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Abstract

Stealth address is a known technique to ensure the privacy (anonymity) of a recipient participating in a certain transaction in a
distributed blockchain scenario. However, most existing stealth address schemes require linear judge time and search time O(n), where
n is the number of transactions of a certain block, so the only way to claim transactions for a recipient is to traverse the transaction
list to find out whether an ever-arrived transaction belongs to him. To overcome this drawback, we proposed the notion of Fast Stealth
Address (FSA), a novel approach that simultaneously preserves privacy and improves search efficiency of recipients. We give a generic
construction of FSA scheme under subgroup membership assumption related to factoring and instantiate concrete schemes based
on specific number-theoretic assumptions. Our framework mainly improves on two aspects: (i) allowing constant recognize time O(1)
to judge whether a certain block contains recipient’s transactions and (ii) allowing logarithmic search time O(logn) to find out the
precise transactions intended for a recipient. We formalize the security model of an FSA scheme and provide provable security analysis
to ensure the security of our constructions. Besides, we implement our schemes to measure their real-world performance on several
metrics and give comparison results to stealth address scheme utilized by Monero.
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1. INTRODUCTION

Blockchain [1] is regarded as a distributed public ledger, which
means that all nodes in the network can access the contents
recorded in the ledger. As the ledger is completely public, the
blockchain itself has no privacy protection, and additional tech-
nologies are needed to protect the privacy of transactions.
During the past few years, quite a few cryptographic techniques
such as ring signature [2], stealth address [3] and zero-knowledge
proof [4] have been employed to ensure transaction privacy for
senders, recipients and transaction amount in blockchains. This
work focuses on stealth address, a privacy protection technique
for recipients of cryptocurrency transactions. Generally speaking,
the stealth address scheme allows the sender to create a random
one-time address from the actual address of the recipient so that
different payments for the same payee are unlinkable. The secu-
rity requirement of a stealth address scheme can be described as
that any external observer cannot distinguish the target recipient
from a non-target recipient after observing the corresponding
stealth address field. The recipient keeps the actual address key
pair to accomplish certain computations so as to find out his
transactions from the blockchain ledger. However, most existing
privacy-centric schemes, such as Monero [5] and MimbleWimble
[6], require the recipient to continuously calculate a value from
the claimed one-time address and find the corresponding match
in the blockchain. The judge and search time of all existing secure
stealth address schemes are thus linear with the total number
of all stealth address transactions. This makes it very difficult to

retrieve from large-scale transactions, which are often encoun-
tered in most practical scenarios. Therefore, it is expected that
there will be an improved scheme that can support asymptotically
faster retrieval of batch transactions based on stealth addresses,
so as to improve the overall performance of the blockchain system
under privacy protection.

Motivated by the challenging problem of high-performance
private cryptocurrency, recent years have witnessed an exten-
sive literature for privacy-preserving applications where recipient
anonymity needs to be protected. In a recent work Beck et al. [7]
introduced a novel cryptographic primitive named Fuzzy Mes-
sage Detection (FMD) that allows a server to perform outsourced
detection of messages for each recipient. For each recipient, the
server will detect ciphertexts and maintain a list of ciphertexts
thatcould be intended for him. This list includes a certain fraction
p of false positive. This approach provides the recipients with
a tunable parameter p and can therefore trade-off privacy for
efficiency. Specifically, the work done by recipientis O(p-N), where
N is the total number of ciphertexts. A major drawback is that
if full privacy (p = 1) is required, the recipient still needs to
do O(N) work. Here full privacy means that a ciphertext can be
associated with every recipient with the same probability. This
encounters the same linear scanning barrier as mentioned before
in the cryptocurrency setting. Another recent work [8] introduced
the problem of private signaling that abstracts several real-world
recipient-anonymous applications including stealth address pay-
ments and gave concrete solutions, but the proposed scheme
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must resort to the trusted execution environment (TEE) and thus
is not a pure cryptographic solution.

Based on these results, we found that a full privacy scheme
with recipient computation efficiency still remains unsolved. So
a natural question one could come up with is that whether there
is a cryptographic solution for the stealth address payments that
achieves full anonymity with lower complexity for the recipient?

Our Contributions. In this work, we answer the above question
affirmatively and aim at providing a better framework of stealth
address which offers a mechanism that the one-time addresses
can be structurally bundled up so that a faster scanning strategy
can be applied. For this purpose, we assume there are special
nodes called the Helper, which has sufficient storage capacity
dedicated to filtering transactions for recipients. The Helper will
collect a bunch of stealth addresses at predefined time intervals,
e.g. a block generating time, and build a binary search tree to
record the addresses in the leaf nodes that are linked to the under-
lying transactions. From this tree, every recipient could privately
judge whether or not the current block contains a transaction for
him only by checking the root node, which takes only constant
time O(1) independent of the number of transactions in a certain
block. And he can further locate transactions intended for him
along paths from the root to all possible leaf nodes in logarithmic
complexity O(logn), where n is the total number of transactions
in a block.

To accomplish the above framework, we propose the notion of
Fast Stealth Address (FSA) supporting fast retrieval of cryptocur-
rency transactions. Specifically, we give a generic construction of
FSA scheme based on subgroup membership assumptions related
to factoring that naturally adapts to the generation of a binary
search tree. In particular, our contributions are 3-fold:

e Formalization of FSA scheme. We first formalize the syn-
tax and the security models for an FSA scheme, capturing
the functionality and security (privacy of recipients) require-
ments that the cryptocurrency practice imposes on private
transactions.

e A generic construction of FSA scheme and provable security.
We propose a general construction of FSA scheme based on
a wide class of cryptographic assumptions named subgroup
membership (SM) assumptions related to factoring. The general
scheme supports logarithmic search time over the entire
transaction list and we prove its security in the standard
model.

e Concrete FSA schemes with provable security. Based on 2%-QR
assumption and p’-subgroup Decision assumption, respec-
tively, which can be seen as concrete instantiations of SM
assumption, we construct two concrete FSA schemes satis-
fying fast retrievability and security requirements.

