
Seraphis: A Privacy-Preserving Transaction Protocol Abstraction

(WIP)∗

Draft v0.0.16†

koe‡ ukoe@protonmail.com

February 22, 2022

Abstract

Seraphis1 is a privacy-focused transaction protocol abstraction for p2p electronic cash sys-

tems that use the transaction output model (the e-note model in this paper). Seraphis e-notes

are amount-transfer devices in the RingCT tradition, which record an ‘amount’ as a Pedersen

commitment and an ‘address with transfer-authority’ as a specially-designed prime-order group

point (similar to CryptoNote one-time addresses). Unlike previous protocols compatible with

CT (Confidential Transactions), where e-note membership, ownership, and unspentness proofs

were highly integrated into one large proving structure (such as MLSAG or CLSAG in the case

of standard RingCT), Seraphis separates membership proofs from ownership and unspentness

proofs. This allows the security model for membership proofs to be abstracted away from any

specific proving system, which enables relatively simpler proving structures to be used and

greatly simplifies the overall security model of Seraphis compared to its predecessors. Doing so

also allows a linking tag (a.k.a. key image) construction with a number of favorable properties.

Most notably, implementers of Seraphis can use an addressing scheme which permits wallets

with three tiers of permissions (view received amounts, full balance recovery, full balance recov-

ery with spend authority). The second permission tier is unique to Seraphis among protocols

in the CryptoNote tradition.

1 Introduction

A p2p (peer-to-peer) electronic cash system is a monetary system where the entire supply of

currency exists as a digital record that can be stored by any person, and transactions (attempts

to transfer money to new owners) are mediated by a network of peers (usually called nodes). Such

systems are typically designed so no participant in the system has the power to easily censor

transactions, re-spend funds that have been spent before, or increase the total money supply at

will.

∗License: Seraphis is released into the public domain.
†This is just a draft, so it may not always be available wherever it is currently hosted.
‡Author ‘koe’ worked on this document partly as an employee of MobileCoin, Inc.
1 The name ‘Seraphis’ is based on Serapis, a Graeco-Egyptian syncretistic deity. Syncretism is the combina-

tion/reconciliation of different ideas/ways of thinking, similar to how Seraphis is a protocol that brings together
many ideas and permits a variety of proving systems.

1



1 INTRODUCTION 2

To achieve those design goals, it is necessary for such systems to be decentralized. The peers

who mediate transactions (checking their validity with respect to the existing state of the money

supply, and deciding which of N conflicting transactions to accept) do not necessarily trust each

other. It is therefore beneficial to have a common rule-set and format for constructing transactions,

so that any peer can validate any transaction and reach consensus with other peers/nodes about

changes to the recorded monetary state. The transaction rule-set and format used by any given

p2p electronic cash system is called its transaction protocol.

Seraphis is a transaction protocol abstraction, which means it defines the rule-set that a transaction

protocol must satisfy (and the corresponding security model) without specifying any concrete

proving systems.

1.1 Monetary state

Most modern p2p electronic cash systems are so-called ‘cryptocurrencies’ in the tradition of Bit-

coin [24]. In Bitcoin, each (archival) node maintains a full copy of all mutations to the monetary

state that led from Bitcoin’s inception up to the current moment (called a ledger).

The monetary state of a cryptocurrency is defined by all the ‘money creation’ and ‘amount transfer’

events that have occurred since the currency was created. Almost universally, those events are

defined in the transaction output model (henceforth called the e-note model). An e-note is a small

message containing an ‘amount’ of money, an ‘ownership address’ that gives the recipient the

authority to spend the e-note, and an optional arbitrary memo.

• Money creation event: Create a new ‘coinbase e-note’, which increases the total supply

of money (see Section 4.3).

• Money transfer event (transaction): Consume one or more previously unspent e-notes

to transfer the amounts they record to one or more new e-notes (see Section 3).

The ‘current monetary state’ of a cryptocurrency is therefore the set of spent and unspent e-notes

recorded in the ledger.

1.2 Transaction protocols

Transaction protocols must always codify a basic set of rules.

• Membership: E-notes spent by a transaction must already exist in the ledger.

• Unspentness: E-notes spent by a transaction must be unspent prior to that transaction.

• Ownership: The transaction author must have the authority to spend those e-notes.

• Amount balance: The total amount in e-notes spent by a transaction must equal the total

amount in new e-notes created (plus a transaction fee, usually).



1 INTRODUCTION 3

A very simple transaction protocol could implement those rules like this:

• Membership: Reference existing e-notes with their indices in the ledger. Transaction

validators can look up those e-notes directly.

• Unspentness: When an e-note is spent by a transaction, set a bit flag next to that e-note

in the ledger. Reject transactions that reference spent e-notes.

• Ownership: Define ownership with public key cryptography. Let each e-note’s address

record a public key specified in advance by the intended recipient. To spend an e-note, its

owner must create a cryptographic signature with the address key and add the signature to

their transaction.2

• Amount balance: Record e-note amounts in clear text and use simple sums to check that

input amounts equal output amounts (disallowing integer overflow).

An unfortunate consequence of cryptocurrencies being decentralized is that the ledger is ‘public’.

This means all e-notes and transaction events are public knowledge. If amounts are in cleartext,

addresses can be reused, and e-notes to be spent are referenced directly, then observers can discern

many details about users’ finances.

A lack of privacy in the design of a transaction protocol has two main drawbacks, which lead to a

competitive disadvantage versus protocols that include elements of privacy (all else being equal).

1. Privacy is valuable to real people. Typically, it is preferable to choose when others obtain

information about you than for that information to be available automatically.

2. Fungibility and privacy go hand-in-hand. If observers have detailed information about the

ledger, then it is possible for some e-notes to be more valuable than other e-notes just based

on differences in who owns them or where they originated (i.e. the history/transaction-graph

that led to those e-notes being created), even if the amounts they contain are the same.

We believe an ideal transaction protocol should satisfy the following informal privacy matrix.

• Recipients

– Know: Amounts received, and when they were received.

– Don’t know: Who sent them any given amount.

• Senders

– Know: Amounts sent, when they were sent, and who they were sent to.3

– Don’t know: If an amount sent to someone else has been spent.

2 Cryptocurrencies have the ‘crypto’ prefix because they use cryptography to control ownership of e-notes.
3 A transaction author inherently knows who they send e-notes to. This information does not need to be stored

in the ledger to satisfy this privacy matrix.



1 INTRODUCTION 4

• Observers

– Know: The number of inputs/outputs in each transaction, fees paid by each transac-

tion, and when each transaction was added to the ledger.

– Don’t know: The amounts involved in any transaction (other than fees), the relation-

ships between any transactions, or the amounts owned by any user.

Most of these requirements are relatively easily met by CryptoNote-style addressing and linking

tags (a.k.a. key images) [37] and Confidential Transactions [22], which were first combined in the

protocol RingCT [28]. There are two areas of weakness in existing protocols based off RingCT.

• Observers can, to some extent, discern when a transaction was constructed, which is stronger

information than simply ‘when a transaction was added to the ledger’. The biggest culprit

for this lies in transaction fees, which are often a function of real-world time. The problem

of transaction timing is out-of-scope for this paper.

• Observers can, to some extent, discern relationships between transactions. Membership

proofs defined in RingCT (and those used in related protocols like Triptych [27], Lelantus-

Spark [14], Omniring [20], and RingCT3.0 [38]) have ‘anonymity sets’. A transaction author

proves that each e-note spent by their transaction exists in a small set of e-notes, and further

proves that that small set is a subset of e-notes that exist in the ledger. Unfortunately, if

observers see that one transaction references an e-note created by another transaction, then

they know there is more likely to be a relationship between those transactions than if no

such connection exists. This probabilistic knowledge is stronger than the ‘pure/ideal’ case

where a membership proof shows that an e-note exists in the ledger without giving any hints

about which one it might be.

Increasing the anonymity set size of membership proofs naturally reduces how much information

observers can glean from transactions. However, combining membership proofs with ownership

and unspentness proofs in one large proving structure, a ubiquitous pattern in previous RingCT-

inspired protocols, has led to some challenges around increasing that size.

Most importantly, proving structures suitable for both membership proofs and ownership/unspentness

proofs place constraints on the construction of linking tags, which are the core element of unspent-

ness proofs in privacy-focused transaction protocols. A linking tag is an ‘image’ of an e-note’s ad-

dress produced when trying to spend the e-note. If a transaction’s input proofs contain a linking

tag that already exists in the ledger, then the transaction is trying to re-spend an e-note that has

already been spent.

As one example, the transaction protocol Triptych [27], which allows a proving structure an

order of magnitude more efficient than those allowed by standard RingCT, features a linking

tag construction that looks like K̃ = (1/ko) ∗ U . Here ko is the private key of the address that

owns a given e-note, and U is a generator of a prime-order cyclic group. By inverting ko to create

linking tags, it becomes relatively more difficult to design a multisignature scheme where multiple

individuals collaborate to sign transactions, compared to a construction that is linear in ko. This



1 INTRODUCTION 5

is because a linear construction would allow a simple sum of components provided by signature

participants (such as in [29]).

1.3 Our contribution

The main innovation of Seraphis compared to its predecessors is separating ownership and unspent-

ness proofs from membership proofs. Seraphis membership proofs only say (more-or-less) that a

commitment to an e-note corresponds with an e-note in some reference set. The prover then

operates on the e-note commitment to demonstrate ownership and unspentness and to connect it

with the proof that amounts balance.

This separation allows the definition of linking tags to be fairly open-ended. We designed a linking

tag construction with the following (informal) properties.

1. Linking tags are created by inverting ‘some’ of the private key material associated with an

e-note’s address.

If, in a multisignature scheme, all private key material related to linking tags are known by

all signing participants in advance, then inverting that material to create linking tags will

not be an issue.

Proving knowledge of the address’s ‘other’ private key material (as part of an ownership

proof; see Section 3.5) is trivially linear, so if that material is divided amongst multisig

participants, then simple multisignature schemes are possible.

2. Linking tags make it possible to implement a user addressing scheme with three tiers of

permissions (see Sections 3.8 and 4.6, and the discussion in [34]).

In one variant of that scheme, users can isolate parts of their personal private key material

to create wallets that can view received e-notes only, recover the user’s full balance (i.e.

recompute linking tags to detect spent e-notes), or both recover the user’s full balance and

also spend owned e-notes. The second permission tier is uniquely enabled by Seraphis among

protocols in the CryptoNote tradition.

In Appendix A.1 we introduce a more-restrictive membership proof model layered on the primary

model in this paper. We call it the ‘squashed e-note’ model. Concrete proving structures in that

model are non-trivially more efficient than structures in the plain model, allowing relatively larger

anonymity set sizes as a function of proof complexity and size compared to structures in the plain

model, when comparing structures based on the same proving systems (see Section 5).

Also note that Seraphis permits ‘transaction chaining’, where it is possible to construct a trans-

action B that spends an e-note from transaction A before A has been added to the ledger (Sec-

tion 4.8), and ‘membership proof delegation’, where constructing a membership proof is delegated

to a third party without revealing any wallet private keys (also Section 4.8). Combining these yields

‘transaction chaining by delegation’, where the author of transaction B authorizes the transfer of



2 PRELIMINARIES 6

funds from an e-note that doesn’t exist in the chain, then gives their partial transaction (without a

membership proof) to the author of transaction A (which creates that e-note), who can complete

transaction B and submit it after they have completed and submitted transaction A.

1.4 Acknowledgements

We would like to thank Aaron Feickert and Aram Jivanyan (who wrote Lelantus-Spark [14], a

transaction protocol very similar to Seraphis) for critical discussions that led to Seraphis’s linking

tag construction, and Nikolas Krätzschmar for pointing out a flaw in an earlier version of that

construction. [[[TODO: add coinstudent2048 to author list + contributions]]]

2 Preliminaries

2.1 Public parameters

[[[PLAGIARIZED FROM TRIPTYCH PAPER]]] Let G be a cyclic group of prime order l > 3

in which the discrete logarithm problem is hard and the decisional and inverse decisional Diffie-

Hellman assumptions hold, and let Zl be its scalar field. Let H : [0, 1]∗ → Zl be a cryptographic

hash function. We add a subscript to H, such as H1, in lieu of domain-separating the hash

function explicitly; any domain-separation method may be used in practice (e.g. an ASCII string

corresponding to a domain-separated use case, such asH(“sender receiver secret”, [hash input])).

