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Abstract. In a blockchain system, address is an essential primitive which is used in transaction. 
The Stealth Address, which has an underlying address info of two public keys (𝐴, 𝐵), was 
developed by Monero blockchain in 2013, in which a one-time public key is used as the 
transaction destination, to protect the recipient privacy. At almost same time, hierarchical 
deterministic wallets scheme was proposed as bip-32 for Bitcoin, which makes it possible to 
share an extended public key (𝐾, 𝑐) between sender and receiver, where 𝐾 is a public key and 
𝑐 is a 256-bits chain code, and only receiver knows the corresponding private key of this 𝐾. 
With the bip-32 scheme, the sender may derive the child public key 𝐾! with the child number 
𝑖 by him/herself, without needing to request a new address for each payment from the receiver, 
make each transaction have a different destination key for privacy. This paper introduces an 
improved stealth address scheme (and some enhanced variants) which has an underlying 
address data of (𝐴! , 𝐵! , 𝑖), where 𝑖 is a child number and 𝑖 ∈ [0, 2"# − 1]. The sender gets the 
receiver’s address info (𝐴! , 𝐵! , 𝑖), generates a random secret number 𝑟	 ∈ 	 [0, 2$% − 1] and 
calculate a Pedersen commitment 𝐶 = 𝐴!𝐵!ℎ&

!.( where 𝑅) = 𝐵!*, then the sender may use this 
commitment 𝐶  or 𝐻𝑎𝑠ℎ(𝐶)  as the destination key for the output and packs the (𝑅, 𝑖) 
somewhere into the transaction. This improved stealth address scheme makes it possible to 
manage multiple stealth addresses in one wallet, therefore the user is able to share different 
addresses for different senders. 
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1 Introduction 
 
Stealth Address. The concept of Stealth Address was firstly developed by a Bitcoin Forum 
member ‘ByteCoin’ [Byt11], then improved by Nicolas van Saberhagen in CryptoNote’s white 
paper[Sab13], later adapted by Peter Todd in 2014 [Tod14], and finally used in Monero 
blockchain, which is the concatenation of a public spend key and a public view key. The main 
purpose of the Stealth Address design is to protect recipient privacy. According to CryptoNote 
whitepaper, a one-time public key is used as the transaction destination key, as illustrated in 
Figure 1, comprising the steps of: 

- Receiver publish an address which contains two public keys (𝐴, 𝐵). 
- Sender generate a random 𝑟	 ∈ 	ℤ+  and calculate a one-time public key 𝑃 =

𝐻𝑎𝑠ℎ(𝑟 ∗ 𝐴) ∗ 𝐺 + 𝐵. 
- Sender use 𝑃 as the destination key for the output and also packs 𝑅 = 𝑟 ∗ 𝐺 (as a part 

of Diffie-Hellman exchange) somewhere into the transaction. 
The receiver checks every passing transaction with his/her private key (𝑎, 𝑏) and computes 
𝑃) = 𝐻𝑎𝑠ℎ(𝑎 ∗ 𝑅) ∗ 𝐺 + 𝐵, to collect the payments if 𝑃) = 𝑃, thanks to the truth that 𝑎 ∗ 𝑅 ≡
𝑟 ∗ 𝐴. With the sharing private key of 𝐴, an auditor for example can also computes this 𝑃) 
therefore is capable to view every incoming transaction for that Stealth Address. 
 



 2 

 
Fig.1 Monero Stealth Address scheme. The receiver publishes a stealth address (𝐴, 𝐵) and the 
sender use this address to generate a one-time public key 𝑃 for a transaction 𝑇𝑋, then the 
receiver collects it from the chain. 
 

The pros are obviously on the recipient privacy, which only open the one-time key on the 
public chain data and keep the recipient’s address as a secret only known between sender and 
receiver. The cons are mainly at: 

- One wallet is only be able to manage one address, meaning the user has to share same 
address to different senders. In case that two senders meet each other and find they’re 
sending to same address, they will know they have the same receiver. This harms the 
privacy. 

- In contrast to a typical Bitcoin address which is just a 20-bytes length hash160 data, the 
Monero Stealth Address is much longer, which contains 2 public keys therefore at least 
need 65-bytes data length. 