To show the process of the proposed FSA, we first define four
phases: (i) Setup, (i) Transaction, (iii) Search Tree Generation and
(iv) Retrieval. The sequence of the proposed algorithms utilized
by the entities (i.e. Sender, Recipient, Helper) during each of
these phases is given as a flowchart in Fig. 1. During the Setup
phase (steps 1 and 2), a public parameter (pp) and various key-
pairs (i.e. (pki,sk;)) are defined. On the other hand, during the
Transaction phase (step 3), a sender prepares an address Addr
and attaches it to the transaction. And during the Search Tree
Generation phase (step 5), a Helper collects a certain amount of
incoming transactions from a block and packs them into a binary
search tree BT. During the Retrieval phase (step 6), the recipient
logs in his account online and requests for reclaiming his assets
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Figure 1. Illustration of FSA flows and algorithms

to the Helper. In response, the Helper finds the results for the
available addresses and forwards these results to the Receiver as
a transaction list L.

Technical Overview. Our scheme is constructed based on the
subgroup membership assumption which is studied in [9-12].
We consider the SM assumption in a slightly different setting
that the hardness problem is always related to an RSA modulus
N = pq and a trapdoor exists. Recall that the SM assumption
posits that a random value of a subgroup G, is computationally
indistinguishable from a random value of a universe group Gy
such that Gy € Gy.In our setting, the membership in the subgroup
Gy is decidable with the help of some trapdoor information
related to the factorization of N. That is, one can decide if a group
element x € Gy resides in subset G; with .

In our scheme, a stealth address is always constructed by the
sender as a ‘mixed hint’ indicating whether or not a recipient will
receive a transaction. Specifically, each recipient owns a modulus
which defines a subgroup membership problem. When initiat-
ing a transaction, the sender chooses a random non-subgroup
element denoting ‘yes’ for the intended recipient and chooses
random subgroup elements representing ‘no’ for all unintended
recipients. Then the sender combines all these hints into a mixed
hint and uses it as the stealth address. Whenever coming online,
the intended recipient could derive from this address a hint
‘yes’ using his secret key, while all other recipients could obtain
a hint ‘no’. Besides, any polynomial-time observer cannot tell
whether an element implies ‘yes’ or ‘no’ relative to a recipient’s
modulus.

We explain thebasicidea of the schemein more detail. Suppose
there are n recipients {R4, - -- ,R,}, and each recipient possesses a
key pair (pk;, sky) (i € [n]). A public key pk; consists of group param-
eters (Nj,g;), where g; is a random generator of a cyclic group
G“) C Zy,. The group parameters implicitly define an instance
of SM problem SM(NH oy When a sender initiates a transaction
intended for a target recipient R;, he chooses group elements
hi,ha,- -+, hi_1,gi, hiy1, -+, hn acting as hints for recipients such
that by & G forj # i and g; € G\G (We require that both
Gy and G}’ allow efficiently uniform sampling.). Then the sender
computes the ‘mixed hint’ H = [h1,hy, -, hi_1,i,hiyq, -+, hs] and
packs it into the transaction. The square bracket here is a bi-
directional function such that every recipient could recover from
H his part of hint. Since each R; possesses the secret key sk;, he can
determine whether or not his hint lies in Gf) and therefore knows
if the corresponding transaction belongs to him. In particular,
gi ¢ G‘Li’ sothat R; knows he gets a transaction. The anonymity of R;
maintains since for all j # i, R; cannot know which of {h;};; comes
from the non-subgroup since the subgroup membership problem
of G in G} is intractable without the trapdoor information sk;.



Note that this achieves the security notion of full anonymity in
the sense that for any external observer, the probability that he
guesses the correct identity of the target recipient is exactly 1/n.

Up to now, we have finished the demonstration of the ingre-
dients that a ‘mixed hint’ contains. It seems that the only way to
look for possible transactions is to search one by one. For example,
given two values Hi,Hj, each recipient starts from Hi, splits it
and judges the membership of individual elements separately and
then repeats the same process to Hs to find out all the potential
targets. How can we achieve a better strategy than linear scan?

The picture will be clear if we combine two or more stealth
addresses together. Given

Hy =[hy, hy, -+ hisg, i higr, - ],

Hy = [, hy, - h_ WK

» -1 T Mg

ol

we can generate a combined value

Haz = [hhf, - hidhi g, g higahg g, - g

which can be seen as a component-wise multiplied value. The
point is that the membership of group elements in each position
preserves if there ever exists a non-subgroup element somewhere
in an H-value. As is shown above, the membership of group
element in the i-th position of H(, remains the same as Hi,
even after the joining of Hy. This will always hold no matter
how many H-values participate in the generation of the combined
value. From this single value, R; can know if any transactions ever
arrive, thus the recognition complexity is O(1) independent of
the total number of transactions. Furthermore, given m stealth
addresses, if we build a binary tree tying every two adjacent
values, we can achieve a logm scan over the entire transaction
list. The leaf node simply records the H values and each non-
leaf node is computed as the multiple of its children. The number
of the leaves corresponds to the number of stealth transactions.
Whenever a user comes online, he can check whether the root is
a non-subgroup value with respect to his modulus. If not, then he
did not receive a transaction. If yes, then he can check which of the
child nodes is a non-subgroup value with respect to his modulus
and recursively can find the corresponding H; value. This process
will be elaborated in Section 4.

Related work. Due to its decentralization, tamper-resistance,
openness and transparency, blockchain has gained wide applica-
tion in the fields of finance, smart grid [13, 14], internet of things
[15-17] and supply chains [18, 19]. At the same time, openness
and transparency inevitably threaten the privacy of users in
transactions.

A significant amount of work has been done in privacy-
preserving blockchain scenarios, such as FMD [7], private
signaling [8], stealth address etc.

The initial stealth address scheme was proposed by a Bitcoin
Forum member known as ‘ByteCoin’ in 2011, which was then
improved in [5] by introducing the random ephemeral key pair
and fixing the issue that the sender might change the mind
and reverse the payment. Later on, a dual-key enhancement
to the previous stealth address schemes was implemented in
2014, which utilized two pairs of cryptographic keys for desig-
nated third parties (e.g. auditors, proxy servers, read-only wal-
lets, etc.) removing the unlinkability of the stealth addresses
without simultaneously allowing payments to be spent. Stealth
address is considered as a lightweight solution to enhance privacy
and has been widely deployed by cryptocurrency communities,
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e.g. Bitcoin Hierarchical Deterministic Wallets (HD Wallets) [20],
Cryptonote [21], Monero [S, 22|, Zcash [4] and other blockchain
technologies.