Let each of the following sets contain generators of G, where each generator’s discrete logarithm

with respect to other generators in the same set is unknown (there may be intersections between

sets): {G,H,U,X}, {G0, G1, ..., Gn}, {H0, H1, ...,Hm}, and {J} (for arbitrary integers n, m).

Note that all such generators may be produced using public randomness. For example, the use of

a hash function with domain separation may be appropriate. All public parameters are assumed

to comprise a global reference string known to all players. For readability, we generally exclude

explicit reference to public parameters in algorithm definitions and Fiat-Shamir transcript hashes.

2.2 Notation

• We use additive notation for group operations on G. This means, for example, that the

binary group operation between G and H is denoted G+H.

• This paper contains no exponentiation. All superscripts, such as the o in ko, are merely for

descriptive purposes and have no mathematical significance.

• For group element P and scalar x ∈ Zl, xP and x ∗ P both indicate scalar multiplication.

The use of asterisks (∗) in some places but not others is meant to aid visual clarity where

appropriate (usually when multiplying by a parenthesized scalar or by a scalar that has a

superscript).



3 SERAPHIS 7

• Modular multiplicative inverse group operations use the notation (1/x) ∗ P .

• Tuples are indicated with brackets, e.g. [A,B,C]. To avoid confusion, we always explicitly

refer to tuples as tuples wherever they appear (e.g. ‘the tuple [A,B,C]’).

3 Seraphis

In this section we discuss the various components of Seraphis, with security theorems and proofs

introduced where appropriate [[[TODO]]]. Seraphis is an abstract protocol, so various implementa-

tion details are left undefined. An implementer needs to define the generators G0, G1, G2, H0, H1, J

(see Section 4.1 for example), specify a membership proof structure (e.g. a Groth/Bootle one-of-

many proof [13, 2, 27, 14]), specify an unspentness/ownership proof structure (e.g. Appendix B),

define how to check that transaction amounts balance (e.g. Section 4.2), define an address scheme

(e.g. Section 4.6), and define an information recovery scheme (e.g. Section 4.5).

3.1 Transaction overview

For context, we outline the content of a transaction here.

• Inputs: The transaction spends old e-notes.

– E-note-images: Representations of the e-notes spent by this transaction, including

their linking tags (Section 3.3).

– Membership proofs: Proof structures demonstrating that each e-note-image is con-

structed properly from a real e-note in the ledger (Section 3.4).

– Ownership and unspentness proofs: Proof structures that use e-note-images to

demonstrate ownership and unspentness for each spent e-note (Section 3.5).

• Outputs: The transaction creates new e-notes.

– E-notes: New e-notes (Section 3.2). The total amount they contain equals the total

amount in spent e-notes (Section 3.6).

– Range proofs: Proof structures demonstrating that amount commitments in new

e-notes are legitimate (part of the Confidential Transactions technique) (Section 3.6).

• Balance proof : A proof that the sum of input amounts equals the sum of output amounts

(Section 3.6). In some implementations of Seraphis, this may not require any additional

transaction data (see Section 4.2).

• Miscellaneous: Miscellaneous other data included with a transaction, such as a transaction

fee (Section 4).



3 SERAPHIS 8

3.2 E-notes

Seraphis e-notes are composed of an amount commitment, an address, and a memo.

• Amount commitment: A Pedersen commitment C (with blinding factor x) to the amount

a contained in the e-note [30, 22].

C = xH0 + aH1

• Address: A public key Ko composed of two generators G1 and G2, and two corresponding

private keys koa and kob . The e-note’s owner must prove knowledge of those private keys if

they want to transfer the amount a to new e-notes.

Ko = koa ∗G1 + kob ∗G2

• Memo: An arbitrary memo field. This usually includes information that helps the e-note’s

owner identify that they own it, learn the private keys koa and kob , and reconstruct the amount

commitment. See Sections 3.9 and 4.5.

3.3 E-note-images

An e-note-image is a representation of an e-note.

• Masked commitment: The e-note’s commitment with an additional masking factor.

C ′ = tcH0 + C

C ′ = (tc + x) ∗H0 + aH1

C ′ = vcH0 + aH1

• Masked address: The e-note’s address with a masking factor.

K ′o = tkG0 +Ko

K ′o = tkG0 + koa ∗G1 + kob ∗G2

• Linking tag: The e-note’s linking tag.

K̃ = (kob/k
o
a) ∗ J

The blinding factors tc and tk must be statistically independent and selected at random from a

uniform distribution. [[[formalize better?]]] Note that observers who don’t know tc and tk cannot

look at an e-note-image and discern what e-note it was created from.

We describe how a transaction author can prove that e-note-images addresses and commitments

are constructed properly from real e-notes in Section 3.4, and further prove that linking tags are

constructed properly from e-note-image masked addresses in Section 3.5.



3 SERAPHIS 9

3.3.1 Sender-receiver anonymity

If a person spends an e-note, they should expect that the person who originally sent them that

e-note will not know it is spent.

If tc and tk are randomly selected and unknown to the original sender, then the sender cannot

detect the original e-note by inspecting the e-note-image’s commitment and address.

We further argue in Sections 3.4, 3.5, and 3.8 that input proofs and linking tags will not break

sender-receiver anonymity.

3.3.2 Linking tags

Linking tags are uniquely defined by the private keys koa and kob (as proven in Section 3.5). This

means for a user to create two distinct linking tags from the same address, they must be able to

solve one of the DLPs between generators G0, G1, and G2, which we assume to be a hard problem

[[[elaborate this proof?]]].

Since linking tags are assumed to be unique for each unique address Ko, they can be used to prove

unspentness. If a transaction contains an e-note-image with a linking tag that has appeared in

the ledger, then that transaction is invalid. The word ‘linking’ refers to the ability of observers to

link attempts to spend the same e-note.

Note that if two e-notes have the same address Ko, then only one of them can be spent, hence the

superscript o. Going along with the CryptoNote tradition, Ko can be referred to as a one-time

address. The construction of one-time addresses is further discussed in Sections 3.8 and 4.5.

3.4 Membership proofs

Every input to a transaction must have a membership proof. The proof must demonstrate that

the input’s e-note-image was built from an e-note that exists in the ledger.

A proving system/structure is only eligible to be used as a Seraphis membership proof if it can

satisfy the following abstract model. [[[formalize better?]]]

1. Let S represent a set of tuples [Ki, Ci], where

Ki = ziG0 + si,1G1 + si,2G2 + ...+ si,nGn

Ci = xiH0 + ai,1H1 + ai,2H2 + ...+ ai,nHm

2. Let S̃ represent a tuple [K ′, C ′], where

K ′ = z′G0 + s′1G1 + s′2G2 + ...+ s′nGn

C ′ = x′H0 + a′1H1 + a′2H2 + ...+ a′nHm



3 SERAPHIS 10

3. The proving system must be able to demonstrate that, within a security parameter k, S̃

corresponds to some Sπ ∈ S, where π is unknown to the verifier, such that:

(a) s′j == sπ,j for j ∈ 1, ..., n

(b) a′j == aπ,j for j ∈ 1, ...,m

4. The proving system should be considered unusable if, given a proof σ that S̃ corresponds

to some Sπ in the set S, an observer can guess the index π with probability > 1/|S′|+ ε(k),

where S′ = S\SO and Sπ ∈ S′, SO are tuples the observer knows can’t have been subjects

of the proof (in the context of Seraphis, if tuples S represent e-notes, then for example he

owns the e-notes in SO), and the observer has no special knowledge about the elements in

S′ (however, he can know ziG0, xi, and ai,j for all Si ∈ S′).4

In the context of Seraphis, we straightforwardly construct tuples S directly from e-notes, which

can be referenced with simple ledger indices for verifiers to find (in a naive implementation),5 and

tuples S̃ from e-note-images. Readers will note that a membership proof says nothing about how

K and C are constructed (i.e. the values of G0, ..., H0, ..., etc.). In future sections we will add more

constraints to guarantee that e-notes and e-note-images found in transactions have the expected

forms (within a security parameter).

A trivial proof that satisfies the above model would be a pair of signatures on commitments to

zero K ′ − K = tkG0 and C ′ − C = tcH0, given a reference set S that contains only one tuple

[K,C]. More interesting solutions include a CSAG (a CLSAG [12] without linking) on a ring

of such commitment to zero pairs (assuming G0 == H0), a Groth/Bootle one-of-many proof

[13, 2, 27, 14] on a collection of those pairs, or a Groth/Bootle one-of-many proof applied to the

squashed e-note model (see Appendix A).

3.5 Ownership and unspentness proofs

Alongside each membership proof must be an ownership and unspentness proof. In Seraphis,

‘unspentness’ is checked by looking for linking tag duplicates in the ledger. However, it is necessary

to prove that linking tags are properly constructed. This is done simultaneously with the ownership

proof to ensure the linking tag is derived from the relevant e-note address.

A proof structure is only eligible to be used for Seraphis ownership/unspentness proofs if it can

accomplish the following.

1. Assume there is a group point K = xG0 + yG1 + zG2.

4 In practice, π can often be guessed with probability at least marginally above 1/|S′|. This is because the
circumstances around when e-notes are recorded in the ledger are often observable. Things like timing information,
patterns of behavior, IP addresses of transaction submitters, transaction fees, etc., can all form the basis of heuristics
for analyzing the true member referenced by a membership proof. See the discussions in [23] and [31] for example.

5 If the size of S is small, then it may be practical to reference e-notes with simple indices. As S gets large, more so-
phisticated data-compression techniques are advisable to minimize transaction sizes. For example, deterministically
selecting members of the anonymity set using public entropy and a hash function [4].



3 SERAPHIS 11

2. Demonstrate knowledge of values x, y, z such that K = xG0 +yG1 +zG2 and y 6= 0, z/y 6= 0.

3. Demonstrate that a key K̃ satisfies K̃ == (z/y) ∗ J .

4. A prover who knows x and/or y, but not z, must be unable to create a proof that contains

K̃ = (z/y) ∗ J (within a security factor).

5. An observer who knows none of x, y, z, or xG0 must be unable to derive yG1 + zG2 from the

resulting proof. If the observer knows only yG1 and/or zG2, the proof cannot allow them to

realize that K̃ is built from the corresponding y and z values.

We can apply such a ‘composition’ proof to Seraphis in the following way (see Appendix B for an

example proof structure that satisfies this model).

Suppose a membership proof σmp shows that S̃ corresponds to some Sπ in the set S. Then suppose

the key K ′ = z′G0 + s′1G1 + s′2G2 + ... from S̃ is passed as input to the above proof system, and a

valid proof is created. Observe the following.

• For the composition proof to succeed, it must be the case that all s′x == 0 for x ≥ 3.

This implies the key Kπ from Sπ (which K ′ is based on) has the following form: Kπ =

zπG0 + sπ,1G1 + sπ,2G2. Moreover, the prover must know zπ, sπ,1, sπ,2.

• It must be the case that K̃ = (sπ,2/sπ,1) ∗ J .

• The verifier will not be able to discern which Si in the set S corresponds with K ′.

Now suppose a transaction spends an e-note. Let them set Sπ = [Ko
π, Cπ] using the e-note’s one-

time address and amount commitment, give Sπ a membership proof σmp, and give the resulting

image S′ = [K ′, C ′] a composition proof σcp. With this proof pair, the verifier can be confident

that the transaction author owns an e-note in the set S (i.e. they know the keys sπ,1 = koa and

sπ,2 = kob for some unknown index π)6, and that the linking tag K̃ = (kob/k
o
a) ∗ J output by

the composition proof is valid and can be used to check if the e-note at index π is unspent.

Importantly, K̃ is independent of zπ and z′, and hence is unaffected by the transformation from

e-note to e-note-image.

The transaction’s e-note-image structure records S̃ = [K ′, C ′] and K̃ for observers/verifiers to

reference (recall Section 3.3).

3.6 Amount balance proofs

In accordance with the Confidential Transactions technique [22], Seraphis amounts are recorded as

Pedersen commitments, which hide the amounts involved from observers (they have the ‘perfectly

hiding’ property). Even though observers cannot see transaction amounts directly, they should

6 Note that the Seraphis security model allows the original address Ko
π to have zπ 6= 0.



3 SERAPHIS 12

still be able to verify that the sum of input amounts always equals the sum of output amounts in

every transaction.