- It’s non-trivial in some thin transaction solution to pack the 𝑅 as the additional load 
into the transaction, which costs 33-bytes data. For instance, a typical Bitcoin 
transaction with single input and double outputs may only cost 225 bytes, this 33-bytes 
data will increase 15% transaction bandwidth. 

 

Hierarchical Deterministic Wallets Address. At almost same time as the Monero Stealth 
Address scheme was finalized, another optional solution “HD (Hierarchical Deterministic) 
Wallets” is proposed as bip-32 for Bitcoin [Wui13], which can also be used as a stealth address 
solution. With the bip-32 solution, the sender and receiver can share an extended public key, 
and both sides can derive the public child keys without requesting the new address for each 
payment. For example, a possible solution, as illustrated in Figure 2, may comprise the steps 
of: 

- Sender and receiver share an extended public key as (𝐾, 𝑐), where 𝐾 is a public key, 𝑐 
is a 256-bits data which is named as “chain code” in bip-32. 

- 𝑖 is a 4-bytes integer which is named as “child number” in bip-32, 𝑖 ∈ [0, 2"# − 1]. 
- The derivation algorithm is defined as 𝐾! = 𝐾 + 𝐼, ∗ 𝐺, where 𝐼, is the first 32-bytes 

sequence when splitting 𝐼 into two 32-byte sequences, and 𝐼 =
𝐻𝑀𝐴𝐶_𝑆𝐻𝐴512(𝑐, 𝐾, 𝑖). 
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- The sender increases 𝑖 sequentially starting from 0, each time when making a new 
payment to the receiver, calculates a new public key 𝐾! as the transaction destination 
address. 

 
Fig.2 BIP-32 address scheme. The receiver publishes a stealth address (𝐾, 𝑐) and the sender 
use this address to generate a one-time public key 𝐾! for a transaction 𝑇𝑋, then the receiver 
collects it from the chain. To make it work, both parties have to synchronize to the same child 
number 𝑖. 
 

With this solution, the recipient privacy is protected by the one-time key 𝐾!. But the cons 
are obviously at: 

- The receiver has to get a secure communication channel with the sender for the sharing 
of the address info (𝐾, 𝑐), meaning the address must not open for any third party, 
otherwise the third party is capable to view every transaction with this address. 

- At least 65-bytes address info, i.e. (𝐾, 𝑐), need to be shared in advance between sender 
and receiver, which has the same length as Monero Stealth Address. 

- In case the receiver loses the local stored info of current child number 𝑖, a painful grind 
calculation is needed to search from 0 until (2"# − 1). Or in other words, the receiver 
has to synchronize the child number 𝑖 with the sender, either by using 𝑖 sequentially or 
by the communication outside the chain. 

- According to bip-32, this is only proposed for recurrent business-to-business 
transaction use case, obviously inconvenient for the receiver to maintain multiple 
random senders, since the receiver has to check every passing transaction on the chain 
for each maintained extended public parent key (𝐾, 𝑐), with its suitable derivation 
public child key 𝐾!. 

There is a known vulnerability to the author of the bip-32 standard, the attacker could easily 
recover the master private key given the master public key and any child private key [GS14]. 
 

Robust Multi-Key Stealth Address. Nicolas T. Courtois and Rebekah Mercer proposed an 
improved Stealth Address technique [CM17] which is more robust against a variety of attacks, 
with the idea of a multi-key multiplicative technique of [GS14]. The recipient will have 𝑚 +
1	private/public keypairs: one ‘view key’ 𝑉 = 𝑣. 𝐺 and m different ‘spend’ public keys 𝐵! =
𝑏! . 𝐺. The price to pay for this is an m-fold increase in the size of the address. 
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All above stealth address solutions are still a little bit far from the idealistic goal of a 
blockchain address: shorter length and wider usability. Unfortunately, without the new 
progress on related cryptography research, it looks like these stealth address solutions are 
already the best choice. It is therefore an object of this paper to provide a similar stealth address 
solution as Monero Stealth Address scheme for blockchains, given essentially the same security 
guarantees as prior arts, with a little improvement so as to manage multiple addresses in one 
wallet, in comparison to known cryptographic methods. 
 