The rest of the paper is organized as follows. Section 2 gives the
mathematical background knowledge and definition of subgroup
membership assumption related to factoring. Section 3 gives a
brief overview of the system model applied by stealth address,
followed by the formal definition of newly proposed FSA scheme.
In Section 4, we present a generic construction of FSA scheme
and analyze its security. In Section 5, we give concrete instan-
tiations under 2*-QR and p’-subgroup decision assumptions, fol-
lowed by security analysis. In Section 6, we give implementation
and evaluation results of our concrete schemes. Finally, Section
7 concludes this work and gives future direction in this line of
research.

2. BACKGROUND
2.1. Notations

. € N denotes the security parameter and 1* denotes its unary
form. If x is a binary string, then |x| denotes its bit-length. If S is
a finite set then |S| denotes its size. We use x Esto represent
sampling an element x uniformly from set S. For an integer n, we
use [n] to denote the set {1, 2,---,n}. Algorithms are randomized
unless explicitly noted. PPT stands for probabilistic polynomial
time. A function is negligible if for every ¢ > 0 there exists an xo
such that for all x > xo, f(x) < 1/x°.

2.2. Blockchain

Blockchain [23] is a distributed ledger where data are stored in
chained blocks publicly accessible to the network nodes. Any
activity or exchange of resources made by network participants
is stored in the blockchain as a transaction. Transactions are
grouped and inserted into a block. Each block contains the hash
of the previous block that creates a link between the blocks,
comparable with a chain, making the blocks immutable. Before
transactions are entered into the blockchain, peers of the net-
work must agree on their validity. In distributed computing, this
problem is known as consensus [24]. According to the way the
network nodes are selected, a blockchain can be classified as
permissionless or permissioned. A permissionless blockchain per-
mits to anonymous nodes to participate in consensus. In contrast,
in a permissioned blockchain, only selected nodes are authorized
to join the network and participate in distributed consensus. In
this paper, we consider a permissioned blockchain.

Before presenting our result, we review the definition of
composite order groups and describe the subgroup membership
assumption on which the security of our stealth address schemes
are based.

2.3. Quadratic Residues and Jacobi Symbols

Let N = pq be the product of two odd primes p and q. We use J(N)
to denote the set of elements in Zj, with Jacobi Symbol 1; we use
QR(N) to denote the set of quadratic residues (squares) modulo N.
The groups J(N) and QR(N) have orders %N’ and %{“, respectively.

2.4. r-thresidues and residue symbol

For each integer r > 2, the subgroup of r-th power residues [25, 26]
modulo N is denoted by (Z})" = {x" | x € Z}}. We say that y € Zj,
is an r-th residue modulo N if there is an x € Zj; such thaty = X’
mod N. If y = x” has no solution in Z};, then y is called an r-th
non-residue.
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Definition 2.1. (r-th residue symbol). Let p be an odd prime
and letr > 2 such thatr | p — 1. Then the symbol

().~
— ) =a
pJy

is called the r-th residue symbol modulo p.

mod p

For any integer a with gcd(a, p) = 1, a is an r-th residue modulo
pif and only if

a
—) =1 mod
(5), =1 moar

2.5. Chinese Remainder Theorem
Theorem 2.1. Let the integers ni, ny, - - -, nx be positive
which are relatively prime in pair, i.e. gcd(n;, nj) = 1
when i # j. Furthermore, let n = niny - -- ng and let

X1,---, Xk be integers. Then the system of congruences
x=x; modm
X=X, modn;
x=Xxr mod m

has a simultaneous solution x to all of the congruences,
particularly there exists exactly one solution 0 < x < n.

The unique solution x of the simultaneous congruences satis-
fying 0 < x < n can be calculated as

k
X = (mesi) mod n,
i1

where r; = n/n; and s; = Tfl mod n; fori € [k]. As a consequence of
the Chinese Remainder Theorem (CRT), any positive integer a < n
can be uniquely represented as a k-tuple [a1,az,--- ,ax] and vice
versa, where a; denotes the residue a; mod n; for each i € [k].

2.6. Subgroup Membership Assumption Related
to Factoring

We will let N be a product of two different primes throughout the
remaining parts of the paper.

Let a ‘universe’ group Gy < Zj and a ‘language’ group G <
Zy;, be multiplicative subgroups of Zj; such that G, < Gy. The
subgroup membership problem denoted by SMg, ¢, is to decide

whether or not a given element x &6y belongs to Gi. More
formally,

Definition 2.2. The subgroup membership problem is
always associated with a pair of algorithms (Gen, Decide)
with the following properties. There is a PPT group
generator algorithm Gen that takes as input a security
parameter 1* and outputs a tuple
Ig, = ((Gy),[G1],9, h, 7), where [Gy] (resp. [GL]) is the
description of a universe group Gu(resp. [G]), g (resp. h)
is the generator of Gy (resp. Gr) and r is the trapdoor
such that:

® SMg,c,) 1s computationally intractable without the trapdoor.
Formally, for any PPT adversary A, the subgroup distinguish-
ing advantage of A

Advy " = |Pr{A(Gu]. [G1]. 0 = 11 x £ Gy]

~PILA(GY] (6.0 = 11 x £ 6]

must be negligible in A.

¢ Decide(x,7) — {0,1} is a deterministic polynomial-time algo-
rithm that takes as input a group element x € Gy and the
trapdoor t, outputs 1 if x lies in the language group G or 0
otherwise.

The following lemma is basic but useful in constructing our
scheme.

Lemma 2.1. Let Gy be a group, and G; be a subgroup of Gy;.
Foranyge Gy,andh e Gi,g-h e G if and only if g € G;.

2.7. Instantiations

Next we instantiate the SM assumption based on the 2*-QR [27]
and p’-subgroup decision assumptions.

2.7.1. Instantiation Under the 2¥-QR Assumption

We first recall the 2¥-QR assumption proposed by Joye et al. [27]
(called Gap 2*-Residuosity Assumption in the context of [27]) in
its original form and further analyze how to transform it to the
standard form according to our definition of SM.

Definition 2.3. (28-QR Assumption). Let Gen be a PPT
algorithm which, given a security parameter A, outputs
primes p and q such that p,q=1 mod 2*. The 2*-QR
problem in Zj; consists in distinguishing a uniform
element of V, from a uniform element of V; given only
N = pq, where V, and V; are defined as follows:

Vo = {x | x € JIN)\QR(N)},
Vi={* modN|y ez}

The %k-QR assumption posits that the advantage
Adui'QR(A), defined as

Ade:'QR = [PIlAN, k,x) =1 x & V)
—Pr[AN,k,x) =1|x & Vi)

is negligible for any PPT distinguisher A.