First note that, thanks to our membership proof model (Section 3.4), the commitment C ′ in an

e-note-image will contain the same values aπ,1, ..., aπ,n as the commitment C in the e-note being

spent. In Section 3.6.1 we will prove that e-note commitments have the form C = xG0 + aG1 as

expected (i.e. prove that aπ,x == 0 for x ≥ 2), and hence the amount a in C ′ = vcG0 +aG1 equals

the amount in the original commitment.

Pedersen commitments have the ‘homomorphic’ property, which means, for example, that if P1 =

p1G and P2 = p2G, then P1 + P2 == (p1 + p2) ∗ G. We should therefore expect that if we sum

together e-note-image commitments (inputs) and sum together new e-note commitments (outputs),

then
∑
C ′j−

∑
Ct will contain no H1 component only if the sum of input amounts equals the sum

of output amounts.

An implementation of Seraphis must do the following.

1. Demonstrate knowledge of the ‘remainder’ pr in the commitment to zero
∑
C ′j −

∑
Ct =

prH0. It is acceptable if pr == 0, such that
∑
C ′j ==

∑
Ct can be checked directly.

See Section 4.2 for our recommended approach.

3.6.1 Range proofs

Since Pedersen commitments are elements of a cyclic group, it is conceivable that the sum of

amounts modulo the group order is less than the absolute sum of amounts.7 To properly convince

observers that transaction amounts balance, transaction authors must provide a ‘range proof’ for

each new e-note’s commitment.

A range proof must demonstrate the following for a given commitment C = xH0+aH1.
8[[[formalize

this better?]]]

• Prove knowledge of x and a such that C = xH0 + aH1.

• Show that the value a is in the range [0, 2z − 1].

The maximum number of elements n that can be summed together must be n < l/(2z − 1),

otherwise range proofing those elements is pointless. Typically z = 64 and l ≈ 2252 (e.g. in

Ed25519 [1]), so n can be as large as ≈ 2192. However, usually n << 264 for practical reasons.

In a real system based on Seraphis, only new e-note commitments need range proofs, not e-note-

image commitments (see Appendix A for an exception). If all new e-notes added to the ledger are

7 For example, in a cyclic group of order 11, 7 + 7 ≡ 3 (mod 11). If the input amount is 3, then the output
amount can be 14!

8 At this time, Bulletproofs+ by Chung et. al [5] (based on Bulletproofs by Bünz et. al [3]) is thought to be the
most efficient zero-knowledge proving structure for range proofs, without a trusted setup.



3 SERAPHIS 13

range proofed, and membership proofs only reference e-notes from the ledger, then e-note-image

commitments are guaranteed (within a security factor) to contain legitimate amounts.

Finally, note that range proofing a commitment ‘locks in’ the structure C = xH0 + aH1. This

means in any membership proof that acts on a range proofed commitment, it must be the case

that aπ,x == 0 for x ≥ 2.

3.7 Transaction teleology

Since Seraphis is a transaction protocol, there is a ‘teleological’ dimension to transaction contents.

In other words, a transaction author acts with ‘purpose’ or ‘intent’ when writing a transaction. It

is important to embed those intentions in transactions, so a transaction only contains statements

intended by transaction authors, and doesn’t reflect the intentions of arbitrary third parties.

There are three primary ‘intentions’ that a Seraphis transaction must capture.

1. If an e-note’s owner authorizes transfer of funds out of that e-note, they must commit to

the full set of destinations for those funds (i.e. the full set of new e-notes created by the

transaction), and the full set of messages (i.e. memos) attached to that transfer.

This way an e-note’s funds cannot be transferred to new e-notes without the e-note owner’s

full consent, and no message can be affiliated with an e-note owner (i.e. supposedly endorsed

by that owner) without their explicit approval.

2. Only the owners of e-notes spent by a transaction, or their proxies, should be able to decide

the transaction’s contents.

3. A transaction recorded in the ledger should be unmalleable (i.e. ‘permanent’).

In practice, these ‘intentions’ can be implemented with the following general rules.

1. Transcript dependencies: Assume that ownership/unspentness proofs, membership proofs,

and balance proofs are implemented with Sigma protocols using the Fiat-Shamir trans-

form [10]. Each of a transaction’s proofs’ Fiat-Shamir challenges (transcript hashes) should

depend on...

(a) Ownership/unspentness proof : The relevant e-note-image, the full set of output

e-notes, and all the memos found in the transaction.

(b) Membership proof : The relevant e-note-image and the set of e-notes referenced by

the proof.

(c) Balance proof : The full set of input e-note-images, the full set of new output e-notes,

and the transaction fee.



3 SERAPHIS 14

Any miscellaneous transaction data not mentioned above (e.g. transaction version numbers)

should be included in all of the transaction’s ownership/unspentness proof transcript hashes.

2. After a transaction’s proofs have been constructed, any change to the byte serialization of

the transaction (without replacing any of the proofs) should invalidate at least one of the

proofs.

3. After a transaction has been added to the ledger, any change to its byte serialization should

cause a change in the transaction hash (i.e. canonical hash of all transaction content). In

particular, it should be impossible to switch out a transaction proof for a different one

without changing the transaction hash.

We do not require transaction fees to be committed to by e-note owners (they only need to be

committed to it in balance proofs). This facilitates dynamic collaborative funding (see Section

4.8), where the fee can be undetermined when contributing an input to a transaction.

From a teleological perspective, we do not consider neglecting fees problematic. If an e-note owner

does not construct a transaction’s balance proof, then they must delegate that ability to another

party. We consider balance proof delegation to count as delegation of the authority to decide

transaction fees.

3.8 E-note address model

An e-note is created by one person (a transaction author) for another (the recipient of funds).

To spend an e-note, the recipient must know koa and kob in the address Ko = koa ∗ G1 + kob ∗ G2.

However, it isn’t feasible for the recipient to define both of those values in advance, for example

by requesting that the transaction author place a pre-defined public key in the e-note address slot.

The reason for this is only one e-note with a given pair [koa, k
o
b ] can ever be spent, since linking tags

have the form K̃ = (kob/k
o
a)∗J . Recipients could randomly generate a new addressK = kaG1+kbG2

for each e-note they want to receive, but that is very inefficient and impractical.

Instead, we recommend the following e-note address model inspired by CryptoNote addresses [37].

1. Let each recipient have a spend key Ks for spending e-notes:

Ks = ka,recipientG1 + kb,recipientG2

2. When sending an e-note, the sender generates a random scalar ka,sender ∈R Zl.

3. The sender defines the e-note’s one-time address based on the recipient’s spend key:

Ko = ka,senderG1 +Ks

Ko = (ka,sender + ka,recipient) ∗G1 + kb,recipientG2



3 SERAPHIS 15

E-note recipients must learn ka,sender in order to spend their e-notes. We discuss that topic in

Sections 3.9 and 4.5.

Comments

• Transaction authors cannot spend e-notes they created unless they know [ka,recipient, kb,recipient]

in addition to ka,sender. They cannot create linking tags unless they know ka,sender, ka,recipient
and kb,recipientJ .

• Observers will not be able to associate a one-time address Ko with a spend key Ks unless

they know the term ka,senderG1. We assume ka,sender is randomly generated every time an

e-note is created, so there will be no ‘key re-use’ patterns that allow observers to derive Ks

from Ko.

• Linking tags will have the form (kb,recipient/(ka,sender+ka,recipient))∗J . Even if a transaction

author sends many e-notes to the same spend key Ks, and all of those e-notes are spent,

the author cannot use linear algebra on the resulting linking tags to associate those linking

tags with the e-notes they sent out. This avoids the ‘linearity’ problem for fixed-base-point

linking tag constructions noted by the CryptoNote whitepaper [37], which breaks sender-

receiver anonymity. [[[formalize better? proof?]]]

• In the context of transaction protocols, multisignature schemes allow a group of N users to

‘co-own’ e-notes (see [29] for example). Only a collaborating subgroup of participants of size

M (M <= N) may spend any e-note. This is called ‘M-of-N multisig’.

Ideally, multisig schemes should allow all participants to view the group’s balance (amount

of money currently owned). In Seraphis, this means being able to identify all owned e-notes

(see Section 3.9) and recreate all their linking tags to check in the ledger if they have been

spent.

Conveniently, the distinction between ka,recipient and kb,recipient makes our addressing model

very ‘multisig-friendly’. If all multisig participants have full knowledge of ka,recipient (and

ka,sender and kb,recipientJ), then they can easily recompute all linking tags to identify spent

e-notes, and can identify newly acquired e-notes and recover their amounts with the method

described in Section 4.5. Meanwhile, kb,recipient can be divided among participants so prov-

ing ownership and that linking tags are well-formed (Section 3.5) requires a collaborating

subgroup of size M.

With, for example, the proof structure in Appendix B, proving knowledge of kb,recipient only

requires a discrete-log proof between points K̃ and J , where K̃ = (z/y)∗J = (kb,recipient/(ka,sender+

ka,recipient)) ∗ J . For multisig, this can be achieved with a simple thresholded Schnorr signa-

ture (e.g. [25, 19, 6]), assuming ka,sender and ka,recipient are known by all M co-signers.

3.9 Information recovery

E-note owners need to discover the e-notes they own in the ledger, read the amounts in those

e-notes, learn the amount commitment blinding factors in order to create balance proofs for new



3 SERAPHIS 16

transactions, and acquire the sender keys ka,sender so they can construct linking tags.

A Seraphis-compatible information-recovery scheme must satisfy the following requirements.

1. Any user who has a pair of private keys [ka,recipient, kb,recipient], or a proxy of that user,

should be able to acquire the following ‘nominal’ secrets corresponding to each e-note in the

ledger, using information stored in the ledger.

• Sender secret: knoma,sender

• Amount: anom

• Amount commitment blinding factor: xnom

2. The user is considered an e-note’s owner if the following two tests succeed (using the values

Ko and C recorded in the e-note).

Ko ?
= (knoma,sender + ka,recipient) ∗G1 + kb,recipientG2

C
?
= xnomH0 + anomH1

3. An observer/user who knows none of the keys in the tuple [ka,sender, ka,recipient, kb,recipient]

must always fail the first equality test (within a security factor). If they don’t know the true

value of x, then they must always fail the second equality test, and must be unable to guess

the true value of a with probability of success better than random chance.

Furthermore, any observer who fails the first equality test must not be able to guess with

probability better than random chance that Ko is constructed from a composition be-

tween knoma,senderG1 and ka,recipientG1 + kb,recipientG2. In other words, even though it is triv-

ial to compute knoma,senderG1 = Ko − ka,recipientG1 + kb,recipientG2 (if the spend key Ks =

ka,recipientG1 + kb,recipientG2 is public information), the observer cannot guess with proba-

bility better than random chance that the discrete log of knoma,senderG1 with respect to G1 is

known to the user who has spend key Ks. [[[This point feels a bit shaky - I want to say that

anonymity can’t be broken by observers, i.e. that observers can’t identify the recipient of an

e-note nor the amount involved]]]

We present a concrete approach to information recovery in Section 4.5 based on a Diffie-Hellman

shared secret between sender and receiver.

An implementation of this section and the Seraphis address model is ‘unverifiable’. It isn’t possible

for a transaction verifier to know if a transaction’s author has in fact followed these recommenda-

tions. Instead, these sections can be enforced by user choice. If, in practice, a user only creates

transactions using a transaction-builder implementation that satisfies all Seraphis requirements,

then the privacy model we laid out will be achieved for that user (with some caveats around

‘fingerprinting’ if there are multiple implementations with different semantic conventions — see

Section 4.9).



4 CONSIDERATIONS FOR IMPLEMENTERS 17

4 Considerations for implementers

There are a number of details to consider when implementing Seraphis in a real cryptocurrency.

This section is comprised of ‘recommendations’ inspired by historical privacy-focused cryptocur-

rency implementations.

4.1 Generators

For a concrete implementation of Seraphis on group G, we recommend using four generators G,

H, X, and U , where G is the ‘main’ generator of G according to the relevant convention. Set

G0 = H0 = G, G1 = X, G2 = J = U , and H1 = H.