2 The New Stealth Address Scheme 

 
2.1 A Naive Scheme 

 
A naive scheme, with a strong assumption on a secure communication channel between the 
sender and the receiver for the sharing of the address info, as illustrated in Figure 3, uses (𝑲𝒊, 𝒊) 
as the stealth address data, where 𝐾! is a recipient public child key which is generated from an 
extended public parent key (𝑲, 𝒄) extended with a child number 𝒊. 

The sender gets the receiver’s stealth address info (𝐾! , 𝑖), generates a random number 𝑟	and 
calculates a Pedersen commitment [Ped91] 𝐶 = K! + 𝑟 ∗ 𝐻. The sender may use this Pedersen 
commitment 𝐶	as the destination key for the output and packs the encoded (𝑟), 𝑖) somewhere 
into the transaction. 

The receiver checks every passing transaction, gets the transaction destination key 𝐶 and 
the encoded info (𝑟), 𝑖) from the transaction, derives the public child key 𝐾! with the extended 
public parent key (𝐾, 𝑐)  and the child number 𝑖 , decodes the 𝑟 , computes the Pedersen 
commitment 𝐶) = K! + 𝑟 ∗ 𝐻, to collect the payments if 𝐶) = 𝐶. 
 

 
Fig.3 A naive stealth address scheme. The receiver publishes a stealth address (𝐾! , 𝑖) and the 
sender use this address for a transaction 𝑇𝑋, then the receiver collects it from the chain. 

 
With this new stealth address scheme, the address data is a little bit bigger than prior arts 

described above, because of the child number 𝑖, and need a little bit more additional payload 
data into the transaction, increasing 4 bytes data (37-bytes for (𝑅, 𝑖) comparing to 33-bytes in 
Monero Stealth Address solution for packing that 𝑅). These increased sizes are the cost to get 
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the advantage to furtherly protect the privacy, meaning the wallet can manage multiple 
addresses in the same time, therefore the user can share different address for different sender. 

The pros of this naive scheme are the compact address data and the minimal additional 
payload. The cons are obviously on the strong assumption, which is not practical for common 
people to get a secured communication channel to share the address info. 
 
2.2 The Basic Scheme 
 
The basic stealth address scheme, is parameterized by group parameters (𝔾, 𝑝, 𝑔, ℎ) where 𝑝 is 
a 𝑘-bit integer, 𝔾 is a cyclic group of order 𝑝, and 𝑔 is a generator of 𝔾, and let ℎ be an element 
of group 𝔾 such that nobody knows 𝑙𝑜𝑔.ℎ, and by a hash function Hash. 

This new stealth address scheme use (𝑨𝒊, 𝑩𝒊, 𝒊) as the address data, where 𝐴! is the public 
spend key and 𝐵! is the public view key, as illustrated in Figure 4, comprising the steps of: 

- The receiver generates a random private key 𝑘	 ∈ 	ℤ+ and computes the corresponding 
public key 𝐾 = 𝑔/, and generates a random 256-bits chain code 𝑐 to build the extended 
public parent spend key (𝐾, 𝑐), with the corresponding extended private key (𝑘, 𝑐). 

- With this (𝑘, 𝑐) , the receiver generates a corresponding (𝑘), 𝑐))  with one hash 
algorithm, for example (𝑘), 𝑐)) = 𝐻𝑎𝑠ℎ0123#4(𝑘, 𝑐) , computes the corresponding 
public key 𝐾) = 𝑔/!, and builds the extended public parent view key (𝐾), 𝑐)). 

- The receiver publishes an address to a sender with address data (𝐴! , 𝐵! , 𝑖)  which 
contains a public child spend key 𝐴!, a public child view key 𝐵!, and a child number 𝑖 ∈
[0, 2"# − 1]. 

o The child key derivation function 𝑓(𝐾, 𝑐, 𝑖)  may be defined as bip-32 HD 
wallets algorithm: 𝐾! = 𝐾𝑔5", where 𝐼 = 𝐻𝑀𝐴𝐶_𝑆𝐻𝐴512(𝑐, 𝐾, 𝑖) and 𝐼, is the 
first 32-bytes sequence when splitting 𝐼  into two 32-byte sequences. The 
corresponding private key 𝑘! of the public child key 𝐾! will be: 𝑘! = 𝑘 + 𝐼,. 

o The receiver may derive different public child key for different sender, by 
changing the child number 𝑖.		𝑖 may be changed sequentially starting from 0, 
meaning 𝑖 may increment by 1 each time when generating a new address; or 𝑖 
may be selected from a random number. 

