sets .
 finally sets 

13 step_13 ?  and  initialize .

P V n ​a j

0

P a ​(X) =j
′

a ​(X, c ​, c ​, … , c ​, a ​(X, ⋯ ), … , a ​(X, ⋯ , c ​))j 0 1 j−1 0 j−1 j−1

P A ​ =j ⟨a ,G⟩ +′ [⋅]W a′

a ​(X)j
′ ⋅ ⋅

j a ​j
∗

V c ​j

P g (X) =′ g(X, c ​, c ​, … , c ​, ⋯ )0 1 n ​−1a

P R = ⟨r,G⟩ + [⋅]W r ∈ Fn

r(X) n − 1 ⋅ r∗

P h(X) = ​

t(X)
g (X)′

n ​(n −g 1) − n

P n − 1 h ​(X),h ​(X), … ,h ​(X)0 1 n ​−2g

h(X) = ​X h ​(X)
i=0
∑
n ​−2g

ni
i

P H ​ =i ⟨h ​,G⟩ +i [⋅]W i h ​i

h ​(X)i

⋅
j h ​j

∗

V x H =′
​[x ]H ​

i=0
∑
n ​−2g

ni
i

P h (X) =′
​x h ​(X)

i=0
∑
n ​−2g

ni
i

P h =′∗

​x h ​

i=0
∑
n ​−2g

ni
i
∗

P r = r(x) i ∈ [0,n ​)a a ​i (a ​) =i j a ​(ω x)i
′ (p ​) ​i j

j ∈ [0,n ​ −e 1]

i ∈ [0,n ​)a P V s ​(X)i

s ​(ω x) =i
(p ​) ​i j (a ​) ​i j j ∈ [0,n ​ −e 1)

V x ​,x ​1 2 Q ​,Q ​, … ,Q ​ =0 1 n ​−1q
O

i = 0 n ​ −a 1 V Q ​ :σ(i) = [x ​]Q ​ +1 σ(i) A ​i

V Q ​ :0 = [x ​]Q ​ +1
2

0 [x ​]H +1
′ R

P q ​(X), q ​(X), … , q ​(X) =0 1 n ​−1q
0

P
q ​, q ​, … , q ​ =0

∗
1
∗

n ​−1q

∗

0

i = 0 n ​ −a 1P q ​ :σ(i) = x ​q ​ +1 σ(i) a (X)′

i = 0
n −a 1P

q ​ :σ(i)
∗ =

x ​q ​ +1 σ(i)
∗ a ​i

∗

P q ​(X) :0 = x ​q ​(X) +1
2

0 x ​h (X) +1
′ r(X)

P q ​ :0
∗ =

x ​q ​ +1
2

0
∗ x ​h +1

′∗ r∗

P V r ​(X), r ​(X), … , r ​(X) =0 1 n ​−1q
0



Step Spec Impl. Protocol Notes

* Starting at  and ending at   and  set 
.

* Finally  and  set  and where  is computed by  as

 using the values  provided by .

14 step_14 link

 sends  where  defines the coefficients of the

polynomial 

The blinding  used
here is denoted as 
.

15 step_15 link  responds with challenge .

16 step_16 link  sends  such that  for all .

17 step_17 link  responds with challenge .

18 step_18 link

 sets  and

19 step_19 link  sets .

 sets 

.

20 step_20 link
 samples a random polynomial  of degree  with a root at  and

sends a commitment  where  defines the coefficients of
.

The blinding  used
here is denoted as .

21 step_21 link  responds with challenges .

22 step_22 link  sets .

23 step_23 link
 sets  (where  should correspond with

the verifier’s computed value ).
 sets 

24 step_24 link
Initialize  as the coefficients of  and  and 

.  and  will interact in the following  rounds, where in the
th round starting in round  and ending in round  :

*  sends  and 
.

The blinding  used
for  is denoted 
and the blinding used
for  is denoted 

*  responds with challenge  chosen such that  is nonzero.

*  and  set  and .

*  sets .

25 step_25 link
 sends  and synthetic blinding factor  computed from the elided

blinding factors.

 sets 

26 step_26 link
 accepts only if 

.

i = 0 n ​ −a 1P V r ​(X) :σ(i) = x ​r ​(X) +1 σ(i)