An e-note will look like this:

• Amount commitment: C = xG+ aH

• Address: Ko = koa ∗X + kob ∗ U

• Memo: An arbitrary memo field.

An e-note-image will look like this:

• Masked commitment: C ′ = vcG+ aH

• Masked address: K ′o = tkG+ koa ∗X + kob ∗ U

• Linking tag: K̃ = (kob/k
o
a) ∗ U

4.2 Amount balancing

For amount balance proofs (recall Section 3.6), we recommend making the ‘blinding factor remain-

der’ pr public information. There are two variations, one where pr = 0 (pr can be implicit) and

one where pr > 0 (pr can be recorded in a transaction). The potential advantage of pr > 0 over

pr = 0 is briefly discussed in Section 4.8.

4.2.1 Amount balancing with pr = 0

To achieve amount balancing with pr = 0, the sums of blinding factors must match between

inputs and outputs. Transaction authors should perform the following steps before constructing

any membership proofs for a transaction.

1. Suppose a transaction spends j ∈ 1, ...,m old e-notes and creates t ∈ 1, ..., p new ones.9

Let the masked commitments in e-note-images be denoted C ′j = vc,jG + ajH. Let the

commitments in new e-notes be denoted Ct = ytG+ btH.

9 Index limit m here is a notation overload of the index limit m in generator Hm.



4 CONSIDERATIONS FOR IMPLEMENTERS 18

2. For j ∈ 1, ...,m− 1, randomly select vc,j ∈R Zl. For t ∈ 1, ..., p, randomly select yt ∈R Zl.

3. Define vc,m = [
∑p

t=1 yt]− [
∑m−1

j=1 vc,j ].

If the following equality holds for the transaction, then, within a security factor, there must

be a balance on both generators (G and H) in the two commitment sets (input e-note-image

commitments and output e-note commitments).∑
C ′j ==

∑
Ct

In conclusion, the amounts must balance between input and output e-notes.

Note: The values tc,j = vc,j −xj (recall Section 3.3) will be uniformly distributed because vc,j are

uniformly distributed.

4.2.2 Sender-receiver anonymity for pr = 0

If a transaction only has one input (m = 1) and all its yt are known by an observer (e.g. they

received all e-notes produced by the transaction), then the observer will know the value vc,1 =

[
∑p

t=1 yt].

However, even if the observer is the original sender of the e-note that the transaction author is

spending, they won’t necessarily know any more information about the transaction’s input than

if they weren’t the original sender.

First note that the observer, by knowing all yt, will presumably also know the total amount output

by the transaction (assuming they know the transaction fee, if relevant), and hence will know the

input amount a1.

Second, even if they were the original sender, the input could have been sent to the transaction

author by someone else. Despite knowing both x1 and vc,1, the observer has no way to know if the

real input actually had a different blinding factor x′1, since tc is uniformly distributed at random.

There are two problems to consider.

1. If the amount a1 is ‘unusual’ (i.e. unlikely to have been created by someone else), then the

observer can guess with high probability of success that they created the e-note being spent,

assuming that e-note was referenced by the input’s membership proof. This problem may

extend to multi-input transactions if the ‘low bits’ of the total amount are unusual (e.g.

because one input has a fingerprint recorded in low bits of its amount value, and other

inputs’ amounts have low bits set to zero).

Even if the amount isn’t unusual, if the anonymity set size of membership proofs is relatively

small, then there is a very low probability that the observer’s e-note was randomly selected

as a decoy and just happened to have the same amount as the real e-note being spent.



4 CONSIDERATIONS FOR IMPLEMENTERS 19

2. If vc,1 is used as a secret input to a proof (e.g. a discrete log proof of the commitment to

zero C ′ − C with respect to G), then the observer may be able to guess and check the

proof structure to see if vc,1 = [
∑p

t=1 yt] is in fact that secret input (depending on the proof

structure used).10

Both problems are mitigated or solved by including a ‘change e-note’ in each transaction, even if

its amount must be zero.11 A change e-note is an e-note the transaction author sends to himself

if the total output amount of their transaction exceeds the amount they intend to send to other

people (unavoidable if no combination of owned e-notes’ amounts equals the intended total output

amount of their transaction).

4.2.3 Amount balancing with pr > 0

Amount balancing with pr > 0 is a generalization of the prior case (with pr = 0). Before finalizing

a transaction, a transaction author must define pr and record it in the transaction structure. This

is trivial to do, as pr = [
∑p

t=1 yt] − [
∑m

j=1 vc,j ]. Note that all values of vc,j may be randomly

generated independently.

To verify a balance proof, the verifier checks the following.∑
C ′j ==

∑
Ct + prG

4.2.4 Sender-receiver anonymity for pr > 0

The analysis of pr > 0 is the same as for pr = 0. Take the pr = 0 case, randomly select an input at

index tr, randomly generate a value pr ∈R Zl, set ytr = ytr + pr, then record pr in the transaction.

Since both tr and pr are random, no additional information beyond the pr = 0 case is conveyed

to observers, nor is sender-receiver anonymity weakened.12

4.3 Coinbase e-notes

For a cryptocurrency to be widely adopted, observers should be able to verify that the total

supply of money matches their expectations, based on looking at coinbase e-notes and transactions

recorded in the ledger.13

10 For examples of where this can be a problem, CLSAG [12] and Triptych [27] both require keys (‘extra’ key
images) computed like tcP (where P is public information). This means if the observer knows the input commitment
blinding factor (and all output commitment blinding factors), then they can identify the true spend of a 1-input
transaction via guess-and-check.

11 There are niche cases where the first problem is unsolvable. For example, the sender could allow a ‘low bit’
fingerprint to propagate from an input to an output. The observer may also be able to infer, by the mere fact an
e-note he created was referenced by a membership proof, that his e-note is being spent.

12 An alternative to adding pr to transactions explicitly would be creating a signature on the public key prG (as
done in Lelantus-Spark [14]). This can prevent problem 2 from Section 4.2.2. However, if proof structures resilient
to problem 2 are used, we do not think signing prG offers any advantages (problem 1 is unrelated to pr).

13 Observers should also expect that coinbase e-notes only appear in the ledger when well-defined rules have been
satisfied (e.g. they were created in the genesis block, or via PoW/PoS ‘mining’).



4 CONSIDERATIONS FOR IMPLEMENTERS 20

However, Seraphis amounts are hidden using Pedersen commitments. Practically speaking, how

can transactions spend coinbase e-notes while allowing coinbase amounts to be visible to observers?

There are two approaches.

1. Approach 1: Construct coinbase e-notes the same as normal e-notes. Coinbase e-note

authors must publicize the e-note commitments’ blinding factors and amounts so observers

can verify all coinbase e-note amount commitments are well-made.14

2. Approach 2: Let coinbase e-notes have a special format. Instead of recording amount

commitments, they should record the amounts in cleartext. For a coinbase e-note to be

referenced in a membership proof’s input set S, it must be ‘converted’ into a normal e-note

first.15

Converting a coinbase e-note to a normal e-note is very simple.

• Set the e-note’s address equal to the coinbase e-note’s address: Ko
e-note = Ko

coinbase.

• Set the e-note’s commitment equal to an unmasked commitment to the coinbase e-note’s

amount a: Ce-note = aH.

When a transaction’s membership proof references e-notes in the ledger, it is common to

reference them by index. Verifiers look up those indices, then copy the e-notes they find into

S. If a verifier finds a coinbase e-note at a lookup index, they should convert it into a normal

e-note before copying it into S.16

If transaction spends a coinbase e-note, then its e-note-image’s masked amount commitment

will hide the amount involved even though the original amount had no blinding factor.

4.4 Transaction fees

Most (or perhaps all) cryptocurrencies have a so-called ‘transaction fee’. Each transaction must

send a small fee to a third-party. Fees disincentivize creating large numbers of transactions,

which could cause the ledger to become excessively large. They also allow transaction authors to

‘prioritize’ their transactions. Transactions with high fees will typically be added to the ledger

faster than those with low fees if the p2p network is congested.

To ensure fees are publicly verifiable, they are usually recorded in cleartext in transactions. Fee

amounts are then converted into e-notes and added to the ledger at a later date. The rules around

this conversion process are minutiae defined by each cryptocurrency.17

Transaction fees must be incorporated into amount balances. Verifiers can use the following simple

procedure.

14 This approach was taken in MobileCoin, where the ‘origin’ account’s private keys were publicized [18].
15 This approach was taken in Monero [17].
16 In practice, transaction verifiers can store converted coinbase e-notes directly in/alongside a local copy of the

ledger, so they don’t have to be converted each time they are referenced by a transaction.
17 In PoW cryptocurrencies, each block’s miner typically adds the fee amounts from the block’s transactions into

their coinbase e-note (i.e. the output of a so-called ‘miner transaction’) as part of their ‘block reward’ (which usually
includes newly minted money).



4 CONSIDERATIONS FOR IMPLEMENTERS 21

1. Convert the fee amount f into an unmasked commitment: fH. Require that 0 ≤ f < 2z.

2. Test that amounts balance: ∑
j

C ′
?
=

∑
t

C + fH

4.5 Information recovery in practice

As discussed in Section 3.9, e-note owners would like to discover the e-notes they own in the ledger,

read the amounts in those e-notes, reconstruct commitments in order to perform balance proofs

in new transactions, and learn the sender keys ka,sender so they can construct linking tags.

The answer first pioneered by CryptoNote [37] for privacy-focused transaction protocols revolves

around a Diffie-Hellman shared secret between the sender and receiver of an e-note.

1. Let potential recipients define their ‘public addresses’ as tuples [KDH ,Kvr,Ks].

(a) Diffie-Hellman base key: KDH (for now, let this be an arbitrary key)

(b) View-received key: Kvr = kvrKDH

(c) Spend key: Ks = ka,recipientX + kb,recipientU

2. Suppose one or more potential recipients give their public addresses to a transaction author.

3. The author constructs p e-notes. For e-note t ∈ 1, ..., p he does the following.

(a) Generate a random ‘e-note private key’ rt ∈R Zl.

(b) Compute the e-note public key: Rt = rtK
DH
t .

• Store Rt in the e-note’s memo field.

(c) Compute the sender-receiver shared secret:18 qt = H1(rtK
vr
t ).

(d) Define the one-time address sender key as a function of qt: ka,sender,t = H2(qt).

(e) Define the one-time address: Ko
t = ka,sender,tX +Ks

t .

• Store Ko
t in the e-note’s address field.

(f) Define the commitment blinding factor as a function of qt: yt = H3(qt).

(g) Define the commitment: Ct = ytG+ btH.

• Store Ct in the e-note’s amount commitment field.

18 In practice, if Seraphis is implemented on a group with cofactor h > 1, then the cofactor should be included in
sender receiver secrets: qt = H1(h ∗ rtKvr

t ). If this is not done, then a malicious transaction author can determine if
the recipient’s secret key kvr is a multiple of h (or any divisor of h) or not. They only need to set Rt = rtK

DH
t +Khf ,

where Khf is a point in the subgroup of order h (or a factor of h). If the recipient successfully recovers the output
and notifies the sender, then the sender will know that kvr is a multiple of the subgroup order of Khf . This is
because kvr ∗ Khf == I when kvr is a multiple of Khf ’s subgroup’s order, allowing the recipient to successfully
reproduce qt only in that case. Including h in sender-receiver secrets means cofactor-subgroup points will always be
‘canceled out’ if they are present in Kvr

t or Rt.



4 CONSIDERATIONS FOR IMPLEMENTERS 22

(h) Encrypt/encode the e-note amount bt using qt: enc amountt = enc[qt](bt).

• Store enc amountt in the e-note’s memo field.

4. Suppose a potential recipient sees an e-note with index t in a transaction. They want to

check if they own it, then uncover as much information as possible.

(a) Compute the nominal sender-receiver shared secret: qnomt = H1(k
vrRt).

(b) Compute the nominal spend key: Ks,nominal
t = Ko

t −H2(q
nom
t ) ∗X.

• If Ks,nominal
t matches the spend key in the recipient’s public address, then they

own the e-note.

(c) Decode the amount: bt = dec[qnomt ](enc amountt).

(d) Compute the commitment blinding factor: yt = H3(q
nom
t ).

(e) Verify that the e-note’s commitment can be reconstructed: ytG + btH
?
= Ct. If not,

then the e-note is malformed and can’t be spent.