- The sender gets the receiver’s address info (𝐴! , 𝐵! , 𝑖), and 
o The sender generates a random 𝑟	 ∈ 	ℤ+, calculates 𝑅 = 𝑔* and 𝑅) = 𝐵!*, then 

use this 𝑅)  to furtherly calculate a one-time Pedersen commitment 𝑃 =
𝐴!𝐵!ℎ&

!.(. 
o The sender uses this one-time commitment 𝑃, or 𝐻𝑎𝑠ℎ(𝑃) as the destination 

key for the output and packs the (𝑅, 𝑖) somewhere into the transaction. If using 
𝐻𝑎𝑠ℎ(𝑃) as the destination key for the output, the 𝐻𝑎𝑠ℎ function here may be 
the SHA-256, or Hash160 which means 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑃)), or any 
other feasible hash function. 
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Fig.4 The basic stealth address scheme. The receiver publishes a stealth address (𝐴! , 𝐵! , 𝑖) and 
the sender uses this address to generate a one-time public key for a transaction 𝑇𝑋, attaches the 
(𝑅, 𝑖) to the 𝑇𝑋, then the receiver collects it from the chain. 
 

 The receiver checks every passing transaction, gets the transaction destination key 𝑃 and 
(𝑅, 𝑖) from the transaction data, derives the public child keys 𝐴! and 𝐵!, devices the private 
child view key 𝑏! ,	calculates the nonce 𝑅) = 𝑅6# ,	computes 𝑃) = 𝐴!𝐵!ℎ&

!.( , to collect the 
payments if 𝑃) = 𝑃, or if 𝐻𝑎𝑠ℎ(𝑃)) = 𝐻𝑎𝑠ℎ(𝑃) depending on which format is been using in 
the transaction data. 

Thanks to Pedersen commitment ’s perfect hiding property and computational binding 
property [MD17, MRK03], with a one-time public key (in fact a Pedersen commitment) 𝑃 =
𝐴!𝐵!ℎ&

!.( as the transaction destination key, nobody can deduce the original address info 
(𝐴! , 𝐵!) from 𝑃 without the knowledge of private nonce 𝑟 or private view key 𝑏!. Therefore, 
this stealth address solution has a well privacy protection for the recipient real address. 

The benefit of packing the child number 𝑖 into the transaction is that the receiver will be 
very easy to maintain multiple child addresses in one wallet account, so as to encourage the 
receiver to publish random child public key (i.e. recipient address) for every single sender, to 
minimize the probability of address reuse for the recipient privacy. This is secure only on a 
strong assumption where there are huge on-chain transactions volume to expect a lot of 
duplication of same 𝑖, but obviously this assumption is too idealistic. Therefore, it is a flaw 
about this 𝑖, since this 𝑖 is part of the recipient address info (𝐴! , 𝐵! , 𝑖), it is possible for anyone 
to map this 𝑖 to a complete address (𝐴! , 𝐵! , 𝑖), especially for a young system which has not 
much on-chain transactions happening. When there are multiple transactions to same address, 
they could be detected by the same 𝑖 on the transaction outputs. 

The fix solution for this flaw, which will be discussed in next chapter as an enhanced 
scheme, is to use an encoded 𝑖) as the transaction data instead of the original 𝑖, and let this 𝑖) 
only decodable for the transaction parties. Whereas before that, we should realize that above 
flaw only exists in the payment output, meaning in the transaction output for the receiver. For 
change output/s of a transaction, the sender is always able to generate a new random address 
for that, therefore the mapping between the 𝑖 and the address (𝐴! , 𝐵! , 𝑖) is almost impossible, 
since the random 𝑖 could come from anyone and the probability to reuse a (𝐴! , 𝐵! , 𝑖) is quite 
low. So, this basic scheme is still usable for the change output. 
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2.3 The Enhanced Scheme 
 