We slightly change the form of primes p and q such that p =
2kp' + 1,9 = 2%q + 1, where p/,q’ are also primes. The benefit to
do sois that both V; and V; become multiplicative (cyclic) groups.
To see so, we follow the discussion in [28]. In this setting, we can
decompose Zj; as an internal direct product

Zj = Gpg - Gy - T,



where each group G; is a group of order t. As already analyzed in
[28], a random element g € J(N)\QR(N) will have order 2*p'q’ with
overwhelming probability. Let Gy = Gpq - G and Gp = Gpq. For
now the 2¥-QR assumption can be redeemed as that it is compu-
tationally infeasible to distinguish elements of Gy\G. from that
of G;. Besides, we can efficiently determine the membership of x
in Gy provided that the trapdoor (p, q) is available. The algorithm
Decide is defined as: on input x, (p,q), outputs 1 if (g)zb = 1and
(3)2: = 1, outputs 0 otherwise.

2.7.2. Instantiation Under the p’-subgroup Decision
Assumption with Any Strong RSA Integer

Consider now a strong RSA modulus N = pq, wherep =2p'+1,q =
2q' +1,and p,q are also primes. Let N’ = p’q’. Consider the group
Z}, and the subgroup of Zj;. We can decompose Z;; as an internal
direct product

Zi=Gn -Gy T=Gy Gg-Go-T,

where each group G: is a cyclic group of order t, and T is the
subgroup generated by (—1 mod N).

This decomposition is unique, except the choice of G,. For any
X € Zy, we can express x uniquely as x = x(Gp)x(Gg)x(G2)x(T),
where for each G, x(G;) € G; and x(T) € T. By setting Gy =
Gy and G, = Gy, the p’-subgroup Decision assumption is that
for a properly generated N, the distribution {x | x « Gy} and
{x | x < Gp} are computationally indistinguishable. We can
efficiently determine the membership of x in G, provided that
the trapdoor p’ is available. The algorithm Decide is defined as: on
input x,p’, outputs 1if x* mod N = 1, outputs 0 otherwise.

3. FSA SCHEME

In this section, we present the system model adopted by an FSA
scheme. Then we formalize the definition and security model for
FSA scheme.

First, we emphasize that the principal motivation of the pro-
posed FSA is to overcome the limitation in the existing SA schemes
that allow an exhausting search and thus become inefficient
when the transaction scale increases. Thus, FSA is aimed at sup-
porting an SA scheme with the novel provision for fast retrieval of
the oriented transactions and thereby avoiding linear lookups.

3.1. System Model

We assume the standard blockchain communication model
where users communicate with each other over a partially
synchronous network. We consider a permission-based model,
where explicit registration is required for becoming a member
of the system. Users can have the following roles: Senders, and
Recipients, who utilize the service provided by the blockchain.
They submit requests in the form of transactions. There are
also Helpers which are special blockchain nodes with sufficient
storage capacity. Their task is to collect the stealth addresses of
transactions, then build auxiliary search trees and help recipients
retrieve matching stealth addresses from the tree.

As shown in Fig. 2, a transaction sender generates a stealth
address Addr for a recipient and appends it to the fragment
‘receiver’ of a transaction Tx. After a period of time, a bunch
of transactions have been encapsulated into a block on the
blockchain. Later, a helper on chain utilizes the information of
the entire list of transactions of a block to build a complete
binary search tree to help recipients with fast searching If a
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recipient comes online and wants to decide if a block contains
his transactions, he first downloads the root node of this block
from the helper. Using secret key sk;, he is then able to decide
the existence of his transactions in constant time. If transactions
exist, he can further interact with the helper layer by layer and
finally find out the exact positions of his transactions in the
block.

3.2. Threat Model

We assume that senders are honest and rational which means
that before the transaction creation, they will compute the
address value correctly. Besides, helpers are honest in the sense
that they will collect addresses honestly and insert leaves in the
tree correctly.

We assume that an adversary has the capabilities to perform
the following attacks: (1) The external eavesdropper, as an
adversary can perform passive attack to deduce the target
recipients from the available lists of stealth addresses. (2) The
internal malicious user, as an adversary can perform collusion
attack to threaten the privacy of an honest recipient. With
this kind of adversary, we define anonymity for the proposed
stealth address scheme based on the security game described in
Section 3.4.

Note that the adversary in the above model is allowed to
generate key pairs and corrupt some recipients to obtain the
corresponding secret key of its choice. This captures the security
requirement that any curious user could observe the incoming
transactions and the derived addresses to analyze the transaction
flow, whether it be a newly joined user or a corrupted user.

3.3. Definition of FSA Scheme

Intuitively, a stealth address scheme is analogous to public key
encryption with some modifications. Key generation is the same,
equipping a user i with a pair of keys (pk;, sk;). The encryp-
tion procedure is substituted by a randomized stealth address
generation algorithm AddrGen that on input solely a public key
without a payload (message) produces an address value Addr.
There is no decryption procedure but a match judging algorithm
Test that on input an address and secret key sk; detects whether
Addr was derived from the corresponding public key pk;. For
privacy, we require target anonymity: any polynomial time adver-
sary who is given an honestly generated address and unintended
recipients’ secret keys must be unable to distinguish between
target recipient’s address and random values in the range of valid
addresses.

Formally, a Fast Stealth Address scheme FSA consists of a tuple
of PPT algorithms (Setup, KeyGen, AddrGen, Test, BTGen, Retrieve)
defined as follows.

e Setup(1*) — pp: On input a security parameter A in unary,
outputs public parameters pp. The public parameters pp are
common inputs used by all users in the system. pp define the
user identity space I, and the maximum size of the anonymity
set S. We use pp as an implicit input to every algorithm.

* KeyGen(1*) — (pki,ski): On input a security parameter, out-
puts a key pair (pk;, sk;) for user i, in which pk; is called user’s
public key and sk; is called user’s secret key.

¢ AddrGen(pk;, S) — Addr: Oninput a target user’s publickey pk;,
and a list of public keys S = {pky, - -- , pky}, outputs a stealth
address Addr. We assume that (1) the input public key pk; and
the corresponding secret key sk; is a valid key pair output by
KeyGen and pk; € S, (2) the list of public key S is an ordered
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Figure 2. System Model.

set, namely, when itis used in algorithms, the public keys are
ordered and each one has an index.

e Test(Addr,sk;) — {0,1}: On input a transaction address Addr
and user i's secret key sk;, output a bit b representing whether
or not the transaction tied to Addr belongs to user i.