(f) Compute the linking tag K̃t = (kb,recipient/(H2(q
nom
t ) + ka,recipient)) ∗ U . If there is a

copy of K̃t in the ledger, then this e-note has already been spent.

Comments

• Basing information recovery on a Diffie-Hellman exchange between sender and recipient

ensures ka,sender, yt, and enc amountt will be unknown to observers (within a security factor).

This approach trivially satisfies the requirements in Section 3.9.

• Since qt is computed from the ‘view-received’ key kvr, only kvr and Ks are required in order

to view owned e-notes (important in Section 4.6). A person who knows only kvr and Ks can

be considered a ‘proxy’ of the true address holder (e-note owner), and hence this approach

does not violate the requirements in Section 3.9.

• Commitment blinding factors yt and the sender key ka,sender,t are created in the random

oracle model, instead of being generated randomly. [[[justify better?]]]

• Optimization: If KDH is the same between multiple recipients, then those recipients can

share an e-note private key r and e-note public key R.19

– If r is reused, then, to ensure each qt is unique even if multiple e-notes have the same

recipient, an index t can be used to further domain-separate the hash: qt = H1(rK
vr
t , t).

– If all recipients other than the transaction author himself (e.g. if he has a change e-

note) share a KDH , then the transaction author can ‘borrow’ that KDH by computing

a temporary view-received key Kvr
temp = kvrKDH for e-notes he is sending himself.

19 This optimization would not be useful in a cryptocurrency like MobileCoin where only e-notes and linking tags
are stored in the ledger, and transactions are discarded. Without some kind of distinct ‘transaction object’, it isn’t
possible to associate a single value R with multiple e-notes (without replication).



4 CONSIDERATIONS FOR IMPLEMENTERS 23

This way, if all recipients have the same KDH , only one e-note public key R = rKDH needs

to be recorded in the transaction, and users searching for owned e-notes only have to compute

kvrR once per transaction.20

4.6 Addressing schemes

Up to this point user addressing has been ‘open-ended’. The values kvr,KDH , ka,recipient, kb,recipient
were left as implementation details.

Here we will discuss two useful schemes for defining those values.

4.6.1 Terminology

First it is worth laying out some terms.

• Account: Let an account be a tuple of private keys [kvr, kvs, ks]. Here kvs is the ‘view-spent’

key, which we will elaborate on later.

• Address: Let an address be a generic term for an address tuple [KDH ,Kvr,Ks] that a

potential recipient may transmit to transaction authors for receipt of e-notes.

• Normal address: Let a normal address be an address generated ‘directly’ from the account

keys. In other words, [KDH = KDH ,Kvr = kvrKDH ,Ks = kvsX + ksU ].

• Subaddress: Let a subaddress i ∈ 0, ..., n be an ‘alternative’ address derived from the ac-

count keys [26, 15]. A subaddress [KDH,i,Kvr,i,Ks,i] should be statistically independent of

its corresponding normal address [KDH ,Kvr,Ks] (i.e. no observer should be able to deter-

mine they are based on the same account keys, within a security factor).

4.6.2 Address scheme variant 1

In address scheme variant 1, addresses are a two-key tuple [Kvr,Ks] and the Diffie-Hellman base

key is implicitly defined.

• Normal addresses

KDH = G

Kvr = kvrG

Ks = kvsX + ksU

20 If only a strict subset of a transaction’s recipients can share a KDH , then, rather than producing one R value for
that subset and another Rt value for the other recipients, it may be better to produce a separate Rt for all recipients.
The reason is a privacy concern. Namely, if different subsets of recipients share different R values, then observers
will learn some information about the difference between recipients. In Monero, there is currently a proposal from
this paper’s author ‘koe’ to standardize e-note public key use [32], such that A) a transaction must have at least
two outputs, B) if a transaction has two outputs then it may only have one R value, and C) if there are more than
two outputs then there must be one Rt value per output. In MobileCoin, every transaction output must have its
own Rt value [16].



4 CONSIDERATIONS FOR IMPLEMENTERS 24

• Subaddresses: For any subaddress index i.

KDH,i = Ks,i

Kvr,i = kvrKs,i

Ks,i = H4(k
vr, i) ∗X +Ks

There are several details to take note of.

• A potential recipient must indicate to transaction authors whether their address is a normal

address or a subaddress, so the correct KDH value can be used.

• Addresses from the same account are statistically independent (within a security factor).

[[[formalize/justify?]]]

• An account-holder can identify any e-note that they own with just the view-received private

key kvr (and normal address spend key Ks), regardless of if it was sent to a normal address

or any subaddress (assuming the information-recovery approach in Section 4.5 is used).

Importantly, when searching the ledger for owned e-notes, an account holder only needs to

compute one Diffie-Hellman exchange per e-note (at most) to recover funds owned by any

address in the account.

An e-note can only be identified as ‘owned’ if the user has a local record of the public

spend key of the address that owns that e-note. In practice, users must pre-generate all

subaddresses that might plausibly own an e-note (which can be done if you know kvr, the

normal address, and a list/range of plausible subaddress indices), and should only hand out

subaddresses from that set for receipt of funds.

• The view-spent private key kvs, in combination with qt (computed using kvr) and the key

ksU (which can be derived from ksU = Ks − kvsX), is required in order to compute linking

tags: K̃t = (ks/(H2(qt) + kvs)) ∗ U .

• The above two points mean users have access to three tiers of wallet permissions.

1. View received: View e-notes received to the account. Can generate any subaddress.

– Requires: kvr,Ks

2. Balance recovery: View received e-notes and identify which ones have been spent.21

– Requires: kvr, kvs,Ks

21 In an earlier version of this paper, linking tags had the form K̃t = (1/(H2(qt)+kvs))∗G. This meant a balance
recovery (tier 2) wallet could demonstrate the discrete log of K̃ with respect to G. As a result, a tier-2 wallet
holder could look at an e-note received to the underlying tier-3 wallet, extract the linking tag, send a new e-note to
themselves with the same linking tag, then spend that e-note so the linking tag is added to the ledger. The original
e-note seen by the tier-2 wallet would be unspendable (i.e. ‘burnt’). In other words, a tier-2 wallet would have the
power to destroy outputs owned by a tier-3 wallet, which is sub-optimal (our thanks to Nikolas Krätzschmar for
identifying this problem). The current linking tag construction K̃t = (ks/(H2(qt) + kvs)) ∗U prevents that issue by
requiring knowledge of ks in order to demonstrate the linking tag’s discrete log (with respect to generator U in this
case).



4 CONSIDERATIONS FOR IMPLEMENTERS 25

3. Full authority: Balance recovery with the authority to spend e-notes owned by the

account.

– Requires: kvr, kvs, ks

Adjustment: combine tiers 1 and 2

In practice it may be acceptable to merge tiers 1 and 2 (set kvs = kvr). The reason for this is

anyone with an account’s kvr can identify e-notes in-bound to the account, which includes change

e-notes.

If membership proofs rely on a fixed-size reference set construction (e.g. a ring signature or one-

of-many proof), then when someone receives an e-note, they can look for intersections between

the e-note’s transaction’s inputs’ e-note reference sets and the set of prior e-notes received by the

account. If the recipient believes the e-note they received was a change e-note, and sees that each

of the change e-note’s transaction’s inputs has one intersection with the owned e-note set, then it

it likely that those intersections were all spent by the transaction.

Since the vast majority of transactions are likely to include a change e-note, and fixed-size reference

sets in existing protocols are significantly smaller than the overall amount of transactions in the

network (so the probability that someone else sends you an e-note and also references one of your

owned e-notes in the same transaction is very low), this heuristic is likely powerful enough to

identify most spent e-notes. In other words, it would make the distinction between kvr and kvs

insignificant in practice.22

4.6.3 Janus attack

Variant 1 is not flawless. Unfortunately, the Janus attack [8] allows a malicious transaction author

to discern if two subaddresses were derived from the same account.

1. Construct an e-note from components of two subaddresses.

• Subaddress A: Kvr,A,Ks,A

• Subaddress B: Kvr,B,Ks,B

• Sender-receiver shared secret: qt = H1(rtK
vr,A)

• One-time address: Ko = H2(qt) ∗X +Ks,B

• E-note public key: Rt = rtK
s,A

2. E-note recipient identifies they own the e-note.

(a) Sender-receiver shared secret: qnomt = H1(k
vrRt)

22 If the membership proof reference set size is variable (i.e. equal to ‘all the e-notes in the ledger’), then this
heuristic would be useless. In that case, the distinction between kvr and kvs could be nice to have. Since the
development of an efficient membership proof with variable reference set sizes could occur at any time, a conservative
implementation of Seraphis may want to maintain the distinction between kvr and kvs ‘just in case’.



4 CONSIDERATIONS FOR IMPLEMENTERS 26

(b) Nominal spend key: Ks,nominal
t = Ko

t −H2(q
nom
t ) ∗X

(c) If Ks,nominal
t

?
= Ks,B, then the e-note is owned by subaddress B.

However, in this case, Rt is based on subaddress A!

3. If the e-note recipient notifies the sender that they got an e-note, then the sender will know

that subaddresses A and B belong to the same account (i.e. were constructed from the same

private key tuple [kvr, kvs, ks]).

4.6.4 Address scheme variant 2

Address scheme variant 2 is designed to mitigate the Janus attack. Addresses are a three-key tuple

[Ka,Kvr,Ks], where KDH = Ka is a so-called ‘ancillary key’.

• Normal addresses

Ka = kvrG

Kvr = kvrKa

Ks = kvsX + ksU

• Subaddresses: For any subaddress index i.

Ka,i = H4(k
vr, i) ∗G+Ka

Kvr,i = kvrKa,i

Ks,i = H4(k
vr, i) ∗X +Ks

Compared to variant 1, only KDH is defined differently. This new Ka value feeds into a very

important rule change for e-note construction.

• When constructing an e-note, define its commitment blinding factor as yt = H3(qt, rtG) and

its e-note public key as Rt = rtK
a
t .

• After identifying that an e-note is owned by address [Ka,Kvr,Ks], obtain its ancillary private

key ka (i.e. ka = kvr or ka,i = H4(k
vr, i) + kvr) and do the following.

1. Compute Rnombase,t = (1/ka) ∗Rt.

2. Compute yt = H3(q
nom
t , Rnombase,t).

3. Verify that the e-note’s commitment can be reconstructed: ytG + btH
?
= Ct. If not,

then the e-note is malformed and can’t be spent.

Adding this rule change mitigates the Janus attack because an e-note owner will only be able to

recompute Ct if the correct yt is used, which requires the correct Rnombase,t, which is only obtained

if the ka used corresponds to the key Ka used to compute Rt. Critically, the e-note owner

will select ka based on which of their addresses seems to own the e-note, which is the address

where Ks == Ks,nominal
t . In other words, if Rt is based on an ancillary key from a different



4 CONSIDERATIONS FOR IMPLEMENTERS 27

address/subaddress than the one whose spend key was used to construct the one-time address,

then recomputing Ct will fail.

Adjustment 1: tier 1 identifies owned outputs without amounts

In variant 1, the first wallet permission tier allows a wallet to fully view all received e-notes,

including the amounts contained. However, in variant 2 it is possible to adjust the address scheme

so wallet tier 1 can only identify owned e-notes, and cannot recover amounts. This may be

relatively more desirable because tier 1 is mostly useful for ‘outsourcing’ the task of identifying

owned e-notes to a third party, who doesn’t necessarily need to know the amounts involved.

1. Let an account be the tuple of private keys [kvr, kvb, ks], where kvb is the ‘view-balance’ key

(replacing the ‘view-spent’ key).

2. Define the normal ancillary key as Ka = kvbG. The spend key is Ks = kvbX + ksU . There

are no other changes to variant 2 addresses.

3. Define qvrt = H1(rtK
vr) and qvbt = H5(q

vr
t , rtG).

4. Use qvrt when defining Ko, and use qvbt in all other places (e.g. yt = H3(q
vb
t ), enc amountt =

enc[qvbt ](bt)).

This way users have to compute Rnombase,t = (1/kvb) ∗Rt to decode the amounts in e-notes they own.

The value kvb is called the ‘view-balance’ key because it is required both to decode amounts and

compute linking tags (i.e. view outflows).