As a fix for above flaw, an enhanced scheme, as illustrated in Figure 5, may be defined here 
comprising the following steps of: 

- The receiver publishes an address to a sender with address data (𝐴! , 𝐵! , 𝑖)  which 
contains a public child spend key 𝐴!, a public child view key 𝐵!, and a child number 𝑖 ∈
[0, 2"# − 1]. 

o The child key derivation function is still the 𝑓(𝐾, 𝑐, 𝑖), but when using it to 
derive 𝐵! only the limited bits of 𝑖 are used. Meaning 𝐵! = 𝑓(𝐾, 𝑐, 𝑖&𝐿), where 
𝐿 = 27 − 1, and 𝑙 is a consensus constant for example with an initial value as 8. 
The consensus constant 𝑙 may be increased by soft forks from time to time when 
the on-chain transaction volume big enough. 

o 𝑖 is proposed to be selected from a random number. 
- The sender gets the receiver’s address info (𝐴! , 𝐵! , 𝑖), and 

o The sender generates a random 𝑟	 ∈ 	ℤ+, calculates 𝑅 = 𝑔* and 𝑅) = 𝐵!*, then 
use this 𝑅)  to furtherly calculate a one-time public key (in fact a Pedersen 
commitment) 𝑃 = 𝐴!𝐵!ℎ&

!.(. 
o The sender uses this one-time public key 𝑃, or 𝐻𝑎𝑠ℎ(𝑃) as the destination for 

the output and packs the (𝑅, 𝑖)) somewhere into the transaction. 
o The encoded 𝑖) is computed with 𝑖) = (((𝑖 ≫ 𝑙)	𝑋𝑂𝑅	ℎ) ≪ 𝑙) + (𝑖&𝐿) where  

ℎ = 𝐻𝑎𝑠ℎ(𝑅)). 
The receiver checks every passing transaction, gets the transaction destination key 𝑃 , or 
𝐻𝑎𝑠ℎ(𝑃) , and (𝑅, 𝑖))  from the transaction data, derives the private child view key 𝑏! =
𝑓(𝑘), 𝑐), 𝑖)&𝐿) and the corresponding public child view key 𝐵! = 𝑔6# ,	calculates the nonce 
𝑅) = 𝑅6# 	and	ℎ = 𝐻𝑎𝑠ℎ(𝑅)) , decodes 𝑖 = (((𝑖) ≫ 𝑙)	𝑋𝑂𝑅	ℎ) ≪ 𝑙) + (𝑖)&𝐿) , derives the 
public child spend key 𝐴! = 𝑓(𝐾, 𝑐, 𝑖), computes 𝑃) = 𝐴!𝐵!ℎ&

!.(, to collect the payments if 
𝑃) = 𝑃, or if 𝐻𝑎𝑠ℎ(𝑃)) = 𝐻𝑎𝑠ℎ(𝑃). 
 

 
Fig.5 The enhanced stealth address scheme. The receiver publishes a stealth address (𝐴! , 𝐵! , 𝑖) 
and uses this address to generate a one-time public key for a transaction 𝑇𝑋, attaches the (𝑅, 𝑖)) 
to the 𝑇𝑋, then the receiver collects it from the chain. 
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With this enhanced scheme, most of the higher bits of encoded child number 𝑖) are random 
because of the random secret 𝑟, even for same 𝑖. Only part of the least bits of 𝑖 are leaked as 
transparent on the chain. Since the initial consensus constant 𝑙 is a small value for example 8, 
we can expect enough duplications of 𝑙 bits of 𝑖 in the on-chain transactions, even for a young 
system, such that the mapping between 𝑖) and the real address (𝐴! , 𝐵!) is not applicable. 

The cons of this enhanced scheme are the limited numbers of available 𝐵! for one wallet 
(𝐾, 𝑐) , since 𝑙  bits of 𝑖  only give 27  different 𝐵! . But this can be improved during the 
progressive adoption procedure with increased on-chain transaction volume, by increasing this 
𝑙 with soft forks from time to time. 
 