* BTGen({Addr®}! ) — BT: Suppose that ablock contains T = 2
transactions. This algorithm builds a complete binary-tree BT
which supports fast retrieval of transactions.

e Retrieve(BT, pki,skj) — L: On input user i's key pair, this
algorithm searches for all transactions belonged to user i
according to BT and outputs a set L containing the transaction
identifiers.

We require that FSA satisfies functional and security proper-
ties, which can be referred to as correctness, fast retrievability and
anonymity.

Correctness. FSA is correct if valid matches always meet the Test
algorithm. More formally, the following holds:

Pr [Test(Addr,ski) Loq | PResk) < KeyGe"u");]

Addr < AddrGen(pk;, S)

Fast Retrievability. FSA satisfies fast retrievability if there exists
an algorithm Retrieve that outputs a list of transactions L in time
O(tlogn), where nis the total number of transactions and ¢ is the
number of transactions belonged to user i.

Note that the first four algorithms constitute a normal stealth
address scheme which may not be equipped with a fast retrieving
strategy.

3.4. Security Model

A secure stealth address scheme should satisfy anonymity, which
guarantees that no one can find a match between a stealth
address generated from a target recipient’s public key and the
recipient’s long-term public key without the corresponding secret
key. Formally, we define the security properties in the following
game.

Anonymity. A (fast) stealth address scheme satisfies anonymity,
if for any PPT adversary A, it holds that .A has at most negligible
advantage in the following game Game’{®"(1) with a challenger C.

T

u Helper

® Build binary tree BT; per block

e Setup: C runs pp < Setup(1*) and (pk;, sk;) < KeyGen(1*;1;) for
all i € [n], where n = poly() and r; is the randomness used in
KeyGen. C sets S = {pki, - -, pky} and initializes an empty set
L.. Finally, C sends (pp, S) to A.

¢ Query Phase: A can adaptively query the following oracle:

- Corrupting oracle Corrupt(-): On input an index i € [n]
such that pk; € S, this oracle returns sk; and adds pk; to
L.

¢ Challenge: The previous phase is repeated a polynomial
number of times until A selects a target public key pk;- such
that pki. € S A pki ¢ L. and sends it to C. The challenger
chooses a random bit b e {0,1}, if b = 0 the challenger
chooses a random element in the range of a valid address
and returns it to A. Otherwise, the challenger computes
Addr* < AddrGen(pk;.,S) and returns Addr* to A.

* Guess: A outputs a bit b’ as its guess of b. If b’ = b, C outputs
1, otherwise 0.

We define the advantage of .4 in the above game as
AdvAron = ‘Pr[b’ =b] - 1/2‘

We say that FSA is anonymous if for any PPT adversary A, the
above advantage is negligible.

4. GENERIC CONSTRUCTION OF FSA
SCHEME

4.1. Main Construction
In this section, we demonstrate how to construct an FSA scheme
from subgroup membership problem.

The generic stealth address scheme for subgroup membership
problem SMg, ¢, is defined as follows:

¢ Setup(1*): Takes as input a security parameter A, and chooses
an integer n. Output public parameters pp = n.

¢ KeyGen(1*): Chooses random primes pj, q; according to I, and
compute N; = p;qi. Choose a random generator g; of universal
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Figure 3. Toy example: Searching from eight transactions requires one
computation to identify and three computations to locate.

group Gy and a random generator h; of language group G;.
Set pk; := (Nj, g3, hy), ski = p;. Output key pair (pk;, sk;).

e AddrGen(pk;,S): To generate a transaction address for user i,
first choose a random r e {0, 1}*. Using CRT, compute an
integer such that

YEgi~h1-r mod N;

Y=h modN; V), j# 1
Set the transaction address as Addry, =Y and pack itinto the
transaction. Note that the group element with respect to the
target useris always a non-language group element according
to Lemma 2.1.

e Test(Addr,pki,sk;): Takes as input a transaction address
Addr =Y, first compute y; = Y mod N;. Then run Decide
algorithm on input r = sk; and y; and get the answer b. If
b = 1, user i rejects the transaction tied to Addr; otherwise,
accepts and stores the asset into its wallet.

* BTGen({Addr®}! )): Suppose that a block contains n = 2!
transactions and set Y; := Addr® (for i € [n]). We denote
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Y;-Yj---. To support fast retrieving within a bunch of trans-
actions, this algorithm builds a complete binary-tree BT fol-
lowing the basic procedure below.

1) Extract each stealth address from each transaction of a
block, which are denoted by Y1,Ys, -+, Yy.

2Q)Forl <i < g compute combined elements Y i 10, =
Y5i_1Y5 mod N, which form n/2 groups of transactions,
and store all the middle nodes Y 2), Y34y, -+, Y1 I
order.

3) Iteratively execute step (2) until all nodes are combined
as a single root node. The process can be easily followed

as shown in Fig. 4.

¢ Retrieve(BT, pk;, sk;): Takes as input the binary-tree BT and user
i's public-secret key pair, search for all transactions belong to
user i following the procedure of Algorithm 1.

The functionality being computed by algorithm Retrieve per-
forms the following elementary operations:

1. Begin from the top of the tree by evaluating modular arith-
metic on the node values;

2.Proceed to the t-th depth of the tree applying a binary
search condition on that the current value is not a subgroup
element;

3. Locate the leaf node when the search ends up with the last
layer.

An Example. Fig. 3 shows a specific example to provide a better
understanding of the fast retrieval process. Assume that a block
contains eight transactions. Each transaction associates with an
invisible address Yy (k = 1,...,8). Suppose that Ys is formed

Algorithm 1 Pseudocode of Fast Retrieving Algorithm

Input: i: user i’s public key pk; = (N;, gi, hi), secret key sk; = 7; t: depth of transaction binary tree; T: total

number of transactions;
Output: transaction identifiers that belong to user i;

1: Set d = 0, representing the current search depth of the tree. Pick out the value of root node, namely Y(; 5 ... 7y,
and set R = Y(; 5. 7). Compute root value modulo user i’s moduli: R; = R mod N;;