The one downside to this approach is that tier 1 wallets would be unable to detect the Janus

attack.

Adjustment 2: tier 1 identifies owned and spent outputs without amounts

The address scheme can be further adjusted so the first permission tier can identify both owned

and spent e-notes. Unfortunately, like the previous adjustment, tier 1 wallets would be unable to

detect the Janus attack.

Take the previous adjustment and add the following rules.

1. Rename the ‘view-received’ key kvr to ‘view-enotes’ kve.

2. Let the spend key be Ks = kveX + ksU .

4.7 Non-prime groups

This paper requires G to be a prime group, however in practice it may be implemented as a prime

subgroup of a non-prime group. One prominent example, used in CryptoNote [37] and its progeny,



4 CONSIDERATIONS FOR IMPLEMENTERS 28

is the elliptic curve Ed25519 [1], which has order 8 ∗ l (l is a prime number ≈ 2252). CryptoNote

e-notes and proofs are designed to only use curve points from the subgroup of size l.

All uses of curve points in an implementation of Seraphis based on a non-prime group must

take into account the possibility that a point recorded in a transaction may not be in the prime

subgroup.

In particular, linking tags recorded in e-note-images must be points in the prime subgroup [11],

since checking if a linking tag has appeared in the ledger usually involves a byte-wise lookup.

There are several ways to ensure non-prime points are detected by transaction validators. From

least to most efficient, they are:

• Test l ∗ K̃ ?
= I, where I is the group’s identity element.

• Let the linking tag recorded in e-note-images be K̃pre = (1/h) ∗ K̃, where h is the curve’s

cofactor (8 in the case of Ed25519). To validate a transaction, compute K̃ = h ∗ K̃pre before

verifying the composition proof from Section 3.5. Record K̃ in the ledger for detecting

double-spends.

• Use an encoding abstraction such as Ristretto [7] to ensure that all points recorded in a

transaction (in e-notes, e-note-images, and proof elements) are in the prime subgroup.23

4.8 Modular transaction building

Seraphis, like other transaction protocols inspired by RingCT, does not include any advanced

‘scripting’ capabilities such as those found in Bitcoin. However, a Seraphis implementation can

be designed to permit relatively more ‘modular’ transaction building compared to RingCT and

other protocols. A modular design enables ‘membership proof delegation’, ‘transaction chaining’,

and ‘collaborative funding’.

• Membership proof delegation means allowing a third party to construct an e-note’s mem-

bership proof.

• Transaction chaining is the ability to construct a transaction B that spends an e-note pro-

duced by transaction A, before A has been added to the ledger.

• Collaborative funding allows arbitrary individuals to contribute funds (inputs) to a transac-

tion with pre-determined outputs. This can be useful for permissionless floodgate fundrais-

ing, where people donate to a cause (i.e. sign e-notes to be spent by a transaction) but

the donations are only ‘final’ when the cause is fully funded (i.e. when the transaction has

enough inputs to be submitted to the blockchain).

Each of those techniques are enabled by the following transaction-building procedure.

23 A Ristretto point will fail to decompress into a full elliptic curve point if it is not in the prime subgroup.



4 CONSIDERATIONS FOR IMPLEMENTERS 29

1. Define the transaction’s output e-notes and any miscellaneous memos.

2. Construct ownership/unspentness proofs for each input’s e-note-image. Each of these should

sign a message containing the relevant e-note-image (but not the other inputs’ e-note-images),

and all of the transaction’s outputs and memos. Cache the values tc and tk for each input.

• Ownership/unspentness proofs should not sign the transaction fee, if there is one. This

way the fee of a collaboratively funded transaction does not need to be determined in

advance.

• This design disallows ‘merged’ ownership/unspentness proof structures, where all input

e-note-images are proven legitimate at the same time (e.g. using an aggregate proof,

as in Appendix B). Implementers can use a merged proof if doing so is preferred over

the capability for collaborative funding. In that case, the merged proof should sign all

e-note-images and the transaction fee.

3. Construct a balance proof for the transaction.

• If doing collaborative funding, we recommend using the pr > 0 approach (recall Section

4.2) so all inputs can be constructed independently of each other. If pr = 0 is used,

then the last input added to a transaction must depend on all other inputs, so that its

amount mask tc can be defined to satisfy the balance proof.

If collaborative funding is not desired, then pr = 0 would be preferable, since in that

case the value pr does not have to be stored in transactions (it can be implicit).

• Note that the individual who performs/completes a balance proof must know the blind-

ing factors and amounts of all input e-note-images and output e-notes.

4. Construct range proofs for all of the output e-notes’ amount commitments (and, if using the

squashed e-note model [Appendix A], for the input e-note-images’ masked amount commit-

ments).

5. Construct a membership proof for each input using the cached tc and tk values.24 Member-

ship proofs should not sign any transaction material other than material directly related to

the membership proof (e.g. the relevant e-note-image, and ledger references to the e-notes

referenced by the proof). Membership proofs and ownership/unspentness proofs should not

share any Fiat-Shamir challenges.

Since constructing membership proofs only requires the values tc,j , tk,j , Cj , K
o
j , proof delegation

is trivial. Transaction chaining is possible because the first four steps can be executed even if

24 It may be desirable for tc,j and tk,j to be deterministic, such as tc,j = Hc(kvr, kvs,Ko
j , Cj) and tk,j =

Hk(kvr, kvs,Ko
j , Cj). This way, for example, a tier 2 wallet could construct membership proofs independently

of a tier 3 wallet that focuses on constructing/signing ownership/unspentness proofs. To support deterministic
image masks, pr > 0 should be used for balance proofs. Note that there is one edge case where using deterministic
blinding factors is flawed. If creating a membership proof is delegated to a third party (i.e. they are given the values
tc,j , tk,j , Cj , K

o
j ) for one transaction attempt, but that attempt is aborted, then that third party will be able to

recognize when the e-note is spent in a different transaction attempt even if a different person creates the e-note’s
membership proof. This is because deterministic blinding factors stay the same between transaction attempts.



4 CONSIDERATIONS FOR IMPLEMENTERS 30

the inputs being spent don’t exist in the ledger. A transaction can be collaboratively funded if

step two is executed by independent parties, since step two requires no cooperation between input

signers.

4.9 Other recommendations

The above recommendations are not an exhaustive list. Here are some other ideas we think

implementers should consider.

• Semantic constraints: Transaction validation rules should contain as many ‘semantic

constraints’ as possible. A semantic constraint is one that limits variance in how a transaction

may be constructed, without affecting the underlying security model. For example, how

inputs and outputs are sorted, byte serialization, memo field format/usage, etc.

Reducing/eliminating semantic variance reduces the likelihood of ‘implementation finger-

printing’. If two transaction-builder implementations use different semantic conventions,

then observers can easily identify what software was used to make a given transaction. This

can have undesirable privacy implications for users.

• Decoy selection: Membership proofs might only reference a small set of e-notes in the

ledger. If ‘decoy’ e-notes are not selected effectively, then observers may be able to use

heuristics to gain an advantage when trying to guess the real spend in a transaction input.

Pure random selection of decoys is weak to the ‘guess-newest’ heuristic, where the ‘newest’

e-note referenced by a membership proof is most likely to be the real spend. Selecting

from a gamma distribution instead is thought to better mimic the true spend distribution,

and selecting ‘bins’ (clumps) of e-notes mitigates analysis that uses circumstantial timing

knowledge about a transaction. [23, 31]

• View tag optimization: To identify an owned e-note, multiple group operations are re-

quired (Section 4.5). Typically, group operations are quite expensive, so the amount of

time it takes to scan the ledger for owned e-notes is mainly a function of how many group

operations are executed.

One possible optimization is to include the first one byte of the value qt in e-note memos as

a so-called ‘view tag’ [33].25 Before trying to compute Ks,nominal
t = Ko

t −H2(q
nom
t )∗X for a

given e-note, users can first compute the view tag and check if it matches the value recorded

in the e-note. If it does not match, then the step to get Ks,nominal
t can be skipped.

25 In practice, to avoid leaking bits of qt, implementers should make sure view tags are independent from qt, such
as view tagt = Hviewtag(h ∗ kvrRt) (including the cofactor h, as discussed in footnote 18). Note that hashing the
Diffie-Hellman secret directly, instead of qt, saves one hashing operation during scanning.



5 EFFICIENCY 31

5 Efficiency

In this section we discuss performance results (transaction sizes and verification costs) from a test

of several proof-of-concept implementations of Seraphis variants (using the recommendations from

Section 4), along with mock-ups of prominent alternatives (RingCT [28] and Triptych [27]).26 The

results are not comprehensive (see [35] for more in-depth results), but should be sufficient to give

readers a sense of the trade-offs between different protocols and design choices.

5.1 Test details

Here is a brief overview of the transaction protocols tested, which were implemented on Ed25519 [1]

using a fork of the Monero codebase [36]. All protocols use Confidential Transactions [22], so all

mock-ups essentially had the same balance proof approach (with slight variations). Note that

‘Concise-Grootle’ is simply a Triptych [27] proof with the linking tag components removed and

adapted to our membership proof model (Section 3.4) instead of directly proving ownership of

an e-note in the reference set. ‘Plain-Grootle’ is very similar to ‘Concise-Grootle’, but uses an

expanded structure.27

Table 5-1: Transaction Protocols Overview

Protocol Membership Proof Ownership Proof Balance Proof

RingCT [28] CLSAG [12] CLSAG A p = 0 balance

check with aggre-

gated Bulletproofs+

range proofs [5]

for output e-note

amount commit-

ments.28

Triptych [27] Triptych Triptych A p = 0 balance

check with aggre-

gated Bulletproofs+

range proofs [5]

for output e-note

amount commit-

ments.

26 A mock-up of Lelantus-Spark [14] was not built since it is very similar to Seraphis-Concise, aside from the use
of expanded Grootle proofs instead of Concise-Grootle. The authors of this paper found that Concise-Grootle proofs
are either equivalent-to, or better-than, expanded Grootle proofs in terms of proof size and verification cost.

27 ‘Grootle’ refers to papers by Groth [13] and Bootle [2], which were precursors to Triptych [27]. ‘Concise’ refers
to the use of µα to reduce proof sizes in Triptych, which is in contrast to the ‘expanded’ proof structure used by
Lelantus-Spark [14] (‘Plain-Grootle’ in our case). Note that our Grootle proofs use the A/B optimization from
Section 1.3 of this paper: [9].



5 EFFICIENCY 32

Seraphis-Concise Concise-Grootle Seraphis composition

proofs for each input

image’s masked ad-

dress and linking tag

(Appendix B).

A p > 0 balance

check29 with aggre-

gated Bulletproofs+

range proofs for out-

put e-note amount

commitments.

Seraphis-Squashed

(Appendix A)

Concise-Grootle on

squashed e-notes.

Seraphis composition

proofs for each in-

put image’s masked

address and linking

tag.

A p > 0 balance

check with aggre-

gated Bulletproofs+

range proofs for in-

put image and out-

put e-note amount

commitments.

Seraphis-Merge Concise-Grootle Aggregate Seraphis

composition proof

for all input images’

masked addresses

and linking tags.

A p = 0 balance

check with aggre-

gated Bulletproofs+

range proofs for out-

put e-note amount

commitments.

Seraphis-Plain Plain-Grootle Seraphis composition

proofs for each in-

put image’s masked

address and linking

tag.

A p > 0 balance

check with aggre-

gated Bulletproofs+

range proofs for out-

put e-note amount

commitments.

The test was run single-threaded on a zenith2alpha motherboard with an AMD Ryzen Thread-

ripper 3970X 32-Core processor and 256GB RAM. It was run on author koe’s Seraphis performance

test branch [36] at commit ff4b862be0fbb5686067957628db401703fbfe19.30

5.2 Results and discussion

Here we discuss the test results. Note that, since the only big difference between Seraphis-Merge

and Seraphis-Concise is how transaction size changes as as the number of transaction inputs

changes, Seraphis-Merge is only seen in the plot of input count vs transaction size.

28 ‘Aggregated’ Bulletproofs+ range proofs are range proofs for multiple commitments that are combined in one
proof structure (i.e. byte blob).