2.4 The Mixed Scheme 
 
In the production environment, both the basic scheme and the enhanced scheme will be used. 
The enhanced scheme is for payment outputs, but the basic scheme is for change outputs. 
Without an indicator for the type of the output, a double test and try, with (𝑅, 𝑖) and (𝑅, 𝑖)), has 
to be used to recover a wallet, during the checking on every UTXO in the chain. The missing 
of such kind of output type indicator is purposely for the privacy. 
 
2.5 The Simplified Version 
 
For most of personal users, the view key for the audit purpose does not have any practical 
meaning. A simplified version of this stealth address scheme can be used in this case, to avoid 
the meaningless cost of the long address. 

The simplified version may be designed as (𝑨𝒊, 𝒊) for the address data instead of (𝑨𝒊, 𝑩𝒊, 𝒊), 
where 𝐴! is the public spend key, and the public view key 𝐵! is dismissed. In the all remaining 
parts of above stealth address scheme, the 𝐵! is simply replaced by the 𝐴!. Or in other words, 
the simplified version can be looked as the original version of (𝑨𝒊, 𝑩𝒊, 𝒊) but where 𝐵! = 𝐴!. 
 
2.6 Payment Proof 
 
Payment proof means a proof to the third party (normally an arbiter) to prove the payment was 
made, when someone sends money to a party who then disputes the payment was made. The 
payment proof in Bitcoin is simple since the recipient address is recorded in the chain and open 
to anyone, but for a blockchain which uses the stealth address scheme, the payment proof is 
not so straight.  

A simple, which is being used in Monero, is to use the secret nonce 𝑟 since only the sender 
knows this secret. Either directly revealing this 𝑟  value to the third party or providing a 
signature on a message from the third party with this 𝑟 as the secret key. 

In a payment proof with signature, the following info will be provided as the payment proof: 
1. The transaction id for Bitcoin and similar blockchains, or the transaction output for 

Mimblewimble[Mw16] blockchains, which can be used to get that corresponding 
public nonce 𝑅; 

2. The transaction Merkle proof for Bitcoin and similar blockchains, or the transaction 
output MMR[Tod12] proof for Mimblewimble blockchains; 

3. The receiver’s address but please note the third party arbiter will also need to know this 
address to assert it all ties together; 

4. A message from the third party and the corresponding signature from the sender. The 
signature can be verified with above 𝑅 as the public key. 
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The pros of this first method are obviously the simplicity of proof construction. The cons 
are mainly on the reliability, meaning the sender is incapable to create the proof once the info 
𝑟 is lost, since this private nonce 𝑟 is only stored in local wallet and not quarriable on the chain. 

To avoid losing the info 𝑟, as a workaround, the wallet should provide some automatic 
backup features to regularly backup the payment records. 

 
3 Applications to Blockchain Transaction 
 
3.1 Bitcoin-Style Transaction 
 
In a transaction-output-based blockchain system, where each transaction spends UTXOs (the 
previously Unspent Transaction Outputs), a user must provide a signature, or more precisely a 
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 for Bitcoin [Bit08], either with ECDSA presently or with Schnorr signature in the 
future [WNR18], to spend an UTXO, which proves the ownership of the spending output.  

When spending an UTXO with Pedersen commitment 𝑃 = 𝐴!𝐵!ℎ&
!.( or 𝐻𝑎𝑠ℎ(𝑃) as the 

owner key info, a problem is nobody, including the exact owner of this output, knows the 
private key of a Pedersen commitment, and therefore the user cannot provide that 
corresponding signature. A naive solution, to solve this problem, is attaching that 𝑅). 𝑥 into the 
spending transaction, so that the owner can sign with the corresponding private key (𝑎! + 𝑏!) 
and the validator can calculate the public key by 𝑃ℎ8&!.(. With Pay-to-PubkeyHash transaction 
type in Bitcoin as an example, the original script is like this: 

𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑝𝑢𝑏𝐾𝑒𝑦𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E<@EF>5G  
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑝𝑢𝑏𝐾𝑒𝑦 > 

With above said naive solution, the scripts may be revised as: 
𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑃𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E4F𝑂𝑃E<@EF>5G  
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑅). 𝑥 >	< 𝑃 > 

Where, 
𝑂𝑃E4F means the calculation of 𝑃ℎ8&!.(. 