2: while Decide(R;,7) # 1 do
3 forj=1;j<t; j++ do
4 Set d = d + 1. Pick out the left child of the current node, namely Y(1 5 ... 7/2), set R = Y1 2.... 7/2);
5 judge whether current node is a leaf node (by testing if d = ¢):
6: if d ==t then
7 set R, = R mod N;
8 if Decide(R;,7) # 1 then
9: output Leaf;
10: else
11: output Leaf;iy
12: end if
13: else
14: compute R; = R mod N,
15: if Decide(R;,T) # 1 then
16: Pick out the left child of the current node Y(y 5 ... ;, /9441y, set R = Y1 5 .. ;/0011) and d =d + 1
17: else
18: Pick out the left child of the sibling node Y(,,/0d1,... 3n/20+1), set R = Y, 2141 ... 3n/24+1) and
d=d+1.
19: end if
20: end if
21: end for

22: end while
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Figure 4. Block Tree Generation.

by a sender targeted at recipient with public key pk; = N;j. For
simplicity, we use the notation [-]y to stand for an integer value
modulo N. Recipient i uses his secret key sk; = t to run algorithm
Decide(R;, t) where R; = [R]y, to judge whether this block contains
a target. If so, he does further computations likewise along the
path from root to the leaf as indicated by the arrows.

4.2. Security Analysis

We prove the following theorem to illustrate the security of the
generic construction of stealth address scheme.

Theorem 4.1. If the SMg, ¢,) assumption holds in group
Zy;, then the stealth address scheme satisfies
anonymity.

Proof. Suppose there exists a PPT adversary A that breaks the
anonymity of stealth address scheme with a non-negligible
advantage eann. Then we can construct a PPT simulator B that
solves the SMg, ¢,) problem.

The input of B is (N, [Gu],[G:],x) and the target of B is to
distinguish that x & Gyorx & Gy. Bsimulates the Game’yon.

e Setup: B runs pp <« Setup(1*) and (pk; := (Nj, g;, h), sk =
pi) < KeyGen(1*;1;) for all i € [n], where n = poly(x) and r;
is the randomness used in KeyGen. C sets S = {pki,-- -, pkn}
and initializes an empty set L. Finally, B sends (pp, S) to A.

* Query Phase: A can adaptively query the following oracle:

- Corrupting oracle Corrupt(-): On input an index i € [n]
such that pk; € S, this oracle returns sk; = p; and adds
pki = (Ni, gi, hy) to Le.

¢ Challenge: A selects a public key pki. € S A pki. ¢ Lc, where
pki. is implicitly set by B as (N, x, h;.) and sends it to B. B picks
arandom r € {0, 1}* and a random bit b € {0, 1}. With the help
of CRT, B computes an integer Y such that

Y=x"-h, modN;

Yshj' mod Nj, vj, j #1*

Then B sets Addr* =Y and then returns it to A.

* Guess: Finally, A outputs a bit b’ as its guess of b. If b’ = b, B
outputs 1, otherwise B outputs 0.

There are two cases to distinguish.

e Case 1. Suppose first that x € G,. Clearly, in this case Addris
a uniformly distributed group elementin G; regardless of the
value of b. Thus,

1
Pr[BWN, [Gy],[GL], 0 = 1| x & Gy] = 5

e Case 2. Suppose now that x € Gy. This implies that Addr is
a valid stealth address in the view of A. So the probability of
algorithm B outputting 1 is exactly the same as .4 succeeds
in Gamey", therefore

1
Pr[B(N, [Gy], [GL],x) = 1| x ‘i Gy] = 7 + €anon

To summarize, the distinguishing advantage of Bis calculated
as

PI[B(N, [Gu], [GL],%) = 1| x < Gy]—

Pr[B(N, [Gu], [GL],x) = 1| X < Gu]| = €anon

which must be negligible according to SMg,, ¢,) assumption.

5. CONCRETE CONSTRUCTIONS

5.1. Scheme based on 2*-QR Problem

We now give a description of a concrete scheme based on 2*-
QR Problem. As described before, this FSA scheme FSA1 consists
of algorithms (FSA1.Setup, FSA1.KeyGen, FSA1.AddrGen, FSAL. Test,
FSA1.BTGen, FSA1l.Retrieve).

e Setup(1*): Take as input a security parameter 1, and chooses
an integer k > 1. Output public parameters pp := k.

* KeyGen(1*): Chooses random primes p;, q; satisfying p; = 2*p/+
1,q; = 2%q/ + 1, where p/, q! are also primes, and compute N; =
piqi- Choose a quadratic non-residue h; & JINH\QR(N)). Set
pki == (Nj, hy), sk; = p;. Output key pair (pk;, sk;).



e AddrGen(pk;,S): To generate a transaction address for user i,

first choose a random x < Zy,. Using CRT, compute a joint
integer such that

mod N;

Y=x¥ modN, Vjj#i

[Y =h;- x%
Then it sets the one-time address as Addry, = Y; finally, the
transaction address is (N, Y).
e Test(Addr,pki,sk;): Takes as input a transaction address
Addr = Y, first compute Y; = Y mod N;. Then compute
pi-1
b = (%) = Y% modp.Ifb = 1, user i rejects the
! k
transaction tied to Addr; otherwise, accepts and stores the
asset into its wallet.
. BTGen({Addri}Ll): Same as the generic construction, follow-
ing the procedure shown in Section 4.
* Retrieve(BT, pk;, sk;): Same as the generic construction, follow-
ing the procedure of Algorithm 1.

Computing the exact amount of incoming transactions: In this
scheme, user 1 could calculate the total number of transactions
intended for him from the root node R = Y1 5,... n) very efficiently
following the idea of [27]. To see this, first suppose the exact
number is n; < 2%. Then according to CRT, we must have R = R; =
' (x1-%2 -.x)? mod N;, where x1,x; -- -, x, are random integers
chosen by n different senders. If we view n; as a k-bit integer with
n=>Ffan” .2, wheren? e (0,1}, then the following must hold:

j
n; 2" vy ":’H'QJ
( Ri ) _ h'X h”
pi /o pi ), pi

o

o\ 2
_ (M)
(Pi)2~

for 1 < « < k. This allows for a bit-by-bit extraction of n; using
trapdoor p;. For example, if we take « = 1, then the least significant

bit can be extracted as n§°) =1if (%) =—1 mod p; or ni(O) =0if
/2

mod p;