29 Seraphis-Concise, Seraphis-Squashed, and Seraphis-Plain (the non-merged variants) use a p > 0 balance check
to support collaborative funding (Section 4.8). Since p = 0 is slightly more efficient (by one scalar-mult-public-key
elliptic curve operation, one group addition, and 32 bytes per transaction), p = 0 is used for the merged variant.

30 The test command was ./build/Linux/seraphis perf/release/tests/performance tests/performance tests

--filter=mock tx --stats --loop-multiplier=10 --timings-database=/home/user/seraphis perf/test results/

perf run.txt > /home/user/seraphis perf/test results/stdout perf run.txt.



5 EFFICIENCY 33

Figure 5-1: [Left] Membership proof reference set size vs verification cost for 2-input/2-output
transactions and no batch-verification. Note that both axes are logarithmic.

Figure 5-2: [Right] Membership proof reference set size vs verification size for 2-input/2-output
transactions and no batch-verification.

In Figure 5-1 we see that Seraphis-Concise and Triptych have practically identical verification costs.

This is because the modifications to Triptych to get Concise-Grootle proofs have minimal effect

on verification costs when reference sizes are reasonably large, and because Seraphis composition

proofs have negligible verification cost compared to Concise-Grootle proofs.

Seraphis-Plain is only marginally faster than Seraphis-Concise (less than 10%), because the veri-

fication optimizations that can be used by Seraphis-Plain are relatively inefficient.31

We also see that above reference set size 4, CLSAG performs significantly worse than Seraphis-

Concise and Triptych. The performance costs of CLSAG for ‘large’ reference set sizes (above

around 5-15) is the driving motivator behind research into protocols like Triptych and Seraphis.

It would seem that Seraphis-Squashed is unfavorable below a reference set size of 128, but Figures

5-3 and 5-4 will expose the advantages of that protocol variant.

Figure 5-2 further reinforces the costliness of CLSAG, and reveals that Seraphis transaction sizes

scale better than Triptych with reference set sizes, which is thanks to the relative simplicity of

Concise-Grootle proofs. Here we also see that the marginal performance gains of Seraphis-Plain

compared to Seraphis-Concise come at a significant transaction size cost.

31 For those readers familiar with Lelantus-Spark’s Grootle proofs, we used 2-byte weights to aggregate keys
during verification.



5 EFFICIENCY 34

Figure 5-3: [Left] Membership proof reference set size vs per-transaction verification cost for
2-input/2-output transactions verified in batches of 25. Note that both axes are logarithmic.

Figure 5-4: [Right] Batch size vs per-transaction verification cost for 16-input/16-output trans-
actions with 128-member reference sets.

Figures 5-3 and 5-4 show what happens when transactions are verified in batches. Multiple Grootle

proofs can be verified together in batches, and likewise the aggregated Bulletproofs+ range proofs

in a transaction can be batch-verified with range proofs from other equivalent transactions.

Notably, Seraphis-Squashed’s performance relative to the other protocols improves greatly when

batching is done. This is because Seraphis-Squashed trades simpler membership proofs for range

proofs on input image masked amount commitments, and because Bulletproofs+ proofs benefit

more from batching than Grootle proofs.32

32 Grootle proof and Bulletproofs+ proof verification use so-called ‘multiexponentiation’. It turns out the mul-
tiexponentiation operations of those proofs can be combined into one operation, which is a slight optimization (on
the order of 1-10% for unbatched verification).



REFERENCES 35

Figure 5-5: Input count vs transaction size (normalized to the 1-input case) for 2-output trans-
actions with 128-member reference sets and no batch-verification.

Finally, in Figure 5-5 we see how Seraphis-Merge differs from the other variants. In explicit terms,

Seraphis-Merge is 32 ∗ (1 + 3 ∗ (num inputs− 1)) bytes smaller than Seraphis-Concise. Also note

that Triptych transaction sizes scale worse with input counts than the Seraphis variants. Even

Seraphis-Plain scales better than Triptych with increasing input counts.

References

[1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sep 2012. https://ed25519.cr.yp.to/ed25519-

20110705.pdf [Online; accessed 03/04/2020].

[2] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit. Short

accountable ring signatures based on ddh. Cryptology ePrint Archive, Report 2015/643, 2015. https://ia.

cr/2015/643 [Online; accessed 08/30/2021].

[3] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:

Short Proofs for Confidential Transactions and More. https://eprint.iacr.org/2017/1066 [Online; accessed

10/28/2018].

[4] Alishah Chator and Maxwell Green. How to Squeeze a Crowd: Reducing Bandwidth in Mixing Cryptocurren-

cies. https://isi.jhu.edu/~mgreen/mixing.pdf [Online; accessed 08/25/2021].

[5] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo. Bulletproofs+: Shorter

proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735, 2020. https:

//eprint.iacr.org/2020/735 [Online; accessed 07/17/2021].

[6] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr: Security of multi-

and threshold signatures. Cryptology ePrint Archive, Report 2021/1375, 2021. https://ia.cr/2021/1375

[Online; accessed 11/19/2021].

[7] Henry de Valance, Isis Lovecruft, and Tony Arcieri. Ristretto. https://ristretto.group/ristretto.html

[Online; accessed 10/05/2020].

https://ed25519.cr.yp.to/ed25519-20110705.pdf
https://ed25519.cr.yp.to/ed25519-20110705.pdf
https://ia.cr/2015/643
https://ia.cr/2015/643
https://eprint.iacr.org/2017/1066
https://isi.jhu.edu/~mgreen/mixing.pdf
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2020/735
https://ia.cr/2021/1375
https://ristretto.group/ristretto.html


REFERENCES 36

[8] Justin Ehrenhofer and knacc. Advisory note for users making use of subaddresses, October 2019. https:

//web.getmonero.org/2019/10/18/subaddress-janus.html [Online; accessed 01/02/2020].

[9] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Matrict: Efficient,

scalable and post-quantum blockchain confidential transactions protocol. Cryptology ePrint Archive, Report

2019/1287, 2019. https://ia.cr/2019/1287 [Online; accessed 02/21/2022].

[10] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to Identification and Signature

Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin,

Heidelberg, 1987. Springer Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007%2F3-540-

47721-7_12.pdf [Online; accessed 03/04/2020].

[11] Riccardo “fluffypony” Spagni and luigi1111. Disclosure of a Major Bug in Cryptonote Based Curren-

cies, May 2017. https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-

currencies.html [Online; accessed 04/10/2018].

[12] Brandon Goodell, Sarang Noether, and RandomRun. Concise Linkable Ring Signatures and Forgery Against

Adversarial Keys. Cryptology ePrint Archive, Report 2019/654, 2019. https://eprint.iacr.org/2019/654

[Online; accessed 11/23/2020].

[13] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.

Cryptology ePrint Archive, Report 2014/764, 2014. https://ia.cr/2014/764 [Online; accessed 11/18/2021].

[14] Aram Jivanyan and Aaron Feickert. Lelantus spark: Secure and flexible private transactions. Cryptology ePrint

Archive, Report 2021/1173, 2021. https://ia.cr/2021/1173 [Online; accessed 09/19/2021].

[15] kenshi84. Subaddresses, Pull Request #2056, May 2017. https://github.com/monero-project/monero/pull/

2056 [Online; accessed 02/16/2020].

[16] koe and Kurt M. Alonso. Mechanics of MobileCoin — First Edition, 2021. https://github.com/UkoeHB/

Mechanics-of-MobileCoin [Online; accessed 07/29/2021].

[17] koe, Kurt M. Alonso, and Sarang Noether. Zero to Monero — Second Edition, April 2020. https://web.

getmonero.org/library/Zero-to-Monero-2-0-0.pdf [Online; accessed 10/03/2020].

[18] koe and Sara Drakeley. MobileCoin Governance, Fees, and Supply. https://medium.com/mobilecoin/

mobilecoin-governance-fees-and-supply-60c11782eb0a [Online; accessed 06/15/2021].

[19] Chelsea Komlo and Ian Goldberg. Frost: Flexible round-optimized schnorr threshold signatures. Cryptology

ePrint Archive, Report 2020/852, 2020. https://ia.cr/2020/852 [Online; accessed 11/19/2021].

[20] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Thyagarajan, and Jiafan Wang.

Omniring: Scaling Private Payments Without Trusted Setup. pages 31–48, 11 2019. https://eprint.iacr.

org/2019/580 [Online; accessed 03/04/2020].

[21] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anonymous Group Signature for

Ad Hoc Groups, pages 325–335. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. https://eprint.iacr.

org/2004/027 [Online; accessed 03/04/2020].

[22] Gregory Maxwell. Confidential Transactions. https://elementsproject.org/features/confidential-

transactions/investigation [Online; accessed 11/23/2020].

[23] Andrew Miller, Malte Möser, Kevin Lee, and Arvind Narayanan. An Empirical Analysis of Linkability in the

Monero Blockchain. CoRR, abs/1704.04299, 2017. https://arxiv.org/pdf/1704.04299.pdf [Online; accessed

03/04/2020.

[24] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. http://bitcoin.org/bitcoin.pdf

[Online; accessed 03/04/2020].

[25] Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple two-round schnorr multi-signatures. Cryptology

ePrint Archive, Report 2020/1261, 2020. https://ia.cr/2020/1261 [Online; accessed 11/19/2021].

[26] Sarang Noether and Brandon Goodell. An efficient implementation of Monero subaddresses, MRL-0006,

October 2017. https://web.getmonero.org/resources/research-lab/pubs/MRL-0006.pdf [Online; accessed

04/04/2018].

https://web.getmonero.org/2019/10/18/subaddress-janus.html
https://web.getmonero.org/2019/10/18/subaddress-janus.html
https://ia.cr/2019/1287
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://eprint.iacr.org/2019/654
https://ia.cr/2014/764
https://ia.cr/2021/1173
https://github.com/monero-project/monero/pull/2056
https://github.com/monero-project/monero/pull/2056
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://medium.com/mobilecoin/mobilecoin-governance-fees-and-supply-60c11782eb0a
https://medium.com/mobilecoin/mobilecoin-governance-fees-and-supply-60c11782eb0a
https://ia.cr/2020/852
https://eprint.iacr.org/2019/580
https://eprint.iacr.org/2019/580
https://eprint.iacr.org/2004/027
https://eprint.iacr.org/2004/027
https://elementsproject.org/features/confidential-transactions/investigation
https://elementsproject.org/features/confidential-transactions/investigation
https://arxiv.org/pdf/1704.04299.pdf
http://bitcoin.org/bitcoin.pdf
https://ia.cr/2020/1261
https://web.getmonero.org/resources/research-lab/pubs/MRL-0006.pdf


REFERENCES 37

[27] Sarang Noether and Brandon Goodell. Triptych: logarithmic-sized linkable ring signatures with applications.

Cryptology ePrint Archive, Report 2020/018, 2020. https://eprint.iacr.org/2020/018 [Online; accessed

03/04/2020.

[28] Shen Noether, Adam Mackenzie, and Monero Core Team. Ring Confidential Transactions, MRL-0005,

February 2016. https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf [Online; accessed

06/15/2018].

[29] Shen Noether and Sarang Noether. Thring Signatures and their Applications to Spender-Ambiguous Digital

Currencies, MRL-0009, November 2018. https://web.getmonero.org/resources/research-lab/pubs/MRL-

0009.pdf [Online; accessed 01/15/2020].

[30] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing, pages

129–140. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. https://www.cs.cornell.edu/courses/cs754/

2001fa/129.PDF [Online; accessed 03/04/2020].

[31] Viktoria Ronge, Christoph Egger, Russell W. F. Lai, Dominique Schröder, and Hoover H. F. Yin. Foundations

of ring sampling. Cryptology ePrint Archive, Report 2020/1550, 2020. https://ia.cr/2020/1550 [Online;

accessed 09/19/2021].

[32] UkoeHB. Proposal/Request: Update Supplementary Transaction Content, Issue #6456, April 2020. https:

//github.com/monero-project/monero/issues/6456 [Online; accessed 10/11/2020].

[33] UkoeHB. Reduce scan times with 1-byte-per-output ’view tag’, Issue #73, April 2020. https://github.com/

monero-project/research-lab/issues/73 [Online; accessed 11/23/2020].

[34] UkoeHB. Seraphis Address Schemes, Issue #92, November 2021. https://github.com/monero-project/

research-lab/issues/92 [Online; accessed 11/19/2021].