With above descripted naive solution, the pros are obviously on the recipient privacy, which 
only open the Pedersen commitment (or its hash) on the public chain and keep the recipient’s 
address (𝐴! , 𝐵! , 𝑖) as a secret only known between sender and receiver, and all unspent outputs 
will keep the recipient address hidden until the owner spend it. The cons are mainly at: 

- The transaction will reveal the 𝑅). 𝑥 of the spending output, also meaning reveal the 
hidden public key(𝐴! , 𝐵!), i.e. the recipient address info.  

- The additional info 𝑅). 𝑥 in 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 will increase the transaction payload size with 
32 bytes. 

This naive solution will implicitly reveal the hidden address info for all spent outputs, it will 
be a major infection on the core value of this stealth address scheme. 
 

Fortunately, there is a ComSig signature scheme [Yu20] which is able to keep the recipient 
address always hidden, both for unspent and spent outputs, to directly use the Pedersen 
commitment 𝐶 as the signature public key. With the said ComSig signature scheme, the Pay-
to-PubkeyHash transaction in Bitcoin may be revised as: 

𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑃𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E<@EF>5G  
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑃 > 

With this revised transaction scheme, the pros are the strict recipient privacy and the identical 
format to the Bitcoin Pay-to-PubkeyHash transaction script, because the commitment 𝑃 is also 
a 𝑝𝑢𝑏𝐾𝑒𝑦. The cons are mainly at: 
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- The ComSig signature has a bigger size than ECDSA or Schnorr signature, which has 
a form as (𝑅, 𝑢, 𝑣)  instead of (𝑅, 𝑠) . Therefore, the 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔  will increase the 
transaction payload size with 32 bytes. 

Since the increased 32-bytes payload is not trivial in a current Bitcoin transaction, this stealth 
address scheme is not optimal for Bitcoin blockchain, but indeed for the similar transaction-
output-based blockchain systems in which the ComSig signature scheme is being or planned to 
be used, for example the Gotts [Got20]. 
 
3.2 Mimblewimble-Style Transaction 
 
With this stealth address scheme, the non-interactive transaction in Gotts may be designed as: 

- 𝑇𝑋:< 𝑔(#ℎH# >	< 𝑔($ℎH$ > 	< 𝐶* > 
- 𝑎! = 𝑎I + 𝑎* + 𝑓𝑒𝑒 
- 𝐶* = 𝐴!𝐵!ℎ&

!.( 
Where, 

- 𝐶* is the output commitment for receiver, calculated with the stealth address (𝐴! , 𝐵! , 𝑖), 
- 𝑅) = 𝐵!* ≡ 𝑅6#, where 𝑟 is the private nonce selected by sender, 𝑅 = 𝑔* is the public 

nonce, 𝑏! is the receiver’s private view key, 𝑅). 𝑥 is the 𝑥 coordination of point 𝑅), 
- < 𝑔(#ℎH# > is the input commitment owned by sender, 
- < 𝑔($ℎH$ > is the change commitment for sender, 
- 𝑥! , 𝑥I are the sender’s private keys, 
- 𝑎! , 𝑎I , 𝑎* are the amounts; 𝑓𝑒𝑒 is the transaction fee. 

Furthermore, as a mandatory info of this transaction, the (𝑅, 𝑖)) must be packed somewhere 
into the transaction, where 𝑖) is the encoded 𝑖 with the encoding method described at above 
enhanced stealth address scheme. 

Regarding the change output 𝑔($ℎH$ , considering the universal output format both for 
change and the payment outputs, the 𝑤I must also be recoverable with a 𝑅I attached to the 
output, meaning 𝑤I = 𝑅I) . 𝑥  where 𝑅I) = 𝑅I+%  and 𝑝J  is the sender’s private view key. To 
manage this 𝑝J on the wallet, a random address (𝐴J , 𝐵J , 𝑗) is generated by a random number 𝑗. 
The sender attaches the (𝑅I , 𝑗) into the change output, where the attached 𝑗 is the original child 
number value, instead of an encoded value as in the receiver’s output. In a short brief, the 
enhanced stealth address scheme is used for the receiver’s output, but the basic stealth address 
scheme is used for the change output. 
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