(0)

nl
(%) =1 mod p; since h; € J(N;)\QR(N;) and (%) = (%)
), ), i

5.2. Scheme based on p’-subgroup Decision
Problem

We now give description of a concrete scheme based on p'-
subgroup Decision Problem. This FSA scheme FSA2 consists of
algorithms  (FSA2.Setup, FSA2.KeyGen, FSA2.AddrGen, FSA2. Test,
FSA2.BTGen, FSA2.Retrieve):

e Setup(1*) — pp: Takes as input a security parameter A, and
outputs public parameters pp.

e KeyGen(1*) — (pki,ski): Chooses random safe primes p; =
2pi + 1, = 29} + 1, and compute N; = p;qi. Suppose that
N; = piq;. Randomly choose two elements x,y € Zj and
set gi = x2 mod N;,§; = y?> mod N;. Note that with high
probability ord(g;) = ord(g;) = N;. Compute h; = G mod N;.
Output a key pair pk; := (N, g;, hy), sk; :=p!.

e AddrGen(pk;,S): To generate a transaction address for user i,
first it chooses a random r; € {0, 1}*; second, it computes an
integer Y; = g; - hir‘ mod Nj; third, it sets Y; = hjr" mod Nj;
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according to CRT, compute a joint number Y such that

Y =gh! mod N; .
Y=h modN; forj#i’

fourth, it computes the user’s one-time address Addry, = Y;
finally, the transaction address is (N, Y).

e Test(Addr, pki, sk;): Takes as input a transaction address
Addr = Y, first compute Y; = Y mod N;. Then compute
b= Yip‘ mod N;. If b = 1, user i discards the transaction tied
to Addr; otherwise, store the asset into its wallet.

. BTGen({Addri}iT:i): Same as the generic construction, follow-
ing the procedure shown in Section 4.

* Retrieve(BT, pk;, ski): Same as the generic construction, follow-
ing the procedure of Algorithm 1.

5.3. Security Analysis

The following theorems illustrate the security of the proposed
(fast) stealth address schemes.

Theorem 5.1. If the 2¥-QR assumption holds in group Zy,,
then the stealth address scheme FSA1 satisfies
anonymity.

Proof. Suppose there exists a PPT adversary A that breaks the
anonymity of FSA1 with advantage eann. Then we can construct
a PPT simulator B that solves the 2*-QR problem with almost the
same advantage.

Let N = pq be a modulus such that p = 2¥p’ + 1,9 = 2¢q' + 1,
Gu = Gyq - Gy and G = Gyq as defined in Section 2.7. The inputs
of Bconsist of (N, [Gy], [GL], h), the target of Bis to distinguish that
nh& Gy orh & Gi. B simulates the Game’{" as follows.

e Setup: B runs pp < Setup(1*) and (pk; ;= (Nj, hy), sk; := p;) <
KeyGen(1*;1;) for all i € [n], where n = poly(x) and r; is
the randomness used in KeyGen. C sets S = {pki,---,pkn}
and initializes an empty set L.. Finally, B sends (pp,S)
to A.

* Query Phase: A can adaptively query the following oracle:

- Corrupting oracle Corrupt(-): On input an index i € [n]
such that pk; € S, this oracle returns sk; = p; and adds
pki = (Nj, hy) to Le.

e Challenge: A selects a public key pki. € S A pki- ¢ Lc, where
pki- is implicitly set by B as (Ni. := N, h; ;== h) and sends it to
B. B picks a random x € Zj; and a random bit b € {0, 1}. With
the help of CRT, B computes an integer Y such that

Y=ht - mod Ny

Y=x" modN; V), j #1°

Then B sets Addr* =Y and then returns it to A.
* Guess: Finally, A outputs a bit b’ as its guess of b. If b’ = b, B
outputs 1, otherwise B outputs 0.

There are two cases to distinguish.

e Case 1. Suppose first that h € G,. Clearly, in this case Addr*
mod N; is uniformly distributed in G regardless of b. Thus,

PHBA, [Gol, G b =11h £ 6] < 2
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e Case 2. Suppose now that h € Gy. This implies that Addr
mod N;- is a well-formed stealth address implicitly targeted
atuser i* when b = 1in the view of A.If A can tell whether or
not Addr* is intended for user 1*, so can the simulator distin-
guish between the case that h € Gy and h € G;. Therefore, the
probability of algorithm B outputting 1 is exactly the same as
A succeeds in Game/y"", therefore

Pr[BNN, [Gul, [Go], ) = 1| h & Gu] = % + €aron

To summarize, the distinguishing advantage of B is calculated

as
Pr[BN, [Gu], [GL. ) =1 h & Gi]—
PI[B(N, [GU]r [GL]: h=1 | h ‘5 GU] = €Anon

which must be negligible according to 2¥-QR assumption. |

Theorem 5.2. If the p’-subgroup Decision assumption
holds in group Zy,, then the stealth address scheme
FSA2 satisfies anonymity.

Proof. Suppose there exists a PPT adversary A that breaks the
anonymity of FSA2 with advantage eanon. Then we can construct
a PPT simulator B that solves the p’-subgroup decision problem
with almost the same advantage.

Let N be a strong RSA modulus, Gy = Gpg and GL = Gy as
defined in Section 2.7. The inputs of B consist of (N, [Gy], [G], h),
the target of Bis todistinguish that h & Gyorh & G.. Bsimulates
the Game”y"" as follows.

e Setup: B runs pp < Setup(1*) and (pk; = (Nj, g;, hp), sk =
pi) < KeyGen(1*;1;) for all i € [n], where n = poly(x) and r;
is the randomness used in KeyGen. C sets S = {pki,-- -, pkn}
and initializes an empty set L. Finally, B sends (pp, S) to A.

* Query Phase: A can adaptively query the following oracle:

- Corrupting oracle Corrupt(-): On input an index i € [n]
such that pk; € S, this oracle returns sk; = p; and adds
pki = (N, g;, hy) to Lc.

¢ Challenge: A selects a public key pki. € SApk;. ¢ L. and sends
it to B. pk;. is implicitly set by B as (N;. := N, gi =, h;. = h).
B picks a random r € {0, 1}* and a random bit b € {0, 1}. With
the help of CRT, B computes an integer Y such that

Y=g’ h. mod N,
Yshjr mod N;, vj, j# 1
Then B sets Addr* = Y and then returns it to A.
* Guess: Finally, A outputs a bit b’ as its guess of b. If b’ = b, B
outputs 1, otherwise B outputs 0.