[35] UkoeHB. Seraphis Performance Results, Issue #91, November 2021. https://github.com/monero-project/

research-lab/issues/91 [Online; accessed 11/18/2021].

[36] UkoeHB. seraphis perf repository branch, November 2021. https://github.com/UkoeHB/monero/tree/

seraphis_perf [Online; accessed 11/18/2021].

[37] Nicolas van Saberhagen. CryptoNote V2.0. https://bytecoin.org/old/whitepaper.pdf [Online; accessed

03/10/2021].

[38] Tsz Hon Yuen, Shi-feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao Zhang, and Dawu

Gu. RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security. Cryptology

ePrint Archive, Report 2019/508, 2019. https://eprint.iacr.org/2019/508 [Online; accessed 03/04/2020].

https://eprint.iacr.org/2020/018
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://web.getmonero.org/resources/research-lab/pubs/MRL-0009.pdf
https://web.getmonero.org/resources/research-lab/pubs/MRL-0009.pdf
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF
https://ia.cr/2020/1550
https://github.com/monero-project/monero/issues/6456
https://github.com/monero-project/monero/issues/6456
https://github.com/monero-project/research-lab/issues/73
https://github.com/monero-project/research-lab/issues/73
https://github.com/monero-project/research-lab/issues/92
https://github.com/monero-project/research-lab/issues/92
https://github.com/monero-project/research-lab/issues/91
https://github.com/monero-project/research-lab/issues/91
https://github.com/UkoeHB/monero/tree/seraphis_perf
https://github.com/UkoeHB/monero/tree/seraphis_perf
https://bytecoin.org/old/whitepaper.pdf
https://eprint.iacr.org/2019/508


A SQUASHED E-NOTE MODEL 38

A Squashed e-note model

The squashed e-note model is a specialization of the Seraphis membership proof model that allows

relatively simpler (and more efficient) proof structures.

First we will describe the model, then discuss how it satisfies relevant security requirements when

applied to Seraphis.

A.1 Model

1. Require G0 = H0, and assume the discrete logarithm of H1 with respect to any of G1, ..., Gn
is unknown (in addition to all the other assumptions from Section 2.1).

2. Let S represent a set of tuples [Ki, Ci], where

Ki = ziG0 + si,1G1 + si,2G2 + ...+ si,nGn

Ci = xiH0 + ai,1H1

3. Let St represent a set of ‘transformed’ tuples [Kt
i , C

t
i ], where

Kt
i = H6(Ki, Ci) ∗Ki

Cti = Ci

4. Perform a range proof on each Cti ∈ St (recall Section 3.6.1).

5. Let Q represent a set of squashed tuples [Qi], where

Qi = Kt
i + Cti

6. Let S̃ represent a tuple [K ′, C ′] (e.g. a masked version of St[π]), where

K ′ = z′G0 + s′1G1 + s′2G2 + ...+ s′nGn

C ′ = x′H0 + a′1H1

7. Let Q̃ = K ′ + C ′.

8. Demonstrate that, within a security parameter k, Q̃ corresponds to some Qπ ∈ Q, where π

is unknown to the verifier, such that:

(a) The discrete log relation of Q̃ − Qπ = [(z′ + x′) − (H6(Kπ, Cπ) ∗ zπ + xπ)] ∗ G0 with

respect to G0 is known.

9. Perform a range proof on C ′.

10. Demonstrate knowledge of z′, s′1, ..., s
′
n such that K ′ = z′G0 + s′1G1 + s′2G2 + ...+ s′nGn.

The benefit of this specialization compared to the underlying membership proof model is you

only need to prove the discrete log in one commitment to zero relation, rather than two. For



A SQUASHED E-NOTE MODEL 39

example, with a SAG (e.g. LSAG [21] without linking) or Groth/Bootle one-of-many proof on the

set {Q̃ − Qi}.33 The efficiency implications are discussed in Section 5, which compares possible

instantiations of Seraphis using the two models.

A.2 Requirement satisfaction

A.2.1 Underlying membership proof model

We argue that the squashed e-note model satisfies the underlying membership proof model.

Let St be the input to the underlying model. We will show that the following requirement, adapted

from Section 3.4, is met.

1. Demonstrate that, within a security parameter k, S̃ corresponds to some Stπ ∈ St, where π

is unknown to the verifier, such that:

(a) s′j == H6(Kπ, Cπ) ∗ sπ,j for j ∈ 1, ..., n

(b) a′1 == aπ,1

Observe the following.

1. The prover must know [(z′ + x′) − (H6(Kπ, Cπ) ∗ zπ + xπ)] and z′ to satisfy the squashed

e-note model, and x′ and xπ to construct the range proofs on C ′ and Ctπ. Therefore the

prover must know H6(Kπ, Cπ) ∗ zπ. The point H6(Kπ, Cπ) is considered ‘public knowledge’,

so the prover must also know zπ (which may be 0).

2. Range proofing Cπ and C ′ means they have the form xH0 + aH1, implying they contain

no G1, ..., Gn components. Therefore, demonstrating discrete log with respect to G0 in the

commitment to zero Q̃ − Qπ means it must be the case that s′j == H6(Kπ, Cπ) ∗ sπ,j for

j ∈ 1, ..., n (i.e. all factors of G1, ..., Gn in Q̃ and K ′ must come from Kπ).

3. Suppose Ki has the form Ki = ziG0 + si,1G1 + si,2G2 + ...+ si,nGn + eH1. Since the model

requires a demonstration that K ′ does not contain any H1 components, and the commitment

to zero Q̃ − Qπ means all non-G0 components balance in those two points, it must be the

case that C ′ = x′H0 + (ai,1 + H6(Kπ, Cπ) ∗ e) ∗ H1. However, the term H6(Kπ, Cπ) is

both uniformly distributed and implicitly dependent on the values ai,1 and e, so the value

a′1 = (ai,1 + H6(Kπ, Cπ) ∗ e) will be uniformly distributed in Zl (assuming e is non-zero).

Since the range proof on C ′ means that a′1 must be in the range [0, ..., 2z − 1], if e 6= 0 then

the probability that a range proof on a′1 can succeed is 2z/l. This means a′1 == ai,1 can be

assumed to be true within the security parameter k if 1/k > 2z/l.34 [[[formalize better?]]]

33 In practice, it may be simpler to implement a membership proof on the equivalent set {Qi − Q̃}.
34 Typically l ≈ 2252 − 2256, 2z = 264, and k = 2128; 1/2128 > 264/2252 is true.



B COMPOSITION PROOFS WITH SCHNORR 40

A.2.2 Seraphis structure

1. Note that a range proof on Ci is equivalent to a range proof on Cti , since Cti = Ci. These

range proofs will already exist, since membership proofs only reference e-notes in the ledger

(which were created by transactions whose output e-notes’ amount commitments were range

proofed, or are coinbase e-notes whose amounts are known).

2. Seraphis linking tags are computed from the output of a membership proof, namely the

point K ′ in S̃. However, K ′ in the squashed e-note model applied to Seraphis has the form

K ′ = tkG0 +H6(K
o
π, Cπ) ∗ [koa ∗ G1 + kob ∗ G2]. This means linking tags will have the form

K̃ = ((H6(K
o
π, Cπ) ∗ kob )/(H6(K

o
π, Cπ) ∗ koa)) ∗ X. Since the terms H6(K

o
π, Cπ) cancel each

other, linking tags in this model are the same as in the base model.

3. Step 10 in the above model is automatically satisfied by Seraphis because K ′ is passed as

input to the ownership/unspentness proof system, which demonstrates knowledge of the

per-generator discrete log relations of its inputs.

A.3 Practical considerations

1. Transaction verifiers can pre-compute steps 3 and 5 from the above model for every e-note

in the ledger. The squashed tuples Qi can be stored in anticipation of new transactions that

may require them.

2. In transaction chaining (Section 4.9), only step 8 in the above model needs to be deferred

(assuming Qi values have been precomputed, and range proofs on Ci already exist).

B Composition proofs with Schnorr

In this Appendix is one approach to satisfying the Seraphis ownership/unspentness proof require-

ments (Section 3.5), assuming J == G2. First we lay out the proof system that satisfies those

requirements, then we describe a proof structure in that system.35

B.1 Composition proof system

[[[better terminology than ‘proof system’?]]]

1. Assume there is a group point K = xG0 + yG1 + zG2.

35 We leave applying the Fiat-Shamir transform [10] to the composition proof structure as an exercise for the
reader.



B COMPOSITION PROOFS WITH SCHNORR 41

2. Let

Kt1 = (1/y) ∗K
Kt2 = Kt1 −G1 − K̃
K̃ = (z/y) ∗G2

3. Demonstrate the discrete log of Kt1 = (1/y) ∗K with respect to K.

4. Demonstrate the discrete log of Kt2 = (x/y) ∗G0 with respect to G0.

5. Demonstrate the discrete log of K̃ = (z/y) ∗G2 with respect to G2.

B.1.1 Seraphis requirements satisfaction

[[[explain how it satisfies the requirements?]]]

B.2 Composition proof structure

[[[better terminology than ‘proof structure’?]

Our proof structure is a Schnorr-like Σ-protocol between prover and verifier. Notably, for the

discrete logs of K̃ and Kt2 from the proof system, we use the concise approach from [12] to reduce

proof sizes when constructing multiple proofs in parallel (i.e. reduce the number of responses

required). Furthermore, we use the powers-of-µ approach from [27] (i.e. ‘aggregation coefficients’),

instead of distinct per-element hashes, for simplicity.

Note that if a composition proof is made for one input keyset (n = 1), then the proof structure

degenerates into a plain tuple of Schnorr proofs (i.e. the aggregation coefficients disappear, since

µ0 = 1).

1. Suppose the prover has keys [xi, yi, zi,Ki] for i ∈ 1, ..., n, where Ki = xiG0 + yiG1 + ziG2.

2. The prover generates random scalars αa, αb, α1, ..., αn ∈R Zl.

3. The prover computes αaG0, αbG2, αiKi, Kt1,i = (1/yi) ∗ Ki, and K̃i = (zi/yi) ∗ G2 for

i ∈ 1, ...n. He sends all of those to the verifier along with the keys Ki.

4. The verifier generates random scalars c, µa, µb ∈R Zl and sends them to the prover.

5. The prover computes responses ra, rb, r1, ..., rn and sends them to the verifier.

ra ≡ αa − c ∗ (

n∑
i=1

µi−1a ∗ (xi/yi))

rb ≡ αb − c ∗ (

n∑
i=1

µi−1b ∗ (zi/yi))

ri ≡ αi − c ∗ (1/yi)



B COMPOSITION PROOFS WITH SCHNORR 42

6. The verifier computes Kt2,i = Kt1,i−G1− K̃i, then checks the following equalities. If any of

them fail (or if Kt1,i or K̃i equal the identity element I), then the prover has failed to satisfy

the composition proof system.

αaG0 == raG0 + c ∗ (

n∑
i=1

µi−1a ∗Kt2,i)

αbG2 == rbG2 + c ∗ (

n∑
i=1

µi−1b ∗ K̃i)

αiKi == riKi + c ∗Kt1,i


	Introduction
	Monetary state
	Transaction protocols
	Our contribution
	Acknowledgements

	Preliminaries
	Public parameters
	Notation

	Seraphis
	Transaction overview
	E-notes
	E-note-images
	Sender-receiver anonymity
	Linking tags

	Membership proofs
	Ownership and unspentness proofs
	Amount balance proofs
	Range proofs

	Transaction teleology
	E-note address model
	Information recovery

	Considerations for implementers
	Generators
	Amount balancing
	Amount balancing with pr = 0
	Sender-receiver anonymity for pr = 0
	Amount balancing with pr > 0
	Sender-receiver anonymity for pr > 0

	Coinbase e-notes
	Transaction fees
	Information recovery in practice
	Addressing schemes
	Terminology
	Address scheme variant 1
	Janus attack
	Address scheme variant 2

	Non-prime groups
	Modular transaction building
	Other recommendations

	Efficiency
	Test details
	Results and discussion

	Bibliography
	Squashed e-note model
	Model
	Requirement satisfaction
	Underlying membership proof model
	Seraphis structure

	Practical considerations

	Composition proofs with Schnorr
	Composition proof system
	Seraphis requirements satisfaction

	Composition proof structure