s ​(X)i

P V r ​ :0 = x ​r ​ +1
2

0 x ​h +1 r h V

​

t(x)
g (x)′

r,a P

P Q =′ ⟨q ,G⟩ +′ [⋅]W q′

q (X) =′
​x ​ ​ ​ ​

i=0
∑
n ​−1q

2
n ​−1−iq

⎝⎜
⎛

​ X−ω x
j=0
∏

n ​−1e ( q ​ ​( i)j )
q ​(X)−r ​(X)i i

⎠⎟
⎞ ⋅

q′∗

V x ​3

P u ∈ Fn ​q u ​ =i q ​(x ​)i 3 i ∈ [0,n ​)q

V x ​4

V P = [x ​]Q’ +4
n ​q [x ​]Q ​

i=0
∑
n ​−1q

4
n ​−1−iq

i

v = x ​ ⋅4
n ​q

​ x ​ ​ +
i=0

∑
n ​−1q ( 2

n ​−1−iq (
  ​

(x ​
− ω x)∏ j=0

n ​−1e
3

(q ​) ​i j

u ​ − r ​(x ​)i i 3 ))   ​x ​u ​∑ i=0
n ​−1q

4
n ​−1−iq

i

P p(X) = x ​ ⋅4
n ​q q’(X) + ​x ​ ⋅

i=0
∑
n ​−1q

4
n ​−1−iq q ​(X)i

P p =∗ x ​ ⋅4
n ​q

q’ +∗
​x ​ ⋅

i=0
∑
n ​−1q

4
n ​−1−iq

q ​i
∗

P s(X) n − 1 x ​3

S = ⟨s,G⟩ + [⋅]W s
s(X)

⋅
s∗

V ξ, z

V P =′ P − [v]G ​ +0 [ξ]S

P p (X) =′ p(X) − p(x ​) +3 ξs(X) p(x ​)3

v

P p =′∗ s ⋅∗

ξ + p∗

p′ p (X)′ G =′ G b =
(x ​,x ​, … ,x ​)3

0
3
1

3
n−1 P V k

j j = 0 j = k − 1

P L ​ =j ⟨p ​,G ​⟩ +′
hi

′
lo [z⟨p ​,b ​⟩]U +′

hi lo [⋅]W R ​ =j

⟨p ​,G ​⟩ +′
lo

′
hi [z⟨p ​,b ​⟩]U +′

lo hi [⋅]W

⋅
L ​j L ​j

∗

R ​j R ​j
∗

V u ​j 1 + u ​x ​k−1−j 3
2j

P V G :′ = G ​ +′
lo u ​G ​j

′
hi b := b ​ +lo u ​b ​j hi

P p :′ = p ​ +′
lo u ​p ​j

−1 ′
hi

P c = p ​

′
0 f

P f = p +′∗

​ L ​ ⋅∑j=0
k−1

j
∗ u ​ +j

−1

r ​ ⋅j
∗ u ​j

V ​[u ​]L ​ +∑j=0
k−1

j
−1

j P +′
​[u ​]R ​ =∑j=0

k−1
j j [c]G ​ +′

0 [cb ​z]U +0

[f ]W



C Git repository

https://github.com/Hvassaa/hacspec

D Test of rotate_polyx

1 fn t e s t_ro ta t e (
2 x : u128 , a0 : u128 , a1 : u128 , a2 : u128 ,
3 a3 : u128 , a4 : u128 , a5 : u128 , a6 : u128 )
4 {
5 l e t omega =
6 FpVesta : : from_hex ("
7 00003 a57bee9fb370430aa5f610ed09c17
8 fe7e538bca7c94ad2b1ba3a33bc04980a4 "
9 ) ; //omega from halo2

10
11 l e t x = FpVesta : : f r om_l i t e r a l ( x ) ;
12 l e t a0 = FpVesta : : f r om_l i t e r a l ( a0 ) ;
13 l e t a1 = FpVesta : : f r om_l i t e r a l ( a1 ) ;
14 l e t a2 = FpVesta : : f r om_l i t e r a l ( a2 ) ;
15 l e t a3 = FpVesta : : f r om_l i t e r a l ( a3 ) ;
16 l e t a4 = FpVesta : : f r om_l i t e r a l ( a4 ) ;
17 l e t a5 = FpVesta : : f r om_l i t e r a l ( a5 ) ;
18 l e t a6 = FpVesta : : f r om_l i t e r a l ( a6 ) ;
19 l e t a7 = a0 ∗ a1 ∗ a2 + a5 ;
20 // a7 i s pseudorandom as quickheck only a l l ows 8 arguments
21
22 l e t poly = Seq :: <FpVesta >: : from_vec ( vec !
23 [ a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]
24 ) ;
25 assert_eq ! ( poly . l en ( ) , 8 ) ;
26
27 l e t poly_rotated_cur = rotate_polyx (
28 poly . c l one ( ) , FpVesta : :ONE( )
29 ) ;
30 l e t poly_rotated_next = rotate_polyx (
31 poly . c l one ( ) , omega
32 ) ;
33 l e t poly_rotated_prev = rotate_polyx (
34 poly . c l one ( ) , omega . inv ( )
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35 ) ;
36
37 assert_eq ! (
38 eval_polyx ( poly . c l one ( ) , x ) ,
39 eval_polyx ( poly_rotated_cur . c l one ( ) , x ) ,
40 ) ;
41 assert_eq ! (
42 eval_polyx ( poly . c l one ( ) , x ∗ omega ) ,
43 eval_polyx ( poly_rotated_next . c l one ( ) , x ) ,
44 ) ;
45 assert_eq ! (
46 eval_polyx ( poly . c l one ( ) , x ∗ omega . inv ( ) ) ,
47 eval_polyx ( poly_rotated_prev . c l one ( ) , x ) ,
48 ) ;
49 }

E Rustdoc on Github Pages

https://hvassaa.github.io/hacspec_halo2/

F Latex Project

https://github.com/Hvassaa/Master-Thesis/
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