There are two cases to distinguish.

e Case 1. Suppose first that hi. € G, . Clearly, in this case Addr*
mod N;. = g’ - h; is uniformly distributed in Gy regardless
of b.Therefore, in the view of A the value of b is perfectly
hidden. The probability of algorithm B outputting 1 is exactly
the same as A succeeds in Gamey"; therefore,

PBNV, [Gul, [Gu), ) = 11h & Gy <

N =

* Case 2. Suppose now that h;. € Gp. This implies that Addr is
a well-formed address intended for user i* when b = 1in the
view of A. To elaborate, this case is divided into two subcases
considering the value of b:

- subcase 1: b = 0. Addr* mod N;. = hj, is a normal stealth
address that does not take i* as the target recipient.

- subcase 2: b = 1. Addr* mod N;. = g;. - h. is a normal
stealth address that takes i as the target recipient.

From this observation, it can be deduced that the probability of
algorithm B outputting 1 is exactly the same as A succeeds in
Game’y"; therefore,

1
Pr{B(N, [Gu), (G, =11h £ Gy] = 5 T €anon

To summarize, the distinguishing advantage of B is calculated
as

Pr[B(N, [Gu), [Gi],h) = 1| h < Gpg]—

Pr[B(N, [Gy], [Gi], ) =1 h & Gy]| < €anon

which must be negligible according to p’-subgroup decision
assumption. |

6. IMPLEMENTATION AND EVALUATION

In this section, we implement and evaluate our concrete fast
stealth schemes FSA1, FSA2 based on open-source library. The per-
formance of these two schemes are almost the same and below
we only show the results of 28-QR-based scheme. For simplicity,
we denote this scheme by FSA.

6.1. Implementation

Our implementation works on a 2019 MacBook Pro (Intel Core i7
at 2.6 GHz, 16GB RAM at 2.667 GHz) running MacOS 11.5.1, using
C++ language. The implementations are single-threaded. We use
OpenSSL 1.1.11 open-source library for the generation of prime
numbers and for big number operations over Zy.We implemented
our schemes with parameter |N| = 2048, 3072, which is the bit-
length of a single recipient’s modulus N. Such parameter choices
will provide 112-bit and 128-bit level of security.

6.2. Evaluation Results

We consider different configurations by varying the number of
recipients, for 200 < n < 2000, and we measure the time
performance of the testing and searching operations for each
configuration when transaction quantity consecutively grows.
The results of our evaluation are shown in Figs 3 and 4. Every
plotillustrates the performance trend of a given operation as the
number of transactions T increases. More specifically, Fig. 3 shows
the time of testing whether a transaction exists among a bunch
of transactions, while Fig. 4 depicts the time required to locate the
specific transactions.

We discuss the implementation results of our scheme and give
time complexity comparison with mainstream ECC-based stealth
address scheme applied in Monero (Monero SA for simplicity), the
most popular privacy-centric cryptocurrency. We implement the
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Monero SA scheme, while the curves reflect a logarithmic trend of FSA
searching on the binary-tree built from BTGen algorithm.

Monero SA in the same environment, which is officially running
on Ed25519 Curve with 128-bit level of security.

Recipient Computation. Our experiments show that in the Monero
SA scheme the computation time of a recipient is independent of
the number of recipients in the system and grows linearly with
the number of transactions considering both the test of existence
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and the search process. In our FSA scheme the test process takes
constant time, while the search time grows logarithmically with
the number of transactions. As is also shown, in our scheme a
recipient’s computation time also scales moderately with respect
to the number of recipients. Our FSA scheme obviously outper-
forms Monero SA scheme when taking the scale of transactions
as the main impact factor. For example, it is about 70 ms in
our scheme to search from T = 600 transactions for a system
containing n = 800 recipients, while it is about 250 ms taken in
Monero SA in the same recipient scale. It takes about 20 ms to
search from T = 1000 transactions for n = 200 recipients, while it
is about 400 ms taken in Monero SA scheme. When the value of
n is fixed, the performance of our scheme tends to be stable. This
is due to that the computation cost of a recipient is only related
to the depth of underlying search tree d = log, T, thus is almost
the same when T = 600 or T = 1000. Our scheme is more suitable
for a scenario where there are moderate volume of users but large
scale of transactions.

6.2.1. Sender Computation and Storage Overhead

We assume that a sender is going to send a stealth address
transaction to a recipient with anonymity set size 100, i.e. the
sender chooses 100 users to compute an integer and send it on
blockchain. We measure two parameter settings of our scheme
which achieve different level of security (112,128 bit). The stealth
address generation algorithm of our scheme triggers a process
thatrequires runningmodulus-related exponentiation operations
and a CRT combination process to derive the final stealth address.
The computation overhead of the sender and the address size is
thus proportional to the total number of recipients.

Table 1 gives concrete measurements of FSA in terms of key
size, time to generate an address and stealth address size.

7. CONCLUSION AND DISCUSSION

In this paper, we have introduced the model of FSA that abstracts
real-world recipient anonymous blockchain applications. We pro-
vide a formal definition in the well-formed indistinguishability-
based framework, server-aided solutions that achieve this defini-
tion (in the semi-honest setting), and give implementation results.
Our protocols achieve a logarithmic computational efficiency for
the recipients, requiring only asymptotically minimal overhead.
The workload of the server, however, is proportional to O(n) per
block for n recipients in the anonymity set, which limits the
choice of the parameters of n. We leave it as a future work to
explore techniques to improve the workload of the servers and
the construction of a space-efficient FSA scheme.

The anonymity set is assumed to be the default full set con-
taining all n registered recipients, which inevitably incurs an O(n)-
sized value sent by a sender. It is possible to reduce sender’s
computation overhead by asking the sender to choose the set
of anonymity only on a subset m out of n of all recipients. This
gives us a similar trade-off between privacy and sender efficiency

Table 1. Sender computation cost and communication overhead of FSA

Scheme Security Level Key Size (bytes) AddrGen (ms) Address Size (KB) Search Time of 1000 Tx (ms)
Monero SA 128 pk: 65 sk: 32 0.47 0.064 420.13

FSA-2048 112 pk: 256 sk: 128 0.39 24.9 17.41

FSA-3072 128 pk: 384 sk: 192 0.82 37.49 43.87
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as in FMD. This modification could certainly save bandwidth in
practice, but whether there are any vulnerabilities in real-world
applications remains unclear and we believe it as an interesting
direction of study.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable
request to the corresponding author.
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